]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/stabsread.c
import gdb-1999-08-23 snapshot
[thirdparty/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2 Copyright 1986, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 1998
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* Support routines for reading and decoding debugging information in
23 the "stabs" format. This format is used with many systems that use
24 the a.out object file format, as well as some systems that use
25 COFF or ELF where the stabs data is placed in a special section.
26 Avoid placing any object file format specific code in this file. */
27
28 #include "defs.h"
29 #include "gdb_string.h"
30 #include "bfd.h"
31 #include "obstack.h"
32 #include "symtab.h"
33 #include "gdbtypes.h"
34 #include "expression.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
38 #include "libaout.h"
39 #include "aout/aout64.h"
40 #include "gdb-stabs.h"
41 #include "buildsym.h"
42 #include "complaints.h"
43 #include "demangle.h"
44 #include "language.h"
45
46 #include <ctype.h>
47
48 /* Ask stabsread.h to define the vars it normally declares `extern'. */
49 #define EXTERN
50 /**/
51 #include "stabsread.h" /* Our own declarations */
52 #undef EXTERN
53
54 extern void _initialize_stabsread PARAMS ((void));
55
56 /* The routines that read and process a complete stabs for a C struct or
57 C++ class pass lists of data member fields and lists of member function
58 fields in an instance of a field_info structure, as defined below.
59 This is part of some reorganization of low level C++ support and is
60 expected to eventually go away... (FIXME) */
61
62 struct field_info
63 {
64 struct nextfield
65 {
66 struct nextfield *next;
67
68 /* This is the raw visibility from the stab. It is not checked
69 for being one of the visibilities we recognize, so code which
70 examines this field better be able to deal. */
71 int visibility;
72
73 struct field field;
74 }
75 *list;
76 struct next_fnfieldlist
77 {
78 struct next_fnfieldlist *next;
79 struct fn_fieldlist fn_fieldlist;
80 }
81 *fnlist;
82 };
83
84 static void
85 read_one_struct_field PARAMS ((struct field_info *, char **, char *,
86 struct type *, struct objfile *));
87
88 static char *
89 get_substring PARAMS ((char **, int));
90
91 static struct type *
92 dbx_alloc_type PARAMS ((int[2], struct objfile *));
93
94 static long read_huge_number PARAMS ((char **, int, int *));
95
96 static struct type *error_type PARAMS ((char **, struct objfile *));
97
98 static void
99 patch_block_stabs PARAMS ((struct pending *, struct pending_stabs *,
100 struct objfile *));
101
102 static void
103 fix_common_block PARAMS ((struct symbol *, int));
104
105 static int
106 read_type_number PARAMS ((char **, int *));
107
108 static struct type *
109 read_range_type PARAMS ((char **, int[2], struct objfile *));
110
111 static struct type *
112 read_sun_builtin_type PARAMS ((char **, int[2], struct objfile *));
113
114 static struct type *
115 read_sun_floating_type PARAMS ((char **, int[2], struct objfile *));
116
117 static struct type *
118 read_enum_type PARAMS ((char **, struct type *, struct objfile *));
119
120 static struct type *
121 rs6000_builtin_type PARAMS ((int));
122
123 static int
124 read_member_functions PARAMS ((struct field_info *, char **, struct type *,
125 struct objfile *));
126
127 static int
128 read_struct_fields PARAMS ((struct field_info *, char **, struct type *,
129 struct objfile *));
130
131 static int
132 read_baseclasses PARAMS ((struct field_info *, char **, struct type *,
133 struct objfile *));
134
135 static int
136 read_tilde_fields PARAMS ((struct field_info *, char **, struct type *,
137 struct objfile *));
138
139 static int
140 attach_fn_fields_to_type PARAMS ((struct field_info *, struct type *));
141
142 static int
143 attach_fields_to_type PARAMS ((struct field_info *, struct type *,
144 struct objfile *));
145
146 static struct type *
147 read_struct_type PARAMS ((char **, struct type *, struct objfile *));
148
149 static struct type *
150 read_array_type PARAMS ((char **, struct type *, struct objfile *));
151
152 static struct type **
153 read_args PARAMS ((char **, int, struct objfile *));
154
155 static int
156 read_cpp_abbrev PARAMS ((struct field_info *, char **, struct type *,
157 struct objfile *));
158
159 /* new functions added for cfront support */
160
161 static int
162 copy_cfront_struct_fields PARAMS ((struct field_info *, struct type *,
163 struct objfile *));
164
165 static char *
166 get_cfront_method_physname PARAMS ((char *));
167
168 static int
169 read_cfront_baseclasses PARAMS ((struct field_info *, char **,
170 struct type *, struct objfile *));
171
172 static int
173 read_cfront_static_fields PARAMS ((struct field_info *, char **,
174 struct type *, struct objfile *));
175 static int
176 read_cfront_member_functions PARAMS ((struct field_info *, char **,
177 struct type *, struct objfile *));
178
179 /* end new functions added for cfront support */
180
181 static void
182 add_live_range PARAMS ((struct objfile *, struct symbol *,
183 CORE_ADDR, CORE_ADDR));
184
185 static int
186 resolve_live_range PARAMS ((struct objfile *, struct symbol *, char *));
187
188 static int
189 process_reference PARAMS ((char **string));
190
191 static CORE_ADDR
192 ref_search_value PARAMS ((int refnum));
193
194 static int
195 resolve_symbol_reference PARAMS ((struct objfile *, struct symbol *, char *));
196
197 void stabsread_clear_cache PARAMS ((void));
198
199 static const char vptr_name[] =
200 {'_', 'v', 'p', 't', 'r', CPLUS_MARKER, '\0'};
201 static const char vb_name[] =
202 {'_', 'v', 'b', CPLUS_MARKER, '\0'};
203
204 /* Define this as 1 if a pcc declaration of a char or short argument
205 gives the correct address. Otherwise assume pcc gives the
206 address of the corresponding int, which is not the same on a
207 big-endian machine. */
208
209 #if !defined (BELIEVE_PCC_PROMOTION)
210 #define BELIEVE_PCC_PROMOTION 0
211 #endif
212 #if !defined (BELIEVE_PCC_PROMOTION_TYPE)
213 #define BELIEVE_PCC_PROMOTION_TYPE 0
214 #endif
215
216 static struct complaint invalid_cpp_abbrev_complaint =
217 {"invalid C++ abbreviation `%s'", 0, 0};
218
219 static struct complaint invalid_cpp_type_complaint =
220 {"C++ abbreviated type name unknown at symtab pos %d", 0, 0};
221
222 static struct complaint member_fn_complaint =
223 {"member function type missing, got '%c'", 0, 0};
224
225 static struct complaint const_vol_complaint =
226 {"const/volatile indicator missing, got '%c'", 0, 0};
227
228 static struct complaint error_type_complaint =
229 {"debug info mismatch between compiler and debugger", 0, 0};
230
231 static struct complaint invalid_member_complaint =
232 {"invalid (minimal) member type data format at symtab pos %d.", 0, 0};
233
234 static struct complaint range_type_base_complaint =
235 {"base type %d of range type is not defined", 0, 0};
236
237 static struct complaint reg_value_complaint =
238 {"register number %d too large (max %d) in symbol %s", 0, 0};
239
240 static struct complaint vtbl_notfound_complaint =
241 {"virtual function table pointer not found when defining class `%s'", 0, 0};
242
243 static struct complaint unrecognized_cplus_name_complaint =
244 {"Unknown C++ symbol name `%s'", 0, 0};
245
246 static struct complaint rs6000_builtin_complaint =
247 {"Unknown builtin type %d", 0, 0};
248
249 static struct complaint unresolved_sym_chain_complaint =
250 {"%s: common block `%s' from global_sym_chain unresolved", 0, 0};
251
252 static struct complaint stabs_general_complaint =
253 {"%s", 0, 0};
254
255 static struct complaint lrs_general_complaint =
256 {"%s", 0, 0};
257
258 /* Make a list of forward references which haven't been defined. */
259
260 static struct type **undef_types;
261 static int undef_types_allocated;
262 static int undef_types_length;
263 static struct symbol *current_symbol = NULL;
264
265 /* Check for and handle cretinous stabs symbol name continuation! */
266 #define STABS_CONTINUE(pp,objfile) \
267 do { \
268 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
269 *(pp) = next_symbol_text (objfile); \
270 } while (0)
271 \f
272 /* FIXME: These probably should be our own types (like rs6000_builtin_type
273 has its own types) rather than builtin_type_*. */
274 static struct type **os9k_type_vector[] =
275 {
276 0,
277 &builtin_type_int,
278 &builtin_type_char,
279 &builtin_type_long,
280 &builtin_type_short,
281 &builtin_type_unsigned_char,
282 &builtin_type_unsigned_short,
283 &builtin_type_unsigned_long,
284 &builtin_type_unsigned_int,
285 &builtin_type_float,
286 &builtin_type_double,
287 &builtin_type_void,
288 &builtin_type_long_double
289 };
290
291 static void os9k_init_type_vector PARAMS ((struct type **));
292
293 static void
294 os9k_init_type_vector (tv)
295 struct type **tv;
296 {
297 int i;
298 for (i = 0; i < sizeof (os9k_type_vector) / sizeof (struct type **); i++)
299 tv[i] = (os9k_type_vector[i] == 0 ? 0 : *(os9k_type_vector[i]));
300 }
301
302 /* Look up a dbx type-number pair. Return the address of the slot
303 where the type for that number-pair is stored.
304 The number-pair is in TYPENUMS.
305
306 This can be used for finding the type associated with that pair
307 or for associating a new type with the pair. */
308
309 struct type **
310 dbx_lookup_type (typenums)
311 int typenums[2];
312 {
313 register int filenum = typenums[0];
314 register int index = typenums[1];
315 unsigned old_len;
316 register int real_filenum;
317 register struct header_file *f;
318 int f_orig_length;
319
320 if (filenum == -1) /* -1,-1 is for temporary types. */
321 return 0;
322
323 if (filenum < 0 || filenum >= n_this_object_header_files)
324 {
325 static struct complaint msg =
326 {"\
327 Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
328 0, 0};
329 complain (&msg, filenum, index, symnum);
330 goto error_return;
331 }
332
333 if (filenum == 0)
334 {
335 if (index < 0)
336 {
337 /* Caller wants address of address of type. We think
338 that negative (rs6k builtin) types will never appear as
339 "lvalues", (nor should they), so we stuff the real type
340 pointer into a temp, and return its address. If referenced,
341 this will do the right thing. */
342 static struct type *temp_type;
343
344 temp_type = rs6000_builtin_type (index);
345 return &temp_type;
346 }
347
348 /* Type is defined outside of header files.
349 Find it in this object file's type vector. */
350 if (index >= type_vector_length)
351 {
352 old_len = type_vector_length;
353 if (old_len == 0)
354 {
355 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
356 type_vector = (struct type **)
357 xmalloc (type_vector_length * sizeof (struct type *));
358 }
359 while (index >= type_vector_length)
360 {
361 type_vector_length *= 2;
362 }
363 type_vector = (struct type **)
364 xrealloc ((char *) type_vector,
365 (type_vector_length * sizeof (struct type *)));
366 memset (&type_vector[old_len], 0,
367 (type_vector_length - old_len) * sizeof (struct type *));
368
369 if (os9k_stabs)
370 /* Deal with OS9000 fundamental types. */
371 os9k_init_type_vector (type_vector);
372 }
373 return (&type_vector[index]);
374 }
375 else
376 {
377 real_filenum = this_object_header_files[filenum];
378
379 if (real_filenum >= N_HEADER_FILES (current_objfile))
380 {
381 struct type *temp_type;
382 struct type **temp_type_p;
383
384 warning ("GDB internal error: bad real_filenum");
385
386 error_return:
387 temp_type = init_type (TYPE_CODE_ERROR, 0, 0, NULL, NULL);
388 temp_type_p = (struct type **) xmalloc (sizeof (struct type *));
389 *temp_type_p = temp_type;
390 return temp_type_p;
391 }
392
393 f = HEADER_FILES (current_objfile) + real_filenum;
394
395 f_orig_length = f->length;
396 if (index >= f_orig_length)
397 {
398 while (index >= f->length)
399 {
400 f->length *= 2;
401 }
402 f->vector = (struct type **)
403 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
404 memset (&f->vector[f_orig_length], 0,
405 (f->length - f_orig_length) * sizeof (struct type *));
406 }
407 return (&f->vector[index]);
408 }
409 }
410
411 /* Make sure there is a type allocated for type numbers TYPENUMS
412 and return the type object.
413 This can create an empty (zeroed) type object.
414 TYPENUMS may be (-1, -1) to return a new type object that is not
415 put into the type vector, and so may not be referred to by number. */
416
417 static struct type *
418 dbx_alloc_type (typenums, objfile)
419 int typenums[2];
420 struct objfile *objfile;
421 {
422 register struct type **type_addr;
423
424 if (typenums[0] == -1)
425 {
426 return (alloc_type (objfile));
427 }
428
429 type_addr = dbx_lookup_type (typenums);
430
431 /* If we are referring to a type not known at all yet,
432 allocate an empty type for it.
433 We will fill it in later if we find out how. */
434 if (*type_addr == 0)
435 {
436 *type_addr = alloc_type (objfile);
437 }
438
439 return (*type_addr);
440 }
441
442 /* for all the stabs in a given stab vector, build appropriate types
443 and fix their symbols in given symbol vector. */
444
445 static void
446 patch_block_stabs (symbols, stabs, objfile)
447 struct pending *symbols;
448 struct pending_stabs *stabs;
449 struct objfile *objfile;
450 {
451 int ii;
452 char *name;
453 char *pp;
454 struct symbol *sym;
455
456 if (stabs)
457 {
458
459 /* for all the stab entries, find their corresponding symbols and
460 patch their types! */
461
462 for (ii = 0; ii < stabs->count; ++ii)
463 {
464 name = stabs->stab[ii];
465 pp = (char *) strchr (name, ':');
466 while (pp[1] == ':')
467 {
468 pp += 2;
469 pp = (char *) strchr (pp, ':');
470 }
471 sym = find_symbol_in_list (symbols, name, pp - name);
472 if (!sym)
473 {
474 /* FIXME-maybe: it would be nice if we noticed whether
475 the variable was defined *anywhere*, not just whether
476 it is defined in this compilation unit. But neither
477 xlc or GCC seem to need such a definition, and until
478 we do psymtabs (so that the minimal symbols from all
479 compilation units are available now), I'm not sure
480 how to get the information. */
481
482 /* On xcoff, if a global is defined and never referenced,
483 ld will remove it from the executable. There is then
484 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
485 sym = (struct symbol *)
486 obstack_alloc (&objfile->symbol_obstack,
487 sizeof (struct symbol));
488
489 memset (sym, 0, sizeof (struct symbol));
490 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
491 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
492 SYMBOL_NAME (sym) =
493 obsavestring (name, pp - name, &objfile->symbol_obstack);
494 pp += 2;
495 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
496 {
497 /* I don't think the linker does this with functions,
498 so as far as I know this is never executed.
499 But it doesn't hurt to check. */
500 SYMBOL_TYPE (sym) =
501 lookup_function_type (read_type (&pp, objfile));
502 }
503 else
504 {
505 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
506 }
507 add_symbol_to_list (sym, &global_symbols);
508 }
509 else
510 {
511 pp += 2;
512 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
513 {
514 SYMBOL_TYPE (sym) =
515 lookup_function_type (read_type (&pp, objfile));
516 }
517 else
518 {
519 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
520 }
521 }
522 }
523 }
524 }
525 \f
526
527 /* Read a number by which a type is referred to in dbx data,
528 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
529 Just a single number N is equivalent to (0,N).
530 Return the two numbers by storing them in the vector TYPENUMS.
531 TYPENUMS will then be used as an argument to dbx_lookup_type.
532
533 Returns 0 for success, -1 for error. */
534
535 static int
536 read_type_number (pp, typenums)
537 register char **pp;
538 register int *typenums;
539 {
540 int nbits;
541 if (**pp == '(')
542 {
543 (*pp)++;
544 typenums[0] = read_huge_number (pp, ',', &nbits);
545 if (nbits != 0)
546 return -1;
547 typenums[1] = read_huge_number (pp, ')', &nbits);
548 if (nbits != 0)
549 return -1;
550 }
551 else
552 {
553 typenums[0] = 0;
554 typenums[1] = read_huge_number (pp, 0, &nbits);
555 if (nbits != 0)
556 return -1;
557 }
558 return 0;
559 }
560 \f
561
562 #if !defined (REG_STRUCT_HAS_ADDR)
563 #define REG_STRUCT_HAS_ADDR(gcc_p,type) 0
564 #endif
565
566 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
567 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
568 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
569 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
570
571 #define CFRONT_VISIBILITY_PRIVATE '2' /* Stabs character for private field */
572 #define CFRONT_VISIBILITY_PUBLIC '1' /* Stabs character for public field */
573
574 /* This code added to support parsing of ARM/Cfront stabs strings */
575
576 /* Get substring from string up to char c, advance string pointer past
577 suibstring. */
578
579 static char *
580 get_substring (p, c)
581 char **p;
582 int c;
583 {
584 char *str;
585 str = *p;
586 *p = strchr (*p, c);
587 if (*p)
588 {
589 **p = 0;
590 (*p)++;
591 }
592 else
593 str = 0;
594 return str;
595 }
596
597 /* Physname gets strcat'd onto sname in order to recreate the mangled
598 name (see funtion gdb_mangle_name in gdbtypes.c). For cfront, make
599 the physname look like that of g++ - take out the initial mangling
600 eg: for sname="a" and fname="foo__1aFPFs_i" return "FPFs_i" */
601
602 static char *
603 get_cfront_method_physname (fname)
604 char *fname;
605 {
606 int len = 0;
607 /* FIXME would like to make this generic for g++ too, but
608 that is already handled in read_member_funcctions */
609 char *p = fname;
610
611 /* search ahead to find the start of the mangled suffix */
612 if (*p == '_' && *(p + 1) == '_') /* compiler generated; probably a ctor/dtor */
613 p += 2;
614 while (p && (unsigned) ((p + 1) - fname) < strlen (fname) && *(p + 1) != '_')
615 p = strchr (p, '_');
616 if (!(p && *p == '_' && *(p + 1) == '_'))
617 error ("Invalid mangled function name %s", fname);
618 p += 2; /* advance past '__' */
619
620 /* struct name length and name of type should come next; advance past it */
621 while (isdigit (*p))
622 {
623 len = len * 10 + (*p - '0');
624 p++;
625 }
626 p += len;
627
628 return p;
629 }
630
631 /* Read base classes within cfront class definition.
632 eg: A:ZcA;1@Bpub v2@Bvirpri;__ct__1AFv func__1AFv *sfunc__1AFv ;as__1A ;;
633 ^^^^^^^^^^^^^^^^^^
634
635 A:ZcA;;foopri__1AFv foopro__1AFv __ct__1AFv __ct__1AFRC1A foopub__1AFv ;;;
636 ^
637 */
638
639 static int
640 read_cfront_baseclasses (fip, pp, type, objfile)
641 struct field_info *fip;
642 struct objfile *objfile;
643 char **pp;
644 struct type *type;
645 {
646 static struct complaint msg_unknown =
647 {"\
648 Unsupported token in stabs string %s.\n",
649 0, 0};
650 static struct complaint msg_notfound =
651 {"\
652 Unable to find base type for %s.\n",
653 0, 0};
654 int bnum = 0;
655 char *p;
656 int i;
657 struct nextfield *new;
658
659 if (**pp == ';') /* no base classes; return */
660 {
661 ++(*pp);
662 return 1;
663 }
664
665 /* first count base classes so we can allocate space before parsing */
666 for (p = *pp; p && *p && *p != ';'; p++)
667 {
668 if (*p == ' ')
669 bnum++;
670 }
671 bnum++; /* add one more for last one */
672
673 /* now parse the base classes until we get to the start of the methods
674 (code extracted and munged from read_baseclasses) */
675 ALLOCATE_CPLUS_STRUCT_TYPE (type);
676 TYPE_N_BASECLASSES (type) = bnum;
677
678 /* allocate space */
679 {
680 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
681 char *pointer;
682
683 pointer = (char *) TYPE_ALLOC (type, num_bytes);
684 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
685 }
686 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
687
688 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
689 {
690 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
691 make_cleanup (free, new);
692 memset (new, 0, sizeof (struct nextfield));
693 new->next = fip->list;
694 fip->list = new;
695 FIELD_BITSIZE (new->field) = 0; /* this should be an unpacked field! */
696
697 STABS_CONTINUE (pp, objfile);
698
699 /* virtual? eg: v2@Bvir */
700 if (**pp == 'v')
701 {
702 SET_TYPE_FIELD_VIRTUAL (type, i);
703 ++(*pp);
704 }
705
706 /* access? eg: 2@Bvir */
707 /* Note: protected inheritance not supported in cfront */
708 switch (*(*pp)++)
709 {
710 case CFRONT_VISIBILITY_PRIVATE:
711 new->visibility = VISIBILITY_PRIVATE;
712 break;
713 case CFRONT_VISIBILITY_PUBLIC:
714 new->visibility = VISIBILITY_PUBLIC;
715 break;
716 default:
717 /* Bad visibility format. Complain and treat it as
718 public. */
719 {
720 static struct complaint msg =
721 {
722 "Unknown visibility `%c' for baseclass", 0, 0};
723 complain (&msg, new->visibility);
724 new->visibility = VISIBILITY_PUBLIC;
725 }
726 }
727
728 /* "@" comes next - eg: @Bvir */
729 if (**pp != '@')
730 {
731 complain (&msg_unknown, *pp);
732 return 1;
733 }
734 ++(*pp);
735
736
737 /* Set the bit offset of the portion of the object corresponding
738 to this baseclass. Always zero in the absence of
739 multiple inheritance. */
740 /* Unable to read bit position from stabs;
741 Assuming no multiple inheritance for now FIXME! */
742 /* We may have read this in the structure definition;
743 now we should fixup the members to be the actual base classes */
744 FIELD_BITPOS (new->field) = 0;
745
746 /* Get the base class name and type */
747 {
748 char *bname; /* base class name */
749 struct symbol *bsym; /* base class */
750 char *p1, *p2;
751 p1 = strchr (*pp, ' ');
752 p2 = strchr (*pp, ';');
753 if (p1 < p2)
754 bname = get_substring (pp, ' ');
755 else
756 bname = get_substring (pp, ';');
757 if (!bname || !*bname)
758 {
759 complain (&msg_unknown, *pp);
760 return 1;
761 }
762 /* FIXME! attach base info to type */
763 bsym = lookup_symbol (bname, 0, STRUCT_NAMESPACE, 0, 0); /*demangled_name */
764 if (bsym)
765 {
766 new->field.type = SYMBOL_TYPE (bsym);
767 new->field.name = type_name_no_tag (new->field.type);
768 }
769 else
770 {
771 complain (&msg_notfound, *pp);
772 return 1;
773 }
774 }
775
776 /* If more base classes to parse, loop again.
777 We ate the last ' ' or ';' in get_substring,
778 so on exit we will have skipped the trailing ';' */
779 /* if invalid, return 0; add code to detect - FIXME! */
780 }
781 return 1;
782 }
783
784 /* read cfront member functions.
785 pp points to string starting with list of functions
786 eg: A:ZcA;1@Bpub v2@Bvirpri;__ct__1AFv func__1AFv *sfunc__1AFv ;as__1A ;;
787 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
788 A:ZcA;;foopri__1AFv foopro__1AFv __ct__1AFv __ct__1AFRC1A foopub__1AFv ;;;
789 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
790 */
791
792 static int
793 read_cfront_member_functions (fip, pp, type, objfile)
794 struct field_info *fip;
795 char **pp;
796 struct type *type;
797 struct objfile *objfile;
798 {
799 /* This code extracted from read_member_functions
800 so as to do the similar thing for our funcs */
801
802 int nfn_fields = 0;
803 int length = 0;
804 /* Total number of member functions defined in this class. If the class
805 defines two `f' functions, and one `g' function, then this will have
806 the value 3. */
807 int total_length = 0;
808 int i;
809 struct next_fnfield
810 {
811 struct next_fnfield *next;
812 struct fn_field fn_field;
813 }
814 *sublist;
815 struct type *look_ahead_type;
816 struct next_fnfieldlist *new_fnlist;
817 struct next_fnfield *new_sublist;
818 char *main_fn_name;
819 char *fname;
820 struct symbol *ref_func = 0;
821
822 /* Process each list until we find the end of the member functions.
823 eg: p = "__ct__1AFv foo__1AFv ;;;" */
824
825 STABS_CONTINUE (pp, objfile); /* handle \\ */
826
827 while (**pp != ';' && (fname = get_substring (pp, ' '), fname))
828 {
829 int is_static = 0;
830 int sublist_count = 0;
831 char *pname;
832 if (fname[0] == '*') /* static member */
833 {
834 is_static = 1;
835 sublist_count++;
836 fname++;
837 }
838 ref_func = lookup_symbol (fname, 0, VAR_NAMESPACE, 0, 0); /* demangled name */
839 if (!ref_func)
840 {
841 static struct complaint msg =
842 {"\
843 Unable to find function symbol for %s\n",
844 0, 0};
845 complain (&msg, fname);
846 continue;
847 }
848 sublist = NULL;
849 look_ahead_type = NULL;
850 length = 0;
851
852 new_fnlist = (struct next_fnfieldlist *)
853 xmalloc (sizeof (struct next_fnfieldlist));
854 make_cleanup (free, new_fnlist);
855 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
856
857 /* The following is code to work around cfront generated stabs.
858 The stabs contains full mangled name for each field.
859 We try to demangle the name and extract the field name out of it. */
860 {
861 char *dem, *dem_p, *dem_args;
862 int dem_len;
863 dem = cplus_demangle (fname, DMGL_ANSI | DMGL_PARAMS);
864 if (dem != NULL)
865 {
866 dem_p = strrchr (dem, ':');
867 if (dem_p != 0 && *(dem_p - 1) == ':')
868 dem_p++;
869 /* get rid of args */
870 dem_args = strchr (dem_p, '(');
871 if (dem_args == NULL)
872 dem_len = strlen (dem_p);
873 else
874 dem_len = dem_args - dem_p;
875 main_fn_name =
876 obsavestring (dem_p, dem_len, &objfile->type_obstack);
877 }
878 else
879 {
880 main_fn_name =
881 obsavestring (fname, strlen (fname), &objfile->type_obstack);
882 }
883 } /* end of code for cfront work around */
884
885 new_fnlist->fn_fieldlist.name = main_fn_name;
886
887 /*-------------------------------------------------*/
888 /* Set up the sublists
889 Sublists are stuff like args, static, visibility, etc.
890 so in ARM, we have to set that info some other way.
891 Multiple sublists happen if overloading
892 eg: foo::26=##1;:;2A.;
893 In g++, we'd loop here thru all the sublists... */
894
895 new_sublist =
896 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
897 make_cleanup (free, new_sublist);
898 memset (new_sublist, 0, sizeof (struct next_fnfield));
899
900 /* eat 1; from :;2A.; */
901 new_sublist->fn_field.type = SYMBOL_TYPE (ref_func); /* normally takes a read_type */
902 /* Make this type look like a method stub for gdb */
903 TYPE_FLAGS (new_sublist->fn_field.type) |= TYPE_FLAG_STUB;
904 TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
905
906 /* If this is just a stub, then we don't have the real name here. */
907 if (TYPE_FLAGS (new_sublist->fn_field.type) & TYPE_FLAG_STUB)
908 {
909 if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
910 TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
911 new_sublist->fn_field.is_stub = 1;
912 }
913
914 /* physname used later in mangling; eg PFs_i,5 for foo__1aFPFs_i
915 physname gets strcat'd in order to recreate the onto mangled name */
916 pname = get_cfront_method_physname (fname);
917 new_sublist->fn_field.physname = savestring (pname, strlen (pname));
918
919
920 /* Set this member function's visibility fields.
921 Unable to distinguish access from stabs definition!
922 Assuming public for now. FIXME!
923 (for private, set new_sublist->fn_field.is_private = 1,
924 for public, set new_sublist->fn_field.is_protected = 1) */
925
926 /* Unable to distinguish const/volatile from stabs definition!
927 Assuming normal for now. FIXME! */
928
929 new_sublist->fn_field.is_const = 0;
930 new_sublist->fn_field.is_volatile = 0; /* volatile not implemented in cfront */
931
932 /* Set virtual/static function info
933 How to get vtable offsets ?
934 Assuming normal for now FIXME!!
935 For vtables, figure out from whence this virtual function came.
936 It may belong to virtual function table of
937 one of its baseclasses.
938 set:
939 new_sublist -> fn_field.voffset = vtable offset,
940 new_sublist -> fn_field.fcontext = look_ahead_type;
941 where look_ahead_type is type of baseclass */
942 if (is_static)
943 new_sublist->fn_field.voffset = VOFFSET_STATIC;
944 else /* normal member function. */
945 new_sublist->fn_field.voffset = 0;
946 new_sublist->fn_field.fcontext = 0;
947
948
949 /* Prepare new sublist */
950 new_sublist->next = sublist;
951 sublist = new_sublist;
952 length++;
953
954 /* In g++, we loop thu sublists - now we set from functions. */
955 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
956 obstack_alloc (&objfile->type_obstack,
957 sizeof (struct fn_field) * length);
958 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
959 sizeof (struct fn_field) * length);
960 for (i = length; (i--, sublist); sublist = sublist->next)
961 {
962 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
963 }
964
965 new_fnlist->fn_fieldlist.length = length;
966 new_fnlist->next = fip->fnlist;
967 fip->fnlist = new_fnlist;
968 nfn_fields++;
969 total_length += length;
970 STABS_CONTINUE (pp, objfile); /* handle \\ */
971 } /* end of loop */
972
973 if (nfn_fields)
974 {
975 /* type should already have space */
976 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
977 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
978 memset (TYPE_FN_FIELDLISTS (type), 0,
979 sizeof (struct fn_fieldlist) * nfn_fields);
980 TYPE_NFN_FIELDS (type) = nfn_fields;
981 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
982 }
983
984 /* end of scope for reading member func */
985
986 /* eg: ";;" */
987
988 /* Skip trailing ';' and bump count of number of fields seen */
989 if (**pp == ';')
990 (*pp)++;
991 else
992 return 0;
993 return 1;
994 }
995
996 /* This routine fixes up partial cfront types that were created
997 while parsing the stabs. The main need for this function is
998 to add information such as methods to classes.
999 Examples of "p": "sA;;__ct__1AFv foo__1AFv ;;;" */
1000 int
1001 resolve_cfront_continuation (objfile, sym, p)
1002 struct objfile *objfile;
1003 struct symbol *sym;
1004 char *p;
1005 {
1006 struct symbol *ref_sym = 0;
1007 char *sname;
1008 /* snarfed from read_struct_type */
1009 struct field_info fi;
1010 struct type *type;
1011 struct cleanup *back_to;
1012
1013 /* Need to make sure that fi isn't gunna conflict with struct
1014 in case struct already had some fnfs */
1015 fi.list = NULL;
1016 fi.fnlist = NULL;
1017 back_to = make_cleanup (null_cleanup, 0);
1018
1019 /* We only accept structs, classes and unions at the moment.
1020 Other continuation types include t (typedef), r (long dbl), ...
1021 We may want to add support for them as well;
1022 right now they are handled by duplicating the symbol information
1023 into the type information (see define_symbol) */
1024 if (*p != 's' /* structs */
1025 && *p != 'c' /* class */
1026 && *p != 'u') /* union */
1027 return 0; /* only handle C++ types */
1028 p++;
1029
1030 /* Get symbol typs name and validate
1031 eg: p = "A;;__ct__1AFv foo__1AFv ;;;" */
1032 sname = get_substring (&p, ';');
1033 if (!sname || strcmp (sname, SYMBOL_NAME (sym)))
1034 error ("Internal error: base symbol type name does not match\n");
1035
1036 /* Find symbol's internal gdb reference using demangled_name.
1037 This is the real sym that we want;
1038 sym was a temp hack to make debugger happy */
1039 ref_sym = lookup_symbol (SYMBOL_NAME (sym), 0, STRUCT_NAMESPACE, 0, 0);
1040 type = SYMBOL_TYPE (ref_sym);
1041
1042
1043 /* Now read the baseclasses, if any, read the regular C struct or C++
1044 class member fields, attach the fields to the type, read the C++
1045 member functions, attach them to the type, and then read any tilde
1046 field (baseclass specifier for the class holding the main vtable). */
1047
1048 if (!read_cfront_baseclasses (&fi, &p, type, objfile)
1049 /* g++ does this next, but cfront already did this:
1050 || !read_struct_fields (&fi, &p, type, objfile) */
1051 || !copy_cfront_struct_fields (&fi, type, objfile)
1052 || !read_cfront_member_functions (&fi, &p, type, objfile)
1053 || !read_cfront_static_fields (&fi, &p, type, objfile)
1054 || !attach_fields_to_type (&fi, type, objfile)
1055 || !attach_fn_fields_to_type (&fi, type)
1056 /* g++ does this next, but cfront doesn't seem to have this:
1057 || !read_tilde_fields (&fi, &p, type, objfile) */
1058 )
1059 {
1060 type = error_type (&p, objfile);
1061 }
1062
1063 do_cleanups (back_to);
1064 return 0;
1065 }
1066 /* End of code added to support parsing of ARM/Cfront stabs strings */
1067
1068
1069 /* This routine fixes up symbol references/aliases to point to the original
1070 symbol definition. Returns 0 on failure, non-zero on success. */
1071
1072 static int
1073 resolve_symbol_reference (objfile, sym, p)
1074 struct objfile *objfile;
1075 struct symbol *sym;
1076 char *p;
1077 {
1078 int refnum;
1079 struct symbol *ref_sym = 0;
1080 struct alias_list *alias;
1081
1082 /* If this is not a symbol reference return now. */
1083 if (*p != '#')
1084 return 0;
1085
1086 /* Use "#<num>" as the name; we'll fix the name later.
1087 We stored the original symbol name as "#<id>=<name>"
1088 so we can now search for "#<id>" to resolving the reference.
1089 We'll fix the names later by removing the "#<id>" or "#<id>=" */
1090
1091 /*---------------------------------------------------------*/
1092 /* Get the reference id number, and
1093 advance p past the names so we can parse the rest.
1094 eg: id=2 for p : "2=", "2=z:r(0,1)" "2:r(0,1);l(#5,#6),l(#7,#4)" */
1095 /*---------------------------------------------------------*/
1096
1097 /* This gets reference name from string. sym may not have a name. */
1098
1099 /* Get the reference number associated with the reference id in the
1100 gdb stab string. From that reference number, get the main/primary
1101 symbol for this alias. */
1102 refnum = process_reference (&p);
1103 ref_sym = ref_search (refnum);
1104 if (!ref_sym)
1105 {
1106 complain (&lrs_general_complaint, "symbol for reference not found");
1107 return 0;
1108 }
1109
1110 /* Parse the stab of the referencing symbol
1111 now that we have the referenced symbol.
1112 Add it as a new symbol and a link back to the referenced symbol.
1113 eg: p : "=", "=z:r(0,1)" ":r(0,1);l(#5,#6),l(#7,#4)" */
1114
1115
1116 /* If the stab symbol table and string contain:
1117 RSYM 0 5 00000000 868 #15=z:r(0,1)
1118 LBRAC 0 0 00000000 899 #5=
1119 SLINE 0 16 00000003 923 #6=
1120 Then the same symbols can be later referenced by:
1121 RSYM 0 5 00000000 927 #15:r(0,1);l(#5,#6)
1122 This is used in live range splitting to:
1123 1) specify that a symbol (#15) is actually just a new storage
1124 class for a symbol (#15=z) which was previously defined.
1125 2) specify that the beginning and ending ranges for a symbol
1126 (#15) are the values of the beginning (#5) and ending (#6)
1127 symbols. */
1128
1129 /* Read number as reference id.
1130 eg: p : "=", "=z:r(0,1)" ":r(0,1);l(#5,#6),l(#7,#4)" */
1131 /* FIXME! Might I want to use SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
1132 in case of "l(0,0)"? */
1133
1134 /*--------------------------------------------------*/
1135 /* Add this symbol to the reference list. */
1136 /*--------------------------------------------------*/
1137
1138 alias = (struct alias_list *) obstack_alloc (&objfile->type_obstack,
1139 sizeof (struct alias_list));
1140 if (!alias)
1141 {
1142 complain (&lrs_general_complaint, "Unable to allocate alias list memory");
1143 return 0;
1144 }
1145
1146 alias->next = 0;
1147 alias->sym = sym;
1148
1149 if (!SYMBOL_ALIASES (ref_sym))
1150 {
1151 SYMBOL_ALIASES (ref_sym) = alias;
1152 }
1153 else
1154 {
1155 struct alias_list *temp;
1156
1157 /* Get to the end of the list. */
1158 for (temp = SYMBOL_ALIASES (ref_sym);
1159 temp->next;
1160 temp = temp->next)
1161 ;
1162 temp->next = alias;
1163 }
1164
1165 /* Want to fix up name so that other functions (eg. valops)
1166 will correctly print the name.
1167 Don't add_symbol_to_list so that lookup_symbol won't find it.
1168 nope... needed for fixups. */
1169 SYMBOL_NAME (sym) = SYMBOL_NAME (ref_sym);
1170
1171 /* Done! */
1172 return 1;
1173 }
1174
1175 /* Structure for storing pointers to reference definitions for fast lookup
1176 during "process_later". */
1177
1178 struct ref_map
1179 {
1180 char *stabs;
1181 CORE_ADDR value;
1182 struct symbol *sym;
1183 };
1184
1185 #define MAX_CHUNK_REFS 100
1186 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
1187 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
1188
1189 static struct ref_map *ref_map;
1190
1191 /* Ptr to free cell in chunk's linked list. */
1192 static int ref_count = 0;
1193
1194 /* Number of chunks malloced. */
1195 static int ref_chunk = 0;
1196
1197 /* This file maintains a cache of stabs aliases found in the symbol
1198 table. If the symbol table changes, this cache must be cleared
1199 or we are left holding onto data in invalid obstacks. */
1200 void
1201 stabsread_clear_cache ()
1202 {
1203 ref_count = 0;
1204 ref_chunk = 0;
1205 }
1206
1207 /* Create array of pointers mapping refids to symbols and stab strings.
1208 Add pointers to reference definition symbols and/or their values as we
1209 find them, using their reference numbers as our index.
1210 These will be used later when we resolve references. */
1211 void
1212 ref_add (refnum, sym, stabs, value)
1213 int refnum;
1214 struct symbol *sym;
1215 char *stabs;
1216 CORE_ADDR value;
1217 {
1218 if (ref_count == 0)
1219 ref_chunk = 0;
1220 if (refnum >= ref_count)
1221 ref_count = refnum + 1;
1222 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
1223 {
1224 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
1225 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
1226 ref_map = (struct ref_map *)
1227 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
1228 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0, new_chunks * REF_CHUNK_SIZE);
1229 ref_chunk += new_chunks;
1230 }
1231 ref_map[refnum].stabs = stabs;
1232 ref_map[refnum].sym = sym;
1233 ref_map[refnum].value = value;
1234 }
1235
1236 /* Return defined sym for the reference REFNUM. */
1237 struct symbol *
1238 ref_search (refnum)
1239 int refnum;
1240 {
1241 if (refnum < 0 || refnum > ref_count)
1242 return 0;
1243 return ref_map[refnum].sym;
1244 }
1245
1246 /* Return value for the reference REFNUM. */
1247
1248 static CORE_ADDR
1249 ref_search_value (refnum)
1250 int refnum;
1251 {
1252 if (refnum < 0 || refnum > ref_count)
1253 return 0;
1254 return ref_map[refnum].value;
1255 }
1256
1257 /* Parse a reference id in STRING and return the resulting
1258 reference number. Move STRING beyond the reference id. */
1259
1260 static int
1261 process_reference (string)
1262 char **string;
1263 {
1264 char *p;
1265 int refnum = 0;
1266
1267 if (**string != '#')
1268 return 0;
1269
1270 /* Advance beyond the initial '#'. */
1271 p = *string + 1;
1272
1273 /* Read number as reference id. */
1274 while (*p && isdigit (*p))
1275 {
1276 refnum = refnum * 10 + *p - '0';
1277 p++;
1278 }
1279 *string = p;
1280 return refnum;
1281 }
1282
1283 /* If STRING defines a reference, store away a pointer to the reference
1284 definition for later use. Return the reference number. */
1285
1286 int
1287 symbol_reference_defined (string)
1288 char **string;
1289 {
1290 char *p = *string;
1291 int refnum = 0;
1292
1293 refnum = process_reference (&p);
1294
1295 /* Defining symbols end in '=' */
1296 if (*p == '=')
1297 {
1298 /* Symbol is being defined here. */
1299 *string = p + 1;
1300 return refnum;
1301 }
1302 else
1303 {
1304 /* Must be a reference. Either the symbol has already been defined,
1305 or this is a forward reference to it. */
1306 *string = p;
1307 return -1;
1308 }
1309 }
1310
1311 /* ARGSUSED */
1312 struct symbol *
1313 define_symbol (valu, string, desc, type, objfile)
1314 CORE_ADDR valu;
1315 char *string;
1316 int desc;
1317 int type;
1318 struct objfile *objfile;
1319 {
1320 register struct symbol *sym;
1321 char *p = (char *) strchr (string, ':');
1322 int deftype;
1323 int synonym = 0;
1324 register int i;
1325
1326 /* We would like to eliminate nameless symbols, but keep their types.
1327 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
1328 to type 2, but, should not create a symbol to address that type. Since
1329 the symbol will be nameless, there is no way any user can refer to it. */
1330
1331 int nameless;
1332
1333 /* Ignore syms with empty names. */
1334 if (string[0] == 0)
1335 return 0;
1336
1337 /* Ignore old-style symbols from cc -go */
1338 if (p == 0)
1339 return 0;
1340
1341 while (p[1] == ':')
1342 {
1343 p += 2;
1344 p = strchr (p, ':');
1345 }
1346
1347 /* If a nameless stab entry, all we need is the type, not the symbol.
1348 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
1349 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
1350
1351 current_symbol = sym = (struct symbol *)
1352 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
1353 memset (sym, 0, sizeof (struct symbol));
1354
1355 switch (type & N_TYPE)
1356 {
1357 case N_TEXT:
1358 SYMBOL_SECTION (sym) = SECT_OFF_TEXT;
1359 break;
1360 case N_DATA:
1361 SYMBOL_SECTION (sym) = SECT_OFF_DATA;
1362 break;
1363 case N_BSS:
1364 SYMBOL_SECTION (sym) = SECT_OFF_BSS;
1365 break;
1366 }
1367
1368 if (processing_gcc_compilation)
1369 {
1370 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
1371 number of bytes occupied by a type or object, which we ignore. */
1372 SYMBOL_LINE (sym) = desc;
1373 }
1374 else
1375 {
1376 SYMBOL_LINE (sym) = 0; /* unknown */
1377 }
1378
1379 if (is_cplus_marker (string[0]))
1380 {
1381 /* Special GNU C++ names. */
1382 switch (string[1])
1383 {
1384 case 't':
1385 SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
1386 &objfile->symbol_obstack);
1387 break;
1388
1389 case 'v': /* $vtbl_ptr_type */
1390 /* Was: SYMBOL_NAME (sym) = "vptr"; */
1391 goto normal;
1392
1393 case 'e':
1394 SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
1395 &objfile->symbol_obstack);
1396 break;
1397
1398 case '_':
1399 /* This was an anonymous type that was never fixed up. */
1400 goto normal;
1401
1402 #ifdef STATIC_TRANSFORM_NAME
1403 case 'X':
1404 /* SunPRO (3.0 at least) static variable encoding. */
1405 goto normal;
1406 #endif
1407
1408 default:
1409 complain (&unrecognized_cplus_name_complaint, string);
1410 goto normal; /* Do *something* with it */
1411 }
1412 }
1413 else if (string[0] == '#')
1414 {
1415 /* Special GNU C extension for referencing symbols. */
1416 char *s;
1417 int refnum, nlen;
1418
1419 /* If STRING defines a new reference id, then add it to the
1420 reference map. Else it must be referring to a previously
1421 defined symbol, so add it to the alias list of the previously
1422 defined symbol. */
1423 s = string;
1424 refnum = symbol_reference_defined (&s);
1425 if (refnum >= 0)
1426 ref_add (refnum, sym, string, SYMBOL_VALUE (sym));
1427 else if (!resolve_symbol_reference (objfile, sym, string))
1428 return NULL;
1429
1430 /* S..P contains the name of the symbol. We need to store
1431 the correct name into SYMBOL_NAME. */
1432 nlen = p - s;
1433 if (refnum >= 0)
1434 {
1435 if (nlen > 0)
1436 {
1437 SYMBOL_NAME (sym) = (char *)
1438 obstack_alloc (&objfile->symbol_obstack, nlen);
1439 strncpy (SYMBOL_NAME (sym), s, nlen);
1440 SYMBOL_NAME (sym)[nlen] = '\0';
1441 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
1442 }
1443 else
1444 /* FIXME! Want SYMBOL_NAME (sym) = 0;
1445 Get error if leave name 0. So give it something. */
1446 {
1447 nlen = p - string;
1448 SYMBOL_NAME (sym) = (char *)
1449 obstack_alloc (&objfile->symbol_obstack, nlen);
1450 strncpy (SYMBOL_NAME (sym), string, nlen);
1451 SYMBOL_NAME (sym)[nlen] = '\0';
1452 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
1453 }
1454 }
1455 /* Advance STRING beyond the reference id. */
1456 string = s;
1457 }
1458 else
1459 {
1460 normal:
1461 SYMBOL_LANGUAGE (sym) = current_subfile->language;
1462 SYMBOL_NAME (sym) = (char *)
1463 obstack_alloc (&objfile->symbol_obstack, ((p - string) + 1));
1464 /* Open-coded memcpy--saves function call time. */
1465 /* FIXME: Does it really? Try replacing with simple strcpy and
1466 try it on an executable with a large symbol table. */
1467 /* FIXME: considering that gcc can open code memcpy anyway, I
1468 doubt it. xoxorich. */
1469 {
1470 register char *p1 = string;
1471 register char *p2 = SYMBOL_NAME (sym);
1472 while (p1 != p)
1473 {
1474 *p2++ = *p1++;
1475 }
1476 *p2++ = '\0';
1477 }
1478
1479 /* If this symbol is from a C++ compilation, then attempt to cache the
1480 demangled form for future reference. This is a typical time versus
1481 space tradeoff, that was decided in favor of time because it sped up
1482 C++ symbol lookups by a factor of about 20. */
1483
1484 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
1485 }
1486 p++;
1487
1488 /* Determine the type of name being defined. */
1489 #if 0
1490 /* Getting GDB to correctly skip the symbol on an undefined symbol
1491 descriptor and not ever dump core is a very dodgy proposition if
1492 we do things this way. I say the acorn RISC machine can just
1493 fix their compiler. */
1494 /* The Acorn RISC machine's compiler can put out locals that don't
1495 start with "234=" or "(3,4)=", so assume anything other than the
1496 deftypes we know how to handle is a local. */
1497 if (!strchr ("cfFGpPrStTvVXCR", *p))
1498 #else
1499 if (isdigit (*p) || *p == '(' || *p == '-')
1500 #endif
1501 deftype = 'l';
1502 else
1503 deftype = *p++;
1504
1505 switch (deftype)
1506 {
1507 case 'c':
1508 /* c is a special case, not followed by a type-number.
1509 SYMBOL:c=iVALUE for an integer constant symbol.
1510 SYMBOL:c=rVALUE for a floating constant symbol.
1511 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
1512 e.g. "b:c=e6,0" for "const b = blob1"
1513 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
1514 if (*p != '=')
1515 {
1516 SYMBOL_CLASS (sym) = LOC_CONST;
1517 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1518 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1519 add_symbol_to_list (sym, &file_symbols);
1520 return sym;
1521 }
1522 ++p;
1523 switch (*p++)
1524 {
1525 case 'r':
1526 {
1527 double d = atof (p);
1528 char *dbl_valu;
1529
1530 /* FIXME-if-picky-about-floating-accuracy: Should be using
1531 target arithmetic to get the value. real.c in GCC
1532 probably has the necessary code. */
1533
1534 /* FIXME: lookup_fundamental_type is a hack. We should be
1535 creating a type especially for the type of float constants.
1536 Problem is, what type should it be?
1537
1538 Also, what should the name of this type be? Should we
1539 be using 'S' constants (see stabs.texinfo) instead? */
1540
1541 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
1542 FT_DBL_PREC_FLOAT);
1543 dbl_valu = (char *)
1544 obstack_alloc (&objfile->symbol_obstack,
1545 TYPE_LENGTH (SYMBOL_TYPE (sym)));
1546 store_floating (dbl_valu, TYPE_LENGTH (SYMBOL_TYPE (sym)), d);
1547 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
1548 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
1549 }
1550 break;
1551 case 'i':
1552 {
1553 /* Defining integer constants this way is kind of silly,
1554 since 'e' constants allows the compiler to give not
1555 only the value, but the type as well. C has at least
1556 int, long, unsigned int, and long long as constant
1557 types; other languages probably should have at least
1558 unsigned as well as signed constants. */
1559
1560 /* We just need one int constant type for all objfiles.
1561 It doesn't depend on languages or anything (arguably its
1562 name should be a language-specific name for a type of
1563 that size, but I'm inclined to say that if the compiler
1564 wants a nice name for the type, it can use 'e'). */
1565 static struct type *int_const_type;
1566
1567 /* Yes, this is as long as a *host* int. That is because we
1568 use atoi. */
1569 if (int_const_type == NULL)
1570 int_const_type =
1571 init_type (TYPE_CODE_INT,
1572 sizeof (int) * HOST_CHAR_BIT / TARGET_CHAR_BIT, 0,
1573 "integer constant",
1574 (struct objfile *) NULL);
1575 SYMBOL_TYPE (sym) = int_const_type;
1576 SYMBOL_VALUE (sym) = atoi (p);
1577 SYMBOL_CLASS (sym) = LOC_CONST;
1578 }
1579 break;
1580 case 'e':
1581 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
1582 can be represented as integral.
1583 e.g. "b:c=e6,0" for "const b = blob1"
1584 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
1585 {
1586 SYMBOL_CLASS (sym) = LOC_CONST;
1587 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1588
1589 if (*p != ',')
1590 {
1591 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1592 break;
1593 }
1594 ++p;
1595
1596 /* If the value is too big to fit in an int (perhaps because
1597 it is unsigned), or something like that, we silently get
1598 a bogus value. The type and everything else about it is
1599 correct. Ideally, we should be using whatever we have
1600 available for parsing unsigned and long long values,
1601 however. */
1602 SYMBOL_VALUE (sym) = atoi (p);
1603 }
1604 break;
1605 default:
1606 {
1607 SYMBOL_CLASS (sym) = LOC_CONST;
1608 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1609 }
1610 }
1611 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1612 add_symbol_to_list (sym, &file_symbols);
1613 return sym;
1614
1615 case 'C':
1616 /* The name of a caught exception. */
1617 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1618 SYMBOL_CLASS (sym) = LOC_LABEL;
1619 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1620 SYMBOL_VALUE_ADDRESS (sym) = valu;
1621 add_symbol_to_list (sym, &local_symbols);
1622 break;
1623
1624 case 'f':
1625 /* A static function definition. */
1626 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1627 SYMBOL_CLASS (sym) = LOC_BLOCK;
1628 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1629 add_symbol_to_list (sym, &file_symbols);
1630 /* fall into process_function_types. */
1631
1632 process_function_types:
1633 /* Function result types are described as the result type in stabs.
1634 We need to convert this to the function-returning-type-X type
1635 in GDB. E.g. "int" is converted to "function returning int". */
1636 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
1637 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
1638
1639 /* All functions in C++ have prototypes. */
1640 if (SYMBOL_LANGUAGE (sym) == language_cplus)
1641 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
1642
1643 /* fall into process_prototype_types */
1644
1645 process_prototype_types:
1646 /* Sun acc puts declared types of arguments here. */
1647 if (*p == ';')
1648 {
1649 struct type *ftype = SYMBOL_TYPE (sym);
1650 int nsemi = 0;
1651 int nparams = 0;
1652 char *p1 = p;
1653
1654 /* Obtain a worst case guess for the number of arguments
1655 by counting the semicolons. */
1656 while (*p1)
1657 {
1658 if (*p1++ == ';')
1659 nsemi++;
1660 }
1661
1662 /* Allocate parameter information fields and fill them in. */
1663 TYPE_FIELDS (ftype) = (struct field *)
1664 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
1665 while (*p++ == ';')
1666 {
1667 struct type *ptype;
1668
1669 /* A type number of zero indicates the start of varargs.
1670 FIXME: GDB currently ignores vararg functions. */
1671 if (p[0] == '0' && p[1] == '\0')
1672 break;
1673 ptype = read_type (&p, objfile);
1674
1675 /* The Sun compilers mark integer arguments, which should
1676 be promoted to the width of the calling conventions, with
1677 a type which references itself. This type is turned into
1678 a TYPE_CODE_VOID type by read_type, and we have to turn
1679 it back into builtin_type_int here.
1680 FIXME: Do we need a new builtin_type_promoted_int_arg ? */
1681 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
1682 ptype = builtin_type_int;
1683 TYPE_FIELD_TYPE (ftype, nparams++) = ptype;
1684 }
1685 TYPE_NFIELDS (ftype) = nparams;
1686 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
1687 }
1688 break;
1689
1690 case 'F':
1691 /* A global function definition. */
1692 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1693 SYMBOL_CLASS (sym) = LOC_BLOCK;
1694 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1695 add_symbol_to_list (sym, &global_symbols);
1696 goto process_function_types;
1697
1698 case 'G':
1699 /* For a class G (global) symbol, it appears that the
1700 value is not correct. It is necessary to search for the
1701 corresponding linker definition to find the value.
1702 These definitions appear at the end of the namelist. */
1703 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1704 SYMBOL_CLASS (sym) = LOC_STATIC;
1705 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1706 /* Don't add symbol references to global_sym_chain.
1707 Symbol references don't have valid names and wont't match up with
1708 minimal symbols when the global_sym_chain is relocated.
1709 We'll fixup symbol references when we fixup the defining symbol. */
1710 if (SYMBOL_NAME (sym) && SYMBOL_NAME (sym)[0] != '#')
1711 {
1712 i = hashname (SYMBOL_NAME (sym));
1713 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1714 global_sym_chain[i] = sym;
1715 }
1716 add_symbol_to_list (sym, &global_symbols);
1717 break;
1718
1719 /* This case is faked by a conditional above,
1720 when there is no code letter in the dbx data.
1721 Dbx data never actually contains 'l'. */
1722 case 's':
1723 case 'l':
1724 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1725 SYMBOL_CLASS (sym) = LOC_LOCAL;
1726 SYMBOL_VALUE (sym) = valu;
1727 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1728 add_symbol_to_list (sym, &local_symbols);
1729 break;
1730
1731 case 'p':
1732 if (*p == 'F')
1733 /* pF is a two-letter code that means a function parameter in Fortran.
1734 The type-number specifies the type of the return value.
1735 Translate it into a pointer-to-function type. */
1736 {
1737 p++;
1738 SYMBOL_TYPE (sym)
1739 = lookup_pointer_type
1740 (lookup_function_type (read_type (&p, objfile)));
1741 }
1742 else
1743 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1744
1745 /* Normally this is a parameter, a LOC_ARG. On the i960, it
1746 can also be a LOC_LOCAL_ARG depending on symbol type. */
1747 #ifndef DBX_PARM_SYMBOL_CLASS
1748 #define DBX_PARM_SYMBOL_CLASS(type) LOC_ARG
1749 #endif
1750
1751 SYMBOL_CLASS (sym) = DBX_PARM_SYMBOL_CLASS (type);
1752 SYMBOL_VALUE (sym) = valu;
1753 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1754 add_symbol_to_list (sym, &local_symbols);
1755
1756 if (TARGET_BYTE_ORDER != BIG_ENDIAN)
1757 {
1758 /* On little-endian machines, this crud is never necessary,
1759 and, if the extra bytes contain garbage, is harmful. */
1760 break;
1761 }
1762
1763 /* If it's gcc-compiled, if it says `short', believe it. */
1764 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
1765 break;
1766
1767 if (!BELIEVE_PCC_PROMOTION)
1768 {
1769 /* This is the signed type which arguments get promoted to. */
1770 static struct type *pcc_promotion_type;
1771 /* This is the unsigned type which arguments get promoted to. */
1772 static struct type *pcc_unsigned_promotion_type;
1773
1774 /* Call it "int" because this is mainly C lossage. */
1775 if (pcc_promotion_type == NULL)
1776 pcc_promotion_type =
1777 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
1778 0, "int", NULL);
1779
1780 if (pcc_unsigned_promotion_type == NULL)
1781 pcc_unsigned_promotion_type =
1782 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
1783 TYPE_FLAG_UNSIGNED, "unsigned int", NULL);
1784
1785 if (BELIEVE_PCC_PROMOTION_TYPE)
1786 {
1787 /* This is defined on machines (e.g. sparc) where we
1788 should believe the type of a PCC 'short' argument,
1789 but shouldn't believe the address (the address is the
1790 address of the corresponding int).
1791
1792 My guess is that this correction, as opposed to
1793 changing the parameter to an 'int' (as done below,
1794 for PCC on most machines), is the right thing to do
1795 on all machines, but I don't want to risk breaking
1796 something that already works. On most PCC machines,
1797 the sparc problem doesn't come up because the calling
1798 function has to zero the top bytes (not knowing
1799 whether the called function wants an int or a short),
1800 so there is little practical difference between an
1801 int and a short (except perhaps what happens when the
1802 GDB user types "print short_arg = 0x10000;").
1803
1804 Hacked for SunOS 4.1 by gnu@cygnus.com. In 4.1, the
1805 compiler actually produces the correct address (we
1806 don't need to fix it up). I made this code adapt so
1807 that it will offset the symbol if it was pointing at
1808 an int-aligned location and not otherwise. This way
1809 you can use the same gdb for 4.0.x and 4.1 systems.
1810
1811 If the parameter is shorter than an int, and is
1812 integral (e.g. char, short, or unsigned equivalent),
1813 and is claimed to be passed on an integer boundary,
1814 don't believe it! Offset the parameter's address to
1815 the tail-end of that integer. */
1816
1817 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
1818 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT
1819 && 0 == SYMBOL_VALUE (sym) % TYPE_LENGTH (pcc_promotion_type))
1820 {
1821 SYMBOL_VALUE (sym) += TYPE_LENGTH (pcc_promotion_type)
1822 - TYPE_LENGTH (SYMBOL_TYPE (sym));
1823 }
1824 break;
1825 }
1826 else
1827 {
1828 /* If PCC says a parameter is a short or a char,
1829 it is really an int. */
1830 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
1831 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1832 {
1833 SYMBOL_TYPE (sym) =
1834 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1835 ? pcc_unsigned_promotion_type
1836 : pcc_promotion_type;
1837 }
1838 break;
1839 }
1840 }
1841
1842 case 'P':
1843 /* acc seems to use P to declare the prototypes of functions that
1844 are referenced by this file. gdb is not prepared to deal
1845 with this extra information. FIXME, it ought to. */
1846 if (type == N_FUN)
1847 {
1848 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1849 goto process_prototype_types;
1850 }
1851 /*FALLTHROUGH */
1852
1853 case 'R':
1854 /* Parameter which is in a register. */
1855 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1856 SYMBOL_CLASS (sym) = LOC_REGPARM;
1857 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1858 if (SYMBOL_VALUE (sym) >= NUM_REGS)
1859 {
1860 complain (&reg_value_complaint, SYMBOL_VALUE (sym), NUM_REGS,
1861 SYMBOL_SOURCE_NAME (sym));
1862 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1863 }
1864 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1865 add_symbol_to_list (sym, &local_symbols);
1866 break;
1867
1868 case 'r':
1869 /* Register variable (either global or local). */
1870 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1871 SYMBOL_CLASS (sym) = LOC_REGISTER;
1872 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1873 if (SYMBOL_VALUE (sym) >= NUM_REGS)
1874 {
1875 complain (&reg_value_complaint, SYMBOL_VALUE (sym), NUM_REGS,
1876 SYMBOL_SOURCE_NAME (sym));
1877 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1878 }
1879 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1880 if (within_function)
1881 {
1882 /* Sun cc uses a pair of symbols, one 'p' and one 'r' with the same
1883 name to represent an argument passed in a register.
1884 GCC uses 'P' for the same case. So if we find such a symbol pair
1885 we combine it into one 'P' symbol. For Sun cc we need to do this
1886 regardless of REG_STRUCT_HAS_ADDR, because the compiler puts out
1887 the 'p' symbol even if it never saves the argument onto the stack.
1888
1889 On most machines, we want to preserve both symbols, so that
1890 we can still get information about what is going on with the
1891 stack (VAX for computing args_printed, using stack slots instead
1892 of saved registers in backtraces, etc.).
1893
1894 Note that this code illegally combines
1895 main(argc) struct foo argc; { register struct foo argc; }
1896 but this case is considered pathological and causes a warning
1897 from a decent compiler. */
1898
1899 if (local_symbols
1900 && local_symbols->nsyms > 0
1901 #ifndef USE_REGISTER_NOT_ARG
1902 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation,
1903 SYMBOL_TYPE (sym))
1904 && (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1905 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION
1906 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_SET
1907 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_BITSTRING)
1908 #endif
1909 )
1910 {
1911 struct symbol *prev_sym;
1912 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1913 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1914 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1915 && STREQ (SYMBOL_NAME (prev_sym), SYMBOL_NAME (sym)))
1916 {
1917 SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
1918 /* Use the type from the LOC_REGISTER; that is the type
1919 that is actually in that register. */
1920 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1921 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1922 sym = prev_sym;
1923 break;
1924 }
1925 }
1926 add_symbol_to_list (sym, &local_symbols);
1927 }
1928 else
1929 add_symbol_to_list (sym, &file_symbols);
1930 break;
1931
1932 case 'S':
1933 /* Static symbol at top level of file */
1934 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1935 SYMBOL_CLASS (sym) = LOC_STATIC;
1936 SYMBOL_VALUE_ADDRESS (sym) = valu;
1937 #ifdef STATIC_TRANSFORM_NAME
1938 if (IS_STATIC_TRANSFORM_NAME (SYMBOL_NAME (sym)))
1939 {
1940 struct minimal_symbol *msym;
1941 msym = lookup_minimal_symbol (SYMBOL_NAME (sym), NULL, objfile);
1942 if (msym != NULL)
1943 {
1944 SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (SYMBOL_NAME (sym));
1945 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1946 }
1947 }
1948 #endif
1949 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1950 add_symbol_to_list (sym, &file_symbols);
1951 break;
1952
1953 case 't':
1954 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1955
1956 /* For a nameless type, we don't want a create a symbol, thus we
1957 did not use `sym'. Return without further processing. */
1958 if (nameless)
1959 return NULL;
1960
1961 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1962 SYMBOL_VALUE (sym) = valu;
1963 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1964 /* C++ vagaries: we may have a type which is derived from
1965 a base type which did not have its name defined when the
1966 derived class was output. We fill in the derived class's
1967 base part member's name here in that case. */
1968 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1969 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1970 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1971 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1972 {
1973 int j;
1974 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1975 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1976 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1977 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1978 }
1979
1980 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1981 {
1982 /* gcc-2.6 or later (when using -fvtable-thunks)
1983 emits a unique named type for a vtable entry.
1984 Some gdb code depends on that specific name. */
1985 extern const char vtbl_ptr_name[];
1986
1987 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1988 && strcmp (SYMBOL_NAME (sym), vtbl_ptr_name))
1989 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1990 {
1991 /* If we are giving a name to a type such as "pointer to
1992 foo" or "function returning foo", we better not set
1993 the TYPE_NAME. If the program contains "typedef char
1994 *caddr_t;", we don't want all variables of type char
1995 * to print as caddr_t. This is not just a
1996 consequence of GDB's type management; PCC and GCC (at
1997 least through version 2.4) both output variables of
1998 either type char * or caddr_t with the type number
1999 defined in the 't' symbol for caddr_t. If a future
2000 compiler cleans this up it GDB is not ready for it
2001 yet, but if it becomes ready we somehow need to
2002 disable this check (without breaking the PCC/GCC2.4
2003 case).
2004
2005 Sigh.
2006
2007 Fortunately, this check seems not to be necessary
2008 for anything except pointers or functions. */
2009 }
2010 else
2011 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_NAME (sym);
2012 }
2013
2014 add_symbol_to_list (sym, &file_symbols);
2015 break;
2016
2017 case 'T':
2018 /* Struct, union, or enum tag. For GNU C++, this can be be followed
2019 by 't' which means we are typedef'ing it as well. */
2020 synonym = *p == 't';
2021
2022 if (synonym)
2023 p++;
2024 /* The semantics of C++ state that "struct foo { ... }" also defines
2025 a typedef for "foo". Unfortunately, cfront never makes the typedef
2026 when translating C++ into C. We make the typedef here so that
2027 "ptype foo" works as expected for cfront translated code. */
2028 else if (current_subfile->language == language_cplus)
2029 synonym = 1;
2030
2031 SYMBOL_TYPE (sym) = read_type (&p, objfile);
2032
2033 /* For a nameless type, we don't want a create a symbol, thus we
2034 did not use `sym'. Return without further processing. */
2035 if (nameless)
2036 return NULL;
2037
2038 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2039 SYMBOL_VALUE (sym) = valu;
2040 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
2041 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
2042 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
2043 = obconcat (&objfile->type_obstack, "", "", SYMBOL_NAME (sym));
2044 add_symbol_to_list (sym, &file_symbols);
2045
2046 if (synonym)
2047 {
2048 /* Clone the sym and then modify it. */
2049 register struct symbol *typedef_sym = (struct symbol *)
2050 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
2051 *typedef_sym = *sym;
2052 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
2053 SYMBOL_VALUE (typedef_sym) = valu;
2054 SYMBOL_NAMESPACE (typedef_sym) = VAR_NAMESPACE;
2055 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
2056 TYPE_NAME (SYMBOL_TYPE (sym))
2057 = obconcat (&objfile->type_obstack, "", "", SYMBOL_NAME (sym));
2058 add_symbol_to_list (typedef_sym, &file_symbols);
2059 }
2060 break;
2061
2062 case 'V':
2063 /* Static symbol of local scope */
2064 SYMBOL_TYPE (sym) = read_type (&p, objfile);
2065 SYMBOL_CLASS (sym) = LOC_STATIC;
2066 SYMBOL_VALUE_ADDRESS (sym) = valu;
2067 #ifdef STATIC_TRANSFORM_NAME
2068 if (IS_STATIC_TRANSFORM_NAME (SYMBOL_NAME (sym)))
2069 {
2070 struct minimal_symbol *msym;
2071 msym = lookup_minimal_symbol (SYMBOL_NAME (sym), NULL, objfile);
2072 if (msym != NULL)
2073 {
2074 SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (SYMBOL_NAME (sym));
2075 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
2076 }
2077 }
2078 #endif
2079 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2080 if (os9k_stabs)
2081 add_symbol_to_list (sym, &global_symbols);
2082 else
2083 add_symbol_to_list (sym, &local_symbols);
2084 break;
2085
2086 case 'v':
2087 /* Reference parameter */
2088 SYMBOL_TYPE (sym) = read_type (&p, objfile);
2089 SYMBOL_CLASS (sym) = LOC_REF_ARG;
2090 SYMBOL_VALUE (sym) = valu;
2091 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2092 add_symbol_to_list (sym, &local_symbols);
2093 break;
2094
2095 case 'a':
2096 /* Reference parameter which is in a register. */
2097 SYMBOL_TYPE (sym) = read_type (&p, objfile);
2098 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
2099 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
2100 if (SYMBOL_VALUE (sym) >= NUM_REGS)
2101 {
2102 complain (&reg_value_complaint, SYMBOL_VALUE (sym), NUM_REGS,
2103 SYMBOL_SOURCE_NAME (sym));
2104 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
2105 }
2106 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2107 add_symbol_to_list (sym, &local_symbols);
2108 break;
2109
2110 case 'X':
2111 /* This is used by Sun FORTRAN for "function result value".
2112 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
2113 that Pascal uses it too, but when I tried it Pascal used
2114 "x:3" (local symbol) instead. */
2115 SYMBOL_TYPE (sym) = read_type (&p, objfile);
2116 SYMBOL_CLASS (sym) = LOC_LOCAL;
2117 SYMBOL_VALUE (sym) = valu;
2118 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2119 add_symbol_to_list (sym, &local_symbols);
2120 break;
2121
2122 /* New code added to support cfront stabs strings.
2123 Note: case 'P' already handled above */
2124 case 'Z':
2125 /* Cfront type continuation coming up!
2126 Find the original definition and add to it.
2127 We'll have to do this for the typedef too,
2128 since we cloned the symbol to define a type in read_type.
2129 Stabs info examples:
2130 __1C :Ztl
2131 foo__1CFv :ZtF (first def foo__1CFv:F(0,3);(0,24))
2132 C:ZsC;;__ct__1CFv func1__1CFv func2__1CFv ... ;;;
2133 where C is the name of the class.
2134 Unfortunately, we can't lookup the original symbol yet 'cuz
2135 we haven't finished reading all the symbols.
2136 Instead, we save it for processing later */
2137 process_later (sym, p, resolve_cfront_continuation);
2138 SYMBOL_TYPE (sym) = error_type (&p, objfile); /* FIXME! change later */
2139 SYMBOL_CLASS (sym) = LOC_CONST;
2140 SYMBOL_VALUE (sym) = 0;
2141 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2142 /* Don't add to list - we'll delete it later when
2143 we add the continuation to the real sym */
2144 return sym;
2145 /* End of new code added to support cfront stabs strings */
2146
2147 default:
2148 SYMBOL_TYPE (sym) = error_type (&p, objfile);
2149 SYMBOL_CLASS (sym) = LOC_CONST;
2150 SYMBOL_VALUE (sym) = 0;
2151 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2152 add_symbol_to_list (sym, &file_symbols);
2153 break;
2154 }
2155
2156 /* When passing structures to a function, some systems sometimes pass
2157 the address in a register, not the structure itself. */
2158
2159 if (REG_STRUCT_HAS_ADDR (processing_gcc_compilation, SYMBOL_TYPE (sym))
2160 && (SYMBOL_CLASS (sym) == LOC_REGPARM || SYMBOL_CLASS (sym) == LOC_ARG))
2161 {
2162 struct type *symbol_type = check_typedef (SYMBOL_TYPE (sym));
2163
2164 if ((TYPE_CODE (symbol_type) == TYPE_CODE_STRUCT)
2165 || (TYPE_CODE (symbol_type) == TYPE_CODE_UNION)
2166 || (TYPE_CODE (symbol_type) == TYPE_CODE_BITSTRING)
2167 || (TYPE_CODE (symbol_type) == TYPE_CODE_SET))
2168 {
2169 /* If REG_STRUCT_HAS_ADDR yields non-zero we have to convert
2170 LOC_REGPARM to LOC_REGPARM_ADDR for structures and unions. */
2171 if (SYMBOL_CLASS (sym) == LOC_REGPARM)
2172 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
2173 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
2174 and subsequent arguments on the sparc, for example). */
2175 else if (SYMBOL_CLASS (sym) == LOC_ARG)
2176 SYMBOL_CLASS (sym) = LOC_REF_ARG;
2177 }
2178 }
2179
2180 /* Is there more to parse? For example LRS/alias information? */
2181 while (*p && *p == ';')
2182 {
2183 p++;
2184 if (*p && p[0] == 'l' && p[1] == '(')
2185 {
2186 /* GNU extensions for live range splitting may be appended to
2187 the end of the stab string. eg. "l(#1,#2);l(#3,#5)" */
2188
2189 /* Resolve the live range and add it to SYM's live range list. */
2190 if (!resolve_live_range (objfile, sym, p))
2191 return NULL;
2192
2193 /* Find end of live range info. */
2194 p = strchr (p, ')');
2195 if (!*p || *p != ')')
2196 {
2197 complain (&lrs_general_complaint, "live range format not recognized");
2198 return NULL;
2199 }
2200 p++;
2201 }
2202 }
2203 return sym;
2204 }
2205
2206 /* Add the live range found in P to the symbol SYM in objfile OBJFILE. Returns
2207 non-zero on success, zero otherwise. */
2208
2209 static int
2210 resolve_live_range (objfile, sym, p)
2211 struct objfile *objfile;
2212 struct symbol *sym;
2213 char *p;
2214 {
2215 int refnum;
2216 CORE_ADDR start, end;
2217
2218 /* Sanity check the beginning of the stabs string. */
2219 if (!*p || *p != 'l')
2220 {
2221 complain (&lrs_general_complaint, "live range string 1");
2222 return 0;
2223 }
2224 p++;
2225
2226 if (!*p || *p != '(')
2227 {
2228 complain (&lrs_general_complaint, "live range string 2");
2229 return 0;
2230 }
2231 p++;
2232
2233 /* Get starting value of range and advance P past the reference id.
2234
2235 ?!? In theory, the process_reference should never fail, but we should
2236 catch that case just in case the compiler scrogged the stabs. */
2237 refnum = process_reference (&p);
2238 start = ref_search_value (refnum);
2239 if (!start)
2240 {
2241 complain (&lrs_general_complaint, "Live range symbol not found 1");
2242 return 0;
2243 }
2244
2245 if (!*p || *p != ',')
2246 {
2247 complain (&lrs_general_complaint, "live range string 3");
2248 return 0;
2249 }
2250 p++;
2251
2252 /* Get ending value of range and advance P past the reference id.
2253
2254 ?!? In theory, the process_reference should never fail, but we should
2255 catch that case just in case the compiler scrogged the stabs. */
2256 refnum = process_reference (&p);
2257 end = ref_search_value (refnum);
2258 if (!end)
2259 {
2260 complain (&lrs_general_complaint, "Live range symbol not found 2");
2261 return 0;
2262 }
2263
2264 if (!*p || *p != ')')
2265 {
2266 complain (&lrs_general_complaint, "live range string 4");
2267 return 0;
2268 }
2269
2270 /* Now that we know the bounds of the range, add it to the
2271 symbol. */
2272 add_live_range (objfile, sym, start, end);
2273
2274 return 1;
2275 }
2276
2277 /* Add a new live range defined by START and END to the symbol SYM
2278 in objfile OBJFILE. */
2279
2280 static void
2281 add_live_range (objfile, sym, start, end)
2282 struct objfile *objfile;
2283 struct symbol *sym;
2284 CORE_ADDR start, end;
2285 {
2286 struct range_list *r, *rs;
2287
2288 if (start >= end)
2289 {
2290 complain (&lrs_general_complaint, "end of live range follows start");
2291 return;
2292 }
2293
2294 /* Alloc new live range structure. */
2295 r = (struct range_list *)
2296 obstack_alloc (&objfile->type_obstack,
2297 sizeof (struct range_list));
2298 r->start = start;
2299 r->end = end;
2300 r->next = 0;
2301
2302 /* Append this range to the symbol's range list. */
2303 if (!SYMBOL_RANGES (sym))
2304 SYMBOL_RANGES (sym) = r;
2305 else
2306 {
2307 /* Get the last range for the symbol. */
2308 for (rs = SYMBOL_RANGES (sym); rs->next; rs = rs->next)
2309 ;
2310 rs->next = r;
2311 }
2312 }
2313 \f
2314
2315 /* Skip rest of this symbol and return an error type.
2316
2317 General notes on error recovery: error_type always skips to the
2318 end of the symbol (modulo cretinous dbx symbol name continuation).
2319 Thus code like this:
2320
2321 if (*(*pp)++ != ';')
2322 return error_type (pp, objfile);
2323
2324 is wrong because if *pp starts out pointing at '\0' (typically as the
2325 result of an earlier error), it will be incremented to point to the
2326 start of the next symbol, which might produce strange results, at least
2327 if you run off the end of the string table. Instead use
2328
2329 if (**pp != ';')
2330 return error_type (pp, objfile);
2331 ++*pp;
2332
2333 or
2334
2335 if (**pp != ';')
2336 foo = error_type (pp, objfile);
2337 else
2338 ++*pp;
2339
2340 And in case it isn't obvious, the point of all this hair is so the compiler
2341 can define new types and new syntaxes, and old versions of the
2342 debugger will be able to read the new symbol tables. */
2343
2344 static struct type *
2345 error_type (pp, objfile)
2346 char **pp;
2347 struct objfile *objfile;
2348 {
2349 complain (&error_type_complaint);
2350 while (1)
2351 {
2352 /* Skip to end of symbol. */
2353 while (**pp != '\0')
2354 {
2355 (*pp)++;
2356 }
2357
2358 /* Check for and handle cretinous dbx symbol name continuation! */
2359 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
2360 {
2361 *pp = next_symbol_text (objfile);
2362 }
2363 else
2364 {
2365 break;
2366 }
2367 }
2368 return (builtin_type_error);
2369 }
2370 \f
2371
2372 /* Read type information or a type definition; return the type. Even
2373 though this routine accepts either type information or a type
2374 definition, the distinction is relevant--some parts of stabsread.c
2375 assume that type information starts with a digit, '-', or '(' in
2376 deciding whether to call read_type. */
2377
2378 struct type *
2379 read_type (pp, objfile)
2380 register char **pp;
2381 struct objfile *objfile;
2382 {
2383 register struct type *type = 0;
2384 struct type *type1;
2385 int typenums[2];
2386 char type_descriptor;
2387
2388 /* Size in bits of type if specified by a type attribute, or -1 if
2389 there is no size attribute. */
2390 int type_size = -1;
2391
2392 /* Used to distinguish string and bitstring from char-array and set. */
2393 int is_string = 0;
2394
2395 /* Read type number if present. The type number may be omitted.
2396 for instance in a two-dimensional array declared with type
2397 "ar1;1;10;ar1;1;10;4". */
2398 if ((**pp >= '0' && **pp <= '9')
2399 || **pp == '('
2400 || **pp == '-')
2401 {
2402 if (read_type_number (pp, typenums) != 0)
2403 return error_type (pp, objfile);
2404
2405 /* Type is not being defined here. Either it already exists,
2406 or this is a forward reference to it. dbx_alloc_type handles
2407 both cases. */
2408 if (**pp != '=')
2409 return dbx_alloc_type (typenums, objfile);
2410
2411 /* Type is being defined here. */
2412 /* Skip the '='.
2413 Also skip the type descriptor - we get it below with (*pp)[-1]. */
2414 (*pp) += 2;
2415 }
2416 else
2417 {
2418 /* 'typenums=' not present, type is anonymous. Read and return
2419 the definition, but don't put it in the type vector. */
2420 typenums[0] = typenums[1] = -1;
2421 (*pp)++;
2422 }
2423
2424 again:
2425 type_descriptor = (*pp)[-1];
2426 switch (type_descriptor)
2427 {
2428 case 'x':
2429 {
2430 enum type_code code;
2431
2432 /* Used to index through file_symbols. */
2433 struct pending *ppt;
2434 int i;
2435
2436 /* Name including "struct", etc. */
2437 char *type_name;
2438
2439 {
2440 char *from, *to, *p, *q1, *q2;
2441
2442 /* Set the type code according to the following letter. */
2443 switch ((*pp)[0])
2444 {
2445 case 's':
2446 code = TYPE_CODE_STRUCT;
2447 break;
2448 case 'u':
2449 code = TYPE_CODE_UNION;
2450 break;
2451 case 'e':
2452 code = TYPE_CODE_ENUM;
2453 break;
2454 default:
2455 {
2456 /* Complain and keep going, so compilers can invent new
2457 cross-reference types. */
2458 static struct complaint msg =
2459 {"Unrecognized cross-reference type `%c'", 0, 0};
2460 complain (&msg, (*pp)[0]);
2461 code = TYPE_CODE_STRUCT;
2462 break;
2463 }
2464 }
2465
2466 q1 = strchr (*pp, '<');
2467 p = strchr (*pp, ':');
2468 if (p == NULL)
2469 return error_type (pp, objfile);
2470 if (q1 && p > q1 && p[1] == ':')
2471 {
2472 int nesting_level = 0;
2473 for (q2 = q1; *q2; q2++)
2474 {
2475 if (*q2 == '<')
2476 nesting_level++;
2477 else if (*q2 == '>')
2478 nesting_level--;
2479 else if (*q2 == ':' && nesting_level == 0)
2480 break;
2481 }
2482 p = q2;
2483 if (*p != ':')
2484 return error_type (pp, objfile);
2485 }
2486 to = type_name =
2487 (char *) obstack_alloc (&objfile->type_obstack, p - *pp + 1);
2488
2489 /* Copy the name. */
2490 from = *pp + 1;
2491 while (from < p)
2492 *to++ = *from++;
2493 *to = '\0';
2494
2495 /* Set the pointer ahead of the name which we just read, and
2496 the colon. */
2497 *pp = from + 1;
2498 }
2499
2500 /* Now check to see whether the type has already been
2501 declared. This was written for arrays of cross-referenced
2502 types before we had TYPE_CODE_TARGET_STUBBED, so I'm pretty
2503 sure it is not necessary anymore. But it might be a good
2504 idea, to save a little memory. */
2505
2506 for (ppt = file_symbols; ppt; ppt = ppt->next)
2507 for (i = 0; i < ppt->nsyms; i++)
2508 {
2509 struct symbol *sym = ppt->symbol[i];
2510
2511 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
2512 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
2513 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
2514 && STREQ (SYMBOL_NAME (sym), type_name))
2515 {
2516 obstack_free (&objfile->type_obstack, type_name);
2517 type = SYMBOL_TYPE (sym);
2518 return type;
2519 }
2520 }
2521
2522 /* Didn't find the type to which this refers, so we must
2523 be dealing with a forward reference. Allocate a type
2524 structure for it, and keep track of it so we can
2525 fill in the rest of the fields when we get the full
2526 type. */
2527 type = dbx_alloc_type (typenums, objfile);
2528 TYPE_CODE (type) = code;
2529 TYPE_TAG_NAME (type) = type_name;
2530 INIT_CPLUS_SPECIFIC (type);
2531 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
2532
2533 add_undefined_type (type);
2534 return type;
2535 }
2536
2537 case '-': /* RS/6000 built-in type */
2538 case '0':
2539 case '1':
2540 case '2':
2541 case '3':
2542 case '4':
2543 case '5':
2544 case '6':
2545 case '7':
2546 case '8':
2547 case '9':
2548 case '(':
2549 (*pp)--;
2550
2551 /* We deal with something like t(1,2)=(3,4)=... which
2552 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
2553
2554 /* Allocate and enter the typedef type first.
2555 This handles recursive types. */
2556 type = dbx_alloc_type (typenums, objfile);
2557 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
2558 {
2559 struct type *xtype = read_type (pp, objfile);
2560 if (type == xtype)
2561 {
2562 /* It's being defined as itself. That means it is "void". */
2563 TYPE_CODE (type) = TYPE_CODE_VOID;
2564 TYPE_LENGTH (type) = 1;
2565 }
2566 else if (type_size >= 0 || is_string)
2567 {
2568 *type = *xtype;
2569 TYPE_NAME (type) = NULL;
2570 TYPE_TAG_NAME (type) = NULL;
2571 }
2572 else
2573 {
2574 TYPE_FLAGS (type) |= TYPE_FLAG_TARGET_STUB;
2575 TYPE_TARGET_TYPE (type) = xtype;
2576 }
2577 }
2578 break;
2579
2580 /* In the following types, we must be sure to overwrite any existing
2581 type that the typenums refer to, rather than allocating a new one
2582 and making the typenums point to the new one. This is because there
2583 may already be pointers to the existing type (if it had been
2584 forward-referenced), and we must change it to a pointer, function,
2585 reference, or whatever, *in-place*. */
2586
2587 case '*':
2588 type1 = read_type (pp, objfile);
2589 type = make_pointer_type (type1, dbx_lookup_type (typenums));
2590 break;
2591
2592 case '&': /* Reference to another type */
2593 type1 = read_type (pp, objfile);
2594 type = make_reference_type (type1, dbx_lookup_type (typenums));
2595 break;
2596
2597 case 'f': /* Function returning another type */
2598 if (os9k_stabs && **pp == '(')
2599 {
2600 /* Function prototype; parse it.
2601 We must conditionalize this on os9k_stabs because otherwise
2602 it could be confused with a Sun-style (1,3) typenumber
2603 (I think). */
2604 struct type *t;
2605 ++*pp;
2606 while (**pp != ')')
2607 {
2608 t = read_type (pp, objfile);
2609 if (**pp == ',')
2610 ++ * pp;
2611 }
2612 }
2613 type1 = read_type (pp, objfile);
2614 type = make_function_type (type1, dbx_lookup_type (typenums));
2615 break;
2616
2617 case 'k': /* Const qualifier on some type (Sun) */
2618 case 'c': /* Const qualifier on some type (OS9000) */
2619 /* Because 'c' means other things to AIX and 'k' is perfectly good,
2620 only accept 'c' in the os9k_stabs case. */
2621 if (type_descriptor == 'c' && !os9k_stabs)
2622 return error_type (pp, objfile);
2623 type = read_type (pp, objfile);
2624 /* FIXME! For now, we ignore const and volatile qualifiers. */
2625 break;
2626
2627 case 'B': /* Volatile qual on some type (Sun) */
2628 case 'i': /* Volatile qual on some type (OS9000) */
2629 /* Because 'i' means other things to AIX and 'B' is perfectly good,
2630 only accept 'i' in the os9k_stabs case. */
2631 if (type_descriptor == 'i' && !os9k_stabs)
2632 return error_type (pp, objfile);
2633 type = read_type (pp, objfile);
2634 /* FIXME! For now, we ignore const and volatile qualifiers. */
2635 break;
2636
2637 case '@':
2638 if (isdigit (**pp) || **pp == '(' || **pp == '-')
2639 { /* Member (class & variable) type */
2640 /* FIXME -- we should be doing smash_to_XXX types here. */
2641
2642 struct type *domain = read_type (pp, objfile);
2643 struct type *memtype;
2644
2645 if (**pp != ',')
2646 /* Invalid member type data format. */
2647 return error_type (pp, objfile);
2648 ++*pp;
2649
2650 memtype = read_type (pp, objfile);
2651 type = dbx_alloc_type (typenums, objfile);
2652 smash_to_member_type (type, domain, memtype);
2653 }
2654 else
2655 /* type attribute */
2656 {
2657 char *attr = *pp;
2658 /* Skip to the semicolon. */
2659 while (**pp != ';' && **pp != '\0')
2660 ++(*pp);
2661 if (**pp == '\0')
2662 return error_type (pp, objfile);
2663 else
2664 ++ * pp; /* Skip the semicolon. */
2665
2666 switch (*attr)
2667 {
2668 case 's':
2669 type_size = atoi (attr + 1);
2670 if (type_size <= 0)
2671 type_size = -1;
2672 break;
2673
2674 case 'S':
2675 is_string = 1;
2676 break;
2677
2678 default:
2679 /* Ignore unrecognized type attributes, so future compilers
2680 can invent new ones. */
2681 break;
2682 }
2683 ++*pp;
2684 goto again;
2685 }
2686 break;
2687
2688 case '#': /* Method (class & fn) type */
2689 if ((*pp)[0] == '#')
2690 {
2691 /* We'll get the parameter types from the name. */
2692 struct type *return_type;
2693
2694 (*pp)++;
2695 return_type = read_type (pp, objfile);
2696 if (*(*pp)++ != ';')
2697 complain (&invalid_member_complaint, symnum);
2698 type = allocate_stub_method (return_type);
2699 if (typenums[0] != -1)
2700 *dbx_lookup_type (typenums) = type;
2701 }
2702 else
2703 {
2704 struct type *domain = read_type (pp, objfile);
2705 struct type *return_type;
2706 struct type **args;
2707
2708 if (**pp != ',')
2709 /* Invalid member type data format. */
2710 return error_type (pp, objfile);
2711 else
2712 ++(*pp);
2713
2714 return_type = read_type (pp, objfile);
2715 args = read_args (pp, ';', objfile);
2716 type = dbx_alloc_type (typenums, objfile);
2717 smash_to_method_type (type, domain, return_type, args);
2718 }
2719 break;
2720
2721 case 'r': /* Range type */
2722 type = read_range_type (pp, typenums, objfile);
2723 if (typenums[0] != -1)
2724 *dbx_lookup_type (typenums) = type;
2725 break;
2726
2727 case 'b':
2728 if (os9k_stabs)
2729 /* Const and volatile qualified type. */
2730 type = read_type (pp, objfile);
2731 else
2732 {
2733 /* Sun ACC builtin int type */
2734 type = read_sun_builtin_type (pp, typenums, objfile);
2735 if (typenums[0] != -1)
2736 *dbx_lookup_type (typenums) = type;
2737 }
2738 break;
2739
2740 case 'R': /* Sun ACC builtin float type */
2741 type = read_sun_floating_type (pp, typenums, objfile);
2742 if (typenums[0] != -1)
2743 *dbx_lookup_type (typenums) = type;
2744 break;
2745
2746 case 'e': /* Enumeration type */
2747 type = dbx_alloc_type (typenums, objfile);
2748 type = read_enum_type (pp, type, objfile);
2749 if (typenums[0] != -1)
2750 *dbx_lookup_type (typenums) = type;
2751 break;
2752
2753 case 's': /* Struct type */
2754 case 'u': /* Union type */
2755 type = dbx_alloc_type (typenums, objfile);
2756 switch (type_descriptor)
2757 {
2758 case 's':
2759 TYPE_CODE (type) = TYPE_CODE_STRUCT;
2760 break;
2761 case 'u':
2762 TYPE_CODE (type) = TYPE_CODE_UNION;
2763 break;
2764 }
2765 type = read_struct_type (pp, type, objfile);
2766 break;
2767
2768 case 'a': /* Array type */
2769 if (**pp != 'r')
2770 return error_type (pp, objfile);
2771 ++*pp;
2772
2773 type = dbx_alloc_type (typenums, objfile);
2774 type = read_array_type (pp, type, objfile);
2775 if (is_string)
2776 TYPE_CODE (type) = TYPE_CODE_STRING;
2777 break;
2778
2779 case 'S':
2780 type1 = read_type (pp, objfile);
2781 type = create_set_type ((struct type *) NULL, type1);
2782 if (is_string)
2783 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
2784 if (typenums[0] != -1)
2785 *dbx_lookup_type (typenums) = type;
2786 break;
2787
2788 default:
2789 --*pp; /* Go back to the symbol in error */
2790 /* Particularly important if it was \0! */
2791 return error_type (pp, objfile);
2792 }
2793
2794 if (type == 0)
2795 {
2796 warning ("GDB internal error, type is NULL in stabsread.c\n");
2797 return error_type (pp, objfile);
2798 }
2799
2800 /* Size specified in a type attribute overrides any other size. */
2801 if (type_size != -1)
2802 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2803
2804 return type;
2805 }
2806 \f
2807 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2808 Return the proper type node for a given builtin type number. */
2809
2810 static struct type *
2811 rs6000_builtin_type (typenum)
2812 int typenum;
2813 {
2814 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2815 #define NUMBER_RECOGNIZED 34
2816 /* This includes an empty slot for type number -0. */
2817 static struct type *negative_types[NUMBER_RECOGNIZED + 1];
2818 struct type *rettype = NULL;
2819
2820 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2821 {
2822 complain (&rs6000_builtin_complaint, typenum);
2823 return builtin_type_error;
2824 }
2825 if (negative_types[-typenum] != NULL)
2826 return negative_types[-typenum];
2827
2828 #if TARGET_CHAR_BIT != 8
2829 #error This code wrong for TARGET_CHAR_BIT not 8
2830 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2831 that if that ever becomes not true, the correct fix will be to
2832 make the size in the struct type to be in bits, not in units of
2833 TARGET_CHAR_BIT. */
2834 #endif
2835
2836 switch (-typenum)
2837 {
2838 case 1:
2839 /* The size of this and all the other types are fixed, defined
2840 by the debugging format. If there is a type called "int" which
2841 is other than 32 bits, then it should use a new negative type
2842 number (or avoid negative type numbers for that case).
2843 See stabs.texinfo. */
2844 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
2845 break;
2846 case 2:
2847 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
2848 break;
2849 case 3:
2850 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
2851 break;
2852 case 4:
2853 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
2854 break;
2855 case 5:
2856 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
2857 "unsigned char", NULL);
2858 break;
2859 case 6:
2860 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
2861 break;
2862 case 7:
2863 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
2864 "unsigned short", NULL);
2865 break;
2866 case 8:
2867 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2868 "unsigned int", NULL);
2869 break;
2870 case 9:
2871 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2872 "unsigned", NULL);
2873 case 10:
2874 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2875 "unsigned long", NULL);
2876 break;
2877 case 11:
2878 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", NULL);
2879 break;
2880 case 12:
2881 /* IEEE single precision (32 bit). */
2882 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
2883 break;
2884 case 13:
2885 /* IEEE double precision (64 bit). */
2886 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
2887 break;
2888 case 14:
2889 /* This is an IEEE double on the RS/6000, and different machines with
2890 different sizes for "long double" should use different negative
2891 type numbers. See stabs.texinfo. */
2892 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
2893 break;
2894 case 15:
2895 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
2896 break;
2897 case 16:
2898 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2899 "boolean", NULL);
2900 break;
2901 case 17:
2902 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
2903 break;
2904 case 18:
2905 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
2906 break;
2907 case 19:
2908 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
2909 break;
2910 case 20:
2911 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2912 "character", NULL);
2913 break;
2914 case 21:
2915 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2916 "logical*1", NULL);
2917 break;
2918 case 22:
2919 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2920 "logical*2", NULL);
2921 break;
2922 case 23:
2923 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2924 "logical*4", NULL);
2925 break;
2926 case 24:
2927 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2928 "logical", NULL);
2929 break;
2930 case 25:
2931 /* Complex type consisting of two IEEE single precision values. */
2932 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", NULL);
2933 break;
2934 case 26:
2935 /* Complex type consisting of two IEEE double precision values. */
2936 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2937 break;
2938 case 27:
2939 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
2940 break;
2941 case 28:
2942 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
2943 break;
2944 case 29:
2945 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
2946 break;
2947 case 30:
2948 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
2949 break;
2950 case 31:
2951 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", NULL);
2952 break;
2953 case 32:
2954 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2955 "unsigned long long", NULL);
2956 break;
2957 case 33:
2958 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2959 "logical*8", NULL);
2960 break;
2961 case 34:
2962 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", NULL);
2963 break;
2964 }
2965 negative_types[-typenum] = rettype;
2966 return rettype;
2967 }
2968 \f
2969 /* This page contains subroutines of read_type. */
2970
2971 /* Read member function stabs info for C++ classes. The form of each member
2972 function data is:
2973
2974 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2975
2976 An example with two member functions is:
2977
2978 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2979
2980 For the case of overloaded operators, the format is op$::*.funcs, where
2981 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2982 name (such as `+=') and `.' marks the end of the operator name.
2983
2984 Returns 1 for success, 0 for failure. */
2985
2986 static int
2987 read_member_functions (fip, pp, type, objfile)
2988 struct field_info *fip;
2989 char **pp;
2990 struct type *type;
2991 struct objfile *objfile;
2992 {
2993 int nfn_fields = 0;
2994 int length = 0;
2995 /* Total number of member functions defined in this class. If the class
2996 defines two `f' functions, and one `g' function, then this will have
2997 the value 3. */
2998 int total_length = 0;
2999 int i;
3000 struct next_fnfield
3001 {
3002 struct next_fnfield *next;
3003 struct fn_field fn_field;
3004 }
3005 *sublist;
3006 struct type *look_ahead_type;
3007 struct next_fnfieldlist *new_fnlist;
3008 struct next_fnfield *new_sublist;
3009 char *main_fn_name;
3010 register char *p;
3011
3012 /* Process each list until we find something that is not a member function
3013 or find the end of the functions. */
3014
3015 while (**pp != ';')
3016 {
3017 /* We should be positioned at the start of the function name.
3018 Scan forward to find the first ':' and if it is not the
3019 first of a "::" delimiter, then this is not a member function. */
3020 p = *pp;
3021 while (*p != ':')
3022 {
3023 p++;
3024 }
3025 if (p[1] != ':')
3026 {
3027 break;
3028 }
3029
3030 sublist = NULL;
3031 look_ahead_type = NULL;
3032 length = 0;
3033
3034 new_fnlist = (struct next_fnfieldlist *)
3035 xmalloc (sizeof (struct next_fnfieldlist));
3036 make_cleanup (free, new_fnlist);
3037 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
3038
3039 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
3040 {
3041 /* This is a completely wierd case. In order to stuff in the
3042 names that might contain colons (the usual name delimiter),
3043 Mike Tiemann defined a different name format which is
3044 signalled if the identifier is "op$". In that case, the
3045 format is "op$::XXXX." where XXXX is the name. This is
3046 used for names like "+" or "=". YUUUUUUUK! FIXME! */
3047 /* This lets the user type "break operator+".
3048 We could just put in "+" as the name, but that wouldn't
3049 work for "*". */
3050 static char opname[32] =
3051 {'o', 'p', CPLUS_MARKER};
3052 char *o = opname + 3;
3053
3054 /* Skip past '::'. */
3055 *pp = p + 2;
3056
3057 STABS_CONTINUE (pp, objfile);
3058 p = *pp;
3059 while (*p != '.')
3060 {
3061 *o++ = *p++;
3062 }
3063 main_fn_name = savestring (opname, o - opname);
3064 /* Skip past '.' */
3065 *pp = p + 1;
3066 }
3067 else
3068 {
3069 main_fn_name = savestring (*pp, p - *pp);
3070 /* Skip past '::'. */
3071 *pp = p + 2;
3072 }
3073 new_fnlist->fn_fieldlist.name = main_fn_name;
3074
3075 do
3076 {
3077 new_sublist =
3078 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
3079 make_cleanup (free, new_sublist);
3080 memset (new_sublist, 0, sizeof (struct next_fnfield));
3081
3082 /* Check for and handle cretinous dbx symbol name continuation! */
3083 if (look_ahead_type == NULL)
3084 {
3085 /* Normal case. */
3086 STABS_CONTINUE (pp, objfile);
3087
3088 new_sublist->fn_field.type = read_type (pp, objfile);
3089 if (**pp != ':')
3090 {
3091 /* Invalid symtab info for member function. */
3092 return 0;
3093 }
3094 }
3095 else
3096 {
3097 /* g++ version 1 kludge */
3098 new_sublist->fn_field.type = look_ahead_type;
3099 look_ahead_type = NULL;
3100 }
3101
3102 (*pp)++;
3103 p = *pp;
3104 while (*p != ';')
3105 {
3106 p++;
3107 }
3108
3109 /* If this is just a stub, then we don't have the real name here. */
3110
3111 if (TYPE_FLAGS (new_sublist->fn_field.type) & TYPE_FLAG_STUB)
3112 {
3113 if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
3114 TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
3115 new_sublist->fn_field.is_stub = 1;
3116 }
3117 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
3118 *pp = p + 1;
3119
3120 /* Set this member function's visibility fields. */
3121 switch (*(*pp)++)
3122 {
3123 case VISIBILITY_PRIVATE:
3124 new_sublist->fn_field.is_private = 1;
3125 break;
3126 case VISIBILITY_PROTECTED:
3127 new_sublist->fn_field.is_protected = 1;
3128 break;
3129 }
3130
3131 STABS_CONTINUE (pp, objfile);
3132 switch (**pp)
3133 {
3134 case 'A': /* Normal functions. */
3135 new_sublist->fn_field.is_const = 0;
3136 new_sublist->fn_field.is_volatile = 0;
3137 (*pp)++;
3138 break;
3139 case 'B': /* `const' member functions. */
3140 new_sublist->fn_field.is_const = 1;
3141 new_sublist->fn_field.is_volatile = 0;
3142 (*pp)++;
3143 break;
3144 case 'C': /* `volatile' member function. */
3145 new_sublist->fn_field.is_const = 0;
3146 new_sublist->fn_field.is_volatile = 1;
3147 (*pp)++;
3148 break;
3149 case 'D': /* `const volatile' member function. */
3150 new_sublist->fn_field.is_const = 1;
3151 new_sublist->fn_field.is_volatile = 1;
3152 (*pp)++;
3153 break;
3154 case '*': /* File compiled with g++ version 1 -- no info */
3155 case '?':
3156 case '.':
3157 break;
3158 default:
3159 complain (&const_vol_complaint, **pp);
3160 break;
3161 }
3162
3163 switch (*(*pp)++)
3164 {
3165 case '*':
3166 {
3167 int nbits;
3168 /* virtual member function, followed by index.
3169 The sign bit is set to distinguish pointers-to-methods
3170 from virtual function indicies. Since the array is
3171 in words, the quantity must be shifted left by 1
3172 on 16 bit machine, and by 2 on 32 bit machine, forcing
3173 the sign bit out, and usable as a valid index into
3174 the array. Remove the sign bit here. */
3175 new_sublist->fn_field.voffset =
3176 (0x7fffffff & read_huge_number (pp, ';', &nbits)) + 2;
3177 if (nbits != 0)
3178 return 0;
3179
3180 STABS_CONTINUE (pp, objfile);
3181 if (**pp == ';' || **pp == '\0')
3182 {
3183 /* Must be g++ version 1. */
3184 new_sublist->fn_field.fcontext = 0;
3185 }
3186 else
3187 {
3188 /* Figure out from whence this virtual function came.
3189 It may belong to virtual function table of
3190 one of its baseclasses. */
3191 look_ahead_type = read_type (pp, objfile);
3192 if (**pp == ':')
3193 {
3194 /* g++ version 1 overloaded methods. */
3195 }
3196 else
3197 {
3198 new_sublist->fn_field.fcontext = look_ahead_type;
3199 if (**pp != ';')
3200 {
3201 return 0;
3202 }
3203 else
3204 {
3205 ++*pp;
3206 }
3207 look_ahead_type = NULL;
3208 }
3209 }
3210 break;
3211 }
3212 case '?':
3213 /* static member function. */
3214 new_sublist->fn_field.voffset = VOFFSET_STATIC;
3215 if (strncmp (new_sublist->fn_field.physname,
3216 main_fn_name, strlen (main_fn_name)))
3217 {
3218 new_sublist->fn_field.is_stub = 1;
3219 }
3220 break;
3221
3222 default:
3223 /* error */
3224 complain (&member_fn_complaint, (*pp)[-1]);
3225 /* Fall through into normal member function. */
3226
3227 case '.':
3228 /* normal member function. */
3229 new_sublist->fn_field.voffset = 0;
3230 new_sublist->fn_field.fcontext = 0;
3231 break;
3232 }
3233
3234 new_sublist->next = sublist;
3235 sublist = new_sublist;
3236 length++;
3237 STABS_CONTINUE (pp, objfile);
3238 }
3239 while (**pp != ';' && **pp != '\0');
3240
3241 (*pp)++;
3242
3243 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
3244 obstack_alloc (&objfile->type_obstack,
3245 sizeof (struct fn_field) * length);
3246 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
3247 sizeof (struct fn_field) * length);
3248 for (i = length; (i--, sublist); sublist = sublist->next)
3249 {
3250 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
3251 }
3252
3253 new_fnlist->fn_fieldlist.length = length;
3254 new_fnlist->next = fip->fnlist;
3255 fip->fnlist = new_fnlist;
3256 nfn_fields++;
3257 total_length += length;
3258 STABS_CONTINUE (pp, objfile);
3259 }
3260
3261 if (nfn_fields)
3262 {
3263 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3264 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
3265 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
3266 memset (TYPE_FN_FIELDLISTS (type), 0,
3267 sizeof (struct fn_fieldlist) * nfn_fields);
3268 TYPE_NFN_FIELDS (type) = nfn_fields;
3269 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
3270 }
3271
3272 return 1;
3273 }
3274
3275 /* Special GNU C++ name.
3276
3277 Returns 1 for success, 0 for failure. "failure" means that we can't
3278 keep parsing and it's time for error_type(). */
3279
3280 static int
3281 read_cpp_abbrev (fip, pp, type, objfile)
3282 struct field_info *fip;
3283 char **pp;
3284 struct type *type;
3285 struct objfile *objfile;
3286 {
3287 register char *p;
3288 char *name;
3289 char cpp_abbrev;
3290 struct type *context;
3291
3292 p = *pp;
3293 if (*++p == 'v')
3294 {
3295 name = NULL;
3296 cpp_abbrev = *++p;
3297
3298 *pp = p + 1;
3299
3300 /* At this point, *pp points to something like "22:23=*22...",
3301 where the type number before the ':' is the "context" and
3302 everything after is a regular type definition. Lookup the
3303 type, find it's name, and construct the field name. */
3304
3305 context = read_type (pp, objfile);
3306
3307 switch (cpp_abbrev)
3308 {
3309 case 'f': /* $vf -- a virtual function table pointer */
3310 fip->list->field.name =
3311 obconcat (&objfile->type_obstack, vptr_name, "", "");
3312 break;
3313
3314 case 'b': /* $vb -- a virtual bsomethingorother */
3315 name = type_name_no_tag (context);
3316 if (name == NULL)
3317 {
3318 complain (&invalid_cpp_type_complaint, symnum);
3319 name = "FOO";
3320 }
3321 fip->list->field.name =
3322 obconcat (&objfile->type_obstack, vb_name, name, "");
3323 break;
3324
3325 default:
3326 complain (&invalid_cpp_abbrev_complaint, *pp);
3327 fip->list->field.name =
3328 obconcat (&objfile->type_obstack,
3329 "INVALID_CPLUSPLUS_ABBREV", "", "");
3330 break;
3331 }
3332
3333 /* At this point, *pp points to the ':'. Skip it and read the
3334 field type. */
3335
3336 p = ++(*pp);
3337 if (p[-1] != ':')
3338 {
3339 complain (&invalid_cpp_abbrev_complaint, *pp);
3340 return 0;
3341 }
3342 fip->list->field.type = read_type (pp, objfile);
3343 if (**pp == ',')
3344 (*pp)++; /* Skip the comma. */
3345 else
3346 return 0;
3347
3348 {
3349 int nbits;
3350 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ';', &nbits);
3351 if (nbits != 0)
3352 return 0;
3353 }
3354 /* This field is unpacked. */
3355 FIELD_BITSIZE (fip->list->field) = 0;
3356 fip->list->visibility = VISIBILITY_PRIVATE;
3357 }
3358 else
3359 {
3360 complain (&invalid_cpp_abbrev_complaint, *pp);
3361 /* We have no idea what syntax an unrecognized abbrev would have, so
3362 better return 0. If we returned 1, we would need to at least advance
3363 *pp to avoid an infinite loop. */
3364 return 0;
3365 }
3366 return 1;
3367 }
3368
3369 static void
3370 read_one_struct_field (fip, pp, p, type, objfile)
3371 struct field_info *fip;
3372 char **pp;
3373 char *p;
3374 struct type *type;
3375 struct objfile *objfile;
3376 {
3377 /* The following is code to work around cfront generated stabs.
3378 The stabs contains full mangled name for each field.
3379 We try to demangle the name and extract the field name out of it.
3380 */
3381 if (ARM_DEMANGLING && current_subfile->language == language_cplus)
3382 {
3383 char save_p;
3384 char *dem, *dem_p;
3385 save_p = *p;
3386 *p = '\0';
3387 dem = cplus_demangle (*pp, DMGL_ANSI | DMGL_PARAMS);
3388 if (dem != NULL)
3389 {
3390 dem_p = strrchr (dem, ':');
3391 if (dem_p != 0 && *(dem_p - 1) == ':')
3392 dem_p++;
3393 FIELD_NAME (fip->list->field) =
3394 obsavestring (dem_p, strlen (dem_p), &objfile->type_obstack);
3395 }
3396 else
3397 {
3398 FIELD_NAME (fip->list->field) =
3399 obsavestring (*pp, p - *pp, &objfile->type_obstack);
3400 }
3401 *p = save_p;
3402 }
3403 /* end of code for cfront work around */
3404
3405 else
3406 fip->list->field.name =
3407 obsavestring (*pp, p - *pp, &objfile->type_obstack);
3408 *pp = p + 1;
3409
3410 /* This means we have a visibility for a field coming. */
3411 if (**pp == '/')
3412 {
3413 (*pp)++;
3414 fip->list->visibility = *(*pp)++;
3415 }
3416 else
3417 {
3418 /* normal dbx-style format, no explicit visibility */
3419 fip->list->visibility = VISIBILITY_PUBLIC;
3420 }
3421
3422 fip->list->field.type = read_type (pp, objfile);
3423 if (**pp == ':')
3424 {
3425 p = ++(*pp);
3426 #if 0
3427 /* Possible future hook for nested types. */
3428 if (**pp == '!')
3429 {
3430 fip->list->field.bitpos = (long) -2; /* nested type */
3431 p = ++(*pp);
3432 }
3433 else
3434 ...;
3435 #endif
3436 while (*p != ';')
3437 {
3438 p++;
3439 }
3440 /* Static class member. */
3441 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
3442 *pp = p + 1;
3443 return;
3444 }
3445 else if (**pp != ',')
3446 {
3447 /* Bad structure-type format. */
3448 complain (&stabs_general_complaint, "bad structure-type format");
3449 return;
3450 }
3451
3452 (*pp)++; /* Skip the comma. */
3453
3454 {
3455 int nbits;
3456 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ',', &nbits);
3457 if (nbits != 0)
3458 {
3459 complain (&stabs_general_complaint, "bad structure-type format");
3460 return;
3461 }
3462 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits);
3463 if (nbits != 0)
3464 {
3465 complain (&stabs_general_complaint, "bad structure-type format");
3466 return;
3467 }
3468 }
3469
3470 if (FIELD_BITPOS (fip->list->field) == 0
3471 && FIELD_BITSIZE (fip->list->field) == 0)
3472 {
3473 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
3474 it is a field which has been optimized out. The correct stab for
3475 this case is to use VISIBILITY_IGNORE, but that is a recent
3476 invention. (2) It is a 0-size array. For example
3477 union { int num; char str[0]; } foo. Printing "<no value>" for
3478 str in "p foo" is OK, since foo.str (and thus foo.str[3])
3479 will continue to work, and a 0-size array as a whole doesn't
3480 have any contents to print.
3481
3482 I suspect this probably could also happen with gcc -gstabs (not
3483 -gstabs+) for static fields, and perhaps other C++ extensions.
3484 Hopefully few people use -gstabs with gdb, since it is intended
3485 for dbx compatibility. */
3486
3487 /* Ignore this field. */
3488 fip->list->visibility = VISIBILITY_IGNORE;
3489 }
3490 else
3491 {
3492 /* Detect an unpacked field and mark it as such.
3493 dbx gives a bit size for all fields.
3494 Note that forward refs cannot be packed,
3495 and treat enums as if they had the width of ints. */
3496
3497 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
3498
3499 if (TYPE_CODE (field_type) != TYPE_CODE_INT
3500 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
3501 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
3502 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
3503 {
3504 FIELD_BITSIZE (fip->list->field) = 0;
3505 }
3506 if ((FIELD_BITSIZE (fip->list->field)
3507 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
3508 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
3509 && FIELD_BITSIZE (fip->list->field) == TARGET_INT_BIT)
3510 )
3511 &&
3512 FIELD_BITPOS (fip->list->field) % 8 == 0)
3513 {
3514 FIELD_BITSIZE (fip->list->field) = 0;
3515 }
3516 }
3517 }
3518
3519
3520 /* Read struct or class data fields. They have the form:
3521
3522 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
3523
3524 At the end, we see a semicolon instead of a field.
3525
3526 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
3527 a static field.
3528
3529 The optional VISIBILITY is one of:
3530
3531 '/0' (VISIBILITY_PRIVATE)
3532 '/1' (VISIBILITY_PROTECTED)
3533 '/2' (VISIBILITY_PUBLIC)
3534 '/9' (VISIBILITY_IGNORE)
3535
3536 or nothing, for C style fields with public visibility.
3537
3538 Returns 1 for success, 0 for failure. */
3539
3540 static int
3541 read_struct_fields (fip, pp, type, objfile)
3542 struct field_info *fip;
3543 char **pp;
3544 struct type *type;
3545 struct objfile *objfile;
3546 {
3547 register char *p;
3548 struct nextfield *new;
3549
3550 /* We better set p right now, in case there are no fields at all... */
3551
3552 p = *pp;
3553
3554 /* Read each data member type until we find the terminating ';' at the end of
3555 the data member list, or break for some other reason such as finding the
3556 start of the member function list. */
3557
3558 while (**pp != ';')
3559 {
3560 if (os9k_stabs && **pp == ',')
3561 break;
3562 STABS_CONTINUE (pp, objfile);
3563 /* Get space to record the next field's data. */
3564 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3565 make_cleanup (free, new);
3566 memset (new, 0, sizeof (struct nextfield));
3567 new->next = fip->list;
3568 fip->list = new;
3569
3570 /* Get the field name. */
3571 p = *pp;
3572
3573 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3574 unless the CPLUS_MARKER is followed by an underscore, in
3575 which case it is just the name of an anonymous type, which we
3576 should handle like any other type name. */
3577
3578 if (is_cplus_marker (p[0]) && p[1] != '_')
3579 {
3580 if (!read_cpp_abbrev (fip, pp, type, objfile))
3581 return 0;
3582 continue;
3583 }
3584
3585 /* Look for the ':' that separates the field name from the field
3586 values. Data members are delimited by a single ':', while member
3587 functions are delimited by a pair of ':'s. When we hit the member
3588 functions (if any), terminate scan loop and return. */
3589
3590 while (*p != ':' && *p != '\0')
3591 {
3592 p++;
3593 }
3594 if (*p == '\0')
3595 return 0;
3596
3597 /* Check to see if we have hit the member functions yet. */
3598 if (p[1] == ':')
3599 {
3600 break;
3601 }
3602 read_one_struct_field (fip, pp, p, type, objfile);
3603 }
3604 if (p[0] == ':' && p[1] == ':')
3605 {
3606 /* chill the list of fields: the last entry (at the head) is a
3607 partially constructed entry which we now scrub. */
3608 fip->list = fip->list->next;
3609 }
3610 return 1;
3611 }
3612 /* *INDENT-OFF* */
3613 /* The stabs for C++ derived classes contain baseclass information which
3614 is marked by a '!' character after the total size. This function is
3615 called when we encounter the baseclass marker, and slurps up all the
3616 baseclass information.
3617
3618 Immediately following the '!' marker is the number of base classes that
3619 the class is derived from, followed by information for each base class.
3620 For each base class, there are two visibility specifiers, a bit offset
3621 to the base class information within the derived class, a reference to
3622 the type for the base class, and a terminating semicolon.
3623
3624 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3625 ^^ ^ ^ ^ ^ ^ ^
3626 Baseclass information marker __________________|| | | | | | |
3627 Number of baseclasses __________________________| | | | | | |
3628 Visibility specifiers (2) ________________________| | | | | |
3629 Offset in bits from start of class _________________| | | | |
3630 Type number for base class ___________________________| | | |
3631 Visibility specifiers (2) _______________________________| | |
3632 Offset in bits from start of class ________________________| |
3633 Type number of base class ____________________________________|
3634
3635 Return 1 for success, 0 for (error-type-inducing) failure. */
3636 /* *INDENT-ON* */
3637
3638
3639
3640 static int
3641 read_baseclasses (fip, pp, type, objfile)
3642 struct field_info *fip;
3643 char **pp;
3644 struct type *type;
3645 struct objfile *objfile;
3646 {
3647 int i;
3648 struct nextfield *new;
3649
3650 if (**pp != '!')
3651 {
3652 return 1;
3653 }
3654 else
3655 {
3656 /* Skip the '!' baseclass information marker. */
3657 (*pp)++;
3658 }
3659
3660 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3661 {
3662 int nbits;
3663 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits);
3664 if (nbits != 0)
3665 return 0;
3666 }
3667
3668 #if 0
3669 /* Some stupid compilers have trouble with the following, so break
3670 it up into simpler expressions. */
3671 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3672 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3673 #else
3674 {
3675 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3676 char *pointer;
3677
3678 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3679 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3680 }
3681 #endif /* 0 */
3682
3683 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3684
3685 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3686 {
3687 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3688 make_cleanup (free, new);
3689 memset (new, 0, sizeof (struct nextfield));
3690 new->next = fip->list;
3691 fip->list = new;
3692 FIELD_BITSIZE (new->field) = 0; /* this should be an unpacked field! */
3693
3694 STABS_CONTINUE (pp, objfile);
3695 switch (**pp)
3696 {
3697 case '0':
3698 /* Nothing to do. */
3699 break;
3700 case '1':
3701 SET_TYPE_FIELD_VIRTUAL (type, i);
3702 break;
3703 default:
3704 /* Unknown character. Complain and treat it as non-virtual. */
3705 {
3706 static struct complaint msg =
3707 {
3708 "Unknown virtual character `%c' for baseclass", 0, 0};
3709 complain (&msg, **pp);
3710 }
3711 }
3712 ++(*pp);
3713
3714 new->visibility = *(*pp)++;
3715 switch (new->visibility)
3716 {
3717 case VISIBILITY_PRIVATE:
3718 case VISIBILITY_PROTECTED:
3719 case VISIBILITY_PUBLIC:
3720 break;
3721 default:
3722 /* Bad visibility format. Complain and treat it as
3723 public. */
3724 {
3725 static struct complaint msg =
3726 {
3727 "Unknown visibility `%c' for baseclass", 0, 0
3728 };
3729 complain (&msg, new->visibility);
3730 new->visibility = VISIBILITY_PUBLIC;
3731 }
3732 }
3733
3734 {
3735 int nbits;
3736
3737 /* The remaining value is the bit offset of the portion of the object
3738 corresponding to this baseclass. Always zero in the absence of
3739 multiple inheritance. */
3740
3741 FIELD_BITPOS (new->field) = read_huge_number (pp, ',', &nbits);
3742 if (nbits != 0)
3743 return 0;
3744 }
3745
3746 /* The last piece of baseclass information is the type of the
3747 base class. Read it, and remember it's type name as this
3748 field's name. */
3749
3750 new->field.type = read_type (pp, objfile);
3751 new->field.name = type_name_no_tag (new->field.type);
3752
3753 /* skip trailing ';' and bump count of number of fields seen */
3754 if (**pp == ';')
3755 (*pp)++;
3756 else
3757 return 0;
3758 }
3759 return 1;
3760 }
3761
3762 /* The tail end of stabs for C++ classes that contain a virtual function
3763 pointer contains a tilde, a %, and a type number.
3764 The type number refers to the base class (possibly this class itself) which
3765 contains the vtable pointer for the current class.
3766
3767 This function is called when we have parsed all the method declarations,
3768 so we can look for the vptr base class info. */
3769
3770 static int
3771 read_tilde_fields (fip, pp, type, objfile)
3772 struct field_info *fip;
3773 char **pp;
3774 struct type *type;
3775 struct objfile *objfile;
3776 {
3777 register char *p;
3778
3779 STABS_CONTINUE (pp, objfile);
3780
3781 /* If we are positioned at a ';', then skip it. */
3782 if (**pp == ';')
3783 {
3784 (*pp)++;
3785 }
3786
3787 if (**pp == '~')
3788 {
3789 (*pp)++;
3790
3791 if (**pp == '=' || **pp == '+' || **pp == '-')
3792 {
3793 /* Obsolete flags that used to indicate the presence
3794 of constructors and/or destructors. */
3795 (*pp)++;
3796 }
3797
3798 /* Read either a '%' or the final ';'. */
3799 if (*(*pp)++ == '%')
3800 {
3801 /* The next number is the type number of the base class
3802 (possibly our own class) which supplies the vtable for
3803 this class. Parse it out, and search that class to find
3804 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3805 and TYPE_VPTR_FIELDNO. */
3806
3807 struct type *t;
3808 int i;
3809
3810 t = read_type (pp, objfile);
3811 p = (*pp)++;
3812 while (*p != '\0' && *p != ';')
3813 {
3814 p++;
3815 }
3816 if (*p == '\0')
3817 {
3818 /* Premature end of symbol. */
3819 return 0;
3820 }
3821
3822 TYPE_VPTR_BASETYPE (type) = t;
3823 if (type == t) /* Our own class provides vtbl ptr */
3824 {
3825 for (i = TYPE_NFIELDS (t) - 1;
3826 i >= TYPE_N_BASECLASSES (t);
3827 --i)
3828 {
3829 if (!strncmp (TYPE_FIELD_NAME (t, i), vptr_name,
3830 sizeof (vptr_name) - 1))
3831 {
3832 TYPE_VPTR_FIELDNO (type) = i;
3833 goto gotit;
3834 }
3835 }
3836 /* Virtual function table field not found. */
3837 complain (&vtbl_notfound_complaint, TYPE_NAME (type));
3838 return 0;
3839 }
3840 else
3841 {
3842 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3843 }
3844
3845 gotit:
3846 *pp = p + 1;
3847 }
3848 }
3849 return 1;
3850 }
3851
3852 static int
3853 attach_fn_fields_to_type (fip, type)
3854 struct field_info *fip;
3855 register struct type *type;
3856 {
3857 register int n;
3858
3859 for (n = TYPE_NFN_FIELDS (type);
3860 fip->fnlist != NULL;
3861 fip->fnlist = fip->fnlist->next)
3862 {
3863 --n; /* Circumvent Sun3 compiler bug */
3864 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3865 }
3866 return 1;
3867 }
3868
3869 /* read cfront class static data.
3870 pp points to string starting with the list of static data
3871 eg: A:ZcA;1@Bpub v2@Bvirpri;__ct__1AFv func__1AFv *sfunc__1AFv ;as__1A ;;
3872 ^^^^^^^^
3873
3874 A:ZcA;;foopri__1AFv foopro__1AFv __ct__1AFv __ct__1AFRC1A foopub__1AFv ;;;
3875 ^
3876 */
3877
3878 static int
3879 read_cfront_static_fields (fip, pp, type, objfile)
3880 struct field_info *fip;
3881 char **pp;
3882 struct type *type;
3883 struct objfile *objfile;
3884 {
3885 struct nextfield *new;
3886 struct type *stype;
3887 char *sname;
3888 struct symbol *ref_static = 0;
3889
3890 if (**pp == ';') /* no static data; return */
3891 {
3892 ++(*pp);
3893 return 1;
3894 }
3895
3896 /* Process each field in the list until we find the terminating ";" */
3897
3898 /* eg: p = "as__1A ;;;" */
3899 STABS_CONTINUE (pp, objfile); /* handle \\ */
3900 while (**pp != ';' && (sname = get_substring (pp, ' '), sname))
3901 {
3902 ref_static = lookup_symbol (sname, 0, VAR_NAMESPACE, 0, 0); /*demangled_name */
3903 if (!ref_static)
3904 {
3905 static struct complaint msg =
3906 {"\
3907 Unable to find symbol for static data field %s\n",
3908 0, 0};
3909 complain (&msg, sname);
3910 continue;
3911 }
3912 stype = SYMBOL_TYPE (ref_static);
3913
3914 /* allocate a new fip */
3915 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3916 make_cleanup (free, new);
3917 memset (new, 0, sizeof (struct nextfield));
3918 new->next = fip->list;
3919 fip->list = new;
3920
3921 /* set visibility */
3922 /* FIXME! no way to tell visibility from stabs??? */
3923 new->visibility = VISIBILITY_PUBLIC;
3924
3925 /* set field info into fip */
3926 fip->list->field.type = stype;
3927
3928 /* set bitpos & bitsize */
3929 SET_FIELD_PHYSNAME (fip->list->field, savestring (sname, strlen (sname)));
3930
3931 /* set name field */
3932 /* The following is code to work around cfront generated stabs.
3933 The stabs contains full mangled name for each field.
3934 We try to demangle the name and extract the field name out of it.
3935 */
3936 if (ARM_DEMANGLING)
3937 {
3938 char *dem, *dem_p;
3939 dem = cplus_demangle (sname, DMGL_ANSI | DMGL_PARAMS);
3940 if (dem != NULL)
3941 {
3942 dem_p = strrchr (dem, ':');
3943 if (dem_p != 0 && *(dem_p - 1) == ':')
3944 dem_p++;
3945 fip->list->field.name =
3946 obsavestring (dem_p, strlen (dem_p), &objfile->type_obstack);
3947 }
3948 else
3949 {
3950 fip->list->field.name =
3951 obsavestring (sname, strlen (sname), &objfile->type_obstack);
3952 }
3953 } /* end of code for cfront work around */
3954 } /* loop again for next static field */
3955 return 1;
3956 }
3957
3958 /* Copy structure fields to fip so attach_fields_to_type will work.
3959 type has already been created with the initial instance data fields.
3960 Now we want to be able to add the other members to the class,
3961 so we want to add them back to the fip and reattach them again
3962 once we have collected all the class members. */
3963
3964 static int
3965 copy_cfront_struct_fields (fip, type, objfile)
3966 struct field_info *fip;
3967 struct type *type;
3968 struct objfile *objfile;
3969 {
3970 int nfields = TYPE_NFIELDS (type);
3971 int i;
3972 struct nextfield *new;
3973
3974 /* Copy the fields into the list of fips and reset the types
3975 to remove the old fields */
3976
3977 for (i = 0; i < nfields; i++)
3978 {
3979 /* allocate a new fip */
3980 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3981 make_cleanup (free, new);
3982 memset (new, 0, sizeof (struct nextfield));
3983 new->next = fip->list;
3984 fip->list = new;
3985
3986 /* copy field info into fip */
3987 new->field = TYPE_FIELD (type, i);
3988 /* set visibility */
3989 if (TYPE_FIELD_PROTECTED (type, i))
3990 new->visibility = VISIBILITY_PROTECTED;
3991 else if (TYPE_FIELD_PRIVATE (type, i))
3992 new->visibility = VISIBILITY_PRIVATE;
3993 else
3994 new->visibility = VISIBILITY_PUBLIC;
3995 }
3996 /* Now delete the fields from the type since we will be
3997 allocing new space once we get the rest of the fields
3998 in attach_fields_to_type.
3999 The pointer TYPE_FIELDS(type) is left dangling but should
4000 be freed later by objstack_free */
4001 TYPE_FIELDS (type) = 0;
4002 TYPE_NFIELDS (type) = 0;
4003
4004 return 1;
4005 }
4006
4007 /* Create the vector of fields, and record how big it is.
4008 We need this info to record proper virtual function table information
4009 for this class's virtual functions. */
4010
4011 static int
4012 attach_fields_to_type (fip, type, objfile)
4013 struct field_info *fip;
4014 register struct type *type;
4015 struct objfile *objfile;
4016 {
4017 register int nfields = 0;
4018 register int non_public_fields = 0;
4019 register struct nextfield *scan;
4020
4021 /* Count up the number of fields that we have, as well as taking note of
4022 whether or not there are any non-public fields, which requires us to
4023 allocate and build the private_field_bits and protected_field_bits
4024 bitfields. */
4025
4026 for (scan = fip->list; scan != NULL; scan = scan->next)
4027 {
4028 nfields++;
4029 if (scan->visibility != VISIBILITY_PUBLIC)
4030 {
4031 non_public_fields++;
4032 }
4033 }
4034
4035 /* Now we know how many fields there are, and whether or not there are any
4036 non-public fields. Record the field count, allocate space for the
4037 array of fields, and create blank visibility bitfields if necessary. */
4038
4039 TYPE_NFIELDS (type) = nfields;
4040 TYPE_FIELDS (type) = (struct field *)
4041 TYPE_ALLOC (type, sizeof (struct field) * nfields);
4042 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
4043
4044 if (non_public_fields)
4045 {
4046 ALLOCATE_CPLUS_STRUCT_TYPE (type);
4047
4048 TYPE_FIELD_PRIVATE_BITS (type) =
4049 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
4050 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
4051
4052 TYPE_FIELD_PROTECTED_BITS (type) =
4053 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
4054 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
4055
4056 TYPE_FIELD_IGNORE_BITS (type) =
4057 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
4058 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
4059 }
4060
4061 /* Copy the saved-up fields into the field vector. Start from the head
4062 of the list, adding to the tail of the field array, so that they end
4063 up in the same order in the array in which they were added to the list. */
4064
4065 while (nfields-- > 0)
4066 {
4067 TYPE_FIELD (type, nfields) = fip->list->field;
4068 switch (fip->list->visibility)
4069 {
4070 case VISIBILITY_PRIVATE:
4071 SET_TYPE_FIELD_PRIVATE (type, nfields);
4072 break;
4073
4074 case VISIBILITY_PROTECTED:
4075 SET_TYPE_FIELD_PROTECTED (type, nfields);
4076 break;
4077
4078 case VISIBILITY_IGNORE:
4079 SET_TYPE_FIELD_IGNORE (type, nfields);
4080 break;
4081
4082 case VISIBILITY_PUBLIC:
4083 break;
4084
4085 default:
4086 /* Unknown visibility. Complain and treat it as public. */
4087 {
4088 static struct complaint msg =
4089 {
4090 "Unknown visibility `%c' for field", 0, 0};
4091 complain (&msg, fip->list->visibility);
4092 }
4093 break;
4094 }
4095 fip->list = fip->list->next;
4096 }
4097 return 1;
4098 }
4099
4100 /* Read the description of a structure (or union type) and return an object
4101 describing the type.
4102
4103 PP points to a character pointer that points to the next unconsumed token
4104 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
4105 *PP will point to "4a:1,0,32;;".
4106
4107 TYPE points to an incomplete type that needs to be filled in.
4108
4109 OBJFILE points to the current objfile from which the stabs information is
4110 being read. (Note that it is redundant in that TYPE also contains a pointer
4111 to this same objfile, so it might be a good idea to eliminate it. FIXME).
4112 */
4113
4114 static struct type *
4115 read_struct_type (pp, type, objfile)
4116 char **pp;
4117 struct type *type;
4118 struct objfile *objfile;
4119 {
4120 struct cleanup *back_to;
4121 struct field_info fi;
4122
4123 fi.list = NULL;
4124 fi.fnlist = NULL;
4125
4126 back_to = make_cleanup (null_cleanup, 0);
4127
4128 INIT_CPLUS_SPECIFIC (type);
4129 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
4130
4131 /* First comes the total size in bytes. */
4132
4133 {
4134 int nbits;
4135 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits);
4136 if (nbits != 0)
4137 return error_type (pp, objfile);
4138 }
4139
4140 /* Now read the baseclasses, if any, read the regular C struct or C++
4141 class member fields, attach the fields to the type, read the C++
4142 member functions, attach them to the type, and then read any tilde
4143 field (baseclass specifier for the class holding the main vtable). */
4144
4145 if (!read_baseclasses (&fi, pp, type, objfile)
4146 || !read_struct_fields (&fi, pp, type, objfile)
4147 || !attach_fields_to_type (&fi, type, objfile)
4148 || !read_member_functions (&fi, pp, type, objfile)
4149 || !attach_fn_fields_to_type (&fi, type)
4150 || !read_tilde_fields (&fi, pp, type, objfile))
4151 {
4152 type = error_type (pp, objfile);
4153 }
4154
4155 do_cleanups (back_to);
4156 return (type);
4157 }
4158
4159 /* Read a definition of an array type,
4160 and create and return a suitable type object.
4161 Also creates a range type which represents the bounds of that
4162 array. */
4163
4164 static struct type *
4165 read_array_type (pp, type, objfile)
4166 register char **pp;
4167 register struct type *type;
4168 struct objfile *objfile;
4169 {
4170 struct type *index_type, *element_type, *range_type;
4171 int lower, upper;
4172 int adjustable = 0;
4173 int nbits;
4174
4175 /* Format of an array type:
4176 "ar<index type>;lower;upper;<array_contents_type>".
4177 OS9000: "arlower,upper;<array_contents_type>".
4178
4179 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
4180 for these, produce a type like float[][]. */
4181
4182 if (os9k_stabs)
4183 index_type = builtin_type_int;
4184 else
4185 {
4186 index_type = read_type (pp, objfile);
4187 if (**pp != ';')
4188 /* Improper format of array type decl. */
4189 return error_type (pp, objfile);
4190 ++*pp;
4191 }
4192
4193 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
4194 {
4195 (*pp)++;
4196 adjustable = 1;
4197 }
4198 lower = read_huge_number (pp, os9k_stabs ? ',' : ';', &nbits);
4199 if (nbits != 0)
4200 return error_type (pp, objfile);
4201
4202 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
4203 {
4204 (*pp)++;
4205 adjustable = 1;
4206 }
4207 upper = read_huge_number (pp, ';', &nbits);
4208 if (nbits != 0)
4209 return error_type (pp, objfile);
4210
4211 element_type = read_type (pp, objfile);
4212
4213 if (adjustable)
4214 {
4215 lower = 0;
4216 upper = -1;
4217 }
4218
4219 range_type =
4220 create_range_type ((struct type *) NULL, index_type, lower, upper);
4221 type = create_array_type (type, element_type, range_type);
4222
4223 return type;
4224 }
4225
4226
4227 /* Read a definition of an enumeration type,
4228 and create and return a suitable type object.
4229 Also defines the symbols that represent the values of the type. */
4230
4231 static struct type *
4232 read_enum_type (pp, type, objfile)
4233 register char **pp;
4234 register struct type *type;
4235 struct objfile *objfile;
4236 {
4237 register char *p;
4238 char *name;
4239 register long n;
4240 register struct symbol *sym;
4241 int nsyms = 0;
4242 struct pending **symlist;
4243 struct pending *osyms, *syms;
4244 int o_nsyms;
4245 int nbits;
4246 int unsigned_enum = 1;
4247
4248 #if 0
4249 /* FIXME! The stabs produced by Sun CC merrily define things that ought
4250 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
4251 to do? For now, force all enum values to file scope. */
4252 if (within_function)
4253 symlist = &local_symbols;
4254 else
4255 #endif
4256 symlist = &file_symbols;
4257 osyms = *symlist;
4258 o_nsyms = osyms ? osyms->nsyms : 0;
4259
4260 if (os9k_stabs)
4261 {
4262 /* Size. Perhaps this does not have to be conditionalized on
4263 os9k_stabs (assuming the name of an enum constant can't start
4264 with a digit). */
4265 read_huge_number (pp, 0, &nbits);
4266 if (nbits != 0)
4267 return error_type (pp, objfile);
4268 }
4269
4270 /* The aix4 compiler emits an extra field before the enum members;
4271 my guess is it's a type of some sort. Just ignore it. */
4272 if (**pp == '-')
4273 {
4274 /* Skip over the type. */
4275 while (**pp != ':')
4276 (*pp)++;
4277
4278 /* Skip over the colon. */
4279 (*pp)++;
4280 }
4281
4282 /* Read the value-names and their values.
4283 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
4284 A semicolon or comma instead of a NAME means the end. */
4285 while (**pp && **pp != ';' && **pp != ',')
4286 {
4287 STABS_CONTINUE (pp, objfile);
4288 p = *pp;
4289 while (*p != ':')
4290 p++;
4291 name = obsavestring (*pp, p - *pp, &objfile->symbol_obstack);
4292 *pp = p + 1;
4293 n = read_huge_number (pp, ',', &nbits);
4294 if (nbits != 0)
4295 return error_type (pp, objfile);
4296
4297 sym = (struct symbol *)
4298 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
4299 memset (sym, 0, sizeof (struct symbol));
4300 SYMBOL_NAME (sym) = name;
4301 SYMBOL_LANGUAGE (sym) = current_subfile->language;
4302 SYMBOL_CLASS (sym) = LOC_CONST;
4303 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
4304 SYMBOL_VALUE (sym) = n;
4305 if (n < 0)
4306 unsigned_enum = 0;
4307 add_symbol_to_list (sym, symlist);
4308 nsyms++;
4309 }
4310
4311 if (**pp == ';')
4312 (*pp)++; /* Skip the semicolon. */
4313
4314 /* Now fill in the fields of the type-structure. */
4315
4316 TYPE_LENGTH (type) = TARGET_INT_BIT / HOST_CHAR_BIT;
4317 TYPE_CODE (type) = TYPE_CODE_ENUM;
4318 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
4319 if (unsigned_enum)
4320 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
4321 TYPE_NFIELDS (type) = nsyms;
4322 TYPE_FIELDS (type) = (struct field *)
4323 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
4324 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
4325
4326 /* Find the symbols for the values and put them into the type.
4327 The symbols can be found in the symlist that we put them on
4328 to cause them to be defined. osyms contains the old value
4329 of that symlist; everything up to there was defined by us. */
4330 /* Note that we preserve the order of the enum constants, so
4331 that in something like "enum {FOO, LAST_THING=FOO}" we print
4332 FOO, not LAST_THING. */
4333
4334 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
4335 {
4336 int last = syms == osyms ? o_nsyms : 0;
4337 int j = syms->nsyms;
4338 for (; --j >= last; --n)
4339 {
4340 struct symbol *xsym = syms->symbol[j];
4341 SYMBOL_TYPE (xsym) = type;
4342 TYPE_FIELD_NAME (type, n) = SYMBOL_NAME (xsym);
4343 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
4344 TYPE_FIELD_BITSIZE (type, n) = 0;
4345 }
4346 if (syms == osyms)
4347 break;
4348 }
4349
4350 return type;
4351 }
4352
4353 /* Sun's ACC uses a somewhat saner method for specifying the builtin
4354 typedefs in every file (for int, long, etc):
4355
4356 type = b <signed> <width> <format type>; <offset>; <nbits>
4357 signed = u or s.
4358 optional format type = c or b for char or boolean.
4359 offset = offset from high order bit to start bit of type.
4360 width is # bytes in object of this type, nbits is # bits in type.
4361
4362 The width/offset stuff appears to be for small objects stored in
4363 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
4364 FIXME. */
4365
4366 static struct type *
4367 read_sun_builtin_type (pp, typenums, objfile)
4368 char **pp;
4369 int typenums[2];
4370 struct objfile *objfile;
4371 {
4372 int type_bits;
4373 int nbits;
4374 int signed_type;
4375 enum type_code code = TYPE_CODE_INT;
4376
4377 switch (**pp)
4378 {
4379 case 's':
4380 signed_type = 1;
4381 break;
4382 case 'u':
4383 signed_type = 0;
4384 break;
4385 default:
4386 return error_type (pp, objfile);
4387 }
4388 (*pp)++;
4389
4390 /* For some odd reason, all forms of char put a c here. This is strange
4391 because no other type has this honor. We can safely ignore this because
4392 we actually determine 'char'acterness by the number of bits specified in
4393 the descriptor.
4394 Boolean forms, e.g Fortran logical*X, put a b here. */
4395
4396 if (**pp == 'c')
4397 (*pp)++;
4398 else if (**pp == 'b')
4399 {
4400 code = TYPE_CODE_BOOL;
4401 (*pp)++;
4402 }
4403
4404 /* The first number appears to be the number of bytes occupied
4405 by this type, except that unsigned short is 4 instead of 2.
4406 Since this information is redundant with the third number,
4407 we will ignore it. */
4408 read_huge_number (pp, ';', &nbits);
4409 if (nbits != 0)
4410 return error_type (pp, objfile);
4411
4412 /* The second number is always 0, so ignore it too. */
4413 read_huge_number (pp, ';', &nbits);
4414 if (nbits != 0)
4415 return error_type (pp, objfile);
4416
4417 /* The third number is the number of bits for this type. */
4418 type_bits = read_huge_number (pp, 0, &nbits);
4419 if (nbits != 0)
4420 return error_type (pp, objfile);
4421 /* The type *should* end with a semicolon. If it are embedded
4422 in a larger type the semicolon may be the only way to know where
4423 the type ends. If this type is at the end of the stabstring we
4424 can deal with the omitted semicolon (but we don't have to like
4425 it). Don't bother to complain(), Sun's compiler omits the semicolon
4426 for "void". */
4427 if (**pp == ';')
4428 ++(*pp);
4429
4430 if (type_bits == 0)
4431 return init_type (TYPE_CODE_VOID, 1,
4432 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
4433 objfile);
4434 else
4435 return init_type (code,
4436 type_bits / TARGET_CHAR_BIT,
4437 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
4438 objfile);
4439 }
4440
4441 static struct type *
4442 read_sun_floating_type (pp, typenums, objfile)
4443 char **pp;
4444 int typenums[2];
4445 struct objfile *objfile;
4446 {
4447 int nbits;
4448 int details;
4449 int nbytes;
4450
4451 /* The first number has more details about the type, for example
4452 FN_COMPLEX. */
4453 details = read_huge_number (pp, ';', &nbits);
4454 if (nbits != 0)
4455 return error_type (pp, objfile);
4456
4457 /* The second number is the number of bytes occupied by this type */
4458 nbytes = read_huge_number (pp, ';', &nbits);
4459 if (nbits != 0)
4460 return error_type (pp, objfile);
4461
4462 if (details == NF_COMPLEX || details == NF_COMPLEX16
4463 || details == NF_COMPLEX32)
4464 /* This is a type we can't handle, but we do know the size.
4465 We also will be able to give it a name. */
4466 return init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
4467
4468 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
4469 }
4470
4471 /* Read a number from the string pointed to by *PP.
4472 The value of *PP is advanced over the number.
4473 If END is nonzero, the character that ends the
4474 number must match END, or an error happens;
4475 and that character is skipped if it does match.
4476 If END is zero, *PP is left pointing to that character.
4477
4478 If the number fits in a long, set *BITS to 0 and return the value.
4479 If not, set *BITS to be the number of bits in the number and return 0.
4480
4481 If encounter garbage, set *BITS to -1 and return 0. */
4482
4483 static long
4484 read_huge_number (pp, end, bits)
4485 char **pp;
4486 int end;
4487 int *bits;
4488 {
4489 char *p = *pp;
4490 int sign = 1;
4491 long n = 0;
4492 int radix = 10;
4493 char overflow = 0;
4494 int nbits = 0;
4495 int c;
4496 long upper_limit;
4497
4498 if (*p == '-')
4499 {
4500 sign = -1;
4501 p++;
4502 }
4503
4504 /* Leading zero means octal. GCC uses this to output values larger
4505 than an int (because that would be hard in decimal). */
4506 if (*p == '0')
4507 {
4508 radix = 8;
4509 p++;
4510 }
4511
4512 if (os9k_stabs)
4513 upper_limit = ULONG_MAX / radix;
4514 else
4515 upper_limit = LONG_MAX / radix;
4516
4517 while ((c = *p++) >= '0' && c < ('0' + radix))
4518 {
4519 if (n <= upper_limit)
4520 {
4521 n *= radix;
4522 n += c - '0'; /* FIXME this overflows anyway */
4523 }
4524 else
4525 overflow = 1;
4526
4527 /* This depends on large values being output in octal, which is
4528 what GCC does. */
4529 if (radix == 8)
4530 {
4531 if (nbits == 0)
4532 {
4533 if (c == '0')
4534 /* Ignore leading zeroes. */
4535 ;
4536 else if (c == '1')
4537 nbits = 1;
4538 else if (c == '2' || c == '3')
4539 nbits = 2;
4540 else
4541 nbits = 3;
4542 }
4543 else
4544 nbits += 3;
4545 }
4546 }
4547 if (end)
4548 {
4549 if (c && c != end)
4550 {
4551 if (bits != NULL)
4552 *bits = -1;
4553 return 0;
4554 }
4555 }
4556 else
4557 --p;
4558
4559 *pp = p;
4560 if (overflow)
4561 {
4562 if (nbits == 0)
4563 {
4564 /* Large decimal constants are an error (because it is hard to
4565 count how many bits are in them). */
4566 if (bits != NULL)
4567 *bits = -1;
4568 return 0;
4569 }
4570
4571 /* -0x7f is the same as 0x80. So deal with it by adding one to
4572 the number of bits. */
4573 if (sign == -1)
4574 ++nbits;
4575 if (bits)
4576 *bits = nbits;
4577 }
4578 else
4579 {
4580 if (bits)
4581 *bits = 0;
4582 return n * sign;
4583 }
4584 /* It's *BITS which has the interesting information. */
4585 return 0;
4586 }
4587
4588 static struct type *
4589 read_range_type (pp, typenums, objfile)
4590 char **pp;
4591 int typenums[2];
4592 struct objfile *objfile;
4593 {
4594 char *orig_pp = *pp;
4595 int rangenums[2];
4596 long n2, n3;
4597 int n2bits, n3bits;
4598 int self_subrange;
4599 struct type *result_type;
4600 struct type *index_type = NULL;
4601
4602 /* First comes a type we are a subrange of.
4603 In C it is usually 0, 1 or the type being defined. */
4604 if (read_type_number (pp, rangenums) != 0)
4605 return error_type (pp, objfile);
4606 self_subrange = (rangenums[0] == typenums[0] &&
4607 rangenums[1] == typenums[1]);
4608
4609 if (**pp == '=')
4610 {
4611 *pp = orig_pp;
4612 index_type = read_type (pp, objfile);
4613 }
4614
4615 /* A semicolon should now follow; skip it. */
4616 if (**pp == ';')
4617 (*pp)++;
4618
4619 /* The remaining two operands are usually lower and upper bounds
4620 of the range. But in some special cases they mean something else. */
4621 n2 = read_huge_number (pp, ';', &n2bits);
4622 n3 = read_huge_number (pp, ';', &n3bits);
4623
4624 if (n2bits == -1 || n3bits == -1)
4625 return error_type (pp, objfile);
4626
4627 if (index_type)
4628 goto handle_true_range;
4629
4630 /* If limits are huge, must be large integral type. */
4631 if (n2bits != 0 || n3bits != 0)
4632 {
4633 char got_signed = 0;
4634 char got_unsigned = 0;
4635 /* Number of bits in the type. */
4636 int nbits = 0;
4637
4638 /* Range from 0 to <large number> is an unsigned large integral type. */
4639 if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4640 {
4641 got_unsigned = 1;
4642 nbits = n3bits;
4643 }
4644 /* Range from <large number> to <large number>-1 is a large signed
4645 integral type. Take care of the case where <large number> doesn't
4646 fit in a long but <large number>-1 does. */
4647 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4648 || (n2bits != 0 && n3bits == 0
4649 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4650 && n3 == LONG_MAX))
4651 {
4652 got_signed = 1;
4653 nbits = n2bits;
4654 }
4655
4656 if (got_signed || got_unsigned)
4657 {
4658 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
4659 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
4660 objfile);
4661 }
4662 else
4663 return error_type (pp, objfile);
4664 }
4665
4666 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4667 if (self_subrange && n2 == 0 && n3 == 0)
4668 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
4669
4670 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4671 is the width in bytes.
4672
4673 Fortran programs appear to use this for complex types also. To
4674 distinguish between floats and complex, g77 (and others?) seem
4675 to use self-subranges for the complexes, and subranges of int for
4676 the floats.
4677
4678 Also note that for complexes, g77 sets n2 to the size of one of
4679 the member floats, not the whole complex beast. My guess is that
4680 this was to work well with pre-COMPLEX versions of gdb. */
4681
4682 if (n3 == 0 && n2 > 0)
4683 {
4684 if (self_subrange)
4685 {
4686 return init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
4687 }
4688 else
4689 {
4690 return init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
4691 }
4692 }
4693
4694 /* If the upper bound is -1, it must really be an unsigned int. */
4695
4696 else if (n2 == 0 && n3 == -1)
4697 {
4698 /* It is unsigned int or unsigned long. */
4699 /* GCC 2.3.3 uses this for long long too, but that is just a GDB 3.5
4700 compatibility hack. */
4701 return init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
4702 TYPE_FLAG_UNSIGNED, NULL, objfile);
4703 }
4704
4705 /* Special case: char is defined (Who knows why) as a subrange of
4706 itself with range 0-127. */
4707 else if (self_subrange && n2 == 0 && n3 == 127)
4708 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4709
4710 else if (current_symbol && SYMBOL_LANGUAGE (current_symbol) == language_chill
4711 && !self_subrange)
4712 goto handle_true_range;
4713
4714 /* We used to do this only for subrange of self or subrange of int. */
4715 else if (n2 == 0)
4716 {
4717 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4718 "unsigned long", and we already checked for that,
4719 so don't need to test for it here. */
4720
4721 if (n3 < 0)
4722 /* n3 actually gives the size. */
4723 return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
4724 NULL, objfile);
4725
4726 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4727 unsigned n-byte integer. But do require n to be a power of
4728 two; we don't want 3- and 5-byte integers flying around. */
4729 {
4730 int bytes;
4731 unsigned long bits;
4732
4733 bits = n3;
4734 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4735 bits >>= 8;
4736 if (bits == 0
4737 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4738 return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
4739 objfile);
4740 }
4741 }
4742 /* I think this is for Convex "long long". Since I don't know whether
4743 Convex sets self_subrange, I also accept that particular size regardless
4744 of self_subrange. */
4745 else if (n3 == 0 && n2 < 0
4746 && (self_subrange
4747 || n2 == -TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT))
4748 return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
4749 else if (n2 == -n3 - 1)
4750 {
4751 if (n3 == 0x7f)
4752 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4753 if (n3 == 0x7fff)
4754 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
4755 if (n3 == 0x7fffffff)
4756 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
4757 }
4758
4759 /* We have a real range type on our hands. Allocate space and
4760 return a real pointer. */
4761 handle_true_range:
4762
4763 if (self_subrange)
4764 index_type = builtin_type_int;
4765 else
4766 index_type = *dbx_lookup_type (rangenums);
4767 if (index_type == NULL)
4768 {
4769 /* Does this actually ever happen? Is that why we are worrying
4770 about dealing with it rather than just calling error_type? */
4771
4772 static struct type *range_type_index;
4773
4774 complain (&range_type_base_complaint, rangenums[1]);
4775 if (range_type_index == NULL)
4776 range_type_index =
4777 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
4778 0, "range type index type", NULL);
4779 index_type = range_type_index;
4780 }
4781
4782 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
4783 return (result_type);
4784 }
4785
4786 /* Read in an argument list. This is a list of types, separated by commas
4787 and terminated with END. Return the list of types read in, or (struct type
4788 **)-1 if there is an error. */
4789
4790 static struct type **
4791 read_args (pp, end, objfile)
4792 char **pp;
4793 int end;
4794 struct objfile *objfile;
4795 {
4796 /* FIXME! Remove this arbitrary limit! */
4797 struct type *types[1024], **rval; /* allow for fns of 1023 parameters */
4798 int n = 0;
4799
4800 while (**pp != end)
4801 {
4802 if (**pp != ',')
4803 /* Invalid argument list: no ','. */
4804 return (struct type **) -1;
4805 (*pp)++;
4806 STABS_CONTINUE (pp, objfile);
4807 types[n++] = read_type (pp, objfile);
4808 }
4809 (*pp)++; /* get past `end' (the ':' character) */
4810
4811 if (n == 1)
4812 {
4813 rval = (struct type **) xmalloc (2 * sizeof (struct type *));
4814 }
4815 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4816 {
4817 rval = (struct type **) xmalloc ((n + 1) * sizeof (struct type *));
4818 memset (rval + n, 0, sizeof (struct type *));
4819 }
4820 else
4821 {
4822 rval = (struct type **) xmalloc (n * sizeof (struct type *));
4823 }
4824 memcpy (rval, types, n * sizeof (struct type *));
4825 return rval;
4826 }
4827 \f
4828 /* Common block handling. */
4829
4830 /* List of symbols declared since the last BCOMM. This list is a tail
4831 of local_symbols. When ECOMM is seen, the symbols on the list
4832 are noted so their proper addresses can be filled in later,
4833 using the common block base address gotten from the assembler
4834 stabs. */
4835
4836 static struct pending *common_block;
4837 static int common_block_i;
4838
4839 /* Name of the current common block. We get it from the BCOMM instead of the
4840 ECOMM to match IBM documentation (even though IBM puts the name both places
4841 like everyone else). */
4842 static char *common_block_name;
4843
4844 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4845 to remain after this function returns. */
4846
4847 void
4848 common_block_start (name, objfile)
4849 char *name;
4850 struct objfile *objfile;
4851 {
4852 if (common_block_name != NULL)
4853 {
4854 static struct complaint msg =
4855 {
4856 "Invalid symbol data: common block within common block",
4857 0, 0};
4858 complain (&msg);
4859 }
4860 common_block = local_symbols;
4861 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4862 common_block_name = obsavestring (name, strlen (name),
4863 &objfile->symbol_obstack);
4864 }
4865
4866 /* Process a N_ECOMM symbol. */
4867
4868 void
4869 common_block_end (objfile)
4870 struct objfile *objfile;
4871 {
4872 /* Symbols declared since the BCOMM are to have the common block
4873 start address added in when we know it. common_block and
4874 common_block_i point to the first symbol after the BCOMM in
4875 the local_symbols list; copy the list and hang it off the
4876 symbol for the common block name for later fixup. */
4877 int i;
4878 struct symbol *sym;
4879 struct pending *new = 0;
4880 struct pending *next;
4881 int j;
4882
4883 if (common_block_name == NULL)
4884 {
4885 static struct complaint msg =
4886 {"ECOMM symbol unmatched by BCOMM", 0, 0};
4887 complain (&msg);
4888 return;
4889 }
4890
4891 sym = (struct symbol *)
4892 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symbol));
4893 memset (sym, 0, sizeof (struct symbol));
4894 /* Note: common_block_name already saved on symbol_obstack */
4895 SYMBOL_NAME (sym) = common_block_name;
4896 SYMBOL_CLASS (sym) = LOC_BLOCK;
4897
4898 /* Now we copy all the symbols which have been defined since the BCOMM. */
4899
4900 /* Copy all the struct pendings before common_block. */
4901 for (next = local_symbols;
4902 next != NULL && next != common_block;
4903 next = next->next)
4904 {
4905 for (j = 0; j < next->nsyms; j++)
4906 add_symbol_to_list (next->symbol[j], &new);
4907 }
4908
4909 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4910 NULL, it means copy all the local symbols (which we already did
4911 above). */
4912
4913 if (common_block != NULL)
4914 for (j = common_block_i; j < common_block->nsyms; j++)
4915 add_symbol_to_list (common_block->symbol[j], &new);
4916
4917 SYMBOL_TYPE (sym) = (struct type *) new;
4918
4919 /* Should we be putting local_symbols back to what it was?
4920 Does it matter? */
4921
4922 i = hashname (SYMBOL_NAME (sym));
4923 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4924 global_sym_chain[i] = sym;
4925 common_block_name = NULL;
4926 }
4927
4928 /* Add a common block's start address to the offset of each symbol
4929 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4930 the common block name). */
4931
4932 static void
4933 fix_common_block (sym, valu)
4934 struct symbol *sym;
4935 int valu;
4936 {
4937 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4938 for (; next; next = next->next)
4939 {
4940 register int j;
4941 for (j = next->nsyms - 1; j >= 0; j--)
4942 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4943 }
4944 }
4945 \f
4946
4947
4948 /* What about types defined as forward references inside of a small lexical
4949 scope? */
4950 /* Add a type to the list of undefined types to be checked through
4951 once this file has been read in. */
4952
4953 void
4954 add_undefined_type (type)
4955 struct type *type;
4956 {
4957 if (undef_types_length == undef_types_allocated)
4958 {
4959 undef_types_allocated *= 2;
4960 undef_types = (struct type **)
4961 xrealloc ((char *) undef_types,
4962 undef_types_allocated * sizeof (struct type *));
4963 }
4964 undef_types[undef_types_length++] = type;
4965 }
4966
4967 /* Go through each undefined type, see if it's still undefined, and fix it
4968 up if possible. We have two kinds of undefined types:
4969
4970 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4971 Fix: update array length using the element bounds
4972 and the target type's length.
4973 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4974 yet defined at the time a pointer to it was made.
4975 Fix: Do a full lookup on the struct/union tag. */
4976 void
4977 cleanup_undefined_types ()
4978 {
4979 struct type **type;
4980
4981 for (type = undef_types; type < undef_types + undef_types_length; type++)
4982 {
4983 switch (TYPE_CODE (*type))
4984 {
4985
4986 case TYPE_CODE_STRUCT:
4987 case TYPE_CODE_UNION:
4988 case TYPE_CODE_ENUM:
4989 {
4990 /* Check if it has been defined since. Need to do this here
4991 as well as in check_typedef to deal with the (legitimate in
4992 C though not C++) case of several types with the same name
4993 in different source files. */
4994 if (TYPE_FLAGS (*type) & TYPE_FLAG_STUB)
4995 {
4996 struct pending *ppt;
4997 int i;
4998 /* Name of the type, without "struct" or "union" */
4999 char *typename = TYPE_TAG_NAME (*type);
5000
5001 if (typename == NULL)
5002 {
5003 static struct complaint msg =
5004 {"need a type name", 0, 0};
5005 complain (&msg);
5006 break;
5007 }
5008 for (ppt = file_symbols; ppt; ppt = ppt->next)
5009 {
5010 for (i = 0; i < ppt->nsyms; i++)
5011 {
5012 struct symbol *sym = ppt->symbol[i];
5013
5014 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
5015 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
5016 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
5017 TYPE_CODE (*type))
5018 && STREQ (SYMBOL_NAME (sym), typename))
5019 {
5020 memcpy (*type, SYMBOL_TYPE (sym),
5021 sizeof (struct type));
5022 }
5023 }
5024 }
5025 }
5026 }
5027 break;
5028
5029 default:
5030 {
5031 static struct complaint msg =
5032 {"\
5033 GDB internal error. cleanup_undefined_types with bad type %d.", 0, 0};
5034 complain (&msg, TYPE_CODE (*type));
5035 }
5036 break;
5037 }
5038 }
5039
5040 undef_types_length = 0;
5041 }
5042
5043 /* Scan through all of the global symbols defined in the object file,
5044 assigning values to the debugging symbols that need to be assigned
5045 to. Get these symbols from the minimal symbol table. */
5046
5047 void
5048 scan_file_globals (objfile)
5049 struct objfile *objfile;
5050 {
5051 int hash;
5052 struct minimal_symbol *msymbol;
5053 struct symbol *sym, *prev, *rsym;
5054 struct objfile *resolve_objfile;
5055
5056 /* SVR4 based linkers copy referenced global symbols from shared
5057 libraries to the main executable.
5058 If we are scanning the symbols for a shared library, try to resolve
5059 them from the minimal symbols of the main executable first. */
5060
5061 if (symfile_objfile && objfile != symfile_objfile)
5062 resolve_objfile = symfile_objfile;
5063 else
5064 resolve_objfile = objfile;
5065
5066 while (1)
5067 {
5068 /* Avoid expensive loop through all minimal symbols if there are
5069 no unresolved symbols. */
5070 for (hash = 0; hash < HASHSIZE; hash++)
5071 {
5072 if (global_sym_chain[hash])
5073 break;
5074 }
5075 if (hash >= HASHSIZE)
5076 return;
5077
5078 for (msymbol = resolve_objfile->msymbols;
5079 msymbol && SYMBOL_NAME (msymbol) != NULL;
5080 msymbol++)
5081 {
5082 QUIT;
5083
5084 /* Skip static symbols. */
5085 switch (MSYMBOL_TYPE (msymbol))
5086 {
5087 case mst_file_text:
5088 case mst_file_data:
5089 case mst_file_bss:
5090 continue;
5091 default:
5092 break;
5093 }
5094
5095 prev = NULL;
5096
5097 /* Get the hash index and check all the symbols
5098 under that hash index. */
5099
5100 hash = hashname (SYMBOL_NAME (msymbol));
5101
5102 for (sym = global_sym_chain[hash]; sym;)
5103 {
5104 if (SYMBOL_NAME (msymbol)[0] == SYMBOL_NAME (sym)[0] &&
5105 STREQ (SYMBOL_NAME (msymbol) + 1, SYMBOL_NAME (sym) + 1))
5106 {
5107
5108 struct alias_list *aliases;
5109
5110 /* Splice this symbol out of the hash chain and
5111 assign the value we have to it. */
5112 if (prev)
5113 {
5114 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
5115 }
5116 else
5117 {
5118 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
5119 }
5120
5121 /* Check to see whether we need to fix up a common block. */
5122 /* Note: this code might be executed several times for
5123 the same symbol if there are multiple references. */
5124
5125 /* If symbol has aliases, do minimal symbol fixups for each.
5126 These live aliases/references weren't added to
5127 global_sym_chain hash but may also need to be fixed up. */
5128 /* FIXME: Maybe should have added aliases to the global chain, resolved symbol name, then treated aliases as normal
5129 symbols? Still, we wouldn't want to add_to_list. */
5130 /* Now do the same for each alias of this symbol */
5131 rsym = sym;
5132 aliases = SYMBOL_ALIASES (sym);
5133 while (rsym)
5134 {
5135 if (SYMBOL_CLASS (rsym) == LOC_BLOCK)
5136 {
5137 fix_common_block (rsym,
5138 SYMBOL_VALUE_ADDRESS (msymbol));
5139 }
5140 else
5141 {
5142 SYMBOL_VALUE_ADDRESS (rsym)
5143 = SYMBOL_VALUE_ADDRESS (msymbol);
5144 }
5145 SYMBOL_SECTION (rsym) = SYMBOL_SECTION (msymbol);
5146 if (aliases)
5147 {
5148 rsym = aliases->sym;
5149 aliases = aliases->next;
5150 }
5151 else
5152 rsym = NULL;
5153 }
5154
5155
5156 if (prev)
5157 {
5158 sym = SYMBOL_VALUE_CHAIN (prev);
5159 }
5160 else
5161 {
5162 sym = global_sym_chain[hash];
5163 }
5164 }
5165 else
5166 {
5167 prev = sym;
5168 sym = SYMBOL_VALUE_CHAIN (sym);
5169 }
5170 }
5171 }
5172 if (resolve_objfile == objfile)
5173 break;
5174 resolve_objfile = objfile;
5175 }
5176
5177 /* Change the storage class of any remaining unresolved globals to
5178 LOC_UNRESOLVED and remove them from the chain. */
5179 for (hash = 0; hash < HASHSIZE; hash++)
5180 {
5181 sym = global_sym_chain[hash];
5182 while (sym)
5183 {
5184 prev = sym;
5185 sym = SYMBOL_VALUE_CHAIN (sym);
5186
5187 /* Change the symbol address from the misleading chain value
5188 to address zero. */
5189 SYMBOL_VALUE_ADDRESS (prev) = 0;
5190
5191 /* Complain about unresolved common block symbols. */
5192 if (SYMBOL_CLASS (prev) == LOC_STATIC)
5193 SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
5194 else
5195 complain (&unresolved_sym_chain_complaint,
5196 objfile->name, SYMBOL_NAME (prev));
5197 }
5198 }
5199 memset (global_sym_chain, 0, sizeof (global_sym_chain));
5200 }
5201
5202 /* Initialize anything that needs initializing when starting to read
5203 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
5204 to a psymtab. */
5205
5206 void
5207 stabsread_init ()
5208 {
5209 }
5210
5211 /* Initialize anything that needs initializing when a completely new
5212 symbol file is specified (not just adding some symbols from another
5213 file, e.g. a shared library). */
5214
5215 void
5216 stabsread_new_init ()
5217 {
5218 /* Empty the hash table of global syms looking for values. */
5219 memset (global_sym_chain, 0, sizeof (global_sym_chain));
5220 }
5221
5222 /* Initialize anything that needs initializing at the same time as
5223 start_symtab() is called. */
5224
5225 void
5226 start_stabs ()
5227 {
5228 global_stabs = NULL; /* AIX COFF */
5229 /* Leave FILENUM of 0 free for builtin types and this file's types. */
5230 n_this_object_header_files = 1;
5231 type_vector_length = 0;
5232 type_vector = (struct type **) 0;
5233
5234 /* FIXME: If common_block_name is not already NULL, we should complain(). */
5235 common_block_name = NULL;
5236
5237 os9k_stabs = 0;
5238 }
5239
5240 /* Call after end_symtab() */
5241
5242 void
5243 end_stabs ()
5244 {
5245 if (type_vector)
5246 {
5247 free ((char *) type_vector);
5248 }
5249 type_vector = 0;
5250 type_vector_length = 0;
5251 previous_stab_code = 0;
5252 }
5253
5254 void
5255 finish_global_stabs (objfile)
5256 struct objfile *objfile;
5257 {
5258 if (global_stabs)
5259 {
5260 patch_block_stabs (global_symbols, global_stabs, objfile);
5261 free ((PTR) global_stabs);
5262 global_stabs = NULL;
5263 }
5264 }
5265
5266 /* Initializer for this module */
5267
5268 void
5269 _initialize_stabsread ()
5270 {
5271 undef_types_allocated = 20;
5272 undef_types_length = 0;
5273 undef_types = (struct type **)
5274 xmalloc (undef_types_allocated * sizeof (struct type *));
5275 }