]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/symtab.c
Delete TYPE_CODE_CLASS, it's just an alias of TYPE_CODE_STRUCT.
[thirdparty/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <sys/stat.h>
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observer.h"
58 #include "solist.h"
59 #include "macrotab.h"
60 #include "macroscope.h"
61
62 #include "parser-defs.h"
63
64 /* Forward declarations for local functions. */
65
66 static void rbreak_command (char *, int);
67
68 static int find_line_common (struct linetable *, int, int *, int);
69
70 static struct symbol *lookup_symbol_aux (const char *name,
71 const struct block *block,
72 const domain_enum domain,
73 enum language language,
74 struct field_of_this_result *);
75
76 static
77 struct symbol *lookup_symbol_aux_local (const char *name,
78 const struct block *block,
79 const domain_enum domain,
80 enum language language);
81
82 static
83 struct symbol *lookup_symbol_aux_symtabs (int block_index,
84 const char *name,
85 const domain_enum domain);
86
87 static
88 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
89 int block_index,
90 const char *name,
91 const domain_enum domain);
92
93 extern initialize_file_ftype _initialize_symtab;
94
95 /* Program space key for finding name and language of "main". */
96
97 static const struct program_space_data *main_progspace_key;
98
99 /* Type of the data stored on the program space. */
100
101 struct main_info
102 {
103 /* Name of "main". */
104
105 char *name_of_main;
106
107 /* Language of "main". */
108
109 enum language language_of_main;
110 };
111
112 /* When non-zero, print debugging messages related to symtab creation. */
113 unsigned int symtab_create_debug = 0;
114
115 /* Non-zero if a file may be known by two different basenames.
116 This is the uncommon case, and significantly slows down gdb.
117 Default set to "off" to not slow down the common case. */
118 int basenames_may_differ = 0;
119
120 /* Allow the user to configure the debugger behavior with respect
121 to multiple-choice menus when more than one symbol matches during
122 a symbol lookup. */
123
124 const char multiple_symbols_ask[] = "ask";
125 const char multiple_symbols_all[] = "all";
126 const char multiple_symbols_cancel[] = "cancel";
127 static const char *const multiple_symbols_modes[] =
128 {
129 multiple_symbols_ask,
130 multiple_symbols_all,
131 multiple_symbols_cancel,
132 NULL
133 };
134 static const char *multiple_symbols_mode = multiple_symbols_all;
135
136 /* Read-only accessor to AUTO_SELECT_MODE. */
137
138 const char *
139 multiple_symbols_select_mode (void)
140 {
141 return multiple_symbols_mode;
142 }
143
144 /* Block in which the most recently searched-for symbol was found.
145 Might be better to make this a parameter to lookup_symbol and
146 value_of_this. */
147
148 const struct block *block_found;
149
150 /* Return the name of a domain_enum. */
151
152 const char *
153 domain_name (domain_enum e)
154 {
155 switch (e)
156 {
157 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
158 case VAR_DOMAIN: return "VAR_DOMAIN";
159 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
160 case LABEL_DOMAIN: return "LABEL_DOMAIN";
161 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
162 default: gdb_assert_not_reached ("bad domain_enum");
163 }
164 }
165
166 /* Return the name of a search_domain . */
167
168 const char *
169 search_domain_name (enum search_domain e)
170 {
171 switch (e)
172 {
173 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
174 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
175 case TYPES_DOMAIN: return "TYPES_DOMAIN";
176 case ALL_DOMAIN: return "ALL_DOMAIN";
177 default: gdb_assert_not_reached ("bad search_domain");
178 }
179 }
180
181 /* Set the primary field in SYMTAB. */
182
183 void
184 set_symtab_primary (struct symtab *symtab, int primary)
185 {
186 symtab->primary = primary;
187
188 if (symtab_create_debug && primary)
189 {
190 fprintf_unfiltered (gdb_stdlog,
191 "Created primary symtab %s for %s.\n",
192 host_address_to_string (symtab),
193 symtab_to_filename_for_display (symtab));
194 }
195 }
196
197 /* See whether FILENAME matches SEARCH_NAME using the rule that we
198 advertise to the user. (The manual's description of linespecs
199 describes what we advertise). Returns true if they match, false
200 otherwise. */
201
202 int
203 compare_filenames_for_search (const char *filename, const char *search_name)
204 {
205 int len = strlen (filename);
206 size_t search_len = strlen (search_name);
207
208 if (len < search_len)
209 return 0;
210
211 /* The tail of FILENAME must match. */
212 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
213 return 0;
214
215 /* Either the names must completely match, or the character
216 preceding the trailing SEARCH_NAME segment of FILENAME must be a
217 directory separator.
218
219 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
220 cannot match FILENAME "/path//dir/file.c" - as user has requested
221 absolute path. The sama applies for "c:\file.c" possibly
222 incorrectly hypothetically matching "d:\dir\c:\file.c".
223
224 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
225 compatible with SEARCH_NAME "file.c". In such case a compiler had
226 to put the "c:file.c" name into debug info. Such compatibility
227 works only on GDB built for DOS host. */
228 return (len == search_len
229 || (!IS_ABSOLUTE_PATH (search_name)
230 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
231 || (HAS_DRIVE_SPEC (filename)
232 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
233 }
234
235 /* Check for a symtab of a specific name by searching some symtabs.
236 This is a helper function for callbacks of iterate_over_symtabs.
237
238 If NAME is not absolute, then REAL_PATH is NULL
239 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
240
241 The return value, NAME, REAL_PATH, CALLBACK, and DATA
242 are identical to the `map_symtabs_matching_filename' method of
243 quick_symbol_functions.
244
245 FIRST and AFTER_LAST indicate the range of symtabs to search.
246 AFTER_LAST is one past the last symtab to search; NULL means to
247 search until the end of the list. */
248
249 int
250 iterate_over_some_symtabs (const char *name,
251 const char *real_path,
252 int (*callback) (struct symtab *symtab,
253 void *data),
254 void *data,
255 struct symtab *first,
256 struct symtab *after_last)
257 {
258 struct symtab *s = NULL;
259 const char* base_name = lbasename (name);
260
261 for (s = first; s != NULL && s != after_last; s = s->next)
262 {
263 if (compare_filenames_for_search (s->filename, name))
264 {
265 if (callback (s, data))
266 return 1;
267 continue;
268 }
269
270 /* Before we invoke realpath, which can get expensive when many
271 files are involved, do a quick comparison of the basenames. */
272 if (! basenames_may_differ
273 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
274 continue;
275
276 if (compare_filenames_for_search (symtab_to_fullname (s), name))
277 {
278 if (callback (s, data))
279 return 1;
280 continue;
281 }
282
283 /* If the user gave us an absolute path, try to find the file in
284 this symtab and use its absolute path. */
285 if (real_path != NULL)
286 {
287 const char *fullname = symtab_to_fullname (s);
288
289 gdb_assert (IS_ABSOLUTE_PATH (real_path));
290 gdb_assert (IS_ABSOLUTE_PATH (name));
291 if (FILENAME_CMP (real_path, fullname) == 0)
292 {
293 if (callback (s, data))
294 return 1;
295 continue;
296 }
297 }
298 }
299
300 return 0;
301 }
302
303 /* Check for a symtab of a specific name; first in symtabs, then in
304 psymtabs. *If* there is no '/' in the name, a match after a '/'
305 in the symtab filename will also work.
306
307 Calls CALLBACK with each symtab that is found and with the supplied
308 DATA. If CALLBACK returns true, the search stops. */
309
310 void
311 iterate_over_symtabs (const char *name,
312 int (*callback) (struct symtab *symtab,
313 void *data),
314 void *data)
315 {
316 struct objfile *objfile;
317 char *real_path = NULL;
318 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
319
320 /* Here we are interested in canonicalizing an absolute path, not
321 absolutizing a relative path. */
322 if (IS_ABSOLUTE_PATH (name))
323 {
324 real_path = gdb_realpath (name);
325 make_cleanup (xfree, real_path);
326 gdb_assert (IS_ABSOLUTE_PATH (real_path));
327 }
328
329 ALL_OBJFILES (objfile)
330 {
331 if (iterate_over_some_symtabs (name, real_path, callback, data,
332 objfile->symtabs, NULL))
333 {
334 do_cleanups (cleanups);
335 return;
336 }
337 }
338
339 /* Same search rules as above apply here, but now we look thru the
340 psymtabs. */
341
342 ALL_OBJFILES (objfile)
343 {
344 if (objfile->sf
345 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
346 name,
347 real_path,
348 callback,
349 data))
350 {
351 do_cleanups (cleanups);
352 return;
353 }
354 }
355
356 do_cleanups (cleanups);
357 }
358
359 /* The callback function used by lookup_symtab. */
360
361 static int
362 lookup_symtab_callback (struct symtab *symtab, void *data)
363 {
364 struct symtab **result_ptr = data;
365
366 *result_ptr = symtab;
367 return 1;
368 }
369
370 /* A wrapper for iterate_over_symtabs that returns the first matching
371 symtab, or NULL. */
372
373 struct symtab *
374 lookup_symtab (const char *name)
375 {
376 struct symtab *result = NULL;
377
378 iterate_over_symtabs (name, lookup_symtab_callback, &result);
379 return result;
380 }
381
382 \f
383 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
384 full method name, which consist of the class name (from T), the unadorned
385 method name from METHOD_ID, and the signature for the specific overload,
386 specified by SIGNATURE_ID. Note that this function is g++ specific. */
387
388 char *
389 gdb_mangle_name (struct type *type, int method_id, int signature_id)
390 {
391 int mangled_name_len;
392 char *mangled_name;
393 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
394 struct fn_field *method = &f[signature_id];
395 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
396 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
397 const char *newname = type_name_no_tag (type);
398
399 /* Does the form of physname indicate that it is the full mangled name
400 of a constructor (not just the args)? */
401 int is_full_physname_constructor;
402
403 int is_constructor;
404 int is_destructor = is_destructor_name (physname);
405 /* Need a new type prefix. */
406 char *const_prefix = method->is_const ? "C" : "";
407 char *volatile_prefix = method->is_volatile ? "V" : "";
408 char buf[20];
409 int len = (newname == NULL ? 0 : strlen (newname));
410
411 /* Nothing to do if physname already contains a fully mangled v3 abi name
412 or an operator name. */
413 if ((physname[0] == '_' && physname[1] == 'Z')
414 || is_operator_name (field_name))
415 return xstrdup (physname);
416
417 is_full_physname_constructor = is_constructor_name (physname);
418
419 is_constructor = is_full_physname_constructor
420 || (newname && strcmp (field_name, newname) == 0);
421
422 if (!is_destructor)
423 is_destructor = (strncmp (physname, "__dt", 4) == 0);
424
425 if (is_destructor || is_full_physname_constructor)
426 {
427 mangled_name = (char *) xmalloc (strlen (physname) + 1);
428 strcpy (mangled_name, physname);
429 return mangled_name;
430 }
431
432 if (len == 0)
433 {
434 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
435 }
436 else if (physname[0] == 't' || physname[0] == 'Q')
437 {
438 /* The physname for template and qualified methods already includes
439 the class name. */
440 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
441 newname = NULL;
442 len = 0;
443 }
444 else
445 {
446 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
447 volatile_prefix, len);
448 }
449 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
450 + strlen (buf) + len + strlen (physname) + 1);
451
452 mangled_name = (char *) xmalloc (mangled_name_len);
453 if (is_constructor)
454 mangled_name[0] = '\0';
455 else
456 strcpy (mangled_name, field_name);
457
458 strcat (mangled_name, buf);
459 /* If the class doesn't have a name, i.e. newname NULL, then we just
460 mangle it using 0 for the length of the class. Thus it gets mangled
461 as something starting with `::' rather than `classname::'. */
462 if (newname != NULL)
463 strcat (mangled_name, newname);
464
465 strcat (mangled_name, physname);
466 return (mangled_name);
467 }
468
469 /* Initialize the cplus_specific structure. 'cplus_specific' should
470 only be allocated for use with cplus symbols. */
471
472 static void
473 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
474 struct obstack *obstack)
475 {
476 /* A language_specific structure should not have been previously
477 initialized. */
478 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
479 gdb_assert (obstack != NULL);
480
481 gsymbol->language_specific.cplus_specific =
482 OBSTACK_ZALLOC (obstack, struct cplus_specific);
483 }
484
485 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
486 correctly allocated. For C++ symbols a cplus_specific struct is
487 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
488 OBJFILE can be NULL. */
489
490 void
491 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
492 const char *name,
493 struct obstack *obstack)
494 {
495 if (gsymbol->language == language_cplus)
496 {
497 if (gsymbol->language_specific.cplus_specific == NULL)
498 symbol_init_cplus_specific (gsymbol, obstack);
499
500 gsymbol->language_specific.cplus_specific->demangled_name = name;
501 }
502 else if (gsymbol->language == language_ada)
503 {
504 if (name == NULL)
505 {
506 gsymbol->ada_mangled = 0;
507 gsymbol->language_specific.obstack = obstack;
508 }
509 else
510 {
511 gsymbol->ada_mangled = 1;
512 gsymbol->language_specific.mangled_lang.demangled_name = name;
513 }
514 }
515 else
516 gsymbol->language_specific.mangled_lang.demangled_name = name;
517 }
518
519 /* Return the demangled name of GSYMBOL. */
520
521 const char *
522 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
523 {
524 if (gsymbol->language == language_cplus)
525 {
526 if (gsymbol->language_specific.cplus_specific != NULL)
527 return gsymbol->language_specific.cplus_specific->demangled_name;
528 else
529 return NULL;
530 }
531 else if (gsymbol->language == language_ada)
532 {
533 if (!gsymbol->ada_mangled)
534 return NULL;
535 /* Fall through. */
536 }
537
538 return gsymbol->language_specific.mangled_lang.demangled_name;
539 }
540
541 \f
542 /* Initialize the language dependent portion of a symbol
543 depending upon the language for the symbol. */
544
545 void
546 symbol_set_language (struct general_symbol_info *gsymbol,
547 enum language language,
548 struct obstack *obstack)
549 {
550 gsymbol->language = language;
551 if (gsymbol->language == language_d
552 || gsymbol->language == language_go
553 || gsymbol->language == language_java
554 || gsymbol->language == language_objc
555 || gsymbol->language == language_fortran)
556 {
557 symbol_set_demangled_name (gsymbol, NULL, obstack);
558 }
559 else if (gsymbol->language == language_ada)
560 {
561 gdb_assert (gsymbol->ada_mangled == 0);
562 gsymbol->language_specific.obstack = obstack;
563 }
564 else if (gsymbol->language == language_cplus)
565 gsymbol->language_specific.cplus_specific = NULL;
566 else
567 {
568 memset (&gsymbol->language_specific, 0,
569 sizeof (gsymbol->language_specific));
570 }
571 }
572
573 /* Functions to initialize a symbol's mangled name. */
574
575 /* Objects of this type are stored in the demangled name hash table. */
576 struct demangled_name_entry
577 {
578 const char *mangled;
579 char demangled[1];
580 };
581
582 /* Hash function for the demangled name hash. */
583
584 static hashval_t
585 hash_demangled_name_entry (const void *data)
586 {
587 const struct demangled_name_entry *e = data;
588
589 return htab_hash_string (e->mangled);
590 }
591
592 /* Equality function for the demangled name hash. */
593
594 static int
595 eq_demangled_name_entry (const void *a, const void *b)
596 {
597 const struct demangled_name_entry *da = a;
598 const struct demangled_name_entry *db = b;
599
600 return strcmp (da->mangled, db->mangled) == 0;
601 }
602
603 /* Create the hash table used for demangled names. Each hash entry is
604 a pair of strings; one for the mangled name and one for the demangled
605 name. The entry is hashed via just the mangled name. */
606
607 static void
608 create_demangled_names_hash (struct objfile *objfile)
609 {
610 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
611 The hash table code will round this up to the next prime number.
612 Choosing a much larger table size wastes memory, and saves only about
613 1% in symbol reading. */
614
615 objfile->per_bfd->demangled_names_hash = htab_create_alloc
616 (256, hash_demangled_name_entry, eq_demangled_name_entry,
617 NULL, xcalloc, xfree);
618 }
619
620 /* Try to determine the demangled name for a symbol, based on the
621 language of that symbol. If the language is set to language_auto,
622 it will attempt to find any demangling algorithm that works and
623 then set the language appropriately. The returned name is allocated
624 by the demangler and should be xfree'd. */
625
626 static char *
627 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
628 const char *mangled)
629 {
630 char *demangled = NULL;
631
632 if (gsymbol->language == language_unknown)
633 gsymbol->language = language_auto;
634
635 if (gsymbol->language == language_objc
636 || gsymbol->language == language_auto)
637 {
638 demangled =
639 objc_demangle (mangled, 0);
640 if (demangled != NULL)
641 {
642 gsymbol->language = language_objc;
643 return demangled;
644 }
645 }
646 if (gsymbol->language == language_cplus
647 || gsymbol->language == language_auto)
648 {
649 demangled =
650 gdb_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
651 if (demangled != NULL)
652 {
653 gsymbol->language = language_cplus;
654 return demangled;
655 }
656 }
657 if (gsymbol->language == language_java)
658 {
659 demangled =
660 gdb_demangle (mangled,
661 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
662 if (demangled != NULL)
663 {
664 gsymbol->language = language_java;
665 return demangled;
666 }
667 }
668 if (gsymbol->language == language_d
669 || gsymbol->language == language_auto)
670 {
671 demangled = d_demangle(mangled, 0);
672 if (demangled != NULL)
673 {
674 gsymbol->language = language_d;
675 return demangled;
676 }
677 }
678 /* FIXME(dje): Continually adding languages here is clumsy.
679 Better to just call la_demangle if !auto, and if auto then call
680 a utility routine that tries successive languages in turn and reports
681 which one it finds. I realize the la_demangle options may be different
682 for different languages but there's already a FIXME for that. */
683 if (gsymbol->language == language_go
684 || gsymbol->language == language_auto)
685 {
686 demangled = go_demangle (mangled, 0);
687 if (demangled != NULL)
688 {
689 gsymbol->language = language_go;
690 return demangled;
691 }
692 }
693
694 /* We could support `gsymbol->language == language_fortran' here to provide
695 module namespaces also for inferiors with only minimal symbol table (ELF
696 symbols). Just the mangling standard is not standardized across compilers
697 and there is no DW_AT_producer available for inferiors with only the ELF
698 symbols to check the mangling kind. */
699
700 /* Check for Ada symbols last. See comment below explaining why. */
701
702 if (gsymbol->language == language_auto)
703 {
704 const char *demangled = ada_decode (mangled);
705
706 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
707 {
708 /* Set the gsymbol language to Ada, but still return NULL.
709 Two reasons for that:
710
711 1. For Ada, we prefer computing the symbol's decoded name
712 on the fly rather than pre-compute it, in order to save
713 memory (Ada projects are typically very large).
714
715 2. There are some areas in the definition of the GNAT
716 encoding where, with a bit of bad luck, we might be able
717 to decode a non-Ada symbol, generating an incorrect
718 demangled name (Eg: names ending with "TB" for instance
719 are identified as task bodies and so stripped from
720 the decoded name returned).
721
722 Returning NULL, here, helps us get a little bit of
723 the best of both worlds. Because we're last, we should
724 not affect any of the other languages that were able to
725 demangle the symbol before us; we get to correctly tag
726 Ada symbols as such; and even if we incorrectly tagged
727 a non-Ada symbol, which should be rare, any routing
728 through the Ada language should be transparent (Ada
729 tries to behave much like C/C++ with non-Ada symbols). */
730 gsymbol->language = language_ada;
731 return NULL;
732 }
733 }
734
735 return NULL;
736 }
737
738 /* Set both the mangled and demangled (if any) names for GSYMBOL based
739 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
740 objfile's obstack; but if COPY_NAME is 0 and if NAME is
741 NUL-terminated, then this function assumes that NAME is already
742 correctly saved (either permanently or with a lifetime tied to the
743 objfile), and it will not be copied.
744
745 The hash table corresponding to OBJFILE is used, and the memory
746 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
747 so the pointer can be discarded after calling this function. */
748
749 /* We have to be careful when dealing with Java names: when we run
750 into a Java minimal symbol, we don't know it's a Java symbol, so it
751 gets demangled as a C++ name. This is unfortunate, but there's not
752 much we can do about it: but when demangling partial symbols and
753 regular symbols, we'd better not reuse the wrong demangled name.
754 (See PR gdb/1039.) We solve this by putting a distinctive prefix
755 on Java names when storing them in the hash table. */
756
757 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
758 don't mind the Java prefix so much: different languages have
759 different demangling requirements, so it's only natural that we
760 need to keep language data around in our demangling cache. But
761 it's not good that the minimal symbol has the wrong demangled name.
762 Unfortunately, I can't think of any easy solution to that
763 problem. */
764
765 #define JAVA_PREFIX "##JAVA$$"
766 #define JAVA_PREFIX_LEN 8
767
768 void
769 symbol_set_names (struct general_symbol_info *gsymbol,
770 const char *linkage_name, int len, int copy_name,
771 struct objfile *objfile)
772 {
773 struct demangled_name_entry **slot;
774 /* A 0-terminated copy of the linkage name. */
775 const char *linkage_name_copy;
776 /* A copy of the linkage name that might have a special Java prefix
777 added to it, for use when looking names up in the hash table. */
778 const char *lookup_name;
779 /* The length of lookup_name. */
780 int lookup_len;
781 struct demangled_name_entry entry;
782 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
783
784 if (gsymbol->language == language_ada)
785 {
786 /* In Ada, we do the symbol lookups using the mangled name, so
787 we can save some space by not storing the demangled name.
788
789 As a side note, we have also observed some overlap between
790 the C++ mangling and Ada mangling, similarly to what has
791 been observed with Java. Because we don't store the demangled
792 name with the symbol, we don't need to use the same trick
793 as Java. */
794 if (!copy_name)
795 gsymbol->name = linkage_name;
796 else
797 {
798 char *name = obstack_alloc (&per_bfd->storage_obstack, len + 1);
799
800 memcpy (name, linkage_name, len);
801 name[len] = '\0';
802 gsymbol->name = name;
803 }
804 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
805
806 return;
807 }
808
809 if (per_bfd->demangled_names_hash == NULL)
810 create_demangled_names_hash (objfile);
811
812 /* The stabs reader generally provides names that are not
813 NUL-terminated; most of the other readers don't do this, so we
814 can just use the given copy, unless we're in the Java case. */
815 if (gsymbol->language == language_java)
816 {
817 char *alloc_name;
818
819 lookup_len = len + JAVA_PREFIX_LEN;
820 alloc_name = alloca (lookup_len + 1);
821 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
822 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
823 alloc_name[lookup_len] = '\0';
824
825 lookup_name = alloc_name;
826 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
827 }
828 else if (linkage_name[len] != '\0')
829 {
830 char *alloc_name;
831
832 lookup_len = len;
833 alloc_name = alloca (lookup_len + 1);
834 memcpy (alloc_name, linkage_name, len);
835 alloc_name[lookup_len] = '\0';
836
837 lookup_name = alloc_name;
838 linkage_name_copy = alloc_name;
839 }
840 else
841 {
842 lookup_len = len;
843 lookup_name = linkage_name;
844 linkage_name_copy = linkage_name;
845 }
846
847 entry.mangled = lookup_name;
848 slot = ((struct demangled_name_entry **)
849 htab_find_slot (per_bfd->demangled_names_hash,
850 &entry, INSERT));
851
852 /* If this name is not in the hash table, add it. */
853 if (*slot == NULL
854 /* A C version of the symbol may have already snuck into the table.
855 This happens to, e.g., main.init (__go_init_main). Cope. */
856 || (gsymbol->language == language_go
857 && (*slot)->demangled[0] == '\0'))
858 {
859 char *demangled_name = symbol_find_demangled_name (gsymbol,
860 linkage_name_copy);
861 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
862
863 /* Suppose we have demangled_name==NULL, copy_name==0, and
864 lookup_name==linkage_name. In this case, we already have the
865 mangled name saved, and we don't have a demangled name. So,
866 you might think we could save a little space by not recording
867 this in the hash table at all.
868
869 It turns out that it is actually important to still save such
870 an entry in the hash table, because storing this name gives
871 us better bcache hit rates for partial symbols. */
872 if (!copy_name && lookup_name == linkage_name)
873 {
874 *slot = obstack_alloc (&per_bfd->storage_obstack,
875 offsetof (struct demangled_name_entry,
876 demangled)
877 + demangled_len + 1);
878 (*slot)->mangled = lookup_name;
879 }
880 else
881 {
882 char *mangled_ptr;
883
884 /* If we must copy the mangled name, put it directly after
885 the demangled name so we can have a single
886 allocation. */
887 *slot = obstack_alloc (&per_bfd->storage_obstack,
888 offsetof (struct demangled_name_entry,
889 demangled)
890 + lookup_len + demangled_len + 2);
891 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
892 strcpy (mangled_ptr, lookup_name);
893 (*slot)->mangled = mangled_ptr;
894 }
895
896 if (demangled_name != NULL)
897 {
898 strcpy ((*slot)->demangled, demangled_name);
899 xfree (demangled_name);
900 }
901 else
902 (*slot)->demangled[0] = '\0';
903 }
904
905 gsymbol->name = (*slot)->mangled + lookup_len - len;
906 if ((*slot)->demangled[0] != '\0')
907 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
908 &per_bfd->storage_obstack);
909 else
910 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
911 }
912
913 /* Return the source code name of a symbol. In languages where
914 demangling is necessary, this is the demangled name. */
915
916 const char *
917 symbol_natural_name (const struct general_symbol_info *gsymbol)
918 {
919 switch (gsymbol->language)
920 {
921 case language_cplus:
922 case language_d:
923 case language_go:
924 case language_java:
925 case language_objc:
926 case language_fortran:
927 if (symbol_get_demangled_name (gsymbol) != NULL)
928 return symbol_get_demangled_name (gsymbol);
929 break;
930 case language_ada:
931 return ada_decode_symbol (gsymbol);
932 default:
933 break;
934 }
935 return gsymbol->name;
936 }
937
938 /* Return the demangled name for a symbol based on the language for
939 that symbol. If no demangled name exists, return NULL. */
940
941 const char *
942 symbol_demangled_name (const struct general_symbol_info *gsymbol)
943 {
944 const char *dem_name = NULL;
945
946 switch (gsymbol->language)
947 {
948 case language_cplus:
949 case language_d:
950 case language_go:
951 case language_java:
952 case language_objc:
953 case language_fortran:
954 dem_name = symbol_get_demangled_name (gsymbol);
955 break;
956 case language_ada:
957 dem_name = ada_decode_symbol (gsymbol);
958 break;
959 default:
960 break;
961 }
962 return dem_name;
963 }
964
965 /* Return the search name of a symbol---generally the demangled or
966 linkage name of the symbol, depending on how it will be searched for.
967 If there is no distinct demangled name, then returns the same value
968 (same pointer) as SYMBOL_LINKAGE_NAME. */
969
970 const char *
971 symbol_search_name (const struct general_symbol_info *gsymbol)
972 {
973 if (gsymbol->language == language_ada)
974 return gsymbol->name;
975 else
976 return symbol_natural_name (gsymbol);
977 }
978
979 /* Initialize the structure fields to zero values. */
980
981 void
982 init_sal (struct symtab_and_line *sal)
983 {
984 memset (sal, 0, sizeof (*sal));
985 }
986 \f
987
988 /* Return 1 if the two sections are the same, or if they could
989 plausibly be copies of each other, one in an original object
990 file and another in a separated debug file. */
991
992 int
993 matching_obj_sections (struct obj_section *obj_first,
994 struct obj_section *obj_second)
995 {
996 asection *first = obj_first? obj_first->the_bfd_section : NULL;
997 asection *second = obj_second? obj_second->the_bfd_section : NULL;
998 struct objfile *obj;
999
1000 /* If they're the same section, then they match. */
1001 if (first == second)
1002 return 1;
1003
1004 /* If either is NULL, give up. */
1005 if (first == NULL || second == NULL)
1006 return 0;
1007
1008 /* This doesn't apply to absolute symbols. */
1009 if (first->owner == NULL || second->owner == NULL)
1010 return 0;
1011
1012 /* If they're in the same object file, they must be different sections. */
1013 if (first->owner == second->owner)
1014 return 0;
1015
1016 /* Check whether the two sections are potentially corresponding. They must
1017 have the same size, address, and name. We can't compare section indexes,
1018 which would be more reliable, because some sections may have been
1019 stripped. */
1020 if (bfd_get_section_size (first) != bfd_get_section_size (second))
1021 return 0;
1022
1023 /* In-memory addresses may start at a different offset, relativize them. */
1024 if (bfd_get_section_vma (first->owner, first)
1025 - bfd_get_start_address (first->owner)
1026 != bfd_get_section_vma (second->owner, second)
1027 - bfd_get_start_address (second->owner))
1028 return 0;
1029
1030 if (bfd_get_section_name (first->owner, first) == NULL
1031 || bfd_get_section_name (second->owner, second) == NULL
1032 || strcmp (bfd_get_section_name (first->owner, first),
1033 bfd_get_section_name (second->owner, second)) != 0)
1034 return 0;
1035
1036 /* Otherwise check that they are in corresponding objfiles. */
1037
1038 ALL_OBJFILES (obj)
1039 if (obj->obfd == first->owner)
1040 break;
1041 gdb_assert (obj != NULL);
1042
1043 if (obj->separate_debug_objfile != NULL
1044 && obj->separate_debug_objfile->obfd == second->owner)
1045 return 1;
1046 if (obj->separate_debug_objfile_backlink != NULL
1047 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1048 return 1;
1049
1050 return 0;
1051 }
1052
1053 struct symtab *
1054 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
1055 {
1056 struct objfile *objfile;
1057 struct bound_minimal_symbol msymbol;
1058
1059 /* If we know that this is not a text address, return failure. This is
1060 necessary because we loop based on texthigh and textlow, which do
1061 not include the data ranges. */
1062 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1063 if (msymbol.minsym
1064 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1065 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1066 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1067 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1068 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1069 return NULL;
1070
1071 ALL_OBJFILES (objfile)
1072 {
1073 struct symtab *result = NULL;
1074
1075 if (objfile->sf)
1076 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
1077 pc, section, 0);
1078 if (result)
1079 return result;
1080 }
1081
1082 return NULL;
1083 }
1084 \f
1085 /* Debug symbols usually don't have section information. We need to dig that
1086 out of the minimal symbols and stash that in the debug symbol. */
1087
1088 void
1089 fixup_section (struct general_symbol_info *ginfo,
1090 CORE_ADDR addr, struct objfile *objfile)
1091 {
1092 struct minimal_symbol *msym;
1093
1094 /* First, check whether a minimal symbol with the same name exists
1095 and points to the same address. The address check is required
1096 e.g. on PowerPC64, where the minimal symbol for a function will
1097 point to the function descriptor, while the debug symbol will
1098 point to the actual function code. */
1099 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1100 if (msym)
1101 ginfo->section = MSYMBOL_SECTION (msym);
1102 else
1103 {
1104 /* Static, function-local variables do appear in the linker
1105 (minimal) symbols, but are frequently given names that won't
1106 be found via lookup_minimal_symbol(). E.g., it has been
1107 observed in frv-uclinux (ELF) executables that a static,
1108 function-local variable named "foo" might appear in the
1109 linker symbols as "foo.6" or "foo.3". Thus, there is no
1110 point in attempting to extend the lookup-by-name mechanism to
1111 handle this case due to the fact that there can be multiple
1112 names.
1113
1114 So, instead, search the section table when lookup by name has
1115 failed. The ``addr'' and ``endaddr'' fields may have already
1116 been relocated. If so, the relocation offset (i.e. the
1117 ANOFFSET value) needs to be subtracted from these values when
1118 performing the comparison. We unconditionally subtract it,
1119 because, when no relocation has been performed, the ANOFFSET
1120 value will simply be zero.
1121
1122 The address of the symbol whose section we're fixing up HAS
1123 NOT BEEN adjusted (relocated) yet. It can't have been since
1124 the section isn't yet known and knowing the section is
1125 necessary in order to add the correct relocation value. In
1126 other words, we wouldn't even be in this function (attempting
1127 to compute the section) if it were already known.
1128
1129 Note that it is possible to search the minimal symbols
1130 (subtracting the relocation value if necessary) to find the
1131 matching minimal symbol, but this is overkill and much less
1132 efficient. It is not necessary to find the matching minimal
1133 symbol, only its section.
1134
1135 Note that this technique (of doing a section table search)
1136 can fail when unrelocated section addresses overlap. For
1137 this reason, we still attempt a lookup by name prior to doing
1138 a search of the section table. */
1139
1140 struct obj_section *s;
1141 int fallback = -1;
1142
1143 ALL_OBJFILE_OSECTIONS (objfile, s)
1144 {
1145 int idx = s - objfile->sections;
1146 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1147
1148 if (fallback == -1)
1149 fallback = idx;
1150
1151 if (obj_section_addr (s) - offset <= addr
1152 && addr < obj_section_endaddr (s) - offset)
1153 {
1154 ginfo->section = idx;
1155 return;
1156 }
1157 }
1158
1159 /* If we didn't find the section, assume it is in the first
1160 section. If there is no allocated section, then it hardly
1161 matters what we pick, so just pick zero. */
1162 if (fallback == -1)
1163 ginfo->section = 0;
1164 else
1165 ginfo->section = fallback;
1166 }
1167 }
1168
1169 struct symbol *
1170 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1171 {
1172 CORE_ADDR addr;
1173
1174 if (!sym)
1175 return NULL;
1176
1177 /* We either have an OBJFILE, or we can get at it from the sym's
1178 symtab. Anything else is a bug. */
1179 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1180
1181 if (objfile == NULL)
1182 objfile = SYMBOL_SYMTAB (sym)->objfile;
1183
1184 if (SYMBOL_OBJ_SECTION (objfile, sym))
1185 return sym;
1186
1187 /* We should have an objfile by now. */
1188 gdb_assert (objfile);
1189
1190 switch (SYMBOL_CLASS (sym))
1191 {
1192 case LOC_STATIC:
1193 case LOC_LABEL:
1194 addr = SYMBOL_VALUE_ADDRESS (sym);
1195 break;
1196 case LOC_BLOCK:
1197 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1198 break;
1199
1200 default:
1201 /* Nothing else will be listed in the minsyms -- no use looking
1202 it up. */
1203 return sym;
1204 }
1205
1206 fixup_section (&sym->ginfo, addr, objfile);
1207
1208 return sym;
1209 }
1210
1211 /* Compute the demangled form of NAME as used by the various symbol
1212 lookup functions. The result is stored in *RESULT_NAME. Returns a
1213 cleanup which can be used to clean up the result.
1214
1215 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1216 Normally, Ada symbol lookups are performed using the encoded name
1217 rather than the demangled name, and so it might seem to make sense
1218 for this function to return an encoded version of NAME.
1219 Unfortunately, we cannot do this, because this function is used in
1220 circumstances where it is not appropriate to try to encode NAME.
1221 For instance, when displaying the frame info, we demangle the name
1222 of each parameter, and then perform a symbol lookup inside our
1223 function using that demangled name. In Ada, certain functions
1224 have internally-generated parameters whose name contain uppercase
1225 characters. Encoding those name would result in those uppercase
1226 characters to become lowercase, and thus cause the symbol lookup
1227 to fail. */
1228
1229 struct cleanup *
1230 demangle_for_lookup (const char *name, enum language lang,
1231 const char **result_name)
1232 {
1233 char *demangled_name = NULL;
1234 const char *modified_name = NULL;
1235 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1236
1237 modified_name = name;
1238
1239 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1240 lookup, so we can always binary search. */
1241 if (lang == language_cplus)
1242 {
1243 demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1244 if (demangled_name)
1245 {
1246 modified_name = demangled_name;
1247 make_cleanup (xfree, demangled_name);
1248 }
1249 else
1250 {
1251 /* If we were given a non-mangled name, canonicalize it
1252 according to the language (so far only for C++). */
1253 demangled_name = cp_canonicalize_string (name);
1254 if (demangled_name)
1255 {
1256 modified_name = demangled_name;
1257 make_cleanup (xfree, demangled_name);
1258 }
1259 }
1260 }
1261 else if (lang == language_java)
1262 {
1263 demangled_name = gdb_demangle (name,
1264 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1265 if (demangled_name)
1266 {
1267 modified_name = demangled_name;
1268 make_cleanup (xfree, demangled_name);
1269 }
1270 }
1271 else if (lang == language_d)
1272 {
1273 demangled_name = d_demangle (name, 0);
1274 if (demangled_name)
1275 {
1276 modified_name = demangled_name;
1277 make_cleanup (xfree, demangled_name);
1278 }
1279 }
1280 else if (lang == language_go)
1281 {
1282 demangled_name = go_demangle (name, 0);
1283 if (demangled_name)
1284 {
1285 modified_name = demangled_name;
1286 make_cleanup (xfree, demangled_name);
1287 }
1288 }
1289
1290 *result_name = modified_name;
1291 return cleanup;
1292 }
1293
1294 /* See symtab.h.
1295
1296 This function (or rather its subordinates) have a bunch of loops and
1297 it would seem to be attractive to put in some QUIT's (though I'm not really
1298 sure whether it can run long enough to be really important). But there
1299 are a few calls for which it would appear to be bad news to quit
1300 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1301 that there is C++ code below which can error(), but that probably
1302 doesn't affect these calls since they are looking for a known
1303 variable and thus can probably assume it will never hit the C++
1304 code). */
1305
1306 struct symbol *
1307 lookup_symbol_in_language (const char *name, const struct block *block,
1308 const domain_enum domain, enum language lang,
1309 struct field_of_this_result *is_a_field_of_this)
1310 {
1311 const char *modified_name;
1312 struct symbol *returnval;
1313 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1314
1315 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1316 is_a_field_of_this);
1317 do_cleanups (cleanup);
1318
1319 return returnval;
1320 }
1321
1322 /* See symtab.h. */
1323
1324 struct symbol *
1325 lookup_symbol (const char *name, const struct block *block,
1326 domain_enum domain,
1327 struct field_of_this_result *is_a_field_of_this)
1328 {
1329 return lookup_symbol_in_language (name, block, domain,
1330 current_language->la_language,
1331 is_a_field_of_this);
1332 }
1333
1334 /* See symtab.h. */
1335
1336 struct symbol *
1337 lookup_language_this (const struct language_defn *lang,
1338 const struct block *block)
1339 {
1340 if (lang->la_name_of_this == NULL || block == NULL)
1341 return NULL;
1342
1343 while (block)
1344 {
1345 struct symbol *sym;
1346
1347 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1348 if (sym != NULL)
1349 {
1350 block_found = block;
1351 return sym;
1352 }
1353 if (BLOCK_FUNCTION (block))
1354 break;
1355 block = BLOCK_SUPERBLOCK (block);
1356 }
1357
1358 return NULL;
1359 }
1360
1361 /* Given TYPE, a structure/union,
1362 return 1 if the component named NAME from the ultimate target
1363 structure/union is defined, otherwise, return 0. */
1364
1365 static int
1366 check_field (struct type *type, const char *name,
1367 struct field_of_this_result *is_a_field_of_this)
1368 {
1369 int i;
1370
1371 /* The type may be a stub. */
1372 CHECK_TYPEDEF (type);
1373
1374 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1375 {
1376 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1377
1378 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1379 {
1380 is_a_field_of_this->type = type;
1381 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1382 return 1;
1383 }
1384 }
1385
1386 /* C++: If it was not found as a data field, then try to return it
1387 as a pointer to a method. */
1388
1389 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1390 {
1391 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1392 {
1393 is_a_field_of_this->type = type;
1394 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1395 return 1;
1396 }
1397 }
1398
1399 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1400 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1401 return 1;
1402
1403 return 0;
1404 }
1405
1406 /* Behave like lookup_symbol except that NAME is the natural name
1407 (e.g., demangled name) of the symbol that we're looking for. */
1408
1409 static struct symbol *
1410 lookup_symbol_aux (const char *name, const struct block *block,
1411 const domain_enum domain, enum language language,
1412 struct field_of_this_result *is_a_field_of_this)
1413 {
1414 struct symbol *sym;
1415 const struct language_defn *langdef;
1416
1417 /* Make sure we do something sensible with is_a_field_of_this, since
1418 the callers that set this parameter to some non-null value will
1419 certainly use it later. If we don't set it, the contents of
1420 is_a_field_of_this are undefined. */
1421 if (is_a_field_of_this != NULL)
1422 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1423
1424 /* Search specified block and its superiors. Don't search
1425 STATIC_BLOCK or GLOBAL_BLOCK. */
1426
1427 sym = lookup_symbol_aux_local (name, block, domain, language);
1428 if (sym != NULL)
1429 return sym;
1430
1431 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1432 check to see if NAME is a field of `this'. */
1433
1434 langdef = language_def (language);
1435
1436 /* Don't do this check if we are searching for a struct. It will
1437 not be found by check_field, but will be found by other
1438 means. */
1439 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1440 {
1441 struct symbol *sym = lookup_language_this (langdef, block);
1442
1443 if (sym)
1444 {
1445 struct type *t = sym->type;
1446
1447 /* I'm not really sure that type of this can ever
1448 be typedefed; just be safe. */
1449 CHECK_TYPEDEF (t);
1450 if (TYPE_CODE (t) == TYPE_CODE_PTR
1451 || TYPE_CODE (t) == TYPE_CODE_REF)
1452 t = TYPE_TARGET_TYPE (t);
1453
1454 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1455 && TYPE_CODE (t) != TYPE_CODE_UNION)
1456 error (_("Internal error: `%s' is not an aggregate"),
1457 langdef->la_name_of_this);
1458
1459 if (check_field (t, name, is_a_field_of_this))
1460 return NULL;
1461 }
1462 }
1463
1464 /* Now do whatever is appropriate for LANGUAGE to look
1465 up static and global variables. */
1466
1467 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1468 if (sym != NULL)
1469 return sym;
1470
1471 /* Now search all static file-level symbols. Not strictly correct,
1472 but more useful than an error. */
1473
1474 return lookup_static_symbol_aux (name, domain);
1475 }
1476
1477 /* See symtab.h. */
1478
1479 struct symbol *
1480 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1481 {
1482 struct objfile *objfile;
1483 struct symbol *sym;
1484
1485 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1486 if (sym != NULL)
1487 return sym;
1488
1489 ALL_OBJFILES (objfile)
1490 {
1491 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1492 if (sym != NULL)
1493 return sym;
1494 }
1495
1496 return NULL;
1497 }
1498
1499 /* Check to see if the symbol is defined in BLOCK or its superiors.
1500 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1501
1502 static struct symbol *
1503 lookup_symbol_aux_local (const char *name, const struct block *block,
1504 const domain_enum domain,
1505 enum language language)
1506 {
1507 struct symbol *sym;
1508 const struct block *static_block = block_static_block (block);
1509 const char *scope = block_scope (block);
1510
1511 /* Check if either no block is specified or it's a global block. */
1512
1513 if (static_block == NULL)
1514 return NULL;
1515
1516 while (block != static_block)
1517 {
1518 sym = lookup_symbol_aux_block (name, block, domain);
1519 if (sym != NULL)
1520 return sym;
1521
1522 if (language == language_cplus || language == language_fortran)
1523 {
1524 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1525 domain);
1526 if (sym != NULL)
1527 return sym;
1528 }
1529
1530 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1531 break;
1532 block = BLOCK_SUPERBLOCK (block);
1533 }
1534
1535 /* We've reached the end of the function without finding a result. */
1536
1537 return NULL;
1538 }
1539
1540 /* See symtab.h. */
1541
1542 struct objfile *
1543 lookup_objfile_from_block (const struct block *block)
1544 {
1545 struct objfile *obj;
1546 struct symtab *s;
1547
1548 if (block == NULL)
1549 return NULL;
1550
1551 block = block_global_block (block);
1552 /* Go through SYMTABS. */
1553 ALL_SYMTABS (obj, s)
1554 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1555 {
1556 if (obj->separate_debug_objfile_backlink)
1557 obj = obj->separate_debug_objfile_backlink;
1558
1559 return obj;
1560 }
1561
1562 return NULL;
1563 }
1564
1565 /* See symtab.h. */
1566
1567 struct symbol *
1568 lookup_symbol_aux_block (const char *name, const struct block *block,
1569 const domain_enum domain)
1570 {
1571 struct symbol *sym;
1572
1573 sym = lookup_block_symbol (block, name, domain);
1574 if (sym)
1575 {
1576 block_found = block;
1577 return fixup_symbol_section (sym, NULL);
1578 }
1579
1580 return NULL;
1581 }
1582
1583 /* See symtab.h. */
1584
1585 struct symbol *
1586 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1587 const char *name,
1588 const domain_enum domain)
1589 {
1590 const struct objfile *objfile;
1591 struct symbol *sym;
1592 const struct blockvector *bv;
1593 const struct block *block;
1594 struct symtab *s;
1595
1596 for (objfile = main_objfile;
1597 objfile;
1598 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1599 {
1600 /* Go through symtabs. */
1601 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1602 {
1603 bv = BLOCKVECTOR (s);
1604 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1605 sym = lookup_block_symbol (block, name, domain);
1606 if (sym)
1607 {
1608 block_found = block;
1609 return fixup_symbol_section (sym, (struct objfile *)objfile);
1610 }
1611 }
1612
1613 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1614 name, domain);
1615 if (sym)
1616 return sym;
1617 }
1618
1619 return NULL;
1620 }
1621
1622 /* Check to see if the symbol is defined in one of the OBJFILE's
1623 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1624 depending on whether or not we want to search global symbols or
1625 static symbols. */
1626
1627 static struct symbol *
1628 lookup_symbol_aux_objfile (struct objfile *objfile, int block_index,
1629 const char *name, const domain_enum domain)
1630 {
1631 struct symbol *sym = NULL;
1632 const struct blockvector *bv;
1633 const struct block *block;
1634 struct symtab *s;
1635
1636 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1637 {
1638 bv = BLOCKVECTOR (s);
1639 block = BLOCKVECTOR_BLOCK (bv, block_index);
1640 sym = lookup_block_symbol (block, name, domain);
1641 if (sym)
1642 {
1643 block_found = block;
1644 return fixup_symbol_section (sym, objfile);
1645 }
1646 }
1647
1648 return NULL;
1649 }
1650
1651 /* Same as lookup_symbol_aux_objfile, except that it searches all
1652 objfiles. Return the first match found. */
1653
1654 static struct symbol *
1655 lookup_symbol_aux_symtabs (int block_index, const char *name,
1656 const domain_enum domain)
1657 {
1658 struct symbol *sym;
1659 struct objfile *objfile;
1660
1661 ALL_OBJFILES (objfile)
1662 {
1663 sym = lookup_symbol_aux_objfile (objfile, block_index, name, domain);
1664 if (sym)
1665 return sym;
1666 }
1667
1668 return NULL;
1669 }
1670
1671 /* Wrapper around lookup_symbol_aux_objfile for search_symbols.
1672 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1673 and all related objfiles. */
1674
1675 static struct symbol *
1676 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1677 const char *linkage_name,
1678 domain_enum domain)
1679 {
1680 enum language lang = current_language->la_language;
1681 const char *modified_name;
1682 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1683 &modified_name);
1684 struct objfile *main_objfile, *cur_objfile;
1685
1686 if (objfile->separate_debug_objfile_backlink)
1687 main_objfile = objfile->separate_debug_objfile_backlink;
1688 else
1689 main_objfile = objfile;
1690
1691 for (cur_objfile = main_objfile;
1692 cur_objfile;
1693 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1694 {
1695 struct symbol *sym;
1696
1697 sym = lookup_symbol_aux_objfile (cur_objfile, GLOBAL_BLOCK,
1698 modified_name, domain);
1699 if (sym == NULL)
1700 sym = lookup_symbol_aux_objfile (cur_objfile, STATIC_BLOCK,
1701 modified_name, domain);
1702 if (sym != NULL)
1703 {
1704 do_cleanups (cleanup);
1705 return sym;
1706 }
1707 }
1708
1709 do_cleanups (cleanup);
1710 return NULL;
1711 }
1712
1713 /* A helper function that throws an exception when a symbol was found
1714 in a psymtab but not in a symtab. */
1715
1716 static void ATTRIBUTE_NORETURN
1717 error_in_psymtab_expansion (int block_index, const char *name,
1718 struct symtab *symtab)
1719 {
1720 error (_("\
1721 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1722 %s may be an inlined function, or may be a template function\n \
1723 (if a template, try specifying an instantiation: %s<type>)."),
1724 block_index == GLOBAL_BLOCK ? "global" : "static",
1725 name, symtab_to_filename_for_display (symtab), name, name);
1726 }
1727
1728 /* A helper function for lookup_symbol_aux that interfaces with the
1729 "quick" symbol table functions. */
1730
1731 static struct symbol *
1732 lookup_symbol_aux_quick (struct objfile *objfile, int block_index,
1733 const char *name, const domain_enum domain)
1734 {
1735 struct symtab *symtab;
1736 const struct blockvector *bv;
1737 const struct block *block;
1738 struct symbol *sym;
1739
1740 if (!objfile->sf)
1741 return NULL;
1742 symtab = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
1743 if (!symtab)
1744 return NULL;
1745
1746 bv = BLOCKVECTOR (symtab);
1747 block = BLOCKVECTOR_BLOCK (bv, block_index);
1748 sym = lookup_block_symbol (block, name, domain);
1749 if (!sym)
1750 error_in_psymtab_expansion (block_index, name, symtab);
1751 block_found = block;
1752 return fixup_symbol_section (sym, objfile);
1753 }
1754
1755 /* See symtab.h. */
1756
1757 struct symbol *
1758 basic_lookup_symbol_nonlocal (const char *name,
1759 const struct block *block,
1760 const domain_enum domain)
1761 {
1762 struct symbol *sym;
1763
1764 /* NOTE: carlton/2003-05-19: The comments below were written when
1765 this (or what turned into this) was part of lookup_symbol_aux;
1766 I'm much less worried about these questions now, since these
1767 decisions have turned out well, but I leave these comments here
1768 for posterity. */
1769
1770 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1771 not it would be appropriate to search the current global block
1772 here as well. (That's what this code used to do before the
1773 is_a_field_of_this check was moved up.) On the one hand, it's
1774 redundant with the lookup_symbol_aux_symtabs search that happens
1775 next. On the other hand, if decode_line_1 is passed an argument
1776 like filename:var, then the user presumably wants 'var' to be
1777 searched for in filename. On the third hand, there shouldn't be
1778 multiple global variables all of which are named 'var', and it's
1779 not like decode_line_1 has ever restricted its search to only
1780 global variables in a single filename. All in all, only
1781 searching the static block here seems best: it's correct and it's
1782 cleanest. */
1783
1784 /* NOTE: carlton/2002-12-05: There's also a possible performance
1785 issue here: if you usually search for global symbols in the
1786 current file, then it would be slightly better to search the
1787 current global block before searching all the symtabs. But there
1788 are other factors that have a much greater effect on performance
1789 than that one, so I don't think we should worry about that for
1790 now. */
1791
1792 sym = lookup_symbol_static (name, block, domain);
1793 if (sym != NULL)
1794 return sym;
1795
1796 return lookup_symbol_global (name, block, domain);
1797 }
1798
1799 /* See symtab.h. */
1800
1801 struct symbol *
1802 lookup_symbol_static (const char *name,
1803 const struct block *block,
1804 const domain_enum domain)
1805 {
1806 const struct block *static_block = block_static_block (block);
1807
1808 if (static_block != NULL)
1809 return lookup_symbol_aux_block (name, static_block, domain);
1810 else
1811 return NULL;
1812 }
1813
1814 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1815
1816 struct global_sym_lookup_data
1817 {
1818 /* The name of the symbol we are searching for. */
1819 const char *name;
1820
1821 /* The domain to use for our search. */
1822 domain_enum domain;
1823
1824 /* The field where the callback should store the symbol if found.
1825 It should be initialized to NULL before the search is started. */
1826 struct symbol *result;
1827 };
1828
1829 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1830 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1831 OBJFILE. The arguments for the search are passed via CB_DATA,
1832 which in reality is a pointer to struct global_sym_lookup_data. */
1833
1834 static int
1835 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1836 void *cb_data)
1837 {
1838 struct global_sym_lookup_data *data =
1839 (struct global_sym_lookup_data *) cb_data;
1840
1841 gdb_assert (data->result == NULL);
1842
1843 data->result = lookup_symbol_aux_objfile (objfile, GLOBAL_BLOCK,
1844 data->name, data->domain);
1845 if (data->result == NULL)
1846 data->result = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK,
1847 data->name, data->domain);
1848
1849 /* If we found a match, tell the iterator to stop. Otherwise,
1850 keep going. */
1851 return (data->result != NULL);
1852 }
1853
1854 /* See symtab.h. */
1855
1856 struct symbol *
1857 lookup_symbol_global (const char *name,
1858 const struct block *block,
1859 const domain_enum domain)
1860 {
1861 struct symbol *sym = NULL;
1862 struct objfile *objfile = NULL;
1863 struct global_sym_lookup_data lookup_data;
1864
1865 /* Call library-specific lookup procedure. */
1866 objfile = lookup_objfile_from_block (block);
1867 if (objfile != NULL)
1868 sym = solib_global_lookup (objfile, name, domain);
1869 if (sym != NULL)
1870 return sym;
1871
1872 memset (&lookup_data, 0, sizeof (lookup_data));
1873 lookup_data.name = name;
1874 lookup_data.domain = domain;
1875 gdbarch_iterate_over_objfiles_in_search_order
1876 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
1877 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1878
1879 return lookup_data.result;
1880 }
1881
1882 int
1883 symbol_matches_domain (enum language symbol_language,
1884 domain_enum symbol_domain,
1885 domain_enum domain)
1886 {
1887 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1888 A Java class declaration also defines a typedef for the class.
1889 Similarly, any Ada type declaration implicitly defines a typedef. */
1890 if (symbol_language == language_cplus
1891 || symbol_language == language_d
1892 || symbol_language == language_java
1893 || symbol_language == language_ada)
1894 {
1895 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1896 && symbol_domain == STRUCT_DOMAIN)
1897 return 1;
1898 }
1899 /* For all other languages, strict match is required. */
1900 return (symbol_domain == domain);
1901 }
1902
1903 /* See symtab.h. */
1904
1905 struct type *
1906 lookup_transparent_type (const char *name)
1907 {
1908 return current_language->la_lookup_transparent_type (name);
1909 }
1910
1911 /* A helper for basic_lookup_transparent_type that interfaces with the
1912 "quick" symbol table functions. */
1913
1914 static struct type *
1915 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
1916 const char *name)
1917 {
1918 struct symtab *symtab;
1919 const struct blockvector *bv;
1920 struct block *block;
1921 struct symbol *sym;
1922
1923 if (!objfile->sf)
1924 return NULL;
1925 symtab = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
1926 STRUCT_DOMAIN);
1927 if (!symtab)
1928 return NULL;
1929
1930 bv = BLOCKVECTOR (symtab);
1931 block = BLOCKVECTOR_BLOCK (bv, block_index);
1932 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1933 if (!sym)
1934 error_in_psymtab_expansion (block_index, name, symtab);
1935
1936 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1937 return SYMBOL_TYPE (sym);
1938
1939 return NULL;
1940 }
1941
1942 /* The standard implementation of lookup_transparent_type. This code
1943 was modeled on lookup_symbol -- the parts not relevant to looking
1944 up types were just left out. In particular it's assumed here that
1945 types are available in STRUCT_DOMAIN and only in file-static or
1946 global blocks. */
1947
1948 struct type *
1949 basic_lookup_transparent_type (const char *name)
1950 {
1951 struct symbol *sym;
1952 struct symtab *s = NULL;
1953 const struct blockvector *bv;
1954 struct objfile *objfile;
1955 struct block *block;
1956 struct type *t;
1957
1958 /* Now search all the global symbols. Do the symtab's first, then
1959 check the psymtab's. If a psymtab indicates the existence
1960 of the desired name as a global, then do psymtab-to-symtab
1961 conversion on the fly and return the found symbol. */
1962
1963 ALL_OBJFILES (objfile)
1964 {
1965 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1966 {
1967 bv = BLOCKVECTOR (s);
1968 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1969 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1970 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1971 {
1972 return SYMBOL_TYPE (sym);
1973 }
1974 }
1975 }
1976
1977 ALL_OBJFILES (objfile)
1978 {
1979 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1980 if (t)
1981 return t;
1982 }
1983
1984 /* Now search the static file-level symbols.
1985 Not strictly correct, but more useful than an error.
1986 Do the symtab's first, then
1987 check the psymtab's. If a psymtab indicates the existence
1988 of the desired name as a file-level static, then do psymtab-to-symtab
1989 conversion on the fly and return the found symbol. */
1990
1991 ALL_OBJFILES (objfile)
1992 {
1993 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1994 {
1995 bv = BLOCKVECTOR (s);
1996 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1997 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1998 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1999 {
2000 return SYMBOL_TYPE (sym);
2001 }
2002 }
2003 }
2004
2005 ALL_OBJFILES (objfile)
2006 {
2007 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2008 if (t)
2009 return t;
2010 }
2011
2012 return (struct type *) 0;
2013 }
2014
2015 /* See symtab.h.
2016
2017 Note that if NAME is the demangled form of a C++ symbol, we will fail
2018 to find a match during the binary search of the non-encoded names, but
2019 for now we don't worry about the slight inefficiency of looking for
2020 a match we'll never find, since it will go pretty quick. Once the
2021 binary search terminates, we drop through and do a straight linear
2022 search on the symbols. Each symbol which is marked as being a ObjC/C++
2023 symbol (language_cplus or language_objc set) has both the encoded and
2024 non-encoded names tested for a match. */
2025
2026 struct symbol *
2027 lookup_block_symbol (const struct block *block, const char *name,
2028 const domain_enum domain)
2029 {
2030 struct block_iterator iter;
2031 struct symbol *sym;
2032
2033 if (!BLOCK_FUNCTION (block))
2034 {
2035 for (sym = block_iter_name_first (block, name, &iter);
2036 sym != NULL;
2037 sym = block_iter_name_next (name, &iter))
2038 {
2039 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2040 SYMBOL_DOMAIN (sym), domain))
2041 return sym;
2042 }
2043 return NULL;
2044 }
2045 else
2046 {
2047 /* Note that parameter symbols do not always show up last in the
2048 list; this loop makes sure to take anything else other than
2049 parameter symbols first; it only uses parameter symbols as a
2050 last resort. Note that this only takes up extra computation
2051 time on a match. */
2052
2053 struct symbol *sym_found = NULL;
2054
2055 for (sym = block_iter_name_first (block, name, &iter);
2056 sym != NULL;
2057 sym = block_iter_name_next (name, &iter))
2058 {
2059 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2060 SYMBOL_DOMAIN (sym), domain))
2061 {
2062 sym_found = sym;
2063 if (!SYMBOL_IS_ARGUMENT (sym))
2064 {
2065 break;
2066 }
2067 }
2068 }
2069 return (sym_found); /* Will be NULL if not found. */
2070 }
2071 }
2072
2073 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2074
2075 For each symbol that matches, CALLBACK is called. The symbol and
2076 DATA are passed to the callback.
2077
2078 If CALLBACK returns zero, the iteration ends. Otherwise, the
2079 search continues. */
2080
2081 void
2082 iterate_over_symbols (const struct block *block, const char *name,
2083 const domain_enum domain,
2084 symbol_found_callback_ftype *callback,
2085 void *data)
2086 {
2087 struct block_iterator iter;
2088 struct symbol *sym;
2089
2090 for (sym = block_iter_name_first (block, name, &iter);
2091 sym != NULL;
2092 sym = block_iter_name_next (name, &iter))
2093 {
2094 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2095 SYMBOL_DOMAIN (sym), domain))
2096 {
2097 if (!callback (sym, data))
2098 return;
2099 }
2100 }
2101 }
2102
2103 /* Find the symtab associated with PC and SECTION. Look through the
2104 psymtabs and read in another symtab if necessary. */
2105
2106 struct symtab *
2107 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2108 {
2109 struct block *b;
2110 const struct blockvector *bv;
2111 struct symtab *s = NULL;
2112 struct symtab *best_s = NULL;
2113 struct objfile *objfile;
2114 CORE_ADDR distance = 0;
2115 struct bound_minimal_symbol msymbol;
2116
2117 /* If we know that this is not a text address, return failure. This is
2118 necessary because we loop based on the block's high and low code
2119 addresses, which do not include the data ranges, and because
2120 we call find_pc_sect_psymtab which has a similar restriction based
2121 on the partial_symtab's texthigh and textlow. */
2122 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2123 if (msymbol.minsym
2124 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2125 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2126 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2127 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2128 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2129 return NULL;
2130
2131 /* Search all symtabs for the one whose file contains our address, and which
2132 is the smallest of all the ones containing the address. This is designed
2133 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2134 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2135 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2136
2137 This happens for native ecoff format, where code from included files
2138 gets its own symtab. The symtab for the included file should have
2139 been read in already via the dependency mechanism.
2140 It might be swifter to create several symtabs with the same name
2141 like xcoff does (I'm not sure).
2142
2143 It also happens for objfiles that have their functions reordered.
2144 For these, the symtab we are looking for is not necessarily read in. */
2145
2146 ALL_PRIMARY_SYMTABS (objfile, s)
2147 {
2148 bv = BLOCKVECTOR (s);
2149 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2150
2151 if (BLOCK_START (b) <= pc
2152 && BLOCK_END (b) > pc
2153 && (distance == 0
2154 || BLOCK_END (b) - BLOCK_START (b) < distance))
2155 {
2156 /* For an objfile that has its functions reordered,
2157 find_pc_psymtab will find the proper partial symbol table
2158 and we simply return its corresponding symtab. */
2159 /* In order to better support objfiles that contain both
2160 stabs and coff debugging info, we continue on if a psymtab
2161 can't be found. */
2162 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2163 {
2164 struct symtab *result;
2165
2166 result
2167 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2168 msymbol,
2169 pc, section,
2170 0);
2171 if (result)
2172 return result;
2173 }
2174 if (section != 0)
2175 {
2176 struct block_iterator iter;
2177 struct symbol *sym = NULL;
2178
2179 ALL_BLOCK_SYMBOLS (b, iter, sym)
2180 {
2181 fixup_symbol_section (sym, objfile);
2182 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2183 section))
2184 break;
2185 }
2186 if (sym == NULL)
2187 continue; /* No symbol in this symtab matches
2188 section. */
2189 }
2190 distance = BLOCK_END (b) - BLOCK_START (b);
2191 best_s = s;
2192 }
2193 }
2194
2195 if (best_s != NULL)
2196 return (best_s);
2197
2198 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2199
2200 ALL_OBJFILES (objfile)
2201 {
2202 struct symtab *result;
2203
2204 if (!objfile->sf)
2205 continue;
2206 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2207 msymbol,
2208 pc, section,
2209 1);
2210 if (result)
2211 return result;
2212 }
2213
2214 return NULL;
2215 }
2216
2217 /* Find the symtab associated with PC. Look through the psymtabs and read
2218 in another symtab if necessary. Backward compatibility, no section. */
2219
2220 struct symtab *
2221 find_pc_symtab (CORE_ADDR pc)
2222 {
2223 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2224 }
2225 \f
2226
2227 /* Find the source file and line number for a given PC value and SECTION.
2228 Return a structure containing a symtab pointer, a line number,
2229 and a pc range for the entire source line.
2230 The value's .pc field is NOT the specified pc.
2231 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2232 use the line that ends there. Otherwise, in that case, the line
2233 that begins there is used. */
2234
2235 /* The big complication here is that a line may start in one file, and end just
2236 before the start of another file. This usually occurs when you #include
2237 code in the middle of a subroutine. To properly find the end of a line's PC
2238 range, we must search all symtabs associated with this compilation unit, and
2239 find the one whose first PC is closer than that of the next line in this
2240 symtab. */
2241
2242 /* If it's worth the effort, we could be using a binary search. */
2243
2244 struct symtab_and_line
2245 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2246 {
2247 struct symtab *s;
2248 struct linetable *l;
2249 int len;
2250 int i;
2251 struct linetable_entry *item;
2252 struct symtab_and_line val;
2253 const struct blockvector *bv;
2254 struct bound_minimal_symbol msymbol;
2255 struct objfile *objfile;
2256
2257 /* Info on best line seen so far, and where it starts, and its file. */
2258
2259 struct linetable_entry *best = NULL;
2260 CORE_ADDR best_end = 0;
2261 struct symtab *best_symtab = 0;
2262
2263 /* Store here the first line number
2264 of a file which contains the line at the smallest pc after PC.
2265 If we don't find a line whose range contains PC,
2266 we will use a line one less than this,
2267 with a range from the start of that file to the first line's pc. */
2268 struct linetable_entry *alt = NULL;
2269
2270 /* Info on best line seen in this file. */
2271
2272 struct linetable_entry *prev;
2273
2274 /* If this pc is not from the current frame,
2275 it is the address of the end of a call instruction.
2276 Quite likely that is the start of the following statement.
2277 But what we want is the statement containing the instruction.
2278 Fudge the pc to make sure we get that. */
2279
2280 init_sal (&val); /* initialize to zeroes */
2281
2282 val.pspace = current_program_space;
2283
2284 /* It's tempting to assume that, if we can't find debugging info for
2285 any function enclosing PC, that we shouldn't search for line
2286 number info, either. However, GAS can emit line number info for
2287 assembly files --- very helpful when debugging hand-written
2288 assembly code. In such a case, we'd have no debug info for the
2289 function, but we would have line info. */
2290
2291 if (notcurrent)
2292 pc -= 1;
2293
2294 /* elz: added this because this function returned the wrong
2295 information if the pc belongs to a stub (import/export)
2296 to call a shlib function. This stub would be anywhere between
2297 two functions in the target, and the line info was erroneously
2298 taken to be the one of the line before the pc. */
2299
2300 /* RT: Further explanation:
2301
2302 * We have stubs (trampolines) inserted between procedures.
2303 *
2304 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2305 * exists in the main image.
2306 *
2307 * In the minimal symbol table, we have a bunch of symbols
2308 * sorted by start address. The stubs are marked as "trampoline",
2309 * the others appear as text. E.g.:
2310 *
2311 * Minimal symbol table for main image
2312 * main: code for main (text symbol)
2313 * shr1: stub (trampoline symbol)
2314 * foo: code for foo (text symbol)
2315 * ...
2316 * Minimal symbol table for "shr1" image:
2317 * ...
2318 * shr1: code for shr1 (text symbol)
2319 * ...
2320 *
2321 * So the code below is trying to detect if we are in the stub
2322 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2323 * and if found, do the symbolization from the real-code address
2324 * rather than the stub address.
2325 *
2326 * Assumptions being made about the minimal symbol table:
2327 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2328 * if we're really in the trampoline.s If we're beyond it (say
2329 * we're in "foo" in the above example), it'll have a closer
2330 * symbol (the "foo" text symbol for example) and will not
2331 * return the trampoline.
2332 * 2. lookup_minimal_symbol_text() will find a real text symbol
2333 * corresponding to the trampoline, and whose address will
2334 * be different than the trampoline address. I put in a sanity
2335 * check for the address being the same, to avoid an
2336 * infinite recursion.
2337 */
2338 msymbol = lookup_minimal_symbol_by_pc (pc);
2339 if (msymbol.minsym != NULL)
2340 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
2341 {
2342 struct bound_minimal_symbol mfunsym
2343 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
2344 NULL);
2345
2346 if (mfunsym.minsym == NULL)
2347 /* I eliminated this warning since it is coming out
2348 * in the following situation:
2349 * gdb shmain // test program with shared libraries
2350 * (gdb) break shr1 // function in shared lib
2351 * Warning: In stub for ...
2352 * In the above situation, the shared lib is not loaded yet,
2353 * so of course we can't find the real func/line info,
2354 * but the "break" still works, and the warning is annoying.
2355 * So I commented out the warning. RT */
2356 /* warning ("In stub for %s; unable to find real function/line info",
2357 SYMBOL_LINKAGE_NAME (msymbol)); */
2358 ;
2359 /* fall through */
2360 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
2361 == BMSYMBOL_VALUE_ADDRESS (msymbol))
2362 /* Avoid infinite recursion */
2363 /* See above comment about why warning is commented out. */
2364 /* warning ("In stub for %s; unable to find real function/line info",
2365 SYMBOL_LINKAGE_NAME (msymbol)); */
2366 ;
2367 /* fall through */
2368 else
2369 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
2370 }
2371
2372
2373 s = find_pc_sect_symtab (pc, section);
2374 if (!s)
2375 {
2376 /* If no symbol information, return previous pc. */
2377 if (notcurrent)
2378 pc++;
2379 val.pc = pc;
2380 return val;
2381 }
2382
2383 bv = BLOCKVECTOR (s);
2384 objfile = s->objfile;
2385
2386 /* Look at all the symtabs that share this blockvector.
2387 They all have the same apriori range, that we found was right;
2388 but they have different line tables. */
2389
2390 ALL_OBJFILE_SYMTABS (objfile, s)
2391 {
2392 if (BLOCKVECTOR (s) != bv)
2393 continue;
2394
2395 /* Find the best line in this symtab. */
2396 l = LINETABLE (s);
2397 if (!l)
2398 continue;
2399 len = l->nitems;
2400 if (len <= 0)
2401 {
2402 /* I think len can be zero if the symtab lacks line numbers
2403 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2404 I'm not sure which, and maybe it depends on the symbol
2405 reader). */
2406 continue;
2407 }
2408
2409 prev = NULL;
2410 item = l->item; /* Get first line info. */
2411
2412 /* Is this file's first line closer than the first lines of other files?
2413 If so, record this file, and its first line, as best alternate. */
2414 if (item->pc > pc && (!alt || item->pc < alt->pc))
2415 alt = item;
2416
2417 for (i = 0; i < len; i++, item++)
2418 {
2419 /* Leave prev pointing to the linetable entry for the last line
2420 that started at or before PC. */
2421 if (item->pc > pc)
2422 break;
2423
2424 prev = item;
2425 }
2426
2427 /* At this point, prev points at the line whose start addr is <= pc, and
2428 item points at the next line. If we ran off the end of the linetable
2429 (pc >= start of the last line), then prev == item. If pc < start of
2430 the first line, prev will not be set. */
2431
2432 /* Is this file's best line closer than the best in the other files?
2433 If so, record this file, and its best line, as best so far. Don't
2434 save prev if it represents the end of a function (i.e. line number
2435 0) instead of a real line. */
2436
2437 if (prev && prev->line && (!best || prev->pc > best->pc))
2438 {
2439 best = prev;
2440 best_symtab = s;
2441
2442 /* Discard BEST_END if it's before the PC of the current BEST. */
2443 if (best_end <= best->pc)
2444 best_end = 0;
2445 }
2446
2447 /* If another line (denoted by ITEM) is in the linetable and its
2448 PC is after BEST's PC, but before the current BEST_END, then
2449 use ITEM's PC as the new best_end. */
2450 if (best && i < len && item->pc > best->pc
2451 && (best_end == 0 || best_end > item->pc))
2452 best_end = item->pc;
2453 }
2454
2455 if (!best_symtab)
2456 {
2457 /* If we didn't find any line number info, just return zeros.
2458 We used to return alt->line - 1 here, but that could be
2459 anywhere; if we don't have line number info for this PC,
2460 don't make some up. */
2461 val.pc = pc;
2462 }
2463 else if (best->line == 0)
2464 {
2465 /* If our best fit is in a range of PC's for which no line
2466 number info is available (line number is zero) then we didn't
2467 find any valid line information. */
2468 val.pc = pc;
2469 }
2470 else
2471 {
2472 val.symtab = best_symtab;
2473 val.line = best->line;
2474 val.pc = best->pc;
2475 if (best_end && (!alt || best_end < alt->pc))
2476 val.end = best_end;
2477 else if (alt)
2478 val.end = alt->pc;
2479 else
2480 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2481 }
2482 val.section = section;
2483 return val;
2484 }
2485
2486 /* Backward compatibility (no section). */
2487
2488 struct symtab_and_line
2489 find_pc_line (CORE_ADDR pc, int notcurrent)
2490 {
2491 struct obj_section *section;
2492
2493 section = find_pc_overlay (pc);
2494 if (pc_in_unmapped_range (pc, section))
2495 pc = overlay_mapped_address (pc, section);
2496 return find_pc_sect_line (pc, section, notcurrent);
2497 }
2498 \f
2499 /* Find line number LINE in any symtab whose name is the same as
2500 SYMTAB.
2501
2502 If found, return the symtab that contains the linetable in which it was
2503 found, set *INDEX to the index in the linetable of the best entry
2504 found, and set *EXACT_MATCH nonzero if the value returned is an
2505 exact match.
2506
2507 If not found, return NULL. */
2508
2509 struct symtab *
2510 find_line_symtab (struct symtab *symtab, int line,
2511 int *index, int *exact_match)
2512 {
2513 int exact = 0; /* Initialized here to avoid a compiler warning. */
2514
2515 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2516 so far seen. */
2517
2518 int best_index;
2519 struct linetable *best_linetable;
2520 struct symtab *best_symtab;
2521
2522 /* First try looking it up in the given symtab. */
2523 best_linetable = LINETABLE (symtab);
2524 best_symtab = symtab;
2525 best_index = find_line_common (best_linetable, line, &exact, 0);
2526 if (best_index < 0 || !exact)
2527 {
2528 /* Didn't find an exact match. So we better keep looking for
2529 another symtab with the same name. In the case of xcoff,
2530 multiple csects for one source file (produced by IBM's FORTRAN
2531 compiler) produce multiple symtabs (this is unavoidable
2532 assuming csects can be at arbitrary places in memory and that
2533 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2534
2535 /* BEST is the smallest linenumber > LINE so far seen,
2536 or 0 if none has been seen so far.
2537 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2538 int best;
2539
2540 struct objfile *objfile;
2541 struct symtab *s;
2542
2543 if (best_index >= 0)
2544 best = best_linetable->item[best_index].line;
2545 else
2546 best = 0;
2547
2548 ALL_OBJFILES (objfile)
2549 {
2550 if (objfile->sf)
2551 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
2552 symtab_to_fullname (symtab));
2553 }
2554
2555 ALL_SYMTABS (objfile, s)
2556 {
2557 struct linetable *l;
2558 int ind;
2559
2560 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2561 continue;
2562 if (FILENAME_CMP (symtab_to_fullname (symtab),
2563 symtab_to_fullname (s)) != 0)
2564 continue;
2565 l = LINETABLE (s);
2566 ind = find_line_common (l, line, &exact, 0);
2567 if (ind >= 0)
2568 {
2569 if (exact)
2570 {
2571 best_index = ind;
2572 best_linetable = l;
2573 best_symtab = s;
2574 goto done;
2575 }
2576 if (best == 0 || l->item[ind].line < best)
2577 {
2578 best = l->item[ind].line;
2579 best_index = ind;
2580 best_linetable = l;
2581 best_symtab = s;
2582 }
2583 }
2584 }
2585 }
2586 done:
2587 if (best_index < 0)
2588 return NULL;
2589
2590 if (index)
2591 *index = best_index;
2592 if (exact_match)
2593 *exact_match = exact;
2594
2595 return best_symtab;
2596 }
2597
2598 /* Given SYMTAB, returns all the PCs function in the symtab that
2599 exactly match LINE. Returns NULL if there are no exact matches,
2600 but updates BEST_ITEM in this case. */
2601
2602 VEC (CORE_ADDR) *
2603 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2604 struct linetable_entry **best_item)
2605 {
2606 int start = 0;
2607 VEC (CORE_ADDR) *result = NULL;
2608
2609 /* First, collect all the PCs that are at this line. */
2610 while (1)
2611 {
2612 int was_exact;
2613 int idx;
2614
2615 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2616 if (idx < 0)
2617 break;
2618
2619 if (!was_exact)
2620 {
2621 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2622
2623 if (*best_item == NULL || item->line < (*best_item)->line)
2624 *best_item = item;
2625
2626 break;
2627 }
2628
2629 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2630 start = idx + 1;
2631 }
2632
2633 return result;
2634 }
2635
2636 \f
2637 /* Set the PC value for a given source file and line number and return true.
2638 Returns zero for invalid line number (and sets the PC to 0).
2639 The source file is specified with a struct symtab. */
2640
2641 int
2642 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2643 {
2644 struct linetable *l;
2645 int ind;
2646
2647 *pc = 0;
2648 if (symtab == 0)
2649 return 0;
2650
2651 symtab = find_line_symtab (symtab, line, &ind, NULL);
2652 if (symtab != NULL)
2653 {
2654 l = LINETABLE (symtab);
2655 *pc = l->item[ind].pc;
2656 return 1;
2657 }
2658 else
2659 return 0;
2660 }
2661
2662 /* Find the range of pc values in a line.
2663 Store the starting pc of the line into *STARTPTR
2664 and the ending pc (start of next line) into *ENDPTR.
2665 Returns 1 to indicate success.
2666 Returns 0 if could not find the specified line. */
2667
2668 int
2669 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2670 CORE_ADDR *endptr)
2671 {
2672 CORE_ADDR startaddr;
2673 struct symtab_and_line found_sal;
2674
2675 startaddr = sal.pc;
2676 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2677 return 0;
2678
2679 /* This whole function is based on address. For example, if line 10 has
2680 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2681 "info line *0x123" should say the line goes from 0x100 to 0x200
2682 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2683 This also insures that we never give a range like "starts at 0x134
2684 and ends at 0x12c". */
2685
2686 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2687 if (found_sal.line != sal.line)
2688 {
2689 /* The specified line (sal) has zero bytes. */
2690 *startptr = found_sal.pc;
2691 *endptr = found_sal.pc;
2692 }
2693 else
2694 {
2695 *startptr = found_sal.pc;
2696 *endptr = found_sal.end;
2697 }
2698 return 1;
2699 }
2700
2701 /* Given a line table and a line number, return the index into the line
2702 table for the pc of the nearest line whose number is >= the specified one.
2703 Return -1 if none is found. The value is >= 0 if it is an index.
2704 START is the index at which to start searching the line table.
2705
2706 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2707
2708 static int
2709 find_line_common (struct linetable *l, int lineno,
2710 int *exact_match, int start)
2711 {
2712 int i;
2713 int len;
2714
2715 /* BEST is the smallest linenumber > LINENO so far seen,
2716 or 0 if none has been seen so far.
2717 BEST_INDEX identifies the item for it. */
2718
2719 int best_index = -1;
2720 int best = 0;
2721
2722 *exact_match = 0;
2723
2724 if (lineno <= 0)
2725 return -1;
2726 if (l == 0)
2727 return -1;
2728
2729 len = l->nitems;
2730 for (i = start; i < len; i++)
2731 {
2732 struct linetable_entry *item = &(l->item[i]);
2733
2734 if (item->line == lineno)
2735 {
2736 /* Return the first (lowest address) entry which matches. */
2737 *exact_match = 1;
2738 return i;
2739 }
2740
2741 if (item->line > lineno && (best == 0 || item->line < best))
2742 {
2743 best = item->line;
2744 best_index = i;
2745 }
2746 }
2747
2748 /* If we got here, we didn't get an exact match. */
2749 return best_index;
2750 }
2751
2752 int
2753 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2754 {
2755 struct symtab_and_line sal;
2756
2757 sal = find_pc_line (pc, 0);
2758 *startptr = sal.pc;
2759 *endptr = sal.end;
2760 return sal.symtab != 0;
2761 }
2762
2763 /* Given a function symbol SYM, find the symtab and line for the start
2764 of the function.
2765 If the argument FUNFIRSTLINE is nonzero, we want the first line
2766 of real code inside the function. */
2767
2768 struct symtab_and_line
2769 find_function_start_sal (struct symbol *sym, int funfirstline)
2770 {
2771 struct symtab_and_line sal;
2772
2773 fixup_symbol_section (sym, NULL);
2774 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2775 SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym), 0);
2776
2777 /* We always should have a line for the function start address.
2778 If we don't, something is odd. Create a plain SAL refering
2779 just the PC and hope that skip_prologue_sal (if requested)
2780 can find a line number for after the prologue. */
2781 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2782 {
2783 init_sal (&sal);
2784 sal.pspace = current_program_space;
2785 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2786 sal.section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2787 }
2788
2789 if (funfirstline)
2790 skip_prologue_sal (&sal);
2791
2792 return sal;
2793 }
2794
2795 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2796 address for that function that has an entry in SYMTAB's line info
2797 table. If such an entry cannot be found, return FUNC_ADDR
2798 unaltered. */
2799
2800 static CORE_ADDR
2801 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2802 {
2803 CORE_ADDR func_start, func_end;
2804 struct linetable *l;
2805 int i;
2806
2807 /* Give up if this symbol has no lineinfo table. */
2808 l = LINETABLE (symtab);
2809 if (l == NULL)
2810 return func_addr;
2811
2812 /* Get the range for the function's PC values, or give up if we
2813 cannot, for some reason. */
2814 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2815 return func_addr;
2816
2817 /* Linetable entries are ordered by PC values, see the commentary in
2818 symtab.h where `struct linetable' is defined. Thus, the first
2819 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2820 address we are looking for. */
2821 for (i = 0; i < l->nitems; i++)
2822 {
2823 struct linetable_entry *item = &(l->item[i]);
2824
2825 /* Don't use line numbers of zero, they mark special entries in
2826 the table. See the commentary on symtab.h before the
2827 definition of struct linetable. */
2828 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2829 return item->pc;
2830 }
2831
2832 return func_addr;
2833 }
2834
2835 /* Adjust SAL to the first instruction past the function prologue.
2836 If the PC was explicitly specified, the SAL is not changed.
2837 If the line number was explicitly specified, at most the SAL's PC
2838 is updated. If SAL is already past the prologue, then do nothing. */
2839
2840 void
2841 skip_prologue_sal (struct symtab_and_line *sal)
2842 {
2843 struct symbol *sym;
2844 struct symtab_and_line start_sal;
2845 struct cleanup *old_chain;
2846 CORE_ADDR pc, saved_pc;
2847 struct obj_section *section;
2848 const char *name;
2849 struct objfile *objfile;
2850 struct gdbarch *gdbarch;
2851 const struct block *b, *function_block;
2852 int force_skip, skip;
2853
2854 /* Do not change the SAL if PC was specified explicitly. */
2855 if (sal->explicit_pc)
2856 return;
2857
2858 old_chain = save_current_space_and_thread ();
2859 switch_to_program_space_and_thread (sal->pspace);
2860
2861 sym = find_pc_sect_function (sal->pc, sal->section);
2862 if (sym != NULL)
2863 {
2864 fixup_symbol_section (sym, NULL);
2865
2866 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2867 section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2868 name = SYMBOL_LINKAGE_NAME (sym);
2869 objfile = SYMBOL_SYMTAB (sym)->objfile;
2870 }
2871 else
2872 {
2873 struct bound_minimal_symbol msymbol
2874 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2875
2876 if (msymbol.minsym == NULL)
2877 {
2878 do_cleanups (old_chain);
2879 return;
2880 }
2881
2882 objfile = msymbol.objfile;
2883 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
2884 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
2885 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
2886 }
2887
2888 gdbarch = get_objfile_arch (objfile);
2889
2890 /* Process the prologue in two passes. In the first pass try to skip the
2891 prologue (SKIP is true) and verify there is a real need for it (indicated
2892 by FORCE_SKIP). If no such reason was found run a second pass where the
2893 prologue is not skipped (SKIP is false). */
2894
2895 skip = 1;
2896 force_skip = 1;
2897
2898 /* Be conservative - allow direct PC (without skipping prologue) only if we
2899 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2900 have to be set by the caller so we use SYM instead. */
2901 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2902 force_skip = 0;
2903
2904 saved_pc = pc;
2905 do
2906 {
2907 pc = saved_pc;
2908
2909 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2910 so that gdbarch_skip_prologue has something unique to work on. */
2911 if (section_is_overlay (section) && !section_is_mapped (section))
2912 pc = overlay_unmapped_address (pc, section);
2913
2914 /* Skip "first line" of function (which is actually its prologue). */
2915 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2916 if (gdbarch_skip_entrypoint_p (gdbarch))
2917 pc = gdbarch_skip_entrypoint (gdbarch, pc);
2918 if (skip)
2919 pc = gdbarch_skip_prologue (gdbarch, pc);
2920
2921 /* For overlays, map pc back into its mapped VMA range. */
2922 pc = overlay_mapped_address (pc, section);
2923
2924 /* Calculate line number. */
2925 start_sal = find_pc_sect_line (pc, section, 0);
2926
2927 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2928 line is still part of the same function. */
2929 if (skip && start_sal.pc != pc
2930 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2931 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2932 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
2933 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
2934 {
2935 /* First pc of next line */
2936 pc = start_sal.end;
2937 /* Recalculate the line number (might not be N+1). */
2938 start_sal = find_pc_sect_line (pc, section, 0);
2939 }
2940
2941 /* On targets with executable formats that don't have a concept of
2942 constructors (ELF with .init has, PE doesn't), gcc emits a call
2943 to `__main' in `main' between the prologue and before user
2944 code. */
2945 if (gdbarch_skip_main_prologue_p (gdbarch)
2946 && name && strcmp_iw (name, "main") == 0)
2947 {
2948 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2949 /* Recalculate the line number (might not be N+1). */
2950 start_sal = find_pc_sect_line (pc, section, 0);
2951 force_skip = 1;
2952 }
2953 }
2954 while (!force_skip && skip--);
2955
2956 /* If we still don't have a valid source line, try to find the first
2957 PC in the lineinfo table that belongs to the same function. This
2958 happens with COFF debug info, which does not seem to have an
2959 entry in lineinfo table for the code after the prologue which has
2960 no direct relation to source. For example, this was found to be
2961 the case with the DJGPP target using "gcc -gcoff" when the
2962 compiler inserted code after the prologue to make sure the stack
2963 is aligned. */
2964 if (!force_skip && sym && start_sal.symtab == NULL)
2965 {
2966 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2967 /* Recalculate the line number. */
2968 start_sal = find_pc_sect_line (pc, section, 0);
2969 }
2970
2971 do_cleanups (old_chain);
2972
2973 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2974 forward SAL to the end of the prologue. */
2975 if (sal->pc >= pc)
2976 return;
2977
2978 sal->pc = pc;
2979 sal->section = section;
2980
2981 /* Unless the explicit_line flag was set, update the SAL line
2982 and symtab to correspond to the modified PC location. */
2983 if (sal->explicit_line)
2984 return;
2985
2986 sal->symtab = start_sal.symtab;
2987 sal->line = start_sal.line;
2988 sal->end = start_sal.end;
2989
2990 /* Check if we are now inside an inlined function. If we can,
2991 use the call site of the function instead. */
2992 b = block_for_pc_sect (sal->pc, sal->section);
2993 function_block = NULL;
2994 while (b != NULL)
2995 {
2996 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2997 function_block = b;
2998 else if (BLOCK_FUNCTION (b) != NULL)
2999 break;
3000 b = BLOCK_SUPERBLOCK (b);
3001 }
3002 if (function_block != NULL
3003 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3004 {
3005 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3006 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
3007 }
3008 }
3009
3010 /* Determine if PC is in the prologue of a function. The prologue is the area
3011 between the first instruction of a function, and the first executable line.
3012 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
3013
3014 If non-zero, func_start is where we think the prologue starts, possibly
3015 by previous examination of symbol table information. */
3016
3017 int
3018 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
3019 {
3020 struct symtab_and_line sal;
3021 CORE_ADDR func_addr, func_end;
3022
3023 /* We have several sources of information we can consult to figure
3024 this out.
3025 - Compilers usually emit line number info that marks the prologue
3026 as its own "source line". So the ending address of that "line"
3027 is the end of the prologue. If available, this is the most
3028 reliable method.
3029 - The minimal symbols and partial symbols, which can usually tell
3030 us the starting and ending addresses of a function.
3031 - If we know the function's start address, we can call the
3032 architecture-defined gdbarch_skip_prologue function to analyze the
3033 instruction stream and guess where the prologue ends.
3034 - Our `func_start' argument; if non-zero, this is the caller's
3035 best guess as to the function's entry point. At the time of
3036 this writing, handle_inferior_event doesn't get this right, so
3037 it should be our last resort. */
3038
3039 /* Consult the partial symbol table, to find which function
3040 the PC is in. */
3041 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
3042 {
3043 CORE_ADDR prologue_end;
3044
3045 /* We don't even have minsym information, so fall back to using
3046 func_start, if given. */
3047 if (! func_start)
3048 return 1; /* We *might* be in a prologue. */
3049
3050 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
3051
3052 return func_start <= pc && pc < prologue_end;
3053 }
3054
3055 /* If we have line number information for the function, that's
3056 usually pretty reliable. */
3057 sal = find_pc_line (func_addr, 0);
3058
3059 /* Now sal describes the source line at the function's entry point,
3060 which (by convention) is the prologue. The end of that "line",
3061 sal.end, is the end of the prologue.
3062
3063 Note that, for functions whose source code is all on a single
3064 line, the line number information doesn't always end up this way.
3065 So we must verify that our purported end-of-prologue address is
3066 *within* the function, not at its start or end. */
3067 if (sal.line == 0
3068 || sal.end <= func_addr
3069 || func_end <= sal.end)
3070 {
3071 /* We don't have any good line number info, so use the minsym
3072 information, together with the architecture-specific prologue
3073 scanning code. */
3074 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
3075
3076 return func_addr <= pc && pc < prologue_end;
3077 }
3078
3079 /* We have line number info, and it looks good. */
3080 return func_addr <= pc && pc < sal.end;
3081 }
3082
3083 /* Given PC at the function's start address, attempt to find the
3084 prologue end using SAL information. Return zero if the skip fails.
3085
3086 A non-optimized prologue traditionally has one SAL for the function
3087 and a second for the function body. A single line function has
3088 them both pointing at the same line.
3089
3090 An optimized prologue is similar but the prologue may contain
3091 instructions (SALs) from the instruction body. Need to skip those
3092 while not getting into the function body.
3093
3094 The functions end point and an increasing SAL line are used as
3095 indicators of the prologue's endpoint.
3096
3097 This code is based on the function refine_prologue_limit
3098 (found in ia64). */
3099
3100 CORE_ADDR
3101 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3102 {
3103 struct symtab_and_line prologue_sal;
3104 CORE_ADDR start_pc;
3105 CORE_ADDR end_pc;
3106 const struct block *bl;
3107
3108 /* Get an initial range for the function. */
3109 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3110 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3111
3112 prologue_sal = find_pc_line (start_pc, 0);
3113 if (prologue_sal.line != 0)
3114 {
3115 /* For languages other than assembly, treat two consecutive line
3116 entries at the same address as a zero-instruction prologue.
3117 The GNU assembler emits separate line notes for each instruction
3118 in a multi-instruction macro, but compilers generally will not
3119 do this. */
3120 if (prologue_sal.symtab->language != language_asm)
3121 {
3122 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
3123 int idx = 0;
3124
3125 /* Skip any earlier lines, and any end-of-sequence marker
3126 from a previous function. */
3127 while (linetable->item[idx].pc != prologue_sal.pc
3128 || linetable->item[idx].line == 0)
3129 idx++;
3130
3131 if (idx+1 < linetable->nitems
3132 && linetable->item[idx+1].line != 0
3133 && linetable->item[idx+1].pc == start_pc)
3134 return start_pc;
3135 }
3136
3137 /* If there is only one sal that covers the entire function,
3138 then it is probably a single line function, like
3139 "foo(){}". */
3140 if (prologue_sal.end >= end_pc)
3141 return 0;
3142
3143 while (prologue_sal.end < end_pc)
3144 {
3145 struct symtab_and_line sal;
3146
3147 sal = find_pc_line (prologue_sal.end, 0);
3148 if (sal.line == 0)
3149 break;
3150 /* Assume that a consecutive SAL for the same (or larger)
3151 line mark the prologue -> body transition. */
3152 if (sal.line >= prologue_sal.line)
3153 break;
3154 /* Likewise if we are in a different symtab altogether
3155 (e.g. within a file included via #include).  */
3156 if (sal.symtab != prologue_sal.symtab)
3157 break;
3158
3159 /* The line number is smaller. Check that it's from the
3160 same function, not something inlined. If it's inlined,
3161 then there is no point comparing the line numbers. */
3162 bl = block_for_pc (prologue_sal.end);
3163 while (bl)
3164 {
3165 if (block_inlined_p (bl))
3166 break;
3167 if (BLOCK_FUNCTION (bl))
3168 {
3169 bl = NULL;
3170 break;
3171 }
3172 bl = BLOCK_SUPERBLOCK (bl);
3173 }
3174 if (bl != NULL)
3175 break;
3176
3177 /* The case in which compiler's optimizer/scheduler has
3178 moved instructions into the prologue. We look ahead in
3179 the function looking for address ranges whose
3180 corresponding line number is less the first one that we
3181 found for the function. This is more conservative then
3182 refine_prologue_limit which scans a large number of SALs
3183 looking for any in the prologue. */
3184 prologue_sal = sal;
3185 }
3186 }
3187
3188 if (prologue_sal.end < end_pc)
3189 /* Return the end of this line, or zero if we could not find a
3190 line. */
3191 return prologue_sal.end;
3192 else
3193 /* Don't return END_PC, which is past the end of the function. */
3194 return prologue_sal.pc;
3195 }
3196 \f
3197 /* If P is of the form "operator[ \t]+..." where `...' is
3198 some legitimate operator text, return a pointer to the
3199 beginning of the substring of the operator text.
3200 Otherwise, return "". */
3201
3202 static const char *
3203 operator_chars (const char *p, const char **end)
3204 {
3205 *end = "";
3206 if (strncmp (p, "operator", 8))
3207 return *end;
3208 p += 8;
3209
3210 /* Don't get faked out by `operator' being part of a longer
3211 identifier. */
3212 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3213 return *end;
3214
3215 /* Allow some whitespace between `operator' and the operator symbol. */
3216 while (*p == ' ' || *p == '\t')
3217 p++;
3218
3219 /* Recognize 'operator TYPENAME'. */
3220
3221 if (isalpha (*p) || *p == '_' || *p == '$')
3222 {
3223 const char *q = p + 1;
3224
3225 while (isalnum (*q) || *q == '_' || *q == '$')
3226 q++;
3227 *end = q;
3228 return p;
3229 }
3230
3231 while (*p)
3232 switch (*p)
3233 {
3234 case '\\': /* regexp quoting */
3235 if (p[1] == '*')
3236 {
3237 if (p[2] == '=') /* 'operator\*=' */
3238 *end = p + 3;
3239 else /* 'operator\*' */
3240 *end = p + 2;
3241 return p;
3242 }
3243 else if (p[1] == '[')
3244 {
3245 if (p[2] == ']')
3246 error (_("mismatched quoting on brackets, "
3247 "try 'operator\\[\\]'"));
3248 else if (p[2] == '\\' && p[3] == ']')
3249 {
3250 *end = p + 4; /* 'operator\[\]' */
3251 return p;
3252 }
3253 else
3254 error (_("nothing is allowed between '[' and ']'"));
3255 }
3256 else
3257 {
3258 /* Gratuitous qoute: skip it and move on. */
3259 p++;
3260 continue;
3261 }
3262 break;
3263 case '!':
3264 case '=':
3265 case '*':
3266 case '/':
3267 case '%':
3268 case '^':
3269 if (p[1] == '=')
3270 *end = p + 2;
3271 else
3272 *end = p + 1;
3273 return p;
3274 case '<':
3275 case '>':
3276 case '+':
3277 case '-':
3278 case '&':
3279 case '|':
3280 if (p[0] == '-' && p[1] == '>')
3281 {
3282 /* Struct pointer member operator 'operator->'. */
3283 if (p[2] == '*')
3284 {
3285 *end = p + 3; /* 'operator->*' */
3286 return p;
3287 }
3288 else if (p[2] == '\\')
3289 {
3290 *end = p + 4; /* Hopefully 'operator->\*' */
3291 return p;
3292 }
3293 else
3294 {
3295 *end = p + 2; /* 'operator->' */
3296 return p;
3297 }
3298 }
3299 if (p[1] == '=' || p[1] == p[0])
3300 *end = p + 2;
3301 else
3302 *end = p + 1;
3303 return p;
3304 case '~':
3305 case ',':
3306 *end = p + 1;
3307 return p;
3308 case '(':
3309 if (p[1] != ')')
3310 error (_("`operator ()' must be specified "
3311 "without whitespace in `()'"));
3312 *end = p + 2;
3313 return p;
3314 case '?':
3315 if (p[1] != ':')
3316 error (_("`operator ?:' must be specified "
3317 "without whitespace in `?:'"));
3318 *end = p + 2;
3319 return p;
3320 case '[':
3321 if (p[1] != ']')
3322 error (_("`operator []' must be specified "
3323 "without whitespace in `[]'"));
3324 *end = p + 2;
3325 return p;
3326 default:
3327 error (_("`operator %s' not supported"), p);
3328 break;
3329 }
3330
3331 *end = "";
3332 return *end;
3333 }
3334 \f
3335
3336 /* Cache to watch for file names already seen by filename_seen. */
3337
3338 struct filename_seen_cache
3339 {
3340 /* Table of files seen so far. */
3341 htab_t tab;
3342 /* Initial size of the table. It automagically grows from here. */
3343 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3344 };
3345
3346 /* filename_seen_cache constructor. */
3347
3348 static struct filename_seen_cache *
3349 create_filename_seen_cache (void)
3350 {
3351 struct filename_seen_cache *cache;
3352
3353 cache = XNEW (struct filename_seen_cache);
3354 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3355 filename_hash, filename_eq,
3356 NULL, xcalloc, xfree);
3357
3358 return cache;
3359 }
3360
3361 /* Empty the cache, but do not delete it. */
3362
3363 static void
3364 clear_filename_seen_cache (struct filename_seen_cache *cache)
3365 {
3366 htab_empty (cache->tab);
3367 }
3368
3369 /* filename_seen_cache destructor.
3370 This takes a void * argument as it is generally used as a cleanup. */
3371
3372 static void
3373 delete_filename_seen_cache (void *ptr)
3374 {
3375 struct filename_seen_cache *cache = ptr;
3376
3377 htab_delete (cache->tab);
3378 xfree (cache);
3379 }
3380
3381 /* If FILE is not already in the table of files in CACHE, return zero;
3382 otherwise return non-zero. Optionally add FILE to the table if ADD
3383 is non-zero.
3384
3385 NOTE: We don't manage space for FILE, we assume FILE lives as long
3386 as the caller needs. */
3387
3388 static int
3389 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
3390 {
3391 void **slot;
3392
3393 /* Is FILE in tab? */
3394 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
3395 if (*slot != NULL)
3396 return 1;
3397
3398 /* No; maybe add it to tab. */
3399 if (add)
3400 *slot = (char *) file;
3401
3402 return 0;
3403 }
3404
3405 /* Data structure to maintain printing state for output_source_filename. */
3406
3407 struct output_source_filename_data
3408 {
3409 /* Cache of what we've seen so far. */
3410 struct filename_seen_cache *filename_seen_cache;
3411
3412 /* Flag of whether we're printing the first one. */
3413 int first;
3414 };
3415
3416 /* Slave routine for sources_info. Force line breaks at ,'s.
3417 NAME is the name to print.
3418 DATA contains the state for printing and watching for duplicates. */
3419
3420 static void
3421 output_source_filename (const char *name,
3422 struct output_source_filename_data *data)
3423 {
3424 /* Since a single source file can result in several partial symbol
3425 tables, we need to avoid printing it more than once. Note: if
3426 some of the psymtabs are read in and some are not, it gets
3427 printed both under "Source files for which symbols have been
3428 read" and "Source files for which symbols will be read in on
3429 demand". I consider this a reasonable way to deal with the
3430 situation. I'm not sure whether this can also happen for
3431 symtabs; it doesn't hurt to check. */
3432
3433 /* Was NAME already seen? */
3434 if (filename_seen (data->filename_seen_cache, name, 1))
3435 {
3436 /* Yes; don't print it again. */
3437 return;
3438 }
3439
3440 /* No; print it and reset *FIRST. */
3441 if (! data->first)
3442 printf_filtered (", ");
3443 data->first = 0;
3444
3445 wrap_here ("");
3446 fputs_filtered (name, gdb_stdout);
3447 }
3448
3449 /* A callback for map_partial_symbol_filenames. */
3450
3451 static void
3452 output_partial_symbol_filename (const char *filename, const char *fullname,
3453 void *data)
3454 {
3455 output_source_filename (fullname ? fullname : filename, data);
3456 }
3457
3458 static void
3459 sources_info (char *ignore, int from_tty)
3460 {
3461 struct symtab *s;
3462 struct objfile *objfile;
3463 struct output_source_filename_data data;
3464 struct cleanup *cleanups;
3465
3466 if (!have_full_symbols () && !have_partial_symbols ())
3467 {
3468 error (_("No symbol table is loaded. Use the \"file\" command."));
3469 }
3470
3471 data.filename_seen_cache = create_filename_seen_cache ();
3472 cleanups = make_cleanup (delete_filename_seen_cache,
3473 data.filename_seen_cache);
3474
3475 printf_filtered ("Source files for which symbols have been read in:\n\n");
3476
3477 data.first = 1;
3478 ALL_SYMTABS (objfile, s)
3479 {
3480 const char *fullname = symtab_to_fullname (s);
3481
3482 output_source_filename (fullname, &data);
3483 }
3484 printf_filtered ("\n\n");
3485
3486 printf_filtered ("Source files for which symbols "
3487 "will be read in on demand:\n\n");
3488
3489 clear_filename_seen_cache (data.filename_seen_cache);
3490 data.first = 1;
3491 map_symbol_filenames (output_partial_symbol_filename, &data,
3492 1 /*need_fullname*/);
3493 printf_filtered ("\n");
3494
3495 do_cleanups (cleanups);
3496 }
3497
3498 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
3499 non-zero compare only lbasename of FILES. */
3500
3501 static int
3502 file_matches (const char *file, const char *files[], int nfiles, int basenames)
3503 {
3504 int i;
3505
3506 if (file != NULL && nfiles != 0)
3507 {
3508 for (i = 0; i < nfiles; i++)
3509 {
3510 if (compare_filenames_for_search (file, (basenames
3511 ? lbasename (files[i])
3512 : files[i])))
3513 return 1;
3514 }
3515 }
3516 else if (nfiles == 0)
3517 return 1;
3518 return 0;
3519 }
3520
3521 /* Free any memory associated with a search. */
3522
3523 void
3524 free_search_symbols (struct symbol_search *symbols)
3525 {
3526 struct symbol_search *p;
3527 struct symbol_search *next;
3528
3529 for (p = symbols; p != NULL; p = next)
3530 {
3531 next = p->next;
3532 xfree (p);
3533 }
3534 }
3535
3536 static void
3537 do_free_search_symbols_cleanup (void *symbolsp)
3538 {
3539 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
3540
3541 free_search_symbols (symbols);
3542 }
3543
3544 struct cleanup *
3545 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
3546 {
3547 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
3548 }
3549
3550 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
3551 sort symbols, not minimal symbols. */
3552
3553 static int
3554 compare_search_syms (const void *sa, const void *sb)
3555 {
3556 struct symbol_search *sym_a = *(struct symbol_search **) sa;
3557 struct symbol_search *sym_b = *(struct symbol_search **) sb;
3558 int c;
3559
3560 c = FILENAME_CMP (sym_a->symtab->filename, sym_b->symtab->filename);
3561 if (c != 0)
3562 return c;
3563
3564 if (sym_a->block != sym_b->block)
3565 return sym_a->block - sym_b->block;
3566
3567 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
3568 SYMBOL_PRINT_NAME (sym_b->symbol));
3569 }
3570
3571 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
3572 The duplicates are freed, and the new list is returned in
3573 *NEW_HEAD, *NEW_TAIL. */
3574
3575 static void
3576 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
3577 struct symbol_search **new_head,
3578 struct symbol_search **new_tail)
3579 {
3580 struct symbol_search **symbols, *symp, *old_next;
3581 int i, j, nunique;
3582
3583 gdb_assert (found != NULL && nfound > 0);
3584
3585 /* Build an array out of the list so we can easily sort them. */
3586 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3587 * nfound);
3588 symp = found;
3589 for (i = 0; i < nfound; i++)
3590 {
3591 gdb_assert (symp != NULL);
3592 gdb_assert (symp->block >= 0 && symp->block <= 1);
3593 symbols[i] = symp;
3594 symp = symp->next;
3595 }
3596 gdb_assert (symp == NULL);
3597
3598 qsort (symbols, nfound, sizeof (struct symbol_search *),
3599 compare_search_syms);
3600
3601 /* Collapse out the dups. */
3602 for (i = 1, j = 1; i < nfound; ++i)
3603 {
3604 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
3605 symbols[j++] = symbols[i];
3606 else
3607 xfree (symbols[i]);
3608 }
3609 nunique = j;
3610 symbols[j - 1]->next = NULL;
3611
3612 /* Rebuild the linked list. */
3613 for (i = 0; i < nunique - 1; i++)
3614 symbols[i]->next = symbols[i + 1];
3615 symbols[nunique - 1]->next = NULL;
3616
3617 *new_head = symbols[0];
3618 *new_tail = symbols[nunique - 1];
3619 xfree (symbols);
3620 }
3621
3622 /* An object of this type is passed as the user_data to the
3623 expand_symtabs_matching method. */
3624 struct search_symbols_data
3625 {
3626 int nfiles;
3627 const char **files;
3628
3629 /* It is true if PREG contains valid data, false otherwise. */
3630 unsigned preg_p : 1;
3631 regex_t preg;
3632 };
3633
3634 /* A callback for expand_symtabs_matching. */
3635
3636 static int
3637 search_symbols_file_matches (const char *filename, void *user_data,
3638 int basenames)
3639 {
3640 struct search_symbols_data *data = user_data;
3641
3642 return file_matches (filename, data->files, data->nfiles, basenames);
3643 }
3644
3645 /* A callback for expand_symtabs_matching. */
3646
3647 static int
3648 search_symbols_name_matches (const char *symname, void *user_data)
3649 {
3650 struct search_symbols_data *data = user_data;
3651
3652 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3653 }
3654
3655 /* Search the symbol table for matches to the regular expression REGEXP,
3656 returning the results in *MATCHES.
3657
3658 Only symbols of KIND are searched:
3659 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3660 and constants (enums)
3661 FUNCTIONS_DOMAIN - search all functions
3662 TYPES_DOMAIN - search all type names
3663 ALL_DOMAIN - an internal error for this function
3664
3665 free_search_symbols should be called when *MATCHES is no longer needed.
3666
3667 Within each file the results are sorted locally; each symtab's global and
3668 static blocks are separately alphabetized.
3669 Duplicate entries are removed. */
3670
3671 void
3672 search_symbols (const char *regexp, enum search_domain kind,
3673 int nfiles, const char *files[],
3674 struct symbol_search **matches)
3675 {
3676 struct symtab *s;
3677 const struct blockvector *bv;
3678 struct block *b;
3679 int i = 0;
3680 struct block_iterator iter;
3681 struct symbol *sym;
3682 struct objfile *objfile;
3683 struct minimal_symbol *msymbol;
3684 int found_misc = 0;
3685 static const enum minimal_symbol_type types[]
3686 = {mst_data, mst_text, mst_abs};
3687 static const enum minimal_symbol_type types2[]
3688 = {mst_bss, mst_file_text, mst_abs};
3689 static const enum minimal_symbol_type types3[]
3690 = {mst_file_data, mst_solib_trampoline, mst_abs};
3691 static const enum minimal_symbol_type types4[]
3692 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3693 enum minimal_symbol_type ourtype;
3694 enum minimal_symbol_type ourtype2;
3695 enum minimal_symbol_type ourtype3;
3696 enum minimal_symbol_type ourtype4;
3697 struct symbol_search *found;
3698 struct symbol_search *tail;
3699 struct search_symbols_data datum;
3700 int nfound;
3701
3702 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3703 CLEANUP_CHAIN is freed only in the case of an error. */
3704 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3705 struct cleanup *retval_chain;
3706
3707 gdb_assert (kind <= TYPES_DOMAIN);
3708
3709 ourtype = types[kind];
3710 ourtype2 = types2[kind];
3711 ourtype3 = types3[kind];
3712 ourtype4 = types4[kind];
3713
3714 *matches = NULL;
3715 datum.preg_p = 0;
3716
3717 if (regexp != NULL)
3718 {
3719 /* Make sure spacing is right for C++ operators.
3720 This is just a courtesy to make the matching less sensitive
3721 to how many spaces the user leaves between 'operator'
3722 and <TYPENAME> or <OPERATOR>. */
3723 const char *opend;
3724 const char *opname = operator_chars (regexp, &opend);
3725 int errcode;
3726
3727 if (*opname)
3728 {
3729 int fix = -1; /* -1 means ok; otherwise number of
3730 spaces needed. */
3731
3732 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3733 {
3734 /* There should 1 space between 'operator' and 'TYPENAME'. */
3735 if (opname[-1] != ' ' || opname[-2] == ' ')
3736 fix = 1;
3737 }
3738 else
3739 {
3740 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3741 if (opname[-1] == ' ')
3742 fix = 0;
3743 }
3744 /* If wrong number of spaces, fix it. */
3745 if (fix >= 0)
3746 {
3747 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3748
3749 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3750 regexp = tmp;
3751 }
3752 }
3753
3754 errcode = regcomp (&datum.preg, regexp,
3755 REG_NOSUB | (case_sensitivity == case_sensitive_off
3756 ? REG_ICASE : 0));
3757 if (errcode != 0)
3758 {
3759 char *err = get_regcomp_error (errcode, &datum.preg);
3760
3761 make_cleanup (xfree, err);
3762 error (_("Invalid regexp (%s): %s"), err, regexp);
3763 }
3764 datum.preg_p = 1;
3765 make_regfree_cleanup (&datum.preg);
3766 }
3767
3768 /* Search through the partial symtabs *first* for all symbols
3769 matching the regexp. That way we don't have to reproduce all of
3770 the machinery below. */
3771
3772 datum.nfiles = nfiles;
3773 datum.files = files;
3774 expand_symtabs_matching ((nfiles == 0
3775 ? NULL
3776 : search_symbols_file_matches),
3777 search_symbols_name_matches,
3778 kind, &datum);
3779
3780 /* Here, we search through the minimal symbol tables for functions
3781 and variables that match, and force their symbols to be read.
3782 This is in particular necessary for demangled variable names,
3783 which are no longer put into the partial symbol tables.
3784 The symbol will then be found during the scan of symtabs below.
3785
3786 For functions, find_pc_symtab should succeed if we have debug info
3787 for the function, for variables we have to call
3788 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3789 has debug info.
3790 If the lookup fails, set found_misc so that we will rescan to print
3791 any matching symbols without debug info.
3792 We only search the objfile the msymbol came from, we no longer search
3793 all objfiles. In large programs (1000s of shared libs) searching all
3794 objfiles is not worth the pain. */
3795
3796 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3797 {
3798 ALL_MSYMBOLS (objfile, msymbol)
3799 {
3800 QUIT;
3801
3802 if (msymbol->created_by_gdb)
3803 continue;
3804
3805 if (MSYMBOL_TYPE (msymbol) == ourtype
3806 || MSYMBOL_TYPE (msymbol) == ourtype2
3807 || MSYMBOL_TYPE (msymbol) == ourtype3
3808 || MSYMBOL_TYPE (msymbol) == ourtype4)
3809 {
3810 if (!datum.preg_p
3811 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
3812 NULL, 0) == 0)
3813 {
3814 /* Note: An important side-effect of these lookup functions
3815 is to expand the symbol table if msymbol is found, for the
3816 benefit of the next loop on ALL_PRIMARY_SYMTABS. */
3817 if (kind == FUNCTIONS_DOMAIN
3818 ? find_pc_symtab (MSYMBOL_VALUE_ADDRESS (objfile,
3819 msymbol)) == NULL
3820 : (lookup_symbol_in_objfile_from_linkage_name
3821 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3822 == NULL))
3823 found_misc = 1;
3824 }
3825 }
3826 }
3827 }
3828
3829 found = NULL;
3830 tail = NULL;
3831 nfound = 0;
3832 retval_chain = make_cleanup_free_search_symbols (&found);
3833
3834 ALL_PRIMARY_SYMTABS (objfile, s)
3835 {
3836 bv = BLOCKVECTOR (s);
3837 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3838 {
3839 b = BLOCKVECTOR_BLOCK (bv, i);
3840 ALL_BLOCK_SYMBOLS (b, iter, sym)
3841 {
3842 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3843
3844 QUIT;
3845
3846 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
3847 a substring of symtab_to_fullname as it may contain "./" etc. */
3848 if ((file_matches (real_symtab->filename, files, nfiles, 0)
3849 || ((basenames_may_differ
3850 || file_matches (lbasename (real_symtab->filename),
3851 files, nfiles, 1))
3852 && file_matches (symtab_to_fullname (real_symtab),
3853 files, nfiles, 0)))
3854 && ((!datum.preg_p
3855 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3856 NULL, 0) == 0)
3857 && ((kind == VARIABLES_DOMAIN
3858 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3859 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3860 && SYMBOL_CLASS (sym) != LOC_BLOCK
3861 /* LOC_CONST can be used for more than just enums,
3862 e.g., c++ static const members.
3863 We only want to skip enums here. */
3864 && !(SYMBOL_CLASS (sym) == LOC_CONST
3865 && TYPE_CODE (SYMBOL_TYPE (sym))
3866 == TYPE_CODE_ENUM))
3867 || (kind == FUNCTIONS_DOMAIN
3868 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3869 || (kind == TYPES_DOMAIN
3870 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3871 {
3872 /* match */
3873 struct symbol_search *psr = (struct symbol_search *)
3874 xmalloc (sizeof (struct symbol_search));
3875 psr->block = i;
3876 psr->symtab = real_symtab;
3877 psr->symbol = sym;
3878 memset (&psr->msymbol, 0, sizeof (psr->msymbol));
3879 psr->next = NULL;
3880 if (tail == NULL)
3881 found = psr;
3882 else
3883 tail->next = psr;
3884 tail = psr;
3885 nfound ++;
3886 }
3887 }
3888 }
3889 }
3890
3891 if (found != NULL)
3892 {
3893 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
3894 /* Note: nfound is no longer useful beyond this point. */
3895 }
3896
3897 /* If there are no eyes, avoid all contact. I mean, if there are
3898 no debug symbols, then print directly from the msymbol_vector. */
3899
3900 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3901 {
3902 ALL_MSYMBOLS (objfile, msymbol)
3903 {
3904 QUIT;
3905
3906 if (msymbol->created_by_gdb)
3907 continue;
3908
3909 if (MSYMBOL_TYPE (msymbol) == ourtype
3910 || MSYMBOL_TYPE (msymbol) == ourtype2
3911 || MSYMBOL_TYPE (msymbol) == ourtype3
3912 || MSYMBOL_TYPE (msymbol) == ourtype4)
3913 {
3914 if (!datum.preg_p
3915 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
3916 NULL, 0) == 0)
3917 {
3918 /* For functions we can do a quick check of whether the
3919 symbol might be found via find_pc_symtab. */
3920 if (kind != FUNCTIONS_DOMAIN
3921 || find_pc_symtab (MSYMBOL_VALUE_ADDRESS (objfile,
3922 msymbol)) == NULL)
3923 {
3924 if (lookup_symbol_in_objfile_from_linkage_name
3925 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3926 == NULL)
3927 {
3928 /* match */
3929 struct symbol_search *psr = (struct symbol_search *)
3930 xmalloc (sizeof (struct symbol_search));
3931 psr->block = i;
3932 psr->msymbol.minsym = msymbol;
3933 psr->msymbol.objfile = objfile;
3934 psr->symtab = NULL;
3935 psr->symbol = NULL;
3936 psr->next = NULL;
3937 if (tail == NULL)
3938 found = psr;
3939 else
3940 tail->next = psr;
3941 tail = psr;
3942 }
3943 }
3944 }
3945 }
3946 }
3947 }
3948
3949 discard_cleanups (retval_chain);
3950 do_cleanups (old_chain);
3951 *matches = found;
3952 }
3953
3954 /* Helper function for symtab_symbol_info, this function uses
3955 the data returned from search_symbols() to print information
3956 regarding the match to gdb_stdout. */
3957
3958 static void
3959 print_symbol_info (enum search_domain kind,
3960 struct symtab *s, struct symbol *sym,
3961 int block, const char *last)
3962 {
3963 const char *s_filename = symtab_to_filename_for_display (s);
3964
3965 if (last == NULL || filename_cmp (last, s_filename) != 0)
3966 {
3967 fputs_filtered ("\nFile ", gdb_stdout);
3968 fputs_filtered (s_filename, gdb_stdout);
3969 fputs_filtered (":\n", gdb_stdout);
3970 }
3971
3972 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3973 printf_filtered ("static ");
3974
3975 /* Typedef that is not a C++ class. */
3976 if (kind == TYPES_DOMAIN
3977 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3978 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3979 /* variable, func, or typedef-that-is-c++-class. */
3980 else if (kind < TYPES_DOMAIN
3981 || (kind == TYPES_DOMAIN
3982 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3983 {
3984 type_print (SYMBOL_TYPE (sym),
3985 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3986 ? "" : SYMBOL_PRINT_NAME (sym)),
3987 gdb_stdout, 0);
3988
3989 printf_filtered (";\n");
3990 }
3991 }
3992
3993 /* This help function for symtab_symbol_info() prints information
3994 for non-debugging symbols to gdb_stdout. */
3995
3996 static void
3997 print_msymbol_info (struct bound_minimal_symbol msymbol)
3998 {
3999 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4000 char *tmp;
4001
4002 if (gdbarch_addr_bit (gdbarch) <= 32)
4003 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4004 & (CORE_ADDR) 0xffffffff,
4005 8);
4006 else
4007 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4008 16);
4009 printf_filtered ("%s %s\n",
4010 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
4011 }
4012
4013 /* This is the guts of the commands "info functions", "info types", and
4014 "info variables". It calls search_symbols to find all matches and then
4015 print_[m]symbol_info to print out some useful information about the
4016 matches. */
4017
4018 static void
4019 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
4020 {
4021 static const char * const classnames[] =
4022 {"variable", "function", "type"};
4023 struct symbol_search *symbols;
4024 struct symbol_search *p;
4025 struct cleanup *old_chain;
4026 const char *last_filename = NULL;
4027 int first = 1;
4028
4029 gdb_assert (kind <= TYPES_DOMAIN);
4030
4031 /* Must make sure that if we're interrupted, symbols gets freed. */
4032 search_symbols (regexp, kind, 0, NULL, &symbols);
4033 old_chain = make_cleanup_free_search_symbols (&symbols);
4034
4035 if (regexp != NULL)
4036 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4037 classnames[kind], regexp);
4038 else
4039 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4040
4041 for (p = symbols; p != NULL; p = p->next)
4042 {
4043 QUIT;
4044
4045 if (p->msymbol.minsym != NULL)
4046 {
4047 if (first)
4048 {
4049 printf_filtered (_("\nNon-debugging symbols:\n"));
4050 first = 0;
4051 }
4052 print_msymbol_info (p->msymbol);
4053 }
4054 else
4055 {
4056 print_symbol_info (kind,
4057 p->symtab,
4058 p->symbol,
4059 p->block,
4060 last_filename);
4061 last_filename = symtab_to_filename_for_display (p->symtab);
4062 }
4063 }
4064
4065 do_cleanups (old_chain);
4066 }
4067
4068 static void
4069 variables_info (char *regexp, int from_tty)
4070 {
4071 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
4072 }
4073
4074 static void
4075 functions_info (char *regexp, int from_tty)
4076 {
4077 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
4078 }
4079
4080
4081 static void
4082 types_info (char *regexp, int from_tty)
4083 {
4084 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
4085 }
4086
4087 /* Breakpoint all functions matching regular expression. */
4088
4089 void
4090 rbreak_command_wrapper (char *regexp, int from_tty)
4091 {
4092 rbreak_command (regexp, from_tty);
4093 }
4094
4095 /* A cleanup function that calls end_rbreak_breakpoints. */
4096
4097 static void
4098 do_end_rbreak_breakpoints (void *ignore)
4099 {
4100 end_rbreak_breakpoints ();
4101 }
4102
4103 static void
4104 rbreak_command (char *regexp, int from_tty)
4105 {
4106 struct symbol_search *ss;
4107 struct symbol_search *p;
4108 struct cleanup *old_chain;
4109 char *string = NULL;
4110 int len = 0;
4111 const char **files = NULL;
4112 const char *file_name;
4113 int nfiles = 0;
4114
4115 if (regexp)
4116 {
4117 char *colon = strchr (regexp, ':');
4118
4119 if (colon && *(colon + 1) != ':')
4120 {
4121 int colon_index;
4122 char *local_name;
4123
4124 colon_index = colon - regexp;
4125 local_name = alloca (colon_index + 1);
4126 memcpy (local_name, regexp, colon_index);
4127 local_name[colon_index--] = 0;
4128 while (isspace (local_name[colon_index]))
4129 local_name[colon_index--] = 0;
4130 file_name = local_name;
4131 files = &file_name;
4132 nfiles = 1;
4133 regexp = skip_spaces (colon + 1);
4134 }
4135 }
4136
4137 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
4138 old_chain = make_cleanup_free_search_symbols (&ss);
4139 make_cleanup (free_current_contents, &string);
4140
4141 start_rbreak_breakpoints ();
4142 make_cleanup (do_end_rbreak_breakpoints, NULL);
4143 for (p = ss; p != NULL; p = p->next)
4144 {
4145 if (p->msymbol.minsym == NULL)
4146 {
4147 const char *fullname = symtab_to_fullname (p->symtab);
4148
4149 int newlen = (strlen (fullname)
4150 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
4151 + 4);
4152
4153 if (newlen > len)
4154 {
4155 string = xrealloc (string, newlen);
4156 len = newlen;
4157 }
4158 strcpy (string, fullname);
4159 strcat (string, ":'");
4160 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
4161 strcat (string, "'");
4162 break_command (string, from_tty);
4163 print_symbol_info (FUNCTIONS_DOMAIN,
4164 p->symtab,
4165 p->symbol,
4166 p->block,
4167 symtab_to_filename_for_display (p->symtab));
4168 }
4169 else
4170 {
4171 int newlen = (strlen (MSYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
4172
4173 if (newlen > len)
4174 {
4175 string = xrealloc (string, newlen);
4176 len = newlen;
4177 }
4178 strcpy (string, "'");
4179 strcat (string, MSYMBOL_LINKAGE_NAME (p->msymbol.minsym));
4180 strcat (string, "'");
4181
4182 break_command (string, from_tty);
4183 printf_filtered ("<function, no debug info> %s;\n",
4184 MSYMBOL_PRINT_NAME (p->msymbol.minsym));
4185 }
4186 }
4187
4188 do_cleanups (old_chain);
4189 }
4190 \f
4191
4192 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4193
4194 Either sym_text[sym_text_len] != '(' and then we search for any
4195 symbol starting with SYM_TEXT text.
4196
4197 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4198 be terminated at that point. Partial symbol tables do not have parameters
4199 information. */
4200
4201 static int
4202 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
4203 {
4204 int (*ncmp) (const char *, const char *, size_t);
4205
4206 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
4207
4208 if (ncmp (name, sym_text, sym_text_len) != 0)
4209 return 0;
4210
4211 if (sym_text[sym_text_len] == '(')
4212 {
4213 /* User searches for `name(someth...'. Require NAME to be terminated.
4214 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4215 present but accept even parameters presence. In this case this
4216 function is in fact strcmp_iw but whitespace skipping is not supported
4217 for tab completion. */
4218
4219 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4220 return 0;
4221 }
4222
4223 return 1;
4224 }
4225
4226 /* Free any memory associated with a completion list. */
4227
4228 static void
4229 free_completion_list (VEC (char_ptr) **list_ptr)
4230 {
4231 int i;
4232 char *p;
4233
4234 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
4235 xfree (p);
4236 VEC_free (char_ptr, *list_ptr);
4237 }
4238
4239 /* Callback for make_cleanup. */
4240
4241 static void
4242 do_free_completion_list (void *list)
4243 {
4244 free_completion_list (list);
4245 }
4246
4247 /* Helper routine for make_symbol_completion_list. */
4248
4249 static VEC (char_ptr) *return_val;
4250
4251 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4252 completion_list_add_name \
4253 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4254
4255 #define MCOMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4256 completion_list_add_name \
4257 (MSYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4258
4259 /* Test to see if the symbol specified by SYMNAME (which is already
4260 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4261 characters. If so, add it to the current completion list. */
4262
4263 static void
4264 completion_list_add_name (const char *symname,
4265 const char *sym_text, int sym_text_len,
4266 const char *text, const char *word)
4267 {
4268 /* Clip symbols that cannot match. */
4269 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4270 return;
4271
4272 /* We have a match for a completion, so add SYMNAME to the current list
4273 of matches. Note that the name is moved to freshly malloc'd space. */
4274
4275 {
4276 char *new;
4277
4278 if (word == sym_text)
4279 {
4280 new = xmalloc (strlen (symname) + 5);
4281 strcpy (new, symname);
4282 }
4283 else if (word > sym_text)
4284 {
4285 /* Return some portion of symname. */
4286 new = xmalloc (strlen (symname) + 5);
4287 strcpy (new, symname + (word - sym_text));
4288 }
4289 else
4290 {
4291 /* Return some of SYM_TEXT plus symname. */
4292 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
4293 strncpy (new, word, sym_text - word);
4294 new[sym_text - word] = '\0';
4295 strcat (new, symname);
4296 }
4297
4298 VEC_safe_push (char_ptr, return_val, new);
4299 }
4300 }
4301
4302 /* ObjC: In case we are completing on a selector, look as the msymbol
4303 again and feed all the selectors into the mill. */
4304
4305 static void
4306 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4307 const char *sym_text, int sym_text_len,
4308 const char *text, const char *word)
4309 {
4310 static char *tmp = NULL;
4311 static unsigned int tmplen = 0;
4312
4313 const char *method, *category, *selector;
4314 char *tmp2 = NULL;
4315
4316 method = MSYMBOL_NATURAL_NAME (msymbol);
4317
4318 /* Is it a method? */
4319 if ((method[0] != '-') && (method[0] != '+'))
4320 return;
4321
4322 if (sym_text[0] == '[')
4323 /* Complete on shortened method method. */
4324 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4325
4326 while ((strlen (method) + 1) >= tmplen)
4327 {
4328 if (tmplen == 0)
4329 tmplen = 1024;
4330 else
4331 tmplen *= 2;
4332 tmp = xrealloc (tmp, tmplen);
4333 }
4334 selector = strchr (method, ' ');
4335 if (selector != NULL)
4336 selector++;
4337
4338 category = strchr (method, '(');
4339
4340 if ((category != NULL) && (selector != NULL))
4341 {
4342 memcpy (tmp, method, (category - method));
4343 tmp[category - method] = ' ';
4344 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4345 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4346 if (sym_text[0] == '[')
4347 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4348 }
4349
4350 if (selector != NULL)
4351 {
4352 /* Complete on selector only. */
4353 strcpy (tmp, selector);
4354 tmp2 = strchr (tmp, ']');
4355 if (tmp2 != NULL)
4356 *tmp2 = '\0';
4357
4358 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4359 }
4360 }
4361
4362 /* Break the non-quoted text based on the characters which are in
4363 symbols. FIXME: This should probably be language-specific. */
4364
4365 static const char *
4366 language_search_unquoted_string (const char *text, const char *p)
4367 {
4368 for (; p > text; --p)
4369 {
4370 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4371 continue;
4372 else
4373 {
4374 if ((current_language->la_language == language_objc))
4375 {
4376 if (p[-1] == ':') /* Might be part of a method name. */
4377 continue;
4378 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4379 p -= 2; /* Beginning of a method name. */
4380 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4381 { /* Might be part of a method name. */
4382 const char *t = p;
4383
4384 /* Seeing a ' ' or a '(' is not conclusive evidence
4385 that we are in the middle of a method name. However,
4386 finding "-[" or "+[" should be pretty un-ambiguous.
4387 Unfortunately we have to find it now to decide. */
4388
4389 while (t > text)
4390 if (isalnum (t[-1]) || t[-1] == '_' ||
4391 t[-1] == ' ' || t[-1] == ':' ||
4392 t[-1] == '(' || t[-1] == ')')
4393 --t;
4394 else
4395 break;
4396
4397 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4398 p = t - 2; /* Method name detected. */
4399 /* Else we leave with p unchanged. */
4400 }
4401 }
4402 break;
4403 }
4404 }
4405 return p;
4406 }
4407
4408 static void
4409 completion_list_add_fields (struct symbol *sym, const char *sym_text,
4410 int sym_text_len, const char *text,
4411 const char *word)
4412 {
4413 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4414 {
4415 struct type *t = SYMBOL_TYPE (sym);
4416 enum type_code c = TYPE_CODE (t);
4417 int j;
4418
4419 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4420 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4421 if (TYPE_FIELD_NAME (t, j))
4422 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4423 sym_text, sym_text_len, text, word);
4424 }
4425 }
4426
4427 /* Type of the user_data argument passed to add_macro_name or
4428 symbol_completion_matcher. The contents are simply whatever is
4429 needed by completion_list_add_name. */
4430 struct add_name_data
4431 {
4432 const char *sym_text;
4433 int sym_text_len;
4434 const char *text;
4435 const char *word;
4436 };
4437
4438 /* A callback used with macro_for_each and macro_for_each_in_scope.
4439 This adds a macro's name to the current completion list. */
4440
4441 static void
4442 add_macro_name (const char *name, const struct macro_definition *ignore,
4443 struct macro_source_file *ignore2, int ignore3,
4444 void *user_data)
4445 {
4446 struct add_name_data *datum = (struct add_name_data *) user_data;
4447
4448 completion_list_add_name (name,
4449 datum->sym_text, datum->sym_text_len,
4450 datum->text, datum->word);
4451 }
4452
4453 /* A callback for expand_symtabs_matching. */
4454
4455 static int
4456 symbol_completion_matcher (const char *name, void *user_data)
4457 {
4458 struct add_name_data *datum = (struct add_name_data *) user_data;
4459
4460 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4461 }
4462
4463 VEC (char_ptr) *
4464 default_make_symbol_completion_list_break_on (const char *text,
4465 const char *word,
4466 const char *break_on,
4467 enum type_code code)
4468 {
4469 /* Problem: All of the symbols have to be copied because readline
4470 frees them. I'm not going to worry about this; hopefully there
4471 won't be that many. */
4472
4473 struct symbol *sym;
4474 struct symtab *s;
4475 struct minimal_symbol *msymbol;
4476 struct objfile *objfile;
4477 const struct block *b;
4478 const struct block *surrounding_static_block, *surrounding_global_block;
4479 struct block_iterator iter;
4480 /* The symbol we are completing on. Points in same buffer as text. */
4481 const char *sym_text;
4482 /* Length of sym_text. */
4483 int sym_text_len;
4484 struct add_name_data datum;
4485 struct cleanup *back_to;
4486
4487 /* Now look for the symbol we are supposed to complete on. */
4488 {
4489 const char *p;
4490 char quote_found;
4491 const char *quote_pos = NULL;
4492
4493 /* First see if this is a quoted string. */
4494 quote_found = '\0';
4495 for (p = text; *p != '\0'; ++p)
4496 {
4497 if (quote_found != '\0')
4498 {
4499 if (*p == quote_found)
4500 /* Found close quote. */
4501 quote_found = '\0';
4502 else if (*p == '\\' && p[1] == quote_found)
4503 /* A backslash followed by the quote character
4504 doesn't end the string. */
4505 ++p;
4506 }
4507 else if (*p == '\'' || *p == '"')
4508 {
4509 quote_found = *p;
4510 quote_pos = p;
4511 }
4512 }
4513 if (quote_found == '\'')
4514 /* A string within single quotes can be a symbol, so complete on it. */
4515 sym_text = quote_pos + 1;
4516 else if (quote_found == '"')
4517 /* A double-quoted string is never a symbol, nor does it make sense
4518 to complete it any other way. */
4519 {
4520 return NULL;
4521 }
4522 else
4523 {
4524 /* It is not a quoted string. Break it based on the characters
4525 which are in symbols. */
4526 while (p > text)
4527 {
4528 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4529 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4530 --p;
4531 else
4532 break;
4533 }
4534 sym_text = p;
4535 }
4536 }
4537
4538 sym_text_len = strlen (sym_text);
4539
4540 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4541
4542 if (current_language->la_language == language_cplus
4543 || current_language->la_language == language_java
4544 || current_language->la_language == language_fortran)
4545 {
4546 /* These languages may have parameters entered by user but they are never
4547 present in the partial symbol tables. */
4548
4549 const char *cs = memchr (sym_text, '(', sym_text_len);
4550
4551 if (cs)
4552 sym_text_len = cs - sym_text;
4553 }
4554 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4555
4556 return_val = NULL;
4557 back_to = make_cleanup (do_free_completion_list, &return_val);
4558
4559 datum.sym_text = sym_text;
4560 datum.sym_text_len = sym_text_len;
4561 datum.text = text;
4562 datum.word = word;
4563
4564 /* Look through the partial symtabs for all symbols which begin
4565 by matching SYM_TEXT. Expand all CUs that you find to the list.
4566 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4567 expand_symtabs_matching (NULL, symbol_completion_matcher, ALL_DOMAIN,
4568 &datum);
4569
4570 /* At this point scan through the misc symbol vectors and add each
4571 symbol you find to the list. Eventually we want to ignore
4572 anything that isn't a text symbol (everything else will be
4573 handled by the psymtab code above). */
4574
4575 if (code == TYPE_CODE_UNDEF)
4576 {
4577 ALL_MSYMBOLS (objfile, msymbol)
4578 {
4579 QUIT;
4580 MCOMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
4581 word);
4582
4583 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
4584 word);
4585 }
4586 }
4587
4588 /* Search upwards from currently selected frame (so that we can
4589 complete on local vars). Also catch fields of types defined in
4590 this places which match our text string. Only complete on types
4591 visible from current context. */
4592
4593 b = get_selected_block (0);
4594 surrounding_static_block = block_static_block (b);
4595 surrounding_global_block = block_global_block (b);
4596 if (surrounding_static_block != NULL)
4597 while (b != surrounding_static_block)
4598 {
4599 QUIT;
4600
4601 ALL_BLOCK_SYMBOLS (b, iter, sym)
4602 {
4603 if (code == TYPE_CODE_UNDEF)
4604 {
4605 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4606 word);
4607 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4608 word);
4609 }
4610 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4611 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
4612 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4613 word);
4614 }
4615
4616 /* Stop when we encounter an enclosing function. Do not stop for
4617 non-inlined functions - the locals of the enclosing function
4618 are in scope for a nested function. */
4619 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4620 break;
4621 b = BLOCK_SUPERBLOCK (b);
4622 }
4623
4624 /* Add fields from the file's types; symbols will be added below. */
4625
4626 if (code == TYPE_CODE_UNDEF)
4627 {
4628 if (surrounding_static_block != NULL)
4629 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4630 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4631
4632 if (surrounding_global_block != NULL)
4633 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4634 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4635 }
4636
4637 /* Go through the symtabs and check the externs and statics for
4638 symbols which match. */
4639
4640 ALL_PRIMARY_SYMTABS (objfile, s)
4641 {
4642 QUIT;
4643 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4644 ALL_BLOCK_SYMBOLS (b, iter, sym)
4645 {
4646 if (code == TYPE_CODE_UNDEF
4647 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4648 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4649 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4650 }
4651 }
4652
4653 ALL_PRIMARY_SYMTABS (objfile, s)
4654 {
4655 QUIT;
4656 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4657 ALL_BLOCK_SYMBOLS (b, iter, sym)
4658 {
4659 if (code == TYPE_CODE_UNDEF
4660 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4661 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4662 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4663 }
4664 }
4665
4666 /* Skip macros if we are completing a struct tag -- arguable but
4667 usually what is expected. */
4668 if (current_language->la_macro_expansion == macro_expansion_c
4669 && code == TYPE_CODE_UNDEF)
4670 {
4671 struct macro_scope *scope;
4672
4673 /* Add any macros visible in the default scope. Note that this
4674 may yield the occasional wrong result, because an expression
4675 might be evaluated in a scope other than the default. For
4676 example, if the user types "break file:line if <TAB>", the
4677 resulting expression will be evaluated at "file:line" -- but
4678 at there does not seem to be a way to detect this at
4679 completion time. */
4680 scope = default_macro_scope ();
4681 if (scope)
4682 {
4683 macro_for_each_in_scope (scope->file, scope->line,
4684 add_macro_name, &datum);
4685 xfree (scope);
4686 }
4687
4688 /* User-defined macros are always visible. */
4689 macro_for_each (macro_user_macros, add_macro_name, &datum);
4690 }
4691
4692 discard_cleanups (back_to);
4693 return (return_val);
4694 }
4695
4696 VEC (char_ptr) *
4697 default_make_symbol_completion_list (const char *text, const char *word,
4698 enum type_code code)
4699 {
4700 return default_make_symbol_completion_list_break_on (text, word, "", code);
4701 }
4702
4703 /* Return a vector of all symbols (regardless of class) which begin by
4704 matching TEXT. If the answer is no symbols, then the return value
4705 is NULL. */
4706
4707 VEC (char_ptr) *
4708 make_symbol_completion_list (const char *text, const char *word)
4709 {
4710 return current_language->la_make_symbol_completion_list (text, word,
4711 TYPE_CODE_UNDEF);
4712 }
4713
4714 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
4715 symbols whose type code is CODE. */
4716
4717 VEC (char_ptr) *
4718 make_symbol_completion_type (const char *text, const char *word,
4719 enum type_code code)
4720 {
4721 gdb_assert (code == TYPE_CODE_UNION
4722 || code == TYPE_CODE_STRUCT
4723 || code == TYPE_CODE_ENUM);
4724 return current_language->la_make_symbol_completion_list (text, word, code);
4725 }
4726
4727 /* Like make_symbol_completion_list, but suitable for use as a
4728 completion function. */
4729
4730 VEC (char_ptr) *
4731 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4732 const char *text, const char *word)
4733 {
4734 return make_symbol_completion_list (text, word);
4735 }
4736
4737 /* Like make_symbol_completion_list, but returns a list of symbols
4738 defined in a source file FILE. */
4739
4740 VEC (char_ptr) *
4741 make_file_symbol_completion_list (const char *text, const char *word,
4742 const char *srcfile)
4743 {
4744 struct symbol *sym;
4745 struct symtab *s;
4746 struct block *b;
4747 struct block_iterator iter;
4748 /* The symbol we are completing on. Points in same buffer as text. */
4749 const char *sym_text;
4750 /* Length of sym_text. */
4751 int sym_text_len;
4752
4753 /* Now look for the symbol we are supposed to complete on.
4754 FIXME: This should be language-specific. */
4755 {
4756 const char *p;
4757 char quote_found;
4758 const char *quote_pos = NULL;
4759
4760 /* First see if this is a quoted string. */
4761 quote_found = '\0';
4762 for (p = text; *p != '\0'; ++p)
4763 {
4764 if (quote_found != '\0')
4765 {
4766 if (*p == quote_found)
4767 /* Found close quote. */
4768 quote_found = '\0';
4769 else if (*p == '\\' && p[1] == quote_found)
4770 /* A backslash followed by the quote character
4771 doesn't end the string. */
4772 ++p;
4773 }
4774 else if (*p == '\'' || *p == '"')
4775 {
4776 quote_found = *p;
4777 quote_pos = p;
4778 }
4779 }
4780 if (quote_found == '\'')
4781 /* A string within single quotes can be a symbol, so complete on it. */
4782 sym_text = quote_pos + 1;
4783 else if (quote_found == '"')
4784 /* A double-quoted string is never a symbol, nor does it make sense
4785 to complete it any other way. */
4786 {
4787 return NULL;
4788 }
4789 else
4790 {
4791 /* Not a quoted string. */
4792 sym_text = language_search_unquoted_string (text, p);
4793 }
4794 }
4795
4796 sym_text_len = strlen (sym_text);
4797
4798 return_val = NULL;
4799
4800 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4801 in). */
4802 s = lookup_symtab (srcfile);
4803 if (s == NULL)
4804 {
4805 /* Maybe they typed the file with leading directories, while the
4806 symbol tables record only its basename. */
4807 const char *tail = lbasename (srcfile);
4808
4809 if (tail > srcfile)
4810 s = lookup_symtab (tail);
4811 }
4812
4813 /* If we have no symtab for that file, return an empty list. */
4814 if (s == NULL)
4815 return (return_val);
4816
4817 /* Go through this symtab and check the externs and statics for
4818 symbols which match. */
4819
4820 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4821 ALL_BLOCK_SYMBOLS (b, iter, sym)
4822 {
4823 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4824 }
4825
4826 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4827 ALL_BLOCK_SYMBOLS (b, iter, sym)
4828 {
4829 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4830 }
4831
4832 return (return_val);
4833 }
4834
4835 /* A helper function for make_source_files_completion_list. It adds
4836 another file name to a list of possible completions, growing the
4837 list as necessary. */
4838
4839 static void
4840 add_filename_to_list (const char *fname, const char *text, const char *word,
4841 VEC (char_ptr) **list)
4842 {
4843 char *new;
4844 size_t fnlen = strlen (fname);
4845
4846 if (word == text)
4847 {
4848 /* Return exactly fname. */
4849 new = xmalloc (fnlen + 5);
4850 strcpy (new, fname);
4851 }
4852 else if (word > text)
4853 {
4854 /* Return some portion of fname. */
4855 new = xmalloc (fnlen + 5);
4856 strcpy (new, fname + (word - text));
4857 }
4858 else
4859 {
4860 /* Return some of TEXT plus fname. */
4861 new = xmalloc (fnlen + (text - word) + 5);
4862 strncpy (new, word, text - word);
4863 new[text - word] = '\0';
4864 strcat (new, fname);
4865 }
4866 VEC_safe_push (char_ptr, *list, new);
4867 }
4868
4869 static int
4870 not_interesting_fname (const char *fname)
4871 {
4872 static const char *illegal_aliens[] = {
4873 "_globals_", /* inserted by coff_symtab_read */
4874 NULL
4875 };
4876 int i;
4877
4878 for (i = 0; illegal_aliens[i]; i++)
4879 {
4880 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4881 return 1;
4882 }
4883 return 0;
4884 }
4885
4886 /* An object of this type is passed as the user_data argument to
4887 map_partial_symbol_filenames. */
4888 struct add_partial_filename_data
4889 {
4890 struct filename_seen_cache *filename_seen_cache;
4891 const char *text;
4892 const char *word;
4893 int text_len;
4894 VEC (char_ptr) **list;
4895 };
4896
4897 /* A callback for map_partial_symbol_filenames. */
4898
4899 static void
4900 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4901 void *user_data)
4902 {
4903 struct add_partial_filename_data *data = user_data;
4904
4905 if (not_interesting_fname (filename))
4906 return;
4907 if (!filename_seen (data->filename_seen_cache, filename, 1)
4908 && filename_ncmp (filename, data->text, data->text_len) == 0)
4909 {
4910 /* This file matches for a completion; add it to the
4911 current list of matches. */
4912 add_filename_to_list (filename, data->text, data->word, data->list);
4913 }
4914 else
4915 {
4916 const char *base_name = lbasename (filename);
4917
4918 if (base_name != filename
4919 && !filename_seen (data->filename_seen_cache, base_name, 1)
4920 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4921 add_filename_to_list (base_name, data->text, data->word, data->list);
4922 }
4923 }
4924
4925 /* Return a vector of all source files whose names begin with matching
4926 TEXT. The file names are looked up in the symbol tables of this
4927 program. If the answer is no matchess, then the return value is
4928 NULL. */
4929
4930 VEC (char_ptr) *
4931 make_source_files_completion_list (const char *text, const char *word)
4932 {
4933 struct symtab *s;
4934 struct objfile *objfile;
4935 size_t text_len = strlen (text);
4936 VEC (char_ptr) *list = NULL;
4937 const char *base_name;
4938 struct add_partial_filename_data datum;
4939 struct filename_seen_cache *filename_seen_cache;
4940 struct cleanup *back_to, *cache_cleanup;
4941
4942 if (!have_full_symbols () && !have_partial_symbols ())
4943 return list;
4944
4945 back_to = make_cleanup (do_free_completion_list, &list);
4946
4947 filename_seen_cache = create_filename_seen_cache ();
4948 cache_cleanup = make_cleanup (delete_filename_seen_cache,
4949 filename_seen_cache);
4950
4951 ALL_SYMTABS (objfile, s)
4952 {
4953 if (not_interesting_fname (s->filename))
4954 continue;
4955 if (!filename_seen (filename_seen_cache, s->filename, 1)
4956 && filename_ncmp (s->filename, text, text_len) == 0)
4957 {
4958 /* This file matches for a completion; add it to the current
4959 list of matches. */
4960 add_filename_to_list (s->filename, text, word, &list);
4961 }
4962 else
4963 {
4964 /* NOTE: We allow the user to type a base name when the
4965 debug info records leading directories, but not the other
4966 way around. This is what subroutines of breakpoint
4967 command do when they parse file names. */
4968 base_name = lbasename (s->filename);
4969 if (base_name != s->filename
4970 && !filename_seen (filename_seen_cache, base_name, 1)
4971 && filename_ncmp (base_name, text, text_len) == 0)
4972 add_filename_to_list (base_name, text, word, &list);
4973 }
4974 }
4975
4976 datum.filename_seen_cache = filename_seen_cache;
4977 datum.text = text;
4978 datum.word = word;
4979 datum.text_len = text_len;
4980 datum.list = &list;
4981 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4982 0 /*need_fullname*/);
4983
4984 do_cleanups (cache_cleanup);
4985 discard_cleanups (back_to);
4986
4987 return list;
4988 }
4989 \f
4990 /* Track MAIN */
4991
4992 /* Return the "main_info" object for the current program space. If
4993 the object has not yet been created, create it and fill in some
4994 default values. */
4995
4996 static struct main_info *
4997 get_main_info (void)
4998 {
4999 struct main_info *info = program_space_data (current_program_space,
5000 main_progspace_key);
5001
5002 if (info == NULL)
5003 {
5004 /* It may seem strange to store the main name in the progspace
5005 and also in whatever objfile happens to see a main name in
5006 its debug info. The reason for this is mainly historical:
5007 gdb returned "main" as the name even if no function named
5008 "main" was defined the program; and this approach lets us
5009 keep compatibility. */
5010 info = XCNEW (struct main_info);
5011 info->language_of_main = language_unknown;
5012 set_program_space_data (current_program_space, main_progspace_key,
5013 info);
5014 }
5015
5016 return info;
5017 }
5018
5019 /* A cleanup to destroy a struct main_info when a progspace is
5020 destroyed. */
5021
5022 static void
5023 main_info_cleanup (struct program_space *pspace, void *data)
5024 {
5025 struct main_info *info = data;
5026
5027 if (info != NULL)
5028 xfree (info->name_of_main);
5029 xfree (info);
5030 }
5031
5032 static void
5033 set_main_name (const char *name, enum language lang)
5034 {
5035 struct main_info *info = get_main_info ();
5036
5037 if (info->name_of_main != NULL)
5038 {
5039 xfree (info->name_of_main);
5040 info->name_of_main = NULL;
5041 info->language_of_main = language_unknown;
5042 }
5043 if (name != NULL)
5044 {
5045 info->name_of_main = xstrdup (name);
5046 info->language_of_main = lang;
5047 }
5048 }
5049
5050 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5051 accordingly. */
5052
5053 static void
5054 find_main_name (void)
5055 {
5056 const char *new_main_name;
5057 struct objfile *objfile;
5058
5059 /* First check the objfiles to see whether a debuginfo reader has
5060 picked up the appropriate main name. Historically the main name
5061 was found in a more or less random way; this approach instead
5062 relies on the order of objfile creation -- which still isn't
5063 guaranteed to get the correct answer, but is just probably more
5064 accurate. */
5065 ALL_OBJFILES (objfile)
5066 {
5067 if (objfile->per_bfd->name_of_main != NULL)
5068 {
5069 set_main_name (objfile->per_bfd->name_of_main,
5070 objfile->per_bfd->language_of_main);
5071 return;
5072 }
5073 }
5074
5075 /* Try to see if the main procedure is in Ada. */
5076 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5077 be to add a new method in the language vector, and call this
5078 method for each language until one of them returns a non-empty
5079 name. This would allow us to remove this hard-coded call to
5080 an Ada function. It is not clear that this is a better approach
5081 at this point, because all methods need to be written in a way
5082 such that false positives never be returned. For instance, it is
5083 important that a method does not return a wrong name for the main
5084 procedure if the main procedure is actually written in a different
5085 language. It is easy to guaranty this with Ada, since we use a
5086 special symbol generated only when the main in Ada to find the name
5087 of the main procedure. It is difficult however to see how this can
5088 be guarantied for languages such as C, for instance. This suggests
5089 that order of call for these methods becomes important, which means
5090 a more complicated approach. */
5091 new_main_name = ada_main_name ();
5092 if (new_main_name != NULL)
5093 {
5094 set_main_name (new_main_name, language_ada);
5095 return;
5096 }
5097
5098 new_main_name = d_main_name ();
5099 if (new_main_name != NULL)
5100 {
5101 set_main_name (new_main_name, language_d);
5102 return;
5103 }
5104
5105 new_main_name = go_main_name ();
5106 if (new_main_name != NULL)
5107 {
5108 set_main_name (new_main_name, language_go);
5109 return;
5110 }
5111
5112 new_main_name = pascal_main_name ();
5113 if (new_main_name != NULL)
5114 {
5115 set_main_name (new_main_name, language_pascal);
5116 return;
5117 }
5118
5119 /* The languages above didn't identify the name of the main procedure.
5120 Fallback to "main". */
5121 set_main_name ("main", language_unknown);
5122 }
5123
5124 char *
5125 main_name (void)
5126 {
5127 struct main_info *info = get_main_info ();
5128
5129 if (info->name_of_main == NULL)
5130 find_main_name ();
5131
5132 return info->name_of_main;
5133 }
5134
5135 /* Return the language of the main function. If it is not known,
5136 return language_unknown. */
5137
5138 enum language
5139 main_language (void)
5140 {
5141 struct main_info *info = get_main_info ();
5142
5143 if (info->name_of_main == NULL)
5144 find_main_name ();
5145
5146 return info->language_of_main;
5147 }
5148
5149 /* Handle ``executable_changed'' events for the symtab module. */
5150
5151 static void
5152 symtab_observer_executable_changed (void)
5153 {
5154 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5155 set_main_name (NULL, language_unknown);
5156 }
5157
5158 /* Return 1 if the supplied producer string matches the ARM RealView
5159 compiler (armcc). */
5160
5161 int
5162 producer_is_realview (const char *producer)
5163 {
5164 static const char *const arm_idents[] = {
5165 "ARM C Compiler, ADS",
5166 "Thumb C Compiler, ADS",
5167 "ARM C++ Compiler, ADS",
5168 "Thumb C++ Compiler, ADS",
5169 "ARM/Thumb C/C++ Compiler, RVCT",
5170 "ARM C/C++ Compiler, RVCT"
5171 };
5172 int i;
5173
5174 if (producer == NULL)
5175 return 0;
5176
5177 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5178 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
5179 return 1;
5180
5181 return 0;
5182 }
5183
5184 \f
5185
5186 /* The next index to hand out in response to a registration request. */
5187
5188 static int next_aclass_value = LOC_FINAL_VALUE;
5189
5190 /* The maximum number of "aclass" registrations we support. This is
5191 constant for convenience. */
5192 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5193
5194 /* The objects representing the various "aclass" values. The elements
5195 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5196 elements are those registered at gdb initialization time. */
5197
5198 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5199
5200 /* The globally visible pointer. This is separate from 'symbol_impl'
5201 so that it can be const. */
5202
5203 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5204
5205 /* Make sure we saved enough room in struct symbol. */
5206
5207 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5208
5209 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5210 is the ops vector associated with this index. This returns the new
5211 index, which should be used as the aclass_index field for symbols
5212 of this type. */
5213
5214 int
5215 register_symbol_computed_impl (enum address_class aclass,
5216 const struct symbol_computed_ops *ops)
5217 {
5218 int result = next_aclass_value++;
5219
5220 gdb_assert (aclass == LOC_COMPUTED);
5221 gdb_assert (result < MAX_SYMBOL_IMPLS);
5222 symbol_impl[result].aclass = aclass;
5223 symbol_impl[result].ops_computed = ops;
5224
5225 /* Sanity check OPS. */
5226 gdb_assert (ops != NULL);
5227 gdb_assert (ops->tracepoint_var_ref != NULL);
5228 gdb_assert (ops->describe_location != NULL);
5229 gdb_assert (ops->read_needs_frame != NULL);
5230 gdb_assert (ops->read_variable != NULL);
5231
5232 return result;
5233 }
5234
5235 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5236 OPS is the ops vector associated with this index. This returns the
5237 new index, which should be used as the aclass_index field for symbols
5238 of this type. */
5239
5240 int
5241 register_symbol_block_impl (enum address_class aclass,
5242 const struct symbol_block_ops *ops)
5243 {
5244 int result = next_aclass_value++;
5245
5246 gdb_assert (aclass == LOC_BLOCK);
5247 gdb_assert (result < MAX_SYMBOL_IMPLS);
5248 symbol_impl[result].aclass = aclass;
5249 symbol_impl[result].ops_block = ops;
5250
5251 /* Sanity check OPS. */
5252 gdb_assert (ops != NULL);
5253 gdb_assert (ops->find_frame_base_location != NULL);
5254
5255 return result;
5256 }
5257
5258 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5259 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5260 this index. This returns the new index, which should be used as
5261 the aclass_index field for symbols of this type. */
5262
5263 int
5264 register_symbol_register_impl (enum address_class aclass,
5265 const struct symbol_register_ops *ops)
5266 {
5267 int result = next_aclass_value++;
5268
5269 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5270 gdb_assert (result < MAX_SYMBOL_IMPLS);
5271 symbol_impl[result].aclass = aclass;
5272 symbol_impl[result].ops_register = ops;
5273
5274 return result;
5275 }
5276
5277 /* Initialize elements of 'symbol_impl' for the constants in enum
5278 address_class. */
5279
5280 static void
5281 initialize_ordinary_address_classes (void)
5282 {
5283 int i;
5284
5285 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5286 symbol_impl[i].aclass = i;
5287 }
5288
5289 \f
5290
5291 /* Initialize the symbol SYM. */
5292
5293 void
5294 initialize_symbol (struct symbol *sym)
5295 {
5296 memset (sym, 0, sizeof (*sym));
5297 SYMBOL_SECTION (sym) = -1;
5298 }
5299
5300 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5301 obstack. */
5302
5303 struct symbol *
5304 allocate_symbol (struct objfile *objfile)
5305 {
5306 struct symbol *result;
5307
5308 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5309 SYMBOL_SECTION (result) = -1;
5310
5311 return result;
5312 }
5313
5314 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5315 obstack. */
5316
5317 struct template_symbol *
5318 allocate_template_symbol (struct objfile *objfile)
5319 {
5320 struct template_symbol *result;
5321
5322 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5323 SYMBOL_SECTION (&result->base) = -1;
5324
5325 return result;
5326 }
5327
5328 \f
5329
5330 void
5331 _initialize_symtab (void)
5332 {
5333 initialize_ordinary_address_classes ();
5334
5335 main_progspace_key
5336 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
5337
5338 add_info ("variables", variables_info, _("\
5339 All global and static variable names, or those matching REGEXP."));
5340 if (dbx_commands)
5341 add_com ("whereis", class_info, variables_info, _("\
5342 All global and static variable names, or those matching REGEXP."));
5343
5344 add_info ("functions", functions_info,
5345 _("All function names, or those matching REGEXP."));
5346
5347 /* FIXME: This command has at least the following problems:
5348 1. It prints builtin types (in a very strange and confusing fashion).
5349 2. It doesn't print right, e.g. with
5350 typedef struct foo *FOO
5351 type_print prints "FOO" when we want to make it (in this situation)
5352 print "struct foo *".
5353 I also think "ptype" or "whatis" is more likely to be useful (but if
5354 there is much disagreement "info types" can be fixed). */
5355 add_info ("types", types_info,
5356 _("All type names, or those matching REGEXP."));
5357
5358 add_info ("sources", sources_info,
5359 _("Source files in the program."));
5360
5361 add_com ("rbreak", class_breakpoint, rbreak_command,
5362 _("Set a breakpoint for all functions matching REGEXP."));
5363
5364 if (xdb_commands)
5365 {
5366 add_com ("lf", class_info, sources_info,
5367 _("Source files in the program"));
5368 add_com ("lg", class_info, variables_info, _("\
5369 All global and static variable names, or those matching REGEXP."));
5370 }
5371
5372 add_setshow_enum_cmd ("multiple-symbols", no_class,
5373 multiple_symbols_modes, &multiple_symbols_mode,
5374 _("\
5375 Set the debugger behavior when more than one symbol are possible matches\n\
5376 in an expression."), _("\
5377 Show how the debugger handles ambiguities in expressions."), _("\
5378 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5379 NULL, NULL, &setlist, &showlist);
5380
5381 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5382 &basenames_may_differ, _("\
5383 Set whether a source file may have multiple base names."), _("\
5384 Show whether a source file may have multiple base names."), _("\
5385 (A \"base name\" is the name of a file with the directory part removed.\n\
5386 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5387 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5388 before comparing them. Canonicalization is an expensive operation,\n\
5389 but it allows the same file be known by more than one base name.\n\
5390 If not set (the default), all source files are assumed to have just\n\
5391 one base name, and gdb will do file name comparisons more efficiently."),
5392 NULL, NULL,
5393 &setlist, &showlist);
5394
5395 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
5396 _("Set debugging of symbol table creation."),
5397 _("Show debugging of symbol table creation."), _("\
5398 When enabled (non-zero), debugging messages are printed when building\n\
5399 symbol tables. A value of 1 (one) normally provides enough information.\n\
5400 A value greater than 1 provides more verbose information."),
5401 NULL,
5402 NULL,
5403 &setdebuglist, &showdebuglist);
5404
5405 observer_attach_executable_changed (symtab_observer_executable_changed);
5406 }