]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/symtab.c
e300596be6ec5becdf1110cc574b07e485b8ee1c
[thirdparty/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "cli/cli-style.h"
45 #include "cli/cli-cmds.h"
46 #include "fnmatch.h"
47 #include "hashtab.h"
48 #include "typeprint.h"
49
50 #include "gdb_obstack.h"
51 #include "block.h"
52 #include "dictionary.h"
53
54 #include <sys/types.h>
55 #include <fcntl.h>
56 #include <sys/stat.h>
57 #include <ctype.h>
58 #include "cp-abi.h"
59 #include "cp-support.h"
60 #include "observable.h"
61 #include "solist.h"
62 #include "macrotab.h"
63 #include "macroscope.h"
64
65 #include "parser-defs.h"
66 #include "completer.h"
67 #include "progspace-and-thread.h"
68 #include "gdbsupport/gdb_optional.h"
69 #include "filename-seen-cache.h"
70 #include "arch-utils.h"
71 #include <algorithm>
72 #include "gdbsupport/gdb_string_view.h"
73 #include "gdbsupport/pathstuff.h"
74 #include "gdbsupport/common-utils.h"
75
76 /* Forward declarations for local functions. */
77
78 static void rbreak_command (const char *, int);
79
80 static int find_line_common (struct linetable *, int, int *, int);
81
82 static struct block_symbol
83 lookup_symbol_aux (const char *name,
84 symbol_name_match_type match_type,
85 const struct block *block,
86 const domain_enum domain,
87 enum language language,
88 struct field_of_this_result *);
89
90 static
91 struct block_symbol lookup_local_symbol (const char *name,
92 symbol_name_match_type match_type,
93 const struct block *block,
94 const domain_enum domain,
95 enum language language);
96
97 static struct block_symbol
98 lookup_symbol_in_objfile (struct objfile *objfile,
99 enum block_enum block_index,
100 const char *name, const domain_enum domain);
101
102 /* Type of the data stored on the program space. */
103
104 struct main_info
105 {
106 main_info () = default;
107
108 ~main_info ()
109 {
110 xfree (name_of_main);
111 }
112
113 /* Name of "main". */
114
115 char *name_of_main = nullptr;
116
117 /* Language of "main". */
118
119 enum language language_of_main = language_unknown;
120 };
121
122 /* Program space key for finding name and language of "main". */
123
124 static const program_space_key<main_info> main_progspace_key;
125
126 /* The default symbol cache size.
127 There is no extra cpu cost for large N (except when flushing the cache,
128 which is rare). The value here is just a first attempt. A better default
129 value may be higher or lower. A prime number can make up for a bad hash
130 computation, so that's why the number is what it is. */
131 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
132
133 /* The maximum symbol cache size.
134 There's no method to the decision of what value to use here, other than
135 there's no point in allowing a user typo to make gdb consume all memory. */
136 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
137
138 /* symbol_cache_lookup returns this if a previous lookup failed to find the
139 symbol in any objfile. */
140 #define SYMBOL_LOOKUP_FAILED \
141 ((struct block_symbol) {(struct symbol *) 1, NULL})
142 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
143
144 /* Recording lookups that don't find the symbol is just as important, if not
145 more so, than recording found symbols. */
146
147 enum symbol_cache_slot_state
148 {
149 SYMBOL_SLOT_UNUSED,
150 SYMBOL_SLOT_NOT_FOUND,
151 SYMBOL_SLOT_FOUND
152 };
153
154 struct symbol_cache_slot
155 {
156 enum symbol_cache_slot_state state;
157
158 /* The objfile that was current when the symbol was looked up.
159 This is only needed for global blocks, but for simplicity's sake
160 we allocate the space for both. If data shows the extra space used
161 for static blocks is a problem, we can split things up then.
162
163 Global blocks need cache lookup to include the objfile context because
164 we need to account for gdbarch_iterate_over_objfiles_in_search_order
165 which can traverse objfiles in, effectively, any order, depending on
166 the current objfile, thus affecting which symbol is found. Normally,
167 only the current objfile is searched first, and then the rest are
168 searched in recorded order; but putting cache lookup inside
169 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
170 Instead we just make the current objfile part of the context of
171 cache lookup. This means we can record the same symbol multiple times,
172 each with a different "current objfile" that was in effect when the
173 lookup was saved in the cache, but cache space is pretty cheap. */
174 const struct objfile *objfile_context;
175
176 union
177 {
178 struct block_symbol found;
179 struct
180 {
181 char *name;
182 domain_enum domain;
183 } not_found;
184 } value;
185 };
186
187 /* Clear out SLOT. */
188
189 static void
190 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
191 {
192 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
193 xfree (slot->value.not_found.name);
194 slot->state = SYMBOL_SLOT_UNUSED;
195 }
196
197 /* Symbols don't specify global vs static block.
198 So keep them in separate caches. */
199
200 struct block_symbol_cache
201 {
202 unsigned int hits;
203 unsigned int misses;
204 unsigned int collisions;
205
206 /* SYMBOLS is a variable length array of this size.
207 One can imagine that in general one cache (global/static) should be a
208 fraction of the size of the other, but there's no data at the moment
209 on which to decide. */
210 unsigned int size;
211
212 struct symbol_cache_slot symbols[1];
213 };
214
215 /* Clear all slots of BSC and free BSC. */
216
217 static void
218 destroy_block_symbol_cache (struct block_symbol_cache *bsc)
219 {
220 if (bsc != nullptr)
221 {
222 for (unsigned int i = 0; i < bsc->size; i++)
223 symbol_cache_clear_slot (&bsc->symbols[i]);
224 xfree (bsc);
225 }
226 }
227
228 /* The symbol cache.
229
230 Searching for symbols in the static and global blocks over multiple objfiles
231 again and again can be slow, as can searching very big objfiles. This is a
232 simple cache to improve symbol lookup performance, which is critical to
233 overall gdb performance.
234
235 Symbols are hashed on the name, its domain, and block.
236 They are also hashed on their objfile for objfile-specific lookups. */
237
238 struct symbol_cache
239 {
240 symbol_cache () = default;
241
242 ~symbol_cache ()
243 {
244 destroy_block_symbol_cache (global_symbols);
245 destroy_block_symbol_cache (static_symbols);
246 }
247
248 struct block_symbol_cache *global_symbols = nullptr;
249 struct block_symbol_cache *static_symbols = nullptr;
250 };
251
252 /* Program space key for finding its symbol cache. */
253
254 static const program_space_key<symbol_cache> symbol_cache_key;
255
256 /* When non-zero, print debugging messages related to symtab creation. */
257 unsigned int symtab_create_debug = 0;
258
259 /* When non-zero, print debugging messages related to symbol lookup. */
260 unsigned int symbol_lookup_debug = 0;
261
262 /* The size of the cache is staged here. */
263 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
264
265 /* The current value of the symbol cache size.
266 This is saved so that if the user enters a value too big we can restore
267 the original value from here. */
268 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
269
270 /* True if a file may be known by two different basenames.
271 This is the uncommon case, and significantly slows down gdb.
272 Default set to "off" to not slow down the common case. */
273 bool basenames_may_differ = false;
274
275 /* Allow the user to configure the debugger behavior with respect
276 to multiple-choice menus when more than one symbol matches during
277 a symbol lookup. */
278
279 const char multiple_symbols_ask[] = "ask";
280 const char multiple_symbols_all[] = "all";
281 const char multiple_symbols_cancel[] = "cancel";
282 static const char *const multiple_symbols_modes[] =
283 {
284 multiple_symbols_ask,
285 multiple_symbols_all,
286 multiple_symbols_cancel,
287 NULL
288 };
289 static const char *multiple_symbols_mode = multiple_symbols_all;
290
291 /* Read-only accessor to AUTO_SELECT_MODE. */
292
293 const char *
294 multiple_symbols_select_mode (void)
295 {
296 return multiple_symbols_mode;
297 }
298
299 /* Return the name of a domain_enum. */
300
301 const char *
302 domain_name (domain_enum e)
303 {
304 switch (e)
305 {
306 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
307 case VAR_DOMAIN: return "VAR_DOMAIN";
308 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
309 case MODULE_DOMAIN: return "MODULE_DOMAIN";
310 case LABEL_DOMAIN: return "LABEL_DOMAIN";
311 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
312 default: gdb_assert_not_reached ("bad domain_enum");
313 }
314 }
315
316 /* Return the name of a search_domain . */
317
318 const char *
319 search_domain_name (enum search_domain e)
320 {
321 switch (e)
322 {
323 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
324 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
325 case TYPES_DOMAIN: return "TYPES_DOMAIN";
326 case MODULES_DOMAIN: return "MODULES_DOMAIN";
327 case ALL_DOMAIN: return "ALL_DOMAIN";
328 default: gdb_assert_not_reached ("bad search_domain");
329 }
330 }
331
332 /* See symtab.h. */
333
334 struct symtab *
335 compunit_primary_filetab (const struct compunit_symtab *cust)
336 {
337 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
338
339 /* The primary file symtab is the first one in the list. */
340 return COMPUNIT_FILETABS (cust);
341 }
342
343 /* See symtab.h. */
344
345 enum language
346 compunit_language (const struct compunit_symtab *cust)
347 {
348 struct symtab *symtab = compunit_primary_filetab (cust);
349
350 /* The language of the compunit symtab is the language of its primary
351 source file. */
352 return SYMTAB_LANGUAGE (symtab);
353 }
354
355 /* See symtab.h. */
356
357 bool
358 minimal_symbol::data_p () const
359 {
360 return type == mst_data
361 || type == mst_bss
362 || type == mst_abs
363 || type == mst_file_data
364 || type == mst_file_bss;
365 }
366
367 /* See symtab.h. */
368
369 bool
370 minimal_symbol::text_p () const
371 {
372 return type == mst_text
373 || type == mst_text_gnu_ifunc
374 || type == mst_data_gnu_ifunc
375 || type == mst_slot_got_plt
376 || type == mst_solib_trampoline
377 || type == mst_file_text;
378 }
379
380 /* See whether FILENAME matches SEARCH_NAME using the rule that we
381 advertise to the user. (The manual's description of linespecs
382 describes what we advertise). Returns true if they match, false
383 otherwise. */
384
385 bool
386 compare_filenames_for_search (const char *filename, const char *search_name)
387 {
388 int len = strlen (filename);
389 size_t search_len = strlen (search_name);
390
391 if (len < search_len)
392 return false;
393
394 /* The tail of FILENAME must match. */
395 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
396 return false;
397
398 /* Either the names must completely match, or the character
399 preceding the trailing SEARCH_NAME segment of FILENAME must be a
400 directory separator.
401
402 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
403 cannot match FILENAME "/path//dir/file.c" - as user has requested
404 absolute path. The sama applies for "c:\file.c" possibly
405 incorrectly hypothetically matching "d:\dir\c:\file.c".
406
407 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
408 compatible with SEARCH_NAME "file.c". In such case a compiler had
409 to put the "c:file.c" name into debug info. Such compatibility
410 works only on GDB built for DOS host. */
411 return (len == search_len
412 || (!IS_ABSOLUTE_PATH (search_name)
413 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
414 || (HAS_DRIVE_SPEC (filename)
415 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
416 }
417
418 /* Same as compare_filenames_for_search, but for glob-style patterns.
419 Heads up on the order of the arguments. They match the order of
420 compare_filenames_for_search, but it's the opposite of the order of
421 arguments to gdb_filename_fnmatch. */
422
423 bool
424 compare_glob_filenames_for_search (const char *filename,
425 const char *search_name)
426 {
427 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
428 all /s have to be explicitly specified. */
429 int file_path_elements = count_path_elements (filename);
430 int search_path_elements = count_path_elements (search_name);
431
432 if (search_path_elements > file_path_elements)
433 return false;
434
435 if (IS_ABSOLUTE_PATH (search_name))
436 {
437 return (search_path_elements == file_path_elements
438 && gdb_filename_fnmatch (search_name, filename,
439 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
440 }
441
442 {
443 const char *file_to_compare
444 = strip_leading_path_elements (filename,
445 file_path_elements - search_path_elements);
446
447 return gdb_filename_fnmatch (search_name, file_to_compare,
448 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
449 }
450 }
451
452 /* Check for a symtab of a specific name by searching some symtabs.
453 This is a helper function for callbacks of iterate_over_symtabs.
454
455 If NAME is not absolute, then REAL_PATH is NULL
456 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
457
458 The return value, NAME, REAL_PATH and CALLBACK are identical to the
459 `map_symtabs_matching_filename' method of quick_symbol_functions.
460
461 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
462 Each symtab within the specified compunit symtab is also searched.
463 AFTER_LAST is one past the last compunit symtab to search; NULL means to
464 search until the end of the list. */
465
466 bool
467 iterate_over_some_symtabs (const char *name,
468 const char *real_path,
469 struct compunit_symtab *first,
470 struct compunit_symtab *after_last,
471 gdb::function_view<bool (symtab *)> callback)
472 {
473 struct compunit_symtab *cust;
474 const char* base_name = lbasename (name);
475
476 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
477 {
478 for (symtab *s : compunit_filetabs (cust))
479 {
480 if (compare_filenames_for_search (s->filename, name))
481 {
482 if (callback (s))
483 return true;
484 continue;
485 }
486
487 /* Before we invoke realpath, which can get expensive when many
488 files are involved, do a quick comparison of the basenames. */
489 if (! basenames_may_differ
490 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
491 continue;
492
493 if (compare_filenames_for_search (symtab_to_fullname (s), name))
494 {
495 if (callback (s))
496 return true;
497 continue;
498 }
499
500 /* If the user gave us an absolute path, try to find the file in
501 this symtab and use its absolute path. */
502 if (real_path != NULL)
503 {
504 const char *fullname = symtab_to_fullname (s);
505
506 gdb_assert (IS_ABSOLUTE_PATH (real_path));
507 gdb_assert (IS_ABSOLUTE_PATH (name));
508 gdb::unique_xmalloc_ptr<char> fullname_real_path
509 = gdb_realpath (fullname);
510 fullname = fullname_real_path.get ();
511 if (FILENAME_CMP (real_path, fullname) == 0)
512 {
513 if (callback (s))
514 return true;
515 continue;
516 }
517 }
518 }
519 }
520
521 return false;
522 }
523
524 /* Check for a symtab of a specific name; first in symtabs, then in
525 psymtabs. *If* there is no '/' in the name, a match after a '/'
526 in the symtab filename will also work.
527
528 Calls CALLBACK with each symtab that is found. If CALLBACK returns
529 true, the search stops. */
530
531 void
532 iterate_over_symtabs (const char *name,
533 gdb::function_view<bool (symtab *)> callback)
534 {
535 gdb::unique_xmalloc_ptr<char> real_path;
536
537 /* Here we are interested in canonicalizing an absolute path, not
538 absolutizing a relative path. */
539 if (IS_ABSOLUTE_PATH (name))
540 {
541 real_path = gdb_realpath (name);
542 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
543 }
544
545 for (objfile *objfile : current_program_space->objfiles ())
546 {
547 if (iterate_over_some_symtabs (name, real_path.get (),
548 objfile->compunit_symtabs, NULL,
549 callback))
550 return;
551 }
552
553 /* Same search rules as above apply here, but now we look thru the
554 psymtabs. */
555
556 for (objfile *objfile : current_program_space->objfiles ())
557 {
558 if (objfile->map_symtabs_matching_filename (name, real_path.get (),
559 callback))
560 return;
561 }
562 }
563
564 /* A wrapper for iterate_over_symtabs that returns the first matching
565 symtab, or NULL. */
566
567 struct symtab *
568 lookup_symtab (const char *name)
569 {
570 struct symtab *result = NULL;
571
572 iterate_over_symtabs (name, [&] (symtab *symtab)
573 {
574 result = symtab;
575 return true;
576 });
577
578 return result;
579 }
580
581 \f
582 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
583 full method name, which consist of the class name (from T), the unadorned
584 method name from METHOD_ID, and the signature for the specific overload,
585 specified by SIGNATURE_ID. Note that this function is g++ specific. */
586
587 char *
588 gdb_mangle_name (struct type *type, int method_id, int signature_id)
589 {
590 int mangled_name_len;
591 char *mangled_name;
592 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
593 struct fn_field *method = &f[signature_id];
594 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
595 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
596 const char *newname = type->name ();
597
598 /* Does the form of physname indicate that it is the full mangled name
599 of a constructor (not just the args)? */
600 int is_full_physname_constructor;
601
602 int is_constructor;
603 int is_destructor = is_destructor_name (physname);
604 /* Need a new type prefix. */
605 const char *const_prefix = method->is_const ? "C" : "";
606 const char *volatile_prefix = method->is_volatile ? "V" : "";
607 char buf[20];
608 int len = (newname == NULL ? 0 : strlen (newname));
609
610 /* Nothing to do if physname already contains a fully mangled v3 abi name
611 or an operator name. */
612 if ((physname[0] == '_' && physname[1] == 'Z')
613 || is_operator_name (field_name))
614 return xstrdup (physname);
615
616 is_full_physname_constructor = is_constructor_name (physname);
617
618 is_constructor = is_full_physname_constructor
619 || (newname && strcmp (field_name, newname) == 0);
620
621 if (!is_destructor)
622 is_destructor = (startswith (physname, "__dt"));
623
624 if (is_destructor || is_full_physname_constructor)
625 {
626 mangled_name = (char *) xmalloc (strlen (physname) + 1);
627 strcpy (mangled_name, physname);
628 return mangled_name;
629 }
630
631 if (len == 0)
632 {
633 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
634 }
635 else if (physname[0] == 't' || physname[0] == 'Q')
636 {
637 /* The physname for template and qualified methods already includes
638 the class name. */
639 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
640 newname = NULL;
641 len = 0;
642 }
643 else
644 {
645 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
646 volatile_prefix, len);
647 }
648 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
649 + strlen (buf) + len + strlen (physname) + 1);
650
651 mangled_name = (char *) xmalloc (mangled_name_len);
652 if (is_constructor)
653 mangled_name[0] = '\0';
654 else
655 strcpy (mangled_name, field_name);
656
657 strcat (mangled_name, buf);
658 /* If the class doesn't have a name, i.e. newname NULL, then we just
659 mangle it using 0 for the length of the class. Thus it gets mangled
660 as something starting with `::' rather than `classname::'. */
661 if (newname != NULL)
662 strcat (mangled_name, newname);
663
664 strcat (mangled_name, physname);
665 return (mangled_name);
666 }
667
668 /* See symtab.h. */
669
670 void
671 general_symbol_info::set_demangled_name (const char *name,
672 struct obstack *obstack)
673 {
674 if (language () == language_ada)
675 {
676 if (name == NULL)
677 {
678 ada_mangled = 0;
679 language_specific.obstack = obstack;
680 }
681 else
682 {
683 ada_mangled = 1;
684 language_specific.demangled_name = name;
685 }
686 }
687 else
688 language_specific.demangled_name = name;
689 }
690
691 \f
692 /* Initialize the language dependent portion of a symbol
693 depending upon the language for the symbol. */
694
695 void
696 general_symbol_info::set_language (enum language language,
697 struct obstack *obstack)
698 {
699 m_language = language;
700 if (language == language_cplus
701 || language == language_d
702 || language == language_go
703 || language == language_objc
704 || language == language_fortran)
705 {
706 set_demangled_name (NULL, obstack);
707 }
708 else if (language == language_ada)
709 {
710 gdb_assert (ada_mangled == 0);
711 language_specific.obstack = obstack;
712 }
713 else
714 {
715 memset (&language_specific, 0, sizeof (language_specific));
716 }
717 }
718
719 /* Functions to initialize a symbol's mangled name. */
720
721 /* Objects of this type are stored in the demangled name hash table. */
722 struct demangled_name_entry
723 {
724 demangled_name_entry (gdb::string_view mangled_name)
725 : mangled (mangled_name) {}
726
727 gdb::string_view mangled;
728 enum language language;
729 gdb::unique_xmalloc_ptr<char> demangled;
730 };
731
732 /* Hash function for the demangled name hash. */
733
734 static hashval_t
735 hash_demangled_name_entry (const void *data)
736 {
737 const struct demangled_name_entry *e
738 = (const struct demangled_name_entry *) data;
739
740 return fast_hash (e->mangled.data (), e->mangled.length ());
741 }
742
743 /* Equality function for the demangled name hash. */
744
745 static int
746 eq_demangled_name_entry (const void *a, const void *b)
747 {
748 const struct demangled_name_entry *da
749 = (const struct demangled_name_entry *) a;
750 const struct demangled_name_entry *db
751 = (const struct demangled_name_entry *) b;
752
753 return da->mangled == db->mangled;
754 }
755
756 static void
757 free_demangled_name_entry (void *data)
758 {
759 struct demangled_name_entry *e
760 = (struct demangled_name_entry *) data;
761
762 e->~demangled_name_entry();
763 }
764
765 /* Create the hash table used for demangled names. Each hash entry is
766 a pair of strings; one for the mangled name and one for the demangled
767 name. The entry is hashed via just the mangled name. */
768
769 static void
770 create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd)
771 {
772 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
773 The hash table code will round this up to the next prime number.
774 Choosing a much larger table size wastes memory, and saves only about
775 1% in symbol reading. However, if the minsym count is already
776 initialized (e.g. because symbol name setting was deferred to
777 a background thread) we can initialize the hashtable with a count
778 based on that, because we will almost certainly have at least that
779 many entries. If we have a nonzero number but less than 256,
780 we still stay with 256 to have some space for psymbols, etc. */
781
782 /* htab will expand the table when it is 3/4th full, so we account for that
783 here. +2 to round up. */
784 int minsym_based_count = (per_bfd->minimal_symbol_count + 2) / 3 * 4;
785 int count = std::max (per_bfd->minimal_symbol_count, minsym_based_count);
786
787 per_bfd->demangled_names_hash.reset (htab_create_alloc
788 (count, hash_demangled_name_entry, eq_demangled_name_entry,
789 free_demangled_name_entry, xcalloc, xfree));
790 }
791
792 /* See symtab.h */
793
794 char *
795 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
796 const char *mangled)
797 {
798 char *demangled = NULL;
799 int i;
800
801 if (gsymbol->language () == language_unknown)
802 gsymbol->m_language = language_auto;
803
804 if (gsymbol->language () != language_auto)
805 {
806 const struct language_defn *lang = language_def (gsymbol->language ());
807
808 lang->sniff_from_mangled_name (mangled, &demangled);
809 return demangled;
810 }
811
812 for (i = language_unknown; i < nr_languages; ++i)
813 {
814 enum language l = (enum language) i;
815 const struct language_defn *lang = language_def (l);
816
817 if (lang->sniff_from_mangled_name (mangled, &demangled))
818 {
819 gsymbol->m_language = l;
820 return demangled;
821 }
822 }
823
824 return NULL;
825 }
826
827 /* Set both the mangled and demangled (if any) names for GSYMBOL based
828 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
829 objfile's obstack; but if COPY_NAME is 0 and if NAME is
830 NUL-terminated, then this function assumes that NAME is already
831 correctly saved (either permanently or with a lifetime tied to the
832 objfile), and it will not be copied.
833
834 The hash table corresponding to OBJFILE is used, and the memory
835 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
836 so the pointer can be discarded after calling this function. */
837
838 void
839 general_symbol_info::compute_and_set_names (gdb::string_view linkage_name,
840 bool copy_name,
841 objfile_per_bfd_storage *per_bfd,
842 gdb::optional<hashval_t> hash)
843 {
844 struct demangled_name_entry **slot;
845
846 if (language () == language_ada)
847 {
848 /* In Ada, we do the symbol lookups using the mangled name, so
849 we can save some space by not storing the demangled name. */
850 if (!copy_name)
851 m_name = linkage_name.data ();
852 else
853 m_name = obstack_strndup (&per_bfd->storage_obstack,
854 linkage_name.data (),
855 linkage_name.length ());
856 set_demangled_name (NULL, &per_bfd->storage_obstack);
857
858 return;
859 }
860
861 if (per_bfd->demangled_names_hash == NULL)
862 create_demangled_names_hash (per_bfd);
863
864 struct demangled_name_entry entry (linkage_name);
865 if (!hash.has_value ())
866 hash = hash_demangled_name_entry (&entry);
867 slot = ((struct demangled_name_entry **)
868 htab_find_slot_with_hash (per_bfd->demangled_names_hash.get (),
869 &entry, *hash, INSERT));
870
871 /* The const_cast is safe because the only reason it is already
872 initialized is if we purposefully set it from a background
873 thread to avoid doing the work here. However, it is still
874 allocated from the heap and needs to be freed by us, just
875 like if we called symbol_find_demangled_name here. If this is
876 nullptr, we call symbol_find_demangled_name below, but we put
877 this smart pointer here to be sure that we don't leak this name. */
878 gdb::unique_xmalloc_ptr<char> demangled_name
879 (const_cast<char *> (language_specific.demangled_name));
880
881 /* If this name is not in the hash table, add it. */
882 if (*slot == NULL
883 /* A C version of the symbol may have already snuck into the table.
884 This happens to, e.g., main.init (__go_init_main). Cope. */
885 || (language () == language_go && (*slot)->demangled == nullptr))
886 {
887 /* A 0-terminated copy of the linkage name. Callers must set COPY_NAME
888 to true if the string might not be nullterminated. We have to make
889 this copy because demangling needs a nullterminated string. */
890 gdb::string_view linkage_name_copy;
891 if (copy_name)
892 {
893 char *alloc_name = (char *) alloca (linkage_name.length () + 1);
894 memcpy (alloc_name, linkage_name.data (), linkage_name.length ());
895 alloc_name[linkage_name.length ()] = '\0';
896
897 linkage_name_copy = gdb::string_view (alloc_name,
898 linkage_name.length ());
899 }
900 else
901 linkage_name_copy = linkage_name;
902
903 if (demangled_name.get () == nullptr)
904 demangled_name.reset
905 (symbol_find_demangled_name (this, linkage_name_copy.data ()));
906
907 /* Suppose we have demangled_name==NULL, copy_name==0, and
908 linkage_name_copy==linkage_name. In this case, we already have the
909 mangled name saved, and we don't have a demangled name. So,
910 you might think we could save a little space by not recording
911 this in the hash table at all.
912
913 It turns out that it is actually important to still save such
914 an entry in the hash table, because storing this name gives
915 us better bcache hit rates for partial symbols. */
916 if (!copy_name)
917 {
918 *slot
919 = ((struct demangled_name_entry *)
920 obstack_alloc (&per_bfd->storage_obstack,
921 sizeof (demangled_name_entry)));
922 new (*slot) demangled_name_entry (linkage_name);
923 }
924 else
925 {
926 /* If we must copy the mangled name, put it directly after
927 the struct so we can have a single allocation. */
928 *slot
929 = ((struct demangled_name_entry *)
930 obstack_alloc (&per_bfd->storage_obstack,
931 sizeof (demangled_name_entry)
932 + linkage_name.length () + 1));
933 char *mangled_ptr = reinterpret_cast<char *> (*slot + 1);
934 memcpy (mangled_ptr, linkage_name.data (), linkage_name.length ());
935 mangled_ptr [linkage_name.length ()] = '\0';
936 new (*slot) demangled_name_entry
937 (gdb::string_view (mangled_ptr, linkage_name.length ()));
938 }
939 (*slot)->demangled = std::move (demangled_name);
940 (*slot)->language = language ();
941 }
942 else if (language () == language_unknown || language () == language_auto)
943 m_language = (*slot)->language;
944
945 m_name = (*slot)->mangled.data ();
946 set_demangled_name ((*slot)->demangled.get (), &per_bfd->storage_obstack);
947 }
948
949 /* See symtab.h. */
950
951 const char *
952 general_symbol_info::natural_name () const
953 {
954 switch (language ())
955 {
956 case language_cplus:
957 case language_d:
958 case language_go:
959 case language_objc:
960 case language_fortran:
961 case language_rust:
962 if (language_specific.demangled_name != nullptr)
963 return language_specific.demangled_name;
964 break;
965 case language_ada:
966 return ada_decode_symbol (this);
967 default:
968 break;
969 }
970 return linkage_name ();
971 }
972
973 /* See symtab.h. */
974
975 const char *
976 general_symbol_info::demangled_name () const
977 {
978 const char *dem_name = NULL;
979
980 switch (language ())
981 {
982 case language_cplus:
983 case language_d:
984 case language_go:
985 case language_objc:
986 case language_fortran:
987 case language_rust:
988 dem_name = language_specific.demangled_name;
989 break;
990 case language_ada:
991 dem_name = ada_decode_symbol (this);
992 break;
993 default:
994 break;
995 }
996 return dem_name;
997 }
998
999 /* See symtab.h. */
1000
1001 const char *
1002 general_symbol_info::search_name () const
1003 {
1004 if (language () == language_ada)
1005 return linkage_name ();
1006 else
1007 return natural_name ();
1008 }
1009
1010 /* See symtab.h. */
1011
1012 struct obj_section *
1013 general_symbol_info::obj_section (const struct objfile *objfile) const
1014 {
1015 if (section_index () >= 0)
1016 return &objfile->sections[section_index ()];
1017 return nullptr;
1018 }
1019
1020 /* See symtab.h. */
1021
1022 bool
1023 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
1024 const lookup_name_info &name)
1025 {
1026 symbol_name_matcher_ftype *name_match
1027 = language_def (gsymbol->language ())->get_symbol_name_matcher (name);
1028 return name_match (gsymbol->search_name (), name, NULL);
1029 }
1030
1031 \f
1032
1033 /* Return true if the two sections are the same, or if they could
1034 plausibly be copies of each other, one in an original object
1035 file and another in a separated debug file. */
1036
1037 bool
1038 matching_obj_sections (struct obj_section *obj_first,
1039 struct obj_section *obj_second)
1040 {
1041 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1042 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1043
1044 /* If they're the same section, then they match. */
1045 if (first == second)
1046 return true;
1047
1048 /* If either is NULL, give up. */
1049 if (first == NULL || second == NULL)
1050 return false;
1051
1052 /* This doesn't apply to absolute symbols. */
1053 if (first->owner == NULL || second->owner == NULL)
1054 return false;
1055
1056 /* If they're in the same object file, they must be different sections. */
1057 if (first->owner == second->owner)
1058 return false;
1059
1060 /* Check whether the two sections are potentially corresponding. They must
1061 have the same size, address, and name. We can't compare section indexes,
1062 which would be more reliable, because some sections may have been
1063 stripped. */
1064 if (bfd_section_size (first) != bfd_section_size (second))
1065 return false;
1066
1067 /* In-memory addresses may start at a different offset, relativize them. */
1068 if (bfd_section_vma (first) - bfd_get_start_address (first->owner)
1069 != bfd_section_vma (second) - bfd_get_start_address (second->owner))
1070 return false;
1071
1072 if (bfd_section_name (first) == NULL
1073 || bfd_section_name (second) == NULL
1074 || strcmp (bfd_section_name (first), bfd_section_name (second)) != 0)
1075 return false;
1076
1077 /* Otherwise check that they are in corresponding objfiles. */
1078
1079 struct objfile *obj = NULL;
1080 for (objfile *objfile : current_program_space->objfiles ())
1081 if (objfile->obfd == first->owner)
1082 {
1083 obj = objfile;
1084 break;
1085 }
1086 gdb_assert (obj != NULL);
1087
1088 if (obj->separate_debug_objfile != NULL
1089 && obj->separate_debug_objfile->obfd == second->owner)
1090 return true;
1091 if (obj->separate_debug_objfile_backlink != NULL
1092 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1093 return true;
1094
1095 return false;
1096 }
1097
1098 /* See symtab.h. */
1099
1100 void
1101 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1102 {
1103 struct bound_minimal_symbol msymbol;
1104
1105 /* If we know that this is not a text address, return failure. This is
1106 necessary because we loop based on texthigh and textlow, which do
1107 not include the data ranges. */
1108 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1109 if (msymbol.minsym && msymbol.minsym->data_p ())
1110 return;
1111
1112 for (objfile *objfile : current_program_space->objfiles ())
1113 {
1114 struct compunit_symtab *cust
1115 = objfile->find_pc_sect_compunit_symtab (msymbol, pc, section, 0);
1116 if (cust)
1117 return;
1118 }
1119 }
1120 \f
1121 /* Hash function for the symbol cache. */
1122
1123 static unsigned int
1124 hash_symbol_entry (const struct objfile *objfile_context,
1125 const char *name, domain_enum domain)
1126 {
1127 unsigned int hash = (uintptr_t) objfile_context;
1128
1129 if (name != NULL)
1130 hash += htab_hash_string (name);
1131
1132 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1133 to map to the same slot. */
1134 if (domain == STRUCT_DOMAIN)
1135 hash += VAR_DOMAIN * 7;
1136 else
1137 hash += domain * 7;
1138
1139 return hash;
1140 }
1141
1142 /* Equality function for the symbol cache. */
1143
1144 static int
1145 eq_symbol_entry (const struct symbol_cache_slot *slot,
1146 const struct objfile *objfile_context,
1147 const char *name, domain_enum domain)
1148 {
1149 const char *slot_name;
1150 domain_enum slot_domain;
1151
1152 if (slot->state == SYMBOL_SLOT_UNUSED)
1153 return 0;
1154
1155 if (slot->objfile_context != objfile_context)
1156 return 0;
1157
1158 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1159 {
1160 slot_name = slot->value.not_found.name;
1161 slot_domain = slot->value.not_found.domain;
1162 }
1163 else
1164 {
1165 slot_name = slot->value.found.symbol->search_name ();
1166 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1167 }
1168
1169 /* NULL names match. */
1170 if (slot_name == NULL && name == NULL)
1171 {
1172 /* But there's no point in calling symbol_matches_domain in the
1173 SYMBOL_SLOT_FOUND case. */
1174 if (slot_domain != domain)
1175 return 0;
1176 }
1177 else if (slot_name != NULL && name != NULL)
1178 {
1179 /* It's important that we use the same comparison that was done
1180 the first time through. If the slot records a found symbol,
1181 then this means using the symbol name comparison function of
1182 the symbol's language with symbol->search_name (). See
1183 dictionary.c. It also means using symbol_matches_domain for
1184 found symbols. See block.c.
1185
1186 If the slot records a not-found symbol, then require a precise match.
1187 We could still be lax with whitespace like strcmp_iw though. */
1188
1189 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1190 {
1191 if (strcmp (slot_name, name) != 0)
1192 return 0;
1193 if (slot_domain != domain)
1194 return 0;
1195 }
1196 else
1197 {
1198 struct symbol *sym = slot->value.found.symbol;
1199 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1200
1201 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1202 return 0;
1203
1204 if (!symbol_matches_domain (sym->language (), slot_domain, domain))
1205 return 0;
1206 }
1207 }
1208 else
1209 {
1210 /* Only one name is NULL. */
1211 return 0;
1212 }
1213
1214 return 1;
1215 }
1216
1217 /* Given a cache of size SIZE, return the size of the struct (with variable
1218 length array) in bytes. */
1219
1220 static size_t
1221 symbol_cache_byte_size (unsigned int size)
1222 {
1223 return (sizeof (struct block_symbol_cache)
1224 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1225 }
1226
1227 /* Resize CACHE. */
1228
1229 static void
1230 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1231 {
1232 /* If there's no change in size, don't do anything.
1233 All caches have the same size, so we can just compare with the size
1234 of the global symbols cache. */
1235 if ((cache->global_symbols != NULL
1236 && cache->global_symbols->size == new_size)
1237 || (cache->global_symbols == NULL
1238 && new_size == 0))
1239 return;
1240
1241 destroy_block_symbol_cache (cache->global_symbols);
1242 destroy_block_symbol_cache (cache->static_symbols);
1243
1244 if (new_size == 0)
1245 {
1246 cache->global_symbols = NULL;
1247 cache->static_symbols = NULL;
1248 }
1249 else
1250 {
1251 size_t total_size = symbol_cache_byte_size (new_size);
1252
1253 cache->global_symbols
1254 = (struct block_symbol_cache *) xcalloc (1, total_size);
1255 cache->static_symbols
1256 = (struct block_symbol_cache *) xcalloc (1, total_size);
1257 cache->global_symbols->size = new_size;
1258 cache->static_symbols->size = new_size;
1259 }
1260 }
1261
1262 /* Return the symbol cache of PSPACE.
1263 Create one if it doesn't exist yet. */
1264
1265 static struct symbol_cache *
1266 get_symbol_cache (struct program_space *pspace)
1267 {
1268 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1269
1270 if (cache == NULL)
1271 {
1272 cache = symbol_cache_key.emplace (pspace);
1273 resize_symbol_cache (cache, symbol_cache_size);
1274 }
1275
1276 return cache;
1277 }
1278
1279 /* Set the size of the symbol cache in all program spaces. */
1280
1281 static void
1282 set_symbol_cache_size (unsigned int new_size)
1283 {
1284 for (struct program_space *pspace : program_spaces)
1285 {
1286 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1287
1288 /* The pspace could have been created but not have a cache yet. */
1289 if (cache != NULL)
1290 resize_symbol_cache (cache, new_size);
1291 }
1292 }
1293
1294 /* Called when symbol-cache-size is set. */
1295
1296 static void
1297 set_symbol_cache_size_handler (const char *args, int from_tty,
1298 struct cmd_list_element *c)
1299 {
1300 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1301 {
1302 /* Restore the previous value.
1303 This is the value the "show" command prints. */
1304 new_symbol_cache_size = symbol_cache_size;
1305
1306 error (_("Symbol cache size is too large, max is %u."),
1307 MAX_SYMBOL_CACHE_SIZE);
1308 }
1309 symbol_cache_size = new_symbol_cache_size;
1310
1311 set_symbol_cache_size (symbol_cache_size);
1312 }
1313
1314 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1315 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1316 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1317 failed (and thus this one will too), or NULL if the symbol is not present
1318 in the cache.
1319 *BSC_PTR and *SLOT_PTR are set to the cache and slot of the symbol, which
1320 can be used to save the result of a full lookup attempt. */
1321
1322 static struct block_symbol
1323 symbol_cache_lookup (struct symbol_cache *cache,
1324 struct objfile *objfile_context, enum block_enum block,
1325 const char *name, domain_enum domain,
1326 struct block_symbol_cache **bsc_ptr,
1327 struct symbol_cache_slot **slot_ptr)
1328 {
1329 struct block_symbol_cache *bsc;
1330 unsigned int hash;
1331 struct symbol_cache_slot *slot;
1332
1333 if (block == GLOBAL_BLOCK)
1334 bsc = cache->global_symbols;
1335 else
1336 bsc = cache->static_symbols;
1337 if (bsc == NULL)
1338 {
1339 *bsc_ptr = NULL;
1340 *slot_ptr = NULL;
1341 return {};
1342 }
1343
1344 hash = hash_symbol_entry (objfile_context, name, domain);
1345 slot = bsc->symbols + hash % bsc->size;
1346
1347 *bsc_ptr = bsc;
1348 *slot_ptr = slot;
1349
1350 if (eq_symbol_entry (slot, objfile_context, name, domain))
1351 {
1352 if (symbol_lookup_debug)
1353 fprintf_unfiltered (gdb_stdlog,
1354 "%s block symbol cache hit%s for %s, %s\n",
1355 block == GLOBAL_BLOCK ? "Global" : "Static",
1356 slot->state == SYMBOL_SLOT_NOT_FOUND
1357 ? " (not found)" : "",
1358 name, domain_name (domain));
1359 ++bsc->hits;
1360 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1361 return SYMBOL_LOOKUP_FAILED;
1362 return slot->value.found;
1363 }
1364
1365 /* Symbol is not present in the cache. */
1366
1367 if (symbol_lookup_debug)
1368 {
1369 fprintf_unfiltered (gdb_stdlog,
1370 "%s block symbol cache miss for %s, %s\n",
1371 block == GLOBAL_BLOCK ? "Global" : "Static",
1372 name, domain_name (domain));
1373 }
1374 ++bsc->misses;
1375 return {};
1376 }
1377
1378 /* Mark SYMBOL as found in SLOT.
1379 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1380 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1381 necessarily the objfile the symbol was found in. */
1382
1383 static void
1384 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1385 struct symbol_cache_slot *slot,
1386 struct objfile *objfile_context,
1387 struct symbol *symbol,
1388 const struct block *block)
1389 {
1390 if (bsc == NULL)
1391 return;
1392 if (slot->state != SYMBOL_SLOT_UNUSED)
1393 {
1394 ++bsc->collisions;
1395 symbol_cache_clear_slot (slot);
1396 }
1397 slot->state = SYMBOL_SLOT_FOUND;
1398 slot->objfile_context = objfile_context;
1399 slot->value.found.symbol = symbol;
1400 slot->value.found.block = block;
1401 }
1402
1403 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1404 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1405 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1406
1407 static void
1408 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1409 struct symbol_cache_slot *slot,
1410 struct objfile *objfile_context,
1411 const char *name, domain_enum domain)
1412 {
1413 if (bsc == NULL)
1414 return;
1415 if (slot->state != SYMBOL_SLOT_UNUSED)
1416 {
1417 ++bsc->collisions;
1418 symbol_cache_clear_slot (slot);
1419 }
1420 slot->state = SYMBOL_SLOT_NOT_FOUND;
1421 slot->objfile_context = objfile_context;
1422 slot->value.not_found.name = xstrdup (name);
1423 slot->value.not_found.domain = domain;
1424 }
1425
1426 /* Flush the symbol cache of PSPACE. */
1427
1428 static void
1429 symbol_cache_flush (struct program_space *pspace)
1430 {
1431 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1432 int pass;
1433
1434 if (cache == NULL)
1435 return;
1436 if (cache->global_symbols == NULL)
1437 {
1438 gdb_assert (symbol_cache_size == 0);
1439 gdb_assert (cache->static_symbols == NULL);
1440 return;
1441 }
1442
1443 /* If the cache is untouched since the last flush, early exit.
1444 This is important for performance during the startup of a program linked
1445 with 100s (or 1000s) of shared libraries. */
1446 if (cache->global_symbols->misses == 0
1447 && cache->static_symbols->misses == 0)
1448 return;
1449
1450 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1451 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1452
1453 for (pass = 0; pass < 2; ++pass)
1454 {
1455 struct block_symbol_cache *bsc
1456 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1457 unsigned int i;
1458
1459 for (i = 0; i < bsc->size; ++i)
1460 symbol_cache_clear_slot (&bsc->symbols[i]);
1461 }
1462
1463 cache->global_symbols->hits = 0;
1464 cache->global_symbols->misses = 0;
1465 cache->global_symbols->collisions = 0;
1466 cache->static_symbols->hits = 0;
1467 cache->static_symbols->misses = 0;
1468 cache->static_symbols->collisions = 0;
1469 }
1470
1471 /* Dump CACHE. */
1472
1473 static void
1474 symbol_cache_dump (const struct symbol_cache *cache)
1475 {
1476 int pass;
1477
1478 if (cache->global_symbols == NULL)
1479 {
1480 printf_filtered (" <disabled>\n");
1481 return;
1482 }
1483
1484 for (pass = 0; pass < 2; ++pass)
1485 {
1486 const struct block_symbol_cache *bsc
1487 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1488 unsigned int i;
1489
1490 if (pass == 0)
1491 printf_filtered ("Global symbols:\n");
1492 else
1493 printf_filtered ("Static symbols:\n");
1494
1495 for (i = 0; i < bsc->size; ++i)
1496 {
1497 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1498
1499 QUIT;
1500
1501 switch (slot->state)
1502 {
1503 case SYMBOL_SLOT_UNUSED:
1504 break;
1505 case SYMBOL_SLOT_NOT_FOUND:
1506 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1507 host_address_to_string (slot->objfile_context),
1508 slot->value.not_found.name,
1509 domain_name (slot->value.not_found.domain));
1510 break;
1511 case SYMBOL_SLOT_FOUND:
1512 {
1513 struct symbol *found = slot->value.found.symbol;
1514 const struct objfile *context = slot->objfile_context;
1515
1516 printf_filtered (" [%4u] = %s, %s %s\n", i,
1517 host_address_to_string (context),
1518 found->print_name (),
1519 domain_name (SYMBOL_DOMAIN (found)));
1520 break;
1521 }
1522 }
1523 }
1524 }
1525 }
1526
1527 /* The "mt print symbol-cache" command. */
1528
1529 static void
1530 maintenance_print_symbol_cache (const char *args, int from_tty)
1531 {
1532 for (struct program_space *pspace : program_spaces)
1533 {
1534 struct symbol_cache *cache;
1535
1536 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1537 pspace->num,
1538 pspace->symfile_object_file != NULL
1539 ? objfile_name (pspace->symfile_object_file)
1540 : "(no object file)");
1541
1542 /* If the cache hasn't been created yet, avoid creating one. */
1543 cache = symbol_cache_key.get (pspace);
1544 if (cache == NULL)
1545 printf_filtered (" <empty>\n");
1546 else
1547 symbol_cache_dump (cache);
1548 }
1549 }
1550
1551 /* The "mt flush-symbol-cache" command. */
1552
1553 static void
1554 maintenance_flush_symbol_cache (const char *args, int from_tty)
1555 {
1556 for (struct program_space *pspace : program_spaces)
1557 {
1558 symbol_cache_flush (pspace);
1559 }
1560 }
1561
1562 /* Print usage statistics of CACHE. */
1563
1564 static void
1565 symbol_cache_stats (struct symbol_cache *cache)
1566 {
1567 int pass;
1568
1569 if (cache->global_symbols == NULL)
1570 {
1571 printf_filtered (" <disabled>\n");
1572 return;
1573 }
1574
1575 for (pass = 0; pass < 2; ++pass)
1576 {
1577 const struct block_symbol_cache *bsc
1578 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1579
1580 QUIT;
1581
1582 if (pass == 0)
1583 printf_filtered ("Global block cache stats:\n");
1584 else
1585 printf_filtered ("Static block cache stats:\n");
1586
1587 printf_filtered (" size: %u\n", bsc->size);
1588 printf_filtered (" hits: %u\n", bsc->hits);
1589 printf_filtered (" misses: %u\n", bsc->misses);
1590 printf_filtered (" collisions: %u\n", bsc->collisions);
1591 }
1592 }
1593
1594 /* The "mt print symbol-cache-statistics" command. */
1595
1596 static void
1597 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1598 {
1599 for (struct program_space *pspace : program_spaces)
1600 {
1601 struct symbol_cache *cache;
1602
1603 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1604 pspace->num,
1605 pspace->symfile_object_file != NULL
1606 ? objfile_name (pspace->symfile_object_file)
1607 : "(no object file)");
1608
1609 /* If the cache hasn't been created yet, avoid creating one. */
1610 cache = symbol_cache_key.get (pspace);
1611 if (cache == NULL)
1612 printf_filtered (" empty, no stats available\n");
1613 else
1614 symbol_cache_stats (cache);
1615 }
1616 }
1617
1618 /* This module's 'new_objfile' observer. */
1619
1620 static void
1621 symtab_new_objfile_observer (struct objfile *objfile)
1622 {
1623 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1624 symbol_cache_flush (current_program_space);
1625 }
1626
1627 /* This module's 'free_objfile' observer. */
1628
1629 static void
1630 symtab_free_objfile_observer (struct objfile *objfile)
1631 {
1632 symbol_cache_flush (objfile->pspace);
1633 }
1634 \f
1635 /* Debug symbols usually don't have section information. We need to dig that
1636 out of the minimal symbols and stash that in the debug symbol. */
1637
1638 void
1639 fixup_section (struct general_symbol_info *ginfo,
1640 CORE_ADDR addr, struct objfile *objfile)
1641 {
1642 struct minimal_symbol *msym;
1643
1644 /* First, check whether a minimal symbol with the same name exists
1645 and points to the same address. The address check is required
1646 e.g. on PowerPC64, where the minimal symbol for a function will
1647 point to the function descriptor, while the debug symbol will
1648 point to the actual function code. */
1649 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->linkage_name (),
1650 objfile);
1651 if (msym)
1652 ginfo->set_section_index (msym->section_index ());
1653 else
1654 {
1655 /* Static, function-local variables do appear in the linker
1656 (minimal) symbols, but are frequently given names that won't
1657 be found via lookup_minimal_symbol(). E.g., it has been
1658 observed in frv-uclinux (ELF) executables that a static,
1659 function-local variable named "foo" might appear in the
1660 linker symbols as "foo.6" or "foo.3". Thus, there is no
1661 point in attempting to extend the lookup-by-name mechanism to
1662 handle this case due to the fact that there can be multiple
1663 names.
1664
1665 So, instead, search the section table when lookup by name has
1666 failed. The ``addr'' and ``endaddr'' fields may have already
1667 been relocated. If so, the relocation offset needs to be
1668 subtracted from these values when performing the comparison.
1669 We unconditionally subtract it, because, when no relocation
1670 has been performed, the value will simply be zero.
1671
1672 The address of the symbol whose section we're fixing up HAS
1673 NOT BEEN adjusted (relocated) yet. It can't have been since
1674 the section isn't yet known and knowing the section is
1675 necessary in order to add the correct relocation value. In
1676 other words, we wouldn't even be in this function (attempting
1677 to compute the section) if it were already known.
1678
1679 Note that it is possible to search the minimal symbols
1680 (subtracting the relocation value if necessary) to find the
1681 matching minimal symbol, but this is overkill and much less
1682 efficient. It is not necessary to find the matching minimal
1683 symbol, only its section.
1684
1685 Note that this technique (of doing a section table search)
1686 can fail when unrelocated section addresses overlap. For
1687 this reason, we still attempt a lookup by name prior to doing
1688 a search of the section table. */
1689
1690 struct obj_section *s;
1691 int fallback = -1;
1692
1693 ALL_OBJFILE_OSECTIONS (objfile, s)
1694 {
1695 int idx = s - objfile->sections;
1696 CORE_ADDR offset = objfile->section_offsets[idx];
1697
1698 if (fallback == -1)
1699 fallback = idx;
1700
1701 if (obj_section_addr (s) - offset <= addr
1702 && addr < obj_section_endaddr (s) - offset)
1703 {
1704 ginfo->set_section_index (idx);
1705 return;
1706 }
1707 }
1708
1709 /* If we didn't find the section, assume it is in the first
1710 section. If there is no allocated section, then it hardly
1711 matters what we pick, so just pick zero. */
1712 if (fallback == -1)
1713 ginfo->set_section_index (0);
1714 else
1715 ginfo->set_section_index (fallback);
1716 }
1717 }
1718
1719 struct symbol *
1720 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1721 {
1722 CORE_ADDR addr;
1723
1724 if (!sym)
1725 return NULL;
1726
1727 if (!SYMBOL_OBJFILE_OWNED (sym))
1728 return sym;
1729
1730 /* We either have an OBJFILE, or we can get at it from the sym's
1731 symtab. Anything else is a bug. */
1732 gdb_assert (objfile || symbol_symtab (sym));
1733
1734 if (objfile == NULL)
1735 objfile = symbol_objfile (sym);
1736
1737 if (sym->obj_section (objfile) != nullptr)
1738 return sym;
1739
1740 /* We should have an objfile by now. */
1741 gdb_assert (objfile);
1742
1743 switch (SYMBOL_CLASS (sym))
1744 {
1745 case LOC_STATIC:
1746 case LOC_LABEL:
1747 addr = SYMBOL_VALUE_ADDRESS (sym);
1748 break;
1749 case LOC_BLOCK:
1750 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1751 break;
1752
1753 default:
1754 /* Nothing else will be listed in the minsyms -- no use looking
1755 it up. */
1756 return sym;
1757 }
1758
1759 fixup_section (sym, addr, objfile);
1760
1761 return sym;
1762 }
1763
1764 /* See symtab.h. */
1765
1766 demangle_for_lookup_info::demangle_for_lookup_info
1767 (const lookup_name_info &lookup_name, language lang)
1768 {
1769 demangle_result_storage storage;
1770
1771 if (lookup_name.ignore_parameters () && lang == language_cplus)
1772 {
1773 gdb::unique_xmalloc_ptr<char> without_params
1774 = cp_remove_params_if_any (lookup_name.c_str (),
1775 lookup_name.completion_mode ());
1776
1777 if (without_params != NULL)
1778 {
1779 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1780 m_demangled_name = demangle_for_lookup (without_params.get (),
1781 lang, storage);
1782 return;
1783 }
1784 }
1785
1786 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1787 m_demangled_name = lookup_name.c_str ();
1788 else
1789 m_demangled_name = demangle_for_lookup (lookup_name.c_str (),
1790 lang, storage);
1791 }
1792
1793 /* See symtab.h. */
1794
1795 const lookup_name_info &
1796 lookup_name_info::match_any ()
1797 {
1798 /* Lookup any symbol that "" would complete. I.e., this matches all
1799 symbol names. */
1800 static const lookup_name_info lookup_name ("", symbol_name_match_type::FULL,
1801 true);
1802
1803 return lookup_name;
1804 }
1805
1806 /* Compute the demangled form of NAME as used by the various symbol
1807 lookup functions. The result can either be the input NAME
1808 directly, or a pointer to a buffer owned by the STORAGE object.
1809
1810 For Ada, this function just returns NAME, unmodified.
1811 Normally, Ada symbol lookups are performed using the encoded name
1812 rather than the demangled name, and so it might seem to make sense
1813 for this function to return an encoded version of NAME.
1814 Unfortunately, we cannot do this, because this function is used in
1815 circumstances where it is not appropriate to try to encode NAME.
1816 For instance, when displaying the frame info, we demangle the name
1817 of each parameter, and then perform a symbol lookup inside our
1818 function using that demangled name. In Ada, certain functions
1819 have internally-generated parameters whose name contain uppercase
1820 characters. Encoding those name would result in those uppercase
1821 characters to become lowercase, and thus cause the symbol lookup
1822 to fail. */
1823
1824 const char *
1825 demangle_for_lookup (const char *name, enum language lang,
1826 demangle_result_storage &storage)
1827 {
1828 /* If we are using C++, D, or Go, demangle the name before doing a
1829 lookup, so we can always binary search. */
1830 if (lang == language_cplus)
1831 {
1832 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1833 if (demangled_name != NULL)
1834 return storage.set_malloc_ptr (demangled_name);
1835
1836 /* If we were given a non-mangled name, canonicalize it
1837 according to the language (so far only for C++). */
1838 gdb::unique_xmalloc_ptr<char> canon = cp_canonicalize_string (name);
1839 if (canon != nullptr)
1840 return storage.set_malloc_ptr (std::move (canon));
1841 }
1842 else if (lang == language_d)
1843 {
1844 char *demangled_name = d_demangle (name, 0);
1845 if (demangled_name != NULL)
1846 return storage.set_malloc_ptr (demangled_name);
1847 }
1848 else if (lang == language_go)
1849 {
1850 char *demangled_name
1851 = language_def (language_go)->demangle_symbol (name, 0);
1852 if (demangled_name != NULL)
1853 return storage.set_malloc_ptr (demangled_name);
1854 }
1855
1856 return name;
1857 }
1858
1859 /* See symtab.h. */
1860
1861 unsigned int
1862 search_name_hash (enum language language, const char *search_name)
1863 {
1864 return language_def (language)->search_name_hash (search_name);
1865 }
1866
1867 /* See symtab.h.
1868
1869 This function (or rather its subordinates) have a bunch of loops and
1870 it would seem to be attractive to put in some QUIT's (though I'm not really
1871 sure whether it can run long enough to be really important). But there
1872 are a few calls for which it would appear to be bad news to quit
1873 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1874 that there is C++ code below which can error(), but that probably
1875 doesn't affect these calls since they are looking for a known
1876 variable and thus can probably assume it will never hit the C++
1877 code). */
1878
1879 struct block_symbol
1880 lookup_symbol_in_language (const char *name, const struct block *block,
1881 const domain_enum domain, enum language lang,
1882 struct field_of_this_result *is_a_field_of_this)
1883 {
1884 demangle_result_storage storage;
1885 const char *modified_name = demangle_for_lookup (name, lang, storage);
1886
1887 return lookup_symbol_aux (modified_name,
1888 symbol_name_match_type::FULL,
1889 block, domain, lang,
1890 is_a_field_of_this);
1891 }
1892
1893 /* See symtab.h. */
1894
1895 struct block_symbol
1896 lookup_symbol (const char *name, const struct block *block,
1897 domain_enum domain,
1898 struct field_of_this_result *is_a_field_of_this)
1899 {
1900 return lookup_symbol_in_language (name, block, domain,
1901 current_language->la_language,
1902 is_a_field_of_this);
1903 }
1904
1905 /* See symtab.h. */
1906
1907 struct block_symbol
1908 lookup_symbol_search_name (const char *search_name, const struct block *block,
1909 domain_enum domain)
1910 {
1911 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1912 block, domain, language_asm, NULL);
1913 }
1914
1915 /* See symtab.h. */
1916
1917 struct block_symbol
1918 lookup_language_this (const struct language_defn *lang,
1919 const struct block *block)
1920 {
1921 if (lang->name_of_this () == NULL || block == NULL)
1922 return {};
1923
1924 if (symbol_lookup_debug > 1)
1925 {
1926 struct objfile *objfile = block_objfile (block);
1927
1928 fprintf_unfiltered (gdb_stdlog,
1929 "lookup_language_this (%s, %s (objfile %s))",
1930 lang->name (), host_address_to_string (block),
1931 objfile_debug_name (objfile));
1932 }
1933
1934 while (block)
1935 {
1936 struct symbol *sym;
1937
1938 sym = block_lookup_symbol (block, lang->name_of_this (),
1939 symbol_name_match_type::SEARCH_NAME,
1940 VAR_DOMAIN);
1941 if (sym != NULL)
1942 {
1943 if (symbol_lookup_debug > 1)
1944 {
1945 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1946 sym->print_name (),
1947 host_address_to_string (sym),
1948 host_address_to_string (block));
1949 }
1950 return (struct block_symbol) {sym, block};
1951 }
1952 if (BLOCK_FUNCTION (block))
1953 break;
1954 block = BLOCK_SUPERBLOCK (block);
1955 }
1956
1957 if (symbol_lookup_debug > 1)
1958 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1959 return {};
1960 }
1961
1962 /* Given TYPE, a structure/union,
1963 return 1 if the component named NAME from the ultimate target
1964 structure/union is defined, otherwise, return 0. */
1965
1966 static int
1967 check_field (struct type *type, const char *name,
1968 struct field_of_this_result *is_a_field_of_this)
1969 {
1970 int i;
1971
1972 /* The type may be a stub. */
1973 type = check_typedef (type);
1974
1975 for (i = type->num_fields () - 1; i >= TYPE_N_BASECLASSES (type); i--)
1976 {
1977 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1978
1979 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1980 {
1981 is_a_field_of_this->type = type;
1982 is_a_field_of_this->field = &type->field (i);
1983 return 1;
1984 }
1985 }
1986
1987 /* C++: If it was not found as a data field, then try to return it
1988 as a pointer to a method. */
1989
1990 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1991 {
1992 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1993 {
1994 is_a_field_of_this->type = type;
1995 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1996 return 1;
1997 }
1998 }
1999
2000 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2001 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
2002 return 1;
2003
2004 return 0;
2005 }
2006
2007 /* Behave like lookup_symbol except that NAME is the natural name
2008 (e.g., demangled name) of the symbol that we're looking for. */
2009
2010 static struct block_symbol
2011 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2012 const struct block *block,
2013 const domain_enum domain, enum language language,
2014 struct field_of_this_result *is_a_field_of_this)
2015 {
2016 struct block_symbol result;
2017 const struct language_defn *langdef;
2018
2019 if (symbol_lookup_debug)
2020 {
2021 struct objfile *objfile = (block == nullptr
2022 ? nullptr : block_objfile (block));
2023
2024 fprintf_unfiltered (gdb_stdlog,
2025 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2026 name, host_address_to_string (block),
2027 objfile != NULL
2028 ? objfile_debug_name (objfile) : "NULL",
2029 domain_name (domain), language_str (language));
2030 }
2031
2032 /* Make sure we do something sensible with is_a_field_of_this, since
2033 the callers that set this parameter to some non-null value will
2034 certainly use it later. If we don't set it, the contents of
2035 is_a_field_of_this are undefined. */
2036 if (is_a_field_of_this != NULL)
2037 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2038
2039 /* Search specified block and its superiors. Don't search
2040 STATIC_BLOCK or GLOBAL_BLOCK. */
2041
2042 result = lookup_local_symbol (name, match_type, block, domain, language);
2043 if (result.symbol != NULL)
2044 {
2045 if (symbol_lookup_debug)
2046 {
2047 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2048 host_address_to_string (result.symbol));
2049 }
2050 return result;
2051 }
2052
2053 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2054 check to see if NAME is a field of `this'. */
2055
2056 langdef = language_def (language);
2057
2058 /* Don't do this check if we are searching for a struct. It will
2059 not be found by check_field, but will be found by other
2060 means. */
2061 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2062 {
2063 result = lookup_language_this (langdef, block);
2064
2065 if (result.symbol)
2066 {
2067 struct type *t = result.symbol->type;
2068
2069 /* I'm not really sure that type of this can ever
2070 be typedefed; just be safe. */
2071 t = check_typedef (t);
2072 if (t->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2073 t = TYPE_TARGET_TYPE (t);
2074
2075 if (t->code () != TYPE_CODE_STRUCT
2076 && t->code () != TYPE_CODE_UNION)
2077 error (_("Internal error: `%s' is not an aggregate"),
2078 langdef->name_of_this ());
2079
2080 if (check_field (t, name, is_a_field_of_this))
2081 {
2082 if (symbol_lookup_debug)
2083 {
2084 fprintf_unfiltered (gdb_stdlog,
2085 "lookup_symbol_aux (...) = NULL\n");
2086 }
2087 return {};
2088 }
2089 }
2090 }
2091
2092 /* Now do whatever is appropriate for LANGUAGE to look
2093 up static and global variables. */
2094
2095 result = langdef->lookup_symbol_nonlocal (name, block, domain);
2096 if (result.symbol != NULL)
2097 {
2098 if (symbol_lookup_debug)
2099 {
2100 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2101 host_address_to_string (result.symbol));
2102 }
2103 return result;
2104 }
2105
2106 /* Now search all static file-level symbols. Not strictly correct,
2107 but more useful than an error. */
2108
2109 result = lookup_static_symbol (name, domain);
2110 if (symbol_lookup_debug)
2111 {
2112 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2113 result.symbol != NULL
2114 ? host_address_to_string (result.symbol)
2115 : "NULL");
2116 }
2117 return result;
2118 }
2119
2120 /* Check to see if the symbol is defined in BLOCK or its superiors.
2121 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2122
2123 static struct block_symbol
2124 lookup_local_symbol (const char *name,
2125 symbol_name_match_type match_type,
2126 const struct block *block,
2127 const domain_enum domain,
2128 enum language language)
2129 {
2130 struct symbol *sym;
2131 const struct block *static_block = block_static_block (block);
2132 const char *scope = block_scope (block);
2133
2134 /* Check if either no block is specified or it's a global block. */
2135
2136 if (static_block == NULL)
2137 return {};
2138
2139 while (block != static_block)
2140 {
2141 sym = lookup_symbol_in_block (name, match_type, block, domain);
2142 if (sym != NULL)
2143 return (struct block_symbol) {sym, block};
2144
2145 if (language == language_cplus || language == language_fortran)
2146 {
2147 struct block_symbol blocksym
2148 = cp_lookup_symbol_imports_or_template (scope, name, block,
2149 domain);
2150
2151 if (blocksym.symbol != NULL)
2152 return blocksym;
2153 }
2154
2155 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2156 break;
2157 block = BLOCK_SUPERBLOCK (block);
2158 }
2159
2160 /* We've reached the end of the function without finding a result. */
2161
2162 return {};
2163 }
2164
2165 /* See symtab.h. */
2166
2167 struct symbol *
2168 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2169 const struct block *block,
2170 const domain_enum domain)
2171 {
2172 struct symbol *sym;
2173
2174 if (symbol_lookup_debug > 1)
2175 {
2176 struct objfile *objfile = (block == nullptr
2177 ? nullptr : block_objfile (block));
2178
2179 fprintf_unfiltered (gdb_stdlog,
2180 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2181 name, host_address_to_string (block),
2182 objfile_debug_name (objfile),
2183 domain_name (domain));
2184 }
2185
2186 sym = block_lookup_symbol (block, name, match_type, domain);
2187 if (sym)
2188 {
2189 if (symbol_lookup_debug > 1)
2190 {
2191 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2192 host_address_to_string (sym));
2193 }
2194 return fixup_symbol_section (sym, NULL);
2195 }
2196
2197 if (symbol_lookup_debug > 1)
2198 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2199 return NULL;
2200 }
2201
2202 /* See symtab.h. */
2203
2204 struct block_symbol
2205 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2206 enum block_enum block_index,
2207 const char *name,
2208 const domain_enum domain)
2209 {
2210 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2211
2212 for (objfile *objfile : main_objfile->separate_debug_objfiles ())
2213 {
2214 struct block_symbol result
2215 = lookup_symbol_in_objfile (objfile, block_index, name, domain);
2216
2217 if (result.symbol != nullptr)
2218 return result;
2219 }
2220
2221 return {};
2222 }
2223
2224 /* Check to see if the symbol is defined in one of the OBJFILE's
2225 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2226 depending on whether or not we want to search global symbols or
2227 static symbols. */
2228
2229 static struct block_symbol
2230 lookup_symbol_in_objfile_symtabs (struct objfile *objfile,
2231 enum block_enum block_index, const char *name,
2232 const domain_enum domain)
2233 {
2234 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2235
2236 if (symbol_lookup_debug > 1)
2237 {
2238 fprintf_unfiltered (gdb_stdlog,
2239 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2240 objfile_debug_name (objfile),
2241 block_index == GLOBAL_BLOCK
2242 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2243 name, domain_name (domain));
2244 }
2245
2246 struct block_symbol other;
2247 other.symbol = NULL;
2248 for (compunit_symtab *cust : objfile->compunits ())
2249 {
2250 const struct blockvector *bv;
2251 const struct block *block;
2252 struct block_symbol result;
2253
2254 bv = COMPUNIT_BLOCKVECTOR (cust);
2255 block = BLOCKVECTOR_BLOCK (bv, block_index);
2256 result.symbol = block_lookup_symbol_primary (block, name, domain);
2257 result.block = block;
2258 if (result.symbol == NULL)
2259 continue;
2260 if (best_symbol (result.symbol, domain))
2261 {
2262 other = result;
2263 break;
2264 }
2265 if (symbol_matches_domain (result.symbol->language (),
2266 SYMBOL_DOMAIN (result.symbol), domain))
2267 {
2268 struct symbol *better
2269 = better_symbol (other.symbol, result.symbol, domain);
2270 if (better != other.symbol)
2271 {
2272 other.symbol = better;
2273 other.block = block;
2274 }
2275 }
2276 }
2277
2278 if (other.symbol != NULL)
2279 {
2280 if (symbol_lookup_debug > 1)
2281 {
2282 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2283 host_address_to_string (other.symbol),
2284 host_address_to_string (other.block));
2285 }
2286 other.symbol = fixup_symbol_section (other.symbol, objfile);
2287 return other;
2288 }
2289
2290 if (symbol_lookup_debug > 1)
2291 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2292 return {};
2293 }
2294
2295 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2296 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2297 and all associated separate debug objfiles.
2298
2299 Normally we only look in OBJFILE, and not any separate debug objfiles
2300 because the outer loop will cause them to be searched too. This case is
2301 different. Here we're called from search_symbols where it will only
2302 call us for the objfile that contains a matching minsym. */
2303
2304 static struct block_symbol
2305 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2306 const char *linkage_name,
2307 domain_enum domain)
2308 {
2309 enum language lang = current_language->la_language;
2310 struct objfile *main_objfile;
2311
2312 demangle_result_storage storage;
2313 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2314
2315 if (objfile->separate_debug_objfile_backlink)
2316 main_objfile = objfile->separate_debug_objfile_backlink;
2317 else
2318 main_objfile = objfile;
2319
2320 for (::objfile *cur_objfile : main_objfile->separate_debug_objfiles ())
2321 {
2322 struct block_symbol result;
2323
2324 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2325 modified_name, domain);
2326 if (result.symbol == NULL)
2327 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2328 modified_name, domain);
2329 if (result.symbol != NULL)
2330 return result;
2331 }
2332
2333 return {};
2334 }
2335
2336 /* A helper function that throws an exception when a symbol was found
2337 in a psymtab but not in a symtab. */
2338
2339 static void ATTRIBUTE_NORETURN
2340 error_in_psymtab_expansion (enum block_enum block_index, const char *name,
2341 struct compunit_symtab *cust)
2342 {
2343 error (_("\
2344 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2345 %s may be an inlined function, or may be a template function\n \
2346 (if a template, try specifying an instantiation: %s<type>)."),
2347 block_index == GLOBAL_BLOCK ? "global" : "static",
2348 name,
2349 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2350 name, name);
2351 }
2352
2353 /* A helper function for various lookup routines that interfaces with
2354 the "quick" symbol table functions. */
2355
2356 static struct block_symbol
2357 lookup_symbol_via_quick_fns (struct objfile *objfile,
2358 enum block_enum block_index, const char *name,
2359 const domain_enum domain)
2360 {
2361 struct compunit_symtab *cust;
2362 const struct blockvector *bv;
2363 const struct block *block;
2364 struct block_symbol result;
2365
2366 if (symbol_lookup_debug > 1)
2367 {
2368 fprintf_unfiltered (gdb_stdlog,
2369 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2370 objfile_debug_name (objfile),
2371 block_index == GLOBAL_BLOCK
2372 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2373 name, domain_name (domain));
2374 }
2375
2376 cust = objfile->lookup_symbol (block_index, name, domain);
2377 if (cust == NULL)
2378 {
2379 if (symbol_lookup_debug > 1)
2380 {
2381 fprintf_unfiltered (gdb_stdlog,
2382 "lookup_symbol_via_quick_fns (...) = NULL\n");
2383 }
2384 return {};
2385 }
2386
2387 bv = COMPUNIT_BLOCKVECTOR (cust);
2388 block = BLOCKVECTOR_BLOCK (bv, block_index);
2389 result.symbol = block_lookup_symbol (block, name,
2390 symbol_name_match_type::FULL, domain);
2391 if (result.symbol == NULL)
2392 error_in_psymtab_expansion (block_index, name, cust);
2393
2394 if (symbol_lookup_debug > 1)
2395 {
2396 fprintf_unfiltered (gdb_stdlog,
2397 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2398 host_address_to_string (result.symbol),
2399 host_address_to_string (block));
2400 }
2401
2402 result.symbol = fixup_symbol_section (result.symbol, objfile);
2403 result.block = block;
2404 return result;
2405 }
2406
2407 /* See language.h. */
2408
2409 struct block_symbol
2410 language_defn::lookup_symbol_nonlocal (const char *name,
2411 const struct block *block,
2412 const domain_enum domain) const
2413 {
2414 struct block_symbol result;
2415
2416 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2417 the current objfile. Searching the current objfile first is useful
2418 for both matching user expectations as well as performance. */
2419
2420 result = lookup_symbol_in_static_block (name, block, domain);
2421 if (result.symbol != NULL)
2422 return result;
2423
2424 /* If we didn't find a definition for a builtin type in the static block,
2425 search for it now. This is actually the right thing to do and can be
2426 a massive performance win. E.g., when debugging a program with lots of
2427 shared libraries we could search all of them only to find out the
2428 builtin type isn't defined in any of them. This is common for types
2429 like "void". */
2430 if (domain == VAR_DOMAIN)
2431 {
2432 struct gdbarch *gdbarch;
2433
2434 if (block == NULL)
2435 gdbarch = target_gdbarch ();
2436 else
2437 gdbarch = block_gdbarch (block);
2438 result.symbol = language_lookup_primitive_type_as_symbol (this,
2439 gdbarch, name);
2440 result.block = NULL;
2441 if (result.symbol != NULL)
2442 return result;
2443 }
2444
2445 return lookup_global_symbol (name, block, domain);
2446 }
2447
2448 /* See symtab.h. */
2449
2450 struct block_symbol
2451 lookup_symbol_in_static_block (const char *name,
2452 const struct block *block,
2453 const domain_enum domain)
2454 {
2455 const struct block *static_block = block_static_block (block);
2456 struct symbol *sym;
2457
2458 if (static_block == NULL)
2459 return {};
2460
2461 if (symbol_lookup_debug)
2462 {
2463 struct objfile *objfile = (block == nullptr
2464 ? nullptr : block_objfile (block));
2465
2466 fprintf_unfiltered (gdb_stdlog,
2467 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2468 " %s)\n",
2469 name,
2470 host_address_to_string (block),
2471 objfile_debug_name (objfile),
2472 domain_name (domain));
2473 }
2474
2475 sym = lookup_symbol_in_block (name,
2476 symbol_name_match_type::FULL,
2477 static_block, domain);
2478 if (symbol_lookup_debug)
2479 {
2480 fprintf_unfiltered (gdb_stdlog,
2481 "lookup_symbol_in_static_block (...) = %s\n",
2482 sym != NULL ? host_address_to_string (sym) : "NULL");
2483 }
2484 return (struct block_symbol) {sym, static_block};
2485 }
2486
2487 /* Perform the standard symbol lookup of NAME in OBJFILE:
2488 1) First search expanded symtabs, and if not found
2489 2) Search the "quick" symtabs (partial or .gdb_index).
2490 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2491
2492 static struct block_symbol
2493 lookup_symbol_in_objfile (struct objfile *objfile, enum block_enum block_index,
2494 const char *name, const domain_enum domain)
2495 {
2496 struct block_symbol result;
2497
2498 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2499
2500 if (symbol_lookup_debug)
2501 {
2502 fprintf_unfiltered (gdb_stdlog,
2503 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2504 objfile_debug_name (objfile),
2505 block_index == GLOBAL_BLOCK
2506 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2507 name, domain_name (domain));
2508 }
2509
2510 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2511 name, domain);
2512 if (result.symbol != NULL)
2513 {
2514 if (symbol_lookup_debug)
2515 {
2516 fprintf_unfiltered (gdb_stdlog,
2517 "lookup_symbol_in_objfile (...) = %s"
2518 " (in symtabs)\n",
2519 host_address_to_string (result.symbol));
2520 }
2521 return result;
2522 }
2523
2524 result = lookup_symbol_via_quick_fns (objfile, block_index,
2525 name, domain);
2526 if (symbol_lookup_debug)
2527 {
2528 fprintf_unfiltered (gdb_stdlog,
2529 "lookup_symbol_in_objfile (...) = %s%s\n",
2530 result.symbol != NULL
2531 ? host_address_to_string (result.symbol)
2532 : "NULL",
2533 result.symbol != NULL ? " (via quick fns)" : "");
2534 }
2535 return result;
2536 }
2537
2538 /* Find the language for partial symbol with NAME. */
2539
2540 static enum language
2541 find_quick_global_symbol_language (const char *name, const domain_enum domain)
2542 {
2543 for (objfile *objfile : current_program_space->objfiles ())
2544 {
2545 bool symbol_found_p;
2546 enum language lang
2547 = objfile->lookup_global_symbol_language (name, domain, &symbol_found_p);
2548 if (symbol_found_p)
2549 return lang;
2550 }
2551
2552 return language_unknown;
2553 }
2554
2555 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2556
2557 struct global_or_static_sym_lookup_data
2558 {
2559 /* The name of the symbol we are searching for. */
2560 const char *name;
2561
2562 /* The domain to use for our search. */
2563 domain_enum domain;
2564
2565 /* The block index in which to search. */
2566 enum block_enum block_index;
2567
2568 /* The field where the callback should store the symbol if found.
2569 It should be initialized to {NULL, NULL} before the search is started. */
2570 struct block_symbol result;
2571 };
2572
2573 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2574 It searches by name for a symbol in the block given by BLOCK_INDEX of the
2575 given OBJFILE. The arguments for the search are passed via CB_DATA, which
2576 in reality is a pointer to struct global_or_static_sym_lookup_data. */
2577
2578 static int
2579 lookup_symbol_global_or_static_iterator_cb (struct objfile *objfile,
2580 void *cb_data)
2581 {
2582 struct global_or_static_sym_lookup_data *data =
2583 (struct global_or_static_sym_lookup_data *) cb_data;
2584
2585 gdb_assert (data->result.symbol == NULL
2586 && data->result.block == NULL);
2587
2588 data->result = lookup_symbol_in_objfile (objfile, data->block_index,
2589 data->name, data->domain);
2590
2591 /* If we found a match, tell the iterator to stop. Otherwise,
2592 keep going. */
2593 return (data->result.symbol != NULL);
2594 }
2595
2596 /* This function contains the common code of lookup_{global,static}_symbol.
2597 OBJFILE is only used if BLOCK_INDEX is GLOBAL_SCOPE, in which case it is
2598 the objfile to start the lookup in. */
2599
2600 static struct block_symbol
2601 lookup_global_or_static_symbol (const char *name,
2602 enum block_enum block_index,
2603 struct objfile *objfile,
2604 const domain_enum domain)
2605 {
2606 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2607 struct block_symbol result;
2608 struct global_or_static_sym_lookup_data lookup_data;
2609 struct block_symbol_cache *bsc;
2610 struct symbol_cache_slot *slot;
2611
2612 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2613 gdb_assert (objfile == nullptr || block_index == GLOBAL_BLOCK);
2614
2615 /* First see if we can find the symbol in the cache.
2616 This works because we use the current objfile to qualify the lookup. */
2617 result = symbol_cache_lookup (cache, objfile, block_index, name, domain,
2618 &bsc, &slot);
2619 if (result.symbol != NULL)
2620 {
2621 if (SYMBOL_LOOKUP_FAILED_P (result))
2622 return {};
2623 return result;
2624 }
2625
2626 /* Do a global search (of global blocks, heh). */
2627 if (result.symbol == NULL)
2628 {
2629 memset (&lookup_data, 0, sizeof (lookup_data));
2630 lookup_data.name = name;
2631 lookup_data.block_index = block_index;
2632 lookup_data.domain = domain;
2633 gdbarch_iterate_over_objfiles_in_search_order
2634 (objfile != NULL ? objfile->arch () : target_gdbarch (),
2635 lookup_symbol_global_or_static_iterator_cb, &lookup_data, objfile);
2636 result = lookup_data.result;
2637 }
2638
2639 if (result.symbol != NULL)
2640 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2641 else
2642 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2643
2644 return result;
2645 }
2646
2647 /* See symtab.h. */
2648
2649 struct block_symbol
2650 lookup_static_symbol (const char *name, const domain_enum domain)
2651 {
2652 return lookup_global_or_static_symbol (name, STATIC_BLOCK, nullptr, domain);
2653 }
2654
2655 /* See symtab.h. */
2656
2657 struct block_symbol
2658 lookup_global_symbol (const char *name,
2659 const struct block *block,
2660 const domain_enum domain)
2661 {
2662 /* If a block was passed in, we want to search the corresponding
2663 global block first. This yields "more expected" behavior, and is
2664 needed to support 'FILENAME'::VARIABLE lookups. */
2665 const struct block *global_block = block_global_block (block);
2666 symbol *sym = NULL;
2667 if (global_block != nullptr)
2668 {
2669 sym = lookup_symbol_in_block (name,
2670 symbol_name_match_type::FULL,
2671 global_block, domain);
2672 if (sym != NULL && best_symbol (sym, domain))
2673 return { sym, global_block };
2674 }
2675
2676 struct objfile *objfile = nullptr;
2677 if (block != nullptr)
2678 {
2679 objfile = block_objfile (block);
2680 if (objfile->separate_debug_objfile_backlink != nullptr)
2681 objfile = objfile->separate_debug_objfile_backlink;
2682 }
2683
2684 block_symbol bs
2685 = lookup_global_or_static_symbol (name, GLOBAL_BLOCK, objfile, domain);
2686 if (better_symbol (sym, bs.symbol, domain) == sym)
2687 return { sym, global_block };
2688 else
2689 return bs;
2690 }
2691
2692 bool
2693 symbol_matches_domain (enum language symbol_language,
2694 domain_enum symbol_domain,
2695 domain_enum domain)
2696 {
2697 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2698 Similarly, any Ada type declaration implicitly defines a typedef. */
2699 if (symbol_language == language_cplus
2700 || symbol_language == language_d
2701 || symbol_language == language_ada
2702 || symbol_language == language_rust)
2703 {
2704 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2705 && symbol_domain == STRUCT_DOMAIN)
2706 return true;
2707 }
2708 /* For all other languages, strict match is required. */
2709 return (symbol_domain == domain);
2710 }
2711
2712 /* See symtab.h. */
2713
2714 struct type *
2715 lookup_transparent_type (const char *name)
2716 {
2717 return current_language->lookup_transparent_type (name);
2718 }
2719
2720 /* A helper for basic_lookup_transparent_type that interfaces with the
2721 "quick" symbol table functions. */
2722
2723 static struct type *
2724 basic_lookup_transparent_type_quick (struct objfile *objfile,
2725 enum block_enum block_index,
2726 const char *name)
2727 {
2728 struct compunit_symtab *cust;
2729 const struct blockvector *bv;
2730 const struct block *block;
2731 struct symbol *sym;
2732
2733 cust = objfile->lookup_symbol (block_index, name, STRUCT_DOMAIN);
2734 if (cust == NULL)
2735 return NULL;
2736
2737 bv = COMPUNIT_BLOCKVECTOR (cust);
2738 block = BLOCKVECTOR_BLOCK (bv, block_index);
2739 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2740 block_find_non_opaque_type, NULL);
2741 if (sym == NULL)
2742 error_in_psymtab_expansion (block_index, name, cust);
2743 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2744 return SYMBOL_TYPE (sym);
2745 }
2746
2747 /* Subroutine of basic_lookup_transparent_type to simplify it.
2748 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2749 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2750
2751 static struct type *
2752 basic_lookup_transparent_type_1 (struct objfile *objfile,
2753 enum block_enum block_index,
2754 const char *name)
2755 {
2756 const struct blockvector *bv;
2757 const struct block *block;
2758 const struct symbol *sym;
2759
2760 for (compunit_symtab *cust : objfile->compunits ())
2761 {
2762 bv = COMPUNIT_BLOCKVECTOR (cust);
2763 block = BLOCKVECTOR_BLOCK (bv, block_index);
2764 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2765 block_find_non_opaque_type, NULL);
2766 if (sym != NULL)
2767 {
2768 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2769 return SYMBOL_TYPE (sym);
2770 }
2771 }
2772
2773 return NULL;
2774 }
2775
2776 /* The standard implementation of lookup_transparent_type. This code
2777 was modeled on lookup_symbol -- the parts not relevant to looking
2778 up types were just left out. In particular it's assumed here that
2779 types are available in STRUCT_DOMAIN and only in file-static or
2780 global blocks. */
2781
2782 struct type *
2783 basic_lookup_transparent_type (const char *name)
2784 {
2785 struct type *t;
2786
2787 /* Now search all the global symbols. Do the symtab's first, then
2788 check the psymtab's. If a psymtab indicates the existence
2789 of the desired name as a global, then do psymtab-to-symtab
2790 conversion on the fly and return the found symbol. */
2791
2792 for (objfile *objfile : current_program_space->objfiles ())
2793 {
2794 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2795 if (t)
2796 return t;
2797 }
2798
2799 for (objfile *objfile : current_program_space->objfiles ())
2800 {
2801 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2802 if (t)
2803 return t;
2804 }
2805
2806 /* Now search the static file-level symbols.
2807 Not strictly correct, but more useful than an error.
2808 Do the symtab's first, then
2809 check the psymtab's. If a psymtab indicates the existence
2810 of the desired name as a file-level static, then do psymtab-to-symtab
2811 conversion on the fly and return the found symbol. */
2812
2813 for (objfile *objfile : current_program_space->objfiles ())
2814 {
2815 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2816 if (t)
2817 return t;
2818 }
2819
2820 for (objfile *objfile : current_program_space->objfiles ())
2821 {
2822 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2823 if (t)
2824 return t;
2825 }
2826
2827 return (struct type *) 0;
2828 }
2829
2830 /* See symtab.h. */
2831
2832 bool
2833 iterate_over_symbols (const struct block *block,
2834 const lookup_name_info &name,
2835 const domain_enum domain,
2836 gdb::function_view<symbol_found_callback_ftype> callback)
2837 {
2838 struct block_iterator iter;
2839 struct symbol *sym;
2840
2841 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2842 {
2843 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
2844 {
2845 struct block_symbol block_sym = {sym, block};
2846
2847 if (!callback (&block_sym))
2848 return false;
2849 }
2850 }
2851 return true;
2852 }
2853
2854 /* See symtab.h. */
2855
2856 bool
2857 iterate_over_symbols_terminated
2858 (const struct block *block,
2859 const lookup_name_info &name,
2860 const domain_enum domain,
2861 gdb::function_view<symbol_found_callback_ftype> callback)
2862 {
2863 if (!iterate_over_symbols (block, name, domain, callback))
2864 return false;
2865 struct block_symbol block_sym = {nullptr, block};
2866 return callback (&block_sym);
2867 }
2868
2869 /* Find the compunit symtab associated with PC and SECTION.
2870 This will read in debug info as necessary. */
2871
2872 struct compunit_symtab *
2873 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2874 {
2875 struct compunit_symtab *best_cust = NULL;
2876 CORE_ADDR best_cust_range = 0;
2877 struct bound_minimal_symbol msymbol;
2878
2879 /* If we know that this is not a text address, return failure. This is
2880 necessary because we loop based on the block's high and low code
2881 addresses, which do not include the data ranges, and because
2882 we call find_pc_sect_psymtab which has a similar restriction based
2883 on the partial_symtab's texthigh and textlow. */
2884 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2885 if (msymbol.minsym && msymbol.minsym->data_p ())
2886 return NULL;
2887
2888 /* Search all symtabs for the one whose file contains our address, and which
2889 is the smallest of all the ones containing the address. This is designed
2890 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2891 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2892 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2893
2894 This happens for native ecoff format, where code from included files
2895 gets its own symtab. The symtab for the included file should have
2896 been read in already via the dependency mechanism.
2897 It might be swifter to create several symtabs with the same name
2898 like xcoff does (I'm not sure).
2899
2900 It also happens for objfiles that have their functions reordered.
2901 For these, the symtab we are looking for is not necessarily read in. */
2902
2903 for (objfile *obj_file : current_program_space->objfiles ())
2904 {
2905 for (compunit_symtab *cust : obj_file->compunits ())
2906 {
2907 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
2908 const struct block *global_block
2909 = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2910 CORE_ADDR start = BLOCK_START (global_block);
2911 CORE_ADDR end = BLOCK_END (global_block);
2912 bool in_range_p = start <= pc && pc < end;
2913 if (!in_range_p)
2914 continue;
2915
2916 if (BLOCKVECTOR_MAP (bv))
2917 {
2918 if (addrmap_find (BLOCKVECTOR_MAP (bv), pc) == nullptr)
2919 continue;
2920
2921 return cust;
2922 }
2923
2924 CORE_ADDR range = end - start;
2925 if (best_cust != nullptr
2926 && range >= best_cust_range)
2927 /* Cust doesn't have a smaller range than best_cust, skip it. */
2928 continue;
2929
2930 /* For an objfile that has its functions reordered,
2931 find_pc_psymtab will find the proper partial symbol table
2932 and we simply return its corresponding symtab. */
2933 /* In order to better support objfiles that contain both
2934 stabs and coff debugging info, we continue on if a psymtab
2935 can't be found. */
2936 if ((obj_file->flags & OBJF_REORDERED) != 0)
2937 {
2938 struct compunit_symtab *result;
2939
2940 result
2941 = obj_file->find_pc_sect_compunit_symtab (msymbol,
2942 pc,
2943 section,
2944 0);
2945 if (result != NULL)
2946 return result;
2947 }
2948
2949 if (section != 0)
2950 {
2951 struct symbol *sym = NULL;
2952 struct block_iterator iter;
2953
2954 for (int b_index = GLOBAL_BLOCK;
2955 b_index <= STATIC_BLOCK && sym == NULL;
2956 ++b_index)
2957 {
2958 const struct block *b = BLOCKVECTOR_BLOCK (bv, b_index);
2959 ALL_BLOCK_SYMBOLS (b, iter, sym)
2960 {
2961 fixup_symbol_section (sym, obj_file);
2962 if (matching_obj_sections (sym->obj_section (obj_file),
2963 section))
2964 break;
2965 }
2966 }
2967 if (sym == NULL)
2968 continue; /* No symbol in this symtab matches
2969 section. */
2970 }
2971
2972 /* Cust is best found sofar, save it. */
2973 best_cust = cust;
2974 best_cust_range = range;
2975 }
2976 }
2977
2978 if (best_cust != NULL)
2979 return best_cust;
2980
2981 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2982
2983 for (objfile *objf : current_program_space->objfiles ())
2984 {
2985 struct compunit_symtab *result
2986 = objf->find_pc_sect_compunit_symtab (msymbol, pc, section, 1);
2987 if (result != NULL)
2988 return result;
2989 }
2990
2991 return NULL;
2992 }
2993
2994 /* Find the compunit symtab associated with PC.
2995 This will read in debug info as necessary.
2996 Backward compatibility, no section. */
2997
2998 struct compunit_symtab *
2999 find_pc_compunit_symtab (CORE_ADDR pc)
3000 {
3001 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
3002 }
3003
3004 /* See symtab.h. */
3005
3006 struct symbol *
3007 find_symbol_at_address (CORE_ADDR address)
3008 {
3009 /* A helper function to search a given symtab for a symbol matching
3010 ADDR. */
3011 auto search_symtab = [] (compunit_symtab *symtab, CORE_ADDR addr) -> symbol *
3012 {
3013 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
3014
3015 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
3016 {
3017 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
3018 struct block_iterator iter;
3019 struct symbol *sym;
3020
3021 ALL_BLOCK_SYMBOLS (b, iter, sym)
3022 {
3023 if (SYMBOL_CLASS (sym) == LOC_STATIC
3024 && SYMBOL_VALUE_ADDRESS (sym) == addr)
3025 return sym;
3026 }
3027 }
3028 return nullptr;
3029 };
3030
3031 for (objfile *objfile : current_program_space->objfiles ())
3032 {
3033 /* If this objfile was read with -readnow, then we need to
3034 search the symtabs directly. */
3035 if ((objfile->flags & OBJF_READNOW) != 0)
3036 {
3037 for (compunit_symtab *symtab : objfile->compunits ())
3038 {
3039 struct symbol *sym = search_symtab (symtab, address);
3040 if (sym != nullptr)
3041 return sym;
3042 }
3043 }
3044 else
3045 {
3046 struct compunit_symtab *symtab
3047 = objfile->find_compunit_symtab_by_address (address);
3048 if (symtab != NULL)
3049 {
3050 struct symbol *sym = search_symtab (symtab, address);
3051 if (sym != nullptr)
3052 return sym;
3053 }
3054 }
3055 }
3056
3057 return NULL;
3058 }
3059
3060 \f
3061
3062 /* Find the source file and line number for a given PC value and SECTION.
3063 Return a structure containing a symtab pointer, a line number,
3064 and a pc range for the entire source line.
3065 The value's .pc field is NOT the specified pc.
3066 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3067 use the line that ends there. Otherwise, in that case, the line
3068 that begins there is used. */
3069
3070 /* The big complication here is that a line may start in one file, and end just
3071 before the start of another file. This usually occurs when you #include
3072 code in the middle of a subroutine. To properly find the end of a line's PC
3073 range, we must search all symtabs associated with this compilation unit, and
3074 find the one whose first PC is closer than that of the next line in this
3075 symtab. */
3076
3077 struct symtab_and_line
3078 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3079 {
3080 struct compunit_symtab *cust;
3081 struct linetable *l;
3082 int len;
3083 struct linetable_entry *item;
3084 const struct blockvector *bv;
3085 struct bound_minimal_symbol msymbol;
3086
3087 /* Info on best line seen so far, and where it starts, and its file. */
3088
3089 struct linetable_entry *best = NULL;
3090 CORE_ADDR best_end = 0;
3091 struct symtab *best_symtab = 0;
3092
3093 /* Store here the first line number
3094 of a file which contains the line at the smallest pc after PC.
3095 If we don't find a line whose range contains PC,
3096 we will use a line one less than this,
3097 with a range from the start of that file to the first line's pc. */
3098 struct linetable_entry *alt = NULL;
3099
3100 /* Info on best line seen in this file. */
3101
3102 struct linetable_entry *prev;
3103
3104 /* If this pc is not from the current frame,
3105 it is the address of the end of a call instruction.
3106 Quite likely that is the start of the following statement.
3107 But what we want is the statement containing the instruction.
3108 Fudge the pc to make sure we get that. */
3109
3110 /* It's tempting to assume that, if we can't find debugging info for
3111 any function enclosing PC, that we shouldn't search for line
3112 number info, either. However, GAS can emit line number info for
3113 assembly files --- very helpful when debugging hand-written
3114 assembly code. In such a case, we'd have no debug info for the
3115 function, but we would have line info. */
3116
3117 if (notcurrent)
3118 pc -= 1;
3119
3120 /* elz: added this because this function returned the wrong
3121 information if the pc belongs to a stub (import/export)
3122 to call a shlib function. This stub would be anywhere between
3123 two functions in the target, and the line info was erroneously
3124 taken to be the one of the line before the pc. */
3125
3126 /* RT: Further explanation:
3127
3128 * We have stubs (trampolines) inserted between procedures.
3129 *
3130 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3131 * exists in the main image.
3132 *
3133 * In the minimal symbol table, we have a bunch of symbols
3134 * sorted by start address. The stubs are marked as "trampoline",
3135 * the others appear as text. E.g.:
3136 *
3137 * Minimal symbol table for main image
3138 * main: code for main (text symbol)
3139 * shr1: stub (trampoline symbol)
3140 * foo: code for foo (text symbol)
3141 * ...
3142 * Minimal symbol table for "shr1" image:
3143 * ...
3144 * shr1: code for shr1 (text symbol)
3145 * ...
3146 *
3147 * So the code below is trying to detect if we are in the stub
3148 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3149 * and if found, do the symbolization from the real-code address
3150 * rather than the stub address.
3151 *
3152 * Assumptions being made about the minimal symbol table:
3153 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3154 * if we're really in the trampoline.s If we're beyond it (say
3155 * we're in "foo" in the above example), it'll have a closer
3156 * symbol (the "foo" text symbol for example) and will not
3157 * return the trampoline.
3158 * 2. lookup_minimal_symbol_text() will find a real text symbol
3159 * corresponding to the trampoline, and whose address will
3160 * be different than the trampoline address. I put in a sanity
3161 * check for the address being the same, to avoid an
3162 * infinite recursion.
3163 */
3164 msymbol = lookup_minimal_symbol_by_pc (pc);
3165 if (msymbol.minsym != NULL)
3166 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3167 {
3168 struct bound_minimal_symbol mfunsym
3169 = lookup_minimal_symbol_text (msymbol.minsym->linkage_name (),
3170 NULL);
3171
3172 if (mfunsym.minsym == NULL)
3173 /* I eliminated this warning since it is coming out
3174 * in the following situation:
3175 * gdb shmain // test program with shared libraries
3176 * (gdb) break shr1 // function in shared lib
3177 * Warning: In stub for ...
3178 * In the above situation, the shared lib is not loaded yet,
3179 * so of course we can't find the real func/line info,
3180 * but the "break" still works, and the warning is annoying.
3181 * So I commented out the warning. RT */
3182 /* warning ("In stub for %s; unable to find real function/line info",
3183 msymbol->linkage_name ()); */
3184 ;
3185 /* fall through */
3186 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3187 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3188 /* Avoid infinite recursion */
3189 /* See above comment about why warning is commented out. */
3190 /* warning ("In stub for %s; unable to find real function/line info",
3191 msymbol->linkage_name ()); */
3192 ;
3193 /* fall through */
3194 else
3195 {
3196 /* Detect an obvious case of infinite recursion. If this
3197 should occur, we'd like to know about it, so error out,
3198 fatally. */
3199 if (BMSYMBOL_VALUE_ADDRESS (mfunsym) == pc)
3200 internal_error (__FILE__, __LINE__,
3201 _("Infinite recursion detected in find_pc_sect_line;"
3202 "please file a bug report"));
3203
3204 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3205 }
3206 }
3207
3208 symtab_and_line val;
3209 val.pspace = current_program_space;
3210
3211 cust = find_pc_sect_compunit_symtab (pc, section);
3212 if (cust == NULL)
3213 {
3214 /* If no symbol information, return previous pc. */
3215 if (notcurrent)
3216 pc++;
3217 val.pc = pc;
3218 return val;
3219 }
3220
3221 bv = COMPUNIT_BLOCKVECTOR (cust);
3222
3223 /* Look at all the symtabs that share this blockvector.
3224 They all have the same apriori range, that we found was right;
3225 but they have different line tables. */
3226
3227 for (symtab *iter_s : compunit_filetabs (cust))
3228 {
3229 /* Find the best line in this symtab. */
3230 l = SYMTAB_LINETABLE (iter_s);
3231 if (!l)
3232 continue;
3233 len = l->nitems;
3234 if (len <= 0)
3235 {
3236 /* I think len can be zero if the symtab lacks line numbers
3237 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3238 I'm not sure which, and maybe it depends on the symbol
3239 reader). */
3240 continue;
3241 }
3242
3243 prev = NULL;
3244 item = l->item; /* Get first line info. */
3245
3246 /* Is this file's first line closer than the first lines of other files?
3247 If so, record this file, and its first line, as best alternate. */
3248 if (item->pc > pc && (!alt || item->pc < alt->pc))
3249 alt = item;
3250
3251 auto pc_compare = [](const CORE_ADDR & comp_pc,
3252 const struct linetable_entry & lhs)->bool
3253 {
3254 return comp_pc < lhs.pc;
3255 };
3256
3257 struct linetable_entry *first = item;
3258 struct linetable_entry *last = item + len;
3259 item = std::upper_bound (first, last, pc, pc_compare);
3260 if (item != first)
3261 prev = item - 1; /* Found a matching item. */
3262
3263 /* At this point, prev points at the line whose start addr is <= pc, and
3264 item points at the next line. If we ran off the end of the linetable
3265 (pc >= start of the last line), then prev == item. If pc < start of
3266 the first line, prev will not be set. */
3267
3268 /* Is this file's best line closer than the best in the other files?
3269 If so, record this file, and its best line, as best so far. Don't
3270 save prev if it represents the end of a function (i.e. line number
3271 0) instead of a real line. */
3272
3273 if (prev && prev->line && (!best || prev->pc > best->pc))
3274 {
3275 best = prev;
3276 best_symtab = iter_s;
3277
3278 /* If during the binary search we land on a non-statement entry,
3279 scan backward through entries at the same address to see if
3280 there is an entry marked as is-statement. In theory this
3281 duplication should have been removed from the line table
3282 during construction, this is just a double check. If the line
3283 table has had the duplication removed then this should be
3284 pretty cheap. */
3285 if (!best->is_stmt)
3286 {
3287 struct linetable_entry *tmp = best;
3288 while (tmp > first && (tmp - 1)->pc == tmp->pc
3289 && (tmp - 1)->line != 0 && !tmp->is_stmt)
3290 --tmp;
3291 if (tmp->is_stmt)
3292 best = tmp;
3293 }
3294
3295 /* Discard BEST_END if it's before the PC of the current BEST. */
3296 if (best_end <= best->pc)
3297 best_end = 0;
3298 }
3299
3300 /* If another line (denoted by ITEM) is in the linetable and its
3301 PC is after BEST's PC, but before the current BEST_END, then
3302 use ITEM's PC as the new best_end. */
3303 if (best && item < last && item->pc > best->pc
3304 && (best_end == 0 || best_end > item->pc))
3305 best_end = item->pc;
3306 }
3307
3308 if (!best_symtab)
3309 {
3310 /* If we didn't find any line number info, just return zeros.
3311 We used to return alt->line - 1 here, but that could be
3312 anywhere; if we don't have line number info for this PC,
3313 don't make some up. */
3314 val.pc = pc;
3315 }
3316 else if (best->line == 0)
3317 {
3318 /* If our best fit is in a range of PC's for which no line
3319 number info is available (line number is zero) then we didn't
3320 find any valid line information. */
3321 val.pc = pc;
3322 }
3323 else
3324 {
3325 val.is_stmt = best->is_stmt;
3326 val.symtab = best_symtab;
3327 val.line = best->line;
3328 val.pc = best->pc;
3329 if (best_end && (!alt || best_end < alt->pc))
3330 val.end = best_end;
3331 else if (alt)
3332 val.end = alt->pc;
3333 else
3334 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3335 }
3336 val.section = section;
3337 return val;
3338 }
3339
3340 /* Backward compatibility (no section). */
3341
3342 struct symtab_and_line
3343 find_pc_line (CORE_ADDR pc, int notcurrent)
3344 {
3345 struct obj_section *section;
3346
3347 section = find_pc_overlay (pc);
3348 if (!pc_in_unmapped_range (pc, section))
3349 return find_pc_sect_line (pc, section, notcurrent);
3350
3351 /* If the original PC was an unmapped address then we translate this to a
3352 mapped address in order to lookup the sal. However, as the user
3353 passed us an unmapped address it makes more sense to return a result
3354 that has the pc and end fields translated to unmapped addresses. */
3355 pc = overlay_mapped_address (pc, section);
3356 symtab_and_line sal = find_pc_sect_line (pc, section, notcurrent);
3357 sal.pc = overlay_unmapped_address (sal.pc, section);
3358 sal.end = overlay_unmapped_address (sal.end, section);
3359 return sal;
3360 }
3361
3362 /* See symtab.h. */
3363
3364 struct symtab *
3365 find_pc_line_symtab (CORE_ADDR pc)
3366 {
3367 struct symtab_and_line sal;
3368
3369 /* This always passes zero for NOTCURRENT to find_pc_line.
3370 There are currently no callers that ever pass non-zero. */
3371 sal = find_pc_line (pc, 0);
3372 return sal.symtab;
3373 }
3374 \f
3375 /* Find line number LINE in any symtab whose name is the same as
3376 SYMTAB.
3377
3378 If found, return the symtab that contains the linetable in which it was
3379 found, set *INDEX to the index in the linetable of the best entry
3380 found, and set *EXACT_MATCH to true if the value returned is an
3381 exact match.
3382
3383 If not found, return NULL. */
3384
3385 struct symtab *
3386 find_line_symtab (struct symtab *sym_tab, int line,
3387 int *index, bool *exact_match)
3388 {
3389 int exact = 0; /* Initialized here to avoid a compiler warning. */
3390
3391 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3392 so far seen. */
3393
3394 int best_index;
3395 struct linetable *best_linetable;
3396 struct symtab *best_symtab;
3397
3398 /* First try looking it up in the given symtab. */
3399 best_linetable = SYMTAB_LINETABLE (sym_tab);
3400 best_symtab = sym_tab;
3401 best_index = find_line_common (best_linetable, line, &exact, 0);
3402 if (best_index < 0 || !exact)
3403 {
3404 /* Didn't find an exact match. So we better keep looking for
3405 another symtab with the same name. In the case of xcoff,
3406 multiple csects for one source file (produced by IBM's FORTRAN
3407 compiler) produce multiple symtabs (this is unavoidable
3408 assuming csects can be at arbitrary places in memory and that
3409 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3410
3411 /* BEST is the smallest linenumber > LINE so far seen,
3412 or 0 if none has been seen so far.
3413 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3414 int best;
3415
3416 if (best_index >= 0)
3417 best = best_linetable->item[best_index].line;
3418 else
3419 best = 0;
3420
3421 for (objfile *objfile : current_program_space->objfiles ())
3422 objfile->expand_symtabs_with_fullname (symtab_to_fullname (sym_tab));
3423
3424 for (objfile *objfile : current_program_space->objfiles ())
3425 {
3426 for (compunit_symtab *cu : objfile->compunits ())
3427 {
3428 for (symtab *s : compunit_filetabs (cu))
3429 {
3430 struct linetable *l;
3431 int ind;
3432
3433 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0)
3434 continue;
3435 if (FILENAME_CMP (symtab_to_fullname (sym_tab),
3436 symtab_to_fullname (s)) != 0)
3437 continue;
3438 l = SYMTAB_LINETABLE (s);
3439 ind = find_line_common (l, line, &exact, 0);
3440 if (ind >= 0)
3441 {
3442 if (exact)
3443 {
3444 best_index = ind;
3445 best_linetable = l;
3446 best_symtab = s;
3447 goto done;
3448 }
3449 if (best == 0 || l->item[ind].line < best)
3450 {
3451 best = l->item[ind].line;
3452 best_index = ind;
3453 best_linetable = l;
3454 best_symtab = s;
3455 }
3456 }
3457 }
3458 }
3459 }
3460 }
3461 done:
3462 if (best_index < 0)
3463 return NULL;
3464
3465 if (index)
3466 *index = best_index;
3467 if (exact_match)
3468 *exact_match = (exact != 0);
3469
3470 return best_symtab;
3471 }
3472
3473 /* Given SYMTAB, returns all the PCs function in the symtab that
3474 exactly match LINE. Returns an empty vector if there are no exact
3475 matches, but updates BEST_ITEM in this case. */
3476
3477 std::vector<CORE_ADDR>
3478 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3479 struct linetable_entry **best_item)
3480 {
3481 int start = 0;
3482 std::vector<CORE_ADDR> result;
3483
3484 /* First, collect all the PCs that are at this line. */
3485 while (1)
3486 {
3487 int was_exact;
3488 int idx;
3489
3490 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3491 start);
3492 if (idx < 0)
3493 break;
3494
3495 if (!was_exact)
3496 {
3497 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3498
3499 if (*best_item == NULL
3500 || (item->line < (*best_item)->line && item->is_stmt))
3501 *best_item = item;
3502
3503 break;
3504 }
3505
3506 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3507 start = idx + 1;
3508 }
3509
3510 return result;
3511 }
3512
3513 \f
3514 /* Set the PC value for a given source file and line number and return true.
3515 Returns false for invalid line number (and sets the PC to 0).
3516 The source file is specified with a struct symtab. */
3517
3518 bool
3519 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3520 {
3521 struct linetable *l;
3522 int ind;
3523
3524 *pc = 0;
3525 if (symtab == 0)
3526 return false;
3527
3528 symtab = find_line_symtab (symtab, line, &ind, NULL);
3529 if (symtab != NULL)
3530 {
3531 l = SYMTAB_LINETABLE (symtab);
3532 *pc = l->item[ind].pc;
3533 return true;
3534 }
3535 else
3536 return false;
3537 }
3538
3539 /* Find the range of pc values in a line.
3540 Store the starting pc of the line into *STARTPTR
3541 and the ending pc (start of next line) into *ENDPTR.
3542 Returns true to indicate success.
3543 Returns false if could not find the specified line. */
3544
3545 bool
3546 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3547 CORE_ADDR *endptr)
3548 {
3549 CORE_ADDR startaddr;
3550 struct symtab_and_line found_sal;
3551
3552 startaddr = sal.pc;
3553 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3554 return false;
3555
3556 /* This whole function is based on address. For example, if line 10 has
3557 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3558 "info line *0x123" should say the line goes from 0x100 to 0x200
3559 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3560 This also insures that we never give a range like "starts at 0x134
3561 and ends at 0x12c". */
3562
3563 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3564 if (found_sal.line != sal.line)
3565 {
3566 /* The specified line (sal) has zero bytes. */
3567 *startptr = found_sal.pc;
3568 *endptr = found_sal.pc;
3569 }
3570 else
3571 {
3572 *startptr = found_sal.pc;
3573 *endptr = found_sal.end;
3574 }
3575 return true;
3576 }
3577
3578 /* Given a line table and a line number, return the index into the line
3579 table for the pc of the nearest line whose number is >= the specified one.
3580 Return -1 if none is found. The value is >= 0 if it is an index.
3581 START is the index at which to start searching the line table.
3582
3583 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3584
3585 static int
3586 find_line_common (struct linetable *l, int lineno,
3587 int *exact_match, int start)
3588 {
3589 int i;
3590 int len;
3591
3592 /* BEST is the smallest linenumber > LINENO so far seen,
3593 or 0 if none has been seen so far.
3594 BEST_INDEX identifies the item for it. */
3595
3596 int best_index = -1;
3597 int best = 0;
3598
3599 *exact_match = 0;
3600
3601 if (lineno <= 0)
3602 return -1;
3603 if (l == 0)
3604 return -1;
3605
3606 len = l->nitems;
3607 for (i = start; i < len; i++)
3608 {
3609 struct linetable_entry *item = &(l->item[i]);
3610
3611 /* Ignore non-statements. */
3612 if (!item->is_stmt)
3613 continue;
3614
3615 if (item->line == lineno)
3616 {
3617 /* Return the first (lowest address) entry which matches. */
3618 *exact_match = 1;
3619 return i;
3620 }
3621
3622 if (item->line > lineno && (best == 0 || item->line < best))
3623 {
3624 best = item->line;
3625 best_index = i;
3626 }
3627 }
3628
3629 /* If we got here, we didn't get an exact match. */
3630 return best_index;
3631 }
3632
3633 bool
3634 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3635 {
3636 struct symtab_and_line sal;
3637
3638 sal = find_pc_line (pc, 0);
3639 *startptr = sal.pc;
3640 *endptr = sal.end;
3641 return sal.symtab != 0;
3642 }
3643
3644 /* Helper for find_function_start_sal. Does most of the work, except
3645 setting the sal's symbol. */
3646
3647 static symtab_and_line
3648 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3649 bool funfirstline)
3650 {
3651 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3652
3653 if (funfirstline && sal.symtab != NULL
3654 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3655 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3656 {
3657 struct gdbarch *gdbarch = SYMTAB_OBJFILE (sal.symtab)->arch ();
3658
3659 sal.pc = func_addr;
3660 if (gdbarch_skip_entrypoint_p (gdbarch))
3661 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3662 return sal;
3663 }
3664
3665 /* We always should have a line for the function start address.
3666 If we don't, something is odd. Create a plain SAL referring
3667 just the PC and hope that skip_prologue_sal (if requested)
3668 can find a line number for after the prologue. */
3669 if (sal.pc < func_addr)
3670 {
3671 sal = {};
3672 sal.pspace = current_program_space;
3673 sal.pc = func_addr;
3674 sal.section = section;
3675 }
3676
3677 if (funfirstline)
3678 skip_prologue_sal (&sal);
3679
3680 return sal;
3681 }
3682
3683 /* See symtab.h. */
3684
3685 symtab_and_line
3686 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3687 bool funfirstline)
3688 {
3689 symtab_and_line sal
3690 = find_function_start_sal_1 (func_addr, section, funfirstline);
3691
3692 /* find_function_start_sal_1 does a linetable search, so it finds
3693 the symtab and linenumber, but not a symbol. Fill in the
3694 function symbol too. */
3695 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3696
3697 return sal;
3698 }
3699
3700 /* See symtab.h. */
3701
3702 symtab_and_line
3703 find_function_start_sal (symbol *sym, bool funfirstline)
3704 {
3705 fixup_symbol_section (sym, NULL);
3706 symtab_and_line sal
3707 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3708 sym->obj_section (symbol_objfile (sym)),
3709 funfirstline);
3710 sal.symbol = sym;
3711 return sal;
3712 }
3713
3714
3715 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3716 address for that function that has an entry in SYMTAB's line info
3717 table. If such an entry cannot be found, return FUNC_ADDR
3718 unaltered. */
3719
3720 static CORE_ADDR
3721 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3722 {
3723 CORE_ADDR func_start, func_end;
3724 struct linetable *l;
3725 int i;
3726
3727 /* Give up if this symbol has no lineinfo table. */
3728 l = SYMTAB_LINETABLE (symtab);
3729 if (l == NULL)
3730 return func_addr;
3731
3732 /* Get the range for the function's PC values, or give up if we
3733 cannot, for some reason. */
3734 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3735 return func_addr;
3736
3737 /* Linetable entries are ordered by PC values, see the commentary in
3738 symtab.h where `struct linetable' is defined. Thus, the first
3739 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3740 address we are looking for. */
3741 for (i = 0; i < l->nitems; i++)
3742 {
3743 struct linetable_entry *item = &(l->item[i]);
3744
3745 /* Don't use line numbers of zero, they mark special entries in
3746 the table. See the commentary on symtab.h before the
3747 definition of struct linetable. */
3748 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3749 return item->pc;
3750 }
3751
3752 return func_addr;
3753 }
3754
3755 /* Adjust SAL to the first instruction past the function prologue.
3756 If the PC was explicitly specified, the SAL is not changed.
3757 If the line number was explicitly specified then the SAL can still be
3758 updated, unless the language for SAL is assembler, in which case the SAL
3759 will be left unchanged.
3760 If SAL is already past the prologue, then do nothing. */
3761
3762 void
3763 skip_prologue_sal (struct symtab_and_line *sal)
3764 {
3765 struct symbol *sym;
3766 struct symtab_and_line start_sal;
3767 CORE_ADDR pc, saved_pc;
3768 struct obj_section *section;
3769 const char *name;
3770 struct objfile *objfile;
3771 struct gdbarch *gdbarch;
3772 const struct block *b, *function_block;
3773 int force_skip, skip;
3774
3775 /* Do not change the SAL if PC was specified explicitly. */
3776 if (sal->explicit_pc)
3777 return;
3778
3779 /* In assembly code, if the user asks for a specific line then we should
3780 not adjust the SAL. The user already has instruction level
3781 visibility in this case, so selecting a line other than one requested
3782 is likely to be the wrong choice. */
3783 if (sal->symtab != nullptr
3784 && sal->explicit_line
3785 && SYMTAB_LANGUAGE (sal->symtab) == language_asm)
3786 return;
3787
3788 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3789
3790 switch_to_program_space_and_thread (sal->pspace);
3791
3792 sym = find_pc_sect_function (sal->pc, sal->section);
3793 if (sym != NULL)
3794 {
3795 fixup_symbol_section (sym, NULL);
3796
3797 objfile = symbol_objfile (sym);
3798 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3799 section = sym->obj_section (objfile);
3800 name = sym->linkage_name ();
3801 }
3802 else
3803 {
3804 struct bound_minimal_symbol msymbol
3805 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3806
3807 if (msymbol.minsym == NULL)
3808 return;
3809
3810 objfile = msymbol.objfile;
3811 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3812 section = msymbol.minsym->obj_section (objfile);
3813 name = msymbol.minsym->linkage_name ();
3814 }
3815
3816 gdbarch = objfile->arch ();
3817
3818 /* Process the prologue in two passes. In the first pass try to skip the
3819 prologue (SKIP is true) and verify there is a real need for it (indicated
3820 by FORCE_SKIP). If no such reason was found run a second pass where the
3821 prologue is not skipped (SKIP is false). */
3822
3823 skip = 1;
3824 force_skip = 1;
3825
3826 /* Be conservative - allow direct PC (without skipping prologue) only if we
3827 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3828 have to be set by the caller so we use SYM instead. */
3829 if (sym != NULL
3830 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3831 force_skip = 0;
3832
3833 saved_pc = pc;
3834 do
3835 {
3836 pc = saved_pc;
3837
3838 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3839 so that gdbarch_skip_prologue has something unique to work on. */
3840 if (section_is_overlay (section) && !section_is_mapped (section))
3841 pc = overlay_unmapped_address (pc, section);
3842
3843 /* Skip "first line" of function (which is actually its prologue). */
3844 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3845 if (gdbarch_skip_entrypoint_p (gdbarch))
3846 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3847 if (skip)
3848 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3849
3850 /* For overlays, map pc back into its mapped VMA range. */
3851 pc = overlay_mapped_address (pc, section);
3852
3853 /* Calculate line number. */
3854 start_sal = find_pc_sect_line (pc, section, 0);
3855
3856 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3857 line is still part of the same function. */
3858 if (skip && start_sal.pc != pc
3859 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3860 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3861 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3862 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3863 {
3864 /* First pc of next line */
3865 pc = start_sal.end;
3866 /* Recalculate the line number (might not be N+1). */
3867 start_sal = find_pc_sect_line (pc, section, 0);
3868 }
3869
3870 /* On targets with executable formats that don't have a concept of
3871 constructors (ELF with .init has, PE doesn't), gcc emits a call
3872 to `__main' in `main' between the prologue and before user
3873 code. */
3874 if (gdbarch_skip_main_prologue_p (gdbarch)
3875 && name && strcmp_iw (name, "main") == 0)
3876 {
3877 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3878 /* Recalculate the line number (might not be N+1). */
3879 start_sal = find_pc_sect_line (pc, section, 0);
3880 force_skip = 1;
3881 }
3882 }
3883 while (!force_skip && skip--);
3884
3885 /* If we still don't have a valid source line, try to find the first
3886 PC in the lineinfo table that belongs to the same function. This
3887 happens with COFF debug info, which does not seem to have an
3888 entry in lineinfo table for the code after the prologue which has
3889 no direct relation to source. For example, this was found to be
3890 the case with the DJGPP target using "gcc -gcoff" when the
3891 compiler inserted code after the prologue to make sure the stack
3892 is aligned. */
3893 if (!force_skip && sym && start_sal.symtab == NULL)
3894 {
3895 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3896 /* Recalculate the line number. */
3897 start_sal = find_pc_sect_line (pc, section, 0);
3898 }
3899
3900 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3901 forward SAL to the end of the prologue. */
3902 if (sal->pc >= pc)
3903 return;
3904
3905 sal->pc = pc;
3906 sal->section = section;
3907 sal->symtab = start_sal.symtab;
3908 sal->line = start_sal.line;
3909 sal->end = start_sal.end;
3910
3911 /* Check if we are now inside an inlined function. If we can,
3912 use the call site of the function instead. */
3913 b = block_for_pc_sect (sal->pc, sal->section);
3914 function_block = NULL;
3915 while (b != NULL)
3916 {
3917 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3918 function_block = b;
3919 else if (BLOCK_FUNCTION (b) != NULL)
3920 break;
3921 b = BLOCK_SUPERBLOCK (b);
3922 }
3923 if (function_block != NULL
3924 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3925 {
3926 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3927 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3928 }
3929 }
3930
3931 /* Given PC at the function's start address, attempt to find the
3932 prologue end using SAL information. Return zero if the skip fails.
3933
3934 A non-optimized prologue traditionally has one SAL for the function
3935 and a second for the function body. A single line function has
3936 them both pointing at the same line.
3937
3938 An optimized prologue is similar but the prologue may contain
3939 instructions (SALs) from the instruction body. Need to skip those
3940 while not getting into the function body.
3941
3942 The functions end point and an increasing SAL line are used as
3943 indicators of the prologue's endpoint.
3944
3945 This code is based on the function refine_prologue_limit
3946 (found in ia64). */
3947
3948 CORE_ADDR
3949 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3950 {
3951 struct symtab_and_line prologue_sal;
3952 CORE_ADDR start_pc;
3953 CORE_ADDR end_pc;
3954 const struct block *bl;
3955
3956 /* Get an initial range for the function. */
3957 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3958 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3959
3960 prologue_sal = find_pc_line (start_pc, 0);
3961 if (prologue_sal.line != 0)
3962 {
3963 /* For languages other than assembly, treat two consecutive line
3964 entries at the same address as a zero-instruction prologue.
3965 The GNU assembler emits separate line notes for each instruction
3966 in a multi-instruction macro, but compilers generally will not
3967 do this. */
3968 if (prologue_sal.symtab->language != language_asm)
3969 {
3970 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3971 int idx = 0;
3972
3973 /* Skip any earlier lines, and any end-of-sequence marker
3974 from a previous function. */
3975 while (linetable->item[idx].pc != prologue_sal.pc
3976 || linetable->item[idx].line == 0)
3977 idx++;
3978
3979 if (idx+1 < linetable->nitems
3980 && linetable->item[idx+1].line != 0
3981 && linetable->item[idx+1].pc == start_pc)
3982 return start_pc;
3983 }
3984
3985 /* If there is only one sal that covers the entire function,
3986 then it is probably a single line function, like
3987 "foo(){}". */
3988 if (prologue_sal.end >= end_pc)
3989 return 0;
3990
3991 while (prologue_sal.end < end_pc)
3992 {
3993 struct symtab_and_line sal;
3994
3995 sal = find_pc_line (prologue_sal.end, 0);
3996 if (sal.line == 0)
3997 break;
3998 /* Assume that a consecutive SAL for the same (or larger)
3999 line mark the prologue -> body transition. */
4000 if (sal.line >= prologue_sal.line)
4001 break;
4002 /* Likewise if we are in a different symtab altogether
4003 (e.g. within a file included via #include).  */
4004 if (sal.symtab != prologue_sal.symtab)
4005 break;
4006
4007 /* The line number is smaller. Check that it's from the
4008 same function, not something inlined. If it's inlined,
4009 then there is no point comparing the line numbers. */
4010 bl = block_for_pc (prologue_sal.end);
4011 while (bl)
4012 {
4013 if (block_inlined_p (bl))
4014 break;
4015 if (BLOCK_FUNCTION (bl))
4016 {
4017 bl = NULL;
4018 break;
4019 }
4020 bl = BLOCK_SUPERBLOCK (bl);
4021 }
4022 if (bl != NULL)
4023 break;
4024
4025 /* The case in which compiler's optimizer/scheduler has
4026 moved instructions into the prologue. We look ahead in
4027 the function looking for address ranges whose
4028 corresponding line number is less the first one that we
4029 found for the function. This is more conservative then
4030 refine_prologue_limit which scans a large number of SALs
4031 looking for any in the prologue. */
4032 prologue_sal = sal;
4033 }
4034 }
4035
4036 if (prologue_sal.end < end_pc)
4037 /* Return the end of this line, or zero if we could not find a
4038 line. */
4039 return prologue_sal.end;
4040 else
4041 /* Don't return END_PC, which is past the end of the function. */
4042 return prologue_sal.pc;
4043 }
4044
4045 /* See symtab.h. */
4046
4047 symbol *
4048 find_function_alias_target (bound_minimal_symbol msymbol)
4049 {
4050 CORE_ADDR func_addr;
4051 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
4052 return NULL;
4053
4054 symbol *sym = find_pc_function (func_addr);
4055 if (sym != NULL
4056 && SYMBOL_CLASS (sym) == LOC_BLOCK
4057 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
4058 return sym;
4059
4060 return NULL;
4061 }
4062
4063 \f
4064 /* If P is of the form "operator[ \t]+..." where `...' is
4065 some legitimate operator text, return a pointer to the
4066 beginning of the substring of the operator text.
4067 Otherwise, return "". */
4068
4069 static const char *
4070 operator_chars (const char *p, const char **end)
4071 {
4072 *end = "";
4073 if (!startswith (p, CP_OPERATOR_STR))
4074 return *end;
4075 p += CP_OPERATOR_LEN;
4076
4077 /* Don't get faked out by `operator' being part of a longer
4078 identifier. */
4079 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4080 return *end;
4081
4082 /* Allow some whitespace between `operator' and the operator symbol. */
4083 while (*p == ' ' || *p == '\t')
4084 p++;
4085
4086 /* Recognize 'operator TYPENAME'. */
4087
4088 if (isalpha (*p) || *p == '_' || *p == '$')
4089 {
4090 const char *q = p + 1;
4091
4092 while (isalnum (*q) || *q == '_' || *q == '$')
4093 q++;
4094 *end = q;
4095 return p;
4096 }
4097
4098 while (*p)
4099 switch (*p)
4100 {
4101 case '\\': /* regexp quoting */
4102 if (p[1] == '*')
4103 {
4104 if (p[2] == '=') /* 'operator\*=' */
4105 *end = p + 3;
4106 else /* 'operator\*' */
4107 *end = p + 2;
4108 return p;
4109 }
4110 else if (p[1] == '[')
4111 {
4112 if (p[2] == ']')
4113 error (_("mismatched quoting on brackets, "
4114 "try 'operator\\[\\]'"));
4115 else if (p[2] == '\\' && p[3] == ']')
4116 {
4117 *end = p + 4; /* 'operator\[\]' */
4118 return p;
4119 }
4120 else
4121 error (_("nothing is allowed between '[' and ']'"));
4122 }
4123 else
4124 {
4125 /* Gratuitous quote: skip it and move on. */
4126 p++;
4127 continue;
4128 }
4129 break;
4130 case '!':
4131 case '=':
4132 case '*':
4133 case '/':
4134 case '%':
4135 case '^':
4136 if (p[1] == '=')
4137 *end = p + 2;
4138 else
4139 *end = p + 1;
4140 return p;
4141 case '<':
4142 case '>':
4143 case '+':
4144 case '-':
4145 case '&':
4146 case '|':
4147 if (p[0] == '-' && p[1] == '>')
4148 {
4149 /* Struct pointer member operator 'operator->'. */
4150 if (p[2] == '*')
4151 {
4152 *end = p + 3; /* 'operator->*' */
4153 return p;
4154 }
4155 else if (p[2] == '\\')
4156 {
4157 *end = p + 4; /* Hopefully 'operator->\*' */
4158 return p;
4159 }
4160 else
4161 {
4162 *end = p + 2; /* 'operator->' */
4163 return p;
4164 }
4165 }
4166 if (p[1] == '=' || p[1] == p[0])
4167 *end = p + 2;
4168 else
4169 *end = p + 1;
4170 return p;
4171 case '~':
4172 case ',':
4173 *end = p + 1;
4174 return p;
4175 case '(':
4176 if (p[1] != ')')
4177 error (_("`operator ()' must be specified "
4178 "without whitespace in `()'"));
4179 *end = p + 2;
4180 return p;
4181 case '?':
4182 if (p[1] != ':')
4183 error (_("`operator ?:' must be specified "
4184 "without whitespace in `?:'"));
4185 *end = p + 2;
4186 return p;
4187 case '[':
4188 if (p[1] != ']')
4189 error (_("`operator []' must be specified "
4190 "without whitespace in `[]'"));
4191 *end = p + 2;
4192 return p;
4193 default:
4194 error (_("`operator %s' not supported"), p);
4195 break;
4196 }
4197
4198 *end = "";
4199 return *end;
4200 }
4201 \f
4202
4203 /* See class declaration. */
4204
4205 info_sources_filter::info_sources_filter (match_on match_type,
4206 const char *regexp)
4207 : m_match_type (match_type),
4208 m_regexp (regexp)
4209 {
4210 /* Setup the compiled regular expression M_C_REGEXP based on M_REGEXP. */
4211 if (m_regexp != nullptr && *m_regexp != '\0')
4212 {
4213 gdb_assert (m_regexp != nullptr);
4214
4215 int cflags = REG_NOSUB;
4216 #ifdef HAVE_CASE_INSENSITIVE_FILE_SYSTEM
4217 cflags |= REG_ICASE;
4218 #endif
4219 m_c_regexp.emplace (m_regexp, cflags, _("Invalid regexp"));
4220 }
4221 }
4222
4223 /* See class declaration. */
4224
4225 bool
4226 info_sources_filter::matches (const char *fullname) const
4227 {
4228 /* Does it match regexp? */
4229 if (m_c_regexp.has_value ())
4230 {
4231 const char *to_match;
4232 std::string dirname;
4233
4234 switch (m_match_type)
4235 {
4236 case match_on::DIRNAME:
4237 dirname = ldirname (fullname);
4238 to_match = dirname.c_str ();
4239 break;
4240 case match_on::BASENAME:
4241 to_match = lbasename (fullname);
4242 break;
4243 case match_on::FULLNAME:
4244 to_match = fullname;
4245 break;
4246 }
4247
4248 if (m_c_regexp->exec (to_match, 0, NULL, 0) != 0)
4249 return false;
4250 }
4251
4252 return true;
4253 }
4254
4255 /* See class declaration. */
4256
4257 void
4258 info_sources_filter::print (struct ui_out *uiout) const
4259 {
4260 if (m_c_regexp.has_value ())
4261 {
4262 gdb_assert (m_regexp != nullptr);
4263
4264 switch (m_match_type)
4265 {
4266 case match_on::DIRNAME:
4267 uiout->message (_("(dirname matching regular expression \"%s\")"),
4268 m_regexp);
4269 break;
4270 case match_on::BASENAME:
4271 uiout->message (_("(basename matching regular expression \"%s\")"),
4272 m_regexp);
4273 break;
4274 case match_on::FULLNAME:
4275 printf_filtered (_("(filename matching regular expression \"%s\")"),
4276 m_regexp);
4277 break;
4278 }
4279 }
4280 }
4281
4282 /* Data structure to maintain the state used for printing the results of
4283 the 'info sources' command. */
4284
4285 struct output_source_filename_data
4286 {
4287 /* Create an object for displaying the results of the 'info sources'
4288 command to UIOUT. FILTER must remain valid and unchanged for the
4289 lifetime of this object as this object retains a reference to FILTER. */
4290 output_source_filename_data (struct ui_out *uiout,
4291 const info_sources_filter &filter)
4292 : m_filter (filter),
4293 m_uiout (uiout)
4294 { /* Nothing. */ }
4295
4296 DISABLE_COPY_AND_ASSIGN (output_source_filename_data);
4297
4298 /* Reset enough state of this object so we can match against a new set of
4299 files. The existing regular expression is retained though. */
4300 void reset_output ()
4301 {
4302 m_first = true;
4303 m_filename_seen_cache.clear ();
4304 }
4305
4306 /* Worker for sources_info, outputs the file name formatted for either
4307 cli or mi (based on the current_uiout). In cli mode displays
4308 FULLNAME with a comma separating this name from any previously
4309 printed name (line breaks are added at the comma). In MI mode
4310 outputs a tuple containing DISP_NAME (the files display name),
4311 FULLNAME, and EXPANDED_P (true when this file is from a fully
4312 expanded symtab, otherwise false). */
4313 void output (const char *disp_name, const char *fullname, bool expanded_p);
4314
4315 /* Prints the header messages for the source files that will be printed
4316 with the matching info present in the current object state.
4317 SYMBOL_MSG is a message that describes what will or has been done with
4318 the symbols of the matching source files. */
4319 void print_header (const char *symbol_msg);
4320
4321 /* An overload suitable for use as a callback to
4322 quick_symbol_functions::map_symbol_filenames. */
4323 void operator() (const char *filename, const char *fullname)
4324 {
4325 /* The false here indicates that this file is from an unexpanded
4326 symtab. */
4327 output (filename, fullname, false);
4328 }
4329
4330 private:
4331
4332 /* Flag of whether we're printing the first one. */
4333 bool m_first = true;
4334
4335 /* Cache of what we've seen so far. */
4336 filename_seen_cache m_filename_seen_cache;
4337
4338 /* How source filename should be filtered. */
4339 const info_sources_filter &m_filter;
4340
4341 /* The object to which output is sent. */
4342 struct ui_out *m_uiout;
4343 };
4344
4345 /* See comment in class declaration above. */
4346
4347 void
4348 output_source_filename_data::output (const char *disp_name,
4349 const char *fullname,
4350 bool expanded_p)
4351 {
4352 /* Since a single source file can result in several partial symbol
4353 tables, we need to avoid printing it more than once. Note: if
4354 some of the psymtabs are read in and some are not, it gets
4355 printed both under "Source files for which symbols have been
4356 read" and "Source files for which symbols will be read in on
4357 demand". I consider this a reasonable way to deal with the
4358 situation. I'm not sure whether this can also happen for
4359 symtabs; it doesn't hurt to check. */
4360
4361 /* Was NAME already seen? If so, then don't print it again. */
4362 if (m_filename_seen_cache.seen (fullname))
4363 return;
4364
4365 /* If the filter rejects this file then don't print it. */
4366 if (!m_filter.matches (fullname))
4367 return;
4368
4369 ui_out_emit_tuple ui_emitter (m_uiout, nullptr);
4370
4371 /* Print it and reset *FIRST. */
4372 if (!m_first)
4373 m_uiout->text (", ");
4374 m_first = false;
4375
4376 wrap_here ("");
4377 if (m_uiout->is_mi_like_p ())
4378 {
4379 m_uiout->field_string ("file", disp_name, file_name_style.style ());
4380 if (fullname != nullptr)
4381 m_uiout->field_string ("fullname", fullname,
4382 file_name_style.style ());
4383 m_uiout->field_string ("debug-fully-read",
4384 (expanded_p ? "true" : "false"));
4385 }
4386 else
4387 {
4388 if (fullname == nullptr)
4389 fullname = disp_name;
4390 m_uiout->field_string ("fullname", fullname,
4391 file_name_style.style ());
4392 }
4393 }
4394
4395 /* See comment is class declaration above. */
4396
4397 void
4398 output_source_filename_data::print_header (const char *symbol_msg)
4399 {
4400 m_uiout->text (symbol_msg);
4401 m_filter.print (m_uiout);
4402 m_uiout->text ("\n");
4403 }
4404
4405 /* For the 'info sources' command, what part of the file names should we be
4406 matching the user supplied regular expression against? */
4407
4408 struct filename_partial_match_opts
4409 {
4410 /* Only match the directory name part. */
4411 bool dirname = false;
4412
4413 /* Only match the basename part. */
4414 bool basename = false;
4415 };
4416
4417 using isrc_flag_option_def
4418 = gdb::option::flag_option_def<filename_partial_match_opts>;
4419
4420 static const gdb::option::option_def info_sources_option_defs[] = {
4421
4422 isrc_flag_option_def {
4423 "dirname",
4424 [] (filename_partial_match_opts *opts) { return &opts->dirname; },
4425 N_("Show only the files having a dirname matching REGEXP."),
4426 },
4427
4428 isrc_flag_option_def {
4429 "basename",
4430 [] (filename_partial_match_opts *opts) { return &opts->basename; },
4431 N_("Show only the files having a basename matching REGEXP."),
4432 },
4433
4434 };
4435
4436 /* Create an option_def_group for the "info sources" options, with
4437 ISRC_OPTS as context. */
4438
4439 static inline gdb::option::option_def_group
4440 make_info_sources_options_def_group (filename_partial_match_opts *isrc_opts)
4441 {
4442 return {{info_sources_option_defs}, isrc_opts};
4443 }
4444
4445 /* Completer for "info sources". */
4446
4447 static void
4448 info_sources_command_completer (cmd_list_element *ignore,
4449 completion_tracker &tracker,
4450 const char *text, const char *word)
4451 {
4452 const auto group = make_info_sources_options_def_group (nullptr);
4453 if (gdb::option::complete_options
4454 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4455 return;
4456 }
4457
4458 /* See symtab.h. */
4459
4460 void
4461 info_sources_worker (struct ui_out *uiout,
4462 const info_sources_filter &filter)
4463 {
4464 output_source_filename_data data (uiout, filter);
4465
4466 ui_out_emit_list results_emitter (uiout, "files");
4467 gdb::optional<ui_out_emit_tuple> output_tuple;
4468 gdb::optional<ui_out_emit_list> sources_list;
4469
4470 if (!uiout->is_mi_like_p ())
4471 data.print_header (_("Source files for which symbols have been read in:\n"));
4472
4473 for (objfile *objfile : current_program_space->objfiles ())
4474 {
4475 for (compunit_symtab *cu : objfile->compunits ())
4476 {
4477 for (symtab *s : compunit_filetabs (cu))
4478 {
4479 const char *file = symtab_to_filename_for_display (s);
4480 const char *fullname = symtab_to_fullname (s);
4481 data.output (file, fullname, true);
4482 }
4483 }
4484 }
4485
4486 uiout->text ("\n\n");
4487 if (!uiout->is_mi_like_p ())
4488 data.print_header (_("Source files for which symbols will be read in on demand:\n"));
4489 data.reset_output ();
4490 map_symbol_filenames (data, true /*need_fullname*/);
4491 uiout->text ("\n");
4492 }
4493
4494 /* Implement the 'info sources' command. */
4495
4496 static void
4497 info_sources_command (const char *args, int from_tty)
4498 {
4499 if (!have_full_symbols () && !have_partial_symbols ())
4500 error (_("No symbol table is loaded. Use the \"file\" command."));
4501
4502 filename_partial_match_opts match_opts;
4503 auto group = make_info_sources_options_def_group (&match_opts);
4504 gdb::option::process_options
4505 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group);
4506
4507 if (match_opts.dirname && match_opts.basename)
4508 error (_("You cannot give both -basename and -dirname to 'info sources'."));
4509
4510 const char *regex = nullptr;
4511 if (args != NULL && *args != '\000')
4512 regex = args;
4513
4514 if ((match_opts.dirname || match_opts.basename) && regex == nullptr)
4515 error (_("Missing REGEXP for 'info sources'."));
4516
4517 info_sources_filter::match_on match_type;
4518 if (match_opts.dirname)
4519 match_type = info_sources_filter::match_on::DIRNAME;
4520 else if (match_opts.basename)
4521 match_type = info_sources_filter::match_on::BASENAME;
4522 else
4523 match_type = info_sources_filter::match_on::FULLNAME;
4524
4525 info_sources_filter filter (match_type, regex);
4526 info_sources_worker (current_uiout, filter);
4527 }
4528
4529 /* Compare FILE against all the entries of FILENAMES. If BASENAMES is
4530 true compare only lbasename of FILENAMES. */
4531
4532 static bool
4533 file_matches (const char *file, const std::vector<const char *> &filenames,
4534 bool basenames)
4535 {
4536 if (filenames.empty ())
4537 return true;
4538
4539 for (const char *name : filenames)
4540 {
4541 name = (basenames ? lbasename (name) : name);
4542 if (compare_filenames_for_search (file, name))
4543 return true;
4544 }
4545
4546 return false;
4547 }
4548
4549 /* Helper function for std::sort on symbol_search objects. Can only sort
4550 symbols, not minimal symbols. */
4551
4552 int
4553 symbol_search::compare_search_syms (const symbol_search &sym_a,
4554 const symbol_search &sym_b)
4555 {
4556 int c;
4557
4558 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4559 symbol_symtab (sym_b.symbol)->filename);
4560 if (c != 0)
4561 return c;
4562
4563 if (sym_a.block != sym_b.block)
4564 return sym_a.block - sym_b.block;
4565
4566 return strcmp (sym_a.symbol->print_name (), sym_b.symbol->print_name ());
4567 }
4568
4569 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4570 If SYM has no symbol_type or symbol_name, returns false. */
4571
4572 bool
4573 treg_matches_sym_type_name (const compiled_regex &treg,
4574 const struct symbol *sym)
4575 {
4576 struct type *sym_type;
4577 std::string printed_sym_type_name;
4578
4579 if (symbol_lookup_debug > 1)
4580 {
4581 fprintf_unfiltered (gdb_stdlog,
4582 "treg_matches_sym_type_name\n sym %s\n",
4583 sym->natural_name ());
4584 }
4585
4586 sym_type = SYMBOL_TYPE (sym);
4587 if (sym_type == NULL)
4588 return false;
4589
4590 {
4591 scoped_switch_to_sym_language_if_auto l (sym);
4592
4593 printed_sym_type_name = type_to_string (sym_type);
4594 }
4595
4596
4597 if (symbol_lookup_debug > 1)
4598 {
4599 fprintf_unfiltered (gdb_stdlog,
4600 " sym_type_name %s\n",
4601 printed_sym_type_name.c_str ());
4602 }
4603
4604
4605 if (printed_sym_type_name.empty ())
4606 return false;
4607
4608 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4609 }
4610
4611 /* See symtab.h. */
4612
4613 bool
4614 global_symbol_searcher::is_suitable_msymbol
4615 (const enum search_domain kind, const minimal_symbol *msymbol)
4616 {
4617 switch (MSYMBOL_TYPE (msymbol))
4618 {
4619 case mst_data:
4620 case mst_bss:
4621 case mst_file_data:
4622 case mst_file_bss:
4623 return kind == VARIABLES_DOMAIN;
4624 case mst_text:
4625 case mst_file_text:
4626 case mst_solib_trampoline:
4627 case mst_text_gnu_ifunc:
4628 return kind == FUNCTIONS_DOMAIN;
4629 default:
4630 return false;
4631 }
4632 }
4633
4634 /* See symtab.h. */
4635
4636 bool
4637 global_symbol_searcher::expand_symtabs
4638 (objfile *objfile, const gdb::optional<compiled_regex> &preg) const
4639 {
4640 enum search_domain kind = m_kind;
4641 bool found_msymbol = false;
4642
4643 objfile->expand_symtabs_matching
4644 ([&] (const char *filename, bool basenames)
4645 {
4646 return file_matches (filename, filenames, basenames);
4647 },
4648 &lookup_name_info::match_any (),
4649 [&] (const char *symname)
4650 {
4651 return (!preg.has_value ()
4652 || preg->exec (symname, 0, NULL, 0) == 0);
4653 },
4654 NULL,
4655 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
4656 UNDEF_DOMAIN,
4657 kind);
4658
4659 /* Here, we search through the minimal symbol tables for functions and
4660 variables that match, and force their symbols to be read. This is in
4661 particular necessary for demangled variable names, which are no longer
4662 put into the partial symbol tables. The symbol will then be found
4663 during the scan of symtabs later.
4664
4665 For functions, find_pc_symtab should succeed if we have debug info for
4666 the function, for variables we have to call
4667 lookup_symbol_in_objfile_from_linkage_name to determine if the
4668 variable has debug info. If the lookup fails, set found_msymbol so
4669 that we will rescan to print any matching symbols without debug info.
4670 We only search the objfile the msymbol came from, we no longer search
4671 all objfiles. In large programs (1000s of shared libs) searching all
4672 objfiles is not worth the pain. */
4673 if (filenames.empty ()
4674 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4675 {
4676 for (minimal_symbol *msymbol : objfile->msymbols ())
4677 {
4678 QUIT;
4679
4680 if (msymbol->created_by_gdb)
4681 continue;
4682
4683 if (is_suitable_msymbol (kind, msymbol))
4684 {
4685 if (!preg.has_value ()
4686 || preg->exec (msymbol->natural_name (), 0,
4687 NULL, 0) == 0)
4688 {
4689 /* An important side-effect of these lookup functions is
4690 to expand the symbol table if msymbol is found, later
4691 in the process we will add matching symbols or
4692 msymbols to the results list, and that requires that
4693 the symbols tables are expanded. */
4694 if (kind == FUNCTIONS_DOMAIN
4695 ? (find_pc_compunit_symtab
4696 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4697 == NULL)
4698 : (lookup_symbol_in_objfile_from_linkage_name
4699 (objfile, msymbol->linkage_name (),
4700 VAR_DOMAIN)
4701 .symbol == NULL))
4702 found_msymbol = true;
4703 }
4704 }
4705 }
4706 }
4707
4708 return found_msymbol;
4709 }
4710
4711 /* See symtab.h. */
4712
4713 bool
4714 global_symbol_searcher::add_matching_symbols
4715 (objfile *objfile,
4716 const gdb::optional<compiled_regex> &preg,
4717 const gdb::optional<compiled_regex> &treg,
4718 std::set<symbol_search> *result_set) const
4719 {
4720 enum search_domain kind = m_kind;
4721
4722 /* Add matching symbols (if not already present). */
4723 for (compunit_symtab *cust : objfile->compunits ())
4724 {
4725 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
4726
4727 for (block_enum block : { GLOBAL_BLOCK, STATIC_BLOCK })
4728 {
4729 struct block_iterator iter;
4730 struct symbol *sym;
4731 const struct block *b = BLOCKVECTOR_BLOCK (bv, block);
4732
4733 ALL_BLOCK_SYMBOLS (b, iter, sym)
4734 {
4735 struct symtab *real_symtab = symbol_symtab (sym);
4736
4737 QUIT;
4738
4739 /* Check first sole REAL_SYMTAB->FILENAME. It does
4740 not need to be a substring of symtab_to_fullname as
4741 it may contain "./" etc. */
4742 if ((file_matches (real_symtab->filename, filenames, false)
4743 || ((basenames_may_differ
4744 || file_matches (lbasename (real_symtab->filename),
4745 filenames, true))
4746 && file_matches (symtab_to_fullname (real_symtab),
4747 filenames, false)))
4748 && ((!preg.has_value ()
4749 || preg->exec (sym->natural_name (), 0,
4750 NULL, 0) == 0)
4751 && ((kind == VARIABLES_DOMAIN
4752 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4753 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4754 && SYMBOL_CLASS (sym) != LOC_BLOCK
4755 /* LOC_CONST can be used for more than
4756 just enums, e.g., c++ static const
4757 members. We only want to skip enums
4758 here. */
4759 && !(SYMBOL_CLASS (sym) == LOC_CONST
4760 && (SYMBOL_TYPE (sym)->code ()
4761 == TYPE_CODE_ENUM))
4762 && (!treg.has_value ()
4763 || treg_matches_sym_type_name (*treg, sym)))
4764 || (kind == FUNCTIONS_DOMAIN
4765 && SYMBOL_CLASS (sym) == LOC_BLOCK
4766 && (!treg.has_value ()
4767 || treg_matches_sym_type_name (*treg,
4768 sym)))
4769 || (kind == TYPES_DOMAIN
4770 && SYMBOL_CLASS (sym) == LOC_TYPEDEF
4771 && SYMBOL_DOMAIN (sym) != MODULE_DOMAIN)
4772 || (kind == MODULES_DOMAIN
4773 && SYMBOL_DOMAIN (sym) == MODULE_DOMAIN
4774 && SYMBOL_LINE (sym) != 0))))
4775 {
4776 if (result_set->size () < m_max_search_results)
4777 {
4778 /* Match, insert if not already in the results. */
4779 symbol_search ss (block, sym);
4780 if (result_set->find (ss) == result_set->end ())
4781 result_set->insert (ss);
4782 }
4783 else
4784 return false;
4785 }
4786 }
4787 }
4788 }
4789
4790 return true;
4791 }
4792
4793 /* See symtab.h. */
4794
4795 bool
4796 global_symbol_searcher::add_matching_msymbols
4797 (objfile *objfile, const gdb::optional<compiled_regex> &preg,
4798 std::vector<symbol_search> *results) const
4799 {
4800 enum search_domain kind = m_kind;
4801
4802 for (minimal_symbol *msymbol : objfile->msymbols ())
4803 {
4804 QUIT;
4805
4806 if (msymbol->created_by_gdb)
4807 continue;
4808
4809 if (is_suitable_msymbol (kind, msymbol))
4810 {
4811 if (!preg.has_value ()
4812 || preg->exec (msymbol->natural_name (), 0,
4813 NULL, 0) == 0)
4814 {
4815 /* For functions we can do a quick check of whether the
4816 symbol might be found via find_pc_symtab. */
4817 if (kind != FUNCTIONS_DOMAIN
4818 || (find_pc_compunit_symtab
4819 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4820 == NULL))
4821 {
4822 if (lookup_symbol_in_objfile_from_linkage_name
4823 (objfile, msymbol->linkage_name (),
4824 VAR_DOMAIN).symbol == NULL)
4825 {
4826 /* Matching msymbol, add it to the results list. */
4827 if (results->size () < m_max_search_results)
4828 results->emplace_back (GLOBAL_BLOCK, msymbol, objfile);
4829 else
4830 return false;
4831 }
4832 }
4833 }
4834 }
4835 }
4836
4837 return true;
4838 }
4839
4840 /* See symtab.h. */
4841
4842 std::vector<symbol_search>
4843 global_symbol_searcher::search () const
4844 {
4845 gdb::optional<compiled_regex> preg;
4846 gdb::optional<compiled_regex> treg;
4847
4848 gdb_assert (m_kind != ALL_DOMAIN);
4849
4850 if (m_symbol_name_regexp != NULL)
4851 {
4852 const char *symbol_name_regexp = m_symbol_name_regexp;
4853
4854 /* Make sure spacing is right for C++ operators.
4855 This is just a courtesy to make the matching less sensitive
4856 to how many spaces the user leaves between 'operator'
4857 and <TYPENAME> or <OPERATOR>. */
4858 const char *opend;
4859 const char *opname = operator_chars (symbol_name_regexp, &opend);
4860
4861 if (*opname)
4862 {
4863 int fix = -1; /* -1 means ok; otherwise number of
4864 spaces needed. */
4865
4866 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4867 {
4868 /* There should 1 space between 'operator' and 'TYPENAME'. */
4869 if (opname[-1] != ' ' || opname[-2] == ' ')
4870 fix = 1;
4871 }
4872 else
4873 {
4874 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4875 if (opname[-1] == ' ')
4876 fix = 0;
4877 }
4878 /* If wrong number of spaces, fix it. */
4879 if (fix >= 0)
4880 {
4881 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4882
4883 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4884 symbol_name_regexp = tmp;
4885 }
4886 }
4887
4888 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4889 ? REG_ICASE : 0);
4890 preg.emplace (symbol_name_regexp, cflags,
4891 _("Invalid regexp"));
4892 }
4893
4894 if (m_symbol_type_regexp != NULL)
4895 {
4896 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4897 ? REG_ICASE : 0);
4898 treg.emplace (m_symbol_type_regexp, cflags,
4899 _("Invalid regexp"));
4900 }
4901
4902 bool found_msymbol = false;
4903 std::set<symbol_search> result_set;
4904 for (objfile *objfile : current_program_space->objfiles ())
4905 {
4906 /* Expand symtabs within objfile that possibly contain matching
4907 symbols. */
4908 found_msymbol |= expand_symtabs (objfile, preg);
4909
4910 /* Find matching symbols within OBJFILE and add them in to the
4911 RESULT_SET set. Use a set here so that we can easily detect
4912 duplicates as we go, and can therefore track how many unique
4913 matches we have found so far. */
4914 if (!add_matching_symbols (objfile, preg, treg, &result_set))
4915 break;
4916 }
4917
4918 /* Convert the result set into a sorted result list, as std::set is
4919 defined to be sorted then no explicit call to std::sort is needed. */
4920 std::vector<symbol_search> result (result_set.begin (), result_set.end ());
4921
4922 /* If there are no debug symbols, then add matching minsyms. But if the
4923 user wants to see symbols matching a type regexp, then never give a
4924 minimal symbol, as we assume that a minimal symbol does not have a
4925 type. */
4926 if ((found_msymbol || (filenames.empty () && m_kind == VARIABLES_DOMAIN))
4927 && !m_exclude_minsyms
4928 && !treg.has_value ())
4929 {
4930 gdb_assert (m_kind == VARIABLES_DOMAIN || m_kind == FUNCTIONS_DOMAIN);
4931 for (objfile *objfile : current_program_space->objfiles ())
4932 if (!add_matching_msymbols (objfile, preg, &result))
4933 break;
4934 }
4935
4936 return result;
4937 }
4938
4939 /* See symtab.h. */
4940
4941 std::string
4942 symbol_to_info_string (struct symbol *sym, int block,
4943 enum search_domain kind)
4944 {
4945 std::string str;
4946
4947 gdb_assert (block == GLOBAL_BLOCK || block == STATIC_BLOCK);
4948
4949 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4950 str += "static ";
4951
4952 /* Typedef that is not a C++ class. */
4953 if (kind == TYPES_DOMAIN
4954 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4955 {
4956 string_file tmp_stream;
4957
4958 /* FIXME: For C (and C++) we end up with a difference in output here
4959 between how a typedef is printed, and non-typedefs are printed.
4960 The TYPEDEF_PRINT code places a ";" at the end in an attempt to
4961 appear C-like, while TYPE_PRINT doesn't.
4962
4963 For the struct printing case below, things are worse, we force
4964 printing of the ";" in this function, which is going to be wrong
4965 for languages that don't require a ";" between statements. */
4966 if (SYMBOL_TYPE (sym)->code () == TYPE_CODE_TYPEDEF)
4967 typedef_print (SYMBOL_TYPE (sym), sym, &tmp_stream);
4968 else
4969 type_print (SYMBOL_TYPE (sym), "", &tmp_stream, -1);
4970 str += tmp_stream.string ();
4971 }
4972 /* variable, func, or typedef-that-is-c++-class. */
4973 else if (kind < TYPES_DOMAIN
4974 || (kind == TYPES_DOMAIN
4975 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4976 {
4977 string_file tmp_stream;
4978
4979 type_print (SYMBOL_TYPE (sym),
4980 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4981 ? "" : sym->print_name ()),
4982 &tmp_stream, 0);
4983
4984 str += tmp_stream.string ();
4985 str += ";";
4986 }
4987 /* Printing of modules is currently done here, maybe at some future
4988 point we might want a language specific method to print the module
4989 symbol so that we can customise the output more. */
4990 else if (kind == MODULES_DOMAIN)
4991 str += sym->print_name ();
4992
4993 return str;
4994 }
4995
4996 /* Helper function for symbol info commands, for example 'info functions',
4997 'info variables', etc. KIND is the kind of symbol we searched for, and
4998 BLOCK is the type of block the symbols was found in, either GLOBAL_BLOCK
4999 or STATIC_BLOCK. SYM is the symbol we found. If LAST is not NULL,
5000 print file and line number information for the symbol as well. Skip
5001 printing the filename if it matches LAST. */
5002
5003 static void
5004 print_symbol_info (enum search_domain kind,
5005 struct symbol *sym,
5006 int block, const char *last)
5007 {
5008 scoped_switch_to_sym_language_if_auto l (sym);
5009 struct symtab *s = symbol_symtab (sym);
5010
5011 if (last != NULL)
5012 {
5013 const char *s_filename = symtab_to_filename_for_display (s);
5014
5015 if (filename_cmp (last, s_filename) != 0)
5016 {
5017 printf_filtered (_("\nFile %ps:\n"),
5018 styled_string (file_name_style.style (),
5019 s_filename));
5020 }
5021
5022 if (SYMBOL_LINE (sym) != 0)
5023 printf_filtered ("%d:\t", SYMBOL_LINE (sym));
5024 else
5025 puts_filtered ("\t");
5026 }
5027
5028 std::string str = symbol_to_info_string (sym, block, kind);
5029 printf_filtered ("%s\n", str.c_str ());
5030 }
5031
5032 /* This help function for symtab_symbol_info() prints information
5033 for non-debugging symbols to gdb_stdout. */
5034
5035 static void
5036 print_msymbol_info (struct bound_minimal_symbol msymbol)
5037 {
5038 struct gdbarch *gdbarch = msymbol.objfile->arch ();
5039 char *tmp;
5040
5041 if (gdbarch_addr_bit (gdbarch) <= 32)
5042 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
5043 & (CORE_ADDR) 0xffffffff,
5044 8);
5045 else
5046 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
5047 16);
5048
5049 ui_file_style sym_style = (msymbol.minsym->text_p ()
5050 ? function_name_style.style ()
5051 : ui_file_style ());
5052
5053 printf_filtered (_("%ps %ps\n"),
5054 styled_string (address_style.style (), tmp),
5055 styled_string (sym_style, msymbol.minsym->print_name ()));
5056 }
5057
5058 /* This is the guts of the commands "info functions", "info types", and
5059 "info variables". It calls search_symbols to find all matches and then
5060 print_[m]symbol_info to print out some useful information about the
5061 matches. */
5062
5063 static void
5064 symtab_symbol_info (bool quiet, bool exclude_minsyms,
5065 const char *regexp, enum search_domain kind,
5066 const char *t_regexp, int from_tty)
5067 {
5068 static const char * const classnames[] =
5069 {"variable", "function", "type", "module"};
5070 const char *last_filename = "";
5071 int first = 1;
5072
5073 gdb_assert (kind != ALL_DOMAIN);
5074
5075 if (regexp != nullptr && *regexp == '\0')
5076 regexp = nullptr;
5077
5078 global_symbol_searcher spec (kind, regexp);
5079 spec.set_symbol_type_regexp (t_regexp);
5080 spec.set_exclude_minsyms (exclude_minsyms);
5081 std::vector<symbol_search> symbols = spec.search ();
5082
5083 if (!quiet)
5084 {
5085 if (regexp != NULL)
5086 {
5087 if (t_regexp != NULL)
5088 printf_filtered
5089 (_("All %ss matching regular expression \"%s\""
5090 " with type matching regular expression \"%s\":\n"),
5091 classnames[kind], regexp, t_regexp);
5092 else
5093 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
5094 classnames[kind], regexp);
5095 }
5096 else
5097 {
5098 if (t_regexp != NULL)
5099 printf_filtered
5100 (_("All defined %ss"
5101 " with type matching regular expression \"%s\" :\n"),
5102 classnames[kind], t_regexp);
5103 else
5104 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
5105 }
5106 }
5107
5108 for (const symbol_search &p : symbols)
5109 {
5110 QUIT;
5111
5112 if (p.msymbol.minsym != NULL)
5113 {
5114 if (first)
5115 {
5116 if (!quiet)
5117 printf_filtered (_("\nNon-debugging symbols:\n"));
5118 first = 0;
5119 }
5120 print_msymbol_info (p.msymbol);
5121 }
5122 else
5123 {
5124 print_symbol_info (kind,
5125 p.symbol,
5126 p.block,
5127 last_filename);
5128 last_filename
5129 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
5130 }
5131 }
5132 }
5133
5134 /* Structure to hold the values of the options used by the 'info variables'
5135 and 'info functions' commands. These correspond to the -q, -t, and -n
5136 options. */
5137
5138 struct info_vars_funcs_options
5139 {
5140 bool quiet = false;
5141 bool exclude_minsyms = false;
5142 char *type_regexp = nullptr;
5143
5144 ~info_vars_funcs_options ()
5145 {
5146 xfree (type_regexp);
5147 }
5148 };
5149
5150 /* The options used by the 'info variables' and 'info functions'
5151 commands. */
5152
5153 static const gdb::option::option_def info_vars_funcs_options_defs[] = {
5154 gdb::option::boolean_option_def<info_vars_funcs_options> {
5155 "q",
5156 [] (info_vars_funcs_options *opt) { return &opt->quiet; },
5157 nullptr, /* show_cmd_cb */
5158 nullptr /* set_doc */
5159 },
5160
5161 gdb::option::boolean_option_def<info_vars_funcs_options> {
5162 "n",
5163 [] (info_vars_funcs_options *opt) { return &opt->exclude_minsyms; },
5164 nullptr, /* show_cmd_cb */
5165 nullptr /* set_doc */
5166 },
5167
5168 gdb::option::string_option_def<info_vars_funcs_options> {
5169 "t",
5170 [] (info_vars_funcs_options *opt) { return &opt->type_regexp;
5171 },
5172 nullptr, /* show_cmd_cb */
5173 nullptr /* set_doc */
5174 }
5175 };
5176
5177 /* Returns the option group used by 'info variables' and 'info
5178 functions'. */
5179
5180 static gdb::option::option_def_group
5181 make_info_vars_funcs_options_def_group (info_vars_funcs_options *opts)
5182 {
5183 return {{info_vars_funcs_options_defs}, opts};
5184 }
5185
5186 /* Command completer for 'info variables' and 'info functions'. */
5187
5188 static void
5189 info_vars_funcs_command_completer (struct cmd_list_element *ignore,
5190 completion_tracker &tracker,
5191 const char *text, const char * /* word */)
5192 {
5193 const auto group
5194 = make_info_vars_funcs_options_def_group (nullptr);
5195 if (gdb::option::complete_options
5196 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5197 return;
5198
5199 const char *word = advance_to_expression_complete_word_point (tracker, text);
5200 symbol_completer (ignore, tracker, text, word);
5201 }
5202
5203 /* Implement the 'info variables' command. */
5204
5205 static void
5206 info_variables_command (const char *args, int from_tty)
5207 {
5208 info_vars_funcs_options opts;
5209 auto grp = make_info_vars_funcs_options_def_group (&opts);
5210 gdb::option::process_options
5211 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5212 if (args != nullptr && *args == '\0')
5213 args = nullptr;
5214
5215 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args, VARIABLES_DOMAIN,
5216 opts.type_regexp, from_tty);
5217 }
5218
5219 /* Implement the 'info functions' command. */
5220
5221 static void
5222 info_functions_command (const char *args, int from_tty)
5223 {
5224 info_vars_funcs_options opts;
5225
5226 auto grp = make_info_vars_funcs_options_def_group (&opts);
5227 gdb::option::process_options
5228 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5229 if (args != nullptr && *args == '\0')
5230 args = nullptr;
5231
5232 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args,
5233 FUNCTIONS_DOMAIN, opts.type_regexp, from_tty);
5234 }
5235
5236 /* Holds the -q option for the 'info types' command. */
5237
5238 struct info_types_options
5239 {
5240 bool quiet = false;
5241 };
5242
5243 /* The options used by the 'info types' command. */
5244
5245 static const gdb::option::option_def info_types_options_defs[] = {
5246 gdb::option::boolean_option_def<info_types_options> {
5247 "q",
5248 [] (info_types_options *opt) { return &opt->quiet; },
5249 nullptr, /* show_cmd_cb */
5250 nullptr /* set_doc */
5251 }
5252 };
5253
5254 /* Returns the option group used by 'info types'. */
5255
5256 static gdb::option::option_def_group
5257 make_info_types_options_def_group (info_types_options *opts)
5258 {
5259 return {{info_types_options_defs}, opts};
5260 }
5261
5262 /* Implement the 'info types' command. */
5263
5264 static void
5265 info_types_command (const char *args, int from_tty)
5266 {
5267 info_types_options opts;
5268
5269 auto grp = make_info_types_options_def_group (&opts);
5270 gdb::option::process_options
5271 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5272 if (args != nullptr && *args == '\0')
5273 args = nullptr;
5274 symtab_symbol_info (opts.quiet, false, args, TYPES_DOMAIN, NULL, from_tty);
5275 }
5276
5277 /* Command completer for 'info types' command. */
5278
5279 static void
5280 info_types_command_completer (struct cmd_list_element *ignore,
5281 completion_tracker &tracker,
5282 const char *text, const char * /* word */)
5283 {
5284 const auto group
5285 = make_info_types_options_def_group (nullptr);
5286 if (gdb::option::complete_options
5287 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5288 return;
5289
5290 const char *word = advance_to_expression_complete_word_point (tracker, text);
5291 symbol_completer (ignore, tracker, text, word);
5292 }
5293
5294 /* Implement the 'info modules' command. */
5295
5296 static void
5297 info_modules_command (const char *args, int from_tty)
5298 {
5299 info_types_options opts;
5300
5301 auto grp = make_info_types_options_def_group (&opts);
5302 gdb::option::process_options
5303 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5304 if (args != nullptr && *args == '\0')
5305 args = nullptr;
5306 symtab_symbol_info (opts.quiet, true, args, MODULES_DOMAIN, NULL,
5307 from_tty);
5308 }
5309
5310 static void
5311 rbreak_command (const char *regexp, int from_tty)
5312 {
5313 std::string string;
5314 const char *file_name = nullptr;
5315
5316 if (regexp != nullptr)
5317 {
5318 const char *colon = strchr (regexp, ':');
5319
5320 /* Ignore the colon if it is part of a Windows drive. */
5321 if (HAS_DRIVE_SPEC (regexp)
5322 && (regexp[2] == '/' || regexp[2] == '\\'))
5323 colon = strchr (STRIP_DRIVE_SPEC (regexp), ':');
5324
5325 if (colon && *(colon + 1) != ':')
5326 {
5327 int colon_index;
5328 char *local_name;
5329
5330 colon_index = colon - regexp;
5331 local_name = (char *) alloca (colon_index + 1);
5332 memcpy (local_name, regexp, colon_index);
5333 local_name[colon_index--] = 0;
5334 while (isspace (local_name[colon_index]))
5335 local_name[colon_index--] = 0;
5336 file_name = local_name;
5337 regexp = skip_spaces (colon + 1);
5338 }
5339 }
5340
5341 global_symbol_searcher spec (FUNCTIONS_DOMAIN, regexp);
5342 if (file_name != nullptr)
5343 spec.filenames.push_back (file_name);
5344 std::vector<symbol_search> symbols = spec.search ();
5345
5346 scoped_rbreak_breakpoints finalize;
5347 for (const symbol_search &p : symbols)
5348 {
5349 if (p.msymbol.minsym == NULL)
5350 {
5351 struct symtab *symtab = symbol_symtab (p.symbol);
5352 const char *fullname = symtab_to_fullname (symtab);
5353
5354 string = string_printf ("%s:'%s'", fullname,
5355 p.symbol->linkage_name ());
5356 break_command (&string[0], from_tty);
5357 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
5358 }
5359 else
5360 {
5361 string = string_printf ("'%s'",
5362 p.msymbol.minsym->linkage_name ());
5363
5364 break_command (&string[0], from_tty);
5365 printf_filtered ("<function, no debug info> %s;\n",
5366 p.msymbol.minsym->print_name ());
5367 }
5368 }
5369 }
5370 \f
5371
5372 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
5373
5374 static int
5375 compare_symbol_name (const char *symbol_name, language symbol_language,
5376 const lookup_name_info &lookup_name,
5377 completion_match_result &match_res)
5378 {
5379 const language_defn *lang = language_def (symbol_language);
5380
5381 symbol_name_matcher_ftype *name_match
5382 = lang->get_symbol_name_matcher (lookup_name);
5383
5384 return name_match (symbol_name, lookup_name, &match_res);
5385 }
5386
5387 /* See symtab.h. */
5388
5389 bool
5390 completion_list_add_name (completion_tracker &tracker,
5391 language symbol_language,
5392 const char *symname,
5393 const lookup_name_info &lookup_name,
5394 const char *text, const char *word)
5395 {
5396 completion_match_result &match_res
5397 = tracker.reset_completion_match_result ();
5398
5399 /* Clip symbols that cannot match. */
5400 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
5401 return false;
5402
5403 /* Refresh SYMNAME from the match string. It's potentially
5404 different depending on language. (E.g., on Ada, the match may be
5405 the encoded symbol name wrapped in "<>"). */
5406 symname = match_res.match.match ();
5407 gdb_assert (symname != NULL);
5408
5409 /* We have a match for a completion, so add SYMNAME to the current list
5410 of matches. Note that the name is moved to freshly malloc'd space. */
5411
5412 {
5413 gdb::unique_xmalloc_ptr<char> completion
5414 = make_completion_match_str (symname, text, word);
5415
5416 /* Here we pass the match-for-lcd object to add_completion. Some
5417 languages match the user text against substrings of symbol
5418 names in some cases. E.g., in C++, "b push_ba" completes to
5419 "std::vector::push_back", "std::string::push_back", etc., and
5420 in this case we want the completion lowest common denominator
5421 to be "push_back" instead of "std::". */
5422 tracker.add_completion (std::move (completion),
5423 &match_res.match_for_lcd, text, word);
5424 }
5425
5426 return true;
5427 }
5428
5429 /* completion_list_add_name wrapper for struct symbol. */
5430
5431 static void
5432 completion_list_add_symbol (completion_tracker &tracker,
5433 symbol *sym,
5434 const lookup_name_info &lookup_name,
5435 const char *text, const char *word)
5436 {
5437 if (!completion_list_add_name (tracker, sym->language (),
5438 sym->natural_name (),
5439 lookup_name, text, word))
5440 return;
5441
5442 /* C++ function symbols include the parameters within both the msymbol
5443 name and the symbol name. The problem is that the msymbol name will
5444 describe the parameters in the most basic way, with typedefs stripped
5445 out, while the symbol name will represent the types as they appear in
5446 the program. This means we will see duplicate entries in the
5447 completion tracker. The following converts the symbol name back to
5448 the msymbol name and removes the msymbol name from the completion
5449 tracker. */
5450 if (sym->language () == language_cplus
5451 && SYMBOL_DOMAIN (sym) == VAR_DOMAIN
5452 && SYMBOL_CLASS (sym) == LOC_BLOCK)
5453 {
5454 /* The call to canonicalize returns the empty string if the input
5455 string is already in canonical form, thanks to this we don't
5456 remove the symbol we just added above. */
5457 gdb::unique_xmalloc_ptr<char> str
5458 = cp_canonicalize_string_no_typedefs (sym->natural_name ());
5459 if (str != nullptr)
5460 tracker.remove_completion (str.get ());
5461 }
5462 }
5463
5464 /* completion_list_add_name wrapper for struct minimal_symbol. */
5465
5466 static void
5467 completion_list_add_msymbol (completion_tracker &tracker,
5468 minimal_symbol *sym,
5469 const lookup_name_info &lookup_name,
5470 const char *text, const char *word)
5471 {
5472 completion_list_add_name (tracker, sym->language (),
5473 sym->natural_name (),
5474 lookup_name, text, word);
5475 }
5476
5477
5478 /* ObjC: In case we are completing on a selector, look as the msymbol
5479 again and feed all the selectors into the mill. */
5480
5481 static void
5482 completion_list_objc_symbol (completion_tracker &tracker,
5483 struct minimal_symbol *msymbol,
5484 const lookup_name_info &lookup_name,
5485 const char *text, const char *word)
5486 {
5487 static char *tmp = NULL;
5488 static unsigned int tmplen = 0;
5489
5490 const char *method, *category, *selector;
5491 char *tmp2 = NULL;
5492
5493 method = msymbol->natural_name ();
5494
5495 /* Is it a method? */
5496 if ((method[0] != '-') && (method[0] != '+'))
5497 return;
5498
5499 if (text[0] == '[')
5500 /* Complete on shortened method method. */
5501 completion_list_add_name (tracker, language_objc,
5502 method + 1,
5503 lookup_name,
5504 text, word);
5505
5506 while ((strlen (method) + 1) >= tmplen)
5507 {
5508 if (tmplen == 0)
5509 tmplen = 1024;
5510 else
5511 tmplen *= 2;
5512 tmp = (char *) xrealloc (tmp, tmplen);
5513 }
5514 selector = strchr (method, ' ');
5515 if (selector != NULL)
5516 selector++;
5517
5518 category = strchr (method, '(');
5519
5520 if ((category != NULL) && (selector != NULL))
5521 {
5522 memcpy (tmp, method, (category - method));
5523 tmp[category - method] = ' ';
5524 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5525 completion_list_add_name (tracker, language_objc, tmp,
5526 lookup_name, text, word);
5527 if (text[0] == '[')
5528 completion_list_add_name (tracker, language_objc, tmp + 1,
5529 lookup_name, text, word);
5530 }
5531
5532 if (selector != NULL)
5533 {
5534 /* Complete on selector only. */
5535 strcpy (tmp, selector);
5536 tmp2 = strchr (tmp, ']');
5537 if (tmp2 != NULL)
5538 *tmp2 = '\0';
5539
5540 completion_list_add_name (tracker, language_objc, tmp,
5541 lookup_name, text, word);
5542 }
5543 }
5544
5545 /* Break the non-quoted text based on the characters which are in
5546 symbols. FIXME: This should probably be language-specific. */
5547
5548 static const char *
5549 language_search_unquoted_string (const char *text, const char *p)
5550 {
5551 for (; p > text; --p)
5552 {
5553 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5554 continue;
5555 else
5556 {
5557 if ((current_language->la_language == language_objc))
5558 {
5559 if (p[-1] == ':') /* Might be part of a method name. */
5560 continue;
5561 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5562 p -= 2; /* Beginning of a method name. */
5563 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5564 { /* Might be part of a method name. */
5565 const char *t = p;
5566
5567 /* Seeing a ' ' or a '(' is not conclusive evidence
5568 that we are in the middle of a method name. However,
5569 finding "-[" or "+[" should be pretty un-ambiguous.
5570 Unfortunately we have to find it now to decide. */
5571
5572 while (t > text)
5573 if (isalnum (t[-1]) || t[-1] == '_' ||
5574 t[-1] == ' ' || t[-1] == ':' ||
5575 t[-1] == '(' || t[-1] == ')')
5576 --t;
5577 else
5578 break;
5579
5580 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5581 p = t - 2; /* Method name detected. */
5582 /* Else we leave with p unchanged. */
5583 }
5584 }
5585 break;
5586 }
5587 }
5588 return p;
5589 }
5590
5591 static void
5592 completion_list_add_fields (completion_tracker &tracker,
5593 struct symbol *sym,
5594 const lookup_name_info &lookup_name,
5595 const char *text, const char *word)
5596 {
5597 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5598 {
5599 struct type *t = SYMBOL_TYPE (sym);
5600 enum type_code c = t->code ();
5601 int j;
5602
5603 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5604 for (j = TYPE_N_BASECLASSES (t); j < t->num_fields (); j++)
5605 if (TYPE_FIELD_NAME (t, j))
5606 completion_list_add_name (tracker, sym->language (),
5607 TYPE_FIELD_NAME (t, j),
5608 lookup_name, text, word);
5609 }
5610 }
5611
5612 /* See symtab.h. */
5613
5614 bool
5615 symbol_is_function_or_method (symbol *sym)
5616 {
5617 switch (SYMBOL_TYPE (sym)->code ())
5618 {
5619 case TYPE_CODE_FUNC:
5620 case TYPE_CODE_METHOD:
5621 return true;
5622 default:
5623 return false;
5624 }
5625 }
5626
5627 /* See symtab.h. */
5628
5629 bool
5630 symbol_is_function_or_method (minimal_symbol *msymbol)
5631 {
5632 switch (MSYMBOL_TYPE (msymbol))
5633 {
5634 case mst_text:
5635 case mst_text_gnu_ifunc:
5636 case mst_solib_trampoline:
5637 case mst_file_text:
5638 return true;
5639 default:
5640 return false;
5641 }
5642 }
5643
5644 /* See symtab.h. */
5645
5646 bound_minimal_symbol
5647 find_gnu_ifunc (const symbol *sym)
5648 {
5649 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
5650 return {};
5651
5652 lookup_name_info lookup_name (sym->search_name (),
5653 symbol_name_match_type::SEARCH_NAME);
5654 struct objfile *objfile = symbol_objfile (sym);
5655
5656 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
5657 minimal_symbol *ifunc = NULL;
5658
5659 iterate_over_minimal_symbols (objfile, lookup_name,
5660 [&] (minimal_symbol *minsym)
5661 {
5662 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
5663 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5664 {
5665 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5666 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5667 {
5668 struct gdbarch *gdbarch = objfile->arch ();
5669 msym_addr = gdbarch_convert_from_func_ptr_addr
5670 (gdbarch, msym_addr, current_inferior ()->top_target ());
5671 }
5672 if (msym_addr == address)
5673 {
5674 ifunc = minsym;
5675 return true;
5676 }
5677 }
5678 return false;
5679 });
5680
5681 if (ifunc != NULL)
5682 return {ifunc, objfile};
5683 return {};
5684 }
5685
5686 /* Add matching symbols from SYMTAB to the current completion list. */
5687
5688 static void
5689 add_symtab_completions (struct compunit_symtab *cust,
5690 completion_tracker &tracker,
5691 complete_symbol_mode mode,
5692 const lookup_name_info &lookup_name,
5693 const char *text, const char *word,
5694 enum type_code code)
5695 {
5696 struct symbol *sym;
5697 const struct block *b;
5698 struct block_iterator iter;
5699 int i;
5700
5701 if (cust == NULL)
5702 return;
5703
5704 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5705 {
5706 QUIT;
5707 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5708 ALL_BLOCK_SYMBOLS (b, iter, sym)
5709 {
5710 if (completion_skip_symbol (mode, sym))
5711 continue;
5712
5713 if (code == TYPE_CODE_UNDEF
5714 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5715 && SYMBOL_TYPE (sym)->code () == code))
5716 completion_list_add_symbol (tracker, sym,
5717 lookup_name,
5718 text, word);
5719 }
5720 }
5721 }
5722
5723 void
5724 default_collect_symbol_completion_matches_break_on
5725 (completion_tracker &tracker, complete_symbol_mode mode,
5726 symbol_name_match_type name_match_type,
5727 const char *text, const char *word,
5728 const char *break_on, enum type_code code)
5729 {
5730 /* Problem: All of the symbols have to be copied because readline
5731 frees them. I'm not going to worry about this; hopefully there
5732 won't be that many. */
5733
5734 struct symbol *sym;
5735 const struct block *b;
5736 const struct block *surrounding_static_block, *surrounding_global_block;
5737 struct block_iterator iter;
5738 /* The symbol we are completing on. Points in same buffer as text. */
5739 const char *sym_text;
5740
5741 /* Now look for the symbol we are supposed to complete on. */
5742 if (mode == complete_symbol_mode::LINESPEC)
5743 sym_text = text;
5744 else
5745 {
5746 const char *p;
5747 char quote_found;
5748 const char *quote_pos = NULL;
5749
5750 /* First see if this is a quoted string. */
5751 quote_found = '\0';
5752 for (p = text; *p != '\0'; ++p)
5753 {
5754 if (quote_found != '\0')
5755 {
5756 if (*p == quote_found)
5757 /* Found close quote. */
5758 quote_found = '\0';
5759 else if (*p == '\\' && p[1] == quote_found)
5760 /* A backslash followed by the quote character
5761 doesn't end the string. */
5762 ++p;
5763 }
5764 else if (*p == '\'' || *p == '"')
5765 {
5766 quote_found = *p;
5767 quote_pos = p;
5768 }
5769 }
5770 if (quote_found == '\'')
5771 /* A string within single quotes can be a symbol, so complete on it. */
5772 sym_text = quote_pos + 1;
5773 else if (quote_found == '"')
5774 /* A double-quoted string is never a symbol, nor does it make sense
5775 to complete it any other way. */
5776 {
5777 return;
5778 }
5779 else
5780 {
5781 /* It is not a quoted string. Break it based on the characters
5782 which are in symbols. */
5783 while (p > text)
5784 {
5785 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5786 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5787 --p;
5788 else
5789 break;
5790 }
5791 sym_text = p;
5792 }
5793 }
5794
5795 lookup_name_info lookup_name (sym_text, name_match_type, true);
5796
5797 /* At this point scan through the misc symbol vectors and add each
5798 symbol you find to the list. Eventually we want to ignore
5799 anything that isn't a text symbol (everything else will be
5800 handled by the psymtab code below). */
5801
5802 if (code == TYPE_CODE_UNDEF)
5803 {
5804 for (objfile *objfile : current_program_space->objfiles ())
5805 {
5806 for (minimal_symbol *msymbol : objfile->msymbols ())
5807 {
5808 QUIT;
5809
5810 if (completion_skip_symbol (mode, msymbol))
5811 continue;
5812
5813 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5814 sym_text, word);
5815
5816 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5817 sym_text, word);
5818 }
5819 }
5820 }
5821
5822 /* Add completions for all currently loaded symbol tables. */
5823 for (objfile *objfile : current_program_space->objfiles ())
5824 {
5825 for (compunit_symtab *cust : objfile->compunits ())
5826 add_symtab_completions (cust, tracker, mode, lookup_name,
5827 sym_text, word, code);
5828 }
5829
5830 /* Look through the partial symtabs for all symbols which begin by
5831 matching SYM_TEXT. Expand all CUs that you find to the list. */
5832 expand_symtabs_matching (NULL,
5833 lookup_name,
5834 NULL,
5835 [&] (compunit_symtab *symtab) /* expansion notify */
5836 {
5837 add_symtab_completions (symtab,
5838 tracker, mode, lookup_name,
5839 sym_text, word, code);
5840 return true;
5841 },
5842 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
5843 ALL_DOMAIN);
5844
5845 /* Search upwards from currently selected frame (so that we can
5846 complete on local vars). Also catch fields of types defined in
5847 this places which match our text string. Only complete on types
5848 visible from current context. */
5849
5850 b = get_selected_block (0);
5851 surrounding_static_block = block_static_block (b);
5852 surrounding_global_block = block_global_block (b);
5853 if (surrounding_static_block != NULL)
5854 while (b != surrounding_static_block)
5855 {
5856 QUIT;
5857
5858 ALL_BLOCK_SYMBOLS (b, iter, sym)
5859 {
5860 if (code == TYPE_CODE_UNDEF)
5861 {
5862 completion_list_add_symbol (tracker, sym, lookup_name,
5863 sym_text, word);
5864 completion_list_add_fields (tracker, sym, lookup_name,
5865 sym_text, word);
5866 }
5867 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5868 && SYMBOL_TYPE (sym)->code () == code)
5869 completion_list_add_symbol (tracker, sym, lookup_name,
5870 sym_text, word);
5871 }
5872
5873 /* Stop when we encounter an enclosing function. Do not stop for
5874 non-inlined functions - the locals of the enclosing function
5875 are in scope for a nested function. */
5876 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5877 break;
5878 b = BLOCK_SUPERBLOCK (b);
5879 }
5880
5881 /* Add fields from the file's types; symbols will be added below. */
5882
5883 if (code == TYPE_CODE_UNDEF)
5884 {
5885 if (surrounding_static_block != NULL)
5886 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5887 completion_list_add_fields (tracker, sym, lookup_name,
5888 sym_text, word);
5889
5890 if (surrounding_global_block != NULL)
5891 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5892 completion_list_add_fields (tracker, sym, lookup_name,
5893 sym_text, word);
5894 }
5895
5896 /* Skip macros if we are completing a struct tag -- arguable but
5897 usually what is expected. */
5898 if (current_language->macro_expansion () == macro_expansion_c
5899 && code == TYPE_CODE_UNDEF)
5900 {
5901 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5902
5903 /* This adds a macro's name to the current completion list. */
5904 auto add_macro_name = [&] (const char *macro_name,
5905 const macro_definition *,
5906 macro_source_file *,
5907 int)
5908 {
5909 completion_list_add_name (tracker, language_c, macro_name,
5910 lookup_name, sym_text, word);
5911 };
5912
5913 /* Add any macros visible in the default scope. Note that this
5914 may yield the occasional wrong result, because an expression
5915 might be evaluated in a scope other than the default. For
5916 example, if the user types "break file:line if <TAB>", the
5917 resulting expression will be evaluated at "file:line" -- but
5918 at there does not seem to be a way to detect this at
5919 completion time. */
5920 scope = default_macro_scope ();
5921 if (scope)
5922 macro_for_each_in_scope (scope->file, scope->line,
5923 add_macro_name);
5924
5925 /* User-defined macros are always visible. */
5926 macro_for_each (macro_user_macros, add_macro_name);
5927 }
5928 }
5929
5930 /* Collect all symbols (regardless of class) which begin by matching
5931 TEXT. */
5932
5933 void
5934 collect_symbol_completion_matches (completion_tracker &tracker,
5935 complete_symbol_mode mode,
5936 symbol_name_match_type name_match_type,
5937 const char *text, const char *word)
5938 {
5939 current_language->collect_symbol_completion_matches (tracker, mode,
5940 name_match_type,
5941 text, word,
5942 TYPE_CODE_UNDEF);
5943 }
5944
5945 /* Like collect_symbol_completion_matches, but only collect
5946 STRUCT_DOMAIN symbols whose type code is CODE. */
5947
5948 void
5949 collect_symbol_completion_matches_type (completion_tracker &tracker,
5950 const char *text, const char *word,
5951 enum type_code code)
5952 {
5953 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5954 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5955
5956 gdb_assert (code == TYPE_CODE_UNION
5957 || code == TYPE_CODE_STRUCT
5958 || code == TYPE_CODE_ENUM);
5959 current_language->collect_symbol_completion_matches (tracker, mode,
5960 name_match_type,
5961 text, word, code);
5962 }
5963
5964 /* Like collect_symbol_completion_matches, but collects a list of
5965 symbols defined in all source files named SRCFILE. */
5966
5967 void
5968 collect_file_symbol_completion_matches (completion_tracker &tracker,
5969 complete_symbol_mode mode,
5970 symbol_name_match_type name_match_type,
5971 const char *text, const char *word,
5972 const char *srcfile)
5973 {
5974 /* The symbol we are completing on. Points in same buffer as text. */
5975 const char *sym_text;
5976
5977 /* Now look for the symbol we are supposed to complete on.
5978 FIXME: This should be language-specific. */
5979 if (mode == complete_symbol_mode::LINESPEC)
5980 sym_text = text;
5981 else
5982 {
5983 const char *p;
5984 char quote_found;
5985 const char *quote_pos = NULL;
5986
5987 /* First see if this is a quoted string. */
5988 quote_found = '\0';
5989 for (p = text; *p != '\0'; ++p)
5990 {
5991 if (quote_found != '\0')
5992 {
5993 if (*p == quote_found)
5994 /* Found close quote. */
5995 quote_found = '\0';
5996 else if (*p == '\\' && p[1] == quote_found)
5997 /* A backslash followed by the quote character
5998 doesn't end the string. */
5999 ++p;
6000 }
6001 else if (*p == '\'' || *p == '"')
6002 {
6003 quote_found = *p;
6004 quote_pos = p;
6005 }
6006 }
6007 if (quote_found == '\'')
6008 /* A string within single quotes can be a symbol, so complete on it. */
6009 sym_text = quote_pos + 1;
6010 else if (quote_found == '"')
6011 /* A double-quoted string is never a symbol, nor does it make sense
6012 to complete it any other way. */
6013 {
6014 return;
6015 }
6016 else
6017 {
6018 /* Not a quoted string. */
6019 sym_text = language_search_unquoted_string (text, p);
6020 }
6021 }
6022
6023 lookup_name_info lookup_name (sym_text, name_match_type, true);
6024
6025 /* Go through symtabs for SRCFILE and check the externs and statics
6026 for symbols which match. */
6027 iterate_over_symtabs (srcfile, [&] (symtab *s)
6028 {
6029 add_symtab_completions (SYMTAB_COMPUNIT (s),
6030 tracker, mode, lookup_name,
6031 sym_text, word, TYPE_CODE_UNDEF);
6032 return false;
6033 });
6034 }
6035
6036 /* A helper function for make_source_files_completion_list. It adds
6037 another file name to a list of possible completions, growing the
6038 list as necessary. */
6039
6040 static void
6041 add_filename_to_list (const char *fname, const char *text, const char *word,
6042 completion_list *list)
6043 {
6044 list->emplace_back (make_completion_match_str (fname, text, word));
6045 }
6046
6047 static int
6048 not_interesting_fname (const char *fname)
6049 {
6050 static const char *illegal_aliens[] = {
6051 "_globals_", /* inserted by coff_symtab_read */
6052 NULL
6053 };
6054 int i;
6055
6056 for (i = 0; illegal_aliens[i]; i++)
6057 {
6058 if (filename_cmp (fname, illegal_aliens[i]) == 0)
6059 return 1;
6060 }
6061 return 0;
6062 }
6063
6064 /* An object of this type is passed as the callback argument to
6065 map_partial_symbol_filenames. */
6066 struct add_partial_filename_data
6067 {
6068 struct filename_seen_cache *filename_seen_cache;
6069 const char *text;
6070 const char *word;
6071 int text_len;
6072 completion_list *list;
6073
6074 void operator() (const char *filename, const char *fullname);
6075 };
6076
6077 /* A callback for map_partial_symbol_filenames. */
6078
6079 void
6080 add_partial_filename_data::operator() (const char *filename,
6081 const char *fullname)
6082 {
6083 if (not_interesting_fname (filename))
6084 return;
6085 if (!filename_seen_cache->seen (filename)
6086 && filename_ncmp (filename, text, text_len) == 0)
6087 {
6088 /* This file matches for a completion; add it to the
6089 current list of matches. */
6090 add_filename_to_list (filename, text, word, list);
6091 }
6092 else
6093 {
6094 const char *base_name = lbasename (filename);
6095
6096 if (base_name != filename
6097 && !filename_seen_cache->seen (base_name)
6098 && filename_ncmp (base_name, text, text_len) == 0)
6099 add_filename_to_list (base_name, text, word, list);
6100 }
6101 }
6102
6103 /* Return a list of all source files whose names begin with matching
6104 TEXT. The file names are looked up in the symbol tables of this
6105 program. */
6106
6107 completion_list
6108 make_source_files_completion_list (const char *text, const char *word)
6109 {
6110 size_t text_len = strlen (text);
6111 completion_list list;
6112 const char *base_name;
6113 struct add_partial_filename_data datum;
6114
6115 if (!have_full_symbols () && !have_partial_symbols ())
6116 return list;
6117
6118 filename_seen_cache filenames_seen;
6119
6120 for (objfile *objfile : current_program_space->objfiles ())
6121 {
6122 for (compunit_symtab *cu : objfile->compunits ())
6123 {
6124 for (symtab *s : compunit_filetabs (cu))
6125 {
6126 if (not_interesting_fname (s->filename))
6127 continue;
6128 if (!filenames_seen.seen (s->filename)
6129 && filename_ncmp (s->filename, text, text_len) == 0)
6130 {
6131 /* This file matches for a completion; add it to the current
6132 list of matches. */
6133 add_filename_to_list (s->filename, text, word, &list);
6134 }
6135 else
6136 {
6137 /* NOTE: We allow the user to type a base name when the
6138 debug info records leading directories, but not the other
6139 way around. This is what subroutines of breakpoint
6140 command do when they parse file names. */
6141 base_name = lbasename (s->filename);
6142 if (base_name != s->filename
6143 && !filenames_seen.seen (base_name)
6144 && filename_ncmp (base_name, text, text_len) == 0)
6145 add_filename_to_list (base_name, text, word, &list);
6146 }
6147 }
6148 }
6149 }
6150
6151 datum.filename_seen_cache = &filenames_seen;
6152 datum.text = text;
6153 datum.word = word;
6154 datum.text_len = text_len;
6155 datum.list = &list;
6156 map_symbol_filenames (datum, false /*need_fullname*/);
6157
6158 return list;
6159 }
6160 \f
6161 /* Track MAIN */
6162
6163 /* Return the "main_info" object for the current program space. If
6164 the object has not yet been created, create it and fill in some
6165 default values. */
6166
6167 static struct main_info *
6168 get_main_info (void)
6169 {
6170 struct main_info *info = main_progspace_key.get (current_program_space);
6171
6172 if (info == NULL)
6173 {
6174 /* It may seem strange to store the main name in the progspace
6175 and also in whatever objfile happens to see a main name in
6176 its debug info. The reason for this is mainly historical:
6177 gdb returned "main" as the name even if no function named
6178 "main" was defined the program; and this approach lets us
6179 keep compatibility. */
6180 info = main_progspace_key.emplace (current_program_space);
6181 }
6182
6183 return info;
6184 }
6185
6186 static void
6187 set_main_name (const char *name, enum language lang)
6188 {
6189 struct main_info *info = get_main_info ();
6190
6191 if (info->name_of_main != NULL)
6192 {
6193 xfree (info->name_of_main);
6194 info->name_of_main = NULL;
6195 info->language_of_main = language_unknown;
6196 }
6197 if (name != NULL)
6198 {
6199 info->name_of_main = xstrdup (name);
6200 info->language_of_main = lang;
6201 }
6202 }
6203
6204 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
6205 accordingly. */
6206
6207 static void
6208 find_main_name (void)
6209 {
6210 const char *new_main_name;
6211
6212 /* First check the objfiles to see whether a debuginfo reader has
6213 picked up the appropriate main name. Historically the main name
6214 was found in a more or less random way; this approach instead
6215 relies on the order of objfile creation -- which still isn't
6216 guaranteed to get the correct answer, but is just probably more
6217 accurate. */
6218 for (objfile *objfile : current_program_space->objfiles ())
6219 {
6220 if (objfile->per_bfd->name_of_main != NULL)
6221 {
6222 set_main_name (objfile->per_bfd->name_of_main,
6223 objfile->per_bfd->language_of_main);
6224 return;
6225 }
6226 }
6227
6228 /* Try to see if the main procedure is in Ada. */
6229 /* FIXME: brobecker/2005-03-07: Another way of doing this would
6230 be to add a new method in the language vector, and call this
6231 method for each language until one of them returns a non-empty
6232 name. This would allow us to remove this hard-coded call to
6233 an Ada function. It is not clear that this is a better approach
6234 at this point, because all methods need to be written in a way
6235 such that false positives never be returned. For instance, it is
6236 important that a method does not return a wrong name for the main
6237 procedure if the main procedure is actually written in a different
6238 language. It is easy to guaranty this with Ada, since we use a
6239 special symbol generated only when the main in Ada to find the name
6240 of the main procedure. It is difficult however to see how this can
6241 be guarantied for languages such as C, for instance. This suggests
6242 that order of call for these methods becomes important, which means
6243 a more complicated approach. */
6244 new_main_name = ada_main_name ();
6245 if (new_main_name != NULL)
6246 {
6247 set_main_name (new_main_name, language_ada);
6248 return;
6249 }
6250
6251 new_main_name = d_main_name ();
6252 if (new_main_name != NULL)
6253 {
6254 set_main_name (new_main_name, language_d);
6255 return;
6256 }
6257
6258 new_main_name = go_main_name ();
6259 if (new_main_name != NULL)
6260 {
6261 set_main_name (new_main_name, language_go);
6262 return;
6263 }
6264
6265 new_main_name = pascal_main_name ();
6266 if (new_main_name != NULL)
6267 {
6268 set_main_name (new_main_name, language_pascal);
6269 return;
6270 }
6271
6272 /* The languages above didn't identify the name of the main procedure.
6273 Fallback to "main". */
6274
6275 /* Try to find language for main in psymtabs. */
6276 enum language lang
6277 = find_quick_global_symbol_language ("main", VAR_DOMAIN);
6278 if (lang != language_unknown)
6279 {
6280 set_main_name ("main", lang);
6281 return;
6282 }
6283
6284 set_main_name ("main", language_unknown);
6285 }
6286
6287 /* See symtab.h. */
6288
6289 const char *
6290 main_name ()
6291 {
6292 struct main_info *info = get_main_info ();
6293
6294 if (info->name_of_main == NULL)
6295 find_main_name ();
6296
6297 return info->name_of_main;
6298 }
6299
6300 /* Return the language of the main function. If it is not known,
6301 return language_unknown. */
6302
6303 enum language
6304 main_language (void)
6305 {
6306 struct main_info *info = get_main_info ();
6307
6308 if (info->name_of_main == NULL)
6309 find_main_name ();
6310
6311 return info->language_of_main;
6312 }
6313
6314 /* Handle ``executable_changed'' events for the symtab module. */
6315
6316 static void
6317 symtab_observer_executable_changed (void)
6318 {
6319 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
6320 set_main_name (NULL, language_unknown);
6321 }
6322
6323 /* Return 1 if the supplied producer string matches the ARM RealView
6324 compiler (armcc). */
6325
6326 bool
6327 producer_is_realview (const char *producer)
6328 {
6329 static const char *const arm_idents[] = {
6330 "ARM C Compiler, ADS",
6331 "Thumb C Compiler, ADS",
6332 "ARM C++ Compiler, ADS",
6333 "Thumb C++ Compiler, ADS",
6334 "ARM/Thumb C/C++ Compiler, RVCT",
6335 "ARM C/C++ Compiler, RVCT"
6336 };
6337 int i;
6338
6339 if (producer == NULL)
6340 return false;
6341
6342 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
6343 if (startswith (producer, arm_idents[i]))
6344 return true;
6345
6346 return false;
6347 }
6348
6349 \f
6350
6351 /* The next index to hand out in response to a registration request. */
6352
6353 static int next_aclass_value = LOC_FINAL_VALUE;
6354
6355 /* The maximum number of "aclass" registrations we support. This is
6356 constant for convenience. */
6357 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6358
6359 /* The objects representing the various "aclass" values. The elements
6360 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6361 elements are those registered at gdb initialization time. */
6362
6363 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6364
6365 /* The globally visible pointer. This is separate from 'symbol_impl'
6366 so that it can be const. */
6367
6368 const struct symbol_impl *symbol_impls = &symbol_impl[0];
6369
6370 /* Make sure we saved enough room in struct symbol. */
6371
6372 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6373
6374 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6375 is the ops vector associated with this index. This returns the new
6376 index, which should be used as the aclass_index field for symbols
6377 of this type. */
6378
6379 int
6380 register_symbol_computed_impl (enum address_class aclass,
6381 const struct symbol_computed_ops *ops)
6382 {
6383 int result = next_aclass_value++;
6384
6385 gdb_assert (aclass == LOC_COMPUTED);
6386 gdb_assert (result < MAX_SYMBOL_IMPLS);
6387 symbol_impl[result].aclass = aclass;
6388 symbol_impl[result].ops_computed = ops;
6389
6390 /* Sanity check OPS. */
6391 gdb_assert (ops != NULL);
6392 gdb_assert (ops->tracepoint_var_ref != NULL);
6393 gdb_assert (ops->describe_location != NULL);
6394 gdb_assert (ops->get_symbol_read_needs != NULL);
6395 gdb_assert (ops->read_variable != NULL);
6396
6397 return result;
6398 }
6399
6400 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6401 OPS is the ops vector associated with this index. This returns the
6402 new index, which should be used as the aclass_index field for symbols
6403 of this type. */
6404
6405 int
6406 register_symbol_block_impl (enum address_class aclass,
6407 const struct symbol_block_ops *ops)
6408 {
6409 int result = next_aclass_value++;
6410
6411 gdb_assert (aclass == LOC_BLOCK);
6412 gdb_assert (result < MAX_SYMBOL_IMPLS);
6413 symbol_impl[result].aclass = aclass;
6414 symbol_impl[result].ops_block = ops;
6415
6416 /* Sanity check OPS. */
6417 gdb_assert (ops != NULL);
6418 gdb_assert (ops->find_frame_base_location != NULL);
6419
6420 return result;
6421 }
6422
6423 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6424 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6425 this index. This returns the new index, which should be used as
6426 the aclass_index field for symbols of this type. */
6427
6428 int
6429 register_symbol_register_impl (enum address_class aclass,
6430 const struct symbol_register_ops *ops)
6431 {
6432 int result = next_aclass_value++;
6433
6434 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6435 gdb_assert (result < MAX_SYMBOL_IMPLS);
6436 symbol_impl[result].aclass = aclass;
6437 symbol_impl[result].ops_register = ops;
6438
6439 return result;
6440 }
6441
6442 /* Initialize elements of 'symbol_impl' for the constants in enum
6443 address_class. */
6444
6445 static void
6446 initialize_ordinary_address_classes (void)
6447 {
6448 int i;
6449
6450 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6451 symbol_impl[i].aclass = (enum address_class) i;
6452 }
6453
6454 \f
6455
6456 /* See symtab.h. */
6457
6458 struct objfile *
6459 symbol_objfile (const struct symbol *symbol)
6460 {
6461 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6462 return SYMTAB_OBJFILE (symbol->owner.symtab);
6463 }
6464
6465 /* See symtab.h. */
6466
6467 struct gdbarch *
6468 symbol_arch (const struct symbol *symbol)
6469 {
6470 if (!SYMBOL_OBJFILE_OWNED (symbol))
6471 return symbol->owner.arch;
6472 return SYMTAB_OBJFILE (symbol->owner.symtab)->arch ();
6473 }
6474
6475 /* See symtab.h. */
6476
6477 struct symtab *
6478 symbol_symtab (const struct symbol *symbol)
6479 {
6480 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6481 return symbol->owner.symtab;
6482 }
6483
6484 /* See symtab.h. */
6485
6486 void
6487 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6488 {
6489 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6490 symbol->owner.symtab = symtab;
6491 }
6492
6493 /* See symtab.h. */
6494
6495 CORE_ADDR
6496 get_symbol_address (const struct symbol *sym)
6497 {
6498 gdb_assert (sym->maybe_copied);
6499 gdb_assert (SYMBOL_CLASS (sym) == LOC_STATIC);
6500
6501 const char *linkage_name = sym->linkage_name ();
6502
6503 for (objfile *objfile : current_program_space->objfiles ())
6504 {
6505 if (objfile->separate_debug_objfile_backlink != nullptr)
6506 continue;
6507
6508 bound_minimal_symbol minsym
6509 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6510 if (minsym.minsym != nullptr)
6511 return BMSYMBOL_VALUE_ADDRESS (minsym);
6512 }
6513 return sym->value.address;
6514 }
6515
6516 /* See symtab.h. */
6517
6518 CORE_ADDR
6519 get_msymbol_address (struct objfile *objf, const struct minimal_symbol *minsym)
6520 {
6521 gdb_assert (minsym->maybe_copied);
6522 gdb_assert ((objf->flags & OBJF_MAINLINE) == 0);
6523
6524 const char *linkage_name = minsym->linkage_name ();
6525
6526 for (objfile *objfile : current_program_space->objfiles ())
6527 {
6528 if (objfile->separate_debug_objfile_backlink == nullptr
6529 && (objfile->flags & OBJF_MAINLINE) != 0)
6530 {
6531 bound_minimal_symbol found
6532 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6533 if (found.minsym != nullptr)
6534 return BMSYMBOL_VALUE_ADDRESS (found);
6535 }
6536 }
6537 return (minsym->value.address
6538 + objf->section_offsets[minsym->section_index ()]);
6539 }
6540
6541 \f
6542
6543 /* Hold the sub-commands of 'info module'. */
6544
6545 static struct cmd_list_element *info_module_cmdlist = NULL;
6546
6547 /* See symtab.h. */
6548
6549 std::vector<module_symbol_search>
6550 search_module_symbols (const char *module_regexp, const char *regexp,
6551 const char *type_regexp, search_domain kind)
6552 {
6553 std::vector<module_symbol_search> results;
6554
6555 /* Search for all modules matching MODULE_REGEXP. */
6556 global_symbol_searcher spec1 (MODULES_DOMAIN, module_regexp);
6557 spec1.set_exclude_minsyms (true);
6558 std::vector<symbol_search> modules = spec1.search ();
6559
6560 /* Now search for all symbols of the required KIND matching the required
6561 regular expressions. We figure out which ones are in which modules
6562 below. */
6563 global_symbol_searcher spec2 (kind, regexp);
6564 spec2.set_symbol_type_regexp (type_regexp);
6565 spec2.set_exclude_minsyms (true);
6566 std::vector<symbol_search> symbols = spec2.search ();
6567
6568 /* Now iterate over all MODULES, checking to see which items from
6569 SYMBOLS are in each module. */
6570 for (const symbol_search &p : modules)
6571 {
6572 QUIT;
6573
6574 /* This is a module. */
6575 gdb_assert (p.symbol != nullptr);
6576
6577 std::string prefix = p.symbol->print_name ();
6578 prefix += "::";
6579
6580 for (const symbol_search &q : symbols)
6581 {
6582 if (q.symbol == nullptr)
6583 continue;
6584
6585 if (strncmp (q.symbol->print_name (), prefix.c_str (),
6586 prefix.size ()) != 0)
6587 continue;
6588
6589 results.push_back ({p, q});
6590 }
6591 }
6592
6593 return results;
6594 }
6595
6596 /* Implement the core of both 'info module functions' and 'info module
6597 variables'. */
6598
6599 static void
6600 info_module_subcommand (bool quiet, const char *module_regexp,
6601 const char *regexp, const char *type_regexp,
6602 search_domain kind)
6603 {
6604 /* Print a header line. Don't build the header line bit by bit as this
6605 prevents internationalisation. */
6606 if (!quiet)
6607 {
6608 if (module_regexp == nullptr)
6609 {
6610 if (type_regexp == nullptr)
6611 {
6612 if (regexp == nullptr)
6613 printf_filtered ((kind == VARIABLES_DOMAIN
6614 ? _("All variables in all modules:")
6615 : _("All functions in all modules:")));
6616 else
6617 printf_filtered
6618 ((kind == VARIABLES_DOMAIN
6619 ? _("All variables matching regular expression"
6620 " \"%s\" in all modules:")
6621 : _("All functions matching regular expression"
6622 " \"%s\" in all modules:")),
6623 regexp);
6624 }
6625 else
6626 {
6627 if (regexp == nullptr)
6628 printf_filtered
6629 ((kind == VARIABLES_DOMAIN
6630 ? _("All variables with type matching regular "
6631 "expression \"%s\" in all modules:")
6632 : _("All functions with type matching regular "
6633 "expression \"%s\" in all modules:")),
6634 type_regexp);
6635 else
6636 printf_filtered
6637 ((kind == VARIABLES_DOMAIN
6638 ? _("All variables matching regular expression "
6639 "\"%s\",\n\twith type matching regular "
6640 "expression \"%s\" in all modules:")
6641 : _("All functions matching regular expression "
6642 "\"%s\",\n\twith type matching regular "
6643 "expression \"%s\" in all modules:")),
6644 regexp, type_regexp);
6645 }
6646 }
6647 else
6648 {
6649 if (type_regexp == nullptr)
6650 {
6651 if (regexp == nullptr)
6652 printf_filtered
6653 ((kind == VARIABLES_DOMAIN
6654 ? _("All variables in all modules matching regular "
6655 "expression \"%s\":")
6656 : _("All functions in all modules matching regular "
6657 "expression \"%s\":")),
6658 module_regexp);
6659 else
6660 printf_filtered
6661 ((kind == VARIABLES_DOMAIN
6662 ? _("All variables matching regular expression "
6663 "\"%s\",\n\tin all modules matching regular "
6664 "expression \"%s\":")
6665 : _("All functions matching regular expression "
6666 "\"%s\",\n\tin all modules matching regular "
6667 "expression \"%s\":")),
6668 regexp, module_regexp);
6669 }
6670 else
6671 {
6672 if (regexp == nullptr)
6673 printf_filtered
6674 ((kind == VARIABLES_DOMAIN
6675 ? _("All variables with type matching regular "
6676 "expression \"%s\"\n\tin all modules matching "
6677 "regular expression \"%s\":")
6678 : _("All functions with type matching regular "
6679 "expression \"%s\"\n\tin all modules matching "
6680 "regular expression \"%s\":")),
6681 type_regexp, module_regexp);
6682 else
6683 printf_filtered
6684 ((kind == VARIABLES_DOMAIN
6685 ? _("All variables matching regular expression "
6686 "\"%s\",\n\twith type matching regular expression "
6687 "\"%s\",\n\tin all modules matching regular "
6688 "expression \"%s\":")
6689 : _("All functions matching regular expression "
6690 "\"%s\",\n\twith type matching regular expression "
6691 "\"%s\",\n\tin all modules matching regular "
6692 "expression \"%s\":")),
6693 regexp, type_regexp, module_regexp);
6694 }
6695 }
6696 printf_filtered ("\n");
6697 }
6698
6699 /* Find all symbols of type KIND matching the given regular expressions
6700 along with the symbols for the modules in which those symbols
6701 reside. */
6702 std::vector<module_symbol_search> module_symbols
6703 = search_module_symbols (module_regexp, regexp, type_regexp, kind);
6704
6705 std::sort (module_symbols.begin (), module_symbols.end (),
6706 [] (const module_symbol_search &a, const module_symbol_search &b)
6707 {
6708 if (a.first < b.first)
6709 return true;
6710 else if (a.first == b.first)
6711 return a.second < b.second;
6712 else
6713 return false;
6714 });
6715
6716 const char *last_filename = "";
6717 const symbol *last_module_symbol = nullptr;
6718 for (const module_symbol_search &ms : module_symbols)
6719 {
6720 const symbol_search &p = ms.first;
6721 const symbol_search &q = ms.second;
6722
6723 gdb_assert (q.symbol != nullptr);
6724
6725 if (last_module_symbol != p.symbol)
6726 {
6727 printf_filtered ("\n");
6728 printf_filtered (_("Module \"%s\":\n"), p.symbol->print_name ());
6729 last_module_symbol = p.symbol;
6730 last_filename = "";
6731 }
6732
6733 print_symbol_info (FUNCTIONS_DOMAIN, q.symbol, q.block,
6734 last_filename);
6735 last_filename
6736 = symtab_to_filename_for_display (symbol_symtab (q.symbol));
6737 }
6738 }
6739
6740 /* Hold the option values for the 'info module .....' sub-commands. */
6741
6742 struct info_modules_var_func_options
6743 {
6744 bool quiet = false;
6745 char *type_regexp = nullptr;
6746 char *module_regexp = nullptr;
6747
6748 ~info_modules_var_func_options ()
6749 {
6750 xfree (type_regexp);
6751 xfree (module_regexp);
6752 }
6753 };
6754
6755 /* The options used by 'info module variables' and 'info module functions'
6756 commands. */
6757
6758 static const gdb::option::option_def info_modules_var_func_options_defs [] = {
6759 gdb::option::boolean_option_def<info_modules_var_func_options> {
6760 "q",
6761 [] (info_modules_var_func_options *opt) { return &opt->quiet; },
6762 nullptr, /* show_cmd_cb */
6763 nullptr /* set_doc */
6764 },
6765
6766 gdb::option::string_option_def<info_modules_var_func_options> {
6767 "t",
6768 [] (info_modules_var_func_options *opt) { return &opt->type_regexp; },
6769 nullptr, /* show_cmd_cb */
6770 nullptr /* set_doc */
6771 },
6772
6773 gdb::option::string_option_def<info_modules_var_func_options> {
6774 "m",
6775 [] (info_modules_var_func_options *opt) { return &opt->module_regexp; },
6776 nullptr, /* show_cmd_cb */
6777 nullptr /* set_doc */
6778 }
6779 };
6780
6781 /* Return the option group used by the 'info module ...' sub-commands. */
6782
6783 static inline gdb::option::option_def_group
6784 make_info_modules_var_func_options_def_group
6785 (info_modules_var_func_options *opts)
6786 {
6787 return {{info_modules_var_func_options_defs}, opts};
6788 }
6789
6790 /* Implements the 'info module functions' command. */
6791
6792 static void
6793 info_module_functions_command (const char *args, int from_tty)
6794 {
6795 info_modules_var_func_options opts;
6796 auto grp = make_info_modules_var_func_options_def_group (&opts);
6797 gdb::option::process_options
6798 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6799 if (args != nullptr && *args == '\0')
6800 args = nullptr;
6801
6802 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6803 opts.type_regexp, FUNCTIONS_DOMAIN);
6804 }
6805
6806 /* Implements the 'info module variables' command. */
6807
6808 static void
6809 info_module_variables_command (const char *args, int from_tty)
6810 {
6811 info_modules_var_func_options opts;
6812 auto grp = make_info_modules_var_func_options_def_group (&opts);
6813 gdb::option::process_options
6814 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6815 if (args != nullptr && *args == '\0')
6816 args = nullptr;
6817
6818 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6819 opts.type_regexp, VARIABLES_DOMAIN);
6820 }
6821
6822 /* Command completer for 'info module ...' sub-commands. */
6823
6824 static void
6825 info_module_var_func_command_completer (struct cmd_list_element *ignore,
6826 completion_tracker &tracker,
6827 const char *text,
6828 const char * /* word */)
6829 {
6830
6831 const auto group = make_info_modules_var_func_options_def_group (nullptr);
6832 if (gdb::option::complete_options
6833 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
6834 return;
6835
6836 const char *word = advance_to_expression_complete_word_point (tracker, text);
6837 symbol_completer (ignore, tracker, text, word);
6838 }
6839
6840 \f
6841
6842 void _initialize_symtab ();
6843 void
6844 _initialize_symtab ()
6845 {
6846 cmd_list_element *c;
6847
6848 initialize_ordinary_address_classes ();
6849
6850 c = add_info ("variables", info_variables_command,
6851 info_print_args_help (_("\
6852 All global and static variable names or those matching REGEXPs.\n\
6853 Usage: info variables [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6854 Prints the global and static variables.\n"),
6855 _("global and static variables"),
6856 true));
6857 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6858 if (dbx_commands)
6859 {
6860 c = add_com ("whereis", class_info, info_variables_command,
6861 info_print_args_help (_("\
6862 All global and static variable names, or those matching REGEXPs.\n\
6863 Usage: whereis [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6864 Prints the global and static variables.\n"),
6865 _("global and static variables"),
6866 true));
6867 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6868 }
6869
6870 c = add_info ("functions", info_functions_command,
6871 info_print_args_help (_("\
6872 All function names or those matching REGEXPs.\n\
6873 Usage: info functions [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6874 Prints the functions.\n"),
6875 _("functions"),
6876 true));
6877 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6878
6879 c = add_info ("types", info_types_command, _("\
6880 All type names, or those matching REGEXP.\n\
6881 Usage: info types [-q] [REGEXP]\n\
6882 Print information about all types matching REGEXP, or all types if no\n\
6883 REGEXP is given. The optional flag -q disables printing of headers."));
6884 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6885
6886 const auto info_sources_opts
6887 = make_info_sources_options_def_group (nullptr);
6888
6889 static std::string info_sources_help
6890 = gdb::option::build_help (_("\
6891 All source files in the program or those matching REGEXP.\n\
6892 Usage: info sources [OPTION]... [REGEXP]\n\
6893 By default, REGEXP is used to match anywhere in the filename.\n\
6894 \n\
6895 Options:\n\
6896 %OPTIONS%"),
6897 info_sources_opts);
6898
6899 c = add_info ("sources", info_sources_command, info_sources_help.c_str ());
6900 set_cmd_completer_handle_brkchars (c, info_sources_command_completer);
6901
6902 c = add_info ("modules", info_modules_command,
6903 _("All module names, or those matching REGEXP."));
6904 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6905
6906 add_basic_prefix_cmd ("module", class_info, _("\
6907 Print information about modules."),
6908 &info_module_cmdlist, 0, &infolist);
6909
6910 c = add_cmd ("functions", class_info, info_module_functions_command, _("\
6911 Display functions arranged by modules.\n\
6912 Usage: info module functions [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6913 Print a summary of all functions within each Fortran module, grouped by\n\
6914 module and file. For each function the line on which the function is\n\
6915 defined is given along with the type signature and name of the function.\n\
6916 \n\
6917 If REGEXP is provided then only functions whose name matches REGEXP are\n\
6918 listed. If MODREGEXP is provided then only functions in modules matching\n\
6919 MODREGEXP are listed. If TYPEREGEXP is given then only functions whose\n\
6920 type signature matches TYPEREGEXP are listed.\n\
6921 \n\
6922 The -q flag suppresses printing some header information."),
6923 &info_module_cmdlist);
6924 set_cmd_completer_handle_brkchars
6925 (c, info_module_var_func_command_completer);
6926
6927 c = add_cmd ("variables", class_info, info_module_variables_command, _("\
6928 Display variables arranged by modules.\n\
6929 Usage: info module variables [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6930 Print a summary of all variables within each Fortran module, grouped by\n\
6931 module and file. For each variable the line on which the variable is\n\
6932 defined is given along with the type and name of the variable.\n\
6933 \n\
6934 If REGEXP is provided then only variables whose name matches REGEXP are\n\
6935 listed. If MODREGEXP is provided then only variables in modules matching\n\
6936 MODREGEXP are listed. If TYPEREGEXP is given then only variables whose\n\
6937 type matches TYPEREGEXP are listed.\n\
6938 \n\
6939 The -q flag suppresses printing some header information."),
6940 &info_module_cmdlist);
6941 set_cmd_completer_handle_brkchars
6942 (c, info_module_var_func_command_completer);
6943
6944 add_com ("rbreak", class_breakpoint, rbreak_command,
6945 _("Set a breakpoint for all functions matching REGEXP."));
6946
6947 add_setshow_enum_cmd ("multiple-symbols", no_class,
6948 multiple_symbols_modes, &multiple_symbols_mode,
6949 _("\
6950 Set how the debugger handles ambiguities in expressions."), _("\
6951 Show how the debugger handles ambiguities in expressions."), _("\
6952 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6953 NULL, NULL, &setlist, &showlist);
6954
6955 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6956 &basenames_may_differ, _("\
6957 Set whether a source file may have multiple base names."), _("\
6958 Show whether a source file may have multiple base names."), _("\
6959 (A \"base name\" is the name of a file with the directory part removed.\n\
6960 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6961 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6962 before comparing them. Canonicalization is an expensive operation,\n\
6963 but it allows the same file be known by more than one base name.\n\
6964 If not set (the default), all source files are assumed to have just\n\
6965 one base name, and gdb will do file name comparisons more efficiently."),
6966 NULL, NULL,
6967 &setlist, &showlist);
6968
6969 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6970 _("Set debugging of symbol table creation."),
6971 _("Show debugging of symbol table creation."), _("\
6972 When enabled (non-zero), debugging messages are printed when building\n\
6973 symbol tables. A value of 1 (one) normally provides enough information.\n\
6974 A value greater than 1 provides more verbose information."),
6975 NULL,
6976 NULL,
6977 &setdebuglist, &showdebuglist);
6978
6979 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6980 _("\
6981 Set debugging of symbol lookup."), _("\
6982 Show debugging of symbol lookup."), _("\
6983 When enabled (non-zero), symbol lookups are logged."),
6984 NULL, NULL,
6985 &setdebuglist, &showdebuglist);
6986
6987 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6988 &new_symbol_cache_size,
6989 _("Set the size of the symbol cache."),
6990 _("Show the size of the symbol cache."), _("\
6991 The size of the symbol cache.\n\
6992 If zero then the symbol cache is disabled."),
6993 set_symbol_cache_size_handler, NULL,
6994 &maintenance_set_cmdlist,
6995 &maintenance_show_cmdlist);
6996
6997 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6998 _("Dump the symbol cache for each program space."),
6999 &maintenanceprintlist);
7000
7001 add_cmd ("symbol-cache-statistics", class_maintenance,
7002 maintenance_print_symbol_cache_statistics,
7003 _("Print symbol cache statistics for each program space."),
7004 &maintenanceprintlist);
7005
7006 cmd_list_element *maintenance_flush_symbol_cache_cmd
7007 = add_cmd ("symbol-cache", class_maintenance,
7008 maintenance_flush_symbol_cache,
7009 _("Flush the symbol cache for each program space."),
7010 &maintenanceflushlist);
7011 c = add_alias_cmd ("flush-symbol-cache", maintenance_flush_symbol_cache_cmd,
7012 class_maintenance, 0, &maintenancelist);
7013 deprecate_cmd (c, "maintenancelist flush symbol-cache");
7014
7015 gdb::observers::executable_changed.attach (symtab_observer_executable_changed,
7016 "symtab");
7017 gdb::observers::new_objfile.attach (symtab_new_objfile_observer, "symtab");
7018 gdb::observers::free_objfile.attach (symtab_free_objfile_observer, "symtab");
7019 }