]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/stabsread.c
07cfe08cea51c947ef2dda5607a75edcc9160031
[thirdparty/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* Support routines for reading and decoding debugging information in
23 the "stabs" format. This format is used with many systems that use
24 the a.out object file format, as well as some systems that use
25 COFF or ELF where the stabs data is placed in a special section.
26 Avoid placing any object file format specific code in this file. */
27
28 #include "defs.h"
29 #include "gdb_string.h"
30 #include "bfd.h"
31 #include "gdb_obstack.h"
32 #include "symtab.h"
33 #include "gdbtypes.h"
34 #include "expression.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
38 #include "libaout.h"
39 #include "aout/aout64.h"
40 #include "gdb-stabs.h"
41 #include "buildsym.h"
42 #include "complaints.h"
43 #include "demangle.h"
44 #include "language.h"
45 #include "doublest.h"
46 #include "cp-abi.h"
47 #include "cp-support.h"
48 #include "gdb_assert.h"
49
50 #include <ctype.h>
51
52 /* Ask stabsread.h to define the vars it normally declares `extern'. */
53 #define EXTERN
54 /**/
55 #include "stabsread.h" /* Our own declarations */
56 #undef EXTERN
57
58 extern void _initialize_stabsread (void);
59
60 /* The routines that read and process a complete stabs for a C struct or
61 C++ class pass lists of data member fields and lists of member function
62 fields in an instance of a field_info structure, as defined below.
63 This is part of some reorganization of low level C++ support and is
64 expected to eventually go away... (FIXME) */
65
66 struct field_info
67 {
68 struct nextfield
69 {
70 struct nextfield *next;
71
72 /* This is the raw visibility from the stab. It is not checked
73 for being one of the visibilities we recognize, so code which
74 examines this field better be able to deal. */
75 int visibility;
76
77 struct field field;
78 }
79 *list;
80 struct next_fnfieldlist
81 {
82 struct next_fnfieldlist *next;
83 struct fn_fieldlist fn_fieldlist;
84 }
85 *fnlist;
86 };
87
88 static void
89 read_one_struct_field (struct field_info *, char **, char *,
90 struct type *, struct objfile *);
91
92 static struct type *dbx_alloc_type (int[2], struct objfile *);
93
94 static long read_huge_number (char **, int, int *, int);
95
96 static struct type *error_type (char **, struct objfile *);
97
98 static void
99 patch_block_stabs (struct pending *, struct pending_stabs *,
100 struct objfile *);
101
102 static void fix_common_block (struct symbol *, int);
103
104 static int read_type_number (char **, int *);
105
106 static struct type *read_type (char **, struct objfile *);
107
108 static struct type *read_range_type (char **, int[2], int, struct objfile *);
109
110 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
111
112 static struct type *read_sun_floating_type (char **, int[2],
113 struct objfile *);
114
115 static struct type *read_enum_type (char **, struct type *, struct objfile *);
116
117 static struct type *rs6000_builtin_type (int);
118
119 static int
120 read_member_functions (struct field_info *, char **, struct type *,
121 struct objfile *);
122
123 static int
124 read_struct_fields (struct field_info *, char **, struct type *,
125 struct objfile *);
126
127 static int
128 read_baseclasses (struct field_info *, char **, struct type *,
129 struct objfile *);
130
131 static int
132 read_tilde_fields (struct field_info *, char **, struct type *,
133 struct objfile *);
134
135 static int attach_fn_fields_to_type (struct field_info *, struct type *);
136
137 static int attach_fields_to_type (struct field_info *, struct type *,
138 struct objfile *);
139
140 static struct type *read_struct_type (char **, struct type *,
141 enum type_code,
142 struct objfile *);
143
144 static struct type *read_array_type (char **, struct type *,
145 struct objfile *);
146
147 static struct field *read_args (char **, int, struct objfile *, int *, int *);
148
149 static void add_undefined_type (struct type *, int[2]);
150
151 static int
152 read_cpp_abbrev (struct field_info *, char **, struct type *,
153 struct objfile *);
154
155 static char *find_name_end (char *name);
156
157 static int process_reference (char **string);
158
159 void stabsread_clear_cache (void);
160
161 static const char vptr_name[] = "_vptr$";
162 static const char vb_name[] = "_vb$";
163
164 static void
165 invalid_cpp_abbrev_complaint (const char *arg1)
166 {
167 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
168 }
169
170 static void
171 reg_value_complaint (int regnum, int num_regs, const char *sym)
172 {
173 complaint (&symfile_complaints,
174 _("register number %d too large (max %d) in symbol %s"),
175 regnum, num_regs - 1, sym);
176 }
177
178 static void
179 stabs_general_complaint (const char *arg1)
180 {
181 complaint (&symfile_complaints, "%s", arg1);
182 }
183
184 /* Make a list of forward references which haven't been defined. */
185
186 static struct type **undef_types;
187 static int undef_types_allocated;
188 static int undef_types_length;
189 static struct symbol *current_symbol = NULL;
190
191 /* Make a list of nameless types that are undefined.
192 This happens when another type is referenced by its number
193 before this type is actually defined. For instance "t(0,1)=k(0,2)"
194 and type (0,2) is defined only later. */
195
196 struct nat
197 {
198 int typenums[2];
199 struct type *type;
200 };
201 static struct nat *noname_undefs;
202 static int noname_undefs_allocated;
203 static int noname_undefs_length;
204
205 /* Check for and handle cretinous stabs symbol name continuation! */
206 #define STABS_CONTINUE(pp,objfile) \
207 do { \
208 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
209 *(pp) = next_symbol_text (objfile); \
210 } while (0)
211 \f
212
213 /* Look up a dbx type-number pair. Return the address of the slot
214 where the type for that number-pair is stored.
215 The number-pair is in TYPENUMS.
216
217 This can be used for finding the type associated with that pair
218 or for associating a new type with the pair. */
219
220 static struct type **
221 dbx_lookup_type (int typenums[2])
222 {
223 int filenum = typenums[0];
224 int index = typenums[1];
225 unsigned old_len;
226 int real_filenum;
227 struct header_file *f;
228 int f_orig_length;
229
230 if (filenum == -1) /* -1,-1 is for temporary types. */
231 return 0;
232
233 if (filenum < 0 || filenum >= n_this_object_header_files)
234 {
235 complaint (&symfile_complaints,
236 _("Invalid symbol data: type number (%d,%d) out of range at symtab pos %d."),
237 filenum, index, symnum);
238 goto error_return;
239 }
240
241 if (filenum == 0)
242 {
243 if (index < 0)
244 {
245 /* Caller wants address of address of type. We think
246 that negative (rs6k builtin) types will never appear as
247 "lvalues", (nor should they), so we stuff the real type
248 pointer into a temp, and return its address. If referenced,
249 this will do the right thing. */
250 static struct type *temp_type;
251
252 temp_type = rs6000_builtin_type (index);
253 return &temp_type;
254 }
255
256 /* Type is defined outside of header files.
257 Find it in this object file's type vector. */
258 if (index >= type_vector_length)
259 {
260 old_len = type_vector_length;
261 if (old_len == 0)
262 {
263 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
264 type_vector = (struct type **)
265 xmalloc (type_vector_length * sizeof (struct type *));
266 }
267 while (index >= type_vector_length)
268 {
269 type_vector_length *= 2;
270 }
271 type_vector = (struct type **)
272 xrealloc ((char *) type_vector,
273 (type_vector_length * sizeof (struct type *)));
274 memset (&type_vector[old_len], 0,
275 (type_vector_length - old_len) * sizeof (struct type *));
276 }
277 return (&type_vector[index]);
278 }
279 else
280 {
281 real_filenum = this_object_header_files[filenum];
282
283 if (real_filenum >= N_HEADER_FILES (current_objfile))
284 {
285 static struct type **temp_type_p;
286
287 warning (_("GDB internal error: bad real_filenum"));
288
289 error_return:
290 temp_type_p = &builtin_type_error;
291 return temp_type_p;
292 }
293
294 f = HEADER_FILES (current_objfile) + real_filenum;
295
296 f_orig_length = f->length;
297 if (index >= f_orig_length)
298 {
299 while (index >= f->length)
300 {
301 f->length *= 2;
302 }
303 f->vector = (struct type **)
304 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
305 memset (&f->vector[f_orig_length], 0,
306 (f->length - f_orig_length) * sizeof (struct type *));
307 }
308 return (&f->vector[index]);
309 }
310 }
311
312 /* Make sure there is a type allocated for type numbers TYPENUMS
313 and return the type object.
314 This can create an empty (zeroed) type object.
315 TYPENUMS may be (-1, -1) to return a new type object that is not
316 put into the type vector, and so may not be referred to by number. */
317
318 static struct type *
319 dbx_alloc_type (int typenums[2], struct objfile *objfile)
320 {
321 struct type **type_addr;
322
323 if (typenums[0] == -1)
324 {
325 return (alloc_type (objfile));
326 }
327
328 type_addr = dbx_lookup_type (typenums);
329
330 /* If we are referring to a type not known at all yet,
331 allocate an empty type for it.
332 We will fill it in later if we find out how. */
333 if (*type_addr == 0)
334 {
335 *type_addr = alloc_type (objfile);
336 }
337
338 return (*type_addr);
339 }
340
341 /* for all the stabs in a given stab vector, build appropriate types
342 and fix their symbols in given symbol vector. */
343
344 static void
345 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
346 struct objfile *objfile)
347 {
348 int ii;
349 char *name;
350 char *pp;
351 struct symbol *sym;
352
353 if (stabs)
354 {
355
356 /* for all the stab entries, find their corresponding symbols and
357 patch their types! */
358
359 for (ii = 0; ii < stabs->count; ++ii)
360 {
361 name = stabs->stab[ii];
362 pp = (char *) strchr (name, ':');
363 gdb_assert (pp); /* Must find a ':' or game's over. */
364 while (pp[1] == ':')
365 {
366 pp += 2;
367 pp = (char *) strchr (pp, ':');
368 }
369 sym = find_symbol_in_list (symbols, name, pp - name);
370 if (!sym)
371 {
372 /* FIXME-maybe: it would be nice if we noticed whether
373 the variable was defined *anywhere*, not just whether
374 it is defined in this compilation unit. But neither
375 xlc or GCC seem to need such a definition, and until
376 we do psymtabs (so that the minimal symbols from all
377 compilation units are available now), I'm not sure
378 how to get the information. */
379
380 /* On xcoff, if a global is defined and never referenced,
381 ld will remove it from the executable. There is then
382 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
383 sym = (struct symbol *)
384 obstack_alloc (&objfile->objfile_obstack,
385 sizeof (struct symbol));
386
387 memset (sym, 0, sizeof (struct symbol));
388 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
389 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
390 DEPRECATED_SYMBOL_NAME (sym) =
391 obsavestring (name, pp - name, &objfile->objfile_obstack);
392 pp += 2;
393 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
394 {
395 /* I don't think the linker does this with functions,
396 so as far as I know this is never executed.
397 But it doesn't hurt to check. */
398 SYMBOL_TYPE (sym) =
399 lookup_function_type (read_type (&pp, objfile));
400 }
401 else
402 {
403 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
404 }
405 add_symbol_to_list (sym, &global_symbols);
406 }
407 else
408 {
409 pp += 2;
410 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
411 {
412 SYMBOL_TYPE (sym) =
413 lookup_function_type (read_type (&pp, objfile));
414 }
415 else
416 {
417 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
418 }
419 }
420 }
421 }
422 }
423 \f
424
425 /* Read a number by which a type is referred to in dbx data,
426 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
427 Just a single number N is equivalent to (0,N).
428 Return the two numbers by storing them in the vector TYPENUMS.
429 TYPENUMS will then be used as an argument to dbx_lookup_type.
430
431 Returns 0 for success, -1 for error. */
432
433 static int
434 read_type_number (char **pp, int *typenums)
435 {
436 int nbits;
437 if (**pp == '(')
438 {
439 (*pp)++;
440 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
441 if (nbits != 0)
442 return -1;
443 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
444 if (nbits != 0)
445 return -1;
446 }
447 else
448 {
449 typenums[0] = 0;
450 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
451 if (nbits != 0)
452 return -1;
453 }
454 return 0;
455 }
456 \f
457
458 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
459 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
460 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
461 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
462
463 /* Structure for storing pointers to reference definitions for fast lookup
464 during "process_later". */
465
466 struct ref_map
467 {
468 char *stabs;
469 CORE_ADDR value;
470 struct symbol *sym;
471 };
472
473 #define MAX_CHUNK_REFS 100
474 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
475 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
476
477 static struct ref_map *ref_map;
478
479 /* Ptr to free cell in chunk's linked list. */
480 static int ref_count = 0;
481
482 /* Number of chunks malloced. */
483 static int ref_chunk = 0;
484
485 /* This file maintains a cache of stabs aliases found in the symbol
486 table. If the symbol table changes, this cache must be cleared
487 or we are left holding onto data in invalid obstacks. */
488 void
489 stabsread_clear_cache (void)
490 {
491 ref_count = 0;
492 ref_chunk = 0;
493 }
494
495 /* Create array of pointers mapping refids to symbols and stab strings.
496 Add pointers to reference definition symbols and/or their values as we
497 find them, using their reference numbers as our index.
498 These will be used later when we resolve references. */
499 void
500 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
501 {
502 if (ref_count == 0)
503 ref_chunk = 0;
504 if (refnum >= ref_count)
505 ref_count = refnum + 1;
506 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
507 {
508 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
509 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
510 ref_map = (struct ref_map *)
511 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
512 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0, new_chunks * REF_CHUNK_SIZE);
513 ref_chunk += new_chunks;
514 }
515 ref_map[refnum].stabs = stabs;
516 ref_map[refnum].sym = sym;
517 ref_map[refnum].value = value;
518 }
519
520 /* Return defined sym for the reference REFNUM. */
521 struct symbol *
522 ref_search (int refnum)
523 {
524 if (refnum < 0 || refnum > ref_count)
525 return 0;
526 return ref_map[refnum].sym;
527 }
528
529 /* Parse a reference id in STRING and return the resulting
530 reference number. Move STRING beyond the reference id. */
531
532 static int
533 process_reference (char **string)
534 {
535 char *p;
536 int refnum = 0;
537
538 if (**string != '#')
539 return 0;
540
541 /* Advance beyond the initial '#'. */
542 p = *string + 1;
543
544 /* Read number as reference id. */
545 while (*p && isdigit (*p))
546 {
547 refnum = refnum * 10 + *p - '0';
548 p++;
549 }
550 *string = p;
551 return refnum;
552 }
553
554 /* If STRING defines a reference, store away a pointer to the reference
555 definition for later use. Return the reference number. */
556
557 int
558 symbol_reference_defined (char **string)
559 {
560 char *p = *string;
561 int refnum = 0;
562
563 refnum = process_reference (&p);
564
565 /* Defining symbols end in '=' */
566 if (*p == '=')
567 {
568 /* Symbol is being defined here. */
569 *string = p + 1;
570 return refnum;
571 }
572 else
573 {
574 /* Must be a reference. Either the symbol has already been defined,
575 or this is a forward reference to it. */
576 *string = p;
577 return -1;
578 }
579 }
580
581 struct symbol *
582 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
583 struct objfile *objfile)
584 {
585 struct symbol *sym;
586 char *p = (char *) find_name_end (string);
587 int deftype;
588 int synonym = 0;
589 int i;
590
591 /* We would like to eliminate nameless symbols, but keep their types.
592 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
593 to type 2, but, should not create a symbol to address that type. Since
594 the symbol will be nameless, there is no way any user can refer to it. */
595
596 int nameless;
597
598 /* Ignore syms with empty names. */
599 if (string[0] == 0)
600 return 0;
601
602 /* Ignore old-style symbols from cc -go */
603 if (p == 0)
604 return 0;
605
606 while (p[1] == ':')
607 {
608 p += 2;
609 p = strchr (p, ':');
610 }
611
612 /* If a nameless stab entry, all we need is the type, not the symbol.
613 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
614 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
615
616 current_symbol = sym = (struct symbol *)
617 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
618 memset (sym, 0, sizeof (struct symbol));
619
620 switch (type & N_TYPE)
621 {
622 case N_TEXT:
623 SYMBOL_SECTION (sym) = SECT_OFF_TEXT (objfile);
624 break;
625 case N_DATA:
626 SYMBOL_SECTION (sym) = SECT_OFF_DATA (objfile);
627 break;
628 case N_BSS:
629 SYMBOL_SECTION (sym) = SECT_OFF_BSS (objfile);
630 break;
631 }
632
633 if (processing_gcc_compilation)
634 {
635 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
636 number of bytes occupied by a type or object, which we ignore. */
637 SYMBOL_LINE (sym) = desc;
638 }
639 else
640 {
641 SYMBOL_LINE (sym) = 0; /* unknown */
642 }
643
644 if (is_cplus_marker (string[0]))
645 {
646 /* Special GNU C++ names. */
647 switch (string[1])
648 {
649 case 't':
650 DEPRECATED_SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
651 &objfile->objfile_obstack);
652 break;
653
654 case 'v': /* $vtbl_ptr_type */
655 /* Was: DEPRECATED_SYMBOL_NAME (sym) = "vptr"; */
656 goto normal;
657
658 case 'e':
659 DEPRECATED_SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
660 &objfile->objfile_obstack);
661 break;
662
663 case '_':
664 /* This was an anonymous type that was never fixed up. */
665 goto normal;
666
667 case 'X':
668 /* SunPRO (3.0 at least) static variable encoding. */
669 if (gdbarch_static_transform_name_p (current_gdbarch))
670 goto normal;
671 /* ... fall through ... */
672
673 default:
674 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
675 string);
676 goto normal; /* Do *something* with it */
677 }
678 }
679 else
680 {
681 normal:
682 SYMBOL_LANGUAGE (sym) = current_subfile->language;
683 SYMBOL_SET_NAMES (sym, string, p - string, objfile);
684 }
685 p++;
686
687 /* Determine the type of name being defined. */
688 #if 0
689 /* Getting GDB to correctly skip the symbol on an undefined symbol
690 descriptor and not ever dump core is a very dodgy proposition if
691 we do things this way. I say the acorn RISC machine can just
692 fix their compiler. */
693 /* The Acorn RISC machine's compiler can put out locals that don't
694 start with "234=" or "(3,4)=", so assume anything other than the
695 deftypes we know how to handle is a local. */
696 if (!strchr ("cfFGpPrStTvVXCR", *p))
697 #else
698 if (isdigit (*p) || *p == '(' || *p == '-')
699 #endif
700 deftype = 'l';
701 else
702 deftype = *p++;
703
704 switch (deftype)
705 {
706 case 'c':
707 /* c is a special case, not followed by a type-number.
708 SYMBOL:c=iVALUE for an integer constant symbol.
709 SYMBOL:c=rVALUE for a floating constant symbol.
710 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
711 e.g. "b:c=e6,0" for "const b = blob1"
712 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
713 if (*p != '=')
714 {
715 SYMBOL_CLASS (sym) = LOC_CONST;
716 SYMBOL_TYPE (sym) = error_type (&p, objfile);
717 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
718 add_symbol_to_list (sym, &file_symbols);
719 return sym;
720 }
721 ++p;
722 switch (*p++)
723 {
724 case 'r':
725 {
726 double d = atof (p);
727 gdb_byte *dbl_valu;
728 struct type *dbl_type;
729
730 /* FIXME-if-picky-about-floating-accuracy: Should be using
731 target arithmetic to get the value. real.c in GCC
732 probably has the necessary code. */
733
734 dbl_type = builtin_type (current_gdbarch)->builtin_double;
735 dbl_valu =
736 obstack_alloc (&objfile->objfile_obstack,
737 TYPE_LENGTH (dbl_type));
738 store_typed_floating (dbl_valu, dbl_type, d);
739
740 SYMBOL_TYPE (sym) = dbl_type;
741 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
742 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
743 }
744 break;
745 case 'i':
746 {
747 /* Defining integer constants this way is kind of silly,
748 since 'e' constants allows the compiler to give not
749 only the value, but the type as well. C has at least
750 int, long, unsigned int, and long long as constant
751 types; other languages probably should have at least
752 unsigned as well as signed constants. */
753
754 SYMBOL_TYPE (sym) = builtin_type (current_gdbarch)->builtin_long;
755 SYMBOL_VALUE (sym) = atoi (p);
756 SYMBOL_CLASS (sym) = LOC_CONST;
757 }
758 break;
759 case 'e':
760 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
761 can be represented as integral.
762 e.g. "b:c=e6,0" for "const b = blob1"
763 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
764 {
765 SYMBOL_CLASS (sym) = LOC_CONST;
766 SYMBOL_TYPE (sym) = read_type (&p, objfile);
767
768 if (*p != ',')
769 {
770 SYMBOL_TYPE (sym) = error_type (&p, objfile);
771 break;
772 }
773 ++p;
774
775 /* If the value is too big to fit in an int (perhaps because
776 it is unsigned), or something like that, we silently get
777 a bogus value. The type and everything else about it is
778 correct. Ideally, we should be using whatever we have
779 available for parsing unsigned and long long values,
780 however. */
781 SYMBOL_VALUE (sym) = atoi (p);
782 }
783 break;
784 default:
785 {
786 SYMBOL_CLASS (sym) = LOC_CONST;
787 SYMBOL_TYPE (sym) = error_type (&p, objfile);
788 }
789 }
790 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
791 add_symbol_to_list (sym, &file_symbols);
792 return sym;
793
794 case 'C':
795 /* The name of a caught exception. */
796 SYMBOL_TYPE (sym) = read_type (&p, objfile);
797 SYMBOL_CLASS (sym) = LOC_LABEL;
798 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
799 SYMBOL_VALUE_ADDRESS (sym) = valu;
800 add_symbol_to_list (sym, &local_symbols);
801 break;
802
803 case 'f':
804 /* A static function definition. */
805 SYMBOL_TYPE (sym) = read_type (&p, objfile);
806 SYMBOL_CLASS (sym) = LOC_BLOCK;
807 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
808 add_symbol_to_list (sym, &file_symbols);
809 /* fall into process_function_types. */
810
811 process_function_types:
812 /* Function result types are described as the result type in stabs.
813 We need to convert this to the function-returning-type-X type
814 in GDB. E.g. "int" is converted to "function returning int". */
815 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
816 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
817
818 /* All functions in C++ have prototypes. Stabs does not offer an
819 explicit way to identify prototyped or unprototyped functions,
820 but both GCC and Sun CC emit stabs for the "call-as" type rather
821 than the "declared-as" type for unprototyped functions, so
822 we treat all functions as if they were prototyped. This is used
823 primarily for promotion when calling the function from GDB. */
824 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
825
826 /* fall into process_prototype_types */
827
828 process_prototype_types:
829 /* Sun acc puts declared types of arguments here. */
830 if (*p == ';')
831 {
832 struct type *ftype = SYMBOL_TYPE (sym);
833 int nsemi = 0;
834 int nparams = 0;
835 char *p1 = p;
836
837 /* Obtain a worst case guess for the number of arguments
838 by counting the semicolons. */
839 while (*p1)
840 {
841 if (*p1++ == ';')
842 nsemi++;
843 }
844
845 /* Allocate parameter information fields and fill them in. */
846 TYPE_FIELDS (ftype) = (struct field *)
847 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
848 while (*p++ == ';')
849 {
850 struct type *ptype;
851
852 /* A type number of zero indicates the start of varargs.
853 FIXME: GDB currently ignores vararg functions. */
854 if (p[0] == '0' && p[1] == '\0')
855 break;
856 ptype = read_type (&p, objfile);
857
858 /* The Sun compilers mark integer arguments, which should
859 be promoted to the width of the calling conventions, with
860 a type which references itself. This type is turned into
861 a TYPE_CODE_VOID type by read_type, and we have to turn
862 it back into builtin_type_int here.
863 FIXME: Do we need a new builtin_type_promoted_int_arg ? */
864 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
865 ptype = builtin_type_int;
866 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
867 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
868 }
869 TYPE_NFIELDS (ftype) = nparams;
870 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
871 }
872 break;
873
874 case 'F':
875 /* A global function definition. */
876 SYMBOL_TYPE (sym) = read_type (&p, objfile);
877 SYMBOL_CLASS (sym) = LOC_BLOCK;
878 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
879 add_symbol_to_list (sym, &global_symbols);
880 goto process_function_types;
881
882 case 'G':
883 /* For a class G (global) symbol, it appears that the
884 value is not correct. It is necessary to search for the
885 corresponding linker definition to find the value.
886 These definitions appear at the end of the namelist. */
887 SYMBOL_TYPE (sym) = read_type (&p, objfile);
888 SYMBOL_CLASS (sym) = LOC_STATIC;
889 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
890 /* Don't add symbol references to global_sym_chain.
891 Symbol references don't have valid names and wont't match up with
892 minimal symbols when the global_sym_chain is relocated.
893 We'll fixup symbol references when we fixup the defining symbol. */
894 if (DEPRECATED_SYMBOL_NAME (sym) && DEPRECATED_SYMBOL_NAME (sym)[0] != '#')
895 {
896 i = hashname (DEPRECATED_SYMBOL_NAME (sym));
897 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
898 global_sym_chain[i] = sym;
899 }
900 add_symbol_to_list (sym, &global_symbols);
901 break;
902
903 /* This case is faked by a conditional above,
904 when there is no code letter in the dbx data.
905 Dbx data never actually contains 'l'. */
906 case 's':
907 case 'l':
908 SYMBOL_TYPE (sym) = read_type (&p, objfile);
909 SYMBOL_CLASS (sym) = LOC_LOCAL;
910 SYMBOL_VALUE (sym) = valu;
911 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
912 add_symbol_to_list (sym, &local_symbols);
913 break;
914
915 case 'p':
916 if (*p == 'F')
917 /* pF is a two-letter code that means a function parameter in Fortran.
918 The type-number specifies the type of the return value.
919 Translate it into a pointer-to-function type. */
920 {
921 p++;
922 SYMBOL_TYPE (sym)
923 = lookup_pointer_type
924 (lookup_function_type (read_type (&p, objfile)));
925 }
926 else
927 SYMBOL_TYPE (sym) = read_type (&p, objfile);
928
929 SYMBOL_CLASS (sym) = LOC_ARG;
930 SYMBOL_VALUE (sym) = valu;
931 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
932 add_symbol_to_list (sym, &local_symbols);
933
934 if (gdbarch_byte_order (current_gdbarch) != BFD_ENDIAN_BIG)
935 {
936 /* On little-endian machines, this crud is never necessary,
937 and, if the extra bytes contain garbage, is harmful. */
938 break;
939 }
940
941 /* If it's gcc-compiled, if it says `short', believe it. */
942 if (processing_gcc_compilation
943 || gdbarch_believe_pcc_promotion (current_gdbarch))
944 break;
945
946 if (!gdbarch_believe_pcc_promotion (current_gdbarch))
947 {
948 /* This is the signed type which arguments get promoted to. */
949 static struct type *pcc_promotion_type;
950 /* This is the unsigned type which arguments get promoted to. */
951 static struct type *pcc_unsigned_promotion_type;
952
953 /* Call it "int" because this is mainly C lossage. */
954 if (pcc_promotion_type == NULL)
955 pcc_promotion_type =
956 init_type (TYPE_CODE_INT,
957 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
958 0, "int", NULL);
959
960 if (pcc_unsigned_promotion_type == NULL)
961 pcc_unsigned_promotion_type =
962 init_type (TYPE_CODE_INT,
963 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
964 TYPE_FLAG_UNSIGNED, "unsigned int", NULL);
965
966 /* If PCC says a parameter is a short or a char, it is
967 really an int. */
968 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
969 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
970 {
971 SYMBOL_TYPE (sym) =
972 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
973 ? pcc_unsigned_promotion_type
974 : pcc_promotion_type;
975 }
976 break;
977 }
978
979 case 'P':
980 /* acc seems to use P to declare the prototypes of functions that
981 are referenced by this file. gdb is not prepared to deal
982 with this extra information. FIXME, it ought to. */
983 if (type == N_FUN)
984 {
985 SYMBOL_TYPE (sym) = read_type (&p, objfile);
986 goto process_prototype_types;
987 }
988 /*FALLTHROUGH */
989
990 case 'R':
991 /* Parameter which is in a register. */
992 SYMBOL_TYPE (sym) = read_type (&p, objfile);
993 SYMBOL_CLASS (sym) = LOC_REGPARM;
994 SYMBOL_VALUE (sym) = gdbarch_stab_reg_to_regnum (current_gdbarch, valu);
995 if (SYMBOL_VALUE (sym) >= gdbarch_num_regs (current_gdbarch)
996 + gdbarch_num_pseudo_regs (current_gdbarch))
997 {
998 reg_value_complaint (SYMBOL_VALUE (sym),
999 gdbarch_num_regs (current_gdbarch)
1000 + gdbarch_num_pseudo_regs (current_gdbarch),
1001 SYMBOL_PRINT_NAME (sym));
1002 SYMBOL_VALUE (sym) = gdbarch_sp_regnum (current_gdbarch);
1003 /* Known safe, though useless */
1004 }
1005 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1006 add_symbol_to_list (sym, &local_symbols);
1007 break;
1008
1009 case 'r':
1010 /* Register variable (either global or local). */
1011 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1012 SYMBOL_CLASS (sym) = LOC_REGISTER;
1013 SYMBOL_VALUE (sym) = gdbarch_stab_reg_to_regnum (current_gdbarch, valu);
1014 if (SYMBOL_VALUE (sym) >= gdbarch_num_regs (current_gdbarch)
1015 + gdbarch_num_pseudo_regs (current_gdbarch))
1016 {
1017 reg_value_complaint (SYMBOL_VALUE (sym),
1018 gdbarch_num_regs (current_gdbarch)
1019 + gdbarch_num_pseudo_regs (current_gdbarch),
1020 SYMBOL_PRINT_NAME (sym));
1021 SYMBOL_VALUE (sym) = gdbarch_sp_regnum (current_gdbarch);
1022 /* Known safe, though useless */
1023 }
1024 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1025 if (within_function)
1026 {
1027 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1028 the same name to represent an argument passed in a
1029 register. GCC uses 'P' for the same case. So if we find
1030 such a symbol pair we combine it into one 'P' symbol.
1031 For Sun cc we need to do this regardless of
1032 stabs_argument_has_addr, because the compiler puts out
1033 the 'p' symbol even if it never saves the argument onto
1034 the stack.
1035
1036 On most machines, we want to preserve both symbols, so
1037 that we can still get information about what is going on
1038 with the stack (VAX for computing args_printed, using
1039 stack slots instead of saved registers in backtraces,
1040 etc.).
1041
1042 Note that this code illegally combines
1043 main(argc) struct foo argc; { register struct foo argc; }
1044 but this case is considered pathological and causes a warning
1045 from a decent compiler. */
1046
1047 if (local_symbols
1048 && local_symbols->nsyms > 0
1049 && gdbarch_stabs_argument_has_addr (current_gdbarch,
1050 SYMBOL_TYPE (sym)))
1051 {
1052 struct symbol *prev_sym;
1053 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1054 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1055 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1056 && strcmp (DEPRECATED_SYMBOL_NAME (prev_sym),
1057 DEPRECATED_SYMBOL_NAME (sym)) == 0)
1058 {
1059 SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
1060 /* Use the type from the LOC_REGISTER; that is the type
1061 that is actually in that register. */
1062 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1063 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1064 sym = prev_sym;
1065 break;
1066 }
1067 }
1068 add_symbol_to_list (sym, &local_symbols);
1069 }
1070 else
1071 add_symbol_to_list (sym, &file_symbols);
1072 break;
1073
1074 case 'S':
1075 /* Static symbol at top level of file */
1076 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1077 SYMBOL_CLASS (sym) = LOC_STATIC;
1078 SYMBOL_VALUE_ADDRESS (sym) = valu;
1079 if (gdbarch_static_transform_name_p (current_gdbarch)
1080 && gdbarch_static_transform_name (current_gdbarch,
1081 DEPRECATED_SYMBOL_NAME (sym))
1082 != DEPRECATED_SYMBOL_NAME (sym))
1083 {
1084 struct minimal_symbol *msym;
1085 msym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (sym), NULL, objfile);
1086 if (msym != NULL)
1087 {
1088 DEPRECATED_SYMBOL_NAME (sym) = gdbarch_static_transform_name
1089 (current_gdbarch,
1090 DEPRECATED_SYMBOL_NAME (sym));
1091 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1092 }
1093 }
1094 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1095 add_symbol_to_list (sym, &file_symbols);
1096 break;
1097
1098 case 't':
1099 /* In Ada, there is no distinction between typedef and non-typedef;
1100 any type declaration implicitly has the equivalent of a typedef,
1101 and thus 't' is in fact equivalent to 'Tt'.
1102
1103 Therefore, for Ada units, we check the character immediately
1104 before the 't', and if we do not find a 'T', then make sure to
1105 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1106 will be stored in the VAR_DOMAIN). If the symbol was indeed
1107 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1108 elsewhere, so we don't need to take care of that.
1109
1110 This is important to do, because of forward references:
1111 The cleanup of undefined types stored in undef_types only uses
1112 STRUCT_DOMAIN symbols to perform the replacement. */
1113 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1114
1115 /* Typedef */
1116 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1117
1118 /* For a nameless type, we don't want a create a symbol, thus we
1119 did not use `sym'. Return without further processing. */
1120 if (nameless)
1121 return NULL;
1122
1123 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1124 SYMBOL_VALUE (sym) = valu;
1125 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1126 /* C++ vagaries: we may have a type which is derived from
1127 a base type which did not have its name defined when the
1128 derived class was output. We fill in the derived class's
1129 base part member's name here in that case. */
1130 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1131 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1132 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1133 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1134 {
1135 int j;
1136 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1137 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1138 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1139 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1140 }
1141
1142 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1143 {
1144 /* gcc-2.6 or later (when using -fvtable-thunks)
1145 emits a unique named type for a vtable entry.
1146 Some gdb code depends on that specific name. */
1147 extern const char vtbl_ptr_name[];
1148
1149 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1150 && strcmp (DEPRECATED_SYMBOL_NAME (sym), vtbl_ptr_name))
1151 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1152 {
1153 /* If we are giving a name to a type such as "pointer to
1154 foo" or "function returning foo", we better not set
1155 the TYPE_NAME. If the program contains "typedef char
1156 *caddr_t;", we don't want all variables of type char
1157 * to print as caddr_t. This is not just a
1158 consequence of GDB's type management; PCC and GCC (at
1159 least through version 2.4) both output variables of
1160 either type char * or caddr_t with the type number
1161 defined in the 't' symbol for caddr_t. If a future
1162 compiler cleans this up it GDB is not ready for it
1163 yet, but if it becomes ready we somehow need to
1164 disable this check (without breaking the PCC/GCC2.4
1165 case).
1166
1167 Sigh.
1168
1169 Fortunately, this check seems not to be necessary
1170 for anything except pointers or functions. */
1171 /* ezannoni: 2000-10-26. This seems to apply for
1172 versions of gcc older than 2.8. This was the original
1173 problem: with the following code gdb would tell that
1174 the type for name1 is caddr_t, and func is char()
1175 typedef char *caddr_t;
1176 char *name2;
1177 struct x
1178 {
1179 char *name1;
1180 } xx;
1181 char *func()
1182 {
1183 }
1184 main () {}
1185 */
1186
1187 /* Pascal accepts names for pointer types. */
1188 if (current_subfile->language == language_pascal)
1189 {
1190 TYPE_NAME (SYMBOL_TYPE (sym)) = DEPRECATED_SYMBOL_NAME (sym);
1191 }
1192 }
1193 else
1194 TYPE_NAME (SYMBOL_TYPE (sym)) = DEPRECATED_SYMBOL_NAME (sym);
1195 }
1196
1197 add_symbol_to_list (sym, &file_symbols);
1198
1199 if (synonym)
1200 {
1201 /* Create the STRUCT_DOMAIN clone. */
1202 struct symbol *struct_sym = (struct symbol *)
1203 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1204
1205 *struct_sym = *sym;
1206 SYMBOL_CLASS (struct_sym) = LOC_TYPEDEF;
1207 SYMBOL_VALUE (struct_sym) = valu;
1208 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1209 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1210 TYPE_NAME (SYMBOL_TYPE (sym))
1211 = obconcat (&objfile->objfile_obstack, "", "",
1212 DEPRECATED_SYMBOL_NAME (sym));
1213 add_symbol_to_list (struct_sym, &file_symbols);
1214 }
1215
1216 break;
1217
1218 case 'T':
1219 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1220 by 't' which means we are typedef'ing it as well. */
1221 synonym = *p == 't';
1222
1223 if (synonym)
1224 p++;
1225
1226 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1227
1228 /* For a nameless type, we don't want a create a symbol, thus we
1229 did not use `sym'. Return without further processing. */
1230 if (nameless)
1231 return NULL;
1232
1233 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1234 SYMBOL_VALUE (sym) = valu;
1235 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1236 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1237 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1238 = obconcat (&objfile->objfile_obstack, "", "", DEPRECATED_SYMBOL_NAME (sym));
1239 add_symbol_to_list (sym, &file_symbols);
1240
1241 if (synonym)
1242 {
1243 /* Clone the sym and then modify it. */
1244 struct symbol *typedef_sym = (struct symbol *)
1245 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1246 *typedef_sym = *sym;
1247 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1248 SYMBOL_VALUE (typedef_sym) = valu;
1249 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1250 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1251 TYPE_NAME (SYMBOL_TYPE (sym))
1252 = obconcat (&objfile->objfile_obstack, "", "", DEPRECATED_SYMBOL_NAME (sym));
1253 add_symbol_to_list (typedef_sym, &file_symbols);
1254 }
1255 break;
1256
1257 case 'V':
1258 /* Static symbol of local scope */
1259 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1260 SYMBOL_CLASS (sym) = LOC_STATIC;
1261 SYMBOL_VALUE_ADDRESS (sym) = valu;
1262 if (gdbarch_static_transform_name_p (current_gdbarch)
1263 && gdbarch_static_transform_name (current_gdbarch,
1264 DEPRECATED_SYMBOL_NAME (sym))
1265 != DEPRECATED_SYMBOL_NAME (sym))
1266 {
1267 struct minimal_symbol *msym;
1268 msym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (sym), NULL, objfile);
1269 if (msym != NULL)
1270 {
1271 DEPRECATED_SYMBOL_NAME (sym) = gdbarch_static_transform_name
1272 (current_gdbarch,
1273 DEPRECATED_SYMBOL_NAME (sym));
1274 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1275 }
1276 }
1277 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1278 add_symbol_to_list (sym, &local_symbols);
1279 break;
1280
1281 case 'v':
1282 /* Reference parameter */
1283 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1284 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1285 SYMBOL_VALUE (sym) = valu;
1286 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1287 add_symbol_to_list (sym, &local_symbols);
1288 break;
1289
1290 case 'a':
1291 /* Reference parameter which is in a register. */
1292 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1293 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1294 SYMBOL_VALUE (sym) = gdbarch_stab_reg_to_regnum (current_gdbarch, valu);
1295 if (SYMBOL_VALUE (sym) >= gdbarch_num_regs (current_gdbarch)
1296 + gdbarch_num_pseudo_regs (current_gdbarch))
1297 {
1298 reg_value_complaint (SYMBOL_VALUE (sym),
1299 gdbarch_num_regs (current_gdbarch)
1300 + gdbarch_num_pseudo_regs (current_gdbarch),
1301 SYMBOL_PRINT_NAME (sym));
1302 SYMBOL_VALUE (sym) = gdbarch_sp_regnum (current_gdbarch);
1303 /* Known safe, though useless */
1304 }
1305 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1306 add_symbol_to_list (sym, &local_symbols);
1307 break;
1308
1309 case 'X':
1310 /* This is used by Sun FORTRAN for "function result value".
1311 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1312 that Pascal uses it too, but when I tried it Pascal used
1313 "x:3" (local symbol) instead. */
1314 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1315 SYMBOL_CLASS (sym) = LOC_LOCAL;
1316 SYMBOL_VALUE (sym) = valu;
1317 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1318 add_symbol_to_list (sym, &local_symbols);
1319 break;
1320
1321 default:
1322 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1323 SYMBOL_CLASS (sym) = LOC_CONST;
1324 SYMBOL_VALUE (sym) = 0;
1325 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1326 add_symbol_to_list (sym, &file_symbols);
1327 break;
1328 }
1329
1330 /* Some systems pass variables of certain types by reference instead
1331 of by value, i.e. they will pass the address of a structure (in a
1332 register or on the stack) instead of the structure itself. */
1333
1334 if (gdbarch_stabs_argument_has_addr (current_gdbarch, SYMBOL_TYPE (sym))
1335 && (SYMBOL_CLASS (sym) == LOC_REGPARM || SYMBOL_CLASS (sym) == LOC_ARG))
1336 {
1337 /* We have to convert LOC_REGPARM to LOC_REGPARM_ADDR (for
1338 variables passed in a register). */
1339 if (SYMBOL_CLASS (sym) == LOC_REGPARM)
1340 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1341 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1342 and subsequent arguments on SPARC, for example). */
1343 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1344 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1345 }
1346
1347 return sym;
1348 }
1349
1350 /* Skip rest of this symbol and return an error type.
1351
1352 General notes on error recovery: error_type always skips to the
1353 end of the symbol (modulo cretinous dbx symbol name continuation).
1354 Thus code like this:
1355
1356 if (*(*pp)++ != ';')
1357 return error_type (pp, objfile);
1358
1359 is wrong because if *pp starts out pointing at '\0' (typically as the
1360 result of an earlier error), it will be incremented to point to the
1361 start of the next symbol, which might produce strange results, at least
1362 if you run off the end of the string table. Instead use
1363
1364 if (**pp != ';')
1365 return error_type (pp, objfile);
1366 ++*pp;
1367
1368 or
1369
1370 if (**pp != ';')
1371 foo = error_type (pp, objfile);
1372 else
1373 ++*pp;
1374
1375 And in case it isn't obvious, the point of all this hair is so the compiler
1376 can define new types and new syntaxes, and old versions of the
1377 debugger will be able to read the new symbol tables. */
1378
1379 static struct type *
1380 error_type (char **pp, struct objfile *objfile)
1381 {
1382 complaint (&symfile_complaints, _("couldn't parse type; debugger out of date?"));
1383 while (1)
1384 {
1385 /* Skip to end of symbol. */
1386 while (**pp != '\0')
1387 {
1388 (*pp)++;
1389 }
1390
1391 /* Check for and handle cretinous dbx symbol name continuation! */
1392 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1393 {
1394 *pp = next_symbol_text (objfile);
1395 }
1396 else
1397 {
1398 break;
1399 }
1400 }
1401 return (builtin_type_error);
1402 }
1403 \f
1404
1405 /* Read type information or a type definition; return the type. Even
1406 though this routine accepts either type information or a type
1407 definition, the distinction is relevant--some parts of stabsread.c
1408 assume that type information starts with a digit, '-', or '(' in
1409 deciding whether to call read_type. */
1410
1411 static struct type *
1412 read_type (char **pp, struct objfile *objfile)
1413 {
1414 struct type *type = 0;
1415 struct type *type1;
1416 int typenums[2];
1417 char type_descriptor;
1418
1419 /* Size in bits of type if specified by a type attribute, or -1 if
1420 there is no size attribute. */
1421 int type_size = -1;
1422
1423 /* Used to distinguish string and bitstring from char-array and set. */
1424 int is_string = 0;
1425
1426 /* Used to distinguish vector from array. */
1427 int is_vector = 0;
1428
1429 /* Read type number if present. The type number may be omitted.
1430 for instance in a two-dimensional array declared with type
1431 "ar1;1;10;ar1;1;10;4". */
1432 if ((**pp >= '0' && **pp <= '9')
1433 || **pp == '('
1434 || **pp == '-')
1435 {
1436 if (read_type_number (pp, typenums) != 0)
1437 return error_type (pp, objfile);
1438
1439 if (**pp != '=')
1440 {
1441 /* Type is not being defined here. Either it already
1442 exists, or this is a forward reference to it.
1443 dbx_alloc_type handles both cases. */
1444 type = dbx_alloc_type (typenums, objfile);
1445
1446 /* If this is a forward reference, arrange to complain if it
1447 doesn't get patched up by the time we're done
1448 reading. */
1449 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1450 add_undefined_type (type, typenums);
1451
1452 return type;
1453 }
1454
1455 /* Type is being defined here. */
1456 /* Skip the '='.
1457 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1458 (*pp) += 2;
1459 }
1460 else
1461 {
1462 /* 'typenums=' not present, type is anonymous. Read and return
1463 the definition, but don't put it in the type vector. */
1464 typenums[0] = typenums[1] = -1;
1465 (*pp)++;
1466 }
1467
1468 again:
1469 type_descriptor = (*pp)[-1];
1470 switch (type_descriptor)
1471 {
1472 case 'x':
1473 {
1474 enum type_code code;
1475
1476 /* Used to index through file_symbols. */
1477 struct pending *ppt;
1478 int i;
1479
1480 /* Name including "struct", etc. */
1481 char *type_name;
1482
1483 {
1484 char *from, *to, *p, *q1, *q2;
1485
1486 /* Set the type code according to the following letter. */
1487 switch ((*pp)[0])
1488 {
1489 case 's':
1490 code = TYPE_CODE_STRUCT;
1491 break;
1492 case 'u':
1493 code = TYPE_CODE_UNION;
1494 break;
1495 case 'e':
1496 code = TYPE_CODE_ENUM;
1497 break;
1498 default:
1499 {
1500 /* Complain and keep going, so compilers can invent new
1501 cross-reference types. */
1502 complaint (&symfile_complaints,
1503 _("Unrecognized cross-reference type `%c'"), (*pp)[0]);
1504 code = TYPE_CODE_STRUCT;
1505 break;
1506 }
1507 }
1508
1509 q1 = strchr (*pp, '<');
1510 p = strchr (*pp, ':');
1511 if (p == NULL)
1512 return error_type (pp, objfile);
1513 if (q1 && p > q1 && p[1] == ':')
1514 {
1515 int nesting_level = 0;
1516 for (q2 = q1; *q2; q2++)
1517 {
1518 if (*q2 == '<')
1519 nesting_level++;
1520 else if (*q2 == '>')
1521 nesting_level--;
1522 else if (*q2 == ':' && nesting_level == 0)
1523 break;
1524 }
1525 p = q2;
1526 if (*p != ':')
1527 return error_type (pp, objfile);
1528 }
1529 to = type_name =
1530 (char *) obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1531
1532 /* Copy the name. */
1533 from = *pp + 1;
1534 while (from < p)
1535 *to++ = *from++;
1536 *to = '\0';
1537
1538 /* Set the pointer ahead of the name which we just read, and
1539 the colon. */
1540 *pp = from + 1;
1541 }
1542
1543 /* If this type has already been declared, then reuse the same
1544 type, rather than allocating a new one. This saves some
1545 memory. */
1546
1547 for (ppt = file_symbols; ppt; ppt = ppt->next)
1548 for (i = 0; i < ppt->nsyms; i++)
1549 {
1550 struct symbol *sym = ppt->symbol[i];
1551
1552 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1553 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1554 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1555 && strcmp (DEPRECATED_SYMBOL_NAME (sym), type_name) == 0)
1556 {
1557 obstack_free (&objfile->objfile_obstack, type_name);
1558 type = SYMBOL_TYPE (sym);
1559 if (typenums[0] != -1)
1560 *dbx_lookup_type (typenums) = type;
1561 return type;
1562 }
1563 }
1564
1565 /* Didn't find the type to which this refers, so we must
1566 be dealing with a forward reference. Allocate a type
1567 structure for it, and keep track of it so we can
1568 fill in the rest of the fields when we get the full
1569 type. */
1570 type = dbx_alloc_type (typenums, objfile);
1571 TYPE_CODE (type) = code;
1572 TYPE_TAG_NAME (type) = type_name;
1573 INIT_CPLUS_SPECIFIC (type);
1574 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1575
1576 add_undefined_type (type, typenums);
1577 return type;
1578 }
1579
1580 case '-': /* RS/6000 built-in type */
1581 case '0':
1582 case '1':
1583 case '2':
1584 case '3':
1585 case '4':
1586 case '5':
1587 case '6':
1588 case '7':
1589 case '8':
1590 case '9':
1591 case '(':
1592 (*pp)--;
1593
1594 /* We deal with something like t(1,2)=(3,4)=... which
1595 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1596
1597 /* Allocate and enter the typedef type first.
1598 This handles recursive types. */
1599 type = dbx_alloc_type (typenums, objfile);
1600 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1601 {
1602 struct type *xtype = read_type (pp, objfile);
1603 if (type == xtype)
1604 {
1605 /* It's being defined as itself. That means it is "void". */
1606 TYPE_CODE (type) = TYPE_CODE_VOID;
1607 TYPE_LENGTH (type) = 1;
1608 }
1609 else if (type_size >= 0 || is_string)
1610 {
1611 /* This is the absolute wrong way to construct types. Every
1612 other debug format has found a way around this problem and
1613 the related problems with unnecessarily stubbed types;
1614 someone motivated should attempt to clean up the issue
1615 here as well. Once a type pointed to has been created it
1616 should not be modified.
1617
1618 Well, it's not *absolutely* wrong. Constructing recursive
1619 types (trees, linked lists) necessarily entails modifying
1620 types after creating them. Constructing any loop structure
1621 entails side effects. The Dwarf 2 reader does handle this
1622 more gracefully (it never constructs more than once
1623 instance of a type object, so it doesn't have to copy type
1624 objects wholesale), but it still mutates type objects after
1625 other folks have references to them.
1626
1627 Keep in mind that this circularity/mutation issue shows up
1628 at the source language level, too: C's "incomplete types",
1629 for example. So the proper cleanup, I think, would be to
1630 limit GDB's type smashing to match exactly those required
1631 by the source language. So GDB could have a
1632 "complete_this_type" function, but never create unnecessary
1633 copies of a type otherwise. */
1634 replace_type (type, xtype);
1635 TYPE_NAME (type) = NULL;
1636 TYPE_TAG_NAME (type) = NULL;
1637 }
1638 else
1639 {
1640 TYPE_FLAGS (type) |= TYPE_FLAG_TARGET_STUB;
1641 TYPE_TARGET_TYPE (type) = xtype;
1642 }
1643 }
1644 break;
1645
1646 /* In the following types, we must be sure to overwrite any existing
1647 type that the typenums refer to, rather than allocating a new one
1648 and making the typenums point to the new one. This is because there
1649 may already be pointers to the existing type (if it had been
1650 forward-referenced), and we must change it to a pointer, function,
1651 reference, or whatever, *in-place*. */
1652
1653 case '*': /* Pointer to another type */
1654 type1 = read_type (pp, objfile);
1655 type = make_pointer_type (type1, dbx_lookup_type (typenums));
1656 break;
1657
1658 case '&': /* Reference to another type */
1659 type1 = read_type (pp, objfile);
1660 type = make_reference_type (type1, dbx_lookup_type (typenums));
1661 break;
1662
1663 case 'f': /* Function returning another type */
1664 type1 = read_type (pp, objfile);
1665 type = make_function_type (type1, dbx_lookup_type (typenums));
1666 break;
1667
1668 case 'g': /* Prototyped function. (Sun) */
1669 {
1670 /* Unresolved questions:
1671
1672 - According to Sun's ``STABS Interface Manual'', for 'f'
1673 and 'F' symbol descriptors, a `0' in the argument type list
1674 indicates a varargs function. But it doesn't say how 'g'
1675 type descriptors represent that info. Someone with access
1676 to Sun's toolchain should try it out.
1677
1678 - According to the comment in define_symbol (search for
1679 `process_prototype_types:'), Sun emits integer arguments as
1680 types which ref themselves --- like `void' types. Do we
1681 have to deal with that here, too? Again, someone with
1682 access to Sun's toolchain should try it out and let us
1683 know. */
1684
1685 const char *type_start = (*pp) - 1;
1686 struct type *return_type = read_type (pp, objfile);
1687 struct type *func_type
1688 = make_function_type (return_type, dbx_lookup_type (typenums));
1689 struct type_list {
1690 struct type *type;
1691 struct type_list *next;
1692 } *arg_types = 0;
1693 int num_args = 0;
1694
1695 while (**pp && **pp != '#')
1696 {
1697 struct type *arg_type = read_type (pp, objfile);
1698 struct type_list *new = alloca (sizeof (*new));
1699 new->type = arg_type;
1700 new->next = arg_types;
1701 arg_types = new;
1702 num_args++;
1703 }
1704 if (**pp == '#')
1705 ++*pp;
1706 else
1707 {
1708 complaint (&symfile_complaints,
1709 _("Prototyped function type didn't end arguments with `#':\n%s"),
1710 type_start);
1711 }
1712
1713 /* If there is just one argument whose type is `void', then
1714 that's just an empty argument list. */
1715 if (arg_types
1716 && ! arg_types->next
1717 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1718 num_args = 0;
1719
1720 TYPE_FIELDS (func_type)
1721 = (struct field *) TYPE_ALLOC (func_type,
1722 num_args * sizeof (struct field));
1723 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1724 {
1725 int i;
1726 struct type_list *t;
1727
1728 /* We stuck each argument type onto the front of the list
1729 when we read it, so the list is reversed. Build the
1730 fields array right-to-left. */
1731 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1732 TYPE_FIELD_TYPE (func_type, i) = t->type;
1733 }
1734 TYPE_NFIELDS (func_type) = num_args;
1735 TYPE_FLAGS (func_type) |= TYPE_FLAG_PROTOTYPED;
1736
1737 type = func_type;
1738 break;
1739 }
1740
1741 case 'k': /* Const qualifier on some type (Sun) */
1742 type = read_type (pp, objfile);
1743 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1744 dbx_lookup_type (typenums));
1745 break;
1746
1747 case 'B': /* Volatile qual on some type (Sun) */
1748 type = read_type (pp, objfile);
1749 type = make_cv_type (TYPE_CONST (type), 1, type,
1750 dbx_lookup_type (typenums));
1751 break;
1752
1753 case '@':
1754 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1755 { /* Member (class & variable) type */
1756 /* FIXME -- we should be doing smash_to_XXX types here. */
1757
1758 struct type *domain = read_type (pp, objfile);
1759 struct type *memtype;
1760
1761 if (**pp != ',')
1762 /* Invalid member type data format. */
1763 return error_type (pp, objfile);
1764 ++*pp;
1765
1766 memtype = read_type (pp, objfile);
1767 type = dbx_alloc_type (typenums, objfile);
1768 smash_to_memberptr_type (type, domain, memtype);
1769 }
1770 else
1771 /* type attribute */
1772 {
1773 char *attr = *pp;
1774 /* Skip to the semicolon. */
1775 while (**pp != ';' && **pp != '\0')
1776 ++(*pp);
1777 if (**pp == '\0')
1778 return error_type (pp, objfile);
1779 else
1780 ++ * pp; /* Skip the semicolon. */
1781
1782 switch (*attr)
1783 {
1784 case 's': /* Size attribute */
1785 type_size = atoi (attr + 1);
1786 if (type_size <= 0)
1787 type_size = -1;
1788 break;
1789
1790 case 'S': /* String attribute */
1791 /* FIXME: check to see if following type is array? */
1792 is_string = 1;
1793 break;
1794
1795 case 'V': /* Vector attribute */
1796 /* FIXME: check to see if following type is array? */
1797 is_vector = 1;
1798 break;
1799
1800 default:
1801 /* Ignore unrecognized type attributes, so future compilers
1802 can invent new ones. */
1803 break;
1804 }
1805 ++*pp;
1806 goto again;
1807 }
1808 break;
1809
1810 case '#': /* Method (class & fn) type */
1811 if ((*pp)[0] == '#')
1812 {
1813 /* We'll get the parameter types from the name. */
1814 struct type *return_type;
1815
1816 (*pp)++;
1817 return_type = read_type (pp, objfile);
1818 if (*(*pp)++ != ';')
1819 complaint (&symfile_complaints,
1820 _("invalid (minimal) member type data format at symtab pos %d."),
1821 symnum);
1822 type = allocate_stub_method (return_type);
1823 if (typenums[0] != -1)
1824 *dbx_lookup_type (typenums) = type;
1825 }
1826 else
1827 {
1828 struct type *domain = read_type (pp, objfile);
1829 struct type *return_type;
1830 struct field *args;
1831 int nargs, varargs;
1832
1833 if (**pp != ',')
1834 /* Invalid member type data format. */
1835 return error_type (pp, objfile);
1836 else
1837 ++(*pp);
1838
1839 return_type = read_type (pp, objfile);
1840 args = read_args (pp, ';', objfile, &nargs, &varargs);
1841 if (args == NULL)
1842 return error_type (pp, objfile);
1843 type = dbx_alloc_type (typenums, objfile);
1844 smash_to_method_type (type, domain, return_type, args,
1845 nargs, varargs);
1846 }
1847 break;
1848
1849 case 'r': /* Range type */
1850 type = read_range_type (pp, typenums, type_size, objfile);
1851 if (typenums[0] != -1)
1852 *dbx_lookup_type (typenums) = type;
1853 break;
1854
1855 case 'b':
1856 {
1857 /* Sun ACC builtin int type */
1858 type = read_sun_builtin_type (pp, typenums, objfile);
1859 if (typenums[0] != -1)
1860 *dbx_lookup_type (typenums) = type;
1861 }
1862 break;
1863
1864 case 'R': /* Sun ACC builtin float type */
1865 type = read_sun_floating_type (pp, typenums, objfile);
1866 if (typenums[0] != -1)
1867 *dbx_lookup_type (typenums) = type;
1868 break;
1869
1870 case 'e': /* Enumeration type */
1871 type = dbx_alloc_type (typenums, objfile);
1872 type = read_enum_type (pp, type, objfile);
1873 if (typenums[0] != -1)
1874 *dbx_lookup_type (typenums) = type;
1875 break;
1876
1877 case 's': /* Struct type */
1878 case 'u': /* Union type */
1879 {
1880 enum type_code type_code = TYPE_CODE_UNDEF;
1881 type = dbx_alloc_type (typenums, objfile);
1882 switch (type_descriptor)
1883 {
1884 case 's':
1885 type_code = TYPE_CODE_STRUCT;
1886 break;
1887 case 'u':
1888 type_code = TYPE_CODE_UNION;
1889 break;
1890 }
1891 type = read_struct_type (pp, type, type_code, objfile);
1892 break;
1893 }
1894
1895 case 'a': /* Array type */
1896 if (**pp != 'r')
1897 return error_type (pp, objfile);
1898 ++*pp;
1899
1900 type = dbx_alloc_type (typenums, objfile);
1901 type = read_array_type (pp, type, objfile);
1902 if (is_string)
1903 TYPE_CODE (type) = TYPE_CODE_STRING;
1904 if (is_vector)
1905 make_vector_type (type);
1906 break;
1907
1908 case 'S': /* Set or bitstring type */
1909 type1 = read_type (pp, objfile);
1910 type = create_set_type ((struct type *) NULL, type1);
1911 if (is_string)
1912 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1913 if (typenums[0] != -1)
1914 *dbx_lookup_type (typenums) = type;
1915 break;
1916
1917 default:
1918 --*pp; /* Go back to the symbol in error */
1919 /* Particularly important if it was \0! */
1920 return error_type (pp, objfile);
1921 }
1922
1923 if (type == 0)
1924 {
1925 warning (_("GDB internal error, type is NULL in stabsread.c."));
1926 return error_type (pp, objfile);
1927 }
1928
1929 /* Size specified in a type attribute overrides any other size. */
1930 if (type_size != -1)
1931 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1932
1933 return type;
1934 }
1935 \f
1936 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
1937 Return the proper type node for a given builtin type number. */
1938
1939 static struct type *
1940 rs6000_builtin_type (int typenum)
1941 {
1942 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
1943 #define NUMBER_RECOGNIZED 34
1944 /* This includes an empty slot for type number -0. */
1945 static struct type *negative_types[NUMBER_RECOGNIZED + 1];
1946 struct type *rettype = NULL;
1947
1948 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
1949 {
1950 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
1951 return builtin_type_error;
1952 }
1953 if (negative_types[-typenum] != NULL)
1954 return negative_types[-typenum];
1955
1956 #if TARGET_CHAR_BIT != 8
1957 #error This code wrong for TARGET_CHAR_BIT not 8
1958 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
1959 that if that ever becomes not true, the correct fix will be to
1960 make the size in the struct type to be in bits, not in units of
1961 TARGET_CHAR_BIT. */
1962 #endif
1963
1964 switch (-typenum)
1965 {
1966 case 1:
1967 /* The size of this and all the other types are fixed, defined
1968 by the debugging format. If there is a type called "int" which
1969 is other than 32 bits, then it should use a new negative type
1970 number (or avoid negative type numbers for that case).
1971 See stabs.texinfo. */
1972 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
1973 break;
1974 case 2:
1975 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
1976 break;
1977 case 3:
1978 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
1979 break;
1980 case 4:
1981 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
1982 break;
1983 case 5:
1984 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
1985 "unsigned char", NULL);
1986 break;
1987 case 6:
1988 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
1989 break;
1990 case 7:
1991 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
1992 "unsigned short", NULL);
1993 break;
1994 case 8:
1995 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1996 "unsigned int", NULL);
1997 break;
1998 case 9:
1999 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2000 "unsigned", NULL);
2001 case 10:
2002 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2003 "unsigned long", NULL);
2004 break;
2005 case 11:
2006 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", NULL);
2007 break;
2008 case 12:
2009 /* IEEE single precision (32 bit). */
2010 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
2011 break;
2012 case 13:
2013 /* IEEE double precision (64 bit). */
2014 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
2015 break;
2016 case 14:
2017 /* This is an IEEE double on the RS/6000, and different machines with
2018 different sizes for "long double" should use different negative
2019 type numbers. See stabs.texinfo. */
2020 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
2021 break;
2022 case 15:
2023 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
2024 break;
2025 case 16:
2026 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2027 "boolean", NULL);
2028 break;
2029 case 17:
2030 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
2031 break;
2032 case 18:
2033 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
2034 break;
2035 case 19:
2036 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
2037 break;
2038 case 20:
2039 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2040 "character", NULL);
2041 break;
2042 case 21:
2043 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2044 "logical*1", NULL);
2045 break;
2046 case 22:
2047 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2048 "logical*2", NULL);
2049 break;
2050 case 23:
2051 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2052 "logical*4", NULL);
2053 break;
2054 case 24:
2055 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2056 "logical", NULL);
2057 break;
2058 case 25:
2059 /* Complex type consisting of two IEEE single precision values. */
2060 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", NULL);
2061 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
2062 NULL);
2063 break;
2064 case 26:
2065 /* Complex type consisting of two IEEE double precision values. */
2066 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2067 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
2068 NULL);
2069 break;
2070 case 27:
2071 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
2072 break;
2073 case 28:
2074 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
2075 break;
2076 case 29:
2077 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
2078 break;
2079 case 30:
2080 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
2081 break;
2082 case 31:
2083 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", NULL);
2084 break;
2085 case 32:
2086 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2087 "unsigned long long", NULL);
2088 break;
2089 case 33:
2090 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2091 "logical*8", NULL);
2092 break;
2093 case 34:
2094 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", NULL);
2095 break;
2096 }
2097 negative_types[-typenum] = rettype;
2098 return rettype;
2099 }
2100 \f
2101 /* This page contains subroutines of read_type. */
2102
2103 /* Replace *OLD_NAME with the method name portion of PHYSNAME. */
2104
2105 static void
2106 update_method_name_from_physname (char **old_name, char *physname)
2107 {
2108 char *method_name;
2109
2110 method_name = method_name_from_physname (physname);
2111
2112 if (method_name == NULL)
2113 {
2114 complaint (&symfile_complaints,
2115 _("Method has bad physname %s\n"), physname);
2116 return;
2117 }
2118
2119 if (strcmp (*old_name, method_name) != 0)
2120 {
2121 xfree (*old_name);
2122 *old_name = method_name;
2123 }
2124 else
2125 xfree (method_name);
2126 }
2127
2128 /* Read member function stabs info for C++ classes. The form of each member
2129 function data is:
2130
2131 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2132
2133 An example with two member functions is:
2134
2135 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2136
2137 For the case of overloaded operators, the format is op$::*.funcs, where
2138 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2139 name (such as `+=') and `.' marks the end of the operator name.
2140
2141 Returns 1 for success, 0 for failure. */
2142
2143 static int
2144 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2145 struct objfile *objfile)
2146 {
2147 int nfn_fields = 0;
2148 int length = 0;
2149 /* Total number of member functions defined in this class. If the class
2150 defines two `f' functions, and one `g' function, then this will have
2151 the value 3. */
2152 int total_length = 0;
2153 int i;
2154 struct next_fnfield
2155 {
2156 struct next_fnfield *next;
2157 struct fn_field fn_field;
2158 }
2159 *sublist;
2160 struct type *look_ahead_type;
2161 struct next_fnfieldlist *new_fnlist;
2162 struct next_fnfield *new_sublist;
2163 char *main_fn_name;
2164 char *p;
2165
2166 /* Process each list until we find something that is not a member function
2167 or find the end of the functions. */
2168
2169 while (**pp != ';')
2170 {
2171 /* We should be positioned at the start of the function name.
2172 Scan forward to find the first ':' and if it is not the
2173 first of a "::" delimiter, then this is not a member function. */
2174 p = *pp;
2175 while (*p != ':')
2176 {
2177 p++;
2178 }
2179 if (p[1] != ':')
2180 {
2181 break;
2182 }
2183
2184 sublist = NULL;
2185 look_ahead_type = NULL;
2186 length = 0;
2187
2188 new_fnlist = (struct next_fnfieldlist *)
2189 xmalloc (sizeof (struct next_fnfieldlist));
2190 make_cleanup (xfree, new_fnlist);
2191 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
2192
2193 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2194 {
2195 /* This is a completely wierd case. In order to stuff in the
2196 names that might contain colons (the usual name delimiter),
2197 Mike Tiemann defined a different name format which is
2198 signalled if the identifier is "op$". In that case, the
2199 format is "op$::XXXX." where XXXX is the name. This is
2200 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2201 /* This lets the user type "break operator+".
2202 We could just put in "+" as the name, but that wouldn't
2203 work for "*". */
2204 static char opname[32] = "op$";
2205 char *o = opname + 3;
2206
2207 /* Skip past '::'. */
2208 *pp = p + 2;
2209
2210 STABS_CONTINUE (pp, objfile);
2211 p = *pp;
2212 while (*p != '.')
2213 {
2214 *o++ = *p++;
2215 }
2216 main_fn_name = savestring (opname, o - opname);
2217 /* Skip past '.' */
2218 *pp = p + 1;
2219 }
2220 else
2221 {
2222 main_fn_name = savestring (*pp, p - *pp);
2223 /* Skip past '::'. */
2224 *pp = p + 2;
2225 }
2226 new_fnlist->fn_fieldlist.name = main_fn_name;
2227
2228 do
2229 {
2230 new_sublist =
2231 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2232 make_cleanup (xfree, new_sublist);
2233 memset (new_sublist, 0, sizeof (struct next_fnfield));
2234
2235 /* Check for and handle cretinous dbx symbol name continuation! */
2236 if (look_ahead_type == NULL)
2237 {
2238 /* Normal case. */
2239 STABS_CONTINUE (pp, objfile);
2240
2241 new_sublist->fn_field.type = read_type (pp, objfile);
2242 if (**pp != ':')
2243 {
2244 /* Invalid symtab info for member function. */
2245 return 0;
2246 }
2247 }
2248 else
2249 {
2250 /* g++ version 1 kludge */
2251 new_sublist->fn_field.type = look_ahead_type;
2252 look_ahead_type = NULL;
2253 }
2254
2255 (*pp)++;
2256 p = *pp;
2257 while (*p != ';')
2258 {
2259 p++;
2260 }
2261
2262 /* If this is just a stub, then we don't have the real name here. */
2263
2264 if (TYPE_STUB (new_sublist->fn_field.type))
2265 {
2266 if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
2267 TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
2268 new_sublist->fn_field.is_stub = 1;
2269 }
2270 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2271 *pp = p + 1;
2272
2273 /* Set this member function's visibility fields. */
2274 switch (*(*pp)++)
2275 {
2276 case VISIBILITY_PRIVATE:
2277 new_sublist->fn_field.is_private = 1;
2278 break;
2279 case VISIBILITY_PROTECTED:
2280 new_sublist->fn_field.is_protected = 1;
2281 break;
2282 }
2283
2284 STABS_CONTINUE (pp, objfile);
2285 switch (**pp)
2286 {
2287 case 'A': /* Normal functions. */
2288 new_sublist->fn_field.is_const = 0;
2289 new_sublist->fn_field.is_volatile = 0;
2290 (*pp)++;
2291 break;
2292 case 'B': /* `const' member functions. */
2293 new_sublist->fn_field.is_const = 1;
2294 new_sublist->fn_field.is_volatile = 0;
2295 (*pp)++;
2296 break;
2297 case 'C': /* `volatile' member function. */
2298 new_sublist->fn_field.is_const = 0;
2299 new_sublist->fn_field.is_volatile = 1;
2300 (*pp)++;
2301 break;
2302 case 'D': /* `const volatile' member function. */
2303 new_sublist->fn_field.is_const = 1;
2304 new_sublist->fn_field.is_volatile = 1;
2305 (*pp)++;
2306 break;
2307 case '*': /* File compiled with g++ version 1 -- no info */
2308 case '?':
2309 case '.':
2310 break;
2311 default:
2312 complaint (&symfile_complaints,
2313 _("const/volatile indicator missing, got '%c'"), **pp);
2314 break;
2315 }
2316
2317 switch (*(*pp)++)
2318 {
2319 case '*':
2320 {
2321 int nbits;
2322 /* virtual member function, followed by index.
2323 The sign bit is set to distinguish pointers-to-methods
2324 from virtual function indicies. Since the array is
2325 in words, the quantity must be shifted left by 1
2326 on 16 bit machine, and by 2 on 32 bit machine, forcing
2327 the sign bit out, and usable as a valid index into
2328 the array. Remove the sign bit here. */
2329 new_sublist->fn_field.voffset =
2330 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2331 if (nbits != 0)
2332 return 0;
2333
2334 STABS_CONTINUE (pp, objfile);
2335 if (**pp == ';' || **pp == '\0')
2336 {
2337 /* Must be g++ version 1. */
2338 new_sublist->fn_field.fcontext = 0;
2339 }
2340 else
2341 {
2342 /* Figure out from whence this virtual function came.
2343 It may belong to virtual function table of
2344 one of its baseclasses. */
2345 look_ahead_type = read_type (pp, objfile);
2346 if (**pp == ':')
2347 {
2348 /* g++ version 1 overloaded methods. */
2349 }
2350 else
2351 {
2352 new_sublist->fn_field.fcontext = look_ahead_type;
2353 if (**pp != ';')
2354 {
2355 return 0;
2356 }
2357 else
2358 {
2359 ++*pp;
2360 }
2361 look_ahead_type = NULL;
2362 }
2363 }
2364 break;
2365 }
2366 case '?':
2367 /* static member function. */
2368 {
2369 int slen = strlen (main_fn_name);
2370
2371 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2372
2373 /* For static member functions, we can't tell if they
2374 are stubbed, as they are put out as functions, and not as
2375 methods.
2376 GCC v2 emits the fully mangled name if
2377 dbxout.c:flag_minimal_debug is not set, so we have to
2378 detect a fully mangled physname here and set is_stub
2379 accordingly. Fully mangled physnames in v2 start with
2380 the member function name, followed by two underscores.
2381 GCC v3 currently always emits stubbed member functions,
2382 but with fully mangled physnames, which start with _Z. */
2383 if (!(strncmp (new_sublist->fn_field.physname,
2384 main_fn_name, slen) == 0
2385 && new_sublist->fn_field.physname[slen] == '_'
2386 && new_sublist->fn_field.physname[slen + 1] == '_'))
2387 {
2388 new_sublist->fn_field.is_stub = 1;
2389 }
2390 break;
2391 }
2392
2393 default:
2394 /* error */
2395 complaint (&symfile_complaints,
2396 _("member function type missing, got '%c'"), (*pp)[-1]);
2397 /* Fall through into normal member function. */
2398
2399 case '.':
2400 /* normal member function. */
2401 new_sublist->fn_field.voffset = 0;
2402 new_sublist->fn_field.fcontext = 0;
2403 break;
2404 }
2405
2406 new_sublist->next = sublist;
2407 sublist = new_sublist;
2408 length++;
2409 STABS_CONTINUE (pp, objfile);
2410 }
2411 while (**pp != ';' && **pp != '\0');
2412
2413 (*pp)++;
2414 STABS_CONTINUE (pp, objfile);
2415
2416 /* Skip GCC 3.X member functions which are duplicates of the callable
2417 constructor/destructor. */
2418 if (strcmp (main_fn_name, "__base_ctor") == 0
2419 || strcmp (main_fn_name, "__base_dtor") == 0
2420 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2421 {
2422 xfree (main_fn_name);
2423 }
2424 else
2425 {
2426 int has_stub = 0;
2427 int has_destructor = 0, has_other = 0;
2428 int is_v3 = 0;
2429 struct next_fnfield *tmp_sublist;
2430
2431 /* Various versions of GCC emit various mostly-useless
2432 strings in the name field for special member functions.
2433
2434 For stub methods, we need to defer correcting the name
2435 until we are ready to unstub the method, because the current
2436 name string is used by gdb_mangle_name. The only stub methods
2437 of concern here are GNU v2 operators; other methods have their
2438 names correct (see caveat below).
2439
2440 For non-stub methods, in GNU v3, we have a complete physname.
2441 Therefore we can safely correct the name now. This primarily
2442 affects constructors and destructors, whose name will be
2443 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2444 operators will also have incorrect names; for instance,
2445 "operator int" will be named "operator i" (i.e. the type is
2446 mangled).
2447
2448 For non-stub methods in GNU v2, we have no easy way to
2449 know if we have a complete physname or not. For most
2450 methods the result depends on the platform (if CPLUS_MARKER
2451 can be `$' or `.', it will use minimal debug information, or
2452 otherwise the full physname will be included).
2453
2454 Rather than dealing with this, we take a different approach.
2455 For v3 mangled names, we can use the full physname; for v2,
2456 we use cplus_demangle_opname (which is actually v2 specific),
2457 because the only interesting names are all operators - once again
2458 barring the caveat below. Skip this process if any method in the
2459 group is a stub, to prevent our fouling up the workings of
2460 gdb_mangle_name.
2461
2462 The caveat: GCC 2.95.x (and earlier?) put constructors and
2463 destructors in the same method group. We need to split this
2464 into two groups, because they should have different names.
2465 So for each method group we check whether it contains both
2466 routines whose physname appears to be a destructor (the physnames
2467 for and destructors are always provided, due to quirks in v2
2468 mangling) and routines whose physname does not appear to be a
2469 destructor. If so then we break up the list into two halves.
2470 Even if the constructors and destructors aren't in the same group
2471 the destructor will still lack the leading tilde, so that also
2472 needs to be fixed.
2473
2474 So, to summarize what we expect and handle here:
2475
2476 Given Given Real Real Action
2477 method name physname physname method name
2478
2479 __opi [none] __opi__3Foo operator int opname
2480 [now or later]
2481 Foo _._3Foo _._3Foo ~Foo separate and
2482 rename
2483 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2484 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2485 */
2486
2487 tmp_sublist = sublist;
2488 while (tmp_sublist != NULL)
2489 {
2490 if (tmp_sublist->fn_field.is_stub)
2491 has_stub = 1;
2492 if (tmp_sublist->fn_field.physname[0] == '_'
2493 && tmp_sublist->fn_field.physname[1] == 'Z')
2494 is_v3 = 1;
2495
2496 if (is_destructor_name (tmp_sublist->fn_field.physname))
2497 has_destructor++;
2498 else
2499 has_other++;
2500
2501 tmp_sublist = tmp_sublist->next;
2502 }
2503
2504 if (has_destructor && has_other)
2505 {
2506 struct next_fnfieldlist *destr_fnlist;
2507 struct next_fnfield *last_sublist;
2508
2509 /* Create a new fn_fieldlist for the destructors. */
2510
2511 destr_fnlist = (struct next_fnfieldlist *)
2512 xmalloc (sizeof (struct next_fnfieldlist));
2513 make_cleanup (xfree, destr_fnlist);
2514 memset (destr_fnlist, 0, sizeof (struct next_fnfieldlist));
2515 destr_fnlist->fn_fieldlist.name
2516 = obconcat (&objfile->objfile_obstack, "", "~",
2517 new_fnlist->fn_fieldlist.name);
2518
2519 destr_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2520 obstack_alloc (&objfile->objfile_obstack,
2521 sizeof (struct fn_field) * has_destructor);
2522 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2523 sizeof (struct fn_field) * has_destructor);
2524 tmp_sublist = sublist;
2525 last_sublist = NULL;
2526 i = 0;
2527 while (tmp_sublist != NULL)
2528 {
2529 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2530 {
2531 tmp_sublist = tmp_sublist->next;
2532 continue;
2533 }
2534
2535 destr_fnlist->fn_fieldlist.fn_fields[i++]
2536 = tmp_sublist->fn_field;
2537 if (last_sublist)
2538 last_sublist->next = tmp_sublist->next;
2539 else
2540 sublist = tmp_sublist->next;
2541 last_sublist = tmp_sublist;
2542 tmp_sublist = tmp_sublist->next;
2543 }
2544
2545 destr_fnlist->fn_fieldlist.length = has_destructor;
2546 destr_fnlist->next = fip->fnlist;
2547 fip->fnlist = destr_fnlist;
2548 nfn_fields++;
2549 total_length += has_destructor;
2550 length -= has_destructor;
2551 }
2552 else if (is_v3)
2553 {
2554 /* v3 mangling prevents the use of abbreviated physnames,
2555 so we can do this here. There are stubbed methods in v3
2556 only:
2557 - in -gstabs instead of -gstabs+
2558 - or for static methods, which are output as a function type
2559 instead of a method type. */
2560
2561 update_method_name_from_physname (&new_fnlist->fn_fieldlist.name,
2562 sublist->fn_field.physname);
2563 }
2564 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2565 {
2566 new_fnlist->fn_fieldlist.name =
2567 concat ("~", main_fn_name, (char *)NULL);
2568 xfree (main_fn_name);
2569 }
2570 else if (!has_stub)
2571 {
2572 char dem_opname[256];
2573 int ret;
2574 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2575 dem_opname, DMGL_ANSI);
2576 if (!ret)
2577 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2578 dem_opname, 0);
2579 if (ret)
2580 new_fnlist->fn_fieldlist.name
2581 = obsavestring (dem_opname, strlen (dem_opname),
2582 &objfile->objfile_obstack);
2583 }
2584
2585 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2586 obstack_alloc (&objfile->objfile_obstack,
2587 sizeof (struct fn_field) * length);
2588 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2589 sizeof (struct fn_field) * length);
2590 for (i = length; (i--, sublist); sublist = sublist->next)
2591 {
2592 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2593 }
2594
2595 new_fnlist->fn_fieldlist.length = length;
2596 new_fnlist->next = fip->fnlist;
2597 fip->fnlist = new_fnlist;
2598 nfn_fields++;
2599 total_length += length;
2600 }
2601 }
2602
2603 if (nfn_fields)
2604 {
2605 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2606 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2607 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2608 memset (TYPE_FN_FIELDLISTS (type), 0,
2609 sizeof (struct fn_fieldlist) * nfn_fields);
2610 TYPE_NFN_FIELDS (type) = nfn_fields;
2611 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2612 }
2613
2614 return 1;
2615 }
2616
2617 /* Special GNU C++ name.
2618
2619 Returns 1 for success, 0 for failure. "failure" means that we can't
2620 keep parsing and it's time for error_type(). */
2621
2622 static int
2623 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2624 struct objfile *objfile)
2625 {
2626 char *p;
2627 char *name;
2628 char cpp_abbrev;
2629 struct type *context;
2630
2631 p = *pp;
2632 if (*++p == 'v')
2633 {
2634 name = NULL;
2635 cpp_abbrev = *++p;
2636
2637 *pp = p + 1;
2638
2639 /* At this point, *pp points to something like "22:23=*22...",
2640 where the type number before the ':' is the "context" and
2641 everything after is a regular type definition. Lookup the
2642 type, find it's name, and construct the field name. */
2643
2644 context = read_type (pp, objfile);
2645
2646 switch (cpp_abbrev)
2647 {
2648 case 'f': /* $vf -- a virtual function table pointer */
2649 name = type_name_no_tag (context);
2650 if (name == NULL)
2651 {
2652 name = "";
2653 }
2654 fip->list->field.name =
2655 obconcat (&objfile->objfile_obstack, vptr_name, name, "");
2656 break;
2657
2658 case 'b': /* $vb -- a virtual bsomethingorother */
2659 name = type_name_no_tag (context);
2660 if (name == NULL)
2661 {
2662 complaint (&symfile_complaints,
2663 _("C++ abbreviated type name unknown at symtab pos %d"),
2664 symnum);
2665 name = "FOO";
2666 }
2667 fip->list->field.name =
2668 obconcat (&objfile->objfile_obstack, vb_name, name, "");
2669 break;
2670
2671 default:
2672 invalid_cpp_abbrev_complaint (*pp);
2673 fip->list->field.name =
2674 obconcat (&objfile->objfile_obstack,
2675 "INVALID_CPLUSPLUS_ABBREV", "", "");
2676 break;
2677 }
2678
2679 /* At this point, *pp points to the ':'. Skip it and read the
2680 field type. */
2681
2682 p = ++(*pp);
2683 if (p[-1] != ':')
2684 {
2685 invalid_cpp_abbrev_complaint (*pp);
2686 return 0;
2687 }
2688 fip->list->field.type = read_type (pp, objfile);
2689 if (**pp == ',')
2690 (*pp)++; /* Skip the comma. */
2691 else
2692 return 0;
2693
2694 {
2695 int nbits;
2696 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ';', &nbits,
2697 0);
2698 if (nbits != 0)
2699 return 0;
2700 }
2701 /* This field is unpacked. */
2702 FIELD_BITSIZE (fip->list->field) = 0;
2703 fip->list->visibility = VISIBILITY_PRIVATE;
2704 }
2705 else
2706 {
2707 invalid_cpp_abbrev_complaint (*pp);
2708 /* We have no idea what syntax an unrecognized abbrev would have, so
2709 better return 0. If we returned 1, we would need to at least advance
2710 *pp to avoid an infinite loop. */
2711 return 0;
2712 }
2713 return 1;
2714 }
2715
2716 static void
2717 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2718 struct type *type, struct objfile *objfile)
2719 {
2720 fip->list->field.name =
2721 obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
2722 *pp = p + 1;
2723
2724 /* This means we have a visibility for a field coming. */
2725 if (**pp == '/')
2726 {
2727 (*pp)++;
2728 fip->list->visibility = *(*pp)++;
2729 }
2730 else
2731 {
2732 /* normal dbx-style format, no explicit visibility */
2733 fip->list->visibility = VISIBILITY_PUBLIC;
2734 }
2735
2736 fip->list->field.type = read_type (pp, objfile);
2737 if (**pp == ':')
2738 {
2739 p = ++(*pp);
2740 #if 0
2741 /* Possible future hook for nested types. */
2742 if (**pp == '!')
2743 {
2744 fip->list->field.bitpos = (long) -2; /* nested type */
2745 p = ++(*pp);
2746 }
2747 else
2748 ...;
2749 #endif
2750 while (*p != ';')
2751 {
2752 p++;
2753 }
2754 /* Static class member. */
2755 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2756 *pp = p + 1;
2757 return;
2758 }
2759 else if (**pp != ',')
2760 {
2761 /* Bad structure-type format. */
2762 stabs_general_complaint ("bad structure-type format");
2763 return;
2764 }
2765
2766 (*pp)++; /* Skip the comma. */
2767
2768 {
2769 int nbits;
2770 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ',', &nbits, 0);
2771 if (nbits != 0)
2772 {
2773 stabs_general_complaint ("bad structure-type format");
2774 return;
2775 }
2776 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2777 if (nbits != 0)
2778 {
2779 stabs_general_complaint ("bad structure-type format");
2780 return;
2781 }
2782 }
2783
2784 if (FIELD_BITPOS (fip->list->field) == 0
2785 && FIELD_BITSIZE (fip->list->field) == 0)
2786 {
2787 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2788 it is a field which has been optimized out. The correct stab for
2789 this case is to use VISIBILITY_IGNORE, but that is a recent
2790 invention. (2) It is a 0-size array. For example
2791 union { int num; char str[0]; } foo. Printing _("<no value>" for
2792 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2793 will continue to work, and a 0-size array as a whole doesn't
2794 have any contents to print.
2795
2796 I suspect this probably could also happen with gcc -gstabs (not
2797 -gstabs+) for static fields, and perhaps other C++ extensions.
2798 Hopefully few people use -gstabs with gdb, since it is intended
2799 for dbx compatibility. */
2800
2801 /* Ignore this field. */
2802 fip->list->visibility = VISIBILITY_IGNORE;
2803 }
2804 else
2805 {
2806 /* Detect an unpacked field and mark it as such.
2807 dbx gives a bit size for all fields.
2808 Note that forward refs cannot be packed,
2809 and treat enums as if they had the width of ints. */
2810
2811 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2812
2813 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2814 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2815 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2816 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2817 {
2818 FIELD_BITSIZE (fip->list->field) = 0;
2819 }
2820 if ((FIELD_BITSIZE (fip->list->field)
2821 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2822 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2823 && FIELD_BITSIZE (fip->list->field)
2824 == gdbarch_int_bit (current_gdbarch))
2825 )
2826 &&
2827 FIELD_BITPOS (fip->list->field) % 8 == 0)
2828 {
2829 FIELD_BITSIZE (fip->list->field) = 0;
2830 }
2831 }
2832 }
2833
2834
2835 /* Read struct or class data fields. They have the form:
2836
2837 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2838
2839 At the end, we see a semicolon instead of a field.
2840
2841 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2842 a static field.
2843
2844 The optional VISIBILITY is one of:
2845
2846 '/0' (VISIBILITY_PRIVATE)
2847 '/1' (VISIBILITY_PROTECTED)
2848 '/2' (VISIBILITY_PUBLIC)
2849 '/9' (VISIBILITY_IGNORE)
2850
2851 or nothing, for C style fields with public visibility.
2852
2853 Returns 1 for success, 0 for failure. */
2854
2855 static int
2856 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2857 struct objfile *objfile)
2858 {
2859 char *p;
2860 struct nextfield *new;
2861
2862 /* We better set p right now, in case there are no fields at all... */
2863
2864 p = *pp;
2865
2866 /* Read each data member type until we find the terminating ';' at the end of
2867 the data member list, or break for some other reason such as finding the
2868 start of the member function list. */
2869 /* Stab string for structure/union does not end with two ';' in
2870 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
2871
2872 while (**pp != ';' && **pp != '\0')
2873 {
2874 STABS_CONTINUE (pp, objfile);
2875 /* Get space to record the next field's data. */
2876 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2877 make_cleanup (xfree, new);
2878 memset (new, 0, sizeof (struct nextfield));
2879 new->next = fip->list;
2880 fip->list = new;
2881
2882 /* Get the field name. */
2883 p = *pp;
2884
2885 /* If is starts with CPLUS_MARKER it is a special abbreviation,
2886 unless the CPLUS_MARKER is followed by an underscore, in
2887 which case it is just the name of an anonymous type, which we
2888 should handle like any other type name. */
2889
2890 if (is_cplus_marker (p[0]) && p[1] != '_')
2891 {
2892 if (!read_cpp_abbrev (fip, pp, type, objfile))
2893 return 0;
2894 continue;
2895 }
2896
2897 /* Look for the ':' that separates the field name from the field
2898 values. Data members are delimited by a single ':', while member
2899 functions are delimited by a pair of ':'s. When we hit the member
2900 functions (if any), terminate scan loop and return. */
2901
2902 while (*p != ':' && *p != '\0')
2903 {
2904 p++;
2905 }
2906 if (*p == '\0')
2907 return 0;
2908
2909 /* Check to see if we have hit the member functions yet. */
2910 if (p[1] == ':')
2911 {
2912 break;
2913 }
2914 read_one_struct_field (fip, pp, p, type, objfile);
2915 }
2916 if (p[0] == ':' && p[1] == ':')
2917 {
2918 /* (the deleted) chill the list of fields: the last entry (at
2919 the head) is a partially constructed entry which we now
2920 scrub. */
2921 fip->list = fip->list->next;
2922 }
2923 return 1;
2924 }
2925 /* *INDENT-OFF* */
2926 /* The stabs for C++ derived classes contain baseclass information which
2927 is marked by a '!' character after the total size. This function is
2928 called when we encounter the baseclass marker, and slurps up all the
2929 baseclass information.
2930
2931 Immediately following the '!' marker is the number of base classes that
2932 the class is derived from, followed by information for each base class.
2933 For each base class, there are two visibility specifiers, a bit offset
2934 to the base class information within the derived class, a reference to
2935 the type for the base class, and a terminating semicolon.
2936
2937 A typical example, with two base classes, would be "!2,020,19;0264,21;".
2938 ^^ ^ ^ ^ ^ ^ ^
2939 Baseclass information marker __________________|| | | | | | |
2940 Number of baseclasses __________________________| | | | | | |
2941 Visibility specifiers (2) ________________________| | | | | |
2942 Offset in bits from start of class _________________| | | | |
2943 Type number for base class ___________________________| | | |
2944 Visibility specifiers (2) _______________________________| | |
2945 Offset in bits from start of class ________________________| |
2946 Type number of base class ____________________________________|
2947
2948 Return 1 for success, 0 for (error-type-inducing) failure. */
2949 /* *INDENT-ON* */
2950
2951
2952
2953 static int
2954 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
2955 struct objfile *objfile)
2956 {
2957 int i;
2958 struct nextfield *new;
2959
2960 if (**pp != '!')
2961 {
2962 return 1;
2963 }
2964 else
2965 {
2966 /* Skip the '!' baseclass information marker. */
2967 (*pp)++;
2968 }
2969
2970 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2971 {
2972 int nbits;
2973 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
2974 if (nbits != 0)
2975 return 0;
2976 }
2977
2978 #if 0
2979 /* Some stupid compilers have trouble with the following, so break
2980 it up into simpler expressions. */
2981 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
2982 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
2983 #else
2984 {
2985 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
2986 char *pointer;
2987
2988 pointer = (char *) TYPE_ALLOC (type, num_bytes);
2989 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
2990 }
2991 #endif /* 0 */
2992
2993 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
2994
2995 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
2996 {
2997 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2998 make_cleanup (xfree, new);
2999 memset (new, 0, sizeof (struct nextfield));
3000 new->next = fip->list;
3001 fip->list = new;
3002 FIELD_BITSIZE (new->field) = 0; /* this should be an unpacked field! */
3003
3004 STABS_CONTINUE (pp, objfile);
3005 switch (**pp)
3006 {
3007 case '0':
3008 /* Nothing to do. */
3009 break;
3010 case '1':
3011 SET_TYPE_FIELD_VIRTUAL (type, i);
3012 break;
3013 default:
3014 /* Unknown character. Complain and treat it as non-virtual. */
3015 {
3016 complaint (&symfile_complaints,
3017 _("Unknown virtual character `%c' for baseclass"), **pp);
3018 }
3019 }
3020 ++(*pp);
3021
3022 new->visibility = *(*pp)++;
3023 switch (new->visibility)
3024 {
3025 case VISIBILITY_PRIVATE:
3026 case VISIBILITY_PROTECTED:
3027 case VISIBILITY_PUBLIC:
3028 break;
3029 default:
3030 /* Bad visibility format. Complain and treat it as
3031 public. */
3032 {
3033 complaint (&symfile_complaints,
3034 _("Unknown visibility `%c' for baseclass"),
3035 new->visibility);
3036 new->visibility = VISIBILITY_PUBLIC;
3037 }
3038 }
3039
3040 {
3041 int nbits;
3042
3043 /* The remaining value is the bit offset of the portion of the object
3044 corresponding to this baseclass. Always zero in the absence of
3045 multiple inheritance. */
3046
3047 FIELD_BITPOS (new->field) = read_huge_number (pp, ',', &nbits, 0);
3048 if (nbits != 0)
3049 return 0;
3050 }
3051
3052 /* The last piece of baseclass information is the type of the
3053 base class. Read it, and remember it's type name as this
3054 field's name. */
3055
3056 new->field.type = read_type (pp, objfile);
3057 new->field.name = type_name_no_tag (new->field.type);
3058
3059 /* skip trailing ';' and bump count of number of fields seen */
3060 if (**pp == ';')
3061 (*pp)++;
3062 else
3063 return 0;
3064 }
3065 return 1;
3066 }
3067
3068 /* The tail end of stabs for C++ classes that contain a virtual function
3069 pointer contains a tilde, a %, and a type number.
3070 The type number refers to the base class (possibly this class itself) which
3071 contains the vtable pointer for the current class.
3072
3073 This function is called when we have parsed all the method declarations,
3074 so we can look for the vptr base class info. */
3075
3076 static int
3077 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3078 struct objfile *objfile)
3079 {
3080 char *p;
3081
3082 STABS_CONTINUE (pp, objfile);
3083
3084 /* If we are positioned at a ';', then skip it. */
3085 if (**pp == ';')
3086 {
3087 (*pp)++;
3088 }
3089
3090 if (**pp == '~')
3091 {
3092 (*pp)++;
3093
3094 if (**pp == '=' || **pp == '+' || **pp == '-')
3095 {
3096 /* Obsolete flags that used to indicate the presence
3097 of constructors and/or destructors. */
3098 (*pp)++;
3099 }
3100
3101 /* Read either a '%' or the final ';'. */
3102 if (*(*pp)++ == '%')
3103 {
3104 /* The next number is the type number of the base class
3105 (possibly our own class) which supplies the vtable for
3106 this class. Parse it out, and search that class to find
3107 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3108 and TYPE_VPTR_FIELDNO. */
3109
3110 struct type *t;
3111 int i;
3112
3113 t = read_type (pp, objfile);
3114 p = (*pp)++;
3115 while (*p != '\0' && *p != ';')
3116 {
3117 p++;
3118 }
3119 if (*p == '\0')
3120 {
3121 /* Premature end of symbol. */
3122 return 0;
3123 }
3124
3125 TYPE_VPTR_BASETYPE (type) = t;
3126 if (type == t) /* Our own class provides vtbl ptr */
3127 {
3128 for (i = TYPE_NFIELDS (t) - 1;
3129 i >= TYPE_N_BASECLASSES (t);
3130 --i)
3131 {
3132 char *name = TYPE_FIELD_NAME (t, i);
3133 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3134 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3135 {
3136 TYPE_VPTR_FIELDNO (type) = i;
3137 goto gotit;
3138 }
3139 }
3140 /* Virtual function table field not found. */
3141 complaint (&symfile_complaints,
3142 _("virtual function table pointer not found when defining class `%s'"),
3143 TYPE_NAME (type));
3144 return 0;
3145 }
3146 else
3147 {
3148 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3149 }
3150
3151 gotit:
3152 *pp = p + 1;
3153 }
3154 }
3155 return 1;
3156 }
3157
3158 static int
3159 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3160 {
3161 int n;
3162
3163 for (n = TYPE_NFN_FIELDS (type);
3164 fip->fnlist != NULL;
3165 fip->fnlist = fip->fnlist->next)
3166 {
3167 --n; /* Circumvent Sun3 compiler bug */
3168 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3169 }
3170 return 1;
3171 }
3172
3173 /* Create the vector of fields, and record how big it is.
3174 We need this info to record proper virtual function table information
3175 for this class's virtual functions. */
3176
3177 static int
3178 attach_fields_to_type (struct field_info *fip, struct type *type,
3179 struct objfile *objfile)
3180 {
3181 int nfields = 0;
3182 int non_public_fields = 0;
3183 struct nextfield *scan;
3184
3185 /* Count up the number of fields that we have, as well as taking note of
3186 whether or not there are any non-public fields, which requires us to
3187 allocate and build the private_field_bits and protected_field_bits
3188 bitfields. */
3189
3190 for (scan = fip->list; scan != NULL; scan = scan->next)
3191 {
3192 nfields++;
3193 if (scan->visibility != VISIBILITY_PUBLIC)
3194 {
3195 non_public_fields++;
3196 }
3197 }
3198
3199 /* Now we know how many fields there are, and whether or not there are any
3200 non-public fields. Record the field count, allocate space for the
3201 array of fields, and create blank visibility bitfields if necessary. */
3202
3203 TYPE_NFIELDS (type) = nfields;
3204 TYPE_FIELDS (type) = (struct field *)
3205 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3206 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3207
3208 if (non_public_fields)
3209 {
3210 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3211
3212 TYPE_FIELD_PRIVATE_BITS (type) =
3213 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3214 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3215
3216 TYPE_FIELD_PROTECTED_BITS (type) =
3217 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3218 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3219
3220 TYPE_FIELD_IGNORE_BITS (type) =
3221 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3222 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3223 }
3224
3225 /* Copy the saved-up fields into the field vector. Start from the head
3226 of the list, adding to the tail of the field array, so that they end
3227 up in the same order in the array in which they were added to the list. */
3228
3229 while (nfields-- > 0)
3230 {
3231 TYPE_FIELD (type, nfields) = fip->list->field;
3232 switch (fip->list->visibility)
3233 {
3234 case VISIBILITY_PRIVATE:
3235 SET_TYPE_FIELD_PRIVATE (type, nfields);
3236 break;
3237
3238 case VISIBILITY_PROTECTED:
3239 SET_TYPE_FIELD_PROTECTED (type, nfields);
3240 break;
3241
3242 case VISIBILITY_IGNORE:
3243 SET_TYPE_FIELD_IGNORE (type, nfields);
3244 break;
3245
3246 case VISIBILITY_PUBLIC:
3247 break;
3248
3249 default:
3250 /* Unknown visibility. Complain and treat it as public. */
3251 {
3252 complaint (&symfile_complaints, _("Unknown visibility `%c' for field"),
3253 fip->list->visibility);
3254 }
3255 break;
3256 }
3257 fip->list = fip->list->next;
3258 }
3259 return 1;
3260 }
3261
3262
3263 /* Complain that the compiler has emitted more than one definition for the
3264 structure type TYPE. */
3265 static void
3266 complain_about_struct_wipeout (struct type *type)
3267 {
3268 char *name = "";
3269 char *kind = "";
3270
3271 if (TYPE_TAG_NAME (type))
3272 {
3273 name = TYPE_TAG_NAME (type);
3274 switch (TYPE_CODE (type))
3275 {
3276 case TYPE_CODE_STRUCT: kind = "struct "; break;
3277 case TYPE_CODE_UNION: kind = "union "; break;
3278 case TYPE_CODE_ENUM: kind = "enum "; break;
3279 default: kind = "";
3280 }
3281 }
3282 else if (TYPE_NAME (type))
3283 {
3284 name = TYPE_NAME (type);
3285 kind = "";
3286 }
3287 else
3288 {
3289 name = "<unknown>";
3290 kind = "";
3291 }
3292
3293 complaint (&symfile_complaints,
3294 _("struct/union type gets multiply defined: %s%s"), kind, name);
3295 }
3296
3297
3298 /* Read the description of a structure (or union type) and return an object
3299 describing the type.
3300
3301 PP points to a character pointer that points to the next unconsumed token
3302 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3303 *PP will point to "4a:1,0,32;;".
3304
3305 TYPE points to an incomplete type that needs to be filled in.
3306
3307 OBJFILE points to the current objfile from which the stabs information is
3308 being read. (Note that it is redundant in that TYPE also contains a pointer
3309 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3310 */
3311
3312 static struct type *
3313 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3314 struct objfile *objfile)
3315 {
3316 struct cleanup *back_to;
3317 struct field_info fi;
3318
3319 fi.list = NULL;
3320 fi.fnlist = NULL;
3321
3322 /* When describing struct/union/class types in stabs, G++ always drops
3323 all qualifications from the name. So if you've got:
3324 struct A { ... struct B { ... }; ... };
3325 then G++ will emit stabs for `struct A::B' that call it simply
3326 `struct B'. Obviously, if you've got a real top-level definition for
3327 `struct B', or other nested definitions, this is going to cause
3328 problems.
3329
3330 Obviously, GDB can't fix this by itself, but it can at least avoid
3331 scribbling on existing structure type objects when new definitions
3332 appear. */
3333 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3334 || TYPE_STUB (type)))
3335 {
3336 complain_about_struct_wipeout (type);
3337
3338 /* It's probably best to return the type unchanged. */
3339 return type;
3340 }
3341
3342 back_to = make_cleanup (null_cleanup, 0);
3343
3344 INIT_CPLUS_SPECIFIC (type);
3345 TYPE_CODE (type) = type_code;
3346 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
3347
3348 /* First comes the total size in bytes. */
3349
3350 {
3351 int nbits;
3352 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3353 if (nbits != 0)
3354 return error_type (pp, objfile);
3355 }
3356
3357 /* Now read the baseclasses, if any, read the regular C struct or C++
3358 class member fields, attach the fields to the type, read the C++
3359 member functions, attach them to the type, and then read any tilde
3360 field (baseclass specifier for the class holding the main vtable). */
3361
3362 if (!read_baseclasses (&fi, pp, type, objfile)
3363 || !read_struct_fields (&fi, pp, type, objfile)
3364 || !attach_fields_to_type (&fi, type, objfile)
3365 || !read_member_functions (&fi, pp, type, objfile)
3366 || !attach_fn_fields_to_type (&fi, type)
3367 || !read_tilde_fields (&fi, pp, type, objfile))
3368 {
3369 type = error_type (pp, objfile);
3370 }
3371
3372 do_cleanups (back_to);
3373 return (type);
3374 }
3375
3376 /* Read a definition of an array type,
3377 and create and return a suitable type object.
3378 Also creates a range type which represents the bounds of that
3379 array. */
3380
3381 static struct type *
3382 read_array_type (char **pp, struct type *type,
3383 struct objfile *objfile)
3384 {
3385 struct type *index_type, *element_type, *range_type;
3386 int lower, upper;
3387 int adjustable = 0;
3388 int nbits;
3389
3390 /* Format of an array type:
3391 "ar<index type>;lower;upper;<array_contents_type>".
3392 OS9000: "arlower,upper;<array_contents_type>".
3393
3394 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3395 for these, produce a type like float[][]. */
3396
3397 {
3398 index_type = read_type (pp, objfile);
3399 if (**pp != ';')
3400 /* Improper format of array type decl. */
3401 return error_type (pp, objfile);
3402 ++*pp;
3403 }
3404
3405 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3406 {
3407 (*pp)++;
3408 adjustable = 1;
3409 }
3410 lower = read_huge_number (pp, ';', &nbits, 0);
3411
3412 if (nbits != 0)
3413 return error_type (pp, objfile);
3414
3415 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3416 {
3417 (*pp)++;
3418 adjustable = 1;
3419 }
3420 upper = read_huge_number (pp, ';', &nbits, 0);
3421 if (nbits != 0)
3422 return error_type (pp, objfile);
3423
3424 element_type = read_type (pp, objfile);
3425
3426 if (adjustable)
3427 {
3428 lower = 0;
3429 upper = -1;
3430 }
3431
3432 range_type =
3433 create_range_type ((struct type *) NULL, index_type, lower, upper);
3434 type = create_array_type (type, element_type, range_type);
3435
3436 return type;
3437 }
3438
3439
3440 /* Read a definition of an enumeration type,
3441 and create and return a suitable type object.
3442 Also defines the symbols that represent the values of the type. */
3443
3444 static struct type *
3445 read_enum_type (char **pp, struct type *type,
3446 struct objfile *objfile)
3447 {
3448 char *p;
3449 char *name;
3450 long n;
3451 struct symbol *sym;
3452 int nsyms = 0;
3453 struct pending **symlist;
3454 struct pending *osyms, *syms;
3455 int o_nsyms;
3456 int nbits;
3457 int unsigned_enum = 1;
3458
3459 #if 0
3460 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3461 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3462 to do? For now, force all enum values to file scope. */
3463 if (within_function)
3464 symlist = &local_symbols;
3465 else
3466 #endif
3467 symlist = &file_symbols;
3468 osyms = *symlist;
3469 o_nsyms = osyms ? osyms->nsyms : 0;
3470
3471 /* The aix4 compiler emits an extra field before the enum members;
3472 my guess is it's a type of some sort. Just ignore it. */
3473 if (**pp == '-')
3474 {
3475 /* Skip over the type. */
3476 while (**pp != ':')
3477 (*pp)++;
3478
3479 /* Skip over the colon. */
3480 (*pp)++;
3481 }
3482
3483 /* Read the value-names and their values.
3484 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3485 A semicolon or comma instead of a NAME means the end. */
3486 while (**pp && **pp != ';' && **pp != ',')
3487 {
3488 STABS_CONTINUE (pp, objfile);
3489 p = *pp;
3490 while (*p != ':')
3491 p++;
3492 name = obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
3493 *pp = p + 1;
3494 n = read_huge_number (pp, ',', &nbits, 0);
3495 if (nbits != 0)
3496 return error_type (pp, objfile);
3497
3498 sym = (struct symbol *)
3499 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
3500 memset (sym, 0, sizeof (struct symbol));
3501 DEPRECATED_SYMBOL_NAME (sym) = name;
3502 SYMBOL_LANGUAGE (sym) = current_subfile->language;
3503 SYMBOL_CLASS (sym) = LOC_CONST;
3504 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3505 SYMBOL_VALUE (sym) = n;
3506 if (n < 0)
3507 unsigned_enum = 0;
3508 add_symbol_to_list (sym, symlist);
3509 nsyms++;
3510 }
3511
3512 if (**pp == ';')
3513 (*pp)++; /* Skip the semicolon. */
3514
3515 /* Now fill in the fields of the type-structure. */
3516
3517 TYPE_LENGTH (type) = gdbarch_int_bit (current_gdbarch) / HOST_CHAR_BIT;
3518 TYPE_CODE (type) = TYPE_CODE_ENUM;
3519 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
3520 if (unsigned_enum)
3521 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
3522 TYPE_NFIELDS (type) = nsyms;
3523 TYPE_FIELDS (type) = (struct field *)
3524 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3525 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3526
3527 /* Find the symbols for the values and put them into the type.
3528 The symbols can be found in the symlist that we put them on
3529 to cause them to be defined. osyms contains the old value
3530 of that symlist; everything up to there was defined by us. */
3531 /* Note that we preserve the order of the enum constants, so
3532 that in something like "enum {FOO, LAST_THING=FOO}" we print
3533 FOO, not LAST_THING. */
3534
3535 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3536 {
3537 int last = syms == osyms ? o_nsyms : 0;
3538 int j = syms->nsyms;
3539 for (; --j >= last; --n)
3540 {
3541 struct symbol *xsym = syms->symbol[j];
3542 SYMBOL_TYPE (xsym) = type;
3543 TYPE_FIELD_NAME (type, n) = DEPRECATED_SYMBOL_NAME (xsym);
3544 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
3545 TYPE_FIELD_BITSIZE (type, n) = 0;
3546 }
3547 if (syms == osyms)
3548 break;
3549 }
3550
3551 return type;
3552 }
3553
3554 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3555 typedefs in every file (for int, long, etc):
3556
3557 type = b <signed> <width> <format type>; <offset>; <nbits>
3558 signed = u or s.
3559 optional format type = c or b for char or boolean.
3560 offset = offset from high order bit to start bit of type.
3561 width is # bytes in object of this type, nbits is # bits in type.
3562
3563 The width/offset stuff appears to be for small objects stored in
3564 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3565 FIXME. */
3566
3567 static struct type *
3568 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3569 {
3570 int type_bits;
3571 int nbits;
3572 int signed_type;
3573 enum type_code code = TYPE_CODE_INT;
3574
3575 switch (**pp)
3576 {
3577 case 's':
3578 signed_type = 1;
3579 break;
3580 case 'u':
3581 signed_type = 0;
3582 break;
3583 default:
3584 return error_type (pp, objfile);
3585 }
3586 (*pp)++;
3587
3588 /* For some odd reason, all forms of char put a c here. This is strange
3589 because no other type has this honor. We can safely ignore this because
3590 we actually determine 'char'acterness by the number of bits specified in
3591 the descriptor.
3592 Boolean forms, e.g Fortran logical*X, put a b here. */
3593
3594 if (**pp == 'c')
3595 (*pp)++;
3596 else if (**pp == 'b')
3597 {
3598 code = TYPE_CODE_BOOL;
3599 (*pp)++;
3600 }
3601
3602 /* The first number appears to be the number of bytes occupied
3603 by this type, except that unsigned short is 4 instead of 2.
3604 Since this information is redundant with the third number,
3605 we will ignore it. */
3606 read_huge_number (pp, ';', &nbits, 0);
3607 if (nbits != 0)
3608 return error_type (pp, objfile);
3609
3610 /* The second number is always 0, so ignore it too. */
3611 read_huge_number (pp, ';', &nbits, 0);
3612 if (nbits != 0)
3613 return error_type (pp, objfile);
3614
3615 /* The third number is the number of bits for this type. */
3616 type_bits = read_huge_number (pp, 0, &nbits, 0);
3617 if (nbits != 0)
3618 return error_type (pp, objfile);
3619 /* The type *should* end with a semicolon. If it are embedded
3620 in a larger type the semicolon may be the only way to know where
3621 the type ends. If this type is at the end of the stabstring we
3622 can deal with the omitted semicolon (but we don't have to like
3623 it). Don't bother to complain(), Sun's compiler omits the semicolon
3624 for "void". */
3625 if (**pp == ';')
3626 ++(*pp);
3627
3628 if (type_bits == 0)
3629 return init_type (TYPE_CODE_VOID, 1,
3630 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3631 objfile);
3632 else
3633 return init_type (code,
3634 type_bits / TARGET_CHAR_BIT,
3635 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3636 objfile);
3637 }
3638
3639 static struct type *
3640 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3641 {
3642 int nbits;
3643 int details;
3644 int nbytes;
3645 struct type *rettype;
3646
3647 /* The first number has more details about the type, for example
3648 FN_COMPLEX. */
3649 details = read_huge_number (pp, ';', &nbits, 0);
3650 if (nbits != 0)
3651 return error_type (pp, objfile);
3652
3653 /* The second number is the number of bytes occupied by this type */
3654 nbytes = read_huge_number (pp, ';', &nbits, 0);
3655 if (nbits != 0)
3656 return error_type (pp, objfile);
3657
3658 if (details == NF_COMPLEX || details == NF_COMPLEX16
3659 || details == NF_COMPLEX32)
3660 {
3661 rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
3662 TYPE_TARGET_TYPE (rettype)
3663 = init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
3664 return rettype;
3665 }
3666
3667 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3668 }
3669
3670 /* Read a number from the string pointed to by *PP.
3671 The value of *PP is advanced over the number.
3672 If END is nonzero, the character that ends the
3673 number must match END, or an error happens;
3674 and that character is skipped if it does match.
3675 If END is zero, *PP is left pointing to that character.
3676
3677 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3678 the number is represented in an octal representation, assume that
3679 it is represented in a 2's complement representation with a size of
3680 TWOS_COMPLEMENT_BITS.
3681
3682 If the number fits in a long, set *BITS to 0 and return the value.
3683 If not, set *BITS to be the number of bits in the number and return 0.
3684
3685 If encounter garbage, set *BITS to -1 and return 0. */
3686
3687 static long
3688 read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
3689 {
3690 char *p = *pp;
3691 int sign = 1;
3692 int sign_bit = 0;
3693 long n = 0;
3694 int radix = 10;
3695 char overflow = 0;
3696 int nbits = 0;
3697 int c;
3698 long upper_limit;
3699 int twos_complement_representation = 0;
3700
3701 if (*p == '-')
3702 {
3703 sign = -1;
3704 p++;
3705 }
3706
3707 /* Leading zero means octal. GCC uses this to output values larger
3708 than an int (because that would be hard in decimal). */
3709 if (*p == '0')
3710 {
3711 radix = 8;
3712 p++;
3713 }
3714
3715 /* Skip extra zeros. */
3716 while (*p == '0')
3717 p++;
3718
3719 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3720 {
3721 /* Octal, possibly signed. Check if we have enough chars for a
3722 negative number. */
3723
3724 size_t len;
3725 char *p1 = p;
3726 while ((c = *p1) >= '0' && c < '8')
3727 p1++;
3728
3729 len = p1 - p;
3730 if (len > twos_complement_bits / 3
3731 || (twos_complement_bits % 3 == 0 && len == twos_complement_bits / 3))
3732 {
3733 /* Ok, we have enough characters for a signed value, check
3734 for signness by testing if the sign bit is set. */
3735 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3736 c = *p - '0';
3737 if (c & (1 << sign_bit))
3738 {
3739 /* Definitely signed. */
3740 twos_complement_representation = 1;
3741 sign = -1;
3742 }
3743 }
3744 }
3745
3746 upper_limit = LONG_MAX / radix;
3747
3748 while ((c = *p++) >= '0' && c < ('0' + radix))
3749 {
3750 if (n <= upper_limit)
3751 {
3752 if (twos_complement_representation)
3753 {
3754 /* Octal, signed, twos complement representation. In
3755 this case, n is the corresponding absolute value. */
3756 if (n == 0)
3757 {
3758 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3759 n = -sn;
3760 }
3761 else
3762 {
3763 n *= radix;
3764 n -= c - '0';
3765 }
3766 }
3767 else
3768 {
3769 /* unsigned representation */
3770 n *= radix;
3771 n += c - '0'; /* FIXME this overflows anyway */
3772 }
3773 }
3774 else
3775 overflow = 1;
3776
3777 /* This depends on large values being output in octal, which is
3778 what GCC does. */
3779 if (radix == 8)
3780 {
3781 if (nbits == 0)
3782 {
3783 if (c == '0')
3784 /* Ignore leading zeroes. */
3785 ;
3786 else if (c == '1')
3787 nbits = 1;
3788 else if (c == '2' || c == '3')
3789 nbits = 2;
3790 else
3791 nbits = 3;
3792 }
3793 else
3794 nbits += 3;
3795 }
3796 }
3797 if (end)
3798 {
3799 if (c && c != end)
3800 {
3801 if (bits != NULL)
3802 *bits = -1;
3803 return 0;
3804 }
3805 }
3806 else
3807 --p;
3808
3809 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
3810 {
3811 /* We were supposed to parse a number with maximum
3812 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
3813 if (bits != NULL)
3814 *bits = -1;
3815 return 0;
3816 }
3817
3818 *pp = p;
3819 if (overflow)
3820 {
3821 if (nbits == 0)
3822 {
3823 /* Large decimal constants are an error (because it is hard to
3824 count how many bits are in them). */
3825 if (bits != NULL)
3826 *bits = -1;
3827 return 0;
3828 }
3829
3830 /* -0x7f is the same as 0x80. So deal with it by adding one to
3831 the number of bits. Two's complement represention octals
3832 can't have a '-' in front. */
3833 if (sign == -1 && !twos_complement_representation)
3834 ++nbits;
3835 if (bits)
3836 *bits = nbits;
3837 }
3838 else
3839 {
3840 if (bits)
3841 *bits = 0;
3842 return n * sign;
3843 }
3844 /* It's *BITS which has the interesting information. */
3845 return 0;
3846 }
3847
3848 static struct type *
3849 read_range_type (char **pp, int typenums[2], int type_size,
3850 struct objfile *objfile)
3851 {
3852 char *orig_pp = *pp;
3853 int rangenums[2];
3854 long n2, n3;
3855 int n2bits, n3bits;
3856 int self_subrange;
3857 struct type *result_type;
3858 struct type *index_type = NULL;
3859
3860 /* First comes a type we are a subrange of.
3861 In C it is usually 0, 1 or the type being defined. */
3862 if (read_type_number (pp, rangenums) != 0)
3863 return error_type (pp, objfile);
3864 self_subrange = (rangenums[0] == typenums[0] &&
3865 rangenums[1] == typenums[1]);
3866
3867 if (**pp == '=')
3868 {
3869 *pp = orig_pp;
3870 index_type = read_type (pp, objfile);
3871 }
3872
3873 /* A semicolon should now follow; skip it. */
3874 if (**pp == ';')
3875 (*pp)++;
3876
3877 /* The remaining two operands are usually lower and upper bounds
3878 of the range. But in some special cases they mean something else. */
3879 n2 = read_huge_number (pp, ';', &n2bits, type_size);
3880 n3 = read_huge_number (pp, ';', &n3bits, type_size);
3881
3882 if (n2bits == -1 || n3bits == -1)
3883 return error_type (pp, objfile);
3884
3885 if (index_type)
3886 goto handle_true_range;
3887
3888 /* If limits are huge, must be large integral type. */
3889 if (n2bits != 0 || n3bits != 0)
3890 {
3891 char got_signed = 0;
3892 char got_unsigned = 0;
3893 /* Number of bits in the type. */
3894 int nbits = 0;
3895
3896 /* If a type size attribute has been specified, the bounds of
3897 the range should fit in this size. If the lower bounds needs
3898 more bits than the upper bound, then the type is signed. */
3899 if (n2bits <= type_size && n3bits <= type_size)
3900 {
3901 if (n2bits == type_size && n2bits > n3bits)
3902 got_signed = 1;
3903 else
3904 got_unsigned = 1;
3905 nbits = type_size;
3906 }
3907 /* Range from 0 to <large number> is an unsigned large integral type. */
3908 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
3909 {
3910 got_unsigned = 1;
3911 nbits = n3bits;
3912 }
3913 /* Range from <large number> to <large number>-1 is a large signed
3914 integral type. Take care of the case where <large number> doesn't
3915 fit in a long but <large number>-1 does. */
3916 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
3917 || (n2bits != 0 && n3bits == 0
3918 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
3919 && n3 == LONG_MAX))
3920 {
3921 got_signed = 1;
3922 nbits = n2bits;
3923 }
3924
3925 if (got_signed || got_unsigned)
3926 {
3927 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
3928 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
3929 objfile);
3930 }
3931 else
3932 return error_type (pp, objfile);
3933 }
3934
3935 /* A type defined as a subrange of itself, with bounds both 0, is void. */
3936 if (self_subrange && n2 == 0 && n3 == 0)
3937 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
3938
3939 /* If n3 is zero and n2 is positive, we want a floating type, and n2
3940 is the width in bytes.
3941
3942 Fortran programs appear to use this for complex types also. To
3943 distinguish between floats and complex, g77 (and others?) seem
3944 to use self-subranges for the complexes, and subranges of int for
3945 the floats.
3946
3947 Also note that for complexes, g77 sets n2 to the size of one of
3948 the member floats, not the whole complex beast. My guess is that
3949 this was to work well with pre-COMPLEX versions of gdb. */
3950
3951 if (n3 == 0 && n2 > 0)
3952 {
3953 struct type *float_type
3954 = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
3955
3956 if (self_subrange)
3957 {
3958 struct type *complex_type =
3959 init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
3960 TYPE_TARGET_TYPE (complex_type) = float_type;
3961 return complex_type;
3962 }
3963 else
3964 return float_type;
3965 }
3966
3967 /* If the upper bound is -1, it must really be an unsigned integral. */
3968
3969 else if (n2 == 0 && n3 == -1)
3970 {
3971 int bits = type_size;
3972 if (bits <= 0)
3973 {
3974 /* We don't know its size. It is unsigned int or unsigned
3975 long. GCC 2.3.3 uses this for long long too, but that is
3976 just a GDB 3.5 compatibility hack. */
3977 bits = gdbarch_int_bit (current_gdbarch);
3978 }
3979
3980 return init_type (TYPE_CODE_INT, bits / TARGET_CHAR_BIT,
3981 TYPE_FLAG_UNSIGNED, NULL, objfile);
3982 }
3983
3984 /* Special case: char is defined (Who knows why) as a subrange of
3985 itself with range 0-127. */
3986 else if (self_subrange && n2 == 0 && n3 == 127)
3987 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
3988
3989 /* We used to do this only for subrange of self or subrange of int. */
3990 else if (n2 == 0)
3991 {
3992 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
3993 "unsigned long", and we already checked for that,
3994 so don't need to test for it here. */
3995
3996 if (n3 < 0)
3997 /* n3 actually gives the size. */
3998 return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
3999 NULL, objfile);
4000
4001 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4002 unsigned n-byte integer. But do require n to be a power of
4003 two; we don't want 3- and 5-byte integers flying around. */
4004 {
4005 int bytes;
4006 unsigned long bits;
4007
4008 bits = n3;
4009 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4010 bits >>= 8;
4011 if (bits == 0
4012 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4013 return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
4014 objfile);
4015 }
4016 }
4017 /* I think this is for Convex "long long". Since I don't know whether
4018 Convex sets self_subrange, I also accept that particular size regardless
4019 of self_subrange. */
4020 else if (n3 == 0 && n2 < 0
4021 && (self_subrange
4022 || n2 == -gdbarch_long_long_bit
4023 (current_gdbarch) / TARGET_CHAR_BIT))
4024 return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
4025 else if (n2 == -n3 - 1)
4026 {
4027 if (n3 == 0x7f)
4028 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4029 if (n3 == 0x7fff)
4030 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
4031 if (n3 == 0x7fffffff)
4032 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
4033 }
4034
4035 /* We have a real range type on our hands. Allocate space and
4036 return a real pointer. */
4037 handle_true_range:
4038
4039 if (self_subrange)
4040 index_type = builtin_type_int;
4041 else
4042 index_type = *dbx_lookup_type (rangenums);
4043 if (index_type == NULL)
4044 {
4045 /* Does this actually ever happen? Is that why we are worrying
4046 about dealing with it rather than just calling error_type? */
4047
4048 static struct type *range_type_index;
4049
4050 complaint (&symfile_complaints,
4051 _("base type %d of range type is not defined"), rangenums[1]);
4052 if (range_type_index == NULL)
4053 range_type_index =
4054 init_type (TYPE_CODE_INT,
4055 gdbarch_int_bit (current_gdbarch) / TARGET_CHAR_BIT,
4056 0, "range type index type", NULL);
4057 index_type = range_type_index;
4058 }
4059
4060 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
4061 return (result_type);
4062 }
4063
4064 /* Read in an argument list. This is a list of types, separated by commas
4065 and terminated with END. Return the list of types read in, or NULL
4066 if there is an error. */
4067
4068 static struct field *
4069 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4070 int *varargsp)
4071 {
4072 /* FIXME! Remove this arbitrary limit! */
4073 struct type *types[1024]; /* allow for fns of 1023 parameters */
4074 int n = 0, i;
4075 struct field *rval;
4076
4077 while (**pp != end)
4078 {
4079 if (**pp != ',')
4080 /* Invalid argument list: no ','. */
4081 return NULL;
4082 (*pp)++;
4083 STABS_CONTINUE (pp, objfile);
4084 types[n++] = read_type (pp, objfile);
4085 }
4086 (*pp)++; /* get past `end' (the ':' character) */
4087
4088 if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4089 *varargsp = 1;
4090 else
4091 {
4092 n--;
4093 *varargsp = 0;
4094 }
4095
4096 rval = (struct field *) xmalloc (n * sizeof (struct field));
4097 memset (rval, 0, n * sizeof (struct field));
4098 for (i = 0; i < n; i++)
4099 rval[i].type = types[i];
4100 *nargsp = n;
4101 return rval;
4102 }
4103 \f
4104 /* Common block handling. */
4105
4106 /* List of symbols declared since the last BCOMM. This list is a tail
4107 of local_symbols. When ECOMM is seen, the symbols on the list
4108 are noted so their proper addresses can be filled in later,
4109 using the common block base address gotten from the assembler
4110 stabs. */
4111
4112 static struct pending *common_block;
4113 static int common_block_i;
4114
4115 /* Name of the current common block. We get it from the BCOMM instead of the
4116 ECOMM to match IBM documentation (even though IBM puts the name both places
4117 like everyone else). */
4118 static char *common_block_name;
4119
4120 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4121 to remain after this function returns. */
4122
4123 void
4124 common_block_start (char *name, struct objfile *objfile)
4125 {
4126 if (common_block_name != NULL)
4127 {
4128 complaint (&symfile_complaints,
4129 _("Invalid symbol data: common block within common block"));
4130 }
4131 common_block = local_symbols;
4132 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4133 common_block_name = obsavestring (name, strlen (name),
4134 &objfile->objfile_obstack);
4135 }
4136
4137 /* Process a N_ECOMM symbol. */
4138
4139 void
4140 common_block_end (struct objfile *objfile)
4141 {
4142 /* Symbols declared since the BCOMM are to have the common block
4143 start address added in when we know it. common_block and
4144 common_block_i point to the first symbol after the BCOMM in
4145 the local_symbols list; copy the list and hang it off the
4146 symbol for the common block name for later fixup. */
4147 int i;
4148 struct symbol *sym;
4149 struct pending *new = 0;
4150 struct pending *next;
4151 int j;
4152
4153 if (common_block_name == NULL)
4154 {
4155 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4156 return;
4157 }
4158
4159 sym = (struct symbol *)
4160 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
4161 memset (sym, 0, sizeof (struct symbol));
4162 /* Note: common_block_name already saved on objfile_obstack */
4163 DEPRECATED_SYMBOL_NAME (sym) = common_block_name;
4164 SYMBOL_CLASS (sym) = LOC_BLOCK;
4165
4166 /* Now we copy all the symbols which have been defined since the BCOMM. */
4167
4168 /* Copy all the struct pendings before common_block. */
4169 for (next = local_symbols;
4170 next != NULL && next != common_block;
4171 next = next->next)
4172 {
4173 for (j = 0; j < next->nsyms; j++)
4174 add_symbol_to_list (next->symbol[j], &new);
4175 }
4176
4177 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4178 NULL, it means copy all the local symbols (which we already did
4179 above). */
4180
4181 if (common_block != NULL)
4182 for (j = common_block_i; j < common_block->nsyms; j++)
4183 add_symbol_to_list (common_block->symbol[j], &new);
4184
4185 SYMBOL_TYPE (sym) = (struct type *) new;
4186
4187 /* Should we be putting local_symbols back to what it was?
4188 Does it matter? */
4189
4190 i = hashname (DEPRECATED_SYMBOL_NAME (sym));
4191 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4192 global_sym_chain[i] = sym;
4193 common_block_name = NULL;
4194 }
4195
4196 /* Add a common block's start address to the offset of each symbol
4197 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4198 the common block name). */
4199
4200 static void
4201 fix_common_block (struct symbol *sym, int valu)
4202 {
4203 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4204 for (; next; next = next->next)
4205 {
4206 int j;
4207 for (j = next->nsyms - 1; j >= 0; j--)
4208 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4209 }
4210 }
4211 \f
4212
4213
4214 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4215 See add_undefined_type for more details. */
4216
4217 static void
4218 add_undefined_type_noname (struct type *type, int typenums[2])
4219 {
4220 struct nat nat;
4221
4222 nat.typenums[0] = typenums [0];
4223 nat.typenums[1] = typenums [1];
4224 nat.type = type;
4225
4226 if (noname_undefs_length == noname_undefs_allocated)
4227 {
4228 noname_undefs_allocated *= 2;
4229 noname_undefs = (struct nat *)
4230 xrealloc ((char *) noname_undefs,
4231 noname_undefs_allocated * sizeof (struct nat));
4232 }
4233 noname_undefs[noname_undefs_length++] = nat;
4234 }
4235
4236 /* Add TYPE to the UNDEF_TYPES vector.
4237 See add_undefined_type for more details. */
4238
4239 static void
4240 add_undefined_type_1 (struct type *type)
4241 {
4242 if (undef_types_length == undef_types_allocated)
4243 {
4244 undef_types_allocated *= 2;
4245 undef_types = (struct type **)
4246 xrealloc ((char *) undef_types,
4247 undef_types_allocated * sizeof (struct type *));
4248 }
4249 undef_types[undef_types_length++] = type;
4250 }
4251
4252 /* What about types defined as forward references inside of a small lexical
4253 scope? */
4254 /* Add a type to the list of undefined types to be checked through
4255 once this file has been read in.
4256
4257 In practice, we actually maintain two such lists: The first list
4258 (UNDEF_TYPES) is used for types whose name has been provided, and
4259 concerns forward references (eg 'xs' or 'xu' forward references);
4260 the second list (NONAME_UNDEFS) is used for types whose name is
4261 unknown at creation time, because they were referenced through
4262 their type number before the actual type was declared.
4263 This function actually adds the given type to the proper list. */
4264
4265 static void
4266 add_undefined_type (struct type *type, int typenums[2])
4267 {
4268 if (TYPE_TAG_NAME (type) == NULL)
4269 add_undefined_type_noname (type, typenums);
4270 else
4271 add_undefined_type_1 (type);
4272 }
4273
4274 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4275
4276 void
4277 cleanup_undefined_types_noname (void)
4278 {
4279 int i;
4280
4281 for (i = 0; i < noname_undefs_length; i++)
4282 {
4283 struct nat nat = noname_undefs[i];
4284 struct type **type;
4285
4286 type = dbx_lookup_type (nat.typenums);
4287 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4288 replace_type (nat.type, *type);
4289 }
4290
4291 noname_undefs_length = 0;
4292 }
4293
4294 /* Go through each undefined type, see if it's still undefined, and fix it
4295 up if possible. We have two kinds of undefined types:
4296
4297 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4298 Fix: update array length using the element bounds
4299 and the target type's length.
4300 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4301 yet defined at the time a pointer to it was made.
4302 Fix: Do a full lookup on the struct/union tag. */
4303
4304 void
4305 cleanup_undefined_types_1 (void)
4306 {
4307 struct type **type;
4308
4309 for (type = undef_types; type < undef_types + undef_types_length; type++)
4310 {
4311 switch (TYPE_CODE (*type))
4312 {
4313
4314 case TYPE_CODE_STRUCT:
4315 case TYPE_CODE_UNION:
4316 case TYPE_CODE_ENUM:
4317 {
4318 /* Check if it has been defined since. Need to do this here
4319 as well as in check_typedef to deal with the (legitimate in
4320 C though not C++) case of several types with the same name
4321 in different source files. */
4322 if (TYPE_STUB (*type))
4323 {
4324 struct pending *ppt;
4325 int i;
4326 /* Name of the type, without "struct" or "union" */
4327 char *typename = TYPE_TAG_NAME (*type);
4328
4329 if (typename == NULL)
4330 {
4331 complaint (&symfile_complaints, _("need a type name"));
4332 break;
4333 }
4334 for (ppt = file_symbols; ppt; ppt = ppt->next)
4335 {
4336 for (i = 0; i < ppt->nsyms; i++)
4337 {
4338 struct symbol *sym = ppt->symbol[i];
4339
4340 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4341 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4342 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4343 TYPE_CODE (*type))
4344 && strcmp (DEPRECATED_SYMBOL_NAME (sym), typename) == 0)
4345 replace_type (*type, SYMBOL_TYPE (sym));
4346 }
4347 }
4348 }
4349 }
4350 break;
4351
4352 default:
4353 {
4354 complaint (&symfile_complaints,
4355 _("forward-referenced types left unresolved, "
4356 "type code %d."),
4357 TYPE_CODE (*type));
4358 }
4359 break;
4360 }
4361 }
4362
4363 undef_types_length = 0;
4364 }
4365
4366 /* Try to fix all the undefined types we ecountered while processing
4367 this unit. */
4368
4369 void
4370 cleanup_undefined_types (void)
4371 {
4372 cleanup_undefined_types_1 ();
4373 cleanup_undefined_types_noname ();
4374 }
4375
4376 /* Scan through all of the global symbols defined in the object file,
4377 assigning values to the debugging symbols that need to be assigned
4378 to. Get these symbols from the minimal symbol table. */
4379
4380 void
4381 scan_file_globals (struct objfile *objfile)
4382 {
4383 int hash;
4384 struct minimal_symbol *msymbol;
4385 struct symbol *sym, *prev;
4386 struct objfile *resolve_objfile;
4387
4388 /* SVR4 based linkers copy referenced global symbols from shared
4389 libraries to the main executable.
4390 If we are scanning the symbols for a shared library, try to resolve
4391 them from the minimal symbols of the main executable first. */
4392
4393 if (symfile_objfile && objfile != symfile_objfile)
4394 resolve_objfile = symfile_objfile;
4395 else
4396 resolve_objfile = objfile;
4397
4398 while (1)
4399 {
4400 /* Avoid expensive loop through all minimal symbols if there are
4401 no unresolved symbols. */
4402 for (hash = 0; hash < HASHSIZE; hash++)
4403 {
4404 if (global_sym_chain[hash])
4405 break;
4406 }
4407 if (hash >= HASHSIZE)
4408 return;
4409
4410 for (msymbol = resolve_objfile->msymbols;
4411 msymbol && DEPRECATED_SYMBOL_NAME (msymbol) != NULL;
4412 msymbol++)
4413 {
4414 QUIT;
4415
4416 /* Skip static symbols. */
4417 switch (MSYMBOL_TYPE (msymbol))
4418 {
4419 case mst_file_text:
4420 case mst_file_data:
4421 case mst_file_bss:
4422 continue;
4423 default:
4424 break;
4425 }
4426
4427 prev = NULL;
4428
4429 /* Get the hash index and check all the symbols
4430 under that hash index. */
4431
4432 hash = hashname (DEPRECATED_SYMBOL_NAME (msymbol));
4433
4434 for (sym = global_sym_chain[hash]; sym;)
4435 {
4436 if (DEPRECATED_SYMBOL_NAME (msymbol)[0] == DEPRECATED_SYMBOL_NAME (sym)[0] &&
4437 strcmp (DEPRECATED_SYMBOL_NAME (msymbol) + 1, DEPRECATED_SYMBOL_NAME (sym) + 1) == 0)
4438 {
4439 /* Splice this symbol out of the hash chain and
4440 assign the value we have to it. */
4441 if (prev)
4442 {
4443 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4444 }
4445 else
4446 {
4447 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4448 }
4449
4450 /* Check to see whether we need to fix up a common block. */
4451 /* Note: this code might be executed several times for
4452 the same symbol if there are multiple references. */
4453 if (sym)
4454 {
4455 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4456 {
4457 fix_common_block (sym,
4458 SYMBOL_VALUE_ADDRESS (msymbol));
4459 }
4460 else
4461 {
4462 SYMBOL_VALUE_ADDRESS (sym)
4463 = SYMBOL_VALUE_ADDRESS (msymbol);
4464 }
4465 SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
4466 }
4467
4468 if (prev)
4469 {
4470 sym = SYMBOL_VALUE_CHAIN (prev);
4471 }
4472 else
4473 {
4474 sym = global_sym_chain[hash];
4475 }
4476 }
4477 else
4478 {
4479 prev = sym;
4480 sym = SYMBOL_VALUE_CHAIN (sym);
4481 }
4482 }
4483 }
4484 if (resolve_objfile == objfile)
4485 break;
4486 resolve_objfile = objfile;
4487 }
4488
4489 /* Change the storage class of any remaining unresolved globals to
4490 LOC_UNRESOLVED and remove them from the chain. */
4491 for (hash = 0; hash < HASHSIZE; hash++)
4492 {
4493 sym = global_sym_chain[hash];
4494 while (sym)
4495 {
4496 prev = sym;
4497 sym = SYMBOL_VALUE_CHAIN (sym);
4498
4499 /* Change the symbol address from the misleading chain value
4500 to address zero. */
4501 SYMBOL_VALUE_ADDRESS (prev) = 0;
4502
4503 /* Complain about unresolved common block symbols. */
4504 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4505 SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
4506 else
4507 complaint (&symfile_complaints,
4508 _("%s: common block `%s' from global_sym_chain unresolved"),
4509 objfile->name, DEPRECATED_SYMBOL_NAME (prev));
4510 }
4511 }
4512 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4513 }
4514
4515 /* Initialize anything that needs initializing when starting to read
4516 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4517 to a psymtab. */
4518
4519 void
4520 stabsread_init (void)
4521 {
4522 }
4523
4524 /* Initialize anything that needs initializing when a completely new
4525 symbol file is specified (not just adding some symbols from another
4526 file, e.g. a shared library). */
4527
4528 void
4529 stabsread_new_init (void)
4530 {
4531 /* Empty the hash table of global syms looking for values. */
4532 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4533 }
4534
4535 /* Initialize anything that needs initializing at the same time as
4536 start_symtab() is called. */
4537
4538 void
4539 start_stabs (void)
4540 {
4541 global_stabs = NULL; /* AIX COFF */
4542 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4543 n_this_object_header_files = 1;
4544 type_vector_length = 0;
4545 type_vector = (struct type **) 0;
4546
4547 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4548 common_block_name = NULL;
4549 }
4550
4551 /* Call after end_symtab() */
4552
4553 void
4554 end_stabs (void)
4555 {
4556 if (type_vector)
4557 {
4558 xfree (type_vector);
4559 }
4560 type_vector = 0;
4561 type_vector_length = 0;
4562 previous_stab_code = 0;
4563 }
4564
4565 void
4566 finish_global_stabs (struct objfile *objfile)
4567 {
4568 if (global_stabs)
4569 {
4570 patch_block_stabs (global_symbols, global_stabs, objfile);
4571 xfree (global_stabs);
4572 global_stabs = NULL;
4573 }
4574 }
4575
4576 /* Find the end of the name, delimited by a ':', but don't match
4577 ObjC symbols which look like -[Foo bar::]:bla. */
4578 static char *
4579 find_name_end (char *name)
4580 {
4581 char *s = name;
4582 if (s[0] == '-' || *s == '+')
4583 {
4584 /* Must be an ObjC method symbol. */
4585 if (s[1] != '[')
4586 {
4587 error (_("invalid symbol name \"%s\""), name);
4588 }
4589 s = strchr (s, ']');
4590 if (s == NULL)
4591 {
4592 error (_("invalid symbol name \"%s\""), name);
4593 }
4594 return strchr (s, ':');
4595 }
4596 else
4597 {
4598 return strchr (s, ':');
4599 }
4600 }
4601
4602 /* Initializer for this module */
4603
4604 void
4605 _initialize_stabsread (void)
4606 {
4607 undef_types_allocated = 20;
4608 undef_types_length = 0;
4609 undef_types = (struct type **)
4610 xmalloc (undef_types_allocated * sizeof (struct type *));
4611
4612 noname_undefs_allocated = 20;
4613 noname_undefs_length = 0;
4614 noname_undefs = (struct nat *)
4615 xmalloc (noname_undefs_allocated * sizeof (struct nat));
4616 }