]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/stabsread.c
Initial creation of sourceware repository
[thirdparty/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2 Copyright 1986, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 1998
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 /* Support routines for reading and decoding debugging information in
22 the "stabs" format. This format is used with many systems that use
23 the a.out object file format, as well as some systems that use
24 COFF or ELF where the stabs data is placed in a special section.
25 Avoid placing any object file format specific code in this file. */
26
27 #include "defs.h"
28 #include "gdb_string.h"
29 #include "bfd.h"
30 #include "obstack.h"
31 #include "symtab.h"
32 #include "gdbtypes.h"
33 #include "expression.h"
34 #include "symfile.h"
35 #include "objfiles.h"
36 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
37 #include "libaout.h"
38 #include "aout/aout64.h"
39 #include "gdb-stabs.h"
40 #include "buildsym.h"
41 #include "complaints.h"
42 #include "demangle.h"
43 #include "language.h"
44
45 #include <ctype.h>
46
47 /* Ask stabsread.h to define the vars it normally declares `extern'. */
48 #define EXTERN /**/
49 #include "stabsread.h" /* Our own declarations */
50 #undef EXTERN
51
52 /* The routines that read and process a complete stabs for a C struct or
53 C++ class pass lists of data member fields and lists of member function
54 fields in an instance of a field_info structure, as defined below.
55 This is part of some reorganization of low level C++ support and is
56 expected to eventually go away... (FIXME) */
57
58 struct field_info
59 {
60 struct nextfield
61 {
62 struct nextfield *next;
63
64 /* This is the raw visibility from the stab. It is not checked
65 for being one of the visibilities we recognize, so code which
66 examines this field better be able to deal. */
67 int visibility;
68
69 struct field field;
70 } *list;
71 struct next_fnfieldlist
72 {
73 struct next_fnfieldlist *next;
74 struct fn_fieldlist fn_fieldlist;
75 } *fnlist;
76 };
77
78 static void
79 read_one_struct_field PARAMS ((struct field_info *, char **, char *,
80 struct type *, struct objfile *));
81
82 static char *
83 get_substring PARAMS ((char **, int));
84
85 static struct type *
86 dbx_alloc_type PARAMS ((int [2], struct objfile *));
87
88 static long read_huge_number PARAMS ((char **, int, int *));
89
90 static struct type *error_type PARAMS ((char **, struct objfile *));
91
92 static void
93 patch_block_stabs PARAMS ((struct pending *, struct pending_stabs *,
94 struct objfile *));
95
96 static void
97 fix_common_block PARAMS ((struct symbol *, int));
98
99 static int
100 read_type_number PARAMS ((char **, int *));
101
102 static struct type *
103 read_range_type PARAMS ((char **, int [2], struct objfile *));
104
105 static struct type *
106 read_sun_builtin_type PARAMS ((char **, int [2], struct objfile *));
107
108 static struct type *
109 read_sun_floating_type PARAMS ((char **, int [2], struct objfile *));
110
111 static struct type *
112 read_enum_type PARAMS ((char **, struct type *, struct objfile *));
113
114 static struct type *
115 rs6000_builtin_type PARAMS ((int));
116
117 static int
118 read_member_functions PARAMS ((struct field_info *, char **, struct type *,
119 struct objfile *));
120
121 static int
122 read_struct_fields PARAMS ((struct field_info *, char **, struct type *,
123 struct objfile *));
124
125 static int
126 read_baseclasses PARAMS ((struct field_info *, char **, struct type *,
127 struct objfile *));
128
129 static int
130 read_tilde_fields PARAMS ((struct field_info *, char **, struct type *,
131 struct objfile *));
132
133 static int
134 attach_fn_fields_to_type PARAMS ((struct field_info *, struct type *));
135
136 static int
137 attach_fields_to_type PARAMS ((struct field_info *, struct type *,
138 struct objfile *));
139
140 static struct type *
141 read_struct_type PARAMS ((char **, struct type *, struct objfile *));
142
143 static struct type *
144 read_array_type PARAMS ((char **, struct type *, struct objfile *));
145
146 static struct type **
147 read_args PARAMS ((char **, int, struct objfile *));
148
149 static int
150 read_cpp_abbrev PARAMS ((struct field_info *, char **, struct type *,
151 struct objfile *));
152
153 /* new functions added for cfront support */
154
155 static int
156 copy_cfront_struct_fields PARAMS ((struct field_info *, struct type *,
157 struct objfile *));
158
159 static char *
160 get_cfront_method_physname PARAMS ((char *));
161
162 static int
163 read_cfront_baseclasses PARAMS ((struct field_info *, char **,
164 struct type *, struct objfile *));
165
166 static int
167 read_cfront_static_fields PARAMS ((struct field_info *, char**,
168 struct type *, struct objfile *));
169 static int
170 read_cfront_member_functions PARAMS ((struct field_info *, char **,
171 struct type *, struct objfile *));
172
173 /* end new functions added for cfront support */
174
175 static void
176 add_live_range PARAMS ((struct objfile *, struct symbol *,
177 CORE_ADDR, CORE_ADDR));
178
179 static int
180 resolve_live_range PARAMS ((struct objfile *, struct symbol *, char *));
181
182 static int
183 process_reference PARAMS ((char **string));
184
185 static CORE_ADDR
186 ref_search_value PARAMS ((int refnum));
187
188 static int
189 resolve_symbol_reference PARAMS ((struct objfile *, struct symbol *, char *));
190
191 static const char vptr_name[] = { '_','v','p','t','r',CPLUS_MARKER,'\0' };
192 static const char vb_name[] = { '_','v','b',CPLUS_MARKER,'\0' };
193
194 /* Define this as 1 if a pcc declaration of a char or short argument
195 gives the correct address. Otherwise assume pcc gives the
196 address of the corresponding int, which is not the same on a
197 big-endian machine. */
198
199 #ifndef BELIEVE_PCC_PROMOTION
200 #define BELIEVE_PCC_PROMOTION 0
201 #endif
202
203 static struct complaint invalid_cpp_abbrev_complaint =
204 {"invalid C++ abbreviation `%s'", 0, 0};
205
206 static struct complaint invalid_cpp_type_complaint =
207 {"C++ abbreviated type name unknown at symtab pos %d", 0, 0};
208
209 static struct complaint member_fn_complaint =
210 {"member function type missing, got '%c'", 0, 0};
211
212 static struct complaint const_vol_complaint =
213 {"const/volatile indicator missing, got '%c'", 0, 0};
214
215 static struct complaint error_type_complaint =
216 {"debug info mismatch between compiler and debugger", 0, 0};
217
218 static struct complaint invalid_member_complaint =
219 {"invalid (minimal) member type data format at symtab pos %d.", 0, 0};
220
221 static struct complaint range_type_base_complaint =
222 {"base type %d of range type is not defined", 0, 0};
223
224 static struct complaint reg_value_complaint =
225 {"register number %d too large (max %d) in symbol %s", 0, 0};
226
227 static struct complaint vtbl_notfound_complaint =
228 {"virtual function table pointer not found when defining class `%s'", 0, 0};
229
230 static struct complaint unrecognized_cplus_name_complaint =
231 {"Unknown C++ symbol name `%s'", 0, 0};
232
233 static struct complaint rs6000_builtin_complaint =
234 {"Unknown builtin type %d", 0, 0};
235
236 static struct complaint unresolved_sym_chain_complaint =
237 {"%s: common block `%s' from global_sym_chain unresolved", 0, 0};
238
239 static struct complaint stabs_general_complaint =
240 {"%s", 0, 0};
241
242 static struct complaint lrs_general_complaint =
243 {"%s", 0, 0};
244
245 /* Make a list of forward references which haven't been defined. */
246
247 static struct type **undef_types;
248 static int undef_types_allocated;
249 static int undef_types_length;
250 static struct symbol *current_symbol = NULL;
251
252 /* Check for and handle cretinous stabs symbol name continuation! */
253 #define STABS_CONTINUE(pp,objfile) \
254 do { \
255 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
256 *(pp) = next_symbol_text (objfile); \
257 } while (0)
258 \f
259 /* FIXME: These probably should be our own types (like rs6000_builtin_type
260 has its own types) rather than builtin_type_*. */
261 static struct type **os9k_type_vector[] = {
262 0,
263 &builtin_type_int,
264 &builtin_type_char,
265 &builtin_type_long,
266 &builtin_type_short,
267 &builtin_type_unsigned_char,
268 &builtin_type_unsigned_short,
269 &builtin_type_unsigned_long,
270 &builtin_type_unsigned_int,
271 &builtin_type_float,
272 &builtin_type_double,
273 &builtin_type_void,
274 &builtin_type_long_double
275 };
276
277 static void os9k_init_type_vector PARAMS ((struct type **));
278
279 static void
280 os9k_init_type_vector(tv)
281 struct type **tv;
282 {
283 int i;
284 for (i=0; i<sizeof(os9k_type_vector)/sizeof(struct type **); i++)
285 tv[i] = (os9k_type_vector[i] == 0 ? 0 : *(os9k_type_vector[i]));
286 }
287
288 /* Look up a dbx type-number pair. Return the address of the slot
289 where the type for that number-pair is stored.
290 The number-pair is in TYPENUMS.
291
292 This can be used for finding the type associated with that pair
293 or for associating a new type with the pair. */
294
295 struct type **
296 dbx_lookup_type (typenums)
297 int typenums[2];
298 {
299 register int filenum = typenums[0];
300 register int index = typenums[1];
301 unsigned old_len;
302 register int real_filenum;
303 register struct header_file *f;
304 int f_orig_length;
305
306 if (filenum == -1) /* -1,-1 is for temporary types. */
307 return 0;
308
309 if (filenum < 0 || filenum >= n_this_object_header_files)
310 {
311 static struct complaint msg = {"\
312 Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
313 0, 0};
314 complain (&msg, filenum, index, symnum);
315 goto error_return;
316 }
317
318 if (filenum == 0)
319 {
320 if (index < 0)
321 {
322 /* Caller wants address of address of type. We think
323 that negative (rs6k builtin) types will never appear as
324 "lvalues", (nor should they), so we stuff the real type
325 pointer into a temp, and return its address. If referenced,
326 this will do the right thing. */
327 static struct type *temp_type;
328
329 temp_type = rs6000_builtin_type(index);
330 return &temp_type;
331 }
332
333 /* Type is defined outside of header files.
334 Find it in this object file's type vector. */
335 if (index >= type_vector_length)
336 {
337 old_len = type_vector_length;
338 if (old_len == 0)
339 {
340 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
341 type_vector = (struct type **)
342 xmalloc (type_vector_length * sizeof (struct type *));
343 }
344 while (index >= type_vector_length)
345 {
346 type_vector_length *= 2;
347 }
348 type_vector = (struct type **)
349 xrealloc ((char *) type_vector,
350 (type_vector_length * sizeof (struct type *)));
351 memset (&type_vector[old_len], 0,
352 (type_vector_length - old_len) * sizeof (struct type *));
353
354 if (os9k_stabs)
355 /* Deal with OS9000 fundamental types. */
356 os9k_init_type_vector (type_vector);
357 }
358 return (&type_vector[index]);
359 }
360 else
361 {
362 real_filenum = this_object_header_files[filenum];
363
364 if (real_filenum >= N_HEADER_FILES (current_objfile))
365 {
366 struct type *temp_type;
367 struct type **temp_type_p;
368
369 warning ("GDB internal error: bad real_filenum");
370
371 error_return:
372 temp_type = init_type (TYPE_CODE_ERROR, 0, 0, NULL, NULL);
373 temp_type_p = (struct type **) xmalloc (sizeof (struct type *));
374 *temp_type_p = temp_type;
375 return temp_type_p;
376 }
377
378 f = HEADER_FILES (current_objfile) + real_filenum;
379
380 f_orig_length = f->length;
381 if (index >= f_orig_length)
382 {
383 while (index >= f->length)
384 {
385 f->length *= 2;
386 }
387 f->vector = (struct type **)
388 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
389 memset (&f->vector[f_orig_length], 0,
390 (f->length - f_orig_length) * sizeof (struct type *));
391 }
392 return (&f->vector[index]);
393 }
394 }
395
396 /* Make sure there is a type allocated for type numbers TYPENUMS
397 and return the type object.
398 This can create an empty (zeroed) type object.
399 TYPENUMS may be (-1, -1) to return a new type object that is not
400 put into the type vector, and so may not be referred to by number. */
401
402 static struct type *
403 dbx_alloc_type (typenums, objfile)
404 int typenums[2];
405 struct objfile *objfile;
406 {
407 register struct type **type_addr;
408
409 if (typenums[0] == -1)
410 {
411 return (alloc_type (objfile));
412 }
413
414 type_addr = dbx_lookup_type (typenums);
415
416 /* If we are referring to a type not known at all yet,
417 allocate an empty type for it.
418 We will fill it in later if we find out how. */
419 if (*type_addr == 0)
420 {
421 *type_addr = alloc_type (objfile);
422 }
423
424 return (*type_addr);
425 }
426
427 /* for all the stabs in a given stab vector, build appropriate types
428 and fix their symbols in given symbol vector. */
429
430 static void
431 patch_block_stabs (symbols, stabs, objfile)
432 struct pending *symbols;
433 struct pending_stabs *stabs;
434 struct objfile *objfile;
435 {
436 int ii;
437 char *name;
438 char *pp;
439 struct symbol *sym;
440
441 if (stabs)
442 {
443
444 /* for all the stab entries, find their corresponding symbols and
445 patch their types! */
446
447 for (ii = 0; ii < stabs->count; ++ii)
448 {
449 name = stabs->stab[ii];
450 pp = (char*) strchr (name, ':');
451 while (pp[1] == ':')
452 {
453 pp += 2;
454 pp = (char *)strchr(pp, ':');
455 }
456 sym = find_symbol_in_list (symbols, name, pp-name);
457 if (!sym)
458 {
459 /* FIXME-maybe: it would be nice if we noticed whether
460 the variable was defined *anywhere*, not just whether
461 it is defined in this compilation unit. But neither
462 xlc or GCC seem to need such a definition, and until
463 we do psymtabs (so that the minimal symbols from all
464 compilation units are available now), I'm not sure
465 how to get the information. */
466
467 /* On xcoff, if a global is defined and never referenced,
468 ld will remove it from the executable. There is then
469 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
470 sym = (struct symbol *)
471 obstack_alloc (&objfile->symbol_obstack,
472 sizeof (struct symbol));
473
474 memset (sym, 0, sizeof (struct symbol));
475 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
476 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
477 SYMBOL_NAME (sym) =
478 obsavestring (name, pp - name, &objfile->symbol_obstack);
479 pp += 2;
480 if (*(pp-1) == 'F' || *(pp-1) == 'f')
481 {
482 /* I don't think the linker does this with functions,
483 so as far as I know this is never executed.
484 But it doesn't hurt to check. */
485 SYMBOL_TYPE (sym) =
486 lookup_function_type (read_type (&pp, objfile));
487 }
488 else
489 {
490 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
491 }
492 add_symbol_to_list (sym, &global_symbols);
493 }
494 else
495 {
496 pp += 2;
497 if (*(pp-1) == 'F' || *(pp-1) == 'f')
498 {
499 SYMBOL_TYPE (sym) =
500 lookup_function_type (read_type (&pp, objfile));
501 }
502 else
503 {
504 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
505 }
506 }
507 }
508 }
509 }
510
511 \f
512 /* Read a number by which a type is referred to in dbx data,
513 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
514 Just a single number N is equivalent to (0,N).
515 Return the two numbers by storing them in the vector TYPENUMS.
516 TYPENUMS will then be used as an argument to dbx_lookup_type.
517
518 Returns 0 for success, -1 for error. */
519
520 static int
521 read_type_number (pp, typenums)
522 register char **pp;
523 register int *typenums;
524 {
525 int nbits;
526 if (**pp == '(')
527 {
528 (*pp)++;
529 typenums[0] = read_huge_number (pp, ',', &nbits);
530 if (nbits != 0) return -1;
531 typenums[1] = read_huge_number (pp, ')', &nbits);
532 if (nbits != 0) return -1;
533 }
534 else
535 {
536 typenums[0] = 0;
537 typenums[1] = read_huge_number (pp, 0, &nbits);
538 if (nbits != 0) return -1;
539 }
540 return 0;
541 }
542
543 \f
544 #if !defined (REG_STRUCT_HAS_ADDR)
545 #define REG_STRUCT_HAS_ADDR(gcc_p,type) 0
546 #endif
547
548 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
549 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
550 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
551 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
552
553 #define CFRONT_VISIBILITY_PRIVATE '2' /* Stabs character for private field */
554 #define CFRONT_VISIBILITY_PUBLIC '1' /* Stabs character for public field */
555
556 /* This code added to support parsing of ARM/Cfront stabs strings */
557
558 /* Get substring from string up to char c, advance string pointer past
559 suibstring. */
560
561 static char *
562 get_substring (p, c)
563 char ** p;
564 int c;
565 {
566 char *str;
567 str = *p;
568 *p = strchr (*p, c);
569 if (*p)
570 {
571 **p = 0;
572 (*p)++;
573 }
574 else
575 str = 0;
576 return str;
577 }
578
579 /* Physname gets strcat'd onto sname in order to recreate the mangled
580 name (see funtion gdb_mangle_name in gdbtypes.c). For cfront, make
581 the physname look like that of g++ - take out the initial mangling
582 eg: for sname="a" and fname="foo__1aFPFs_i" return "FPFs_i" */
583
584 static char *
585 get_cfront_method_physname (fname)
586 char *fname;
587 {
588 int len = 0;
589 /* FIXME would like to make this generic for g++ too, but
590 that is already handled in read_member_funcctions */
591 char * p = fname;
592
593 /* search ahead to find the start of the mangled suffix */
594 if (*p == '_' && *(p+1)=='_') /* compiler generated; probably a ctor/dtor */
595 p += 2;
596 while (p && (unsigned) ((p+1) - fname) < strlen (fname) && *(p+1) != '_')
597 p = strchr (p, '_');
598 if (!(p && *p == '_' && *(p+1) == '_'))
599 error ("Invalid mangled function name %s",fname);
600 p += 2; /* advance past '__' */
601
602 /* struct name length and name of type should come next; advance past it */
603 while (isdigit (*p))
604 {
605 len = len * 10 + (*p - '0');
606 p++;
607 }
608 p += len;
609
610 return p;
611 }
612
613 /* Read base classes within cfront class definition.
614 eg: A:ZcA;1@Bpub v2@Bvirpri;__ct__1AFv func__1AFv *sfunc__1AFv ;as__1A ;;
615 ^^^^^^^^^^^^^^^^^^
616
617 A:ZcA;;foopri__1AFv foopro__1AFv __ct__1AFv __ct__1AFRC1A foopub__1AFv ;;;
618 ^
619 */
620
621 static int
622 read_cfront_baseclasses (fip, pp, type, objfile)
623 struct field_info *fip;
624 struct objfile *objfile;
625 char ** pp;
626 struct type *type;
627 {
628 static struct complaint msg_unknown = {"\
629 Unsupported token in stabs string %s.\n",
630 0, 0};
631 static struct complaint msg_notfound = {"\
632 Unable to find base type for %s.\n",
633 0, 0};
634 int bnum = 0;
635 char * p;
636 int i;
637 struct nextfield *new;
638
639 if (**pp == ';') /* no base classes; return */
640 {
641 ++(*pp);
642 return 1;
643 }
644
645 /* first count base classes so we can allocate space before parsing */
646 for (p = *pp; p && *p && *p != ';'; p++)
647 {
648 if (*p == ' ')
649 bnum++;
650 }
651 bnum++; /* add one more for last one */
652
653 /* now parse the base classes until we get to the start of the methods
654 (code extracted and munged from read_baseclasses) */
655 ALLOCATE_CPLUS_STRUCT_TYPE (type);
656 TYPE_N_BASECLASSES(type) = bnum;
657
658 /* allocate space */
659 {
660 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
661 char *pointer;
662
663 pointer = (char *) TYPE_ALLOC (type, num_bytes);
664 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
665 }
666 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
667
668 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
669 {
670 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
671 make_cleanup (free, new);
672 memset (new, 0, sizeof (struct nextfield));
673 new -> next = fip -> list;
674 fip -> list = new;
675 FIELD_BITSIZE (new->field) = 0; /* this should be an unpacked field! */
676
677 STABS_CONTINUE (pp, objfile);
678
679 /* virtual? eg: v2@Bvir */
680 if (**pp=='v')
681 {
682 SET_TYPE_FIELD_VIRTUAL (type, i);
683 ++(*pp);
684 }
685
686 /* access? eg: 2@Bvir */
687 /* Note: protected inheritance not supported in cfront */
688 switch (*(*pp)++)
689 {
690 case CFRONT_VISIBILITY_PRIVATE:
691 new -> visibility = VISIBILITY_PRIVATE;
692 break;
693 case CFRONT_VISIBILITY_PUBLIC:
694 new -> visibility = VISIBILITY_PUBLIC;
695 break;
696 default:
697 /* Bad visibility format. Complain and treat it as
698 public. */
699 {
700 static struct complaint msg = {
701 "Unknown visibility `%c' for baseclass", 0, 0};
702 complain (&msg, new -> visibility);
703 new -> visibility = VISIBILITY_PUBLIC;
704 }
705 }
706
707 /* "@" comes next - eg: @Bvir */
708 if (**pp!='@')
709 {
710 complain (&msg_unknown, *pp);
711 return 1;
712 }
713 ++(*pp);
714
715
716 /* Set the bit offset of the portion of the object corresponding
717 to this baseclass. Always zero in the absence of
718 multiple inheritance. */
719 /* Unable to read bit position from stabs;
720 Assuming no multiple inheritance for now FIXME! */
721 /* We may have read this in the structure definition;
722 now we should fixup the members to be the actual base classes */
723 FIELD_BITPOS (new->field) = 0;
724
725 /* Get the base class name and type */
726 {
727 char * bname; /* base class name */
728 struct symbol * bsym; /* base class */
729 char * p1, * p2;
730 p1 = strchr (*pp,' ');
731 p2 = strchr (*pp,';');
732 if (p1<p2)
733 bname = get_substring (pp,' ');
734 else
735 bname = get_substring (pp,';');
736 if (!bname || !*bname)
737 {
738 complain (&msg_unknown, *pp);
739 return 1;
740 }
741 /* FIXME! attach base info to type */
742 bsym = lookup_symbol (bname, 0, STRUCT_NAMESPACE, 0, 0); /*demangled_name*/
743 if (bsym)
744 {
745 new -> field.type = SYMBOL_TYPE(bsym);
746 new -> field.name = type_name_no_tag (new -> field.type);
747 }
748 else
749 {
750 complain (&msg_notfound, *pp);
751 return 1;
752 }
753 }
754
755 /* If more base classes to parse, loop again.
756 We ate the last ' ' or ';' in get_substring,
757 so on exit we will have skipped the trailing ';' */
758 /* if invalid, return 0; add code to detect - FIXME! */
759 }
760 return 1;
761 }
762
763 /* read cfront member functions.
764 pp points to string starting with list of functions
765 eg: A:ZcA;1@Bpub v2@Bvirpri;__ct__1AFv func__1AFv *sfunc__1AFv ;as__1A ;;
766 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
767 A:ZcA;;foopri__1AFv foopro__1AFv __ct__1AFv __ct__1AFRC1A foopub__1AFv ;;;
768 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
769 */
770
771 static int
772 read_cfront_member_functions (fip, pp, type, objfile)
773 struct field_info *fip;
774 char **pp;
775 struct type *type;
776 struct objfile *objfile;
777 {
778 /* This code extracted from read_member_functions
779 so as to do the similar thing for our funcs */
780
781 int nfn_fields = 0;
782 int length = 0;
783 /* Total number of member functions defined in this class. If the class
784 defines two `f' functions, and one `g' function, then this will have
785 the value 3. */
786 int total_length = 0;
787 int i;
788 struct next_fnfield
789 {
790 struct next_fnfield *next;
791 struct fn_field fn_field;
792 } *sublist;
793 struct type *look_ahead_type;
794 struct next_fnfieldlist *new_fnlist;
795 struct next_fnfield *new_sublist;
796 char *main_fn_name;
797 char * fname;
798 struct symbol * ref_func = 0;
799
800 /* Process each list until we find the end of the member functions.
801 eg: p = "__ct__1AFv foo__1AFv ;;;" */
802
803 STABS_CONTINUE (pp, objfile); /* handle \\ */
804
805 while (**pp != ';' && (fname = get_substring (pp, ' '), fname))
806 {
807 int is_static = 0;
808 int sublist_count = 0;
809 char * pname;
810 if (fname[0] == '*') /* static member */
811 {
812 is_static=1;
813 sublist_count++;
814 fname++;
815 }
816 ref_func = lookup_symbol (fname, 0, VAR_NAMESPACE, 0, 0); /* demangled name */
817 if (!ref_func)
818 {
819 static struct complaint msg = {"\
820 Unable to find function symbol for %s\n",
821 0, 0};
822 complain (&msg, fname);
823 continue;
824 }
825 sublist = NULL;
826 look_ahead_type = NULL;
827 length = 0;
828
829 new_fnlist = (struct next_fnfieldlist *)
830 xmalloc (sizeof (struct next_fnfieldlist));
831 make_cleanup (free, new_fnlist);
832 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
833
834 /* The following is code to work around cfront generated stabs.
835 The stabs contains full mangled name for each field.
836 We try to demangle the name and extract the field name out of it. */
837 {
838 char *dem, *dem_p, *dem_args;
839 int dem_len;
840 dem = cplus_demangle (fname, DMGL_ANSI | DMGL_PARAMS);
841 if (dem != NULL)
842 {
843 dem_p = strrchr (dem, ':');
844 if (dem_p != 0 && *(dem_p-1) == ':')
845 dem_p++;
846 /* get rid of args */
847 dem_args = strchr (dem_p, '(');
848 if (dem_args == NULL)
849 dem_len = strlen (dem_p);
850 else
851 dem_len = dem_args - dem_p;
852 main_fn_name =
853 obsavestring (dem_p, dem_len, &objfile -> type_obstack);
854 }
855 else
856 {
857 main_fn_name =
858 obsavestring (fname, strlen (fname), &objfile -> type_obstack);
859 }
860 } /* end of code for cfront work around */
861
862 new_fnlist -> fn_fieldlist.name = main_fn_name;
863
864 /*-------------------------------------------------*/
865 /* Set up the sublists
866 Sublists are stuff like args, static, visibility, etc.
867 so in ARM, we have to set that info some other way.
868 Multiple sublists happen if overloading
869 eg: foo::26=##1;:;2A.;
870 In g++, we'd loop here thru all the sublists... */
871
872 new_sublist =
873 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
874 make_cleanup (free, new_sublist);
875 memset (new_sublist, 0, sizeof (struct next_fnfield));
876
877 /* eat 1; from :;2A.; */
878 new_sublist -> fn_field.type = SYMBOL_TYPE(ref_func); /* normally takes a read_type */
879 /* Make this type look like a method stub for gdb */
880 TYPE_FLAGS (new_sublist -> fn_field.type) |= TYPE_FLAG_STUB;
881 TYPE_CODE (new_sublist -> fn_field.type) = TYPE_CODE_METHOD;
882
883 /* If this is just a stub, then we don't have the real name here. */
884 if (TYPE_FLAGS (new_sublist -> fn_field.type) & TYPE_FLAG_STUB)
885 {
886 if (!TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type))
887 TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type) = type;
888 new_sublist -> fn_field.is_stub = 1;
889 }
890
891 /* physname used later in mangling; eg PFs_i,5 for foo__1aFPFs_i
892 physname gets strcat'd in order to recreate the onto mangled name */
893 pname = get_cfront_method_physname (fname);
894 new_sublist -> fn_field.physname = savestring (pname, strlen (pname));
895
896
897 /* Set this member function's visibility fields.
898 Unable to distinguish access from stabs definition!
899 Assuming public for now. FIXME!
900 (for private, set new_sublist->fn_field.is_private = 1,
901 for public, set new_sublist->fn_field.is_protected = 1) */
902
903 /* Unable to distinguish const/volatile from stabs definition!
904 Assuming normal for now. FIXME! */
905
906 new_sublist -> fn_field.is_const = 0;
907 new_sublist -> fn_field.is_volatile = 0; /* volatile not implemented in cfront */
908
909 /* Set virtual/static function info
910 How to get vtable offsets ?
911 Assuming normal for now FIXME!!
912 For vtables, figure out from whence this virtual function came.
913 It may belong to virtual function table of
914 one of its baseclasses.
915 set:
916 new_sublist -> fn_field.voffset = vtable offset,
917 new_sublist -> fn_field.fcontext = look_ahead_type;
918 where look_ahead_type is type of baseclass */
919 if (is_static)
920 new_sublist -> fn_field.voffset = VOFFSET_STATIC;
921 else /* normal member function. */
922 new_sublist -> fn_field.voffset = 0;
923 new_sublist -> fn_field.fcontext = 0;
924
925
926 /* Prepare new sublist */
927 new_sublist -> next = sublist;
928 sublist = new_sublist;
929 length++;
930
931 /* In g++, we loop thu sublists - now we set from functions. */
932 new_fnlist -> fn_fieldlist.fn_fields = (struct fn_field *)
933 obstack_alloc (&objfile -> type_obstack,
934 sizeof (struct fn_field) * length);
935 memset (new_fnlist -> fn_fieldlist.fn_fields, 0,
936 sizeof (struct fn_field) * length);
937 for (i = length; (i--, sublist); sublist = sublist -> next)
938 {
939 new_fnlist -> fn_fieldlist.fn_fields[i] = sublist -> fn_field;
940 }
941
942 new_fnlist -> fn_fieldlist.length = length;
943 new_fnlist -> next = fip -> fnlist;
944 fip -> fnlist = new_fnlist;
945 nfn_fields++;
946 total_length += length;
947 STABS_CONTINUE (pp, objfile); /* handle \\ */
948 } /* end of loop */
949
950 if (nfn_fields)
951 {
952 /* type should already have space */
953 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
954 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
955 memset (TYPE_FN_FIELDLISTS (type), 0,
956 sizeof (struct fn_fieldlist) * nfn_fields);
957 TYPE_NFN_FIELDS (type) = nfn_fields;
958 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
959 }
960
961 /* end of scope for reading member func */
962
963 /* eg: ";;" */
964
965 /* Skip trailing ';' and bump count of number of fields seen */
966 if (**pp == ';')
967 (*pp)++;
968 else
969 return 0;
970 return 1;
971 }
972
973 /* This routine fixes up partial cfront types that were created
974 while parsing the stabs. The main need for this function is
975 to add information such as methods to classes.
976 Examples of "p": "sA;;__ct__1AFv foo__1AFv ;;;" */
977 int
978 resolve_cfront_continuation (objfile, sym, p)
979 struct objfile * objfile;
980 struct symbol * sym;
981 char * p;
982 {
983 struct symbol * ref_sym=0;
984 char * sname;
985 /* snarfed from read_struct_type */
986 struct field_info fi;
987 struct type *type;
988 struct cleanup *back_to;
989
990 /* Need to make sure that fi isn't gunna conflict with struct
991 in case struct already had some fnfs */
992 fi.list = NULL;
993 fi.fnlist = NULL;
994 back_to = make_cleanup (null_cleanup, 0);
995
996 /* We only accept structs, classes and unions at the moment.
997 Other continuation types include t (typedef), r (long dbl), ...
998 We may want to add support for them as well;
999 right now they are handled by duplicating the symbol information
1000 into the type information (see define_symbol) */
1001 if (*p != 's' /* structs */
1002 && *p != 'c' /* class */
1003 && *p != 'u') /* union */
1004 return 0; /* only handle C++ types */
1005 p++;
1006
1007 /* Get symbol typs name and validate
1008 eg: p = "A;;__ct__1AFv foo__1AFv ;;;" */
1009 sname = get_substring (&p, ';');
1010 if (!sname || strcmp (sname, SYMBOL_NAME(sym)))
1011 error ("Internal error: base symbol type name does not match\n");
1012
1013 /* Find symbol's internal gdb reference using demangled_name.
1014 This is the real sym that we want;
1015 sym was a temp hack to make debugger happy */
1016 ref_sym = lookup_symbol (SYMBOL_NAME(sym), 0, STRUCT_NAMESPACE, 0, 0);
1017 type = SYMBOL_TYPE(ref_sym);
1018
1019
1020 /* Now read the baseclasses, if any, read the regular C struct or C++
1021 class member fields, attach the fields to the type, read the C++
1022 member functions, attach them to the type, and then read any tilde
1023 field (baseclass specifier for the class holding the main vtable). */
1024
1025 if (!read_cfront_baseclasses (&fi, &p, type, objfile)
1026 /* g++ does this next, but cfront already did this:
1027 || !read_struct_fields (&fi, &p, type, objfile) */
1028 || !copy_cfront_struct_fields (&fi, type, objfile)
1029 || !read_cfront_member_functions (&fi, &p, type, objfile)
1030 || !read_cfront_static_fields (&fi, &p, type, objfile)
1031 || !attach_fields_to_type (&fi, type, objfile)
1032 || !attach_fn_fields_to_type (&fi, type)
1033 /* g++ does this next, but cfront doesn't seem to have this:
1034 || !read_tilde_fields (&fi, &p, type, objfile) */
1035 )
1036 {
1037 type = error_type (&p, objfile);
1038 }
1039
1040 do_cleanups (back_to);
1041 return 0;
1042 }
1043 /* End of code added to support parsing of ARM/Cfront stabs strings */
1044
1045
1046 /* This routine fixes up symbol references/aliases to point to the original
1047 symbol definition. Returns 0 on failure, non-zero on success. */
1048
1049 static int
1050 resolve_symbol_reference (objfile, sym, p)
1051 struct objfile *objfile;
1052 struct symbol *sym;
1053 char *p;
1054 {
1055 int refnum;
1056 struct symbol *ref_sym=0;
1057 struct alias_list *alias;
1058
1059 /* If this is not a symbol reference return now. */
1060 if (*p != '#')
1061 return 0;
1062
1063 /* Use "#<num>" as the name; we'll fix the name later.
1064 We stored the original symbol name as "#<id>=<name>"
1065 so we can now search for "#<id>" to resolving the reference.
1066 We'll fix the names later by removing the "#<id>" or "#<id>=" */
1067
1068 /*---------------------------------------------------------*/
1069 /* Get the reference id number, and
1070 advance p past the names so we can parse the rest.
1071 eg: id=2 for p : "2=", "2=z:r(0,1)" "2:r(0,1);l(#5,#6),l(#7,#4)" */
1072 /*---------------------------------------------------------*/
1073
1074 /* This gets reference name from string. sym may not have a name. */
1075
1076 /* Get the reference number associated with the reference id in the
1077 gdb stab string. From that reference number, get the main/primary
1078 symbol for this alias. */
1079 refnum = process_reference (&p);
1080 ref_sym = ref_search (refnum);
1081 if (!ref_sym)
1082 {
1083 complain (&lrs_general_complaint, "symbol for reference not found");
1084 return 0;
1085 }
1086
1087 /* Parse the stab of the referencing symbol
1088 now that we have the referenced symbol.
1089 Add it as a new symbol and a link back to the referenced symbol.
1090 eg: p : "=", "=z:r(0,1)" ":r(0,1);l(#5,#6),l(#7,#4)" */
1091
1092
1093 /* If the stab symbol table and string contain:
1094 RSYM 0 5 00000000 868 #15=z:r(0,1)
1095 LBRAC 0 0 00000000 899 #5=
1096 SLINE 0 16 00000003 923 #6=
1097 Then the same symbols can be later referenced by:
1098 RSYM 0 5 00000000 927 #15:r(0,1);l(#5,#6)
1099 This is used in live range splitting to:
1100 1) specify that a symbol (#15) is actually just a new storage
1101 class for a symbol (#15=z) which was previously defined.
1102 2) specify that the beginning and ending ranges for a symbol
1103 (#15) are the values of the beginning (#5) and ending (#6)
1104 symbols. */
1105
1106 /* Read number as reference id.
1107 eg: p : "=", "=z:r(0,1)" ":r(0,1);l(#5,#6),l(#7,#4)" */
1108 /* FIXME! Might I want to use SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
1109 in case of "l(0,0)"? */
1110
1111 /*--------------------------------------------------*/
1112 /* Add this symbol to the reference list. */
1113 /*--------------------------------------------------*/
1114
1115 alias = (struct alias_list *) obstack_alloc (&objfile->type_obstack,
1116 sizeof (struct alias_list));
1117 if (!alias)
1118 {
1119 complain (&lrs_general_complaint, "Unable to allocate alias list memory");
1120 return 0;
1121 }
1122
1123 alias->next = 0;
1124 alias->sym = sym;
1125
1126 if (!SYMBOL_ALIASES (ref_sym))
1127 {
1128 SYMBOL_ALIASES (ref_sym) = alias;
1129 }
1130 else
1131 {
1132 struct alias_list *temp;
1133
1134 /* Get to the end of the list. */
1135 for (temp = SYMBOL_ALIASES (ref_sym);
1136 temp->next;
1137 temp = temp->next)
1138 ;
1139 temp->next = alias;
1140 }
1141
1142 /* Want to fix up name so that other functions (eg. valops)
1143 will correctly print the name.
1144 Don't add_symbol_to_list so that lookup_symbol won't find it.
1145 nope... needed for fixups. */
1146 SYMBOL_NAME (sym) = SYMBOL_NAME (ref_sym);
1147
1148 /* Done! */
1149 return 1;
1150 }
1151
1152 /* Structure for storing pointers to reference definitions for fast lookup
1153 during "process_later". */
1154
1155 struct ref_map
1156 {
1157 char *stabs;
1158 CORE_ADDR value;
1159 struct symbol *sym;
1160 };
1161
1162 #define MAX_CHUNK_REFS 100
1163 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
1164 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
1165
1166 static struct ref_map *ref_map;
1167
1168 /* Ptr to free cell in chunk's linked list. */
1169 static int ref_count = 0;
1170
1171 /* Number of chunks malloced. */
1172 static int ref_chunk = 0;
1173
1174 /* Create array of pointers mapping refids to symbols and stab strings.
1175 Add pointers to reference definition symbols and/or their values as we
1176 find them, using their reference numbers as our index.
1177 These will be used later when we resolve references. */
1178 void
1179 ref_add (refnum, sym, stabs, value)
1180 int refnum;
1181 struct symbol *sym;
1182 char *stabs;
1183 CORE_ADDR value;
1184 {
1185 if (ref_count == 0)
1186 ref_chunk = 0;
1187 if (refnum >= ref_count)
1188 ref_count = refnum + 1;
1189 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
1190 {
1191 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
1192 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
1193 ref_map = (struct ref_map *)
1194 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
1195 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0, new_chunks * REF_CHUNK_SIZE);
1196 ref_chunk += new_chunks;
1197 }
1198 ref_map[refnum].stabs = stabs;
1199 ref_map[refnum].sym = sym;
1200 ref_map[refnum].value = value;
1201 }
1202
1203 /* Return defined sym for the reference REFNUM. */
1204 struct symbol *
1205 ref_search (refnum)
1206 int refnum;
1207 {
1208 if (refnum < 0 || refnum > ref_count)
1209 return 0;
1210 return ref_map[refnum].sym;
1211 }
1212
1213 /* Return value for the reference REFNUM. */
1214
1215 static CORE_ADDR
1216 ref_search_value (refnum)
1217 int refnum;
1218 {
1219 if (refnum < 0 || refnum > ref_count)
1220 return 0;
1221 return ref_map[refnum].value;
1222 }
1223
1224 /* Parse a reference id in STRING and return the resulting
1225 reference number. Move STRING beyond the reference id. */
1226
1227 static int
1228 process_reference (string)
1229 char **string;
1230 {
1231 char *p;
1232 int refnum = 0;
1233
1234 if (**string != '#')
1235 return 0;
1236
1237 /* Advance beyond the initial '#'. */
1238 p = *string + 1;
1239
1240 /* Read number as reference id. */
1241 while (*p && isdigit (*p))
1242 {
1243 refnum = refnum * 10 + *p - '0';
1244 p++;
1245 }
1246 *string = p;
1247 return refnum;
1248 }
1249
1250 /* If STRING defines a reference, store away a pointer to the reference
1251 definition for later use. Return the reference number. */
1252
1253 int
1254 symbol_reference_defined (string)
1255 char **string;
1256 {
1257 char *p = *string;
1258 int refnum = 0;
1259
1260 refnum = process_reference (&p);
1261
1262 /* Defining symbols end in '=' */
1263 if (*p == '=')
1264 {
1265 /* Symbol is being defined here. */
1266 *string = p + 1;
1267 return refnum;
1268 }
1269 else
1270 {
1271 /* Must be a reference. Either the symbol has already been defined,
1272 or this is a forward reference to it. */
1273 *string = p;
1274 return -1;
1275 }
1276 }
1277
1278 /* ARGSUSED */
1279 struct symbol *
1280 define_symbol (valu, string, desc, type, objfile)
1281 CORE_ADDR valu;
1282 char *string;
1283 int desc;
1284 int type;
1285 struct objfile *objfile;
1286 {
1287 register struct symbol *sym;
1288 char *p = (char *) strchr (string, ':');
1289 int deftype;
1290 int synonym = 0;
1291 register int i;
1292
1293 /* We would like to eliminate nameless symbols, but keep their types.
1294 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
1295 to type 2, but, should not create a symbol to address that type. Since
1296 the symbol will be nameless, there is no way any user can refer to it. */
1297
1298 int nameless;
1299
1300 /* Ignore syms with empty names. */
1301 if (string[0] == 0)
1302 return 0;
1303
1304 /* Ignore old-style symbols from cc -go */
1305 if (p == 0)
1306 return 0;
1307
1308 while (p[1] == ':')
1309 {
1310 p += 2;
1311 p = strchr (p, ':');
1312 }
1313
1314 /* If a nameless stab entry, all we need is the type, not the symbol.
1315 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
1316 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
1317
1318 current_symbol = sym = (struct symbol *)
1319 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
1320 memset (sym, 0, sizeof (struct symbol));
1321
1322 switch (type & N_TYPE)
1323 {
1324 case N_TEXT:
1325 SYMBOL_SECTION(sym) = SECT_OFF_TEXT;
1326 break;
1327 case N_DATA:
1328 SYMBOL_SECTION(sym) = SECT_OFF_DATA;
1329 break;
1330 case N_BSS:
1331 SYMBOL_SECTION(sym) = SECT_OFF_BSS;
1332 break;
1333 }
1334
1335 if (processing_gcc_compilation)
1336 {
1337 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
1338 number of bytes occupied by a type or object, which we ignore. */
1339 SYMBOL_LINE(sym) = desc;
1340 }
1341 else
1342 {
1343 SYMBOL_LINE(sym) = 0; /* unknown */
1344 }
1345
1346 if (is_cplus_marker (string[0]))
1347 {
1348 /* Special GNU C++ names. */
1349 switch (string[1])
1350 {
1351 case 't':
1352 SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
1353 &objfile -> symbol_obstack);
1354 break;
1355
1356 case 'v': /* $vtbl_ptr_type */
1357 /* Was: SYMBOL_NAME (sym) = "vptr"; */
1358 goto normal;
1359
1360 case 'e':
1361 SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
1362 &objfile -> symbol_obstack);
1363 break;
1364
1365 case '_':
1366 /* This was an anonymous type that was never fixed up. */
1367 goto normal;
1368
1369 #ifdef STATIC_TRANSFORM_NAME
1370 case 'X':
1371 /* SunPRO (3.0 at least) static variable encoding. */
1372 goto normal;
1373 #endif
1374
1375 default:
1376 complain (&unrecognized_cplus_name_complaint, string);
1377 goto normal; /* Do *something* with it */
1378 }
1379 }
1380 else if (string[0] == '#')
1381 {
1382 /* Special GNU C extension for referencing symbols. */
1383 char *s;
1384 int refnum, nlen;
1385
1386 /* If STRING defines a new reference id, then add it to the
1387 reference map. Else it must be referring to a previously
1388 defined symbol, so add it to the alias list of the previously
1389 defined symbol. */
1390 s = string;
1391 refnum = symbol_reference_defined (&s);
1392 if (refnum >= 0)
1393 ref_add (refnum, sym, string, SYMBOL_VALUE (sym));
1394 else
1395 if (!resolve_symbol_reference (objfile, sym, string))
1396 return NULL;
1397
1398 /* S..P contains the name of the symbol. We need to store
1399 the correct name into SYMBOL_NAME. */
1400 nlen = p - s;
1401 if (refnum >= 0)
1402 {
1403 if (nlen > 0)
1404 {
1405 SYMBOL_NAME (sym) = (char *)
1406 obstack_alloc (&objfile -> symbol_obstack, nlen);
1407 strncpy (SYMBOL_NAME (sym), s, nlen);
1408 SYMBOL_NAME (sym)[nlen] = '\0';
1409 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
1410 }
1411 else
1412 /* FIXME! Want SYMBOL_NAME (sym) = 0;
1413 Get error if leave name 0. So give it something. */
1414 {
1415 nlen = p - string;
1416 SYMBOL_NAME (sym) = (char *)
1417 obstack_alloc (&objfile -> symbol_obstack, nlen);
1418 strncpy (SYMBOL_NAME (sym), string, nlen);
1419 SYMBOL_NAME (sym)[nlen] = '\0';
1420 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
1421 }
1422 }
1423 /* Advance STRING beyond the reference id. */
1424 string = s;
1425 }
1426 else
1427 {
1428 normal:
1429 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
1430 SYMBOL_NAME (sym) = (char *)
1431 obstack_alloc (&objfile -> symbol_obstack, ((p - string) + 1));
1432 /* Open-coded memcpy--saves function call time. */
1433 /* FIXME: Does it really? Try replacing with simple strcpy and
1434 try it on an executable with a large symbol table. */
1435 /* FIXME: considering that gcc can open code memcpy anyway, I
1436 doubt it. xoxorich. */
1437 {
1438 register char *p1 = string;
1439 register char *p2 = SYMBOL_NAME (sym);
1440 while (p1 != p)
1441 {
1442 *p2++ = *p1++;
1443 }
1444 *p2++ = '\0';
1445 }
1446
1447 /* If this symbol is from a C++ compilation, then attempt to cache the
1448 demangled form for future reference. This is a typical time versus
1449 space tradeoff, that was decided in favor of time because it sped up
1450 C++ symbol lookups by a factor of about 20. */
1451
1452 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
1453 }
1454 p++;
1455
1456 /* Determine the type of name being defined. */
1457 #if 0
1458 /* Getting GDB to correctly skip the symbol on an undefined symbol
1459 descriptor and not ever dump core is a very dodgy proposition if
1460 we do things this way. I say the acorn RISC machine can just
1461 fix their compiler. */
1462 /* The Acorn RISC machine's compiler can put out locals that don't
1463 start with "234=" or "(3,4)=", so assume anything other than the
1464 deftypes we know how to handle is a local. */
1465 if (!strchr ("cfFGpPrStTvVXCR", *p))
1466 #else
1467 if (isdigit (*p) || *p == '(' || *p == '-')
1468 #endif
1469 deftype = 'l';
1470 else
1471 deftype = *p++;
1472
1473 switch (deftype)
1474 {
1475 case 'c':
1476 /* c is a special case, not followed by a type-number.
1477 SYMBOL:c=iVALUE for an integer constant symbol.
1478 SYMBOL:c=rVALUE for a floating constant symbol.
1479 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
1480 e.g. "b:c=e6,0" for "const b = blob1"
1481 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
1482 if (*p != '=')
1483 {
1484 SYMBOL_CLASS (sym) = LOC_CONST;
1485 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1486 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1487 add_symbol_to_list (sym, &file_symbols);
1488 return sym;
1489 }
1490 ++p;
1491 switch (*p++)
1492 {
1493 case 'r':
1494 {
1495 double d = atof (p);
1496 char *dbl_valu;
1497
1498 /* FIXME-if-picky-about-floating-accuracy: Should be using
1499 target arithmetic to get the value. real.c in GCC
1500 probably has the necessary code. */
1501
1502 /* FIXME: lookup_fundamental_type is a hack. We should be
1503 creating a type especially for the type of float constants.
1504 Problem is, what type should it be?
1505
1506 Also, what should the name of this type be? Should we
1507 be using 'S' constants (see stabs.texinfo) instead? */
1508
1509 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
1510 FT_DBL_PREC_FLOAT);
1511 dbl_valu = (char *)
1512 obstack_alloc (&objfile -> symbol_obstack,
1513 TYPE_LENGTH (SYMBOL_TYPE (sym)));
1514 store_floating (dbl_valu, TYPE_LENGTH (SYMBOL_TYPE (sym)), d);
1515 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
1516 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
1517 }
1518 break;
1519 case 'i':
1520 {
1521 /* Defining integer constants this way is kind of silly,
1522 since 'e' constants allows the compiler to give not
1523 only the value, but the type as well. C has at least
1524 int, long, unsigned int, and long long as constant
1525 types; other languages probably should have at least
1526 unsigned as well as signed constants. */
1527
1528 /* We just need one int constant type for all objfiles.
1529 It doesn't depend on languages or anything (arguably its
1530 name should be a language-specific name for a type of
1531 that size, but I'm inclined to say that if the compiler
1532 wants a nice name for the type, it can use 'e'). */
1533 static struct type *int_const_type;
1534
1535 /* Yes, this is as long as a *host* int. That is because we
1536 use atoi. */
1537 if (int_const_type == NULL)
1538 int_const_type =
1539 init_type (TYPE_CODE_INT,
1540 sizeof (int) * HOST_CHAR_BIT / TARGET_CHAR_BIT, 0,
1541 "integer constant",
1542 (struct objfile *)NULL);
1543 SYMBOL_TYPE (sym) = int_const_type;
1544 SYMBOL_VALUE (sym) = atoi (p);
1545 SYMBOL_CLASS (sym) = LOC_CONST;
1546 }
1547 break;
1548 case 'e':
1549 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
1550 can be represented as integral.
1551 e.g. "b:c=e6,0" for "const b = blob1"
1552 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
1553 {
1554 SYMBOL_CLASS (sym) = LOC_CONST;
1555 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1556
1557 if (*p != ',')
1558 {
1559 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1560 break;
1561 }
1562 ++p;
1563
1564 /* If the value is too big to fit in an int (perhaps because
1565 it is unsigned), or something like that, we silently get
1566 a bogus value. The type and everything else about it is
1567 correct. Ideally, we should be using whatever we have
1568 available for parsing unsigned and long long values,
1569 however. */
1570 SYMBOL_VALUE (sym) = atoi (p);
1571 }
1572 break;
1573 default:
1574 {
1575 SYMBOL_CLASS (sym) = LOC_CONST;
1576 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1577 }
1578 }
1579 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1580 add_symbol_to_list (sym, &file_symbols);
1581 return sym;
1582
1583 case 'C':
1584 /* The name of a caught exception. */
1585 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1586 SYMBOL_CLASS (sym) = LOC_LABEL;
1587 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1588 SYMBOL_VALUE_ADDRESS (sym) = valu;
1589 add_symbol_to_list (sym, &local_symbols);
1590 break;
1591
1592 case 'f':
1593 /* A static function definition. */
1594 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1595 SYMBOL_CLASS (sym) = LOC_BLOCK;
1596 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1597 add_symbol_to_list (sym, &file_symbols);
1598 /* fall into process_function_types. */
1599
1600 process_function_types:
1601 /* Function result types are described as the result type in stabs.
1602 We need to convert this to the function-returning-type-X type
1603 in GDB. E.g. "int" is converted to "function returning int". */
1604 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
1605 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
1606
1607 /* All functions in C++ have prototypes. */
1608 if (SYMBOL_LANGUAGE (sym) == language_cplus)
1609 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
1610
1611 /* fall into process_prototype_types */
1612
1613 process_prototype_types:
1614 /* Sun acc puts declared types of arguments here. */
1615 if (*p == ';')
1616 {
1617 struct type *ftype = SYMBOL_TYPE (sym);
1618 int nsemi = 0;
1619 int nparams = 0;
1620 char *p1 = p;
1621
1622 /* Obtain a worst case guess for the number of arguments
1623 by counting the semicolons. */
1624 while (*p1)
1625 {
1626 if (*p1++ == ';')
1627 nsemi++;
1628 }
1629
1630 /* Allocate parameter information fields and fill them in. */
1631 TYPE_FIELDS (ftype) = (struct field *)
1632 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
1633 while (*p++ == ';')
1634 {
1635 struct type *ptype;
1636
1637 /* A type number of zero indicates the start of varargs.
1638 FIXME: GDB currently ignores vararg functions. */
1639 if (p[0] == '0' && p[1] == '\0')
1640 break;
1641 ptype = read_type (&p, objfile);
1642
1643 /* The Sun compilers mark integer arguments, which should
1644 be promoted to the width of the calling conventions, with
1645 a type which references itself. This type is turned into
1646 a TYPE_CODE_VOID type by read_type, and we have to turn
1647 it back into builtin_type_int here.
1648 FIXME: Do we need a new builtin_type_promoted_int_arg ? */
1649 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
1650 ptype = builtin_type_int;
1651 TYPE_FIELD_TYPE (ftype, nparams++) = ptype;
1652 }
1653 TYPE_NFIELDS (ftype) = nparams;
1654 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
1655 }
1656 break;
1657
1658 case 'F':
1659 /* A global function definition. */
1660 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1661 SYMBOL_CLASS (sym) = LOC_BLOCK;
1662 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1663 add_symbol_to_list (sym, &global_symbols);
1664 goto process_function_types;
1665
1666 case 'G':
1667 /* For a class G (global) symbol, it appears that the
1668 value is not correct. It is necessary to search for the
1669 corresponding linker definition to find the value.
1670 These definitions appear at the end of the namelist. */
1671 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1672 SYMBOL_CLASS (sym) = LOC_STATIC;
1673 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1674 /* Don't add symbol references to global_sym_chain.
1675 Symbol references don't have valid names and wont't match up with
1676 minimal symbols when the global_sym_chain is relocated.
1677 We'll fixup symbol references when we fixup the defining symbol. */
1678 if (SYMBOL_NAME (sym) && SYMBOL_NAME (sym)[0] != '#')
1679 {
1680 i = hashname (SYMBOL_NAME (sym));
1681 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1682 global_sym_chain[i] = sym;
1683 }
1684 add_symbol_to_list (sym, &global_symbols);
1685 break;
1686
1687 /* This case is faked by a conditional above,
1688 when there is no code letter in the dbx data.
1689 Dbx data never actually contains 'l'. */
1690 case 's':
1691 case 'l':
1692 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1693 SYMBOL_CLASS (sym) = LOC_LOCAL;
1694 SYMBOL_VALUE (sym) = valu;
1695 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1696 add_symbol_to_list (sym, &local_symbols);
1697 break;
1698
1699 case 'p':
1700 if (*p == 'F')
1701 /* pF is a two-letter code that means a function parameter in Fortran.
1702 The type-number specifies the type of the return value.
1703 Translate it into a pointer-to-function type. */
1704 {
1705 p++;
1706 SYMBOL_TYPE (sym)
1707 = lookup_pointer_type
1708 (lookup_function_type (read_type (&p, objfile)));
1709 }
1710 else
1711 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1712
1713 /* Normally this is a parameter, a LOC_ARG. On the i960, it
1714 can also be a LOC_LOCAL_ARG depending on symbol type. */
1715 #ifndef DBX_PARM_SYMBOL_CLASS
1716 #define DBX_PARM_SYMBOL_CLASS(type) LOC_ARG
1717 #endif
1718
1719 SYMBOL_CLASS (sym) = DBX_PARM_SYMBOL_CLASS (type);
1720 SYMBOL_VALUE (sym) = valu;
1721 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1722 add_symbol_to_list (sym, &local_symbols);
1723
1724 if (TARGET_BYTE_ORDER != BIG_ENDIAN)
1725 {
1726 /* On little-endian machines, this crud is never necessary,
1727 and, if the extra bytes contain garbage, is harmful. */
1728 break;
1729 }
1730
1731 /* If it's gcc-compiled, if it says `short', believe it. */
1732 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
1733 break;
1734
1735 #if !BELIEVE_PCC_PROMOTION
1736 {
1737 /* This is the signed type which arguments get promoted to. */
1738 static struct type *pcc_promotion_type;
1739 /* This is the unsigned type which arguments get promoted to. */
1740 static struct type *pcc_unsigned_promotion_type;
1741
1742 /* Call it "int" because this is mainly C lossage. */
1743 if (pcc_promotion_type == NULL)
1744 pcc_promotion_type =
1745 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
1746 0, "int", NULL);
1747
1748 if (pcc_unsigned_promotion_type == NULL)
1749 pcc_unsigned_promotion_type =
1750 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
1751 TYPE_FLAG_UNSIGNED, "unsigned int", NULL);
1752
1753 #if defined(BELIEVE_PCC_PROMOTION_TYPE)
1754 /* This macro is defined on machines (e.g. sparc) where
1755 we should believe the type of a PCC 'short' argument,
1756 but shouldn't believe the address (the address is
1757 the address of the corresponding int).
1758
1759 My guess is that this correction, as opposed to changing
1760 the parameter to an 'int' (as done below, for PCC
1761 on most machines), is the right thing to do
1762 on all machines, but I don't want to risk breaking
1763 something that already works. On most PCC machines,
1764 the sparc problem doesn't come up because the calling
1765 function has to zero the top bytes (not knowing whether
1766 the called function wants an int or a short), so there
1767 is little practical difference between an int and a short
1768 (except perhaps what happens when the GDB user types
1769 "print short_arg = 0x10000;").
1770
1771 Hacked for SunOS 4.1 by gnu@cygnus.com. In 4.1, the compiler
1772 actually produces the correct address (we don't need to fix it
1773 up). I made this code adapt so that it will offset the symbol
1774 if it was pointing at an int-aligned location and not
1775 otherwise. This way you can use the same gdb for 4.0.x and
1776 4.1 systems.
1777
1778 If the parameter is shorter than an int, and is integral
1779 (e.g. char, short, or unsigned equivalent), and is claimed to
1780 be passed on an integer boundary, don't believe it! Offset the
1781 parameter's address to the tail-end of that integer. */
1782
1783 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
1784 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT
1785 && 0 == SYMBOL_VALUE (sym) % TYPE_LENGTH (pcc_promotion_type))
1786 {
1787 SYMBOL_VALUE (sym) += TYPE_LENGTH (pcc_promotion_type)
1788 - TYPE_LENGTH (SYMBOL_TYPE (sym));
1789 }
1790 break;
1791
1792 #else /* no BELIEVE_PCC_PROMOTION_TYPE. */
1793
1794 /* If PCC says a parameter is a short or a char,
1795 it is really an int. */
1796 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
1797 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1798 {
1799 SYMBOL_TYPE (sym) =
1800 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1801 ? pcc_unsigned_promotion_type
1802 : pcc_promotion_type;
1803 }
1804 break;
1805
1806 #endif /* no BELIEVE_PCC_PROMOTION_TYPE. */
1807 }
1808 #endif /* !BELIEVE_PCC_PROMOTION. */
1809
1810 case 'P':
1811 /* acc seems to use P to declare the prototypes of functions that
1812 are referenced by this file. gdb is not prepared to deal
1813 with this extra information. FIXME, it ought to. */
1814 if (type == N_FUN)
1815 {
1816 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1817 goto process_prototype_types;
1818 }
1819 /*FALLTHROUGH*/
1820
1821 case 'R':
1822 /* Parameter which is in a register. */
1823 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1824 SYMBOL_CLASS (sym) = LOC_REGPARM;
1825 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1826 if (SYMBOL_VALUE (sym) >= NUM_REGS)
1827 {
1828 complain (&reg_value_complaint, SYMBOL_VALUE (sym), NUM_REGS,
1829 SYMBOL_SOURCE_NAME (sym));
1830 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1831 }
1832 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1833 add_symbol_to_list (sym, &local_symbols);
1834 break;
1835
1836 case 'r':
1837 /* Register variable (either global or local). */
1838 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1839 SYMBOL_CLASS (sym) = LOC_REGISTER;
1840 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
1841 if (SYMBOL_VALUE (sym) >= NUM_REGS)
1842 {
1843 complain (&reg_value_complaint, SYMBOL_VALUE (sym), NUM_REGS,
1844 SYMBOL_SOURCE_NAME (sym));
1845 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
1846 }
1847 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1848 if (within_function)
1849 {
1850 /* Sun cc uses a pair of symbols, one 'p' and one 'r' with the same
1851 name to represent an argument passed in a register.
1852 GCC uses 'P' for the same case. So if we find such a symbol pair
1853 we combine it into one 'P' symbol. For Sun cc we need to do this
1854 regardless of REG_STRUCT_HAS_ADDR, because the compiler puts out
1855 the 'p' symbol even if it never saves the argument onto the stack.
1856
1857 On most machines, we want to preserve both symbols, so that
1858 we can still get information about what is going on with the
1859 stack (VAX for computing args_printed, using stack slots instead
1860 of saved registers in backtraces, etc.).
1861
1862 Note that this code illegally combines
1863 main(argc) struct foo argc; { register struct foo argc; }
1864 but this case is considered pathological and causes a warning
1865 from a decent compiler. */
1866
1867 if (local_symbols
1868 && local_symbols->nsyms > 0
1869 #ifndef USE_REGISTER_NOT_ARG
1870 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation,
1871 SYMBOL_TYPE (sym))
1872 && (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1873 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION
1874 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_SET
1875 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_BITSTRING)
1876 #endif
1877 )
1878 {
1879 struct symbol *prev_sym;
1880 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1881 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1882 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1883 && STREQ (SYMBOL_NAME (prev_sym), SYMBOL_NAME(sym)))
1884 {
1885 SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
1886 /* Use the type from the LOC_REGISTER; that is the type
1887 that is actually in that register. */
1888 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1889 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1890 sym = prev_sym;
1891 break;
1892 }
1893 }
1894 add_symbol_to_list (sym, &local_symbols);
1895 }
1896 else
1897 add_symbol_to_list (sym, &file_symbols);
1898 break;
1899
1900 case 'S':
1901 /* Static symbol at top level of file */
1902 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1903 SYMBOL_CLASS (sym) = LOC_STATIC;
1904 SYMBOL_VALUE_ADDRESS (sym) = valu;
1905 #ifdef STATIC_TRANSFORM_NAME
1906 if (IS_STATIC_TRANSFORM_NAME (SYMBOL_NAME (sym)))
1907 {
1908 struct minimal_symbol *msym;
1909 msym = lookup_minimal_symbol (SYMBOL_NAME (sym), NULL, objfile);
1910 if (msym != NULL)
1911 {
1912 SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (SYMBOL_NAME (sym));
1913 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1914 }
1915 }
1916 #endif
1917 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1918 add_symbol_to_list (sym, &file_symbols);
1919 break;
1920
1921 case 't':
1922 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1923
1924 /* For a nameless type, we don't want a create a symbol, thus we
1925 did not use `sym'. Return without further processing. */
1926 if (nameless) return NULL;
1927
1928 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1929 SYMBOL_VALUE (sym) = valu;
1930 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1931 /* C++ vagaries: we may have a type which is derived from
1932 a base type which did not have its name defined when the
1933 derived class was output. We fill in the derived class's
1934 base part member's name here in that case. */
1935 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1936 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1937 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1938 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1939 {
1940 int j;
1941 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1942 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1943 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1944 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1945 }
1946
1947 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1948 {
1949 /* gcc-2.6 or later (when using -fvtable-thunks)
1950 emits a unique named type for a vtable entry.
1951 Some gdb code depends on that specific name. */
1952 extern const char vtbl_ptr_name[];
1953
1954 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1955 && strcmp (SYMBOL_NAME (sym), vtbl_ptr_name))
1956 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1957 {
1958 /* If we are giving a name to a type such as "pointer to
1959 foo" or "function returning foo", we better not set
1960 the TYPE_NAME. If the program contains "typedef char
1961 *caddr_t;", we don't want all variables of type char
1962 * to print as caddr_t. This is not just a
1963 consequence of GDB's type management; PCC and GCC (at
1964 least through version 2.4) both output variables of
1965 either type char * or caddr_t with the type number
1966 defined in the 't' symbol for caddr_t. If a future
1967 compiler cleans this up it GDB is not ready for it
1968 yet, but if it becomes ready we somehow need to
1969 disable this check (without breaking the PCC/GCC2.4
1970 case).
1971
1972 Sigh.
1973
1974 Fortunately, this check seems not to be necessary
1975 for anything except pointers or functions. */
1976 }
1977 else
1978 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_NAME (sym);
1979 }
1980
1981 add_symbol_to_list (sym, &file_symbols);
1982 break;
1983
1984 case 'T':
1985 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1986 by 't' which means we are typedef'ing it as well. */
1987 synonym = *p == 't';
1988
1989 if (synonym)
1990 p++;
1991 /* The semantics of C++ state that "struct foo { ... }" also defines
1992 a typedef for "foo". Unfortunately, cfront never makes the typedef
1993 when translating C++ into C. We make the typedef here so that
1994 "ptype foo" works as expected for cfront translated code. */
1995 else if (current_subfile->language == language_cplus)
1996 synonym = 1;
1997
1998 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1999
2000 /* For a nameless type, we don't want a create a symbol, thus we
2001 did not use `sym'. Return without further processing. */
2002 if (nameless) return NULL;
2003
2004 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
2005 SYMBOL_VALUE (sym) = valu;
2006 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
2007 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
2008 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
2009 = obconcat (&objfile -> type_obstack, "", "", SYMBOL_NAME (sym));
2010 add_symbol_to_list (sym, &file_symbols);
2011
2012 if (synonym)
2013 {
2014 /* Clone the sym and then modify it. */
2015 register struct symbol *typedef_sym = (struct symbol *)
2016 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
2017 *typedef_sym = *sym;
2018 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
2019 SYMBOL_VALUE (typedef_sym) = valu;
2020 SYMBOL_NAMESPACE (typedef_sym) = VAR_NAMESPACE;
2021 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
2022 TYPE_NAME (SYMBOL_TYPE (sym))
2023 = obconcat (&objfile -> type_obstack, "", "", SYMBOL_NAME (sym));
2024 add_symbol_to_list (typedef_sym, &file_symbols);
2025 }
2026 break;
2027
2028 case 'V':
2029 /* Static symbol of local scope */
2030 SYMBOL_TYPE (sym) = read_type (&p, objfile);
2031 SYMBOL_CLASS (sym) = LOC_STATIC;
2032 SYMBOL_VALUE_ADDRESS (sym) = valu;
2033 #ifdef STATIC_TRANSFORM_NAME
2034 if (IS_STATIC_TRANSFORM_NAME (SYMBOL_NAME (sym)))
2035 {
2036 struct minimal_symbol *msym;
2037 msym = lookup_minimal_symbol (SYMBOL_NAME (sym), NULL, objfile);
2038 if (msym != NULL)
2039 {
2040 SYMBOL_NAME (sym) = STATIC_TRANSFORM_NAME (SYMBOL_NAME (sym));
2041 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
2042 }
2043 }
2044 #endif
2045 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2046 if (os9k_stabs)
2047 add_symbol_to_list (sym, &global_symbols);
2048 else
2049 add_symbol_to_list (sym, &local_symbols);
2050 break;
2051
2052 case 'v':
2053 /* Reference parameter */
2054 SYMBOL_TYPE (sym) = read_type (&p, objfile);
2055 SYMBOL_CLASS (sym) = LOC_REF_ARG;
2056 SYMBOL_VALUE (sym) = valu;
2057 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2058 add_symbol_to_list (sym, &local_symbols);
2059 break;
2060
2061 case 'a':
2062 /* Reference parameter which is in a register. */
2063 SYMBOL_TYPE (sym) = read_type (&p, objfile);
2064 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
2065 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
2066 if (SYMBOL_VALUE (sym) >= NUM_REGS)
2067 {
2068 complain (&reg_value_complaint, SYMBOL_VALUE (sym), NUM_REGS,
2069 SYMBOL_SOURCE_NAME (sym));
2070 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
2071 }
2072 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2073 add_symbol_to_list (sym, &local_symbols);
2074 break;
2075
2076 case 'X':
2077 /* This is used by Sun FORTRAN for "function result value".
2078 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
2079 that Pascal uses it too, but when I tried it Pascal used
2080 "x:3" (local symbol) instead. */
2081 SYMBOL_TYPE (sym) = read_type (&p, objfile);
2082 SYMBOL_CLASS (sym) = LOC_LOCAL;
2083 SYMBOL_VALUE (sym) = valu;
2084 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2085 add_symbol_to_list (sym, &local_symbols);
2086 break;
2087
2088 /* New code added to support cfront stabs strings.
2089 Note: case 'P' already handled above */
2090 case 'Z':
2091 /* Cfront type continuation coming up!
2092 Find the original definition and add to it.
2093 We'll have to do this for the typedef too,
2094 since we cloned the symbol to define a type in read_type.
2095 Stabs info examples:
2096 __1C :Ztl
2097 foo__1CFv :ZtF (first def foo__1CFv:F(0,3);(0,24))
2098 C:ZsC;;__ct__1CFv func1__1CFv func2__1CFv ... ;;;
2099 where C is the name of the class.
2100 Unfortunately, we can't lookup the original symbol yet 'cuz
2101 we haven't finished reading all the symbols.
2102 Instead, we save it for processing later */
2103 process_later (sym, p, resolve_cfront_continuation);
2104 SYMBOL_TYPE (sym) = error_type (&p, objfile); /* FIXME! change later */
2105 SYMBOL_CLASS (sym) = LOC_CONST;
2106 SYMBOL_VALUE (sym) = 0;
2107 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2108 /* Don't add to list - we'll delete it later when
2109 we add the continuation to the real sym */
2110 return sym;
2111 /* End of new code added to support cfront stabs strings */
2112
2113 default:
2114 SYMBOL_TYPE (sym) = error_type (&p, objfile);
2115 SYMBOL_CLASS (sym) = LOC_CONST;
2116 SYMBOL_VALUE (sym) = 0;
2117 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2118 add_symbol_to_list (sym, &file_symbols);
2119 break;
2120 }
2121
2122 /* When passing structures to a function, some systems sometimes pass
2123 the address in a register, not the structure itself. */
2124
2125 if (REG_STRUCT_HAS_ADDR (processing_gcc_compilation, SYMBOL_TYPE (sym))
2126 && (SYMBOL_CLASS (sym) == LOC_REGPARM || SYMBOL_CLASS (sym) == LOC_ARG))
2127 {
2128 struct type *symbol_type = check_typedef (SYMBOL_TYPE (sym));
2129
2130 if ((TYPE_CODE (symbol_type) == TYPE_CODE_STRUCT)
2131 || (TYPE_CODE (symbol_type) == TYPE_CODE_UNION)
2132 || (TYPE_CODE (symbol_type) == TYPE_CODE_BITSTRING)
2133 || (TYPE_CODE (symbol_type) == TYPE_CODE_SET))
2134 {
2135 /* If REG_STRUCT_HAS_ADDR yields non-zero we have to convert
2136 LOC_REGPARM to LOC_REGPARM_ADDR for structures and unions. */
2137 if (SYMBOL_CLASS (sym) == LOC_REGPARM)
2138 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
2139 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
2140 and subsequent arguments on the sparc, for example). */
2141 else if (SYMBOL_CLASS (sym) == LOC_ARG)
2142 SYMBOL_CLASS (sym) = LOC_REF_ARG;
2143 }
2144 }
2145
2146 /* Is there more to parse? For example LRS/alias information? */
2147 while (*p && *p == ';')
2148 {
2149 p++;
2150 if (*p && *p == 'l')
2151 {
2152 /* GNU extensions for live range splitting may be appended to
2153 the end of the stab string. eg. "l(#1,#2);l(#3,#5)" */
2154
2155 /* Resolve the live range and add it to SYM's live range list. */
2156 if (!resolve_live_range (objfile, sym, p))
2157 return NULL;
2158
2159 /* Find end of live range info. */
2160 p = strchr (p, ')');
2161 if (!*p || *p != ')')
2162 {
2163 complain (&lrs_general_complaint, "live range format not recognized");
2164 return NULL;
2165 }
2166 p++;
2167 }
2168 }
2169 return sym;
2170 }
2171
2172 /* Add the live range found in P to the symbol SYM in objfile OBJFILE. Returns
2173 non-zero on success, zero otherwise. */
2174
2175 static int
2176 resolve_live_range (objfile, sym, p)
2177 struct objfile *objfile;
2178 struct symbol *sym;
2179 char *p;
2180 {
2181 int refnum;
2182 CORE_ADDR start, end;
2183
2184 /* Sanity check the beginning of the stabs string. */
2185 if (!*p || *p != 'l')
2186 {
2187 complain (&lrs_general_complaint, "live range string 1");
2188 return 0;
2189 }
2190 p++;
2191
2192 if (!*p || *p != '(')
2193 {
2194 complain (&lrs_general_complaint, "live range string 2");
2195 return 0;
2196 }
2197 p++;
2198
2199 /* Get starting value of range and advance P past the reference id.
2200
2201 ?!? In theory, the process_reference should never fail, but we should
2202 catch that case just in case the compiler scrogged the stabs. */
2203 refnum = process_reference (&p);
2204 start = ref_search_value (refnum);
2205 if (!start)
2206 {
2207 complain (&lrs_general_complaint, "Live range symbol not found 1");
2208 return 0;
2209 }
2210
2211 if (!*p || *p != ',')
2212 {
2213 complain (&lrs_general_complaint, "live range string 3");
2214 return 0;
2215 }
2216 p++;
2217
2218 /* Get ending value of range and advance P past the reference id.
2219
2220 ?!? In theory, the process_reference should never fail, but we should
2221 catch that case just in case the compiler scrogged the stabs. */
2222 refnum = process_reference (&p);
2223 end = ref_search_value (refnum);
2224 if (!end)
2225 {
2226 complain (&lrs_general_complaint, "Live range symbol not found 2");
2227 return 0;
2228 }
2229
2230 if (!*p || *p != ')')
2231 {
2232 complain (&lrs_general_complaint, "live range string 4");
2233 return 0;
2234 }
2235
2236 /* Now that we know the bounds of the range, add it to the
2237 symbol. */
2238 add_live_range (objfile, sym, start, end);
2239
2240 return 1;
2241 }
2242
2243 /* Add a new live range defined by START and END to the symbol SYM
2244 in objfile OBJFILE. */
2245
2246 static void
2247 add_live_range (objfile, sym, start, end)
2248 struct objfile *objfile;
2249 struct symbol *sym;
2250 CORE_ADDR start, end;
2251 {
2252 struct range_list *r, *rs;
2253
2254 if (start >= end)
2255 {
2256 complain (&lrs_general_complaint, "end of live range follows start");
2257 return;
2258 }
2259
2260 /* Alloc new live range structure. */
2261 r = (struct range_list *)
2262 obstack_alloc (&objfile->type_obstack,
2263 sizeof (struct range_list));
2264 r->start = start;
2265 r->end = end;
2266 r->next = 0;
2267
2268 /* Append this range to the symbol's range list. */
2269 if (!SYMBOL_RANGES (sym))
2270 SYMBOL_RANGES (sym) = r;
2271 else
2272 {
2273 /* Get the last range for the symbol. */
2274 for (rs = SYMBOL_RANGES (sym); rs->next; rs = rs->next)
2275 ;
2276 rs->next = r;
2277 }
2278 }
2279
2280 \f
2281 /* Skip rest of this symbol and return an error type.
2282
2283 General notes on error recovery: error_type always skips to the
2284 end of the symbol (modulo cretinous dbx symbol name continuation).
2285 Thus code like this:
2286
2287 if (*(*pp)++ != ';')
2288 return error_type (pp, objfile);
2289
2290 is wrong because if *pp starts out pointing at '\0' (typically as the
2291 result of an earlier error), it will be incremented to point to the
2292 start of the next symbol, which might produce strange results, at least
2293 if you run off the end of the string table. Instead use
2294
2295 if (**pp != ';')
2296 return error_type (pp, objfile);
2297 ++*pp;
2298
2299 or
2300
2301 if (**pp != ';')
2302 foo = error_type (pp, objfile);
2303 else
2304 ++*pp;
2305
2306 And in case it isn't obvious, the point of all this hair is so the compiler
2307 can define new types and new syntaxes, and old versions of the
2308 debugger will be able to read the new symbol tables. */
2309
2310 static struct type *
2311 error_type (pp, objfile)
2312 char **pp;
2313 struct objfile *objfile;
2314 {
2315 complain (&error_type_complaint);
2316 while (1)
2317 {
2318 /* Skip to end of symbol. */
2319 while (**pp != '\0')
2320 {
2321 (*pp)++;
2322 }
2323
2324 /* Check for and handle cretinous dbx symbol name continuation! */
2325 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
2326 {
2327 *pp = next_symbol_text (objfile);
2328 }
2329 else
2330 {
2331 break;
2332 }
2333 }
2334 return (builtin_type_error);
2335 }
2336
2337 \f
2338 /* Read type information or a type definition; return the type. Even
2339 though this routine accepts either type information or a type
2340 definition, the distinction is relevant--some parts of stabsread.c
2341 assume that type information starts with a digit, '-', or '(' in
2342 deciding whether to call read_type. */
2343
2344 struct type *
2345 read_type (pp, objfile)
2346 register char **pp;
2347 struct objfile *objfile;
2348 {
2349 register struct type *type = 0;
2350 struct type *type1;
2351 int typenums[2];
2352 char type_descriptor;
2353
2354 /* Size in bits of type if specified by a type attribute, or -1 if
2355 there is no size attribute. */
2356 int type_size = -1;
2357
2358 /* Used to distinguish string and bitstring from char-array and set. */
2359 int is_string = 0;
2360
2361 /* Read type number if present. The type number may be omitted.
2362 for instance in a two-dimensional array declared with type
2363 "ar1;1;10;ar1;1;10;4". */
2364 if ((**pp >= '0' && **pp <= '9')
2365 || **pp == '('
2366 || **pp == '-')
2367 {
2368 if (read_type_number (pp, typenums) != 0)
2369 return error_type (pp, objfile);
2370
2371 /* Type is not being defined here. Either it already exists,
2372 or this is a forward reference to it. dbx_alloc_type handles
2373 both cases. */
2374 if (**pp != '=')
2375 return dbx_alloc_type (typenums, objfile);
2376
2377 /* Type is being defined here. */
2378 /* Skip the '='.
2379 Also skip the type descriptor - we get it below with (*pp)[-1]. */
2380 (*pp)+=2;
2381 }
2382 else
2383 {
2384 /* 'typenums=' not present, type is anonymous. Read and return
2385 the definition, but don't put it in the type vector. */
2386 typenums[0] = typenums[1] = -1;
2387 (*pp)++;
2388 }
2389
2390 again:
2391 type_descriptor = (*pp)[-1];
2392 switch (type_descriptor)
2393 {
2394 case 'x':
2395 {
2396 enum type_code code;
2397
2398 /* Used to index through file_symbols. */
2399 struct pending *ppt;
2400 int i;
2401
2402 /* Name including "struct", etc. */
2403 char *type_name;
2404
2405 {
2406 char *from, *to, *p, *q1, *q2;
2407
2408 /* Set the type code according to the following letter. */
2409 switch ((*pp)[0])
2410 {
2411 case 's':
2412 code = TYPE_CODE_STRUCT;
2413 break;
2414 case 'u':
2415 code = TYPE_CODE_UNION;
2416 break;
2417 case 'e':
2418 code = TYPE_CODE_ENUM;
2419 break;
2420 default:
2421 {
2422 /* Complain and keep going, so compilers can invent new
2423 cross-reference types. */
2424 static struct complaint msg =
2425 {"Unrecognized cross-reference type `%c'", 0, 0};
2426 complain (&msg, (*pp)[0]);
2427 code = TYPE_CODE_STRUCT;
2428 break;
2429 }
2430 }
2431
2432 q1 = strchr (*pp, '<');
2433 p = strchr (*pp, ':');
2434 if (p == NULL)
2435 return error_type (pp, objfile);
2436 if (q1 && p > q1 && p[1] == ':')
2437 {
2438 int nesting_level = 0;
2439 for (q2 = q1; *q2; q2++)
2440 {
2441 if (*q2 == '<')
2442 nesting_level++;
2443 else if (*q2 == '>')
2444 nesting_level--;
2445 else if (*q2 == ':' && nesting_level == 0)
2446 break;
2447 }
2448 p = q2;
2449 if (*p != ':')
2450 return error_type (pp, objfile);
2451 }
2452 to = type_name =
2453 (char *)obstack_alloc (&objfile->type_obstack, p - *pp + 1);
2454
2455 /* Copy the name. */
2456 from = *pp + 1;
2457 while (from < p)
2458 *to++ = *from++;
2459 *to = '\0';
2460
2461 /* Set the pointer ahead of the name which we just read, and
2462 the colon. */
2463 *pp = from + 1;
2464 }
2465
2466 /* Now check to see whether the type has already been
2467 declared. This was written for arrays of cross-referenced
2468 types before we had TYPE_CODE_TARGET_STUBBED, so I'm pretty
2469 sure it is not necessary anymore. But it might be a good
2470 idea, to save a little memory. */
2471
2472 for (ppt = file_symbols; ppt; ppt = ppt->next)
2473 for (i = 0; i < ppt->nsyms; i++)
2474 {
2475 struct symbol *sym = ppt->symbol[i];
2476
2477 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
2478 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
2479 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
2480 && STREQ (SYMBOL_NAME (sym), type_name))
2481 {
2482 obstack_free (&objfile -> type_obstack, type_name);
2483 type = SYMBOL_TYPE (sym);
2484 return type;
2485 }
2486 }
2487
2488 /* Didn't find the type to which this refers, so we must
2489 be dealing with a forward reference. Allocate a type
2490 structure for it, and keep track of it so we can
2491 fill in the rest of the fields when we get the full
2492 type. */
2493 type = dbx_alloc_type (typenums, objfile);
2494 TYPE_CODE (type) = code;
2495 TYPE_TAG_NAME (type) = type_name;
2496 INIT_CPLUS_SPECIFIC(type);
2497 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
2498
2499 add_undefined_type (type);
2500 return type;
2501 }
2502
2503 case '-': /* RS/6000 built-in type */
2504 case '0':
2505 case '1':
2506 case '2':
2507 case '3':
2508 case '4':
2509 case '5':
2510 case '6':
2511 case '7':
2512 case '8':
2513 case '9':
2514 case '(':
2515 (*pp)--;
2516
2517 /* We deal with something like t(1,2)=(3,4)=... which
2518 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
2519
2520 /* Allocate and enter the typedef type first.
2521 This handles recursive types. */
2522 type = dbx_alloc_type (typenums, objfile);
2523 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
2524 { struct type *xtype = read_type (pp, objfile);
2525 if (type == xtype)
2526 {
2527 /* It's being defined as itself. That means it is "void". */
2528 TYPE_CODE (type) = TYPE_CODE_VOID;
2529 TYPE_LENGTH (type) = 1;
2530 }
2531 else if (type_size >= 0 || is_string)
2532 {
2533 *type = *xtype;
2534 TYPE_NAME (type) = NULL;
2535 TYPE_TAG_NAME (type) = NULL;
2536 }
2537 else
2538 {
2539 TYPE_FLAGS (type) |= TYPE_FLAG_TARGET_STUB;
2540 TYPE_TARGET_TYPE (type) = xtype;
2541 }
2542 }
2543 break;
2544
2545 /* In the following types, we must be sure to overwrite any existing
2546 type that the typenums refer to, rather than allocating a new one
2547 and making the typenums point to the new one. This is because there
2548 may already be pointers to the existing type (if it had been
2549 forward-referenced), and we must change it to a pointer, function,
2550 reference, or whatever, *in-place*. */
2551
2552 case '*':
2553 type1 = read_type (pp, objfile);
2554 type = make_pointer_type (type1, dbx_lookup_type (typenums));
2555 break;
2556
2557 case '&': /* Reference to another type */
2558 type1 = read_type (pp, objfile);
2559 type = make_reference_type (type1, dbx_lookup_type (typenums));
2560 break;
2561
2562 case 'f': /* Function returning another type */
2563 if (os9k_stabs && **pp == '(')
2564 {
2565 /* Function prototype; parse it.
2566 We must conditionalize this on os9k_stabs because otherwise
2567 it could be confused with a Sun-style (1,3) typenumber
2568 (I think). */
2569 struct type *t;
2570 ++*pp;
2571 while (**pp != ')')
2572 {
2573 t = read_type (pp, objfile);
2574 if (**pp == ',') ++*pp;
2575 }
2576 }
2577 type1 = read_type (pp, objfile);
2578 type = make_function_type (type1, dbx_lookup_type (typenums));
2579 break;
2580
2581 case 'k': /* Const qualifier on some type (Sun) */
2582 case 'c': /* Const qualifier on some type (OS9000) */
2583 /* Because 'c' means other things to AIX and 'k' is perfectly good,
2584 only accept 'c' in the os9k_stabs case. */
2585 if (type_descriptor == 'c' && !os9k_stabs)
2586 return error_type (pp, objfile);
2587 type = read_type (pp, objfile);
2588 /* FIXME! For now, we ignore const and volatile qualifiers. */
2589 break;
2590
2591 case 'B': /* Volatile qual on some type (Sun) */
2592 case 'i': /* Volatile qual on some type (OS9000) */
2593 /* Because 'i' means other things to AIX and 'B' is perfectly good,
2594 only accept 'i' in the os9k_stabs case. */
2595 if (type_descriptor == 'i' && !os9k_stabs)
2596 return error_type (pp, objfile);
2597 type = read_type (pp, objfile);
2598 /* FIXME! For now, we ignore const and volatile qualifiers. */
2599 break;
2600
2601 case '@':
2602 if (isdigit (**pp) || **pp == '(' || **pp == '-')
2603 { /* Member (class & variable) type */
2604 /* FIXME -- we should be doing smash_to_XXX types here. */
2605
2606 struct type *domain = read_type (pp, objfile);
2607 struct type *memtype;
2608
2609 if (**pp != ',')
2610 /* Invalid member type data format. */
2611 return error_type (pp, objfile);
2612 ++*pp;
2613
2614 memtype = read_type (pp, objfile);
2615 type = dbx_alloc_type (typenums, objfile);
2616 smash_to_member_type (type, domain, memtype);
2617 }
2618 else /* type attribute */
2619 {
2620 char *attr = *pp;
2621 /* Skip to the semicolon. */
2622 while (**pp != ';' && **pp != '\0')
2623 ++(*pp);
2624 if (**pp == '\0')
2625 return error_type (pp, objfile);
2626 else
2627 ++*pp; /* Skip the semicolon. */
2628
2629 switch (*attr)
2630 {
2631 case 's':
2632 type_size = atoi (attr + 1);
2633 if (type_size <= 0)
2634 type_size = -1;
2635 break;
2636
2637 case 'S':
2638 is_string = 1;
2639 break;
2640
2641 default:
2642 /* Ignore unrecognized type attributes, so future compilers
2643 can invent new ones. */
2644 break;
2645 }
2646 ++*pp;
2647 goto again;
2648 }
2649 break;
2650
2651 case '#': /* Method (class & fn) type */
2652 if ((*pp)[0] == '#')
2653 {
2654 /* We'll get the parameter types from the name. */
2655 struct type *return_type;
2656
2657 (*pp)++;
2658 return_type = read_type (pp, objfile);
2659 if (*(*pp)++ != ';')
2660 complain (&invalid_member_complaint, symnum);
2661 type = allocate_stub_method (return_type);
2662 if (typenums[0] != -1)
2663 *dbx_lookup_type (typenums) = type;
2664 }
2665 else
2666 {
2667 struct type *domain = read_type (pp, objfile);
2668 struct type *return_type;
2669 struct type **args;
2670
2671 if (**pp != ',')
2672 /* Invalid member type data format. */
2673 return error_type (pp, objfile);
2674 else
2675 ++(*pp);
2676
2677 return_type = read_type (pp, objfile);
2678 args = read_args (pp, ';', objfile);
2679 type = dbx_alloc_type (typenums, objfile);
2680 smash_to_method_type (type, domain, return_type, args);
2681 }
2682 break;
2683
2684 case 'r': /* Range type */
2685 type = read_range_type (pp, typenums, objfile);
2686 if (typenums[0] != -1)
2687 *dbx_lookup_type (typenums) = type;
2688 break;
2689
2690 case 'b':
2691 if (os9k_stabs)
2692 /* Const and volatile qualified type. */
2693 type = read_type (pp, objfile);
2694 else
2695 {
2696 /* Sun ACC builtin int type */
2697 type = read_sun_builtin_type (pp, typenums, objfile);
2698 if (typenums[0] != -1)
2699 *dbx_lookup_type (typenums) = type;
2700 }
2701 break;
2702
2703 case 'R': /* Sun ACC builtin float type */
2704 type = read_sun_floating_type (pp, typenums, objfile);
2705 if (typenums[0] != -1)
2706 *dbx_lookup_type (typenums) = type;
2707 break;
2708
2709 case 'e': /* Enumeration type */
2710 type = dbx_alloc_type (typenums, objfile);
2711 type = read_enum_type (pp, type, objfile);
2712 if (typenums[0] != -1)
2713 *dbx_lookup_type (typenums) = type;
2714 break;
2715
2716 case 's': /* Struct type */
2717 case 'u': /* Union type */
2718 type = dbx_alloc_type (typenums, objfile);
2719 switch (type_descriptor)
2720 {
2721 case 's':
2722 TYPE_CODE (type) = TYPE_CODE_STRUCT;
2723 break;
2724 case 'u':
2725 TYPE_CODE (type) = TYPE_CODE_UNION;
2726 break;
2727 }
2728 type = read_struct_type (pp, type, objfile);
2729 break;
2730
2731 case 'a': /* Array type */
2732 if (**pp != 'r')
2733 return error_type (pp, objfile);
2734 ++*pp;
2735
2736 type = dbx_alloc_type (typenums, objfile);
2737 type = read_array_type (pp, type, objfile);
2738 if (is_string)
2739 TYPE_CODE (type) = TYPE_CODE_STRING;
2740 break;
2741
2742 case 'S':
2743 type1 = read_type (pp, objfile);
2744 type = create_set_type ((struct type*) NULL, type1);
2745 if (is_string)
2746 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
2747 if (typenums[0] != -1)
2748 *dbx_lookup_type (typenums) = type;
2749 break;
2750
2751 default:
2752 --*pp; /* Go back to the symbol in error */
2753 /* Particularly important if it was \0! */
2754 return error_type (pp, objfile);
2755 }
2756
2757 if (type == 0)
2758 {
2759 warning ("GDB internal error, type is NULL in stabsread.c\n");
2760 return error_type (pp, objfile);
2761 }
2762
2763 /* Size specified in a type attribute overrides any other size. */
2764 if (type_size != -1)
2765 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2766
2767 return type;
2768 }
2769 \f
2770 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2771 Return the proper type node for a given builtin type number. */
2772
2773 static struct type *
2774 rs6000_builtin_type (typenum)
2775 int typenum;
2776 {
2777 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2778 #define NUMBER_RECOGNIZED 34
2779 /* This includes an empty slot for type number -0. */
2780 static struct type *negative_types[NUMBER_RECOGNIZED + 1];
2781 struct type *rettype = NULL;
2782
2783 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2784 {
2785 complain (&rs6000_builtin_complaint, typenum);
2786 return builtin_type_error;
2787 }
2788 if (negative_types[-typenum] != NULL)
2789 return negative_types[-typenum];
2790
2791 #if TARGET_CHAR_BIT != 8
2792 #error This code wrong for TARGET_CHAR_BIT not 8
2793 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2794 that if that ever becomes not true, the correct fix will be to
2795 make the size in the struct type to be in bits, not in units of
2796 TARGET_CHAR_BIT. */
2797 #endif
2798
2799 switch (-typenum)
2800 {
2801 case 1:
2802 /* The size of this and all the other types are fixed, defined
2803 by the debugging format. If there is a type called "int" which
2804 is other than 32 bits, then it should use a new negative type
2805 number (or avoid negative type numbers for that case).
2806 See stabs.texinfo. */
2807 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
2808 break;
2809 case 2:
2810 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
2811 break;
2812 case 3:
2813 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
2814 break;
2815 case 4:
2816 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
2817 break;
2818 case 5:
2819 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
2820 "unsigned char", NULL);
2821 break;
2822 case 6:
2823 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
2824 break;
2825 case 7:
2826 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
2827 "unsigned short", NULL);
2828 break;
2829 case 8:
2830 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2831 "unsigned int", NULL);
2832 break;
2833 case 9:
2834 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2835 "unsigned", NULL);
2836 case 10:
2837 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2838 "unsigned long", NULL);
2839 break;
2840 case 11:
2841 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", NULL);
2842 break;
2843 case 12:
2844 /* IEEE single precision (32 bit). */
2845 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
2846 break;
2847 case 13:
2848 /* IEEE double precision (64 bit). */
2849 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
2850 break;
2851 case 14:
2852 /* This is an IEEE double on the RS/6000, and different machines with
2853 different sizes for "long double" should use different negative
2854 type numbers. See stabs.texinfo. */
2855 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
2856 break;
2857 case 15:
2858 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
2859 break;
2860 case 16:
2861 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2862 "boolean", NULL);
2863 break;
2864 case 17:
2865 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
2866 break;
2867 case 18:
2868 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
2869 break;
2870 case 19:
2871 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
2872 break;
2873 case 20:
2874 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2875 "character", NULL);
2876 break;
2877 case 21:
2878 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2879 "logical*1", NULL);
2880 break;
2881 case 22:
2882 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2883 "logical*2", NULL);
2884 break;
2885 case 23:
2886 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2887 "logical*4", NULL);
2888 break;
2889 case 24:
2890 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2891 "logical", NULL);
2892 break;
2893 case 25:
2894 /* Complex type consisting of two IEEE single precision values. */
2895 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", NULL);
2896 break;
2897 case 26:
2898 /* Complex type consisting of two IEEE double precision values. */
2899 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2900 break;
2901 case 27:
2902 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
2903 break;
2904 case 28:
2905 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
2906 break;
2907 case 29:
2908 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
2909 break;
2910 case 30:
2911 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
2912 break;
2913 case 31:
2914 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", NULL);
2915 break;
2916 case 32:
2917 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2918 "unsigned long long", NULL);
2919 break;
2920 case 33:
2921 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2922 "logical*8", NULL);
2923 break;
2924 case 34:
2925 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", NULL);
2926 break;
2927 }
2928 negative_types[-typenum] = rettype;
2929 return rettype;
2930 }
2931 \f
2932 /* This page contains subroutines of read_type. */
2933
2934 /* Read member function stabs info for C++ classes. The form of each member
2935 function data is:
2936
2937 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2938
2939 An example with two member functions is:
2940
2941 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2942
2943 For the case of overloaded operators, the format is op$::*.funcs, where
2944 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2945 name (such as `+=') and `.' marks the end of the operator name.
2946
2947 Returns 1 for success, 0 for failure. */
2948
2949 static int
2950 read_member_functions (fip, pp, type, objfile)
2951 struct field_info *fip;
2952 char **pp;
2953 struct type *type;
2954 struct objfile *objfile;
2955 {
2956 int nfn_fields = 0;
2957 int length = 0;
2958 /* Total number of member functions defined in this class. If the class
2959 defines two `f' functions, and one `g' function, then this will have
2960 the value 3. */
2961 int total_length = 0;
2962 int i;
2963 struct next_fnfield
2964 {
2965 struct next_fnfield *next;
2966 struct fn_field fn_field;
2967 } *sublist;
2968 struct type *look_ahead_type;
2969 struct next_fnfieldlist *new_fnlist;
2970 struct next_fnfield *new_sublist;
2971 char *main_fn_name;
2972 register char *p;
2973
2974 /* Process each list until we find something that is not a member function
2975 or find the end of the functions. */
2976
2977 while (**pp != ';')
2978 {
2979 /* We should be positioned at the start of the function name.
2980 Scan forward to find the first ':' and if it is not the
2981 first of a "::" delimiter, then this is not a member function. */
2982 p = *pp;
2983 while (*p != ':')
2984 {
2985 p++;
2986 }
2987 if (p[1] != ':')
2988 {
2989 break;
2990 }
2991
2992 sublist = NULL;
2993 look_ahead_type = NULL;
2994 length = 0;
2995
2996 new_fnlist = (struct next_fnfieldlist *)
2997 xmalloc (sizeof (struct next_fnfieldlist));
2998 make_cleanup (free, new_fnlist);
2999 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
3000
3001 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
3002 {
3003 /* This is a completely wierd case. In order to stuff in the
3004 names that might contain colons (the usual name delimiter),
3005 Mike Tiemann defined a different name format which is
3006 signalled if the identifier is "op$". In that case, the
3007 format is "op$::XXXX." where XXXX is the name. This is
3008 used for names like "+" or "=". YUUUUUUUK! FIXME! */
3009 /* This lets the user type "break operator+".
3010 We could just put in "+" as the name, but that wouldn't
3011 work for "*". */
3012 static char opname[32] = {'o', 'p', CPLUS_MARKER};
3013 char *o = opname + 3;
3014
3015 /* Skip past '::'. */
3016 *pp = p + 2;
3017
3018 STABS_CONTINUE (pp, objfile);
3019 p = *pp;
3020 while (*p != '.')
3021 {
3022 *o++ = *p++;
3023 }
3024 main_fn_name = savestring (opname, o - opname);
3025 /* Skip past '.' */
3026 *pp = p + 1;
3027 }
3028 else
3029 {
3030 main_fn_name = savestring (*pp, p - *pp);
3031 /* Skip past '::'. */
3032 *pp = p + 2;
3033 }
3034 new_fnlist -> fn_fieldlist.name = main_fn_name;
3035
3036 do
3037 {
3038 new_sublist =
3039 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
3040 make_cleanup (free, new_sublist);
3041 memset (new_sublist, 0, sizeof (struct next_fnfield));
3042
3043 /* Check for and handle cretinous dbx symbol name continuation! */
3044 if (look_ahead_type == NULL)
3045 {
3046 /* Normal case. */
3047 STABS_CONTINUE (pp, objfile);
3048
3049 new_sublist -> fn_field.type = read_type (pp, objfile);
3050 if (**pp != ':')
3051 {
3052 /* Invalid symtab info for member function. */
3053 return 0;
3054 }
3055 }
3056 else
3057 {
3058 /* g++ version 1 kludge */
3059 new_sublist -> fn_field.type = look_ahead_type;
3060 look_ahead_type = NULL;
3061 }
3062
3063 (*pp)++;
3064 p = *pp;
3065 while (*p != ';')
3066 {
3067 p++;
3068 }
3069
3070 /* If this is just a stub, then we don't have the real name here. */
3071
3072 if (TYPE_FLAGS (new_sublist -> fn_field.type) & TYPE_FLAG_STUB)
3073 {
3074 if (!TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type))
3075 TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type) = type;
3076 new_sublist -> fn_field.is_stub = 1;
3077 }
3078 new_sublist -> fn_field.physname = savestring (*pp, p - *pp);
3079 *pp = p + 1;
3080
3081 /* Set this member function's visibility fields. */
3082 switch (*(*pp)++)
3083 {
3084 case VISIBILITY_PRIVATE:
3085 new_sublist -> fn_field.is_private = 1;
3086 break;
3087 case VISIBILITY_PROTECTED:
3088 new_sublist -> fn_field.is_protected = 1;
3089 break;
3090 }
3091
3092 STABS_CONTINUE (pp, objfile);
3093 switch (**pp)
3094 {
3095 case 'A': /* Normal functions. */
3096 new_sublist -> fn_field.is_const = 0;
3097 new_sublist -> fn_field.is_volatile = 0;
3098 (*pp)++;
3099 break;
3100 case 'B': /* `const' member functions. */
3101 new_sublist -> fn_field.is_const = 1;
3102 new_sublist -> fn_field.is_volatile = 0;
3103 (*pp)++;
3104 break;
3105 case 'C': /* `volatile' member function. */
3106 new_sublist -> fn_field.is_const = 0;
3107 new_sublist -> fn_field.is_volatile = 1;
3108 (*pp)++;
3109 break;
3110 case 'D': /* `const volatile' member function. */
3111 new_sublist -> fn_field.is_const = 1;
3112 new_sublist -> fn_field.is_volatile = 1;
3113 (*pp)++;
3114 break;
3115 case '*': /* File compiled with g++ version 1 -- no info */
3116 case '?':
3117 case '.':
3118 break;
3119 default:
3120 complain (&const_vol_complaint, **pp);
3121 break;
3122 }
3123
3124 switch (*(*pp)++)
3125 {
3126 case '*':
3127 {
3128 int nbits;
3129 /* virtual member function, followed by index.
3130 The sign bit is set to distinguish pointers-to-methods
3131 from virtual function indicies. Since the array is
3132 in words, the quantity must be shifted left by 1
3133 on 16 bit machine, and by 2 on 32 bit machine, forcing
3134 the sign bit out, and usable as a valid index into
3135 the array. Remove the sign bit here. */
3136 new_sublist -> fn_field.voffset =
3137 (0x7fffffff & read_huge_number (pp, ';', &nbits)) + 2;
3138 if (nbits != 0)
3139 return 0;
3140
3141 STABS_CONTINUE (pp, objfile);
3142 if (**pp == ';' || **pp == '\0')
3143 {
3144 /* Must be g++ version 1. */
3145 new_sublist -> fn_field.fcontext = 0;
3146 }
3147 else
3148 {
3149 /* Figure out from whence this virtual function came.
3150 It may belong to virtual function table of
3151 one of its baseclasses. */
3152 look_ahead_type = read_type (pp, objfile);
3153 if (**pp == ':')
3154 {
3155 /* g++ version 1 overloaded methods. */
3156 }
3157 else
3158 {
3159 new_sublist -> fn_field.fcontext = look_ahead_type;
3160 if (**pp != ';')
3161 {
3162 return 0;
3163 }
3164 else
3165 {
3166 ++*pp;
3167 }
3168 look_ahead_type = NULL;
3169 }
3170 }
3171 break;
3172 }
3173 case '?':
3174 /* static member function. */
3175 new_sublist -> fn_field.voffset = VOFFSET_STATIC;
3176 if (strncmp (new_sublist -> fn_field.physname,
3177 main_fn_name, strlen (main_fn_name)))
3178 {
3179 new_sublist -> fn_field.is_stub = 1;
3180 }
3181 break;
3182
3183 default:
3184 /* error */
3185 complain (&member_fn_complaint, (*pp)[-1]);
3186 /* Fall through into normal member function. */
3187
3188 case '.':
3189 /* normal member function. */
3190 new_sublist -> fn_field.voffset = 0;
3191 new_sublist -> fn_field.fcontext = 0;
3192 break;
3193 }
3194
3195 new_sublist -> next = sublist;
3196 sublist = new_sublist;
3197 length++;
3198 STABS_CONTINUE (pp, objfile);
3199 }
3200 while (**pp != ';' && **pp != '\0');
3201
3202 (*pp)++;
3203
3204 new_fnlist -> fn_fieldlist.fn_fields = (struct fn_field *)
3205 obstack_alloc (&objfile -> type_obstack,
3206 sizeof (struct fn_field) * length);
3207 memset (new_fnlist -> fn_fieldlist.fn_fields, 0,
3208 sizeof (struct fn_field) * length);
3209 for (i = length; (i--, sublist); sublist = sublist -> next)
3210 {
3211 new_fnlist -> fn_fieldlist.fn_fields[i] = sublist -> fn_field;
3212 }
3213
3214 new_fnlist -> fn_fieldlist.length = length;
3215 new_fnlist -> next = fip -> fnlist;
3216 fip -> fnlist = new_fnlist;
3217 nfn_fields++;
3218 total_length += length;
3219 STABS_CONTINUE (pp, objfile);
3220 }
3221
3222 if (nfn_fields)
3223 {
3224 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3225 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
3226 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
3227 memset (TYPE_FN_FIELDLISTS (type), 0,
3228 sizeof (struct fn_fieldlist) * nfn_fields);
3229 TYPE_NFN_FIELDS (type) = nfn_fields;
3230 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
3231 }
3232
3233 return 1;
3234 }
3235
3236 /* Special GNU C++ name.
3237
3238 Returns 1 for success, 0 for failure. "failure" means that we can't
3239 keep parsing and it's time for error_type(). */
3240
3241 static int
3242 read_cpp_abbrev (fip, pp, type, objfile)
3243 struct field_info *fip;
3244 char **pp;
3245 struct type *type;
3246 struct objfile *objfile;
3247 {
3248 register char *p;
3249 char *name;
3250 char cpp_abbrev;
3251 struct type *context;
3252
3253 p = *pp;
3254 if (*++p == 'v')
3255 {
3256 name = NULL;
3257 cpp_abbrev = *++p;
3258
3259 *pp = p + 1;
3260
3261 /* At this point, *pp points to something like "22:23=*22...",
3262 where the type number before the ':' is the "context" and
3263 everything after is a regular type definition. Lookup the
3264 type, find it's name, and construct the field name. */
3265
3266 context = read_type (pp, objfile);
3267
3268 switch (cpp_abbrev)
3269 {
3270 case 'f': /* $vf -- a virtual function table pointer */
3271 fip->list->field.name =
3272 obconcat (&objfile->type_obstack, vptr_name, "", "");
3273 break;
3274
3275 case 'b': /* $vb -- a virtual bsomethingorother */
3276 name = type_name_no_tag (context);
3277 if (name == NULL)
3278 {
3279 complain (&invalid_cpp_type_complaint, symnum);
3280 name = "FOO";
3281 }
3282 fip->list->field.name =
3283 obconcat (&objfile->type_obstack, vb_name, name, "");
3284 break;
3285
3286 default:
3287 complain (&invalid_cpp_abbrev_complaint, *pp);
3288 fip->list->field.name =
3289 obconcat (&objfile->type_obstack,
3290 "INVALID_CPLUSPLUS_ABBREV", "", "");
3291 break;
3292 }
3293
3294 /* At this point, *pp points to the ':'. Skip it and read the
3295 field type. */
3296
3297 p = ++(*pp);
3298 if (p[-1] != ':')
3299 {
3300 complain (&invalid_cpp_abbrev_complaint, *pp);
3301 return 0;
3302 }
3303 fip->list->field.type = read_type (pp, objfile);
3304 if (**pp == ',')
3305 (*pp)++; /* Skip the comma. */
3306 else
3307 return 0;
3308
3309 {
3310 int nbits;
3311 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ';', &nbits);
3312 if (nbits != 0)
3313 return 0;
3314 }
3315 /* This field is unpacked. */
3316 FIELD_BITSIZE (fip->list->field) = 0;
3317 fip->list->visibility = VISIBILITY_PRIVATE;
3318 }
3319 else
3320 {
3321 complain (&invalid_cpp_abbrev_complaint, *pp);
3322 /* We have no idea what syntax an unrecognized abbrev would have, so
3323 better return 0. If we returned 1, we would need to at least advance
3324 *pp to avoid an infinite loop. */
3325 return 0;
3326 }
3327 return 1;
3328 }
3329
3330 static void
3331 read_one_struct_field (fip, pp, p, type, objfile)
3332 struct field_info *fip;
3333 char **pp;
3334 char *p;
3335 struct type *type;
3336 struct objfile *objfile;
3337 {
3338 /* The following is code to work around cfront generated stabs.
3339 The stabs contains full mangled name for each field.
3340 We try to demangle the name and extract the field name out of it.
3341 */
3342 if (ARM_DEMANGLING && current_subfile->language == language_cplus)
3343 {
3344 char save_p;
3345 char *dem, *dem_p;
3346 save_p = *p;
3347 *p = '\0';
3348 dem = cplus_demangle (*pp, DMGL_ANSI | DMGL_PARAMS);
3349 if (dem != NULL)
3350 {
3351 dem_p = strrchr (dem, ':');
3352 if (dem_p != 0 && *(dem_p-1)==':')
3353 dem_p++;
3354 FIELD_NAME (fip->list->field) =
3355 obsavestring (dem_p, strlen (dem_p), &objfile -> type_obstack);
3356 }
3357 else
3358 {
3359 FIELD_NAME (fip->list->field) =
3360 obsavestring (*pp, p - *pp, &objfile -> type_obstack);
3361 }
3362 *p = save_p;
3363 }
3364 /* end of code for cfront work around */
3365
3366 else
3367 fip -> list -> field.name =
3368 obsavestring (*pp, p - *pp, &objfile -> type_obstack);
3369 *pp = p + 1;
3370
3371 /* This means we have a visibility for a field coming. */
3372 if (**pp == '/')
3373 {
3374 (*pp)++;
3375 fip -> list -> visibility = *(*pp)++;
3376 }
3377 else
3378 {
3379 /* normal dbx-style format, no explicit visibility */
3380 fip -> list -> visibility = VISIBILITY_PUBLIC;
3381 }
3382
3383 fip -> list -> field.type = read_type (pp, objfile);
3384 if (**pp == ':')
3385 {
3386 p = ++(*pp);
3387 #if 0
3388 /* Possible future hook for nested types. */
3389 if (**pp == '!')
3390 {
3391 fip -> list -> field.bitpos = (long)-2; /* nested type */
3392 p = ++(*pp);
3393 }
3394 else ...;
3395 #endif
3396 while (*p != ';')
3397 {
3398 p++;
3399 }
3400 /* Static class member. */
3401 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
3402 *pp = p + 1;
3403 return;
3404 }
3405 else if (**pp != ',')
3406 {
3407 /* Bad structure-type format. */
3408 complain (&stabs_general_complaint, "bad structure-type format");
3409 return;
3410 }
3411
3412 (*pp)++; /* Skip the comma. */
3413
3414 {
3415 int nbits;
3416 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ',', &nbits);
3417 if (nbits != 0)
3418 {
3419 complain (&stabs_general_complaint, "bad structure-type format");
3420 return;
3421 }
3422 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits);
3423 if (nbits != 0)
3424 {
3425 complain (&stabs_general_complaint, "bad structure-type format");
3426 return;
3427 }
3428 }
3429
3430 if (FIELD_BITPOS (fip->list->field) == 0
3431 && FIELD_BITSIZE (fip->list->field) == 0)
3432 {
3433 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
3434 it is a field which has been optimized out. The correct stab for
3435 this case is to use VISIBILITY_IGNORE, but that is a recent
3436 invention. (2) It is a 0-size array. For example
3437 union { int num; char str[0]; } foo. Printing "<no value>" for
3438 str in "p foo" is OK, since foo.str (and thus foo.str[3])
3439 will continue to work, and a 0-size array as a whole doesn't
3440 have any contents to print.
3441
3442 I suspect this probably could also happen with gcc -gstabs (not
3443 -gstabs+) for static fields, and perhaps other C++ extensions.
3444 Hopefully few people use -gstabs with gdb, since it is intended
3445 for dbx compatibility. */
3446
3447 /* Ignore this field. */
3448 fip -> list-> visibility = VISIBILITY_IGNORE;
3449 }
3450 else
3451 {
3452 /* Detect an unpacked field and mark it as such.
3453 dbx gives a bit size for all fields.
3454 Note that forward refs cannot be packed,
3455 and treat enums as if they had the width of ints. */
3456
3457 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
3458
3459 if (TYPE_CODE (field_type) != TYPE_CODE_INT
3460 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
3461 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
3462 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
3463 {
3464 FIELD_BITSIZE (fip->list->field) = 0;
3465 }
3466 if ((FIELD_BITSIZE (fip->list->field)
3467 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
3468 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
3469 && FIELD_BITSIZE (fip->list->field) == TARGET_INT_BIT )
3470 )
3471 &&
3472 FIELD_BITPOS (fip->list->field) % 8 == 0)
3473 {
3474 FIELD_BITSIZE (fip->list->field) = 0;
3475 }
3476 }
3477 }
3478
3479
3480 /* Read struct or class data fields. They have the form:
3481
3482 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
3483
3484 At the end, we see a semicolon instead of a field.
3485
3486 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
3487 a static field.
3488
3489 The optional VISIBILITY is one of:
3490
3491 '/0' (VISIBILITY_PRIVATE)
3492 '/1' (VISIBILITY_PROTECTED)
3493 '/2' (VISIBILITY_PUBLIC)
3494 '/9' (VISIBILITY_IGNORE)
3495
3496 or nothing, for C style fields with public visibility.
3497
3498 Returns 1 for success, 0 for failure. */
3499
3500 static int
3501 read_struct_fields (fip, pp, type, objfile)
3502 struct field_info *fip;
3503 char **pp;
3504 struct type *type;
3505 struct objfile *objfile;
3506 {
3507 register char *p;
3508 struct nextfield *new;
3509
3510 /* We better set p right now, in case there are no fields at all... */
3511
3512 p = *pp;
3513
3514 /* Read each data member type until we find the terminating ';' at the end of
3515 the data member list, or break for some other reason such as finding the
3516 start of the member function list. */
3517
3518 while (**pp != ';')
3519 {
3520 if (os9k_stabs && **pp == ',') break;
3521 STABS_CONTINUE (pp, objfile);
3522 /* Get space to record the next field's data. */
3523 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3524 make_cleanup (free, new);
3525 memset (new, 0, sizeof (struct nextfield));
3526 new -> next = fip -> list;
3527 fip -> list = new;
3528
3529 /* Get the field name. */
3530 p = *pp;
3531
3532 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3533 unless the CPLUS_MARKER is followed by an underscore, in
3534 which case it is just the name of an anonymous type, which we
3535 should handle like any other type name. */
3536
3537 if (is_cplus_marker (p[0]) && p[1] != '_')
3538 {
3539 if (!read_cpp_abbrev (fip, pp, type, objfile))
3540 return 0;
3541 continue;
3542 }
3543
3544 /* Look for the ':' that separates the field name from the field
3545 values. Data members are delimited by a single ':', while member
3546 functions are delimited by a pair of ':'s. When we hit the member
3547 functions (if any), terminate scan loop and return. */
3548
3549 while (*p != ':' && *p != '\0')
3550 {
3551 p++;
3552 }
3553 if (*p == '\0')
3554 return 0;
3555
3556 /* Check to see if we have hit the member functions yet. */
3557 if (p[1] == ':')
3558 {
3559 break;
3560 }
3561 read_one_struct_field (fip, pp, p, type, objfile);
3562 }
3563 if (p[0] == ':' && p[1] == ':')
3564 {
3565 /* chill the list of fields: the last entry (at the head) is a
3566 partially constructed entry which we now scrub. */
3567 fip -> list = fip -> list -> next;
3568 }
3569 return 1;
3570 }
3571
3572 /* The stabs for C++ derived classes contain baseclass information which
3573 is marked by a '!' character after the total size. This function is
3574 called when we encounter the baseclass marker, and slurps up all the
3575 baseclass information.
3576
3577 Immediately following the '!' marker is the number of base classes that
3578 the class is derived from, followed by information for each base class.
3579 For each base class, there are two visibility specifiers, a bit offset
3580 to the base class information within the derived class, a reference to
3581 the type for the base class, and a terminating semicolon.
3582
3583 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3584 ^^ ^ ^ ^ ^ ^ ^
3585 Baseclass information marker __________________|| | | | | | |
3586 Number of baseclasses __________________________| | | | | | |
3587 Visibility specifiers (2) ________________________| | | | | |
3588 Offset in bits from start of class _________________| | | | |
3589 Type number for base class ___________________________| | | |
3590 Visibility specifiers (2) _______________________________| | |
3591 Offset in bits from start of class ________________________| |
3592 Type number of base class ____________________________________|
3593
3594 Return 1 for success, 0 for (error-type-inducing) failure. */
3595
3596 static int
3597 read_baseclasses (fip, pp, type, objfile)
3598 struct field_info *fip;
3599 char **pp;
3600 struct type *type;
3601 struct objfile *objfile;
3602 {
3603 int i;
3604 struct nextfield *new;
3605
3606 if (**pp != '!')
3607 {
3608 return 1;
3609 }
3610 else
3611 {
3612 /* Skip the '!' baseclass information marker. */
3613 (*pp)++;
3614 }
3615
3616 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3617 {
3618 int nbits;
3619 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits);
3620 if (nbits != 0)
3621 return 0;
3622 }
3623
3624 #if 0
3625 /* Some stupid compilers have trouble with the following, so break
3626 it up into simpler expressions. */
3627 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3628 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3629 #else
3630 {
3631 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3632 char *pointer;
3633
3634 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3635 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3636 }
3637 #endif /* 0 */
3638
3639 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3640
3641 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3642 {
3643 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3644 make_cleanup (free, new);
3645 memset (new, 0, sizeof (struct nextfield));
3646 new -> next = fip -> list;
3647 fip -> list = new;
3648 FIELD_BITSIZE (new->field) = 0; /* this should be an unpacked field! */
3649
3650 STABS_CONTINUE (pp, objfile);
3651 switch (**pp)
3652 {
3653 case '0':
3654 /* Nothing to do. */
3655 break;
3656 case '1':
3657 SET_TYPE_FIELD_VIRTUAL (type, i);
3658 break;
3659 default:
3660 /* Unknown character. Complain and treat it as non-virtual. */
3661 {
3662 static struct complaint msg = {
3663 "Unknown virtual character `%c' for baseclass", 0, 0};
3664 complain (&msg, **pp);
3665 }
3666 }
3667 ++(*pp);
3668
3669 new -> visibility = *(*pp)++;
3670 switch (new -> visibility)
3671 {
3672 case VISIBILITY_PRIVATE:
3673 case VISIBILITY_PROTECTED:
3674 case VISIBILITY_PUBLIC:
3675 break;
3676 default:
3677 /* Bad visibility format. Complain and treat it as
3678 public. */
3679 {
3680 static struct complaint msg = {
3681 "Unknown visibility `%c' for baseclass", 0, 0};
3682 complain (&msg, new -> visibility);
3683 new -> visibility = VISIBILITY_PUBLIC;
3684 }
3685 }
3686
3687 {
3688 int nbits;
3689
3690 /* The remaining value is the bit offset of the portion of the object
3691 corresponding to this baseclass. Always zero in the absence of
3692 multiple inheritance. */
3693
3694 FIELD_BITPOS (new->field) = read_huge_number (pp, ',', &nbits);
3695 if (nbits != 0)
3696 return 0;
3697 }
3698
3699 /* The last piece of baseclass information is the type of the
3700 base class. Read it, and remember it's type name as this
3701 field's name. */
3702
3703 new -> field.type = read_type (pp, objfile);
3704 new -> field.name = type_name_no_tag (new -> field.type);
3705
3706 /* skip trailing ';' and bump count of number of fields seen */
3707 if (**pp == ';')
3708 (*pp)++;
3709 else
3710 return 0;
3711 }
3712 return 1;
3713 }
3714
3715 /* The tail end of stabs for C++ classes that contain a virtual function
3716 pointer contains a tilde, a %, and a type number.
3717 The type number refers to the base class (possibly this class itself) which
3718 contains the vtable pointer for the current class.
3719
3720 This function is called when we have parsed all the method declarations,
3721 so we can look for the vptr base class info. */
3722
3723 static int
3724 read_tilde_fields (fip, pp, type, objfile)
3725 struct field_info *fip;
3726 char **pp;
3727 struct type *type;
3728 struct objfile *objfile;
3729 {
3730 register char *p;
3731
3732 STABS_CONTINUE (pp, objfile);
3733
3734 /* If we are positioned at a ';', then skip it. */
3735 if (**pp == ';')
3736 {
3737 (*pp)++;
3738 }
3739
3740 if (**pp == '~')
3741 {
3742 (*pp)++;
3743
3744 if (**pp == '=' || **pp == '+' || **pp == '-')
3745 {
3746 /* Obsolete flags that used to indicate the presence
3747 of constructors and/or destructors. */
3748 (*pp)++;
3749 }
3750
3751 /* Read either a '%' or the final ';'. */
3752 if (*(*pp)++ == '%')
3753 {
3754 /* The next number is the type number of the base class
3755 (possibly our own class) which supplies the vtable for
3756 this class. Parse it out, and search that class to find
3757 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3758 and TYPE_VPTR_FIELDNO. */
3759
3760 struct type *t;
3761 int i;
3762
3763 t = read_type (pp, objfile);
3764 p = (*pp)++;
3765 while (*p != '\0' && *p != ';')
3766 {
3767 p++;
3768 }
3769 if (*p == '\0')
3770 {
3771 /* Premature end of symbol. */
3772 return 0;
3773 }
3774
3775 TYPE_VPTR_BASETYPE (type) = t;
3776 if (type == t) /* Our own class provides vtbl ptr */
3777 {
3778 for (i = TYPE_NFIELDS (t) - 1;
3779 i >= TYPE_N_BASECLASSES (t);
3780 --i)
3781 {
3782 if (! strncmp (TYPE_FIELD_NAME (t, i), vptr_name,
3783 sizeof (vptr_name) - 1))
3784 {
3785 TYPE_VPTR_FIELDNO (type) = i;
3786 goto gotit;
3787 }
3788 }
3789 /* Virtual function table field not found. */
3790 complain (&vtbl_notfound_complaint, TYPE_NAME (type));
3791 return 0;
3792 }
3793 else
3794 {
3795 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3796 }
3797
3798 gotit:
3799 *pp = p + 1;
3800 }
3801 }
3802 return 1;
3803 }
3804
3805 static int
3806 attach_fn_fields_to_type (fip, type)
3807 struct field_info *fip;
3808 register struct type *type;
3809 {
3810 register int n;
3811
3812 for (n = TYPE_NFN_FIELDS (type);
3813 fip -> fnlist != NULL;
3814 fip -> fnlist = fip -> fnlist -> next)
3815 {
3816 --n; /* Circumvent Sun3 compiler bug */
3817 TYPE_FN_FIELDLISTS (type)[n] = fip -> fnlist -> fn_fieldlist;
3818 }
3819 return 1;
3820 }
3821
3822 /* read cfront class static data.
3823 pp points to string starting with the list of static data
3824 eg: A:ZcA;1@Bpub v2@Bvirpri;__ct__1AFv func__1AFv *sfunc__1AFv ;as__1A ;;
3825 ^^^^^^^^
3826
3827 A:ZcA;;foopri__1AFv foopro__1AFv __ct__1AFv __ct__1AFRC1A foopub__1AFv ;;;
3828 ^
3829 */
3830
3831 static int
3832 read_cfront_static_fields (fip, pp, type, objfile)
3833 struct field_info *fip;
3834 char **pp;
3835 struct type *type;
3836 struct objfile *objfile;
3837 {
3838 struct nextfield * new;
3839 struct type *stype;
3840 char * sname;
3841 struct symbol * ref_static=0;
3842
3843 if (**pp==';') /* no static data; return */
3844 {
3845 ++(*pp);
3846 return 1;
3847 }
3848
3849 /* Process each field in the list until we find the terminating ";" */
3850
3851 /* eg: p = "as__1A ;;;" */
3852 STABS_CONTINUE (pp, objfile); /* handle \\ */
3853 while (**pp!=';' && (sname = get_substring (pp, ' '), sname))
3854 {
3855 ref_static = lookup_symbol (sname, 0, VAR_NAMESPACE, 0, 0); /*demangled_name*/
3856 if (!ref_static)
3857 {
3858 static struct complaint msg = {"\
3859 Unable to find symbol for static data field %s\n",
3860 0, 0};
3861 complain (&msg, sname);
3862 continue;
3863 }
3864 stype = SYMBOL_TYPE(ref_static);
3865
3866 /* allocate a new fip */
3867 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3868 make_cleanup (free, new);
3869 memset (new, 0, sizeof (struct nextfield));
3870 new -> next = fip -> list;
3871 fip -> list = new;
3872
3873 /* set visibility */
3874 /* FIXME! no way to tell visibility from stabs??? */
3875 new -> visibility = VISIBILITY_PUBLIC;
3876
3877 /* set field info into fip */
3878 fip -> list -> field.type = stype;
3879
3880 /* set bitpos & bitsize */
3881 SET_FIELD_PHYSNAME (fip->list->field, savestring (sname, strlen (sname)));
3882
3883 /* set name field */
3884 /* The following is code to work around cfront generated stabs.
3885 The stabs contains full mangled name for each field.
3886 We try to demangle the name and extract the field name out of it.
3887 */
3888 if (ARM_DEMANGLING)
3889 {
3890 char *dem, *dem_p;
3891 dem = cplus_demangle (sname, DMGL_ANSI | DMGL_PARAMS);
3892 if (dem != NULL)
3893 {
3894 dem_p = strrchr (dem, ':');
3895 if (dem_p != 0 && *(dem_p-1)==':')
3896 dem_p++;
3897 fip->list->field.name =
3898 obsavestring (dem_p, strlen (dem_p), &objfile -> type_obstack);
3899 }
3900 else
3901 {
3902 fip->list->field.name =
3903 obsavestring (sname, strlen (sname), &objfile -> type_obstack);
3904 }
3905 } /* end of code for cfront work around */
3906 } /* loop again for next static field */
3907 return 1;
3908 }
3909
3910 /* Copy structure fields to fip so attach_fields_to_type will work.
3911 type has already been created with the initial instance data fields.
3912 Now we want to be able to add the other members to the class,
3913 so we want to add them back to the fip and reattach them again
3914 once we have collected all the class members. */
3915
3916 static int
3917 copy_cfront_struct_fields (fip, type, objfile)
3918 struct field_info *fip;
3919 struct type *type;
3920 struct objfile *objfile;
3921 {
3922 int nfields = TYPE_NFIELDS(type);
3923 int i;
3924 struct nextfield * new;
3925
3926 /* Copy the fields into the list of fips and reset the types
3927 to remove the old fields */
3928
3929 for (i=0; i<nfields; i++)
3930 {
3931 /* allocate a new fip */
3932 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3933 make_cleanup (free, new);
3934 memset (new, 0, sizeof (struct nextfield));
3935 new -> next = fip -> list;
3936 fip -> list = new;
3937
3938 /* copy field info into fip */
3939 new -> field = TYPE_FIELD (type, i);
3940 /* set visibility */
3941 if (TYPE_FIELD_PROTECTED (type, i))
3942 new -> visibility = VISIBILITY_PROTECTED;
3943 else if (TYPE_FIELD_PRIVATE (type, i))
3944 new -> visibility = VISIBILITY_PRIVATE;
3945 else
3946 new -> visibility = VISIBILITY_PUBLIC;
3947 }
3948 /* Now delete the fields from the type since we will be
3949 allocing new space once we get the rest of the fields
3950 in attach_fields_to_type.
3951 The pointer TYPE_FIELDS(type) is left dangling but should
3952 be freed later by objstack_free */
3953 TYPE_FIELDS (type)=0;
3954 TYPE_NFIELDS (type) = 0;
3955
3956 return 1;
3957 }
3958
3959 /* Create the vector of fields, and record how big it is.
3960 We need this info to record proper virtual function table information
3961 for this class's virtual functions. */
3962
3963 static int
3964 attach_fields_to_type (fip, type, objfile)
3965 struct field_info *fip;
3966 register struct type *type;
3967 struct objfile *objfile;
3968 {
3969 register int nfields = 0;
3970 register int non_public_fields = 0;
3971 register struct nextfield *scan;
3972
3973 /* Count up the number of fields that we have, as well as taking note of
3974 whether or not there are any non-public fields, which requires us to
3975 allocate and build the private_field_bits and protected_field_bits
3976 bitfields. */
3977
3978 for (scan = fip -> list; scan != NULL; scan = scan -> next)
3979 {
3980 nfields++;
3981 if (scan -> visibility != VISIBILITY_PUBLIC)
3982 {
3983 non_public_fields++;
3984 }
3985 }
3986
3987 /* Now we know how many fields there are, and whether or not there are any
3988 non-public fields. Record the field count, allocate space for the
3989 array of fields, and create blank visibility bitfields if necessary. */
3990
3991 TYPE_NFIELDS (type) = nfields;
3992 TYPE_FIELDS (type) = (struct field *)
3993 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3994 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3995
3996 if (non_public_fields)
3997 {
3998 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3999
4000 TYPE_FIELD_PRIVATE_BITS (type) =
4001 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
4002 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
4003
4004 TYPE_FIELD_PROTECTED_BITS (type) =
4005 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
4006 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
4007
4008 TYPE_FIELD_IGNORE_BITS (type) =
4009 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
4010 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
4011 }
4012
4013 /* Copy the saved-up fields into the field vector. Start from the head
4014 of the list, adding to the tail of the field array, so that they end
4015 up in the same order in the array in which they were added to the list. */
4016
4017 while (nfields-- > 0)
4018 {
4019 TYPE_FIELD (type, nfields) = fip -> list -> field;
4020 switch (fip -> list -> visibility)
4021 {
4022 case VISIBILITY_PRIVATE:
4023 SET_TYPE_FIELD_PRIVATE (type, nfields);
4024 break;
4025
4026 case VISIBILITY_PROTECTED:
4027 SET_TYPE_FIELD_PROTECTED (type, nfields);
4028 break;
4029
4030 case VISIBILITY_IGNORE:
4031 SET_TYPE_FIELD_IGNORE (type, nfields);
4032 break;
4033
4034 case VISIBILITY_PUBLIC:
4035 break;
4036
4037 default:
4038 /* Unknown visibility. Complain and treat it as public. */
4039 {
4040 static struct complaint msg = {
4041 "Unknown visibility `%c' for field", 0, 0};
4042 complain (&msg, fip -> list -> visibility);
4043 }
4044 break;
4045 }
4046 fip -> list = fip -> list -> next;
4047 }
4048 return 1;
4049 }
4050
4051 /* Read the description of a structure (or union type) and return an object
4052 describing the type.
4053
4054 PP points to a character pointer that points to the next unconsumed token
4055 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
4056 *PP will point to "4a:1,0,32;;".
4057
4058 TYPE points to an incomplete type that needs to be filled in.
4059
4060 OBJFILE points to the current objfile from which the stabs information is
4061 being read. (Note that it is redundant in that TYPE also contains a pointer
4062 to this same objfile, so it might be a good idea to eliminate it. FIXME).
4063 */
4064
4065 static struct type *
4066 read_struct_type (pp, type, objfile)
4067 char **pp;
4068 struct type *type;
4069 struct objfile *objfile;
4070 {
4071 struct cleanup *back_to;
4072 struct field_info fi;
4073
4074 fi.list = NULL;
4075 fi.fnlist = NULL;
4076
4077 back_to = make_cleanup (null_cleanup, 0);
4078
4079 INIT_CPLUS_SPECIFIC (type);
4080 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
4081
4082 /* First comes the total size in bytes. */
4083
4084 {
4085 int nbits;
4086 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits);
4087 if (nbits != 0)
4088 return error_type (pp, objfile);
4089 }
4090
4091 /* Now read the baseclasses, if any, read the regular C struct or C++
4092 class member fields, attach the fields to the type, read the C++
4093 member functions, attach them to the type, and then read any tilde
4094 field (baseclass specifier for the class holding the main vtable). */
4095
4096 if (!read_baseclasses (&fi, pp, type, objfile)
4097 || !read_struct_fields (&fi, pp, type, objfile)
4098 || !attach_fields_to_type (&fi, type, objfile)
4099 || !read_member_functions (&fi, pp, type, objfile)
4100 || !attach_fn_fields_to_type (&fi, type)
4101 || !read_tilde_fields (&fi, pp, type, objfile))
4102 {
4103 type = error_type (pp, objfile);
4104 }
4105
4106 do_cleanups (back_to);
4107 return (type);
4108 }
4109
4110 /* Read a definition of an array type,
4111 and create and return a suitable type object.
4112 Also creates a range type which represents the bounds of that
4113 array. */
4114
4115 static struct type *
4116 read_array_type (pp, type, objfile)
4117 register char **pp;
4118 register struct type *type;
4119 struct objfile *objfile;
4120 {
4121 struct type *index_type, *element_type, *range_type;
4122 int lower, upper;
4123 int adjustable = 0;
4124 int nbits;
4125
4126 /* Format of an array type:
4127 "ar<index type>;lower;upper;<array_contents_type>".
4128 OS9000: "arlower,upper;<array_contents_type>".
4129
4130 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
4131 for these, produce a type like float[][]. */
4132
4133 if (os9k_stabs)
4134 index_type = builtin_type_int;
4135 else
4136 {
4137 index_type = read_type (pp, objfile);
4138 if (**pp != ';')
4139 /* Improper format of array type decl. */
4140 return error_type (pp, objfile);
4141 ++*pp;
4142 }
4143
4144 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
4145 {
4146 (*pp)++;
4147 adjustable = 1;
4148 }
4149 lower = read_huge_number (pp, os9k_stabs ? ',' : ';', &nbits);
4150 if (nbits != 0)
4151 return error_type (pp, objfile);
4152
4153 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
4154 {
4155 (*pp)++;
4156 adjustable = 1;
4157 }
4158 upper = read_huge_number (pp, ';', &nbits);
4159 if (nbits != 0)
4160 return error_type (pp, objfile);
4161
4162 element_type = read_type (pp, objfile);
4163
4164 if (adjustable)
4165 {
4166 lower = 0;
4167 upper = -1;
4168 }
4169
4170 range_type =
4171 create_range_type ((struct type *) NULL, index_type, lower, upper);
4172 type = create_array_type (type, element_type, range_type);
4173
4174 return type;
4175 }
4176
4177
4178 /* Read a definition of an enumeration type,
4179 and create and return a suitable type object.
4180 Also defines the symbols that represent the values of the type. */
4181
4182 static struct type *
4183 read_enum_type (pp, type, objfile)
4184 register char **pp;
4185 register struct type *type;
4186 struct objfile *objfile;
4187 {
4188 register char *p;
4189 char *name;
4190 register long n;
4191 register struct symbol *sym;
4192 int nsyms = 0;
4193 struct pending **symlist;
4194 struct pending *osyms, *syms;
4195 int o_nsyms;
4196 int nbits;
4197 int unsigned_enum = 1;
4198
4199 #if 0
4200 /* FIXME! The stabs produced by Sun CC merrily define things that ought
4201 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
4202 to do? For now, force all enum values to file scope. */
4203 if (within_function)
4204 symlist = &local_symbols;
4205 else
4206 #endif
4207 symlist = &file_symbols;
4208 osyms = *symlist;
4209 o_nsyms = osyms ? osyms->nsyms : 0;
4210
4211 if (os9k_stabs)
4212 {
4213 /* Size. Perhaps this does not have to be conditionalized on
4214 os9k_stabs (assuming the name of an enum constant can't start
4215 with a digit). */
4216 read_huge_number (pp, 0, &nbits);
4217 if (nbits != 0)
4218 return error_type (pp, objfile);
4219 }
4220
4221 /* The aix4 compiler emits an extra field before the enum members;
4222 my guess is it's a type of some sort. Just ignore it. */
4223 if (**pp == '-')
4224 {
4225 /* Skip over the type. */
4226 while (**pp != ':')
4227 (*pp)++;
4228
4229 /* Skip over the colon. */
4230 (*pp)++;
4231 }
4232
4233 /* Read the value-names and their values.
4234 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
4235 A semicolon or comma instead of a NAME means the end. */
4236 while (**pp && **pp != ';' && **pp != ',')
4237 {
4238 STABS_CONTINUE (pp, objfile);
4239 p = *pp;
4240 while (*p != ':') p++;
4241 name = obsavestring (*pp, p - *pp, &objfile -> symbol_obstack);
4242 *pp = p + 1;
4243 n = read_huge_number (pp, ',', &nbits);
4244 if (nbits != 0)
4245 return error_type (pp, objfile);
4246
4247 sym = (struct symbol *)
4248 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
4249 memset (sym, 0, sizeof (struct symbol));
4250 SYMBOL_NAME (sym) = name;
4251 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
4252 SYMBOL_CLASS (sym) = LOC_CONST;
4253 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
4254 SYMBOL_VALUE (sym) = n;
4255 if (n < 0)
4256 unsigned_enum = 0;
4257 add_symbol_to_list (sym, symlist);
4258 nsyms++;
4259 }
4260
4261 if (**pp == ';')
4262 (*pp)++; /* Skip the semicolon. */
4263
4264 /* Now fill in the fields of the type-structure. */
4265
4266 TYPE_LENGTH (type) = TARGET_INT_BIT / HOST_CHAR_BIT;
4267 TYPE_CODE (type) = TYPE_CODE_ENUM;
4268 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
4269 if (unsigned_enum)
4270 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
4271 TYPE_NFIELDS (type) = nsyms;
4272 TYPE_FIELDS (type) = (struct field *)
4273 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
4274 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
4275
4276 /* Find the symbols for the values and put them into the type.
4277 The symbols can be found in the symlist that we put them on
4278 to cause them to be defined. osyms contains the old value
4279 of that symlist; everything up to there was defined by us. */
4280 /* Note that we preserve the order of the enum constants, so
4281 that in something like "enum {FOO, LAST_THING=FOO}" we print
4282 FOO, not LAST_THING. */
4283
4284 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
4285 {
4286 int last = syms == osyms ? o_nsyms : 0;
4287 int j = syms->nsyms;
4288 for (; --j >= last; --n)
4289 {
4290 struct symbol *xsym = syms->symbol[j];
4291 SYMBOL_TYPE (xsym) = type;
4292 TYPE_FIELD_NAME (type, n) = SYMBOL_NAME (xsym);
4293 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
4294 TYPE_FIELD_BITSIZE (type, n) = 0;
4295 }
4296 if (syms == osyms)
4297 break;
4298 }
4299
4300 return type;
4301 }
4302
4303 /* Sun's ACC uses a somewhat saner method for specifying the builtin
4304 typedefs in every file (for int, long, etc):
4305
4306 type = b <signed> <width> <format type>; <offset>; <nbits>
4307 signed = u or s.
4308 optional format type = c or b for char or boolean.
4309 offset = offset from high order bit to start bit of type.
4310 width is # bytes in object of this type, nbits is # bits in type.
4311
4312 The width/offset stuff appears to be for small objects stored in
4313 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
4314 FIXME. */
4315
4316 static struct type *
4317 read_sun_builtin_type (pp, typenums, objfile)
4318 char **pp;
4319 int typenums[2];
4320 struct objfile *objfile;
4321 {
4322 int type_bits;
4323 int nbits;
4324 int signed_type;
4325 enum type_code code = TYPE_CODE_INT;
4326
4327 switch (**pp)
4328 {
4329 case 's':
4330 signed_type = 1;
4331 break;
4332 case 'u':
4333 signed_type = 0;
4334 break;
4335 default:
4336 return error_type (pp, objfile);
4337 }
4338 (*pp)++;
4339
4340 /* For some odd reason, all forms of char put a c here. This is strange
4341 because no other type has this honor. We can safely ignore this because
4342 we actually determine 'char'acterness by the number of bits specified in
4343 the descriptor.
4344 Boolean forms, e.g Fortran logical*X, put a b here. */
4345
4346 if (**pp == 'c')
4347 (*pp)++;
4348 else if (**pp == 'b')
4349 {
4350 code = TYPE_CODE_BOOL;
4351 (*pp)++;
4352 }
4353
4354 /* The first number appears to be the number of bytes occupied
4355 by this type, except that unsigned short is 4 instead of 2.
4356 Since this information is redundant with the third number,
4357 we will ignore it. */
4358 read_huge_number (pp, ';', &nbits);
4359 if (nbits != 0)
4360 return error_type (pp, objfile);
4361
4362 /* The second number is always 0, so ignore it too. */
4363 read_huge_number (pp, ';', &nbits);
4364 if (nbits != 0)
4365 return error_type (pp, objfile);
4366
4367 /* The third number is the number of bits for this type. */
4368 type_bits = read_huge_number (pp, 0, &nbits);
4369 if (nbits != 0)
4370 return error_type (pp, objfile);
4371 /* The type *should* end with a semicolon. If it are embedded
4372 in a larger type the semicolon may be the only way to know where
4373 the type ends. If this type is at the end of the stabstring we
4374 can deal with the omitted semicolon (but we don't have to like
4375 it). Don't bother to complain(), Sun's compiler omits the semicolon
4376 for "void". */
4377 if (**pp == ';')
4378 ++(*pp);
4379
4380 if (type_bits == 0)
4381 return init_type (TYPE_CODE_VOID, 1,
4382 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *)NULL,
4383 objfile);
4384 else
4385 return init_type (code,
4386 type_bits / TARGET_CHAR_BIT,
4387 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *)NULL,
4388 objfile);
4389 }
4390
4391 static struct type *
4392 read_sun_floating_type (pp, typenums, objfile)
4393 char **pp;
4394 int typenums[2];
4395 struct objfile *objfile;
4396 {
4397 int nbits;
4398 int details;
4399 int nbytes;
4400
4401 /* The first number has more details about the type, for example
4402 FN_COMPLEX. */
4403 details = read_huge_number (pp, ';', &nbits);
4404 if (nbits != 0)
4405 return error_type (pp, objfile);
4406
4407 /* The second number is the number of bytes occupied by this type */
4408 nbytes = read_huge_number (pp, ';', &nbits);
4409 if (nbits != 0)
4410 return error_type (pp, objfile);
4411
4412 if (details == NF_COMPLEX || details == NF_COMPLEX16
4413 || details == NF_COMPLEX32)
4414 /* This is a type we can't handle, but we do know the size.
4415 We also will be able to give it a name. */
4416 return init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
4417
4418 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
4419 }
4420
4421 /* Read a number from the string pointed to by *PP.
4422 The value of *PP is advanced over the number.
4423 If END is nonzero, the character that ends the
4424 number must match END, or an error happens;
4425 and that character is skipped if it does match.
4426 If END is zero, *PP is left pointing to that character.
4427
4428 If the number fits in a long, set *BITS to 0 and return the value.
4429 If not, set *BITS to be the number of bits in the number and return 0.
4430
4431 If encounter garbage, set *BITS to -1 and return 0. */
4432
4433 static long
4434 read_huge_number (pp, end, bits)
4435 char **pp;
4436 int end;
4437 int *bits;
4438 {
4439 char *p = *pp;
4440 int sign = 1;
4441 long n = 0;
4442 int radix = 10;
4443 char overflow = 0;
4444 int nbits = 0;
4445 int c;
4446 long upper_limit;
4447
4448 if (*p == '-')
4449 {
4450 sign = -1;
4451 p++;
4452 }
4453
4454 /* Leading zero means octal. GCC uses this to output values larger
4455 than an int (because that would be hard in decimal). */
4456 if (*p == '0')
4457 {
4458 radix = 8;
4459 p++;
4460 }
4461
4462 if (os9k_stabs)
4463 upper_limit = ULONG_MAX / radix;
4464 else
4465 upper_limit = LONG_MAX / radix;
4466
4467 while ((c = *p++) >= '0' && c < ('0' + radix))
4468 {
4469 if (n <= upper_limit)
4470 {
4471 n *= radix;
4472 n += c - '0'; /* FIXME this overflows anyway */
4473 }
4474 else
4475 overflow = 1;
4476
4477 /* This depends on large values being output in octal, which is
4478 what GCC does. */
4479 if (radix == 8)
4480 {
4481 if (nbits == 0)
4482 {
4483 if (c == '0')
4484 /* Ignore leading zeroes. */
4485 ;
4486 else if (c == '1')
4487 nbits = 1;
4488 else if (c == '2' || c == '3')
4489 nbits = 2;
4490 else
4491 nbits = 3;
4492 }
4493 else
4494 nbits += 3;
4495 }
4496 }
4497 if (end)
4498 {
4499 if (c && c != end)
4500 {
4501 if (bits != NULL)
4502 *bits = -1;
4503 return 0;
4504 }
4505 }
4506 else
4507 --p;
4508
4509 *pp = p;
4510 if (overflow)
4511 {
4512 if (nbits == 0)
4513 {
4514 /* Large decimal constants are an error (because it is hard to
4515 count how many bits are in them). */
4516 if (bits != NULL)
4517 *bits = -1;
4518 return 0;
4519 }
4520
4521 /* -0x7f is the same as 0x80. So deal with it by adding one to
4522 the number of bits. */
4523 if (sign == -1)
4524 ++nbits;
4525 if (bits)
4526 *bits = nbits;
4527 }
4528 else
4529 {
4530 if (bits)
4531 *bits = 0;
4532 return n * sign;
4533 }
4534 /* It's *BITS which has the interesting information. */
4535 return 0;
4536 }
4537
4538 static struct type *
4539 read_range_type (pp, typenums, objfile)
4540 char **pp;
4541 int typenums[2];
4542 struct objfile *objfile;
4543 {
4544 char *orig_pp = *pp;
4545 int rangenums[2];
4546 long n2, n3;
4547 int n2bits, n3bits;
4548 int self_subrange;
4549 struct type *result_type;
4550 struct type *index_type = NULL;
4551
4552 /* First comes a type we are a subrange of.
4553 In C it is usually 0, 1 or the type being defined. */
4554 if (read_type_number (pp, rangenums) != 0)
4555 return error_type (pp, objfile);
4556 self_subrange = (rangenums[0] == typenums[0] &&
4557 rangenums[1] == typenums[1]);
4558
4559 if (**pp == '=')
4560 {
4561 *pp = orig_pp;
4562 index_type = read_type (pp, objfile);
4563 }
4564
4565 /* A semicolon should now follow; skip it. */
4566 if (**pp == ';')
4567 (*pp)++;
4568
4569 /* The remaining two operands are usually lower and upper bounds
4570 of the range. But in some special cases they mean something else. */
4571 n2 = read_huge_number (pp, ';', &n2bits);
4572 n3 = read_huge_number (pp, ';', &n3bits);
4573
4574 if (n2bits == -1 || n3bits == -1)
4575 return error_type (pp, objfile);
4576
4577 if (index_type)
4578 goto handle_true_range;
4579
4580 /* If limits are huge, must be large integral type. */
4581 if (n2bits != 0 || n3bits != 0)
4582 {
4583 char got_signed = 0;
4584 char got_unsigned = 0;
4585 /* Number of bits in the type. */
4586 int nbits = 0;
4587
4588 /* Range from 0 to <large number> is an unsigned large integral type. */
4589 if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4590 {
4591 got_unsigned = 1;
4592 nbits = n3bits;
4593 }
4594 /* Range from <large number> to <large number>-1 is a large signed
4595 integral type. Take care of the case where <large number> doesn't
4596 fit in a long but <large number>-1 does. */
4597 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4598 || (n2bits != 0 && n3bits == 0
4599 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4600 && n3 == LONG_MAX))
4601 {
4602 got_signed = 1;
4603 nbits = n2bits;
4604 }
4605
4606 if (got_signed || got_unsigned)
4607 {
4608 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
4609 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
4610 objfile);
4611 }
4612 else
4613 return error_type (pp, objfile);
4614 }
4615
4616 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4617 if (self_subrange && n2 == 0 && n3 == 0)
4618 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
4619
4620 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4621 is the width in bytes.
4622
4623 Fortran programs appear to use this for complex types also. To
4624 distinguish between floats and complex, g77 (and others?) seem
4625 to use self-subranges for the complexes, and subranges of int for
4626 the floats.
4627
4628 Also note that for complexes, g77 sets n2 to the size of one of
4629 the member floats, not the whole complex beast. My guess is that
4630 this was to work well with pre-COMPLEX versions of gdb. */
4631
4632 if (n3 == 0 && n2 > 0)
4633 {
4634 if (self_subrange)
4635 {
4636 return init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
4637 }
4638 else
4639 {
4640 return init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
4641 }
4642 }
4643
4644 /* If the upper bound is -1, it must really be an unsigned int. */
4645
4646 else if (n2 == 0 && n3 == -1)
4647 {
4648 /* It is unsigned int or unsigned long. */
4649 /* GCC 2.3.3 uses this for long long too, but that is just a GDB 3.5
4650 compatibility hack. */
4651 return init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
4652 TYPE_FLAG_UNSIGNED, NULL, objfile);
4653 }
4654
4655 /* Special case: char is defined (Who knows why) as a subrange of
4656 itself with range 0-127. */
4657 else if (self_subrange && n2 == 0 && n3 == 127)
4658 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4659
4660 else if (current_symbol && SYMBOL_LANGUAGE (current_symbol) == language_chill
4661 && !self_subrange)
4662 goto handle_true_range;
4663
4664 /* We used to do this only for subrange of self or subrange of int. */
4665 else if (n2 == 0)
4666 {
4667 if (n3 < 0)
4668 /* n3 actually gives the size. */
4669 return init_type (TYPE_CODE_INT, - n3, TYPE_FLAG_UNSIGNED,
4670 NULL, objfile);
4671 if (n3 == 0xff)
4672 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED, NULL, objfile);
4673 if (n3 == 0xffff)
4674 return init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED, NULL, objfile);
4675
4676 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4677 "unsigned long", and we already checked for that,
4678 so don't need to test for it here. */
4679 }
4680 /* I think this is for Convex "long long". Since I don't know whether
4681 Convex sets self_subrange, I also accept that particular size regardless
4682 of self_subrange. */
4683 else if (n3 == 0 && n2 < 0
4684 && (self_subrange
4685 || n2 == - TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT))
4686 return init_type (TYPE_CODE_INT, - n2, 0, NULL, objfile);
4687 else if (n2 == -n3 -1)
4688 {
4689 if (n3 == 0x7f)
4690 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4691 if (n3 == 0x7fff)
4692 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
4693 if (n3 == 0x7fffffff)
4694 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
4695 }
4696
4697 /* We have a real range type on our hands. Allocate space and
4698 return a real pointer. */
4699 handle_true_range:
4700
4701 if (self_subrange)
4702 index_type = builtin_type_int;
4703 else
4704 index_type = *dbx_lookup_type (rangenums);
4705 if (index_type == NULL)
4706 {
4707 /* Does this actually ever happen? Is that why we are worrying
4708 about dealing with it rather than just calling error_type? */
4709
4710 static struct type *range_type_index;
4711
4712 complain (&range_type_base_complaint, rangenums[1]);
4713 if (range_type_index == NULL)
4714 range_type_index =
4715 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
4716 0, "range type index type", NULL);
4717 index_type = range_type_index;
4718 }
4719
4720 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
4721 return (result_type);
4722 }
4723
4724 /* Read in an argument list. This is a list of types, separated by commas
4725 and terminated with END. Return the list of types read in, or (struct type
4726 **)-1 if there is an error. */
4727
4728 static struct type **
4729 read_args (pp, end, objfile)
4730 char **pp;
4731 int end;
4732 struct objfile *objfile;
4733 {
4734 /* FIXME! Remove this arbitrary limit! */
4735 struct type *types[1024], **rval; /* allow for fns of 1023 parameters */
4736 int n = 0;
4737
4738 while (**pp != end)
4739 {
4740 if (**pp != ',')
4741 /* Invalid argument list: no ','. */
4742 return (struct type **)-1;
4743 (*pp)++;
4744 STABS_CONTINUE (pp, objfile);
4745 types[n++] = read_type (pp, objfile);
4746 }
4747 (*pp)++; /* get past `end' (the ':' character) */
4748
4749 if (n == 1)
4750 {
4751 rval = (struct type **) xmalloc (2 * sizeof (struct type *));
4752 }
4753 else if (TYPE_CODE (types[n-1]) != TYPE_CODE_VOID)
4754 {
4755 rval = (struct type **) xmalloc ((n + 1) * sizeof (struct type *));
4756 memset (rval + n, 0, sizeof (struct type *));
4757 }
4758 else
4759 {
4760 rval = (struct type **) xmalloc (n * sizeof (struct type *));
4761 }
4762 memcpy (rval, types, n * sizeof (struct type *));
4763 return rval;
4764 }
4765 \f
4766 /* Common block handling. */
4767
4768 /* List of symbols declared since the last BCOMM. This list is a tail
4769 of local_symbols. When ECOMM is seen, the symbols on the list
4770 are noted so their proper addresses can be filled in later,
4771 using the common block base address gotten from the assembler
4772 stabs. */
4773
4774 static struct pending *common_block;
4775 static int common_block_i;
4776
4777 /* Name of the current common block. We get it from the BCOMM instead of the
4778 ECOMM to match IBM documentation (even though IBM puts the name both places
4779 like everyone else). */
4780 static char *common_block_name;
4781
4782 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4783 to remain after this function returns. */
4784
4785 void
4786 common_block_start (name, objfile)
4787 char *name;
4788 struct objfile *objfile;
4789 {
4790 if (common_block_name != NULL)
4791 {
4792 static struct complaint msg = {
4793 "Invalid symbol data: common block within common block",
4794 0, 0};
4795 complain (&msg);
4796 }
4797 common_block = local_symbols;
4798 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4799 common_block_name = obsavestring (name, strlen (name),
4800 &objfile -> symbol_obstack);
4801 }
4802
4803 /* Process a N_ECOMM symbol. */
4804
4805 void
4806 common_block_end (objfile)
4807 struct objfile *objfile;
4808 {
4809 /* Symbols declared since the BCOMM are to have the common block
4810 start address added in when we know it. common_block and
4811 common_block_i point to the first symbol after the BCOMM in
4812 the local_symbols list; copy the list and hang it off the
4813 symbol for the common block name for later fixup. */
4814 int i;
4815 struct symbol *sym;
4816 struct pending *new = 0;
4817 struct pending *next;
4818 int j;
4819
4820 if (common_block_name == NULL)
4821 {
4822 static struct complaint msg = {"ECOMM symbol unmatched by BCOMM", 0, 0};
4823 complain (&msg);
4824 return;
4825 }
4826
4827 sym = (struct symbol *)
4828 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
4829 memset (sym, 0, sizeof (struct symbol));
4830 /* Note: common_block_name already saved on symbol_obstack */
4831 SYMBOL_NAME (sym) = common_block_name;
4832 SYMBOL_CLASS (sym) = LOC_BLOCK;
4833
4834 /* Now we copy all the symbols which have been defined since the BCOMM. */
4835
4836 /* Copy all the struct pendings before common_block. */
4837 for (next = local_symbols;
4838 next != NULL && next != common_block;
4839 next = next->next)
4840 {
4841 for (j = 0; j < next->nsyms; j++)
4842 add_symbol_to_list (next->symbol[j], &new);
4843 }
4844
4845 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4846 NULL, it means copy all the local symbols (which we already did
4847 above). */
4848
4849 if (common_block != NULL)
4850 for (j = common_block_i; j < common_block->nsyms; j++)
4851 add_symbol_to_list (common_block->symbol[j], &new);
4852
4853 SYMBOL_TYPE (sym) = (struct type *) new;
4854
4855 /* Should we be putting local_symbols back to what it was?
4856 Does it matter? */
4857
4858 i = hashname (SYMBOL_NAME (sym));
4859 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4860 global_sym_chain[i] = sym;
4861 common_block_name = NULL;
4862 }
4863
4864 /* Add a common block's start address to the offset of each symbol
4865 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4866 the common block name). */
4867
4868 static void
4869 fix_common_block (sym, valu)
4870 struct symbol *sym;
4871 int valu;
4872 {
4873 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4874 for ( ; next; next = next->next)
4875 {
4876 register int j;
4877 for (j = next->nsyms - 1; j >= 0; j--)
4878 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4879 }
4880 }
4881
4882
4883 \f
4884 /* What about types defined as forward references inside of a small lexical
4885 scope? */
4886 /* Add a type to the list of undefined types to be checked through
4887 once this file has been read in. */
4888
4889 void
4890 add_undefined_type (type)
4891 struct type *type;
4892 {
4893 if (undef_types_length == undef_types_allocated)
4894 {
4895 undef_types_allocated *= 2;
4896 undef_types = (struct type **)
4897 xrealloc ((char *) undef_types,
4898 undef_types_allocated * sizeof (struct type *));
4899 }
4900 undef_types[undef_types_length++] = type;
4901 }
4902
4903 /* Go through each undefined type, see if it's still undefined, and fix it
4904 up if possible. We have two kinds of undefined types:
4905
4906 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4907 Fix: update array length using the element bounds
4908 and the target type's length.
4909 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4910 yet defined at the time a pointer to it was made.
4911 Fix: Do a full lookup on the struct/union tag. */
4912 void
4913 cleanup_undefined_types ()
4914 {
4915 struct type **type;
4916
4917 for (type = undef_types; type < undef_types + undef_types_length; type++)
4918 {
4919 switch (TYPE_CODE (*type))
4920 {
4921
4922 case TYPE_CODE_STRUCT:
4923 case TYPE_CODE_UNION:
4924 case TYPE_CODE_ENUM:
4925 {
4926 /* Check if it has been defined since. Need to do this here
4927 as well as in check_typedef to deal with the (legitimate in
4928 C though not C++) case of several types with the same name
4929 in different source files. */
4930 if (TYPE_FLAGS (*type) & TYPE_FLAG_STUB)
4931 {
4932 struct pending *ppt;
4933 int i;
4934 /* Name of the type, without "struct" or "union" */
4935 char *typename = TYPE_TAG_NAME (*type);
4936
4937 if (typename == NULL)
4938 {
4939 static struct complaint msg = {"need a type name", 0, 0};
4940 complain (&msg);
4941 break;
4942 }
4943 for (ppt = file_symbols; ppt; ppt = ppt->next)
4944 {
4945 for (i = 0; i < ppt->nsyms; i++)
4946 {
4947 struct symbol *sym = ppt->symbol[i];
4948
4949 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4950 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
4951 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4952 TYPE_CODE (*type))
4953 && STREQ (SYMBOL_NAME (sym), typename))
4954 {
4955 memcpy (*type, SYMBOL_TYPE (sym),
4956 sizeof (struct type));
4957 }
4958 }
4959 }
4960 }
4961 }
4962 break;
4963
4964 default:
4965 {
4966 static struct complaint msg = {"\
4967 GDB internal error. cleanup_undefined_types with bad type %d.", 0, 0};
4968 complain (&msg, TYPE_CODE (*type));
4969 }
4970 break;
4971 }
4972 }
4973
4974 undef_types_length = 0;
4975 }
4976
4977 /* Scan through all of the global symbols defined in the object file,
4978 assigning values to the debugging symbols that need to be assigned
4979 to. Get these symbols from the minimal symbol table. */
4980
4981 void
4982 scan_file_globals (objfile)
4983 struct objfile *objfile;
4984 {
4985 int hash;
4986 struct minimal_symbol *msymbol;
4987 struct symbol *sym, *prev, *rsym;
4988 struct objfile *resolve_objfile;
4989
4990 /* SVR4 based linkers copy referenced global symbols from shared
4991 libraries to the main executable.
4992 If we are scanning the symbols for a shared library, try to resolve
4993 them from the minimal symbols of the main executable first. */
4994
4995 if (symfile_objfile && objfile != symfile_objfile)
4996 resolve_objfile = symfile_objfile;
4997 else
4998 resolve_objfile = objfile;
4999
5000 while (1)
5001 {
5002 /* Avoid expensive loop through all minimal symbols if there are
5003 no unresolved symbols. */
5004 for (hash = 0; hash < HASHSIZE; hash++)
5005 {
5006 if (global_sym_chain[hash])
5007 break;
5008 }
5009 if (hash >= HASHSIZE)
5010 return;
5011
5012 for (msymbol = resolve_objfile -> msymbols;
5013 msymbol && SYMBOL_NAME (msymbol) != NULL;
5014 msymbol++)
5015 {
5016 QUIT;
5017
5018 /* Skip static symbols. */
5019 switch (MSYMBOL_TYPE (msymbol))
5020 {
5021 case mst_file_text:
5022 case mst_file_data:
5023 case mst_file_bss:
5024 continue;
5025 default:
5026 break;
5027 }
5028
5029 prev = NULL;
5030
5031 /* Get the hash index and check all the symbols
5032 under that hash index. */
5033
5034 hash = hashname (SYMBOL_NAME (msymbol));
5035
5036 for (sym = global_sym_chain[hash]; sym;)
5037 {
5038 if (SYMBOL_NAME (msymbol)[0] == SYMBOL_NAME (sym)[0] &&
5039 STREQ(SYMBOL_NAME (msymbol) + 1, SYMBOL_NAME (sym) + 1))
5040 {
5041
5042 struct alias_list *aliases;
5043
5044 /* Splice this symbol out of the hash chain and
5045 assign the value we have to it. */
5046 if (prev)
5047 {
5048 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
5049 }
5050 else
5051 {
5052 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
5053 }
5054
5055 /* Check to see whether we need to fix up a common block. */
5056 /* Note: this code might be executed several times for
5057 the same symbol if there are multiple references. */
5058
5059 /* If symbol has aliases, do minimal symbol fixups for each.
5060 These live aliases/references weren't added to
5061 global_sym_chain hash but may also need to be fixed up. */
5062 /* FIXME: Maybe should have added aliases to the global chain, resolved symbol name, then treated aliases as normal
5063 symbols? Still, we wouldn't want to add_to_list. */
5064 /* Now do the same for each alias of this symbol */
5065 rsym = sym;
5066 aliases = SYMBOL_ALIASES (sym);
5067 while (rsym)
5068 {
5069 if (SYMBOL_CLASS (rsym) == LOC_BLOCK)
5070 {
5071 fix_common_block (rsym,
5072 SYMBOL_VALUE_ADDRESS (msymbol));
5073 }
5074 else
5075 {
5076 SYMBOL_VALUE_ADDRESS (rsym)
5077 = SYMBOL_VALUE_ADDRESS (msymbol);
5078 }
5079 SYMBOL_SECTION (rsym) = SYMBOL_SECTION (msymbol);
5080 if (aliases)
5081 {
5082 rsym = aliases->sym;
5083 aliases = aliases->next;
5084 }
5085 else
5086 rsym = NULL;
5087 }
5088
5089
5090 if (prev)
5091 {
5092 sym = SYMBOL_VALUE_CHAIN (prev);
5093 }
5094 else
5095 {
5096 sym = global_sym_chain[hash];
5097 }
5098 }
5099 else
5100 {
5101 prev = sym;
5102 sym = SYMBOL_VALUE_CHAIN (sym);
5103 }
5104 }
5105 }
5106 if (resolve_objfile == objfile)
5107 break;
5108 resolve_objfile = objfile;
5109 }
5110
5111 /* Change the storage class of any remaining unresolved globals to
5112 LOC_UNRESOLVED and remove them from the chain. */
5113 for (hash = 0; hash < HASHSIZE; hash++)
5114 {
5115 sym = global_sym_chain[hash];
5116 while (sym)
5117 {
5118 prev = sym;
5119 sym = SYMBOL_VALUE_CHAIN (sym);
5120
5121 /* Change the symbol address from the misleading chain value
5122 to address zero. */
5123 SYMBOL_VALUE_ADDRESS (prev) = 0;
5124
5125 /* Complain about unresolved common block symbols. */
5126 if (SYMBOL_CLASS (prev) == LOC_STATIC)
5127 SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
5128 else
5129 complain (&unresolved_sym_chain_complaint,
5130 objfile -> name, SYMBOL_NAME (prev));
5131 }
5132 }
5133 memset (global_sym_chain, 0, sizeof (global_sym_chain));
5134 }
5135
5136 /* Initialize anything that needs initializing when starting to read
5137 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
5138 to a psymtab. */
5139
5140 void
5141 stabsread_init ()
5142 {
5143 }
5144
5145 /* Initialize anything that needs initializing when a completely new
5146 symbol file is specified (not just adding some symbols from another
5147 file, e.g. a shared library). */
5148
5149 void
5150 stabsread_new_init ()
5151 {
5152 /* Empty the hash table of global syms looking for values. */
5153 memset (global_sym_chain, 0, sizeof (global_sym_chain));
5154 }
5155
5156 /* Initialize anything that needs initializing at the same time as
5157 start_symtab() is called. */
5158
5159 void start_stabs ()
5160 {
5161 global_stabs = NULL; /* AIX COFF */
5162 /* Leave FILENUM of 0 free for builtin types and this file's types. */
5163 n_this_object_header_files = 1;
5164 type_vector_length = 0;
5165 type_vector = (struct type **) 0;
5166
5167 /* FIXME: If common_block_name is not already NULL, we should complain(). */
5168 common_block_name = NULL;
5169
5170 os9k_stabs = 0;
5171 }
5172
5173 /* Call after end_symtab() */
5174
5175 void end_stabs ()
5176 {
5177 if (type_vector)
5178 {
5179 free ((char *) type_vector);
5180 }
5181 type_vector = 0;
5182 type_vector_length = 0;
5183 previous_stab_code = 0;
5184 }
5185
5186 void
5187 finish_global_stabs (objfile)
5188 struct objfile *objfile;
5189 {
5190 if (global_stabs)
5191 {
5192 patch_block_stabs (global_symbols, global_stabs, objfile);
5193 free ((PTR) global_stabs);
5194 global_stabs = NULL;
5195 }
5196 }
5197
5198 /* Initializer for this module */
5199
5200 void
5201 _initialize_stabsread ()
5202 {
5203 undef_types_allocated = 20;
5204 undef_types_length = 0;
5205 undef_types = (struct type **)
5206 xmalloc (undef_types_allocated * sizeof (struct type *));
5207 }