]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/symfile.c
Initial creation of sourceware repository
[thirdparty/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998
3 Free Software Foundation, Inc.
4 Contributed by Cygnus Support, using pieces from other GDB modules.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "target.h"
28 #include "value.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcmd.h"
32 #include "breakpoint.h"
33 #include "language.h"
34 #include "complaints.h"
35 #include "demangle.h"
36 #include "inferior.h" /* for write_pc */
37 #include "gdb-stabs.h"
38 #include "obstack.h"
39
40 #include <assert.h>
41 #include <sys/types.h>
42 #include <fcntl.h>
43 #include "gdb_string.h"
44 #include "gdb_stat.h"
45 #include <ctype.h>
46 #include <time.h>
47 #ifdef HAVE_UNISTD_H
48 #include <unistd.h>
49 #endif
50
51 #ifndef O_BINARY
52 #define O_BINARY 0
53 #endif
54
55 #ifdef HPUXHPPA
56
57 /* Some HP-UX related globals to clear when a new "main"
58 symbol file is loaded. HP-specific. */
59
60 extern int hp_som_som_object_present;
61 extern int hp_cxx_exception_support_initialized;
62 #define RESET_HP_UX_GLOBALS() do {\
63 hp_som_som_object_present = 0; /* indicates HP-compiled code */ \
64 hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \
65 } while (0)
66 #endif
67
68 int (*ui_load_progress_hook) PARAMS ((char *, unsigned long));
69 void (*pre_add_symbol_hook) PARAMS ((char *));
70 void (*post_add_symbol_hook) PARAMS ((void));
71
72 /* Global variables owned by this file */
73 int readnow_symbol_files; /* Read full symbols immediately */
74
75 struct complaint oldsyms_complaint = {
76 "Replacing old symbols for `%s'", 0, 0
77 };
78
79 struct complaint empty_symtab_complaint = {
80 "Empty symbol table found for `%s'", 0, 0
81 };
82
83 /* External variables and functions referenced. */
84
85 extern int info_verbose;
86
87 extern void report_transfer_performance PARAMS ((unsigned long,
88 time_t, time_t));
89
90 /* Functions this file defines */
91
92 #if 0
93 static int simple_read_overlay_region_table PARAMS ((void));
94 static void simple_free_overlay_region_table PARAMS ((void));
95 #endif
96
97 static void set_initial_language PARAMS ((void));
98
99 static void load_command PARAMS ((char *, int));
100
101 static void add_symbol_file_command PARAMS ((char *, int));
102
103 static void add_shared_symbol_files_command PARAMS ((char *, int));
104
105 static void cashier_psymtab PARAMS ((struct partial_symtab *));
106
107 static int compare_psymbols PARAMS ((const void *, const void *));
108
109 static int compare_symbols PARAMS ((const void *, const void *));
110
111 bfd *symfile_bfd_open PARAMS ((char *));
112
113 static void find_sym_fns PARAMS ((struct objfile *));
114
115 static void decrement_reading_symtab PARAMS ((void *));
116
117 static void overlay_invalidate_all PARAMS ((void));
118
119 static int overlay_is_mapped PARAMS ((struct obj_section *));
120
121 void list_overlays_command PARAMS ((char *, int));
122
123 void map_overlay_command PARAMS ((char *, int));
124
125 void unmap_overlay_command PARAMS ((char *, int));
126
127 static void overlay_auto_command PARAMS ((char *, int));
128
129 static void overlay_manual_command PARAMS ((char *, int));
130
131 static void overlay_off_command PARAMS ((char *, int));
132
133 static void overlay_load_command PARAMS ((char *, int));
134
135 static void overlay_command PARAMS ((char *, int));
136
137 static void simple_free_overlay_table PARAMS ((void));
138
139 static void read_target_long_array PARAMS ((CORE_ADDR, unsigned int *, int));
140
141 static int simple_read_overlay_table PARAMS ((void));
142
143 static int simple_overlay_update_1 PARAMS ((struct obj_section *));
144
145 void _initialize_symfile PARAMS ((void));
146
147 /* List of all available sym_fns. On gdb startup, each object file reader
148 calls add_symtab_fns() to register information on each format it is
149 prepared to read. */
150
151 static struct sym_fns *symtab_fns = NULL;
152
153 /* Flag for whether user will be reloading symbols multiple times.
154 Defaults to ON for VxWorks, otherwise OFF. */
155
156 #ifdef SYMBOL_RELOADING_DEFAULT
157 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
158 #else
159 int symbol_reloading = 0;
160 #endif
161
162 /* If non-zero, then on HP-UX (i.e., platforms that use somsolib.c),
163 this variable is interpreted as a threshhold. If adding a new
164 library's symbol table to those already known to the debugger would
165 exceed this threshhold, then the shlib's symbols are not added.
166
167 If non-zero on other platforms, shared library symbols will be added
168 automatically when the inferior is created, new libraries are loaded,
169 or when attaching to the inferior. This is almost always what users
170 will want to have happen; but for very large programs, the startup
171 time will be excessive, and so if this is a problem, the user can
172 clear this flag and then add the shared library symbols as needed.
173 Note that there is a potential for confusion, since if the shared
174 library symbols are not loaded, commands like "info fun" will *not*
175 report all the functions that are actually present.
176
177 Note that HP-UX interprets this variable to mean, "threshhold size
178 in megabytes, where zero means never add". Other platforms interpret
179 this variable to mean, "always add if non-zero, never add if zero."
180 */
181
182 int auto_solib_add = 1;
183
184 \f
185 /* Since this function is called from within qsort, in an ANSI environment
186 it must conform to the prototype for qsort, which specifies that the
187 comparison function takes two "void *" pointers. */
188
189 static int
190 compare_symbols (s1p, s2p)
191 const PTR s1p;
192 const PTR s2p;
193 {
194 register struct symbol **s1, **s2;
195
196 s1 = (struct symbol **) s1p;
197 s2 = (struct symbol **) s2p;
198
199 return (STRCMP (SYMBOL_NAME (*s1), SYMBOL_NAME (*s2)));
200 }
201
202 /*
203
204 LOCAL FUNCTION
205
206 compare_psymbols -- compare two partial symbols by name
207
208 DESCRIPTION
209
210 Given pointers to pointers to two partial symbol table entries,
211 compare them by name and return -N, 0, or +N (ala strcmp).
212 Typically used by sorting routines like qsort().
213
214 NOTES
215
216 Does direct compare of first two characters before punting
217 and passing to strcmp for longer compares. Note that the
218 original version had a bug whereby two null strings or two
219 identically named one character strings would return the
220 comparison of memory following the null byte.
221
222 */
223
224 static int
225 compare_psymbols (s1p, s2p)
226 const PTR s1p;
227 const PTR s2p;
228 {
229 register char *st1 = SYMBOL_NAME (*(struct partial_symbol **) s1p);
230 register char *st2 = SYMBOL_NAME (*(struct partial_symbol **) s2p);
231
232 if ((st1[0] - st2[0]) || !st1[0])
233 {
234 return (st1[0] - st2[0]);
235 }
236 else if ((st1[1] - st2[1]) || !st1[1])
237 {
238 return (st1[1] - st2[1]);
239 }
240 else
241 {
242 /* Note: I replaced the STRCMP line (commented out below)
243 * with a simpler "strcmp()" which compares the 2 strings
244 * from the beginning. (STRCMP is a macro which first compares
245 * the initial characters, then falls back on strcmp).
246 * The reason is that the STRCMP line was tickling a C compiler
247 * bug on HP-UX 10.30, which is avoided with the simpler
248 * code. The performance gain from the more complicated code
249 * is negligible, given that we have already checked the
250 * initial 2 characters above. I reported the compiler bug,
251 * and once it is fixed the original line can be put back. RT
252 */
253 /* return ( STRCMP (st1 + 2, st2 + 2)); */
254 return ( strcmp (st1, st2));
255 }
256 }
257
258 void
259 sort_pst_symbols (pst)
260 struct partial_symtab *pst;
261 {
262 /* Sort the global list; don't sort the static list */
263
264 qsort (pst -> objfile -> global_psymbols.list + pst -> globals_offset,
265 pst -> n_global_syms, sizeof (struct partial_symbol *),
266 compare_psymbols);
267 }
268
269 /* Call sort_block_syms to sort alphabetically the symbols of one block. */
270
271 void
272 sort_block_syms (b)
273 register struct block *b;
274 {
275 qsort (&BLOCK_SYM (b, 0), BLOCK_NSYMS (b),
276 sizeof (struct symbol *), compare_symbols);
277 }
278
279 /* Call sort_symtab_syms to sort alphabetically
280 the symbols of each block of one symtab. */
281
282 void
283 sort_symtab_syms (s)
284 register struct symtab *s;
285 {
286 register struct blockvector *bv;
287 int nbl;
288 int i;
289 register struct block *b;
290
291 if (s == 0)
292 return;
293 bv = BLOCKVECTOR (s);
294 nbl = BLOCKVECTOR_NBLOCKS (bv);
295 for (i = 0; i < nbl; i++)
296 {
297 b = BLOCKVECTOR_BLOCK (bv, i);
298 if (BLOCK_SHOULD_SORT (b))
299 sort_block_syms (b);
300 }
301 }
302
303 /* Make a null terminated copy of the string at PTR with SIZE characters in
304 the obstack pointed to by OBSTACKP . Returns the address of the copy.
305 Note that the string at PTR does not have to be null terminated, I.E. it
306 may be part of a larger string and we are only saving a substring. */
307
308 char *
309 obsavestring (ptr, size, obstackp)
310 char *ptr;
311 int size;
312 struct obstack *obstackp;
313 {
314 register char *p = (char *) obstack_alloc (obstackp, size + 1);
315 /* Open-coded memcpy--saves function call time. These strings are usually
316 short. FIXME: Is this really still true with a compiler that can
317 inline memcpy? */
318 {
319 register char *p1 = ptr;
320 register char *p2 = p;
321 char *end = ptr + size;
322 while (p1 != end)
323 *p2++ = *p1++;
324 }
325 p[size] = 0;
326 return p;
327 }
328
329 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
330 in the obstack pointed to by OBSTACKP. */
331
332 char *
333 obconcat (obstackp, s1, s2, s3)
334 struct obstack *obstackp;
335 const char *s1, *s2, *s3;
336 {
337 register int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
338 register char *val = (char *) obstack_alloc (obstackp, len);
339 strcpy (val, s1);
340 strcat (val, s2);
341 strcat (val, s3);
342 return val;
343 }
344
345 /* True if we are nested inside psymtab_to_symtab. */
346
347 int currently_reading_symtab = 0;
348
349 static void
350 decrement_reading_symtab (dummy)
351 void *dummy;
352 {
353 currently_reading_symtab--;
354 }
355
356 /* Get the symbol table that corresponds to a partial_symtab.
357 This is fast after the first time you do it. In fact, there
358 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
359 case inline. */
360
361 struct symtab *
362 psymtab_to_symtab (pst)
363 register struct partial_symtab *pst;
364 {
365 /* If it's been looked up before, return it. */
366 if (pst->symtab)
367 return pst->symtab;
368
369 /* If it has not yet been read in, read it. */
370 if (!pst->readin)
371 {
372 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
373 currently_reading_symtab++;
374 (*pst->read_symtab) (pst);
375 do_cleanups (back_to);
376 }
377
378 return pst->symtab;
379 }
380
381 /* Initialize entry point information for this objfile. */
382
383 void
384 init_entry_point_info (objfile)
385 struct objfile *objfile;
386 {
387 /* Save startup file's range of PC addresses to help blockframe.c
388 decide where the bottom of the stack is. */
389
390 if (bfd_get_file_flags (objfile -> obfd) & EXEC_P)
391 {
392 /* Executable file -- record its entry point so we'll recognize
393 the startup file because it contains the entry point. */
394 objfile -> ei.entry_point = bfd_get_start_address (objfile -> obfd);
395 }
396 else
397 {
398 /* Examination of non-executable.o files. Short-circuit this stuff. */
399 objfile -> ei.entry_point = INVALID_ENTRY_POINT;
400 }
401 objfile -> ei.entry_file_lowpc = INVALID_ENTRY_LOWPC;
402 objfile -> ei.entry_file_highpc = INVALID_ENTRY_HIGHPC;
403 objfile -> ei.entry_func_lowpc = INVALID_ENTRY_LOWPC;
404 objfile -> ei.entry_func_highpc = INVALID_ENTRY_HIGHPC;
405 objfile -> ei.main_func_lowpc = INVALID_ENTRY_LOWPC;
406 objfile -> ei.main_func_highpc = INVALID_ENTRY_HIGHPC;
407 }
408
409 /* Get current entry point address. */
410
411 CORE_ADDR
412 entry_point_address()
413 {
414 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
415 }
416
417 /* Remember the lowest-addressed loadable section we've seen.
418 This function is called via bfd_map_over_sections.
419
420 In case of equal vmas, the section with the largest size becomes the
421 lowest-addressed loadable section.
422
423 If the vmas and sizes are equal, the last section is considered the
424 lowest-addressed loadable section. */
425
426 void
427 find_lowest_section (abfd, sect, obj)
428 bfd *abfd;
429 asection *sect;
430 PTR obj;
431 {
432 asection **lowest = (asection **)obj;
433
434 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
435 return;
436 if (!*lowest)
437 *lowest = sect; /* First loadable section */
438 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
439 *lowest = sect; /* A lower loadable section */
440 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
441 && (bfd_section_size (abfd, (*lowest))
442 <= bfd_section_size (abfd, sect)))
443 *lowest = sect;
444 }
445
446 /* Parse the user's idea of an offset for dynamic linking, into our idea
447 of how to represent it for fast symbol reading. This is the default
448 version of the sym_fns.sym_offsets function for symbol readers that
449 don't need to do anything special. It allocates a section_offsets table
450 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
451
452 struct section_offsets *
453 default_symfile_offsets (objfile, addr)
454 struct objfile *objfile;
455 CORE_ADDR addr;
456 {
457 struct section_offsets *section_offsets;
458 int i;
459
460 objfile->num_sections = SECT_OFF_MAX;
461 section_offsets = (struct section_offsets *)
462 obstack_alloc (&objfile -> psymbol_obstack, SIZEOF_SECTION_OFFSETS);
463
464 for (i = 0; i < SECT_OFF_MAX; i++)
465 ANOFFSET (section_offsets, i) = addr;
466
467 return section_offsets;
468 }
469
470
471 /* Process a symbol file, as either the main file or as a dynamically
472 loaded file.
473
474 NAME is the file name (which will be tilde-expanded and made
475 absolute herein) (but we don't free or modify NAME itself).
476 FROM_TTY says how verbose to be. MAINLINE specifies whether this
477 is the main symbol file, or whether it's an extra symbol file such
478 as dynamically loaded code. If !mainline, ADDR is the address
479 where the text segment was loaded. If VERBO, the caller has printed
480 a verbose message about the symbol reading (and complaints can be
481 more terse about it). */
482
483 void
484 syms_from_objfile (objfile, addr, mainline, verbo)
485 struct objfile *objfile;
486 CORE_ADDR addr;
487 int mainline;
488 int verbo;
489 {
490 struct section_offsets *section_offsets;
491 asection *lowest_sect;
492 struct cleanup *old_chain;
493
494 init_entry_point_info (objfile);
495 find_sym_fns (objfile);
496
497 /* Make sure that partially constructed symbol tables will be cleaned up
498 if an error occurs during symbol reading. */
499 old_chain = make_cleanup ((make_cleanup_func) free_objfile, objfile);
500
501 if (mainline)
502 {
503 /* We will modify the main symbol table, make sure that all its users
504 will be cleaned up if an error occurs during symbol reading. */
505 make_cleanup ((make_cleanup_func) clear_symtab_users, 0);
506
507 /* Since no error yet, throw away the old symbol table. */
508
509 if (symfile_objfile != NULL)
510 {
511 free_objfile (symfile_objfile);
512 symfile_objfile = NULL;
513 }
514
515 /* Currently we keep symbols from the add-symbol-file command.
516 If the user wants to get rid of them, they should do "symbol-file"
517 without arguments first. Not sure this is the best behavior
518 (PR 2207). */
519
520 (*objfile -> sf -> sym_new_init) (objfile);
521 }
522
523 /* Convert addr into an offset rather than an absolute address.
524 We find the lowest address of a loaded segment in the objfile,
525 and assume that <addr> is where that got loaded. Due to historical
526 precedent, we warn if that doesn't happen to be a text segment. */
527
528 if (mainline)
529 {
530 addr = 0; /* No offset from objfile addresses. */
531 }
532 else
533 {
534 lowest_sect = bfd_get_section_by_name (objfile->obfd, ".text");
535 if (lowest_sect == NULL)
536 bfd_map_over_sections (objfile->obfd, find_lowest_section,
537 (PTR) &lowest_sect);
538
539 if (lowest_sect == NULL)
540 warning ("no loadable sections found in added symbol-file %s",
541 objfile->name);
542 else if ((bfd_get_section_flags (objfile->obfd, lowest_sect) & SEC_CODE)
543 == 0)
544 /* FIXME-32x64--assumes bfd_vma fits in long. */
545 warning ("Lowest section in %s is %s at 0x%lx",
546 objfile->name,
547 bfd_section_name (objfile->obfd, lowest_sect),
548 (unsigned long) bfd_section_vma (objfile->obfd, lowest_sect));
549
550 if (lowest_sect)
551 addr -= bfd_section_vma (objfile->obfd, lowest_sect);
552 }
553
554 /* Initialize symbol reading routines for this objfile, allow complaints to
555 appear for this new file, and record how verbose to be, then do the
556 initial symbol reading for this file. */
557
558 (*objfile -> sf -> sym_init) (objfile);
559 clear_complaints (1, verbo);
560
561 section_offsets = (*objfile -> sf -> sym_offsets) (objfile, addr);
562 objfile->section_offsets = section_offsets;
563
564 #ifndef IBM6000_TARGET
565 /* This is a SVR4/SunOS specific hack, I think. In any event, it
566 screws RS/6000. sym_offsets should be doing this sort of thing,
567 because it knows the mapping between bfd sections and
568 section_offsets. */
569 /* This is a hack. As far as I can tell, section offsets are not
570 target dependent. They are all set to addr with a couple of
571 exceptions. The exceptions are sysvr4 shared libraries, whose
572 offsets are kept in solib structures anyway and rs6000 xcoff
573 which handles shared libraries in a completely unique way.
574
575 Section offsets are built similarly, except that they are built
576 by adding addr in all cases because there is no clear mapping
577 from section_offsets into actual sections. Note that solib.c
578 has a different algorythm for finding section offsets.
579
580 These should probably all be collapsed into some target
581 independent form of shared library support. FIXME. */
582
583 if (addr)
584 {
585 struct obj_section *s;
586
587 for (s = objfile->sections; s < objfile->sections_end; ++s)
588 {
589 s->addr -= s->offset;
590 s->addr += addr;
591 s->endaddr -= s->offset;
592 s->endaddr += addr;
593 s->offset += addr;
594 }
595 }
596 #endif /* not IBM6000_TARGET */
597
598 (*objfile -> sf -> sym_read) (objfile, section_offsets, mainline);
599
600 if (!have_partial_symbols () && !have_full_symbols ())
601 {
602 wrap_here ("");
603 printf_filtered ("(no debugging symbols found)...");
604 wrap_here ("");
605 }
606
607 /* Don't allow char * to have a typename (else would get caddr_t).
608 Ditto void *. FIXME: Check whether this is now done by all the
609 symbol readers themselves (many of them now do), and if so remove
610 it from here. */
611
612 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
613 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
614
615 /* Mark the objfile has having had initial symbol read attempted. Note
616 that this does not mean we found any symbols... */
617
618 objfile -> flags |= OBJF_SYMS;
619
620 /* Discard cleanups as symbol reading was successful. */
621
622 discard_cleanups (old_chain);
623
624 /* Call this after reading in a new symbol table to give target dependant code
625 a crack at the new symbols. For instance, this could be used to update the
626 values of target-specific symbols GDB needs to keep track of (such as
627 _sigtramp, or whatever). */
628
629 TARGET_SYMFILE_POSTREAD (objfile);
630 }
631
632 /* Perform required actions after either reading in the initial
633 symbols for a new objfile, or mapping in the symbols from a reusable
634 objfile. */
635
636 void
637 new_symfile_objfile (objfile, mainline, verbo)
638 struct objfile *objfile;
639 int mainline;
640 int verbo;
641 {
642
643 /* If this is the main symbol file we have to clean up all users of the
644 old main symbol file. Otherwise it is sufficient to fixup all the
645 breakpoints that may have been redefined by this symbol file. */
646 if (mainline)
647 {
648 /* OK, make it the "real" symbol file. */
649 symfile_objfile = objfile;
650
651 clear_symtab_users ();
652 }
653 else
654 {
655 breakpoint_re_set ();
656 }
657
658 /* We're done reading the symbol file; finish off complaints. */
659 clear_complaints (0, verbo);
660 }
661
662 /* Process a symbol file, as either the main file or as a dynamically
663 loaded file.
664
665 NAME is the file name (which will be tilde-expanded and made
666 absolute herein) (but we don't free or modify NAME itself).
667 FROM_TTY says how verbose to be. MAINLINE specifies whether this
668 is the main symbol file, or whether it's an extra symbol file such
669 as dynamically loaded code. If !mainline, ADDR is the address
670 where the text segment was loaded.
671
672 USER_LOADED is TRUE if the add-symbol-file command was how this
673 symbol file came to be processed.
674
675 IS_SOLIB is TRUE if this symbol file represents a solib, as discovered
676 by the target's implementation of the solib package.
677
678 Upon success, returns a pointer to the objfile that was added.
679 Upon failure, jumps back to command level (never returns). */
680
681 struct objfile *
682 symbol_file_add (name, from_tty, addr, mainline, mapped, readnow, user_loaded, is_solib)
683 char *name;
684 int from_tty;
685 CORE_ADDR addr;
686 int mainline;
687 int mapped;
688 int readnow;
689 int user_loaded;
690 int is_solib;
691 {
692 struct objfile *objfile;
693 struct partial_symtab *psymtab;
694 bfd *abfd;
695
696 /* Open a bfd for the file, and give user a chance to burp if we'd be
697 interactively wiping out any existing symbols. */
698
699 abfd = symfile_bfd_open (name);
700
701 if ((have_full_symbols () || have_partial_symbols ())
702 && mainline
703 && from_tty
704 && !query ("Load new symbol table from \"%s\"? ", name))
705 error ("Not confirmed.");
706
707 objfile = allocate_objfile (abfd, mapped, user_loaded, is_solib);
708
709 /* If the objfile uses a mapped symbol file, and we have a psymtab for
710 it, then skip reading any symbols at this time. */
711
712 if ((objfile -> flags & OBJF_MAPPED) && (objfile -> flags & OBJF_SYMS))
713 {
714 /* We mapped in an existing symbol table file that already has had
715 initial symbol reading performed, so we can skip that part. Notify
716 the user that instead of reading the symbols, they have been mapped.
717 */
718 if (from_tty || info_verbose)
719 {
720 printf_filtered ("Mapped symbols for %s...", name);
721 wrap_here ("");
722 gdb_flush (gdb_stdout);
723 }
724 init_entry_point_info (objfile);
725 find_sym_fns (objfile);
726 }
727 else
728 {
729 /* We either created a new mapped symbol table, mapped an existing
730 symbol table file which has not had initial symbol reading
731 performed, or need to read an unmapped symbol table. */
732 if (from_tty || info_verbose)
733 {
734 if (pre_add_symbol_hook)
735 pre_add_symbol_hook (name);
736 else
737 {
738 printf_filtered ("Reading symbols from %s...", name);
739 wrap_here ("");
740 gdb_flush (gdb_stdout);
741 }
742 }
743 syms_from_objfile (objfile, addr, mainline, from_tty);
744 }
745
746 /* We now have at least a partial symbol table. Check to see if the
747 user requested that all symbols be read on initial access via either
748 the gdb startup command line or on a per symbol file basis. Expand
749 all partial symbol tables for this objfile if so. */
750
751 if (readnow || readnow_symbol_files)
752 {
753 if (from_tty || info_verbose)
754 {
755 printf_filtered ("expanding to full symbols...");
756 wrap_here ("");
757 gdb_flush (gdb_stdout);
758 }
759
760 for (psymtab = objfile -> psymtabs;
761 psymtab != NULL;
762 psymtab = psymtab -> next)
763 {
764 psymtab_to_symtab (psymtab);
765 }
766 }
767
768 if (from_tty || info_verbose)
769 {
770 if (post_add_symbol_hook)
771 post_add_symbol_hook ();
772 else
773 {
774 printf_filtered ("done.\n");
775 gdb_flush (gdb_stdout);
776 }
777 }
778
779 new_symfile_objfile (objfile, mainline, from_tty);
780
781 target_new_objfile (objfile);
782
783 return (objfile);
784 }
785
786 /* This is the symbol-file command. Read the file, analyze its
787 symbols, and add a struct symtab to a symtab list. The syntax of
788 the command is rather bizarre--(1) buildargv implements various
789 quoting conventions which are undocumented and have little or
790 nothing in common with the way things are quoted (or not quoted)
791 elsewhere in GDB, (2) options are used, which are not generally
792 used in GDB (perhaps "set mapped on", "set readnow on" would be
793 better), (3) the order of options matters, which is contrary to GNU
794 conventions (because it is confusing and inconvenient). */
795
796 void
797 symbol_file_command (args, from_tty)
798 char *args;
799 int from_tty;
800 {
801 char **argv;
802 char *name = NULL;
803 CORE_ADDR text_relocation = 0; /* text_relocation */
804 struct cleanup *cleanups;
805 int mapped = 0;
806 int readnow = 0;
807
808 dont_repeat ();
809
810 if (args == NULL)
811 {
812 if ((have_full_symbols () || have_partial_symbols ())
813 && from_tty
814 && !query ("Discard symbol table from `%s'? ",
815 symfile_objfile -> name))
816 error ("Not confirmed.");
817 free_all_objfiles ();
818
819 /* solib descriptors may have handles to objfiles. Since their
820 storage has just been released, we'd better wipe the solib
821 descriptors as well.
822 */
823 #if defined(SOLIB_RESTART)
824 SOLIB_RESTART ();
825 #endif
826
827 symfile_objfile = NULL;
828 if (from_tty)
829 {
830 printf_unfiltered ("No symbol file now.\n");
831 }
832 #ifdef HPUXHPPA
833 RESET_HP_UX_GLOBALS ();
834 #endif
835 }
836 else
837 {
838 if ((argv = buildargv (args)) == NULL)
839 {
840 nomem (0);
841 }
842 cleanups = make_cleanup ((make_cleanup_func) freeargv, (char *) argv);
843 while (*argv != NULL)
844 {
845 if (STREQ (*argv, "-mapped"))
846 {
847 mapped = 1;
848 }
849 else if (STREQ (*argv, "-readnow"))
850 {
851 readnow = 1;
852 }
853 else if (**argv == '-')
854 {
855 error ("unknown option `%s'", *argv);
856 }
857 else
858 {
859 char *p;
860
861 name = *argv;
862
863 /* this is for rombug remote only, to get the text relocation by
864 using link command */
865 p = strrchr(name, '/');
866 if (p != NULL) p++;
867 else p = name;
868
869 target_link(p, &text_relocation);
870
871 if (text_relocation == (CORE_ADDR)0)
872 return;
873 else if (text_relocation == (CORE_ADDR)-1)
874 {
875 symbol_file_add (name, from_tty, (CORE_ADDR)0,
876 1, mapped, readnow, 1, 0);
877 #ifdef HPUXHPPA
878 RESET_HP_UX_GLOBALS ();
879 #endif
880 }
881 else
882 symbol_file_add (name, from_tty, (CORE_ADDR)text_relocation,
883 0, mapped, readnow, 1, 0);
884
885 /* Getting new symbols may change our opinion about what is
886 frameless. */
887 reinit_frame_cache ();
888
889 set_initial_language ();
890 }
891 argv++;
892 }
893
894 if (name == NULL)
895 {
896 error ("no symbol file name was specified");
897 }
898 TUIDO(((TuiOpaqueFuncPtr)tuiDisplayMainFunction));
899 do_cleanups (cleanups);
900 }
901 }
902
903 /* Set the initial language.
904
905 A better solution would be to record the language in the psymtab when reading
906 partial symbols, and then use it (if known) to set the language. This would
907 be a win for formats that encode the language in an easily discoverable place,
908 such as DWARF. For stabs, we can jump through hoops looking for specially
909 named symbols or try to intuit the language from the specific type of stabs
910 we find, but we can't do that until later when we read in full symbols.
911 FIXME. */
912
913 static void
914 set_initial_language ()
915 {
916 struct partial_symtab *pst;
917 enum language lang = language_unknown;
918
919 pst = find_main_psymtab ();
920 if (pst != NULL)
921 {
922 if (pst -> filename != NULL)
923 {
924 lang = deduce_language_from_filename (pst -> filename);
925 }
926 if (lang == language_unknown)
927 {
928 /* Make C the default language */
929 lang = language_c;
930 }
931 set_language (lang);
932 expected_language = current_language; /* Don't warn the user */
933 }
934 }
935
936 /* Open file specified by NAME and hand it off to BFD for preliminary
937 analysis. Result is a newly initialized bfd *, which includes a newly
938 malloc'd` copy of NAME (tilde-expanded and made absolute).
939 In case of trouble, error() is called. */
940
941 bfd *
942 symfile_bfd_open (name)
943 char *name;
944 {
945 bfd *sym_bfd;
946 int desc;
947 char *absolute_name;
948
949
950
951 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
952
953 /* Look down path for it, allocate 2nd new malloc'd copy. */
954 desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
955 #if defined(__GO32__) || defined(_WIN32)
956 if (desc < 0)
957 {
958 char *exename = alloca (strlen (name) + 5);
959 strcat (strcpy (exename, name), ".exe");
960 desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
961 0, &absolute_name);
962 }
963 #endif
964 if (desc < 0)
965 {
966 make_cleanup (free, name);
967 perror_with_name (name);
968 }
969 free (name); /* Free 1st new malloc'd copy */
970 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
971 /* It'll be freed in free_objfile(). */
972
973 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
974 if (!sym_bfd)
975 {
976 close (desc);
977 make_cleanup (free, name);
978 error ("\"%s\": can't open to read symbols: %s.", name,
979 bfd_errmsg (bfd_get_error ()));
980 }
981 sym_bfd->cacheable = true;
982
983 if (!bfd_check_format (sym_bfd, bfd_object))
984 {
985 /* FIXME: should be checking for errors from bfd_close (for one thing,
986 on error it does not free all the storage associated with the
987 bfd). */
988 bfd_close (sym_bfd); /* This also closes desc */
989 make_cleanup (free, name);
990 error ("\"%s\": can't read symbols: %s.", name,
991 bfd_errmsg (bfd_get_error ()));
992 }
993 return (sym_bfd);
994 }
995
996 /* Link a new symtab_fns into the global symtab_fns list. Called on gdb
997 startup by the _initialize routine in each object file format reader,
998 to register information about each format the the reader is prepared
999 to handle. */
1000
1001 void
1002 add_symtab_fns (sf)
1003 struct sym_fns *sf;
1004 {
1005 sf->next = symtab_fns;
1006 symtab_fns = sf;
1007 }
1008
1009
1010 /* Initialize to read symbols from the symbol file sym_bfd. It either
1011 returns or calls error(). The result is an initialized struct sym_fns
1012 in the objfile structure, that contains cached information about the
1013 symbol file. */
1014
1015 static void
1016 find_sym_fns (objfile)
1017 struct objfile *objfile;
1018 {
1019 struct sym_fns *sf;
1020 enum bfd_flavour our_flavour = bfd_get_flavour (objfile -> obfd);
1021 char *our_target = bfd_get_target (objfile -> obfd);
1022
1023 /* Special kludge for RS/6000 and PowerMac. See xcoffread.c. */
1024 if (STREQ (our_target, "aixcoff-rs6000") ||
1025 STREQ (our_target, "xcoff-powermac"))
1026 our_flavour = (enum bfd_flavour)-1;
1027
1028 /* Special kludge for apollo. See dstread.c. */
1029 if (STREQN (our_target, "apollo", 6))
1030 our_flavour = (enum bfd_flavour)-2;
1031
1032 for (sf = symtab_fns; sf != NULL; sf = sf -> next)
1033 {
1034 if (our_flavour == sf -> sym_flavour)
1035 {
1036 objfile -> sf = sf;
1037 return;
1038 }
1039 }
1040 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
1041 bfd_get_target (objfile -> obfd));
1042 }
1043 \f
1044 /* This function runs the load command of our current target. */
1045
1046 static void
1047 load_command (arg, from_tty)
1048 char *arg;
1049 int from_tty;
1050 {
1051 if (arg == NULL)
1052 arg = get_exec_file (1);
1053 target_load (arg, from_tty);
1054 }
1055
1056 /* This version of "load" should be usable for any target. Currently
1057 it is just used for remote targets, not inftarg.c or core files,
1058 on the theory that only in that case is it useful.
1059
1060 Avoiding xmodem and the like seems like a win (a) because we don't have
1061 to worry about finding it, and (b) On VMS, fork() is very slow and so
1062 we don't want to run a subprocess. On the other hand, I'm not sure how
1063 performance compares. */
1064 #define GENERIC_LOAD_CHUNK 256
1065 #define VALIDATE_DOWNLOAD 0
1066 void
1067 generic_load (filename, from_tty)
1068 char *filename;
1069 int from_tty;
1070 {
1071 struct cleanup *old_cleanups;
1072 asection *s;
1073 bfd *loadfile_bfd;
1074 time_t start_time, end_time; /* Start and end times of download */
1075 unsigned long data_count = 0; /* Number of bytes transferred to memory */
1076 int n;
1077 unsigned long load_offset = 0; /* offset to add to vma for each section */
1078 char buf[GENERIC_LOAD_CHUNK+8];
1079 #if VALIDATE_DOWNLOAD
1080 char verify_buffer[GENERIC_LOAD_CHUNK+8] ;
1081 #endif
1082
1083 /* enable user to specify address for downloading as 2nd arg to load */
1084 n = sscanf(filename, "%s 0x%lx", buf, &load_offset);
1085 if (n > 1 )
1086 filename = buf;
1087 else
1088 load_offset = 0;
1089
1090 loadfile_bfd = bfd_openr (filename, gnutarget);
1091 if (loadfile_bfd == NULL)
1092 {
1093 perror_with_name (filename);
1094 return;
1095 }
1096 /* FIXME: should be checking for errors from bfd_close (for one thing,
1097 on error it does not free all the storage associated with the
1098 bfd). */
1099 old_cleanups = make_cleanup ((make_cleanup_func) bfd_close, loadfile_bfd);
1100
1101 if (!bfd_check_format (loadfile_bfd, bfd_object))
1102 {
1103 error ("\"%s\" is not an object file: %s", filename,
1104 bfd_errmsg (bfd_get_error ()));
1105 }
1106
1107 start_time = time (NULL);
1108
1109 for (s = loadfile_bfd->sections; s; s = s->next)
1110 {
1111 if (s->flags & SEC_LOAD)
1112 {
1113 bfd_size_type size;
1114
1115 size = bfd_get_section_size_before_reloc (s);
1116 if (size > 0)
1117 {
1118 char *buffer;
1119 struct cleanup *old_chain;
1120 bfd_vma lma;
1121 unsigned long l = size ;
1122 int err;
1123 char *sect;
1124 unsigned long sent;
1125 unsigned long len;
1126
1127 l = l > GENERIC_LOAD_CHUNK ? GENERIC_LOAD_CHUNK : l ;
1128
1129 buffer = xmalloc (size);
1130 old_chain = make_cleanup (free, buffer);
1131
1132 lma = s->lma;
1133 lma += load_offset;
1134
1135 /* Is this really necessary? I guess it gives the user something
1136 to look at during a long download. */
1137 printf_filtered ("Loading section %s, size 0x%lx lma ",
1138 bfd_get_section_name (loadfile_bfd, s),
1139 (unsigned long) size);
1140 print_address_numeric (lma, 1, gdb_stdout);
1141 printf_filtered ("\n");
1142
1143 bfd_get_section_contents (loadfile_bfd, s, buffer, 0, size);
1144
1145 sect = (char *) bfd_get_section_name (loadfile_bfd, s);
1146 sent = 0;
1147 do
1148 {
1149 len = (size - sent) < l ? (size - sent) : l;
1150 sent += len;
1151 err = target_write_memory (lma, buffer, len);
1152 if (ui_load_progress_hook)
1153 if (ui_load_progress_hook (sect, sent))
1154 error ("Canceled the download");
1155 #if VALIDATE_DOWNLOAD
1156 /* Broken memories and broken monitors manifest themselves
1157 here when bring new computers to life.
1158 This doubles already slow downloads.
1159 */
1160 if (err) break ;
1161 {
1162 target_read_memory(lma,verify_buffer,len) ;
1163 if (0 != bcmp(buffer,verify_buffer,len))
1164 error("Download verify failed at %08x",
1165 (unsigned long)lma) ;
1166 }
1167
1168 #endif
1169 data_count += len ;
1170 lma += len;
1171 buffer += len;
1172 } /* od */
1173 while (err == 0 && sent < size);
1174
1175 if (err != 0)
1176 error ("Memory access error while loading section %s.",
1177 bfd_get_section_name (loadfile_bfd, s));
1178
1179 do_cleanups (old_chain);
1180 }
1181 }
1182 }
1183
1184 end_time = time (NULL);
1185 {
1186 unsigned long entry ;
1187 entry = bfd_get_start_address(loadfile_bfd) ;
1188 printf_filtered ("Start address 0x%lx , load size %d\n", entry,data_count);
1189 /* We were doing this in remote-mips.c, I suspect it is right
1190 for other targets too. */
1191 write_pc (entry);
1192 }
1193
1194 /* FIXME: are we supposed to call symbol_file_add or not? According to
1195 a comment from remote-mips.c (where a call to symbol_file_add was
1196 commented out), making the call confuses GDB if more than one file is
1197 loaded in. remote-nindy.c had no call to symbol_file_add, but remote-vx.c
1198 does. */
1199
1200 report_transfer_performance (data_count, start_time, end_time);
1201
1202 do_cleanups (old_cleanups);
1203 }
1204
1205 /* Report how fast the transfer went. */
1206
1207 void
1208 report_transfer_performance (data_count, start_time, end_time)
1209 unsigned long data_count;
1210 time_t start_time, end_time;
1211 {
1212 printf_filtered ("Transfer rate: ");
1213 if (end_time != start_time)
1214 printf_filtered ("%d bits/sec",
1215 (data_count * 8) / (end_time - start_time));
1216 else
1217 printf_filtered ("%d bits in <1 sec", (data_count * 8));
1218 printf_filtered (".\n");
1219 }
1220
1221 /* This function allows the addition of incrementally linked object files.
1222 It does not modify any state in the target, only in the debugger. */
1223
1224 /* ARGSUSED */
1225 static void
1226 add_symbol_file_command (args, from_tty)
1227 char *args;
1228 int from_tty;
1229 {
1230 char *name = NULL;
1231 CORE_ADDR text_addr;
1232 char *arg;
1233 int readnow = 0;
1234 int mapped = 0;
1235
1236 dont_repeat ();
1237
1238 if (args == NULL)
1239 {
1240 error ("add-symbol-file takes a file name and an address");
1241 }
1242
1243 /* Make a copy of the string that we can safely write into. */
1244
1245 args = strdup (args);
1246 make_cleanup (free, args);
1247
1248 /* Pick off any -option args and the file name. */
1249
1250 while ((*args != '\000') && (name == NULL))
1251 {
1252 while (isspace (*args)) {args++;}
1253 arg = args;
1254 while ((*args != '\000') && !isspace (*args)) {args++;}
1255 if (*args != '\000')
1256 {
1257 *args++ = '\000';
1258 }
1259 if (*arg != '-')
1260 {
1261 name = arg;
1262 }
1263 else if (STREQ (arg, "-mapped"))
1264 {
1265 mapped = 1;
1266 }
1267 else if (STREQ (arg, "-readnow"))
1268 {
1269 readnow = 1;
1270 }
1271 else
1272 {
1273 error ("unknown option `%s'", arg);
1274 }
1275 }
1276
1277 /* After picking off any options and the file name, args should be
1278 left pointing at the remainder of the command line, which should
1279 be the address expression to evaluate. */
1280
1281 if (name == NULL)
1282 {
1283 error ("add-symbol-file takes a file name");
1284 }
1285 name = tilde_expand (name);
1286 make_cleanup (free, name);
1287
1288 if (*args != '\000')
1289 {
1290 text_addr = parse_and_eval_address (args);
1291 }
1292 else
1293 {
1294 target_link(name, &text_addr);
1295 if (text_addr == (CORE_ADDR)-1)
1296 error("Don't know how to get text start location for this file");
1297 }
1298
1299 /* FIXME-32x64: Assumes text_addr fits in a long. */
1300 if ((from_tty)
1301 && (!query ("add symbol table from file \"%s\" at text_addr = %s?\n",
1302 name, local_hex_string ((unsigned long)text_addr))))
1303 error ("Not confirmed.");
1304
1305 symbol_file_add (name, from_tty, text_addr, 0, mapped, readnow,
1306 1, /* user_loaded */
1307 0); /* We'll guess it's ! is_solib */
1308
1309 /* Getting new symbols may change our opinion about what is
1310 frameless. */
1311 reinit_frame_cache ();
1312 }
1313 \f
1314 static void
1315 add_shared_symbol_files_command (args, from_tty)
1316 char *args;
1317 int from_tty;
1318 {
1319 #ifdef ADD_SHARED_SYMBOL_FILES
1320 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1321 #else
1322 error ("This command is not available in this configuration of GDB.");
1323 #endif
1324 }
1325 \f
1326 /* Re-read symbols if a symbol-file has changed. */
1327 void
1328 reread_symbols ()
1329 {
1330 struct objfile *objfile;
1331 long new_modtime;
1332 int reread_one = 0;
1333 struct stat new_statbuf;
1334 int res;
1335
1336 /* With the addition of shared libraries, this should be modified,
1337 the load time should be saved in the partial symbol tables, since
1338 different tables may come from different source files. FIXME.
1339 This routine should then walk down each partial symbol table
1340 and see if the symbol table that it originates from has been changed */
1341
1342 for (objfile = object_files; objfile; objfile = objfile->next) {
1343 if (objfile->obfd) {
1344 #ifdef IBM6000_TARGET
1345 /* If this object is from a shared library, then you should
1346 stat on the library name, not member name. */
1347
1348 if (objfile->obfd->my_archive)
1349 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1350 else
1351 #endif
1352 res = stat (objfile->name, &new_statbuf);
1353 if (res != 0) {
1354 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1355 printf_filtered ("`%s' has disappeared; keeping its symbols.\n",
1356 objfile->name);
1357 continue;
1358 }
1359 new_modtime = new_statbuf.st_mtime;
1360 if (new_modtime != objfile->mtime)
1361 {
1362 struct cleanup *old_cleanups;
1363 struct section_offsets *offsets;
1364 int num_offsets;
1365 int section_offsets_size;
1366 char *obfd_filename;
1367
1368 printf_filtered ("`%s' has changed; re-reading symbols.\n",
1369 objfile->name);
1370
1371 /* There are various functions like symbol_file_add,
1372 symfile_bfd_open, syms_from_objfile, etc., which might
1373 appear to do what we want. But they have various other
1374 effects which we *don't* want. So we just do stuff
1375 ourselves. We don't worry about mapped files (for one thing,
1376 any mapped file will be out of date). */
1377
1378 /* If we get an error, blow away this objfile (not sure if
1379 that is the correct response for things like shared
1380 libraries). */
1381 old_cleanups = make_cleanup ((make_cleanup_func) free_objfile,
1382 objfile);
1383 /* We need to do this whenever any symbols go away. */
1384 make_cleanup ((make_cleanup_func) clear_symtab_users, 0);
1385
1386 /* Clean up any state BFD has sitting around. We don't need
1387 to close the descriptor but BFD lacks a way of closing the
1388 BFD without closing the descriptor. */
1389 obfd_filename = bfd_get_filename (objfile->obfd);
1390 if (!bfd_close (objfile->obfd))
1391 error ("Can't close BFD for %s: %s", objfile->name,
1392 bfd_errmsg (bfd_get_error ()));
1393 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1394 if (objfile->obfd == NULL)
1395 error ("Can't open %s to read symbols.", objfile->name);
1396 /* bfd_openr sets cacheable to true, which is what we want. */
1397 if (!bfd_check_format (objfile->obfd, bfd_object))
1398 error ("Can't read symbols from %s: %s.", objfile->name,
1399 bfd_errmsg (bfd_get_error ()));
1400
1401 /* Save the offsets, we will nuke them with the rest of the
1402 psymbol_obstack. */
1403 num_offsets = objfile->num_sections;
1404 section_offsets_size =
1405 sizeof (struct section_offsets)
1406 + sizeof (objfile->section_offsets->offsets) * num_offsets;
1407 offsets = (struct section_offsets *) alloca (section_offsets_size);
1408 memcpy (offsets, objfile->section_offsets, section_offsets_size);
1409
1410 /* Nuke all the state that we will re-read. Much of the following
1411 code which sets things to NULL really is necessary to tell
1412 other parts of GDB that there is nothing currently there. */
1413
1414 /* FIXME: Do we have to free a whole linked list, or is this
1415 enough? */
1416 if (objfile->global_psymbols.list)
1417 mfree (objfile->md, objfile->global_psymbols.list);
1418 memset (&objfile -> global_psymbols, 0,
1419 sizeof (objfile -> global_psymbols));
1420 if (objfile->static_psymbols.list)
1421 mfree (objfile->md, objfile->static_psymbols.list);
1422 memset (&objfile -> static_psymbols, 0,
1423 sizeof (objfile -> static_psymbols));
1424
1425 /* Free the obstacks for non-reusable objfiles */
1426 obstack_free (&objfile -> psymbol_cache.cache, 0);
1427 memset (&objfile -> psymbol_cache, 0,
1428 sizeof (objfile -> psymbol_cache));
1429 obstack_free (&objfile -> psymbol_obstack, 0);
1430 obstack_free (&objfile -> symbol_obstack, 0);
1431 obstack_free (&objfile -> type_obstack, 0);
1432 objfile->sections = NULL;
1433 objfile->symtabs = NULL;
1434 objfile->psymtabs = NULL;
1435 objfile->free_psymtabs = NULL;
1436 objfile->msymbols = NULL;
1437 objfile->minimal_symbol_count= 0;
1438 objfile->fundamental_types = NULL;
1439 if (objfile -> sf != NULL)
1440 {
1441 (*objfile -> sf -> sym_finish) (objfile);
1442 }
1443
1444 /* We never make this a mapped file. */
1445 objfile -> md = NULL;
1446 /* obstack_specify_allocation also initializes the obstack so
1447 it is empty. */
1448 obstack_specify_allocation (&objfile -> psymbol_cache.cache, 0, 0,
1449 xmalloc, free);
1450 obstack_specify_allocation (&objfile -> psymbol_obstack, 0, 0,
1451 xmalloc, free);
1452 obstack_specify_allocation (&objfile -> symbol_obstack, 0, 0,
1453 xmalloc, free);
1454 obstack_specify_allocation (&objfile -> type_obstack, 0, 0,
1455 xmalloc, free);
1456 if (build_objfile_section_table (objfile))
1457 {
1458 error ("Can't find the file sections in `%s': %s",
1459 objfile -> name, bfd_errmsg (bfd_get_error ()));
1460 }
1461
1462 /* We use the same section offsets as from last time. I'm not
1463 sure whether that is always correct for shared libraries. */
1464 objfile->section_offsets = (struct section_offsets *)
1465 obstack_alloc (&objfile -> psymbol_obstack, section_offsets_size);
1466 memcpy (objfile->section_offsets, offsets, section_offsets_size);
1467 objfile->num_sections = num_offsets;
1468
1469 /* What the hell is sym_new_init for, anyway? The concept of
1470 distinguishing between the main file and additional files
1471 in this way seems rather dubious. */
1472 if (objfile == symfile_objfile)
1473 {
1474 (*objfile->sf->sym_new_init) (objfile);
1475 #ifdef HPUXHPPA
1476 RESET_HP_UX_GLOBALS ();
1477 #endif
1478 }
1479
1480 (*objfile->sf->sym_init) (objfile);
1481 clear_complaints (1, 1);
1482 /* The "mainline" parameter is a hideous hack; I think leaving it
1483 zero is OK since dbxread.c also does what it needs to do if
1484 objfile->global_psymbols.size is 0. */
1485 (*objfile->sf->sym_read) (objfile, objfile->section_offsets, 0);
1486 if (!have_partial_symbols () && !have_full_symbols ())
1487 {
1488 wrap_here ("");
1489 printf_filtered ("(no debugging symbols found)\n");
1490 wrap_here ("");
1491 }
1492 objfile -> flags |= OBJF_SYMS;
1493
1494 /* We're done reading the symbol file; finish off complaints. */
1495 clear_complaints (0, 1);
1496
1497 /* Getting new symbols may change our opinion about what is
1498 frameless. */
1499
1500 reinit_frame_cache ();
1501
1502 /* Discard cleanups as symbol reading was successful. */
1503 discard_cleanups (old_cleanups);
1504
1505 /* If the mtime has changed between the time we set new_modtime
1506 and now, we *want* this to be out of date, so don't call stat
1507 again now. */
1508 objfile->mtime = new_modtime;
1509 reread_one = 1;
1510
1511 /* Call this after reading in a new symbol table to give target
1512 dependant code a crack at the new symbols. For instance, this
1513 could be used to update the values of target-specific symbols GDB
1514 needs to keep track of (such as _sigtramp, or whatever). */
1515
1516 TARGET_SYMFILE_POSTREAD (objfile);
1517 }
1518 }
1519 }
1520
1521 if (reread_one)
1522 clear_symtab_users ();
1523 }
1524
1525 \f
1526
1527 typedef struct {
1528 char *ext;
1529 enum language lang;
1530 } filename_language;
1531
1532 static filename_language * filename_language_table;
1533 static int fl_table_size, fl_table_next;
1534
1535 static void
1536 add_filename_language (ext, lang)
1537 char *ext;
1538 enum language lang;
1539 {
1540 if (fl_table_next >= fl_table_size)
1541 {
1542 fl_table_size += 10;
1543 filename_language_table = realloc (filename_language_table,
1544 fl_table_size);
1545 }
1546
1547 filename_language_table[fl_table_next].ext = strsave (ext);
1548 filename_language_table[fl_table_next].lang = lang;
1549 fl_table_next++;
1550 }
1551
1552 static char *ext_args;
1553
1554 static void
1555 set_ext_lang_command (args, from_tty)
1556 char *args;
1557 int from_tty;
1558 {
1559 int i;
1560 char *cp = ext_args;
1561 enum language lang;
1562
1563 /* First arg is filename extension, starting with '.' */
1564 if (*cp != '.')
1565 error ("'%s': Filename extension must begin with '.'", ext_args);
1566
1567 /* Find end of first arg. */
1568 while (*cp && !isspace (*cp))
1569 cp++;
1570
1571 if (*cp == '\0')
1572 error ("'%s': two arguments required -- filename extension and language",
1573 ext_args);
1574
1575 /* Null-terminate first arg */
1576 *cp++ = '\0';
1577
1578 /* Find beginning of second arg, which should be a source language. */
1579 while (*cp && isspace (*cp))
1580 cp++;
1581
1582 if (*cp == '\0')
1583 error ("'%s': two arguments required -- filename extension and language",
1584 ext_args);
1585
1586 /* Lookup the language from among those we know. */
1587 lang = language_enum (cp);
1588
1589 /* Now lookup the filename extension: do we already know it? */
1590 for (i = 0; i < fl_table_next; i++)
1591 if (0 == strcmp (ext_args, filename_language_table[i].ext))
1592 break;
1593
1594 if (i >= fl_table_next)
1595 {
1596 /* new file extension */
1597 add_filename_language (ext_args, lang);
1598 }
1599 else
1600 {
1601 /* redefining a previously known filename extension */
1602
1603 /* if (from_tty) */
1604 /* query ("Really make files of type %s '%s'?", */
1605 /* ext_args, language_str (lang)); */
1606
1607 free (filename_language_table[i].ext);
1608 filename_language_table[i].ext = strsave (ext_args);
1609 filename_language_table[i].lang = lang;
1610 }
1611 }
1612
1613 static void
1614 info_ext_lang_command (args, from_tty)
1615 char *args;
1616 int from_tty;
1617 {
1618 int i;
1619
1620 printf_filtered ("Filename extensions and the languages they represent:");
1621 printf_filtered ("\n\n");
1622 for (i = 0; i < fl_table_next; i++)
1623 printf_filtered ("\t%s\t- %s\n",
1624 filename_language_table[i].ext,
1625 language_str (filename_language_table[i].lang));
1626 }
1627
1628 static void
1629 init_filename_language_table ()
1630 {
1631 if (fl_table_size == 0) /* protect against repetition */
1632 {
1633 fl_table_size = 20;
1634 fl_table_next = 0;
1635 filename_language_table =
1636 xmalloc (fl_table_size * sizeof (*filename_language_table));
1637 add_filename_language (".c", language_c);
1638 add_filename_language (".C", language_cplus);
1639 add_filename_language (".cc", language_cplus);
1640 add_filename_language (".cp", language_cplus);
1641 add_filename_language (".cpp", language_cplus);
1642 add_filename_language (".cxx", language_cplus);
1643 add_filename_language (".c++", language_cplus);
1644 add_filename_language (".java", language_java);
1645 add_filename_language (".class", language_java);
1646 add_filename_language (".ch", language_chill);
1647 add_filename_language (".c186", language_chill);
1648 add_filename_language (".c286", language_chill);
1649 add_filename_language (".f", language_fortran);
1650 add_filename_language (".F", language_fortran);
1651 add_filename_language (".s", language_asm);
1652 add_filename_language (".S", language_asm);
1653 }
1654 }
1655
1656 enum language
1657 deduce_language_from_filename (filename)
1658 char *filename;
1659 {
1660 int i;
1661 char *cp;
1662
1663 if (filename != NULL)
1664 if ((cp = strrchr (filename, '.')) != NULL)
1665 for (i = 0; i < fl_table_next; i++)
1666 if (strcmp (cp, filename_language_table[i].ext) == 0)
1667 return filename_language_table[i].lang;
1668
1669 return language_unknown;
1670 }
1671 \f
1672 /* allocate_symtab:
1673
1674 Allocate and partly initialize a new symbol table. Return a pointer
1675 to it. error() if no space.
1676
1677 Caller must set these fields:
1678 LINETABLE(symtab)
1679 symtab->blockvector
1680 symtab->dirname
1681 symtab->free_code
1682 symtab->free_ptr
1683 possibly free_named_symtabs (symtab->filename);
1684 */
1685
1686 struct symtab *
1687 allocate_symtab (filename, objfile)
1688 char *filename;
1689 struct objfile *objfile;
1690 {
1691 register struct symtab *symtab;
1692
1693 symtab = (struct symtab *)
1694 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symtab));
1695 memset (symtab, 0, sizeof (*symtab));
1696 symtab -> filename = obsavestring (filename, strlen (filename),
1697 &objfile -> symbol_obstack);
1698 symtab -> fullname = NULL;
1699 symtab -> language = deduce_language_from_filename (filename);
1700 symtab -> debugformat = obsavestring ("unknown", 7,
1701 &objfile -> symbol_obstack);
1702
1703 /* Hook it to the objfile it comes from */
1704
1705 symtab -> objfile = objfile;
1706 symtab -> next = objfile -> symtabs;
1707 objfile -> symtabs = symtab;
1708
1709 /* FIXME: This should go away. It is only defined for the Z8000,
1710 and the Z8000 definition of this macro doesn't have anything to
1711 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
1712 here for convenience. */
1713 #ifdef INIT_EXTRA_SYMTAB_INFO
1714 INIT_EXTRA_SYMTAB_INFO (symtab);
1715 #endif
1716
1717 return (symtab);
1718 }
1719
1720 struct partial_symtab *
1721 allocate_psymtab (filename, objfile)
1722 char *filename;
1723 struct objfile *objfile;
1724 {
1725 struct partial_symtab *psymtab;
1726
1727 if (objfile -> free_psymtabs)
1728 {
1729 psymtab = objfile -> free_psymtabs;
1730 objfile -> free_psymtabs = psymtab -> next;
1731 }
1732 else
1733 psymtab = (struct partial_symtab *)
1734 obstack_alloc (&objfile -> psymbol_obstack,
1735 sizeof (struct partial_symtab));
1736
1737 memset (psymtab, 0, sizeof (struct partial_symtab));
1738 psymtab -> filename = obsavestring (filename, strlen (filename),
1739 &objfile -> psymbol_obstack);
1740 psymtab -> symtab = NULL;
1741
1742 /* Prepend it to the psymtab list for the objfile it belongs to.
1743 Psymtabs are searched in most recent inserted -> least recent
1744 inserted order. */
1745
1746 psymtab -> objfile = objfile;
1747 psymtab -> next = objfile -> psymtabs;
1748 objfile -> psymtabs = psymtab;
1749 #if 0
1750 {
1751 struct partial_symtab **prev_pst;
1752 psymtab -> objfile = objfile;
1753 psymtab -> next = NULL;
1754 prev_pst = &(objfile -> psymtabs);
1755 while ((*prev_pst) != NULL)
1756 prev_pst = &((*prev_pst) -> next);
1757 (*prev_pst) = psymtab;
1758 }
1759 #endif
1760
1761 return (psymtab);
1762 }
1763
1764 void
1765 discard_psymtab (pst)
1766 struct partial_symtab *pst;
1767 {
1768 struct partial_symtab **prev_pst;
1769
1770 /* From dbxread.c:
1771 Empty psymtabs happen as a result of header files which don't
1772 have any symbols in them. There can be a lot of them. But this
1773 check is wrong, in that a psymtab with N_SLINE entries but
1774 nothing else is not empty, but we don't realize that. Fixing
1775 that without slowing things down might be tricky. */
1776
1777 /* First, snip it out of the psymtab chain */
1778
1779 prev_pst = &(pst->objfile->psymtabs);
1780 while ((*prev_pst) != pst)
1781 prev_pst = &((*prev_pst)->next);
1782 (*prev_pst) = pst->next;
1783
1784 /* Next, put it on a free list for recycling */
1785
1786 pst->next = pst->objfile->free_psymtabs;
1787 pst->objfile->free_psymtabs = pst;
1788 }
1789
1790 \f
1791 /* Reset all data structures in gdb which may contain references to symbol
1792 table data. */
1793
1794 void
1795 clear_symtab_users ()
1796 {
1797 /* Someday, we should do better than this, by only blowing away
1798 the things that really need to be blown. */
1799 clear_value_history ();
1800 clear_displays ();
1801 clear_internalvars ();
1802 breakpoint_re_set ();
1803 set_default_breakpoint (0, 0, 0, 0);
1804 current_source_symtab = 0;
1805 current_source_line = 0;
1806 clear_pc_function_cache ();
1807 target_new_objfile (NULL);
1808 }
1809
1810 /* clear_symtab_users_once:
1811
1812 This function is run after symbol reading, or from a cleanup.
1813 If an old symbol table was obsoleted, the old symbol table
1814 has been blown away, but the other GDB data structures that may
1815 reference it have not yet been cleared or re-directed. (The old
1816 symtab was zapped, and the cleanup queued, in free_named_symtab()
1817 below.)
1818
1819 This function can be queued N times as a cleanup, or called
1820 directly; it will do all the work the first time, and then will be a
1821 no-op until the next time it is queued. This works by bumping a
1822 counter at queueing time. Much later when the cleanup is run, or at
1823 the end of symbol processing (in case the cleanup is discarded), if
1824 the queued count is greater than the "done-count", we do the work
1825 and set the done-count to the queued count. If the queued count is
1826 less than or equal to the done-count, we just ignore the call. This
1827 is needed because reading a single .o file will often replace many
1828 symtabs (one per .h file, for example), and we don't want to reset
1829 the breakpoints N times in the user's face.
1830
1831 The reason we both queue a cleanup, and call it directly after symbol
1832 reading, is because the cleanup protects us in case of errors, but is
1833 discarded if symbol reading is successful. */
1834
1835 #if 0
1836 /* FIXME: As free_named_symtabs is currently a big noop this function
1837 is no longer needed. */
1838 static void
1839 clear_symtab_users_once PARAMS ((void));
1840
1841 static int clear_symtab_users_queued;
1842 static int clear_symtab_users_done;
1843
1844 static void
1845 clear_symtab_users_once ()
1846 {
1847 /* Enforce once-per-`do_cleanups'-semantics */
1848 if (clear_symtab_users_queued <= clear_symtab_users_done)
1849 return;
1850 clear_symtab_users_done = clear_symtab_users_queued;
1851
1852 clear_symtab_users ();
1853 }
1854 #endif
1855
1856 /* Delete the specified psymtab, and any others that reference it. */
1857
1858 static void
1859 cashier_psymtab (pst)
1860 struct partial_symtab *pst;
1861 {
1862 struct partial_symtab *ps, *pprev = NULL;
1863 int i;
1864
1865 /* Find its previous psymtab in the chain */
1866 for (ps = pst->objfile->psymtabs; ps; ps = ps->next) {
1867 if (ps == pst)
1868 break;
1869 pprev = ps;
1870 }
1871
1872 if (ps) {
1873 /* Unhook it from the chain. */
1874 if (ps == pst->objfile->psymtabs)
1875 pst->objfile->psymtabs = ps->next;
1876 else
1877 pprev->next = ps->next;
1878
1879 /* FIXME, we can't conveniently deallocate the entries in the
1880 partial_symbol lists (global_psymbols/static_psymbols) that
1881 this psymtab points to. These just take up space until all
1882 the psymtabs are reclaimed. Ditto the dependencies list and
1883 filename, which are all in the psymbol_obstack. */
1884
1885 /* We need to cashier any psymtab that has this one as a dependency... */
1886 again:
1887 for (ps = pst->objfile->psymtabs; ps; ps = ps->next) {
1888 for (i = 0; i < ps->number_of_dependencies; i++) {
1889 if (ps->dependencies[i] == pst) {
1890 cashier_psymtab (ps);
1891 goto again; /* Must restart, chain has been munged. */
1892 }
1893 }
1894 }
1895 }
1896 }
1897
1898 /* If a symtab or psymtab for filename NAME is found, free it along
1899 with any dependent breakpoints, displays, etc.
1900 Used when loading new versions of object modules with the "add-file"
1901 command. This is only called on the top-level symtab or psymtab's name;
1902 it is not called for subsidiary files such as .h files.
1903
1904 Return value is 1 if we blew away the environment, 0 if not.
1905 FIXME. The return valu appears to never be used.
1906
1907 FIXME. I think this is not the best way to do this. We should
1908 work on being gentler to the environment while still cleaning up
1909 all stray pointers into the freed symtab. */
1910
1911 int
1912 free_named_symtabs (name)
1913 char *name;
1914 {
1915 #if 0
1916 /* FIXME: With the new method of each objfile having it's own
1917 psymtab list, this function needs serious rethinking. In particular,
1918 why was it ever necessary to toss psymtabs with specific compilation
1919 unit filenames, as opposed to all psymtabs from a particular symbol
1920 file? -- fnf
1921 Well, the answer is that some systems permit reloading of particular
1922 compilation units. We want to blow away any old info about these
1923 compilation units, regardless of which objfiles they arrived in. --gnu. */
1924
1925 register struct symtab *s;
1926 register struct symtab *prev;
1927 register struct partial_symtab *ps;
1928 struct blockvector *bv;
1929 int blewit = 0;
1930
1931 /* We only wack things if the symbol-reload switch is set. */
1932 if (!symbol_reloading)
1933 return 0;
1934
1935 /* Some symbol formats have trouble providing file names... */
1936 if (name == 0 || *name == '\0')
1937 return 0;
1938
1939 /* Look for a psymtab with the specified name. */
1940
1941 again2:
1942 for (ps = partial_symtab_list; ps; ps = ps->next) {
1943 if (STREQ (name, ps->filename)) {
1944 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
1945 goto again2; /* Must restart, chain has been munged */
1946 }
1947 }
1948
1949 /* Look for a symtab with the specified name. */
1950
1951 for (s = symtab_list; s; s = s->next)
1952 {
1953 if (STREQ (name, s->filename))
1954 break;
1955 prev = s;
1956 }
1957
1958 if (s)
1959 {
1960 if (s == symtab_list)
1961 symtab_list = s->next;
1962 else
1963 prev->next = s->next;
1964
1965 /* For now, queue a delete for all breakpoints, displays, etc., whether
1966 or not they depend on the symtab being freed. This should be
1967 changed so that only those data structures affected are deleted. */
1968
1969 /* But don't delete anything if the symtab is empty.
1970 This test is necessary due to a bug in "dbxread.c" that
1971 causes empty symtabs to be created for N_SO symbols that
1972 contain the pathname of the object file. (This problem
1973 has been fixed in GDB 3.9x). */
1974
1975 bv = BLOCKVECTOR (s);
1976 if (BLOCKVECTOR_NBLOCKS (bv) > 2
1977 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
1978 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
1979 {
1980 complain (&oldsyms_complaint, name);
1981
1982 clear_symtab_users_queued++;
1983 make_cleanup (clear_symtab_users_once, 0);
1984 blewit = 1;
1985 } else {
1986 complain (&empty_symtab_complaint, name);
1987 }
1988
1989 free_symtab (s);
1990 }
1991 else
1992 {
1993 /* It is still possible that some breakpoints will be affected
1994 even though no symtab was found, since the file might have
1995 been compiled without debugging, and hence not be associated
1996 with a symtab. In order to handle this correctly, we would need
1997 to keep a list of text address ranges for undebuggable files.
1998 For now, we do nothing, since this is a fairly obscure case. */
1999 ;
2000 }
2001
2002 /* FIXME, what about the minimal symbol table? */
2003 return blewit;
2004 #else
2005 return (0);
2006 #endif
2007 }
2008 \f
2009 /* Allocate and partially fill a partial symtab. It will be
2010 completely filled at the end of the symbol list.
2011
2012 SYMFILE_NAME is the name of the symbol-file we are reading from, and ADDR
2013 is the address relative to which its symbols are (incremental) or 0
2014 (normal). */
2015
2016
2017 struct partial_symtab *
2018 start_psymtab_common (objfile, section_offsets,
2019 filename, textlow, global_syms, static_syms)
2020 struct objfile *objfile;
2021 struct section_offsets *section_offsets;
2022 char *filename;
2023 CORE_ADDR textlow;
2024 struct partial_symbol **global_syms;
2025 struct partial_symbol **static_syms;
2026 {
2027 struct partial_symtab *psymtab;
2028
2029 psymtab = allocate_psymtab (filename, objfile);
2030 psymtab -> section_offsets = section_offsets;
2031 psymtab -> textlow = textlow;
2032 psymtab -> texthigh = psymtab -> textlow; /* default */
2033 psymtab -> globals_offset = global_syms - objfile -> global_psymbols.list;
2034 psymtab -> statics_offset = static_syms - objfile -> static_psymbols.list;
2035 return (psymtab);
2036 }
2037 \f
2038 /* Add a symbol with a long value to a psymtab.
2039 Since one arg is a struct, we pass in a ptr and deref it (sigh). */
2040
2041 void
2042 add_psymbol_to_list (name, namelength, namespace, class, list, val, coreaddr,
2043 language, objfile)
2044 char *name;
2045 int namelength;
2046 namespace_enum namespace;
2047 enum address_class class;
2048 struct psymbol_allocation_list *list;
2049 long val; /* Value as a long */
2050 CORE_ADDR coreaddr; /* Value as a CORE_ADDR */
2051 enum language language;
2052 struct objfile *objfile;
2053 {
2054 register struct partial_symbol *psym;
2055 char *buf = alloca (namelength + 1);
2056 /* psymbol is static so that there will be no uninitialized gaps in the
2057 structure which might contain random data, causing cache misses in
2058 bcache. */
2059 static struct partial_symbol psymbol;
2060
2061 /* Create local copy of the partial symbol */
2062 memcpy (buf, name, namelength);
2063 buf[namelength] = '\0';
2064 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2065 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2066 if (val != 0)
2067 {
2068 SYMBOL_VALUE (&psymbol) = val;
2069 }
2070 else
2071 {
2072 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2073 }
2074 SYMBOL_SECTION (&psymbol) = 0;
2075 SYMBOL_LANGUAGE (&psymbol) = language;
2076 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2077 PSYMBOL_CLASS (&psymbol) = class;
2078 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2079
2080 /* Stash the partial symbol away in the cache */
2081 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2082
2083 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2084 if (list->next >= list->list + list->size)
2085 {
2086 extend_psymbol_list (list, objfile);
2087 }
2088 *list->next++ = psym;
2089 OBJSTAT (objfile, n_psyms++);
2090 }
2091
2092 /* Add a symbol with a long value to a psymtab. This differs from
2093 * add_psymbol_to_list above in taking both a mangled and a demangled
2094 * name. */
2095
2096 void
2097 add_psymbol_with_dem_name_to_list (name, namelength, dem_name, dem_namelength,
2098 namespace, class, list, val, coreaddr, language, objfile)
2099 char *name;
2100 int namelength;
2101 char *dem_name;
2102 int dem_namelength;
2103 namespace_enum namespace;
2104 enum address_class class;
2105 struct psymbol_allocation_list *list;
2106 long val; /* Value as a long */
2107 CORE_ADDR coreaddr; /* Value as a CORE_ADDR */
2108 enum language language;
2109 struct objfile *objfile;
2110 {
2111 register struct partial_symbol *psym;
2112 char *buf = alloca (namelength + 1);
2113 /* psymbol is static so that there will be no uninitialized gaps in the
2114 structure which might contain random data, causing cache misses in
2115 bcache. */
2116 static struct partial_symbol psymbol;
2117
2118 /* Create local copy of the partial symbol */
2119
2120 memcpy (buf, name, namelength);
2121 buf[namelength] = '\0';
2122 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2123
2124 buf = alloca (dem_namelength + 1);
2125 memcpy (buf, dem_name, dem_namelength);
2126 buf[dem_namelength] = '\0';
2127
2128 switch (language)
2129 {
2130 case language_c:
2131 case language_cplus:
2132 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2133 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2134 break;
2135 case language_chill:
2136 SYMBOL_CHILL_DEMANGLED_NAME (&psymbol) =
2137 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2138
2139 /* FIXME What should be done for the default case? Ignoring for now. */
2140 }
2141
2142 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2143 if (val != 0)
2144 {
2145 SYMBOL_VALUE (&psymbol) = val;
2146 }
2147 else
2148 {
2149 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2150 }
2151 SYMBOL_SECTION (&psymbol) = 0;
2152 SYMBOL_LANGUAGE (&psymbol) = language;
2153 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2154 PSYMBOL_CLASS (&psymbol) = class;
2155 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2156
2157 /* Stash the partial symbol away in the cache */
2158 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2159
2160 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2161 if (list->next >= list->list + list->size)
2162 {
2163 extend_psymbol_list (list, objfile);
2164 }
2165 *list->next++ = psym;
2166 OBJSTAT (objfile, n_psyms++);
2167 }
2168
2169 /* Initialize storage for partial symbols. */
2170
2171 void
2172 init_psymbol_list (objfile, total_symbols)
2173 struct objfile *objfile;
2174 int total_symbols;
2175 {
2176 /* Free any previously allocated psymbol lists. */
2177
2178 if (objfile -> global_psymbols.list)
2179 {
2180 mfree (objfile -> md, (PTR)objfile -> global_psymbols.list);
2181 }
2182 if (objfile -> static_psymbols.list)
2183 {
2184 mfree (objfile -> md, (PTR)objfile -> static_psymbols.list);
2185 }
2186
2187 /* Current best guess is that approximately a twentieth
2188 of the total symbols (in a debugging file) are global or static
2189 oriented symbols */
2190
2191 objfile -> global_psymbols.size = total_symbols / 10;
2192 objfile -> static_psymbols.size = total_symbols / 10;
2193
2194 if (objfile -> global_psymbols.size > 0)
2195 {
2196 objfile -> global_psymbols.next =
2197 objfile -> global_psymbols.list = (struct partial_symbol **)
2198 xmmalloc (objfile -> md, (objfile -> global_psymbols.size
2199 * sizeof (struct partial_symbol *)));
2200 }
2201 if (objfile -> static_psymbols.size > 0)
2202 {
2203 objfile -> static_psymbols.next =
2204 objfile -> static_psymbols.list = (struct partial_symbol **)
2205 xmmalloc (objfile -> md, (objfile -> static_psymbols.size
2206 * sizeof (struct partial_symbol *)));
2207 }
2208 }
2209
2210 /* OVERLAYS:
2211 The following code implements an abstraction for debugging overlay sections.
2212
2213 The target model is as follows:
2214 1) The gnu linker will permit multiple sections to be mapped into the
2215 same VMA, each with its own unique LMA (or load address).
2216 2) It is assumed that some runtime mechanism exists for mapping the
2217 sections, one by one, from the load address into the VMA address.
2218 3) This code provides a mechanism for gdb to keep track of which
2219 sections should be considered to be mapped from the VMA to the LMA.
2220 This information is used for symbol lookup, and memory read/write.
2221 For instance, if a section has been mapped then its contents
2222 should be read from the VMA, otherwise from the LMA.
2223
2224 Two levels of debugger support for overlays are available. One is
2225 "manual", in which the debugger relies on the user to tell it which
2226 overlays are currently mapped. This level of support is
2227 implemented entirely in the core debugger, and the information about
2228 whether a section is mapped is kept in the objfile->obj_section table.
2229
2230 The second level of support is "automatic", and is only available if
2231 the target-specific code provides functionality to read the target's
2232 overlay mapping table, and translate its contents for the debugger
2233 (by updating the mapped state information in the obj_section tables).
2234
2235 The interface is as follows:
2236 User commands:
2237 overlay map <name> -- tell gdb to consider this section mapped
2238 overlay unmap <name> -- tell gdb to consider this section unmapped
2239 overlay list -- list the sections that GDB thinks are mapped
2240 overlay read-target -- get the target's state of what's mapped
2241 overlay off/manual/auto -- set overlay debugging state
2242 Functional interface:
2243 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2244 section, return that section.
2245 find_pc_overlay(pc): find any overlay section that contains
2246 the pc, either in its VMA or its LMA
2247 overlay_is_mapped(sect): true if overlay is marked as mapped
2248 section_is_overlay(sect): true if section's VMA != LMA
2249 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2250 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2251 overlay_mapped_address(...): map an address from section's LMA to VMA
2252 overlay_unmapped_address(...): map an address from section's VMA to LMA
2253 symbol_overlayed_address(...): Return a "current" address for symbol:
2254 either in VMA or LMA depending on whether
2255 the symbol's section is currently mapped
2256 */
2257
2258 /* Overlay debugging state: */
2259
2260 int overlay_debugging = 0; /* 0 == off, 1 == manual, -1 == auto */
2261 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2262
2263 /* Target vector for refreshing overlay mapped state */
2264 static void simple_overlay_update PARAMS ((struct obj_section *));
2265 void (*target_overlay_update) PARAMS ((struct obj_section *))
2266 = simple_overlay_update;
2267
2268 /* Function: section_is_overlay (SECTION)
2269 Returns true if SECTION has VMA not equal to LMA, ie.
2270 SECTION is loaded at an address different from where it will "run". */
2271
2272 int
2273 section_is_overlay (section)
2274 asection *section;
2275 {
2276 if (overlay_debugging)
2277 if (section && section->lma != 0 &&
2278 section->vma != section->lma)
2279 return 1;
2280
2281 return 0;
2282 }
2283
2284 /* Function: overlay_invalidate_all (void)
2285 Invalidate the mapped state of all overlay sections (mark it as stale). */
2286
2287 static void
2288 overlay_invalidate_all ()
2289 {
2290 struct objfile *objfile;
2291 struct obj_section *sect;
2292
2293 ALL_OBJSECTIONS (objfile, sect)
2294 if (section_is_overlay (sect->the_bfd_section))
2295 sect->ovly_mapped = -1;
2296 }
2297
2298 /* Function: overlay_is_mapped (SECTION)
2299 Returns true if section is an overlay, and is currently mapped.
2300 Private: public access is thru function section_is_mapped.
2301
2302 Access to the ovly_mapped flag is restricted to this function, so
2303 that we can do automatic update. If the global flag
2304 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2305 overlay_invalidate_all. If the mapped state of the particular
2306 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2307
2308 static int
2309 overlay_is_mapped (osect)
2310 struct obj_section *osect;
2311 {
2312 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2313 return 0;
2314
2315 switch (overlay_debugging)
2316 {
2317 default:
2318 case 0: return 0; /* overlay debugging off */
2319 case -1: /* overlay debugging automatic */
2320 /* Unles there is a target_overlay_update function,
2321 there's really nothing useful to do here (can't really go auto) */
2322 if (target_overlay_update)
2323 {
2324 if (overlay_cache_invalid)
2325 {
2326 overlay_invalidate_all ();
2327 overlay_cache_invalid = 0;
2328 }
2329 if (osect->ovly_mapped == -1)
2330 (*target_overlay_update) (osect);
2331 }
2332 /* fall thru to manual case */
2333 case 1: /* overlay debugging manual */
2334 return osect->ovly_mapped == 1;
2335 }
2336 }
2337
2338 /* Function: section_is_mapped
2339 Returns true if section is an overlay, and is currently mapped. */
2340
2341 int
2342 section_is_mapped (section)
2343 asection *section;
2344 {
2345 struct objfile *objfile;
2346 struct obj_section *osect;
2347
2348 if (overlay_debugging)
2349 if (section && section_is_overlay (section))
2350 ALL_OBJSECTIONS (objfile, osect)
2351 if (osect->the_bfd_section == section)
2352 return overlay_is_mapped (osect);
2353
2354 return 0;
2355 }
2356
2357 /* Function: pc_in_unmapped_range
2358 If PC falls into the lma range of SECTION, return true, else false. */
2359
2360 CORE_ADDR
2361 pc_in_unmapped_range (pc, section)
2362 CORE_ADDR pc;
2363 asection *section;
2364 {
2365 int size;
2366
2367 if (overlay_debugging)
2368 if (section && section_is_overlay (section))
2369 {
2370 size = bfd_get_section_size_before_reloc (section);
2371 if (section->lma <= pc && pc < section->lma + size)
2372 return 1;
2373 }
2374 return 0;
2375 }
2376
2377 /* Function: pc_in_mapped_range
2378 If PC falls into the vma range of SECTION, return true, else false. */
2379
2380 CORE_ADDR
2381 pc_in_mapped_range (pc, section)
2382 CORE_ADDR pc;
2383 asection *section;
2384 {
2385 int size;
2386
2387 if (overlay_debugging)
2388 if (section && section_is_overlay (section))
2389 {
2390 size = bfd_get_section_size_before_reloc (section);
2391 if (section->vma <= pc && pc < section->vma + size)
2392 return 1;
2393 }
2394 return 0;
2395 }
2396
2397 /* Function: overlay_unmapped_address (PC, SECTION)
2398 Returns the address corresponding to PC in the unmapped (load) range.
2399 May be the same as PC. */
2400
2401 CORE_ADDR
2402 overlay_unmapped_address (pc, section)
2403 CORE_ADDR pc;
2404 asection *section;
2405 {
2406 if (overlay_debugging)
2407 if (section && section_is_overlay (section) &&
2408 pc_in_mapped_range (pc, section))
2409 return pc + section->lma - section->vma;
2410
2411 return pc;
2412 }
2413
2414 /* Function: overlay_mapped_address (PC, SECTION)
2415 Returns the address corresponding to PC in the mapped (runtime) range.
2416 May be the same as PC. */
2417
2418 CORE_ADDR
2419 overlay_mapped_address (pc, section)
2420 CORE_ADDR pc;
2421 asection *section;
2422 {
2423 if (overlay_debugging)
2424 if (section && section_is_overlay (section) &&
2425 pc_in_unmapped_range (pc, section))
2426 return pc + section->vma - section->lma;
2427
2428 return pc;
2429 }
2430
2431
2432 /* Function: symbol_overlayed_address
2433 Return one of two addresses (relative to the VMA or to the LMA),
2434 depending on whether the section is mapped or not. */
2435
2436 CORE_ADDR
2437 symbol_overlayed_address (address, section)
2438 CORE_ADDR address;
2439 asection *section;
2440 {
2441 if (overlay_debugging)
2442 {
2443 /* If the symbol has no section, just return its regular address. */
2444 if (section == 0)
2445 return address;
2446 /* If the symbol's section is not an overlay, just return its address */
2447 if (!section_is_overlay (section))
2448 return address;
2449 /* If the symbol's section is mapped, just return its address */
2450 if (section_is_mapped (section))
2451 return address;
2452 /*
2453 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
2454 * then return its LOADED address rather than its vma address!!
2455 */
2456 return overlay_unmapped_address (address, section);
2457 }
2458 return address;
2459 }
2460
2461 /* Function: find_pc_overlay (PC)
2462 Return the best-match overlay section for PC:
2463 If PC matches a mapped overlay section's VMA, return that section.
2464 Else if PC matches an unmapped section's VMA, return that section.
2465 Else if PC matches an unmapped section's LMA, return that section. */
2466
2467 asection *
2468 find_pc_overlay (pc)
2469 CORE_ADDR pc;
2470 {
2471 struct objfile *objfile;
2472 struct obj_section *osect, *best_match = NULL;
2473
2474 if (overlay_debugging)
2475 ALL_OBJSECTIONS (objfile, osect)
2476 if (section_is_overlay (osect->the_bfd_section))
2477 {
2478 if (pc_in_mapped_range (pc, osect->the_bfd_section))
2479 {
2480 if (overlay_is_mapped (osect))
2481 return osect->the_bfd_section;
2482 else
2483 best_match = osect;
2484 }
2485 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
2486 best_match = osect;
2487 }
2488 return best_match ? best_match->the_bfd_section : NULL;
2489 }
2490
2491 /* Function: find_pc_mapped_section (PC)
2492 If PC falls into the VMA address range of an overlay section that is
2493 currently marked as MAPPED, return that section. Else return NULL. */
2494
2495 asection *
2496 find_pc_mapped_section (pc)
2497 CORE_ADDR pc;
2498 {
2499 struct objfile *objfile;
2500 struct obj_section *osect;
2501
2502 if (overlay_debugging)
2503 ALL_OBJSECTIONS (objfile, osect)
2504 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
2505 overlay_is_mapped (osect))
2506 return osect->the_bfd_section;
2507
2508 return NULL;
2509 }
2510
2511 /* Function: list_overlays_command
2512 Print a list of mapped sections and their PC ranges */
2513
2514 void
2515 list_overlays_command (args, from_tty)
2516 char *args;
2517 int from_tty;
2518 {
2519 int nmapped = 0;
2520 struct objfile *objfile;
2521 struct obj_section *osect;
2522
2523 if (overlay_debugging)
2524 ALL_OBJSECTIONS (objfile, osect)
2525 if (overlay_is_mapped (osect))
2526 {
2527 const char *name;
2528 bfd_vma lma, vma;
2529 int size;
2530
2531 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
2532 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2533 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
2534 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
2535
2536 printf_filtered ("Section %s, loaded at ", name);
2537 print_address_numeric (lma, 1, gdb_stdout);
2538 puts_filtered (" - ");
2539 print_address_numeric (lma + size, 1, gdb_stdout);
2540 printf_filtered (", mapped at ");
2541 print_address_numeric (vma, 1, gdb_stdout);
2542 puts_filtered (" - ");
2543 print_address_numeric (vma + size, 1, gdb_stdout);
2544 puts_filtered ("\n");
2545
2546 nmapped ++;
2547 }
2548 if (nmapped == 0)
2549 printf_filtered ("No sections are mapped.\n");
2550 }
2551
2552 /* Function: map_overlay_command
2553 Mark the named section as mapped (ie. residing at its VMA address). */
2554
2555 void
2556 map_overlay_command (args, from_tty)
2557 char *args;
2558 int from_tty;
2559 {
2560 struct objfile *objfile, *objfile2;
2561 struct obj_section *sec, *sec2;
2562 asection *bfdsec;
2563
2564 if (!overlay_debugging)
2565 error ("Overlay debugging not enabled. Use the 'OVERLAY ON' command.");
2566
2567 if (args == 0 || *args == 0)
2568 error ("Argument required: name of an overlay section");
2569
2570 /* First, find a section matching the user supplied argument */
2571 ALL_OBJSECTIONS (objfile, sec)
2572 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
2573 {
2574 /* Now, check to see if the section is an overlay. */
2575 bfdsec = sec->the_bfd_section;
2576 if (!section_is_overlay (bfdsec))
2577 continue; /* not an overlay section */
2578
2579 /* Mark the overlay as "mapped" */
2580 sec->ovly_mapped = 1;
2581
2582 /* Next, make a pass and unmap any sections that are
2583 overlapped by this new section: */
2584 ALL_OBJSECTIONS (objfile2, sec2)
2585 if (sec2->ovly_mapped &&
2586 sec != sec2 &&
2587 sec->the_bfd_section != sec2->the_bfd_section &&
2588 (pc_in_mapped_range (sec2->addr, sec->the_bfd_section) ||
2589 pc_in_mapped_range (sec2->endaddr, sec->the_bfd_section)))
2590 {
2591 if (info_verbose)
2592 printf_filtered ("Note: section %s unmapped by overlap\n",
2593 bfd_section_name (objfile->obfd,
2594 sec2->the_bfd_section));
2595 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
2596 }
2597 return;
2598 }
2599 error ("No overlay section called %s", args);
2600 }
2601
2602 /* Function: unmap_overlay_command
2603 Mark the overlay section as unmapped
2604 (ie. resident in its LMA address range, rather than the VMA range). */
2605
2606 void
2607 unmap_overlay_command (args, from_tty)
2608 char *args;
2609 int from_tty;
2610 {
2611 struct objfile *objfile;
2612 struct obj_section *sec;
2613
2614 if (!overlay_debugging)
2615 error ("Overlay debugging not enabled. Use the 'OVERLAY ON' command.");
2616
2617 if (args == 0 || *args == 0)
2618 error ("Argument required: name of an overlay section");
2619
2620 /* First, find a section matching the user supplied argument */
2621 ALL_OBJSECTIONS (objfile, sec)
2622 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
2623 {
2624 if (!sec->ovly_mapped)
2625 error ("Section %s is not mapped", args);
2626 sec->ovly_mapped = 0;
2627 return;
2628 }
2629 error ("No overlay section called %s", args);
2630 }
2631
2632 /* Function: overlay_auto_command
2633 A utility command to turn on overlay debugging.
2634 Possibly this should be done via a set/show command. */
2635
2636 static void
2637 overlay_auto_command (args, from_tty)
2638 char *args;
2639 int from_tty;
2640 {
2641 overlay_debugging = -1;
2642 if (info_verbose)
2643 printf_filtered ("Automatic overlay debugging enabled.");
2644 }
2645
2646 /* Function: overlay_manual_command
2647 A utility command to turn on overlay debugging.
2648 Possibly this should be done via a set/show command. */
2649
2650 static void
2651 overlay_manual_command (args, from_tty)
2652 char *args;
2653 int from_tty;
2654 {
2655 overlay_debugging = 1;
2656 if (info_verbose)
2657 printf_filtered ("Overlay debugging enabled.");
2658 }
2659
2660 /* Function: overlay_off_command
2661 A utility command to turn on overlay debugging.
2662 Possibly this should be done via a set/show command. */
2663
2664 static void
2665 overlay_off_command (args, from_tty)
2666 char *args;
2667 int from_tty;
2668 {
2669 overlay_debugging = 0;
2670 if (info_verbose)
2671 printf_filtered ("Overlay debugging disabled.");
2672 }
2673
2674 static void
2675 overlay_load_command (args, from_tty)
2676 char *args;
2677 int from_tty;
2678 {
2679 if (target_overlay_update)
2680 (*target_overlay_update) (NULL);
2681 else
2682 error ("This target does not know how to read its overlay state.");
2683 }
2684
2685 /* Function: overlay_command
2686 A place-holder for a mis-typed command */
2687
2688 /* Command list chain containing all defined "overlay" subcommands. */
2689 struct cmd_list_element *overlaylist;
2690
2691 static void
2692 overlay_command (args, from_tty)
2693 char *args;
2694 int from_tty;
2695 {
2696 printf_unfiltered
2697 ("\"overlay\" must be followed by the name of an overlay command.\n");
2698 help_list (overlaylist, "overlay ", -1, gdb_stdout);
2699 }
2700
2701
2702 /* Target Overlays for the "Simplest" overlay manager:
2703
2704 This is GDB's default target overlay layer. It works with the
2705 minimal overlay manager supplied as an example by Cygnus. The
2706 entry point is via a function pointer "target_overlay_update",
2707 so targets that use a different runtime overlay manager can
2708 substitute their own overlay_update function and take over the
2709 function pointer.
2710
2711 The overlay_update function pokes around in the target's data structures
2712 to see what overlays are mapped, and updates GDB's overlay mapping with
2713 this information.
2714
2715 In this simple implementation, the target data structures are as follows:
2716 unsigned _novlys; /# number of overlay sections #/
2717 unsigned _ovly_table[_novlys][4] = {
2718 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
2719 {..., ..., ..., ...},
2720 }
2721 unsigned _novly_regions; /# number of overlay regions #/
2722 unsigned _ovly_region_table[_novly_regions][3] = {
2723 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
2724 {..., ..., ...},
2725 }
2726 These functions will attempt to update GDB's mappedness state in the
2727 symbol section table, based on the target's mappedness state.
2728
2729 To do this, we keep a cached copy of the target's _ovly_table, and
2730 attempt to detect when the cached copy is invalidated. The main
2731 entry point is "simple_overlay_update(SECT), which looks up SECT in
2732 the cached table and re-reads only the entry for that section from
2733 the target (whenever possible).
2734 */
2735
2736 /* Cached, dynamically allocated copies of the target data structures: */
2737 static unsigned (*cache_ovly_table)[4] = 0;
2738 #if 0
2739 static unsigned (*cache_ovly_region_table)[3] = 0;
2740 #endif
2741 static unsigned cache_novlys = 0;
2742 #if 0
2743 static unsigned cache_novly_regions = 0;
2744 #endif
2745 static CORE_ADDR cache_ovly_table_base = 0;
2746 #if 0
2747 static CORE_ADDR cache_ovly_region_table_base = 0;
2748 #endif
2749 enum ovly_index { VMA, SIZE, LMA, MAPPED};
2750 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
2751
2752 /* Throw away the cached copy of _ovly_table */
2753 static void
2754 simple_free_overlay_table ()
2755 {
2756 if (cache_ovly_table)
2757 free(cache_ovly_table);
2758 cache_novlys = 0;
2759 cache_ovly_table = NULL;
2760 cache_ovly_table_base = 0;
2761 }
2762
2763 #if 0
2764 /* Throw away the cached copy of _ovly_region_table */
2765 static void
2766 simple_free_overlay_region_table ()
2767 {
2768 if (cache_ovly_region_table)
2769 free(cache_ovly_region_table);
2770 cache_novly_regions = 0;
2771 cache_ovly_region_table = NULL;
2772 cache_ovly_region_table_base = 0;
2773 }
2774 #endif
2775
2776 /* Read an array of ints from the target into a local buffer.
2777 Convert to host order. int LEN is number of ints */
2778 static void
2779 read_target_long_array (memaddr, myaddr, len)
2780 CORE_ADDR memaddr;
2781 unsigned int *myaddr;
2782 int len;
2783 {
2784 char *buf = alloca (len * TARGET_LONG_BYTES);
2785 int i;
2786
2787 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
2788 for (i = 0; i < len; i++)
2789 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
2790 TARGET_LONG_BYTES);
2791 }
2792
2793 /* Find and grab a copy of the target _ovly_table
2794 (and _novlys, which is needed for the table's size) */
2795 static int
2796 simple_read_overlay_table ()
2797 {
2798 struct minimal_symbol *msym;
2799
2800 simple_free_overlay_table ();
2801 msym = lookup_minimal_symbol ("_novlys", 0, 0);
2802 if (msym != NULL)
2803 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
2804 else
2805 return 0; /* failure */
2806 cache_ovly_table = (void *) xmalloc (cache_novlys * sizeof(*cache_ovly_table));
2807 if (cache_ovly_table != NULL)
2808 {
2809 msym = lookup_minimal_symbol ("_ovly_table", 0, 0);
2810 if (msym != NULL)
2811 {
2812 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (msym);
2813 read_target_long_array (cache_ovly_table_base,
2814 (int *) cache_ovly_table,
2815 cache_novlys * 4);
2816 }
2817 else
2818 return 0; /* failure */
2819 }
2820 else
2821 return 0; /* failure */
2822 return 1; /* SUCCESS */
2823 }
2824
2825 #if 0
2826 /* Find and grab a copy of the target _ovly_region_table
2827 (and _novly_regions, which is needed for the table's size) */
2828 static int
2829 simple_read_overlay_region_table ()
2830 {
2831 struct minimal_symbol *msym;
2832
2833 simple_free_overlay_region_table ();
2834 msym = lookup_minimal_symbol ("_novly_regions", 0, 0);
2835 if (msym != NULL)
2836 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
2837 else
2838 return 0; /* failure */
2839 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
2840 if (cache_ovly_region_table != NULL)
2841 {
2842 msym = lookup_minimal_symbol ("_ovly_region_table", 0, 0);
2843 if (msym != NULL)
2844 {
2845 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
2846 read_target_long_array (cache_ovly_region_table_base,
2847 (int *) cache_ovly_region_table,
2848 cache_novly_regions * 3);
2849 }
2850 else
2851 return 0; /* failure */
2852 }
2853 else
2854 return 0; /* failure */
2855 return 1; /* SUCCESS */
2856 }
2857 #endif
2858
2859 /* Function: simple_overlay_update_1
2860 A helper function for simple_overlay_update. Assuming a cached copy
2861 of _ovly_table exists, look through it to find an entry whose vma,
2862 lma and size match those of OSECT. Re-read the entry and make sure
2863 it still matches OSECT (else the table may no longer be valid).
2864 Set OSECT's mapped state to match the entry. Return: 1 for
2865 success, 0 for failure. */
2866
2867 static int
2868 simple_overlay_update_1 (osect)
2869 struct obj_section *osect;
2870 {
2871 int i, size;
2872
2873 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
2874 for (i = 0; i < cache_novlys; i++)
2875 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
2876 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
2877 cache_ovly_table[i][SIZE] == size */)
2878 {
2879 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
2880 (int *) cache_ovly_table[i], 4);
2881 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
2882 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
2883 cache_ovly_table[i][SIZE] == size */)
2884 {
2885 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
2886 return 1;
2887 }
2888 else /* Warning! Warning! Target's ovly table has changed! */
2889 return 0;
2890 }
2891 return 0;
2892 }
2893
2894 /* Function: simple_overlay_update
2895 If OSECT is NULL, then update all sections' mapped state
2896 (after re-reading the entire target _ovly_table).
2897 If OSECT is non-NULL, then try to find a matching entry in the
2898 cached ovly_table and update only OSECT's mapped state.
2899 If a cached entry can't be found or the cache isn't valid, then
2900 re-read the entire cache, and go ahead and update all sections. */
2901
2902 static void
2903 simple_overlay_update (osect)
2904 struct obj_section *osect;
2905 {
2906 struct objfile *objfile;
2907
2908 /* Were we given an osect to look up? NULL means do all of them. */
2909 if (osect)
2910 /* Have we got a cached copy of the target's overlay table? */
2911 if (cache_ovly_table != NULL)
2912 /* Does its cached location match what's currently in the symtab? */
2913 if (cache_ovly_table_base ==
2914 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", 0, 0)))
2915 /* Then go ahead and try to look up this single section in the cache */
2916 if (simple_overlay_update_1 (osect))
2917 /* Found it! We're done. */
2918 return;
2919
2920 /* Cached table no good: need to read the entire table anew.
2921 Or else we want all the sections, in which case it's actually
2922 more efficient to read the whole table in one block anyway. */
2923
2924 if (simple_read_overlay_table () == 0) /* read failed? No table? */
2925 {
2926 warning ("Failed to read the target overlay mapping table.");
2927 return;
2928 }
2929 /* Now may as well update all sections, even if only one was requested. */
2930 ALL_OBJSECTIONS (objfile, osect)
2931 if (section_is_overlay (osect->the_bfd_section))
2932 {
2933 int i, size;
2934
2935 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
2936 for (i = 0; i < cache_novlys; i++)
2937 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
2938 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
2939 cache_ovly_table[i][SIZE] == size */)
2940 { /* obj_section matches i'th entry in ovly_table */
2941 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
2942 break; /* finished with inner for loop: break out */
2943 }
2944 }
2945 }
2946
2947
2948 void
2949 _initialize_symfile ()
2950 {
2951 struct cmd_list_element *c;
2952
2953 c = add_cmd ("symbol-file", class_files, symbol_file_command,
2954 "Load symbol table from executable file FILE.\n\
2955 The `file' command can also load symbol tables, as well as setting the file\n\
2956 to execute.", &cmdlist);
2957 c->completer = filename_completer;
2958
2959 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
2960 "Usage: add-symbol-file FILE ADDR\n\
2961 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
2962 ADDR is the starting address of the file's text.",
2963 &cmdlist);
2964 c->completer = filename_completer;
2965
2966 c = add_cmd ("add-shared-symbol-files", class_files,
2967 add_shared_symbol_files_command,
2968 "Load the symbols from shared objects in the dynamic linker's link map.",
2969 &cmdlist);
2970 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
2971 &cmdlist);
2972
2973 c = add_cmd ("load", class_files, load_command,
2974 "Dynamically load FILE into the running program, and record its symbols\n\
2975 for access from GDB.", &cmdlist);
2976 c->completer = filename_completer;
2977
2978 add_show_from_set
2979 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
2980 (char *)&symbol_reloading,
2981 "Set dynamic symbol table reloading multiple times in one run.",
2982 &setlist),
2983 &showlist);
2984
2985 add_prefix_cmd ("overlay", class_support, overlay_command,
2986 "Commands for debugging overlays.", &overlaylist,
2987 "overlay ", 0, &cmdlist);
2988
2989 add_com_alias ("ovly", "overlay", class_alias, 1);
2990 add_com_alias ("ov", "overlay", class_alias, 1);
2991
2992 add_cmd ("map-overlay", class_support, map_overlay_command,
2993 "Assert that an overlay section is mapped.", &overlaylist);
2994
2995 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
2996 "Assert that an overlay section is unmapped.", &overlaylist);
2997
2998 add_cmd ("list-overlays", class_support, list_overlays_command,
2999 "List mappings of overlay sections.", &overlaylist);
3000
3001 add_cmd ("manual", class_support, overlay_manual_command,
3002 "Enable overlay debugging.", &overlaylist);
3003 add_cmd ("off", class_support, overlay_off_command,
3004 "Disable overlay debugging.", &overlaylist);
3005 add_cmd ("auto", class_support, overlay_auto_command,
3006 "Enable automatic overlay debugging.", &overlaylist);
3007 add_cmd ("load-target", class_support, overlay_load_command,
3008 "Read the overlay mapping state from the target.", &overlaylist);
3009
3010 /* Filename extension to source language lookup table: */
3011 init_filename_language_table ();
3012 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
3013 (char *) &ext_args,
3014 "Set mapping between filename extension and source language.\n\
3015 Usage: set extension-language .foo bar",
3016 &setlist);
3017 c->function.cfunc = set_ext_lang_command;
3018
3019 add_info ("extensions", info_ext_lang_command,
3020 "All filename extensions associated with a source language.");
3021 }