]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/symtab.c
Clean up some function comments in symtab.[ch].
[thirdparty/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <sys/stat.h>
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observer.h"
58 #include "solist.h"
59 #include "macrotab.h"
60 #include "macroscope.h"
61
62 #include "parser-defs.h"
63
64 /* Forward declarations for local functions. */
65
66 static void rbreak_command (char *, int);
67
68 static int find_line_common (struct linetable *, int, int *, int);
69
70 static struct symbol *lookup_symbol_aux (const char *name,
71 const struct block *block,
72 const domain_enum domain,
73 enum language language,
74 struct field_of_this_result *);
75
76 static
77 struct symbol *lookup_symbol_aux_local (const char *name,
78 const struct block *block,
79 const domain_enum domain,
80 enum language language);
81
82 static
83 struct symbol *lookup_symbol_aux_symtabs (int block_index,
84 const char *name,
85 const domain_enum domain);
86
87 static
88 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
89 int block_index,
90 const char *name,
91 const domain_enum domain);
92
93 extern initialize_file_ftype _initialize_symtab;
94
95 /* Program space key for finding name and language of "main". */
96
97 static const struct program_space_data *main_progspace_key;
98
99 /* Type of the data stored on the program space. */
100
101 struct main_info
102 {
103 /* Name of "main". */
104
105 char *name_of_main;
106
107 /* Language of "main". */
108
109 enum language language_of_main;
110 };
111
112 /* When non-zero, print debugging messages related to symtab creation. */
113 unsigned int symtab_create_debug = 0;
114
115 /* Non-zero if a file may be known by two different basenames.
116 This is the uncommon case, and significantly slows down gdb.
117 Default set to "off" to not slow down the common case. */
118 int basenames_may_differ = 0;
119
120 /* Allow the user to configure the debugger behavior with respect
121 to multiple-choice menus when more than one symbol matches during
122 a symbol lookup. */
123
124 const char multiple_symbols_ask[] = "ask";
125 const char multiple_symbols_all[] = "all";
126 const char multiple_symbols_cancel[] = "cancel";
127 static const char *const multiple_symbols_modes[] =
128 {
129 multiple_symbols_ask,
130 multiple_symbols_all,
131 multiple_symbols_cancel,
132 NULL
133 };
134 static const char *multiple_symbols_mode = multiple_symbols_all;
135
136 /* Read-only accessor to AUTO_SELECT_MODE. */
137
138 const char *
139 multiple_symbols_select_mode (void)
140 {
141 return multiple_symbols_mode;
142 }
143
144 /* Block in which the most recently searched-for symbol was found.
145 Might be better to make this a parameter to lookup_symbol and
146 value_of_this. */
147
148 const struct block *block_found;
149
150 /* Return the name of a domain_enum. */
151
152 const char *
153 domain_name (domain_enum e)
154 {
155 switch (e)
156 {
157 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
158 case VAR_DOMAIN: return "VAR_DOMAIN";
159 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
160 case LABEL_DOMAIN: return "LABEL_DOMAIN";
161 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
162 default: gdb_assert_not_reached ("bad domain_enum");
163 }
164 }
165
166 /* Return the name of a search_domain . */
167
168 const char *
169 search_domain_name (enum search_domain e)
170 {
171 switch (e)
172 {
173 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
174 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
175 case TYPES_DOMAIN: return "TYPES_DOMAIN";
176 case ALL_DOMAIN: return "ALL_DOMAIN";
177 default: gdb_assert_not_reached ("bad search_domain");
178 }
179 }
180
181 /* Set the primary field in SYMTAB. */
182
183 void
184 set_symtab_primary (struct symtab *symtab, int primary)
185 {
186 symtab->primary = primary;
187
188 if (symtab_create_debug && primary)
189 {
190 fprintf_unfiltered (gdb_stdlog,
191 "Created primary symtab %s for %s.\n",
192 host_address_to_string (symtab),
193 symtab_to_filename_for_display (symtab));
194 }
195 }
196
197 /* See whether FILENAME matches SEARCH_NAME using the rule that we
198 advertise to the user. (The manual's description of linespecs
199 describes what we advertise). Returns true if they match, false
200 otherwise. */
201
202 int
203 compare_filenames_for_search (const char *filename, const char *search_name)
204 {
205 int len = strlen (filename);
206 size_t search_len = strlen (search_name);
207
208 if (len < search_len)
209 return 0;
210
211 /* The tail of FILENAME must match. */
212 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
213 return 0;
214
215 /* Either the names must completely match, or the character
216 preceding the trailing SEARCH_NAME segment of FILENAME must be a
217 directory separator.
218
219 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
220 cannot match FILENAME "/path//dir/file.c" - as user has requested
221 absolute path. The sama applies for "c:\file.c" possibly
222 incorrectly hypothetically matching "d:\dir\c:\file.c".
223
224 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
225 compatible with SEARCH_NAME "file.c". In such case a compiler had
226 to put the "c:file.c" name into debug info. Such compatibility
227 works only on GDB built for DOS host. */
228 return (len == search_len
229 || (!IS_ABSOLUTE_PATH (search_name)
230 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
231 || (HAS_DRIVE_SPEC (filename)
232 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
233 }
234
235 /* Check for a symtab of a specific name by searching some symtabs.
236 This is a helper function for callbacks of iterate_over_symtabs.
237
238 If NAME is not absolute, then REAL_PATH is NULL
239 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
240
241 The return value, NAME, REAL_PATH, CALLBACK, and DATA
242 are identical to the `map_symtabs_matching_filename' method of
243 quick_symbol_functions.
244
245 FIRST and AFTER_LAST indicate the range of symtabs to search.
246 AFTER_LAST is one past the last symtab to search; NULL means to
247 search until the end of the list. */
248
249 int
250 iterate_over_some_symtabs (const char *name,
251 const char *real_path,
252 int (*callback) (struct symtab *symtab,
253 void *data),
254 void *data,
255 struct symtab *first,
256 struct symtab *after_last)
257 {
258 struct symtab *s = NULL;
259 const char* base_name = lbasename (name);
260
261 for (s = first; s != NULL && s != after_last; s = s->next)
262 {
263 if (compare_filenames_for_search (s->filename, name))
264 {
265 if (callback (s, data))
266 return 1;
267 continue;
268 }
269
270 /* Before we invoke realpath, which can get expensive when many
271 files are involved, do a quick comparison of the basenames. */
272 if (! basenames_may_differ
273 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
274 continue;
275
276 if (compare_filenames_for_search (symtab_to_fullname (s), name))
277 {
278 if (callback (s, data))
279 return 1;
280 continue;
281 }
282
283 /* If the user gave us an absolute path, try to find the file in
284 this symtab and use its absolute path. */
285 if (real_path != NULL)
286 {
287 const char *fullname = symtab_to_fullname (s);
288
289 gdb_assert (IS_ABSOLUTE_PATH (real_path));
290 gdb_assert (IS_ABSOLUTE_PATH (name));
291 if (FILENAME_CMP (real_path, fullname) == 0)
292 {
293 if (callback (s, data))
294 return 1;
295 continue;
296 }
297 }
298 }
299
300 return 0;
301 }
302
303 /* Check for a symtab of a specific name; first in symtabs, then in
304 psymtabs. *If* there is no '/' in the name, a match after a '/'
305 in the symtab filename will also work.
306
307 Calls CALLBACK with each symtab that is found and with the supplied
308 DATA. If CALLBACK returns true, the search stops. */
309
310 void
311 iterate_over_symtabs (const char *name,
312 int (*callback) (struct symtab *symtab,
313 void *data),
314 void *data)
315 {
316 struct objfile *objfile;
317 char *real_path = NULL;
318 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
319
320 /* Here we are interested in canonicalizing an absolute path, not
321 absolutizing a relative path. */
322 if (IS_ABSOLUTE_PATH (name))
323 {
324 real_path = gdb_realpath (name);
325 make_cleanup (xfree, real_path);
326 gdb_assert (IS_ABSOLUTE_PATH (real_path));
327 }
328
329 ALL_OBJFILES (objfile)
330 {
331 if (iterate_over_some_symtabs (name, real_path, callback, data,
332 objfile->symtabs, NULL))
333 {
334 do_cleanups (cleanups);
335 return;
336 }
337 }
338
339 /* Same search rules as above apply here, but now we look thru the
340 psymtabs. */
341
342 ALL_OBJFILES (objfile)
343 {
344 if (objfile->sf
345 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
346 name,
347 real_path,
348 callback,
349 data))
350 {
351 do_cleanups (cleanups);
352 return;
353 }
354 }
355
356 do_cleanups (cleanups);
357 }
358
359 /* The callback function used by lookup_symtab. */
360
361 static int
362 lookup_symtab_callback (struct symtab *symtab, void *data)
363 {
364 struct symtab **result_ptr = data;
365
366 *result_ptr = symtab;
367 return 1;
368 }
369
370 /* A wrapper for iterate_over_symtabs that returns the first matching
371 symtab, or NULL. */
372
373 struct symtab *
374 lookup_symtab (const char *name)
375 {
376 struct symtab *result = NULL;
377
378 iterate_over_symtabs (name, lookup_symtab_callback, &result);
379 return result;
380 }
381
382 \f
383 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
384 full method name, which consist of the class name (from T), the unadorned
385 method name from METHOD_ID, and the signature for the specific overload,
386 specified by SIGNATURE_ID. Note that this function is g++ specific. */
387
388 char *
389 gdb_mangle_name (struct type *type, int method_id, int signature_id)
390 {
391 int mangled_name_len;
392 char *mangled_name;
393 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
394 struct fn_field *method = &f[signature_id];
395 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
396 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
397 const char *newname = type_name_no_tag (type);
398
399 /* Does the form of physname indicate that it is the full mangled name
400 of a constructor (not just the args)? */
401 int is_full_physname_constructor;
402
403 int is_constructor;
404 int is_destructor = is_destructor_name (physname);
405 /* Need a new type prefix. */
406 char *const_prefix = method->is_const ? "C" : "";
407 char *volatile_prefix = method->is_volatile ? "V" : "";
408 char buf[20];
409 int len = (newname == NULL ? 0 : strlen (newname));
410
411 /* Nothing to do if physname already contains a fully mangled v3 abi name
412 or an operator name. */
413 if ((physname[0] == '_' && physname[1] == 'Z')
414 || is_operator_name (field_name))
415 return xstrdup (physname);
416
417 is_full_physname_constructor = is_constructor_name (physname);
418
419 is_constructor = is_full_physname_constructor
420 || (newname && strcmp (field_name, newname) == 0);
421
422 if (!is_destructor)
423 is_destructor = (strncmp (physname, "__dt", 4) == 0);
424
425 if (is_destructor || is_full_physname_constructor)
426 {
427 mangled_name = (char *) xmalloc (strlen (physname) + 1);
428 strcpy (mangled_name, physname);
429 return mangled_name;
430 }
431
432 if (len == 0)
433 {
434 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
435 }
436 else if (physname[0] == 't' || physname[0] == 'Q')
437 {
438 /* The physname for template and qualified methods already includes
439 the class name. */
440 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
441 newname = NULL;
442 len = 0;
443 }
444 else
445 {
446 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
447 volatile_prefix, len);
448 }
449 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
450 + strlen (buf) + len + strlen (physname) + 1);
451
452 mangled_name = (char *) xmalloc (mangled_name_len);
453 if (is_constructor)
454 mangled_name[0] = '\0';
455 else
456 strcpy (mangled_name, field_name);
457
458 strcat (mangled_name, buf);
459 /* If the class doesn't have a name, i.e. newname NULL, then we just
460 mangle it using 0 for the length of the class. Thus it gets mangled
461 as something starting with `::' rather than `classname::'. */
462 if (newname != NULL)
463 strcat (mangled_name, newname);
464
465 strcat (mangled_name, physname);
466 return (mangled_name);
467 }
468
469 /* Initialize the cplus_specific structure. 'cplus_specific' should
470 only be allocated for use with cplus symbols. */
471
472 static void
473 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
474 struct obstack *obstack)
475 {
476 /* A language_specific structure should not have been previously
477 initialized. */
478 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
479 gdb_assert (obstack != NULL);
480
481 gsymbol->language_specific.cplus_specific =
482 OBSTACK_ZALLOC (obstack, struct cplus_specific);
483 }
484
485 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
486 correctly allocated. For C++ symbols a cplus_specific struct is
487 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
488 OBJFILE can be NULL. */
489
490 void
491 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
492 const char *name,
493 struct obstack *obstack)
494 {
495 if (gsymbol->language == language_cplus)
496 {
497 if (gsymbol->language_specific.cplus_specific == NULL)
498 symbol_init_cplus_specific (gsymbol, obstack);
499
500 gsymbol->language_specific.cplus_specific->demangled_name = name;
501 }
502 else if (gsymbol->language == language_ada)
503 {
504 if (name == NULL)
505 {
506 gsymbol->ada_mangled = 0;
507 gsymbol->language_specific.obstack = obstack;
508 }
509 else
510 {
511 gsymbol->ada_mangled = 1;
512 gsymbol->language_specific.mangled_lang.demangled_name = name;
513 }
514 }
515 else
516 gsymbol->language_specific.mangled_lang.demangled_name = name;
517 }
518
519 /* Return the demangled name of GSYMBOL. */
520
521 const char *
522 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
523 {
524 if (gsymbol->language == language_cplus)
525 {
526 if (gsymbol->language_specific.cplus_specific != NULL)
527 return gsymbol->language_specific.cplus_specific->demangled_name;
528 else
529 return NULL;
530 }
531 else if (gsymbol->language == language_ada)
532 {
533 if (!gsymbol->ada_mangled)
534 return NULL;
535 /* Fall through. */
536 }
537
538 return gsymbol->language_specific.mangled_lang.demangled_name;
539 }
540
541 \f
542 /* Initialize the language dependent portion of a symbol
543 depending upon the language for the symbol. */
544
545 void
546 symbol_set_language (struct general_symbol_info *gsymbol,
547 enum language language,
548 struct obstack *obstack)
549 {
550 gsymbol->language = language;
551 if (gsymbol->language == language_d
552 || gsymbol->language == language_go
553 || gsymbol->language == language_java
554 || gsymbol->language == language_objc
555 || gsymbol->language == language_fortran)
556 {
557 symbol_set_demangled_name (gsymbol, NULL, obstack);
558 }
559 else if (gsymbol->language == language_ada)
560 {
561 gdb_assert (gsymbol->ada_mangled == 0);
562 gsymbol->language_specific.obstack = obstack;
563 }
564 else if (gsymbol->language == language_cplus)
565 gsymbol->language_specific.cplus_specific = NULL;
566 else
567 {
568 memset (&gsymbol->language_specific, 0,
569 sizeof (gsymbol->language_specific));
570 }
571 }
572
573 /* Functions to initialize a symbol's mangled name. */
574
575 /* Objects of this type are stored in the demangled name hash table. */
576 struct demangled_name_entry
577 {
578 const char *mangled;
579 char demangled[1];
580 };
581
582 /* Hash function for the demangled name hash. */
583
584 static hashval_t
585 hash_demangled_name_entry (const void *data)
586 {
587 const struct demangled_name_entry *e = data;
588
589 return htab_hash_string (e->mangled);
590 }
591
592 /* Equality function for the demangled name hash. */
593
594 static int
595 eq_demangled_name_entry (const void *a, const void *b)
596 {
597 const struct demangled_name_entry *da = a;
598 const struct demangled_name_entry *db = b;
599
600 return strcmp (da->mangled, db->mangled) == 0;
601 }
602
603 /* Create the hash table used for demangled names. Each hash entry is
604 a pair of strings; one for the mangled name and one for the demangled
605 name. The entry is hashed via just the mangled name. */
606
607 static void
608 create_demangled_names_hash (struct objfile *objfile)
609 {
610 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
611 The hash table code will round this up to the next prime number.
612 Choosing a much larger table size wastes memory, and saves only about
613 1% in symbol reading. */
614
615 objfile->per_bfd->demangled_names_hash = htab_create_alloc
616 (256, hash_demangled_name_entry, eq_demangled_name_entry,
617 NULL, xcalloc, xfree);
618 }
619
620 /* Try to determine the demangled name for a symbol, based on the
621 language of that symbol. If the language is set to language_auto,
622 it will attempt to find any demangling algorithm that works and
623 then set the language appropriately. The returned name is allocated
624 by the demangler and should be xfree'd. */
625
626 static char *
627 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
628 const char *mangled)
629 {
630 char *demangled = NULL;
631
632 if (gsymbol->language == language_unknown)
633 gsymbol->language = language_auto;
634
635 if (gsymbol->language == language_objc
636 || gsymbol->language == language_auto)
637 {
638 demangled =
639 objc_demangle (mangled, 0);
640 if (demangled != NULL)
641 {
642 gsymbol->language = language_objc;
643 return demangled;
644 }
645 }
646 if (gsymbol->language == language_cplus
647 || gsymbol->language == language_auto)
648 {
649 demangled =
650 gdb_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
651 if (demangled != NULL)
652 {
653 gsymbol->language = language_cplus;
654 return demangled;
655 }
656 }
657 if (gsymbol->language == language_java)
658 {
659 demangled =
660 gdb_demangle (mangled,
661 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
662 if (demangled != NULL)
663 {
664 gsymbol->language = language_java;
665 return demangled;
666 }
667 }
668 if (gsymbol->language == language_d
669 || gsymbol->language == language_auto)
670 {
671 demangled = d_demangle(mangled, 0);
672 if (demangled != NULL)
673 {
674 gsymbol->language = language_d;
675 return demangled;
676 }
677 }
678 /* FIXME(dje): Continually adding languages here is clumsy.
679 Better to just call la_demangle if !auto, and if auto then call
680 a utility routine that tries successive languages in turn and reports
681 which one it finds. I realize the la_demangle options may be different
682 for different languages but there's already a FIXME for that. */
683 if (gsymbol->language == language_go
684 || gsymbol->language == language_auto)
685 {
686 demangled = go_demangle (mangled, 0);
687 if (demangled != NULL)
688 {
689 gsymbol->language = language_go;
690 return demangled;
691 }
692 }
693
694 /* We could support `gsymbol->language == language_fortran' here to provide
695 module namespaces also for inferiors with only minimal symbol table (ELF
696 symbols). Just the mangling standard is not standardized across compilers
697 and there is no DW_AT_producer available for inferiors with only the ELF
698 symbols to check the mangling kind. */
699
700 /* Check for Ada symbols last. See comment below explaining why. */
701
702 if (gsymbol->language == language_auto)
703 {
704 const char *demangled = ada_decode (mangled);
705
706 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
707 {
708 /* Set the gsymbol language to Ada, but still return NULL.
709 Two reasons for that:
710
711 1. For Ada, we prefer computing the symbol's decoded name
712 on the fly rather than pre-compute it, in order to save
713 memory (Ada projects are typically very large).
714
715 2. There are some areas in the definition of the GNAT
716 encoding where, with a bit of bad luck, we might be able
717 to decode a non-Ada symbol, generating an incorrect
718 demangled name (Eg: names ending with "TB" for instance
719 are identified as task bodies and so stripped from
720 the decoded name returned).
721
722 Returning NULL, here, helps us get a little bit of
723 the best of both worlds. Because we're last, we should
724 not affect any of the other languages that were able to
725 demangle the symbol before us; we get to correctly tag
726 Ada symbols as such; and even if we incorrectly tagged
727 a non-Ada symbol, which should be rare, any routing
728 through the Ada language should be transparent (Ada
729 tries to behave much like C/C++ with non-Ada symbols). */
730 gsymbol->language = language_ada;
731 return NULL;
732 }
733 }
734
735 return NULL;
736 }
737
738 /* Set both the mangled and demangled (if any) names for GSYMBOL based
739 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
740 objfile's obstack; but if COPY_NAME is 0 and if NAME is
741 NUL-terminated, then this function assumes that NAME is already
742 correctly saved (either permanently or with a lifetime tied to the
743 objfile), and it will not be copied.
744
745 The hash table corresponding to OBJFILE is used, and the memory
746 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
747 so the pointer can be discarded after calling this function. */
748
749 /* We have to be careful when dealing with Java names: when we run
750 into a Java minimal symbol, we don't know it's a Java symbol, so it
751 gets demangled as a C++ name. This is unfortunate, but there's not
752 much we can do about it: but when demangling partial symbols and
753 regular symbols, we'd better not reuse the wrong demangled name.
754 (See PR gdb/1039.) We solve this by putting a distinctive prefix
755 on Java names when storing them in the hash table. */
756
757 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
758 don't mind the Java prefix so much: different languages have
759 different demangling requirements, so it's only natural that we
760 need to keep language data around in our demangling cache. But
761 it's not good that the minimal symbol has the wrong demangled name.
762 Unfortunately, I can't think of any easy solution to that
763 problem. */
764
765 #define JAVA_PREFIX "##JAVA$$"
766 #define JAVA_PREFIX_LEN 8
767
768 void
769 symbol_set_names (struct general_symbol_info *gsymbol,
770 const char *linkage_name, int len, int copy_name,
771 struct objfile *objfile)
772 {
773 struct demangled_name_entry **slot;
774 /* A 0-terminated copy of the linkage name. */
775 const char *linkage_name_copy;
776 /* A copy of the linkage name that might have a special Java prefix
777 added to it, for use when looking names up in the hash table. */
778 const char *lookup_name;
779 /* The length of lookup_name. */
780 int lookup_len;
781 struct demangled_name_entry entry;
782 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
783
784 if (gsymbol->language == language_ada)
785 {
786 /* In Ada, we do the symbol lookups using the mangled name, so
787 we can save some space by not storing the demangled name.
788
789 As a side note, we have also observed some overlap between
790 the C++ mangling and Ada mangling, similarly to what has
791 been observed with Java. Because we don't store the demangled
792 name with the symbol, we don't need to use the same trick
793 as Java. */
794 if (!copy_name)
795 gsymbol->name = linkage_name;
796 else
797 {
798 char *name = obstack_alloc (&per_bfd->storage_obstack, len + 1);
799
800 memcpy (name, linkage_name, len);
801 name[len] = '\0';
802 gsymbol->name = name;
803 }
804 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
805
806 return;
807 }
808
809 if (per_bfd->demangled_names_hash == NULL)
810 create_demangled_names_hash (objfile);
811
812 /* The stabs reader generally provides names that are not
813 NUL-terminated; most of the other readers don't do this, so we
814 can just use the given copy, unless we're in the Java case. */
815 if (gsymbol->language == language_java)
816 {
817 char *alloc_name;
818
819 lookup_len = len + JAVA_PREFIX_LEN;
820 alloc_name = alloca (lookup_len + 1);
821 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
822 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
823 alloc_name[lookup_len] = '\0';
824
825 lookup_name = alloc_name;
826 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
827 }
828 else if (linkage_name[len] != '\0')
829 {
830 char *alloc_name;
831
832 lookup_len = len;
833 alloc_name = alloca (lookup_len + 1);
834 memcpy (alloc_name, linkage_name, len);
835 alloc_name[lookup_len] = '\0';
836
837 lookup_name = alloc_name;
838 linkage_name_copy = alloc_name;
839 }
840 else
841 {
842 lookup_len = len;
843 lookup_name = linkage_name;
844 linkage_name_copy = linkage_name;
845 }
846
847 entry.mangled = lookup_name;
848 slot = ((struct demangled_name_entry **)
849 htab_find_slot (per_bfd->demangled_names_hash,
850 &entry, INSERT));
851
852 /* If this name is not in the hash table, add it. */
853 if (*slot == NULL
854 /* A C version of the symbol may have already snuck into the table.
855 This happens to, e.g., main.init (__go_init_main). Cope. */
856 || (gsymbol->language == language_go
857 && (*slot)->demangled[0] == '\0'))
858 {
859 char *demangled_name = symbol_find_demangled_name (gsymbol,
860 linkage_name_copy);
861 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
862
863 /* Suppose we have demangled_name==NULL, copy_name==0, and
864 lookup_name==linkage_name. In this case, we already have the
865 mangled name saved, and we don't have a demangled name. So,
866 you might think we could save a little space by not recording
867 this in the hash table at all.
868
869 It turns out that it is actually important to still save such
870 an entry in the hash table, because storing this name gives
871 us better bcache hit rates for partial symbols. */
872 if (!copy_name && lookup_name == linkage_name)
873 {
874 *slot = obstack_alloc (&per_bfd->storage_obstack,
875 offsetof (struct demangled_name_entry,
876 demangled)
877 + demangled_len + 1);
878 (*slot)->mangled = lookup_name;
879 }
880 else
881 {
882 char *mangled_ptr;
883
884 /* If we must copy the mangled name, put it directly after
885 the demangled name so we can have a single
886 allocation. */
887 *slot = obstack_alloc (&per_bfd->storage_obstack,
888 offsetof (struct demangled_name_entry,
889 demangled)
890 + lookup_len + demangled_len + 2);
891 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
892 strcpy (mangled_ptr, lookup_name);
893 (*slot)->mangled = mangled_ptr;
894 }
895
896 if (demangled_name != NULL)
897 {
898 strcpy ((*slot)->demangled, demangled_name);
899 xfree (demangled_name);
900 }
901 else
902 (*slot)->demangled[0] = '\0';
903 }
904
905 gsymbol->name = (*slot)->mangled + lookup_len - len;
906 if ((*slot)->demangled[0] != '\0')
907 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
908 &per_bfd->storage_obstack);
909 else
910 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
911 }
912
913 /* Return the source code name of a symbol. In languages where
914 demangling is necessary, this is the demangled name. */
915
916 const char *
917 symbol_natural_name (const struct general_symbol_info *gsymbol)
918 {
919 switch (gsymbol->language)
920 {
921 case language_cplus:
922 case language_d:
923 case language_go:
924 case language_java:
925 case language_objc:
926 case language_fortran:
927 if (symbol_get_demangled_name (gsymbol) != NULL)
928 return symbol_get_demangled_name (gsymbol);
929 break;
930 case language_ada:
931 return ada_decode_symbol (gsymbol);
932 default:
933 break;
934 }
935 return gsymbol->name;
936 }
937
938 /* Return the demangled name for a symbol based on the language for
939 that symbol. If no demangled name exists, return NULL. */
940
941 const char *
942 symbol_demangled_name (const struct general_symbol_info *gsymbol)
943 {
944 const char *dem_name = NULL;
945
946 switch (gsymbol->language)
947 {
948 case language_cplus:
949 case language_d:
950 case language_go:
951 case language_java:
952 case language_objc:
953 case language_fortran:
954 dem_name = symbol_get_demangled_name (gsymbol);
955 break;
956 case language_ada:
957 dem_name = ada_decode_symbol (gsymbol);
958 break;
959 default:
960 break;
961 }
962 return dem_name;
963 }
964
965 /* Return the search name of a symbol---generally the demangled or
966 linkage name of the symbol, depending on how it will be searched for.
967 If there is no distinct demangled name, then returns the same value
968 (same pointer) as SYMBOL_LINKAGE_NAME. */
969
970 const char *
971 symbol_search_name (const struct general_symbol_info *gsymbol)
972 {
973 if (gsymbol->language == language_ada)
974 return gsymbol->name;
975 else
976 return symbol_natural_name (gsymbol);
977 }
978
979 /* Initialize the structure fields to zero values. */
980
981 void
982 init_sal (struct symtab_and_line *sal)
983 {
984 memset (sal, 0, sizeof (*sal));
985 }
986 \f
987
988 /* Return 1 if the two sections are the same, or if they could
989 plausibly be copies of each other, one in an original object
990 file and another in a separated debug file. */
991
992 int
993 matching_obj_sections (struct obj_section *obj_first,
994 struct obj_section *obj_second)
995 {
996 asection *first = obj_first? obj_first->the_bfd_section : NULL;
997 asection *second = obj_second? obj_second->the_bfd_section : NULL;
998 struct objfile *obj;
999
1000 /* If they're the same section, then they match. */
1001 if (first == second)
1002 return 1;
1003
1004 /* If either is NULL, give up. */
1005 if (first == NULL || second == NULL)
1006 return 0;
1007
1008 /* This doesn't apply to absolute symbols. */
1009 if (first->owner == NULL || second->owner == NULL)
1010 return 0;
1011
1012 /* If they're in the same object file, they must be different sections. */
1013 if (first->owner == second->owner)
1014 return 0;
1015
1016 /* Check whether the two sections are potentially corresponding. They must
1017 have the same size, address, and name. We can't compare section indexes,
1018 which would be more reliable, because some sections may have been
1019 stripped. */
1020 if (bfd_get_section_size (first) != bfd_get_section_size (second))
1021 return 0;
1022
1023 /* In-memory addresses may start at a different offset, relativize them. */
1024 if (bfd_get_section_vma (first->owner, first)
1025 - bfd_get_start_address (first->owner)
1026 != bfd_get_section_vma (second->owner, second)
1027 - bfd_get_start_address (second->owner))
1028 return 0;
1029
1030 if (bfd_get_section_name (first->owner, first) == NULL
1031 || bfd_get_section_name (second->owner, second) == NULL
1032 || strcmp (bfd_get_section_name (first->owner, first),
1033 bfd_get_section_name (second->owner, second)) != 0)
1034 return 0;
1035
1036 /* Otherwise check that they are in corresponding objfiles. */
1037
1038 ALL_OBJFILES (obj)
1039 if (obj->obfd == first->owner)
1040 break;
1041 gdb_assert (obj != NULL);
1042
1043 if (obj->separate_debug_objfile != NULL
1044 && obj->separate_debug_objfile->obfd == second->owner)
1045 return 1;
1046 if (obj->separate_debug_objfile_backlink != NULL
1047 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1048 return 1;
1049
1050 return 0;
1051 }
1052
1053 struct symtab *
1054 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
1055 {
1056 struct objfile *objfile;
1057 struct bound_minimal_symbol msymbol;
1058
1059 /* If we know that this is not a text address, return failure. This is
1060 necessary because we loop based on texthigh and textlow, which do
1061 not include the data ranges. */
1062 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1063 if (msymbol.minsym
1064 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1065 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1066 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1067 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1068 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1069 return NULL;
1070
1071 ALL_OBJFILES (objfile)
1072 {
1073 struct symtab *result = NULL;
1074
1075 if (objfile->sf)
1076 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
1077 pc, section, 0);
1078 if (result)
1079 return result;
1080 }
1081
1082 return NULL;
1083 }
1084 \f
1085 /* Debug symbols usually don't have section information. We need to dig that
1086 out of the minimal symbols and stash that in the debug symbol. */
1087
1088 void
1089 fixup_section (struct general_symbol_info *ginfo,
1090 CORE_ADDR addr, struct objfile *objfile)
1091 {
1092 struct minimal_symbol *msym;
1093
1094 /* First, check whether a minimal symbol with the same name exists
1095 and points to the same address. The address check is required
1096 e.g. on PowerPC64, where the minimal symbol for a function will
1097 point to the function descriptor, while the debug symbol will
1098 point to the actual function code. */
1099 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1100 if (msym)
1101 ginfo->section = MSYMBOL_SECTION (msym);
1102 else
1103 {
1104 /* Static, function-local variables do appear in the linker
1105 (minimal) symbols, but are frequently given names that won't
1106 be found via lookup_minimal_symbol(). E.g., it has been
1107 observed in frv-uclinux (ELF) executables that a static,
1108 function-local variable named "foo" might appear in the
1109 linker symbols as "foo.6" or "foo.3". Thus, there is no
1110 point in attempting to extend the lookup-by-name mechanism to
1111 handle this case due to the fact that there can be multiple
1112 names.
1113
1114 So, instead, search the section table when lookup by name has
1115 failed. The ``addr'' and ``endaddr'' fields may have already
1116 been relocated. If so, the relocation offset (i.e. the
1117 ANOFFSET value) needs to be subtracted from these values when
1118 performing the comparison. We unconditionally subtract it,
1119 because, when no relocation has been performed, the ANOFFSET
1120 value will simply be zero.
1121
1122 The address of the symbol whose section we're fixing up HAS
1123 NOT BEEN adjusted (relocated) yet. It can't have been since
1124 the section isn't yet known and knowing the section is
1125 necessary in order to add the correct relocation value. In
1126 other words, we wouldn't even be in this function (attempting
1127 to compute the section) if it were already known.
1128
1129 Note that it is possible to search the minimal symbols
1130 (subtracting the relocation value if necessary) to find the
1131 matching minimal symbol, but this is overkill and much less
1132 efficient. It is not necessary to find the matching minimal
1133 symbol, only its section.
1134
1135 Note that this technique (of doing a section table search)
1136 can fail when unrelocated section addresses overlap. For
1137 this reason, we still attempt a lookup by name prior to doing
1138 a search of the section table. */
1139
1140 struct obj_section *s;
1141 int fallback = -1;
1142
1143 ALL_OBJFILE_OSECTIONS (objfile, s)
1144 {
1145 int idx = s - objfile->sections;
1146 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1147
1148 if (fallback == -1)
1149 fallback = idx;
1150
1151 if (obj_section_addr (s) - offset <= addr
1152 && addr < obj_section_endaddr (s) - offset)
1153 {
1154 ginfo->section = idx;
1155 return;
1156 }
1157 }
1158
1159 /* If we didn't find the section, assume it is in the first
1160 section. If there is no allocated section, then it hardly
1161 matters what we pick, so just pick zero. */
1162 if (fallback == -1)
1163 ginfo->section = 0;
1164 else
1165 ginfo->section = fallback;
1166 }
1167 }
1168
1169 struct symbol *
1170 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1171 {
1172 CORE_ADDR addr;
1173
1174 if (!sym)
1175 return NULL;
1176
1177 /* We either have an OBJFILE, or we can get at it from the sym's
1178 symtab. Anything else is a bug. */
1179 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1180
1181 if (objfile == NULL)
1182 objfile = SYMBOL_SYMTAB (sym)->objfile;
1183
1184 if (SYMBOL_OBJ_SECTION (objfile, sym))
1185 return sym;
1186
1187 /* We should have an objfile by now. */
1188 gdb_assert (objfile);
1189
1190 switch (SYMBOL_CLASS (sym))
1191 {
1192 case LOC_STATIC:
1193 case LOC_LABEL:
1194 addr = SYMBOL_VALUE_ADDRESS (sym);
1195 break;
1196 case LOC_BLOCK:
1197 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1198 break;
1199
1200 default:
1201 /* Nothing else will be listed in the minsyms -- no use looking
1202 it up. */
1203 return sym;
1204 }
1205
1206 fixup_section (&sym->ginfo, addr, objfile);
1207
1208 return sym;
1209 }
1210
1211 /* Compute the demangled form of NAME as used by the various symbol
1212 lookup functions. The result is stored in *RESULT_NAME. Returns a
1213 cleanup which can be used to clean up the result.
1214
1215 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1216 Normally, Ada symbol lookups are performed using the encoded name
1217 rather than the demangled name, and so it might seem to make sense
1218 for this function to return an encoded version of NAME.
1219 Unfortunately, we cannot do this, because this function is used in
1220 circumstances where it is not appropriate to try to encode NAME.
1221 For instance, when displaying the frame info, we demangle the name
1222 of each parameter, and then perform a symbol lookup inside our
1223 function using that demangled name. In Ada, certain functions
1224 have internally-generated parameters whose name contain uppercase
1225 characters. Encoding those name would result in those uppercase
1226 characters to become lowercase, and thus cause the symbol lookup
1227 to fail. */
1228
1229 struct cleanup *
1230 demangle_for_lookup (const char *name, enum language lang,
1231 const char **result_name)
1232 {
1233 char *demangled_name = NULL;
1234 const char *modified_name = NULL;
1235 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1236
1237 modified_name = name;
1238
1239 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1240 lookup, so we can always binary search. */
1241 if (lang == language_cplus)
1242 {
1243 demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1244 if (demangled_name)
1245 {
1246 modified_name = demangled_name;
1247 make_cleanup (xfree, demangled_name);
1248 }
1249 else
1250 {
1251 /* If we were given a non-mangled name, canonicalize it
1252 according to the language (so far only for C++). */
1253 demangled_name = cp_canonicalize_string (name);
1254 if (demangled_name)
1255 {
1256 modified_name = demangled_name;
1257 make_cleanup (xfree, demangled_name);
1258 }
1259 }
1260 }
1261 else if (lang == language_java)
1262 {
1263 demangled_name = gdb_demangle (name,
1264 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1265 if (demangled_name)
1266 {
1267 modified_name = demangled_name;
1268 make_cleanup (xfree, demangled_name);
1269 }
1270 }
1271 else if (lang == language_d)
1272 {
1273 demangled_name = d_demangle (name, 0);
1274 if (demangled_name)
1275 {
1276 modified_name = demangled_name;
1277 make_cleanup (xfree, demangled_name);
1278 }
1279 }
1280 else if (lang == language_go)
1281 {
1282 demangled_name = go_demangle (name, 0);
1283 if (demangled_name)
1284 {
1285 modified_name = demangled_name;
1286 make_cleanup (xfree, demangled_name);
1287 }
1288 }
1289
1290 *result_name = modified_name;
1291 return cleanup;
1292 }
1293
1294 /* See symtab.h.
1295
1296 This function (or rather its subordinates) have a bunch of loops and
1297 it would seem to be attractive to put in some QUIT's (though I'm not really
1298 sure whether it can run long enough to be really important). But there
1299 are a few calls for which it would appear to be bad news to quit
1300 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1301 that there is C++ code below which can error(), but that probably
1302 doesn't affect these calls since they are looking for a known
1303 variable and thus can probably assume it will never hit the C++
1304 code). */
1305
1306 struct symbol *
1307 lookup_symbol_in_language (const char *name, const struct block *block,
1308 const domain_enum domain, enum language lang,
1309 struct field_of_this_result *is_a_field_of_this)
1310 {
1311 const char *modified_name;
1312 struct symbol *returnval;
1313 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1314
1315 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1316 is_a_field_of_this);
1317 do_cleanups (cleanup);
1318
1319 return returnval;
1320 }
1321
1322 /* See symtab.h. */
1323
1324 struct symbol *
1325 lookup_symbol (const char *name, const struct block *block,
1326 domain_enum domain,
1327 struct field_of_this_result *is_a_field_of_this)
1328 {
1329 return lookup_symbol_in_language (name, block, domain,
1330 current_language->la_language,
1331 is_a_field_of_this);
1332 }
1333
1334 /* See symtab.h. */
1335
1336 struct symbol *
1337 lookup_language_this (const struct language_defn *lang,
1338 const struct block *block)
1339 {
1340 if (lang->la_name_of_this == NULL || block == NULL)
1341 return NULL;
1342
1343 while (block)
1344 {
1345 struct symbol *sym;
1346
1347 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1348 if (sym != NULL)
1349 {
1350 block_found = block;
1351 return sym;
1352 }
1353 if (BLOCK_FUNCTION (block))
1354 break;
1355 block = BLOCK_SUPERBLOCK (block);
1356 }
1357
1358 return NULL;
1359 }
1360
1361 /* Given TYPE, a structure/union,
1362 return 1 if the component named NAME from the ultimate target
1363 structure/union is defined, otherwise, return 0. */
1364
1365 static int
1366 check_field (struct type *type, const char *name,
1367 struct field_of_this_result *is_a_field_of_this)
1368 {
1369 int i;
1370
1371 /* The type may be a stub. */
1372 CHECK_TYPEDEF (type);
1373
1374 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1375 {
1376 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1377
1378 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1379 {
1380 is_a_field_of_this->type = type;
1381 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1382 return 1;
1383 }
1384 }
1385
1386 /* C++: If it was not found as a data field, then try to return it
1387 as a pointer to a method. */
1388
1389 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1390 {
1391 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1392 {
1393 is_a_field_of_this->type = type;
1394 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1395 return 1;
1396 }
1397 }
1398
1399 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1400 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1401 return 1;
1402
1403 return 0;
1404 }
1405
1406 /* Behave like lookup_symbol except that NAME is the natural name
1407 (e.g., demangled name) of the symbol that we're looking for. */
1408
1409 static struct symbol *
1410 lookup_symbol_aux (const char *name, const struct block *block,
1411 const domain_enum domain, enum language language,
1412 struct field_of_this_result *is_a_field_of_this)
1413 {
1414 struct symbol *sym;
1415 const struct language_defn *langdef;
1416
1417 /* Make sure we do something sensible with is_a_field_of_this, since
1418 the callers that set this parameter to some non-null value will
1419 certainly use it later. If we don't set it, the contents of
1420 is_a_field_of_this are undefined. */
1421 if (is_a_field_of_this != NULL)
1422 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1423
1424 /* Search specified block and its superiors. Don't search
1425 STATIC_BLOCK or GLOBAL_BLOCK. */
1426
1427 sym = lookup_symbol_aux_local (name, block, domain, language);
1428 if (sym != NULL)
1429 return sym;
1430
1431 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1432 check to see if NAME is a field of `this'. */
1433
1434 langdef = language_def (language);
1435
1436 /* Don't do this check if we are searching for a struct. It will
1437 not be found by check_field, but will be found by other
1438 means. */
1439 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1440 {
1441 struct symbol *sym = lookup_language_this (langdef, block);
1442
1443 if (sym)
1444 {
1445 struct type *t = sym->type;
1446
1447 /* I'm not really sure that type of this can ever
1448 be typedefed; just be safe. */
1449 CHECK_TYPEDEF (t);
1450 if (TYPE_CODE (t) == TYPE_CODE_PTR
1451 || TYPE_CODE (t) == TYPE_CODE_REF)
1452 t = TYPE_TARGET_TYPE (t);
1453
1454 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1455 && TYPE_CODE (t) != TYPE_CODE_UNION)
1456 error (_("Internal error: `%s' is not an aggregate"),
1457 langdef->la_name_of_this);
1458
1459 if (check_field (t, name, is_a_field_of_this))
1460 return NULL;
1461 }
1462 }
1463
1464 /* Now do whatever is appropriate for LANGUAGE to look
1465 up static and global variables. */
1466
1467 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1468 if (sym != NULL)
1469 return sym;
1470
1471 /* Now search all static file-level symbols. Not strictly correct,
1472 but more useful than an error. */
1473
1474 return lookup_static_symbol_aux (name, domain);
1475 }
1476
1477 /* See symtab.h. */
1478
1479 struct symbol *
1480 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1481 {
1482 struct objfile *objfile;
1483 struct symbol *sym;
1484
1485 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1486 if (sym != NULL)
1487 return sym;
1488
1489 ALL_OBJFILES (objfile)
1490 {
1491 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1492 if (sym != NULL)
1493 return sym;
1494 }
1495
1496 return NULL;
1497 }
1498
1499 /* Check to see if the symbol is defined in BLOCK or its superiors.
1500 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1501
1502 static struct symbol *
1503 lookup_symbol_aux_local (const char *name, const struct block *block,
1504 const domain_enum domain,
1505 enum language language)
1506 {
1507 struct symbol *sym;
1508 const struct block *static_block = block_static_block (block);
1509 const char *scope = block_scope (block);
1510
1511 /* Check if either no block is specified or it's a global block. */
1512
1513 if (static_block == NULL)
1514 return NULL;
1515
1516 while (block != static_block)
1517 {
1518 sym = lookup_symbol_aux_block (name, block, domain);
1519 if (sym != NULL)
1520 return sym;
1521
1522 if (language == language_cplus || language == language_fortran)
1523 {
1524 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1525 domain);
1526 if (sym != NULL)
1527 return sym;
1528 }
1529
1530 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1531 break;
1532 block = BLOCK_SUPERBLOCK (block);
1533 }
1534
1535 /* We've reached the edge of the function without finding a result. */
1536
1537 return NULL;
1538 }
1539
1540 /* See symtab.h. */
1541
1542 struct objfile *
1543 lookup_objfile_from_block (const struct block *block)
1544 {
1545 struct objfile *obj;
1546 struct symtab *s;
1547
1548 if (block == NULL)
1549 return NULL;
1550
1551 block = block_global_block (block);
1552 /* Go through SYMTABS. */
1553 ALL_SYMTABS (obj, s)
1554 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1555 {
1556 if (obj->separate_debug_objfile_backlink)
1557 obj = obj->separate_debug_objfile_backlink;
1558
1559 return obj;
1560 }
1561
1562 return NULL;
1563 }
1564
1565 /* See symtab.h. */
1566
1567 struct symbol *
1568 lookup_symbol_aux_block (const char *name, const struct block *block,
1569 const domain_enum domain)
1570 {
1571 struct symbol *sym;
1572
1573 sym = lookup_block_symbol (block, name, domain);
1574 if (sym)
1575 {
1576 block_found = block;
1577 return fixup_symbol_section (sym, NULL);
1578 }
1579
1580 return NULL;
1581 }
1582
1583 /* See symtab.h. */
1584
1585 struct symbol *
1586 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1587 const char *name,
1588 const domain_enum domain)
1589 {
1590 const struct objfile *objfile;
1591 struct symbol *sym;
1592 const struct blockvector *bv;
1593 const struct block *block;
1594 struct symtab *s;
1595
1596 for (objfile = main_objfile;
1597 objfile;
1598 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1599 {
1600 /* Go through symtabs. */
1601 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1602 {
1603 bv = BLOCKVECTOR (s);
1604 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1605 sym = lookup_block_symbol (block, name, domain);
1606 if (sym)
1607 {
1608 block_found = block;
1609 return fixup_symbol_section (sym, (struct objfile *)objfile);
1610 }
1611 }
1612
1613 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1614 name, domain);
1615 if (sym)
1616 return sym;
1617 }
1618
1619 return NULL;
1620 }
1621
1622 /* Check to see if the symbol is defined in one of the OBJFILE's
1623 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1624 depending on whether or not we want to search global symbols or
1625 static symbols. */
1626
1627 static struct symbol *
1628 lookup_symbol_aux_objfile (struct objfile *objfile, int block_index,
1629 const char *name, const domain_enum domain)
1630 {
1631 struct symbol *sym = NULL;
1632 const struct blockvector *bv;
1633 const struct block *block;
1634 struct symtab *s;
1635
1636 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1637 {
1638 bv = BLOCKVECTOR (s);
1639 block = BLOCKVECTOR_BLOCK (bv, block_index);
1640 sym = lookup_block_symbol (block, name, domain);
1641 if (sym)
1642 {
1643 block_found = block;
1644 return fixup_symbol_section (sym, objfile);
1645 }
1646 }
1647
1648 return NULL;
1649 }
1650
1651 /* Same as lookup_symbol_aux_objfile, except that it searches all
1652 objfiles. Return the first match found. */
1653
1654 static struct symbol *
1655 lookup_symbol_aux_symtabs (int block_index, const char *name,
1656 const domain_enum domain)
1657 {
1658 struct symbol *sym;
1659 struct objfile *objfile;
1660
1661 ALL_OBJFILES (objfile)
1662 {
1663 sym = lookup_symbol_aux_objfile (objfile, block_index, name, domain);
1664 if (sym)
1665 return sym;
1666 }
1667
1668 return NULL;
1669 }
1670
1671 /* Wrapper around lookup_symbol_aux_objfile for search_symbols.
1672 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1673 and all related objfiles. */
1674
1675 static struct symbol *
1676 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1677 const char *linkage_name,
1678 domain_enum domain)
1679 {
1680 enum language lang = current_language->la_language;
1681 const char *modified_name;
1682 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1683 &modified_name);
1684 struct objfile *main_objfile, *cur_objfile;
1685
1686 if (objfile->separate_debug_objfile_backlink)
1687 main_objfile = objfile->separate_debug_objfile_backlink;
1688 else
1689 main_objfile = objfile;
1690
1691 for (cur_objfile = main_objfile;
1692 cur_objfile;
1693 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1694 {
1695 struct symbol *sym;
1696
1697 sym = lookup_symbol_aux_objfile (cur_objfile, GLOBAL_BLOCK,
1698 modified_name, domain);
1699 if (sym == NULL)
1700 sym = lookup_symbol_aux_objfile (cur_objfile, STATIC_BLOCK,
1701 modified_name, domain);
1702 if (sym != NULL)
1703 {
1704 do_cleanups (cleanup);
1705 return sym;
1706 }
1707 }
1708
1709 do_cleanups (cleanup);
1710 return NULL;
1711 }
1712
1713 /* A helper function that throws an exception when a symbol was found
1714 in a psymtab but not in a symtab. */
1715
1716 static void ATTRIBUTE_NORETURN
1717 error_in_psymtab_expansion (int kind, const char *name, struct symtab *symtab)
1718 {
1719 error (_("\
1720 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1721 %s may be an inlined function, or may be a template function\n \
1722 (if a template, try specifying an instantiation: %s<type>)."),
1723 kind == GLOBAL_BLOCK ? "global" : "static",
1724 name, symtab_to_filename_for_display (symtab), name, name);
1725 }
1726
1727 /* A helper function for lookup_symbol_aux that interfaces with the
1728 "quick" symbol table functions. */
1729
1730 static struct symbol *
1731 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1732 const char *name, const domain_enum domain)
1733 {
1734 struct symtab *symtab;
1735 const struct blockvector *bv;
1736 const struct block *block;
1737 struct symbol *sym;
1738
1739 if (!objfile->sf)
1740 return NULL;
1741 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1742 if (!symtab)
1743 return NULL;
1744
1745 bv = BLOCKVECTOR (symtab);
1746 block = BLOCKVECTOR_BLOCK (bv, kind);
1747 sym = lookup_block_symbol (block, name, domain);
1748 if (!sym)
1749 error_in_psymtab_expansion (kind, name, symtab);
1750 block_found = block;
1751 return fixup_symbol_section (sym, objfile);
1752 }
1753
1754 /* See symtab.h. */
1755
1756 struct symbol *
1757 basic_lookup_symbol_nonlocal (const char *name,
1758 const struct block *block,
1759 const domain_enum domain)
1760 {
1761 struct symbol *sym;
1762
1763 /* NOTE: carlton/2003-05-19: The comments below were written when
1764 this (or what turned into this) was part of lookup_symbol_aux;
1765 I'm much less worried about these questions now, since these
1766 decisions have turned out well, but I leave these comments here
1767 for posterity. */
1768
1769 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1770 not it would be appropriate to search the current global block
1771 here as well. (That's what this code used to do before the
1772 is_a_field_of_this check was moved up.) On the one hand, it's
1773 redundant with the lookup_symbol_aux_symtabs search that happens
1774 next. On the other hand, if decode_line_1 is passed an argument
1775 like filename:var, then the user presumably wants 'var' to be
1776 searched for in filename. On the third hand, there shouldn't be
1777 multiple global variables all of which are named 'var', and it's
1778 not like decode_line_1 has ever restricted its search to only
1779 global variables in a single filename. All in all, only
1780 searching the static block here seems best: it's correct and it's
1781 cleanest. */
1782
1783 /* NOTE: carlton/2002-12-05: There's also a possible performance
1784 issue here: if you usually search for global symbols in the
1785 current file, then it would be slightly better to search the
1786 current global block before searching all the symtabs. But there
1787 are other factors that have a much greater effect on performance
1788 than that one, so I don't think we should worry about that for
1789 now. */
1790
1791 sym = lookup_symbol_static (name, block, domain);
1792 if (sym != NULL)
1793 return sym;
1794
1795 return lookup_symbol_global (name, block, domain);
1796 }
1797
1798 /* See symtab.h. */
1799
1800 struct symbol *
1801 lookup_symbol_static (const char *name,
1802 const struct block *block,
1803 const domain_enum domain)
1804 {
1805 const struct block *static_block = block_static_block (block);
1806
1807 if (static_block != NULL)
1808 return lookup_symbol_aux_block (name, static_block, domain);
1809 else
1810 return NULL;
1811 }
1812
1813 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1814
1815 struct global_sym_lookup_data
1816 {
1817 /* The name of the symbol we are searching for. */
1818 const char *name;
1819
1820 /* The domain to use for our search. */
1821 domain_enum domain;
1822
1823 /* The field where the callback should store the symbol if found.
1824 It should be initialized to NULL before the search is started. */
1825 struct symbol *result;
1826 };
1827
1828 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1829 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1830 OBJFILE. The arguments for the search are passed via CB_DATA,
1831 which in reality is a pointer to struct global_sym_lookup_data. */
1832
1833 static int
1834 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1835 void *cb_data)
1836 {
1837 struct global_sym_lookup_data *data =
1838 (struct global_sym_lookup_data *) cb_data;
1839
1840 gdb_assert (data->result == NULL);
1841
1842 data->result = lookup_symbol_aux_objfile (objfile, GLOBAL_BLOCK,
1843 data->name, data->domain);
1844 if (data->result == NULL)
1845 data->result = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK,
1846 data->name, data->domain);
1847
1848 /* If we found a match, tell the iterator to stop. Otherwise,
1849 keep going. */
1850 return (data->result != NULL);
1851 }
1852
1853 /* See symtab.h. */
1854
1855 struct symbol *
1856 lookup_symbol_global (const char *name,
1857 const struct block *block,
1858 const domain_enum domain)
1859 {
1860 struct symbol *sym = NULL;
1861 struct objfile *objfile = NULL;
1862 struct global_sym_lookup_data lookup_data;
1863
1864 /* Call library-specific lookup procedure. */
1865 objfile = lookup_objfile_from_block (block);
1866 if (objfile != NULL)
1867 sym = solib_global_lookup (objfile, name, domain);
1868 if (sym != NULL)
1869 return sym;
1870
1871 memset (&lookup_data, 0, sizeof (lookup_data));
1872 lookup_data.name = name;
1873 lookup_data.domain = domain;
1874 gdbarch_iterate_over_objfiles_in_search_order
1875 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
1876 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1877
1878 return lookup_data.result;
1879 }
1880
1881 int
1882 symbol_matches_domain (enum language symbol_language,
1883 domain_enum symbol_domain,
1884 domain_enum domain)
1885 {
1886 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1887 A Java class declaration also defines a typedef for the class.
1888 Similarly, any Ada type declaration implicitly defines a typedef. */
1889 if (symbol_language == language_cplus
1890 || symbol_language == language_d
1891 || symbol_language == language_java
1892 || symbol_language == language_ada)
1893 {
1894 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1895 && symbol_domain == STRUCT_DOMAIN)
1896 return 1;
1897 }
1898 /* For all other languages, strict match is required. */
1899 return (symbol_domain == domain);
1900 }
1901
1902 /* See symtab.h. */
1903
1904 struct type *
1905 lookup_transparent_type (const char *name)
1906 {
1907 return current_language->la_lookup_transparent_type (name);
1908 }
1909
1910 /* A helper for basic_lookup_transparent_type that interfaces with the
1911 "quick" symbol table functions. */
1912
1913 static struct type *
1914 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1915 const char *name)
1916 {
1917 struct symtab *symtab;
1918 const struct blockvector *bv;
1919 struct block *block;
1920 struct symbol *sym;
1921
1922 if (!objfile->sf)
1923 return NULL;
1924 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1925 if (!symtab)
1926 return NULL;
1927
1928 bv = BLOCKVECTOR (symtab);
1929 block = BLOCKVECTOR_BLOCK (bv, kind);
1930 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1931 if (!sym)
1932 error_in_psymtab_expansion (kind, name, symtab);
1933
1934 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1935 return SYMBOL_TYPE (sym);
1936
1937 return NULL;
1938 }
1939
1940 /* The standard implementation of lookup_transparent_type. This code
1941 was modeled on lookup_symbol -- the parts not relevant to looking
1942 up types were just left out. In particular it's assumed here that
1943 types are available in STRUCT_DOMAIN and only in file-static or
1944 global blocks. */
1945
1946 struct type *
1947 basic_lookup_transparent_type (const char *name)
1948 {
1949 struct symbol *sym;
1950 struct symtab *s = NULL;
1951 const struct blockvector *bv;
1952 struct objfile *objfile;
1953 struct block *block;
1954 struct type *t;
1955
1956 /* Now search all the global symbols. Do the symtab's first, then
1957 check the psymtab's. If a psymtab indicates the existence
1958 of the desired name as a global, then do psymtab-to-symtab
1959 conversion on the fly and return the found symbol. */
1960
1961 ALL_OBJFILES (objfile)
1962 {
1963 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1964 {
1965 bv = BLOCKVECTOR (s);
1966 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1967 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1968 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1969 {
1970 return SYMBOL_TYPE (sym);
1971 }
1972 }
1973 }
1974
1975 ALL_OBJFILES (objfile)
1976 {
1977 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1978 if (t)
1979 return t;
1980 }
1981
1982 /* Now search the static file-level symbols.
1983 Not strictly correct, but more useful than an error.
1984 Do the symtab's first, then
1985 check the psymtab's. If a psymtab indicates the existence
1986 of the desired name as a file-level static, then do psymtab-to-symtab
1987 conversion on the fly and return the found symbol. */
1988
1989 ALL_OBJFILES (objfile)
1990 {
1991 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1992 {
1993 bv = BLOCKVECTOR (s);
1994 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1995 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1996 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1997 {
1998 return SYMBOL_TYPE (sym);
1999 }
2000 }
2001 }
2002
2003 ALL_OBJFILES (objfile)
2004 {
2005 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2006 if (t)
2007 return t;
2008 }
2009
2010 return (struct type *) 0;
2011 }
2012
2013 /* See symtab.h.
2014
2015 Note that if NAME is the demangled form of a C++ symbol, we will fail
2016 to find a match during the binary search of the non-encoded names, but
2017 for now we don't worry about the slight inefficiency of looking for
2018 a match we'll never find, since it will go pretty quick. Once the
2019 binary search terminates, we drop through and do a straight linear
2020 search on the symbols. Each symbol which is marked as being a ObjC/C++
2021 symbol (language_cplus or language_objc set) has both the encoded and
2022 non-encoded names tested for a match. */
2023
2024 struct symbol *
2025 lookup_block_symbol (const struct block *block, const char *name,
2026 const domain_enum domain)
2027 {
2028 struct block_iterator iter;
2029 struct symbol *sym;
2030
2031 if (!BLOCK_FUNCTION (block))
2032 {
2033 for (sym = block_iter_name_first (block, name, &iter);
2034 sym != NULL;
2035 sym = block_iter_name_next (name, &iter))
2036 {
2037 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2038 SYMBOL_DOMAIN (sym), domain))
2039 return sym;
2040 }
2041 return NULL;
2042 }
2043 else
2044 {
2045 /* Note that parameter symbols do not always show up last in the
2046 list; this loop makes sure to take anything else other than
2047 parameter symbols first; it only uses parameter symbols as a
2048 last resort. Note that this only takes up extra computation
2049 time on a match. */
2050
2051 struct symbol *sym_found = NULL;
2052
2053 for (sym = block_iter_name_first (block, name, &iter);
2054 sym != NULL;
2055 sym = block_iter_name_next (name, &iter))
2056 {
2057 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2058 SYMBOL_DOMAIN (sym), domain))
2059 {
2060 sym_found = sym;
2061 if (!SYMBOL_IS_ARGUMENT (sym))
2062 {
2063 break;
2064 }
2065 }
2066 }
2067 return (sym_found); /* Will be NULL if not found. */
2068 }
2069 }
2070
2071 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2072
2073 For each symbol that matches, CALLBACK is called. The symbol and
2074 DATA are passed to the callback.
2075
2076 If CALLBACK returns zero, the iteration ends. Otherwise, the
2077 search continues. */
2078
2079 void
2080 iterate_over_symbols (const struct block *block, const char *name,
2081 const domain_enum domain,
2082 symbol_found_callback_ftype *callback,
2083 void *data)
2084 {
2085 struct block_iterator iter;
2086 struct symbol *sym;
2087
2088 for (sym = block_iter_name_first (block, name, &iter);
2089 sym != NULL;
2090 sym = block_iter_name_next (name, &iter))
2091 {
2092 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2093 SYMBOL_DOMAIN (sym), domain))
2094 {
2095 if (!callback (sym, data))
2096 return;
2097 }
2098 }
2099 }
2100
2101 /* Find the symtab associated with PC and SECTION. Look through the
2102 psymtabs and read in another symtab if necessary. */
2103
2104 struct symtab *
2105 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2106 {
2107 struct block *b;
2108 const struct blockvector *bv;
2109 struct symtab *s = NULL;
2110 struct symtab *best_s = NULL;
2111 struct objfile *objfile;
2112 CORE_ADDR distance = 0;
2113 struct bound_minimal_symbol msymbol;
2114
2115 /* If we know that this is not a text address, return failure. This is
2116 necessary because we loop based on the block's high and low code
2117 addresses, which do not include the data ranges, and because
2118 we call find_pc_sect_psymtab which has a similar restriction based
2119 on the partial_symtab's texthigh and textlow. */
2120 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2121 if (msymbol.minsym
2122 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2123 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2124 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2125 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2126 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2127 return NULL;
2128
2129 /* Search all symtabs for the one whose file contains our address, and which
2130 is the smallest of all the ones containing the address. This is designed
2131 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2132 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2133 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2134
2135 This happens for native ecoff format, where code from included files
2136 gets its own symtab. The symtab for the included file should have
2137 been read in already via the dependency mechanism.
2138 It might be swifter to create several symtabs with the same name
2139 like xcoff does (I'm not sure).
2140
2141 It also happens for objfiles that have their functions reordered.
2142 For these, the symtab we are looking for is not necessarily read in. */
2143
2144 ALL_PRIMARY_SYMTABS (objfile, s)
2145 {
2146 bv = BLOCKVECTOR (s);
2147 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2148
2149 if (BLOCK_START (b) <= pc
2150 && BLOCK_END (b) > pc
2151 && (distance == 0
2152 || BLOCK_END (b) - BLOCK_START (b) < distance))
2153 {
2154 /* For an objfile that has its functions reordered,
2155 find_pc_psymtab will find the proper partial symbol table
2156 and we simply return its corresponding symtab. */
2157 /* In order to better support objfiles that contain both
2158 stabs and coff debugging info, we continue on if a psymtab
2159 can't be found. */
2160 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2161 {
2162 struct symtab *result;
2163
2164 result
2165 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2166 msymbol,
2167 pc, section,
2168 0);
2169 if (result)
2170 return result;
2171 }
2172 if (section != 0)
2173 {
2174 struct block_iterator iter;
2175 struct symbol *sym = NULL;
2176
2177 ALL_BLOCK_SYMBOLS (b, iter, sym)
2178 {
2179 fixup_symbol_section (sym, objfile);
2180 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2181 section))
2182 break;
2183 }
2184 if (sym == NULL)
2185 continue; /* No symbol in this symtab matches
2186 section. */
2187 }
2188 distance = BLOCK_END (b) - BLOCK_START (b);
2189 best_s = s;
2190 }
2191 }
2192
2193 if (best_s != NULL)
2194 return (best_s);
2195
2196 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2197
2198 ALL_OBJFILES (objfile)
2199 {
2200 struct symtab *result;
2201
2202 if (!objfile->sf)
2203 continue;
2204 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2205 msymbol,
2206 pc, section,
2207 1);
2208 if (result)
2209 return result;
2210 }
2211
2212 return NULL;
2213 }
2214
2215 /* Find the symtab associated with PC. Look through the psymtabs and read
2216 in another symtab if necessary. Backward compatibility, no section. */
2217
2218 struct symtab *
2219 find_pc_symtab (CORE_ADDR pc)
2220 {
2221 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2222 }
2223 \f
2224
2225 /* Find the source file and line number for a given PC value and SECTION.
2226 Return a structure containing a symtab pointer, a line number,
2227 and a pc range for the entire source line.
2228 The value's .pc field is NOT the specified pc.
2229 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2230 use the line that ends there. Otherwise, in that case, the line
2231 that begins there is used. */
2232
2233 /* The big complication here is that a line may start in one file, and end just
2234 before the start of another file. This usually occurs when you #include
2235 code in the middle of a subroutine. To properly find the end of a line's PC
2236 range, we must search all symtabs associated with this compilation unit, and
2237 find the one whose first PC is closer than that of the next line in this
2238 symtab. */
2239
2240 /* If it's worth the effort, we could be using a binary search. */
2241
2242 struct symtab_and_line
2243 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2244 {
2245 struct symtab *s;
2246 struct linetable *l;
2247 int len;
2248 int i;
2249 struct linetable_entry *item;
2250 struct symtab_and_line val;
2251 const struct blockvector *bv;
2252 struct bound_minimal_symbol msymbol;
2253 struct objfile *objfile;
2254
2255 /* Info on best line seen so far, and where it starts, and its file. */
2256
2257 struct linetable_entry *best = NULL;
2258 CORE_ADDR best_end = 0;
2259 struct symtab *best_symtab = 0;
2260
2261 /* Store here the first line number
2262 of a file which contains the line at the smallest pc after PC.
2263 If we don't find a line whose range contains PC,
2264 we will use a line one less than this,
2265 with a range from the start of that file to the first line's pc. */
2266 struct linetable_entry *alt = NULL;
2267
2268 /* Info on best line seen in this file. */
2269
2270 struct linetable_entry *prev;
2271
2272 /* If this pc is not from the current frame,
2273 it is the address of the end of a call instruction.
2274 Quite likely that is the start of the following statement.
2275 But what we want is the statement containing the instruction.
2276 Fudge the pc to make sure we get that. */
2277
2278 init_sal (&val); /* initialize to zeroes */
2279
2280 val.pspace = current_program_space;
2281
2282 /* It's tempting to assume that, if we can't find debugging info for
2283 any function enclosing PC, that we shouldn't search for line
2284 number info, either. However, GAS can emit line number info for
2285 assembly files --- very helpful when debugging hand-written
2286 assembly code. In such a case, we'd have no debug info for the
2287 function, but we would have line info. */
2288
2289 if (notcurrent)
2290 pc -= 1;
2291
2292 /* elz: added this because this function returned the wrong
2293 information if the pc belongs to a stub (import/export)
2294 to call a shlib function. This stub would be anywhere between
2295 two functions in the target, and the line info was erroneously
2296 taken to be the one of the line before the pc. */
2297
2298 /* RT: Further explanation:
2299
2300 * We have stubs (trampolines) inserted between procedures.
2301 *
2302 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2303 * exists in the main image.
2304 *
2305 * In the minimal symbol table, we have a bunch of symbols
2306 * sorted by start address. The stubs are marked as "trampoline",
2307 * the others appear as text. E.g.:
2308 *
2309 * Minimal symbol table for main image
2310 * main: code for main (text symbol)
2311 * shr1: stub (trampoline symbol)
2312 * foo: code for foo (text symbol)
2313 * ...
2314 * Minimal symbol table for "shr1" image:
2315 * ...
2316 * shr1: code for shr1 (text symbol)
2317 * ...
2318 *
2319 * So the code below is trying to detect if we are in the stub
2320 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2321 * and if found, do the symbolization from the real-code address
2322 * rather than the stub address.
2323 *
2324 * Assumptions being made about the minimal symbol table:
2325 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2326 * if we're really in the trampoline.s If we're beyond it (say
2327 * we're in "foo" in the above example), it'll have a closer
2328 * symbol (the "foo" text symbol for example) and will not
2329 * return the trampoline.
2330 * 2. lookup_minimal_symbol_text() will find a real text symbol
2331 * corresponding to the trampoline, and whose address will
2332 * be different than the trampoline address. I put in a sanity
2333 * check for the address being the same, to avoid an
2334 * infinite recursion.
2335 */
2336 msymbol = lookup_minimal_symbol_by_pc (pc);
2337 if (msymbol.minsym != NULL)
2338 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
2339 {
2340 struct bound_minimal_symbol mfunsym
2341 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
2342 NULL);
2343
2344 if (mfunsym.minsym == NULL)
2345 /* I eliminated this warning since it is coming out
2346 * in the following situation:
2347 * gdb shmain // test program with shared libraries
2348 * (gdb) break shr1 // function in shared lib
2349 * Warning: In stub for ...
2350 * In the above situation, the shared lib is not loaded yet,
2351 * so of course we can't find the real func/line info,
2352 * but the "break" still works, and the warning is annoying.
2353 * So I commented out the warning. RT */
2354 /* warning ("In stub for %s; unable to find real function/line info",
2355 SYMBOL_LINKAGE_NAME (msymbol)); */
2356 ;
2357 /* fall through */
2358 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
2359 == BMSYMBOL_VALUE_ADDRESS (msymbol))
2360 /* Avoid infinite recursion */
2361 /* See above comment about why warning is commented out. */
2362 /* warning ("In stub for %s; unable to find real function/line info",
2363 SYMBOL_LINKAGE_NAME (msymbol)); */
2364 ;
2365 /* fall through */
2366 else
2367 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
2368 }
2369
2370
2371 s = find_pc_sect_symtab (pc, section);
2372 if (!s)
2373 {
2374 /* If no symbol information, return previous pc. */
2375 if (notcurrent)
2376 pc++;
2377 val.pc = pc;
2378 return val;
2379 }
2380
2381 bv = BLOCKVECTOR (s);
2382 objfile = s->objfile;
2383
2384 /* Look at all the symtabs that share this blockvector.
2385 They all have the same apriori range, that we found was right;
2386 but they have different line tables. */
2387
2388 ALL_OBJFILE_SYMTABS (objfile, s)
2389 {
2390 if (BLOCKVECTOR (s) != bv)
2391 continue;
2392
2393 /* Find the best line in this symtab. */
2394 l = LINETABLE (s);
2395 if (!l)
2396 continue;
2397 len = l->nitems;
2398 if (len <= 0)
2399 {
2400 /* I think len can be zero if the symtab lacks line numbers
2401 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2402 I'm not sure which, and maybe it depends on the symbol
2403 reader). */
2404 continue;
2405 }
2406
2407 prev = NULL;
2408 item = l->item; /* Get first line info. */
2409
2410 /* Is this file's first line closer than the first lines of other files?
2411 If so, record this file, and its first line, as best alternate. */
2412 if (item->pc > pc && (!alt || item->pc < alt->pc))
2413 alt = item;
2414
2415 for (i = 0; i < len; i++, item++)
2416 {
2417 /* Leave prev pointing to the linetable entry for the last line
2418 that started at or before PC. */
2419 if (item->pc > pc)
2420 break;
2421
2422 prev = item;
2423 }
2424
2425 /* At this point, prev points at the line whose start addr is <= pc, and
2426 item points at the next line. If we ran off the end of the linetable
2427 (pc >= start of the last line), then prev == item. If pc < start of
2428 the first line, prev will not be set. */
2429
2430 /* Is this file's best line closer than the best in the other files?
2431 If so, record this file, and its best line, as best so far. Don't
2432 save prev if it represents the end of a function (i.e. line number
2433 0) instead of a real line. */
2434
2435 if (prev && prev->line && (!best || prev->pc > best->pc))
2436 {
2437 best = prev;
2438 best_symtab = s;
2439
2440 /* Discard BEST_END if it's before the PC of the current BEST. */
2441 if (best_end <= best->pc)
2442 best_end = 0;
2443 }
2444
2445 /* If another line (denoted by ITEM) is in the linetable and its
2446 PC is after BEST's PC, but before the current BEST_END, then
2447 use ITEM's PC as the new best_end. */
2448 if (best && i < len && item->pc > best->pc
2449 && (best_end == 0 || best_end > item->pc))
2450 best_end = item->pc;
2451 }
2452
2453 if (!best_symtab)
2454 {
2455 /* If we didn't find any line number info, just return zeros.
2456 We used to return alt->line - 1 here, but that could be
2457 anywhere; if we don't have line number info for this PC,
2458 don't make some up. */
2459 val.pc = pc;
2460 }
2461 else if (best->line == 0)
2462 {
2463 /* If our best fit is in a range of PC's for which no line
2464 number info is available (line number is zero) then we didn't
2465 find any valid line information. */
2466 val.pc = pc;
2467 }
2468 else
2469 {
2470 val.symtab = best_symtab;
2471 val.line = best->line;
2472 val.pc = best->pc;
2473 if (best_end && (!alt || best_end < alt->pc))
2474 val.end = best_end;
2475 else if (alt)
2476 val.end = alt->pc;
2477 else
2478 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2479 }
2480 val.section = section;
2481 return val;
2482 }
2483
2484 /* Backward compatibility (no section). */
2485
2486 struct symtab_and_line
2487 find_pc_line (CORE_ADDR pc, int notcurrent)
2488 {
2489 struct obj_section *section;
2490
2491 section = find_pc_overlay (pc);
2492 if (pc_in_unmapped_range (pc, section))
2493 pc = overlay_mapped_address (pc, section);
2494 return find_pc_sect_line (pc, section, notcurrent);
2495 }
2496 \f
2497 /* Find line number LINE in any symtab whose name is the same as
2498 SYMTAB.
2499
2500 If found, return the symtab that contains the linetable in which it was
2501 found, set *INDEX to the index in the linetable of the best entry
2502 found, and set *EXACT_MATCH nonzero if the value returned is an
2503 exact match.
2504
2505 If not found, return NULL. */
2506
2507 struct symtab *
2508 find_line_symtab (struct symtab *symtab, int line,
2509 int *index, int *exact_match)
2510 {
2511 int exact = 0; /* Initialized here to avoid a compiler warning. */
2512
2513 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2514 so far seen. */
2515
2516 int best_index;
2517 struct linetable *best_linetable;
2518 struct symtab *best_symtab;
2519
2520 /* First try looking it up in the given symtab. */
2521 best_linetable = LINETABLE (symtab);
2522 best_symtab = symtab;
2523 best_index = find_line_common (best_linetable, line, &exact, 0);
2524 if (best_index < 0 || !exact)
2525 {
2526 /* Didn't find an exact match. So we better keep looking for
2527 another symtab with the same name. In the case of xcoff,
2528 multiple csects for one source file (produced by IBM's FORTRAN
2529 compiler) produce multiple symtabs (this is unavoidable
2530 assuming csects can be at arbitrary places in memory and that
2531 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2532
2533 /* BEST is the smallest linenumber > LINE so far seen,
2534 or 0 if none has been seen so far.
2535 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2536 int best;
2537
2538 struct objfile *objfile;
2539 struct symtab *s;
2540
2541 if (best_index >= 0)
2542 best = best_linetable->item[best_index].line;
2543 else
2544 best = 0;
2545
2546 ALL_OBJFILES (objfile)
2547 {
2548 if (objfile->sf)
2549 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
2550 symtab_to_fullname (symtab));
2551 }
2552
2553 ALL_SYMTABS (objfile, s)
2554 {
2555 struct linetable *l;
2556 int ind;
2557
2558 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2559 continue;
2560 if (FILENAME_CMP (symtab_to_fullname (symtab),
2561 symtab_to_fullname (s)) != 0)
2562 continue;
2563 l = LINETABLE (s);
2564 ind = find_line_common (l, line, &exact, 0);
2565 if (ind >= 0)
2566 {
2567 if (exact)
2568 {
2569 best_index = ind;
2570 best_linetable = l;
2571 best_symtab = s;
2572 goto done;
2573 }
2574 if (best == 0 || l->item[ind].line < best)
2575 {
2576 best = l->item[ind].line;
2577 best_index = ind;
2578 best_linetable = l;
2579 best_symtab = s;
2580 }
2581 }
2582 }
2583 }
2584 done:
2585 if (best_index < 0)
2586 return NULL;
2587
2588 if (index)
2589 *index = best_index;
2590 if (exact_match)
2591 *exact_match = exact;
2592
2593 return best_symtab;
2594 }
2595
2596 /* Given SYMTAB, returns all the PCs function in the symtab that
2597 exactly match LINE. Returns NULL if there are no exact matches,
2598 but updates BEST_ITEM in this case. */
2599
2600 VEC (CORE_ADDR) *
2601 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2602 struct linetable_entry **best_item)
2603 {
2604 int start = 0;
2605 VEC (CORE_ADDR) *result = NULL;
2606
2607 /* First, collect all the PCs that are at this line. */
2608 while (1)
2609 {
2610 int was_exact;
2611 int idx;
2612
2613 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2614 if (idx < 0)
2615 break;
2616
2617 if (!was_exact)
2618 {
2619 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2620
2621 if (*best_item == NULL || item->line < (*best_item)->line)
2622 *best_item = item;
2623
2624 break;
2625 }
2626
2627 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2628 start = idx + 1;
2629 }
2630
2631 return result;
2632 }
2633
2634 \f
2635 /* Set the PC value for a given source file and line number and return true.
2636 Returns zero for invalid line number (and sets the PC to 0).
2637 The source file is specified with a struct symtab. */
2638
2639 int
2640 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2641 {
2642 struct linetable *l;
2643 int ind;
2644
2645 *pc = 0;
2646 if (symtab == 0)
2647 return 0;
2648
2649 symtab = find_line_symtab (symtab, line, &ind, NULL);
2650 if (symtab != NULL)
2651 {
2652 l = LINETABLE (symtab);
2653 *pc = l->item[ind].pc;
2654 return 1;
2655 }
2656 else
2657 return 0;
2658 }
2659
2660 /* Find the range of pc values in a line.
2661 Store the starting pc of the line into *STARTPTR
2662 and the ending pc (start of next line) into *ENDPTR.
2663 Returns 1 to indicate success.
2664 Returns 0 if could not find the specified line. */
2665
2666 int
2667 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2668 CORE_ADDR *endptr)
2669 {
2670 CORE_ADDR startaddr;
2671 struct symtab_and_line found_sal;
2672
2673 startaddr = sal.pc;
2674 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2675 return 0;
2676
2677 /* This whole function is based on address. For example, if line 10 has
2678 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2679 "info line *0x123" should say the line goes from 0x100 to 0x200
2680 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2681 This also insures that we never give a range like "starts at 0x134
2682 and ends at 0x12c". */
2683
2684 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2685 if (found_sal.line != sal.line)
2686 {
2687 /* The specified line (sal) has zero bytes. */
2688 *startptr = found_sal.pc;
2689 *endptr = found_sal.pc;
2690 }
2691 else
2692 {
2693 *startptr = found_sal.pc;
2694 *endptr = found_sal.end;
2695 }
2696 return 1;
2697 }
2698
2699 /* Given a line table and a line number, return the index into the line
2700 table for the pc of the nearest line whose number is >= the specified one.
2701 Return -1 if none is found. The value is >= 0 if it is an index.
2702 START is the index at which to start searching the line table.
2703
2704 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2705
2706 static int
2707 find_line_common (struct linetable *l, int lineno,
2708 int *exact_match, int start)
2709 {
2710 int i;
2711 int len;
2712
2713 /* BEST is the smallest linenumber > LINENO so far seen,
2714 or 0 if none has been seen so far.
2715 BEST_INDEX identifies the item for it. */
2716
2717 int best_index = -1;
2718 int best = 0;
2719
2720 *exact_match = 0;
2721
2722 if (lineno <= 0)
2723 return -1;
2724 if (l == 0)
2725 return -1;
2726
2727 len = l->nitems;
2728 for (i = start; i < len; i++)
2729 {
2730 struct linetable_entry *item = &(l->item[i]);
2731
2732 if (item->line == lineno)
2733 {
2734 /* Return the first (lowest address) entry which matches. */
2735 *exact_match = 1;
2736 return i;
2737 }
2738
2739 if (item->line > lineno && (best == 0 || item->line < best))
2740 {
2741 best = item->line;
2742 best_index = i;
2743 }
2744 }
2745
2746 /* If we got here, we didn't get an exact match. */
2747 return best_index;
2748 }
2749
2750 int
2751 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2752 {
2753 struct symtab_and_line sal;
2754
2755 sal = find_pc_line (pc, 0);
2756 *startptr = sal.pc;
2757 *endptr = sal.end;
2758 return sal.symtab != 0;
2759 }
2760
2761 /* Given a function symbol SYM, find the symtab and line for the start
2762 of the function.
2763 If the argument FUNFIRSTLINE is nonzero, we want the first line
2764 of real code inside the function. */
2765
2766 struct symtab_and_line
2767 find_function_start_sal (struct symbol *sym, int funfirstline)
2768 {
2769 struct symtab_and_line sal;
2770
2771 fixup_symbol_section (sym, NULL);
2772 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2773 SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym), 0);
2774
2775 /* We always should have a line for the function start address.
2776 If we don't, something is odd. Create a plain SAL refering
2777 just the PC and hope that skip_prologue_sal (if requested)
2778 can find a line number for after the prologue. */
2779 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2780 {
2781 init_sal (&sal);
2782 sal.pspace = current_program_space;
2783 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2784 sal.section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2785 }
2786
2787 if (funfirstline)
2788 skip_prologue_sal (&sal);
2789
2790 return sal;
2791 }
2792
2793 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2794 address for that function that has an entry in SYMTAB's line info
2795 table. If such an entry cannot be found, return FUNC_ADDR
2796 unaltered. */
2797
2798 static CORE_ADDR
2799 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2800 {
2801 CORE_ADDR func_start, func_end;
2802 struct linetable *l;
2803 int i;
2804
2805 /* Give up if this symbol has no lineinfo table. */
2806 l = LINETABLE (symtab);
2807 if (l == NULL)
2808 return func_addr;
2809
2810 /* Get the range for the function's PC values, or give up if we
2811 cannot, for some reason. */
2812 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2813 return func_addr;
2814
2815 /* Linetable entries are ordered by PC values, see the commentary in
2816 symtab.h where `struct linetable' is defined. Thus, the first
2817 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2818 address we are looking for. */
2819 for (i = 0; i < l->nitems; i++)
2820 {
2821 struct linetable_entry *item = &(l->item[i]);
2822
2823 /* Don't use line numbers of zero, they mark special entries in
2824 the table. See the commentary on symtab.h before the
2825 definition of struct linetable. */
2826 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2827 return item->pc;
2828 }
2829
2830 return func_addr;
2831 }
2832
2833 /* Adjust SAL to the first instruction past the function prologue.
2834 If the PC was explicitly specified, the SAL is not changed.
2835 If the line number was explicitly specified, at most the SAL's PC
2836 is updated. If SAL is already past the prologue, then do nothing. */
2837
2838 void
2839 skip_prologue_sal (struct symtab_and_line *sal)
2840 {
2841 struct symbol *sym;
2842 struct symtab_and_line start_sal;
2843 struct cleanup *old_chain;
2844 CORE_ADDR pc, saved_pc;
2845 struct obj_section *section;
2846 const char *name;
2847 struct objfile *objfile;
2848 struct gdbarch *gdbarch;
2849 const struct block *b, *function_block;
2850 int force_skip, skip;
2851
2852 /* Do not change the SAL if PC was specified explicitly. */
2853 if (sal->explicit_pc)
2854 return;
2855
2856 old_chain = save_current_space_and_thread ();
2857 switch_to_program_space_and_thread (sal->pspace);
2858
2859 sym = find_pc_sect_function (sal->pc, sal->section);
2860 if (sym != NULL)
2861 {
2862 fixup_symbol_section (sym, NULL);
2863
2864 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2865 section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2866 name = SYMBOL_LINKAGE_NAME (sym);
2867 objfile = SYMBOL_SYMTAB (sym)->objfile;
2868 }
2869 else
2870 {
2871 struct bound_minimal_symbol msymbol
2872 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2873
2874 if (msymbol.minsym == NULL)
2875 {
2876 do_cleanups (old_chain);
2877 return;
2878 }
2879
2880 objfile = msymbol.objfile;
2881 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
2882 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
2883 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
2884 }
2885
2886 gdbarch = get_objfile_arch (objfile);
2887
2888 /* Process the prologue in two passes. In the first pass try to skip the
2889 prologue (SKIP is true) and verify there is a real need for it (indicated
2890 by FORCE_SKIP). If no such reason was found run a second pass where the
2891 prologue is not skipped (SKIP is false). */
2892
2893 skip = 1;
2894 force_skip = 1;
2895
2896 /* Be conservative - allow direct PC (without skipping prologue) only if we
2897 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2898 have to be set by the caller so we use SYM instead. */
2899 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2900 force_skip = 0;
2901
2902 saved_pc = pc;
2903 do
2904 {
2905 pc = saved_pc;
2906
2907 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2908 so that gdbarch_skip_prologue has something unique to work on. */
2909 if (section_is_overlay (section) && !section_is_mapped (section))
2910 pc = overlay_unmapped_address (pc, section);
2911
2912 /* Skip "first line" of function (which is actually its prologue). */
2913 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2914 if (gdbarch_skip_entrypoint_p (gdbarch))
2915 pc = gdbarch_skip_entrypoint (gdbarch, pc);
2916 if (skip)
2917 pc = gdbarch_skip_prologue (gdbarch, pc);
2918
2919 /* For overlays, map pc back into its mapped VMA range. */
2920 pc = overlay_mapped_address (pc, section);
2921
2922 /* Calculate line number. */
2923 start_sal = find_pc_sect_line (pc, section, 0);
2924
2925 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2926 line is still part of the same function. */
2927 if (skip && start_sal.pc != pc
2928 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2929 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2930 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
2931 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
2932 {
2933 /* First pc of next line */
2934 pc = start_sal.end;
2935 /* Recalculate the line number (might not be N+1). */
2936 start_sal = find_pc_sect_line (pc, section, 0);
2937 }
2938
2939 /* On targets with executable formats that don't have a concept of
2940 constructors (ELF with .init has, PE doesn't), gcc emits a call
2941 to `__main' in `main' between the prologue and before user
2942 code. */
2943 if (gdbarch_skip_main_prologue_p (gdbarch)
2944 && name && strcmp_iw (name, "main") == 0)
2945 {
2946 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2947 /* Recalculate the line number (might not be N+1). */
2948 start_sal = find_pc_sect_line (pc, section, 0);
2949 force_skip = 1;
2950 }
2951 }
2952 while (!force_skip && skip--);
2953
2954 /* If we still don't have a valid source line, try to find the first
2955 PC in the lineinfo table that belongs to the same function. This
2956 happens with COFF debug info, which does not seem to have an
2957 entry in lineinfo table for the code after the prologue which has
2958 no direct relation to source. For example, this was found to be
2959 the case with the DJGPP target using "gcc -gcoff" when the
2960 compiler inserted code after the prologue to make sure the stack
2961 is aligned. */
2962 if (!force_skip && sym && start_sal.symtab == NULL)
2963 {
2964 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2965 /* Recalculate the line number. */
2966 start_sal = find_pc_sect_line (pc, section, 0);
2967 }
2968
2969 do_cleanups (old_chain);
2970
2971 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2972 forward SAL to the end of the prologue. */
2973 if (sal->pc >= pc)
2974 return;
2975
2976 sal->pc = pc;
2977 sal->section = section;
2978
2979 /* Unless the explicit_line flag was set, update the SAL line
2980 and symtab to correspond to the modified PC location. */
2981 if (sal->explicit_line)
2982 return;
2983
2984 sal->symtab = start_sal.symtab;
2985 sal->line = start_sal.line;
2986 sal->end = start_sal.end;
2987
2988 /* Check if we are now inside an inlined function. If we can,
2989 use the call site of the function instead. */
2990 b = block_for_pc_sect (sal->pc, sal->section);
2991 function_block = NULL;
2992 while (b != NULL)
2993 {
2994 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2995 function_block = b;
2996 else if (BLOCK_FUNCTION (b) != NULL)
2997 break;
2998 b = BLOCK_SUPERBLOCK (b);
2999 }
3000 if (function_block != NULL
3001 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3002 {
3003 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3004 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
3005 }
3006 }
3007
3008 /* Determine if PC is in the prologue of a function. The prologue is the area
3009 between the first instruction of a function, and the first executable line.
3010 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
3011
3012 If non-zero, func_start is where we think the prologue starts, possibly
3013 by previous examination of symbol table information. */
3014
3015 int
3016 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
3017 {
3018 struct symtab_and_line sal;
3019 CORE_ADDR func_addr, func_end;
3020
3021 /* We have several sources of information we can consult to figure
3022 this out.
3023 - Compilers usually emit line number info that marks the prologue
3024 as its own "source line". So the ending address of that "line"
3025 is the end of the prologue. If available, this is the most
3026 reliable method.
3027 - The minimal symbols and partial symbols, which can usually tell
3028 us the starting and ending addresses of a function.
3029 - If we know the function's start address, we can call the
3030 architecture-defined gdbarch_skip_prologue function to analyze the
3031 instruction stream and guess where the prologue ends.
3032 - Our `func_start' argument; if non-zero, this is the caller's
3033 best guess as to the function's entry point. At the time of
3034 this writing, handle_inferior_event doesn't get this right, so
3035 it should be our last resort. */
3036
3037 /* Consult the partial symbol table, to find which function
3038 the PC is in. */
3039 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
3040 {
3041 CORE_ADDR prologue_end;
3042
3043 /* We don't even have minsym information, so fall back to using
3044 func_start, if given. */
3045 if (! func_start)
3046 return 1; /* We *might* be in a prologue. */
3047
3048 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
3049
3050 return func_start <= pc && pc < prologue_end;
3051 }
3052
3053 /* If we have line number information for the function, that's
3054 usually pretty reliable. */
3055 sal = find_pc_line (func_addr, 0);
3056
3057 /* Now sal describes the source line at the function's entry point,
3058 which (by convention) is the prologue. The end of that "line",
3059 sal.end, is the end of the prologue.
3060
3061 Note that, for functions whose source code is all on a single
3062 line, the line number information doesn't always end up this way.
3063 So we must verify that our purported end-of-prologue address is
3064 *within* the function, not at its start or end. */
3065 if (sal.line == 0
3066 || sal.end <= func_addr
3067 || func_end <= sal.end)
3068 {
3069 /* We don't have any good line number info, so use the minsym
3070 information, together with the architecture-specific prologue
3071 scanning code. */
3072 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
3073
3074 return func_addr <= pc && pc < prologue_end;
3075 }
3076
3077 /* We have line number info, and it looks good. */
3078 return func_addr <= pc && pc < sal.end;
3079 }
3080
3081 /* Given PC at the function's start address, attempt to find the
3082 prologue end using SAL information. Return zero if the skip fails.
3083
3084 A non-optimized prologue traditionally has one SAL for the function
3085 and a second for the function body. A single line function has
3086 them both pointing at the same line.
3087
3088 An optimized prologue is similar but the prologue may contain
3089 instructions (SALs) from the instruction body. Need to skip those
3090 while not getting into the function body.
3091
3092 The functions end point and an increasing SAL line are used as
3093 indicators of the prologue's endpoint.
3094
3095 This code is based on the function refine_prologue_limit
3096 (found in ia64). */
3097
3098 CORE_ADDR
3099 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3100 {
3101 struct symtab_and_line prologue_sal;
3102 CORE_ADDR start_pc;
3103 CORE_ADDR end_pc;
3104 const struct block *bl;
3105
3106 /* Get an initial range for the function. */
3107 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3108 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3109
3110 prologue_sal = find_pc_line (start_pc, 0);
3111 if (prologue_sal.line != 0)
3112 {
3113 /* For languages other than assembly, treat two consecutive line
3114 entries at the same address as a zero-instruction prologue.
3115 The GNU assembler emits separate line notes for each instruction
3116 in a multi-instruction macro, but compilers generally will not
3117 do this. */
3118 if (prologue_sal.symtab->language != language_asm)
3119 {
3120 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
3121 int idx = 0;
3122
3123 /* Skip any earlier lines, and any end-of-sequence marker
3124 from a previous function. */
3125 while (linetable->item[idx].pc != prologue_sal.pc
3126 || linetable->item[idx].line == 0)
3127 idx++;
3128
3129 if (idx+1 < linetable->nitems
3130 && linetable->item[idx+1].line != 0
3131 && linetable->item[idx+1].pc == start_pc)
3132 return start_pc;
3133 }
3134
3135 /* If there is only one sal that covers the entire function,
3136 then it is probably a single line function, like
3137 "foo(){}". */
3138 if (prologue_sal.end >= end_pc)
3139 return 0;
3140
3141 while (prologue_sal.end < end_pc)
3142 {
3143 struct symtab_and_line sal;
3144
3145 sal = find_pc_line (prologue_sal.end, 0);
3146 if (sal.line == 0)
3147 break;
3148 /* Assume that a consecutive SAL for the same (or larger)
3149 line mark the prologue -> body transition. */
3150 if (sal.line >= prologue_sal.line)
3151 break;
3152 /* Likewise if we are in a different symtab altogether
3153 (e.g. within a file included via #include).  */
3154 if (sal.symtab != prologue_sal.symtab)
3155 break;
3156
3157 /* The line number is smaller. Check that it's from the
3158 same function, not something inlined. If it's inlined,
3159 then there is no point comparing the line numbers. */
3160 bl = block_for_pc (prologue_sal.end);
3161 while (bl)
3162 {
3163 if (block_inlined_p (bl))
3164 break;
3165 if (BLOCK_FUNCTION (bl))
3166 {
3167 bl = NULL;
3168 break;
3169 }
3170 bl = BLOCK_SUPERBLOCK (bl);
3171 }
3172 if (bl != NULL)
3173 break;
3174
3175 /* The case in which compiler's optimizer/scheduler has
3176 moved instructions into the prologue. We look ahead in
3177 the function looking for address ranges whose
3178 corresponding line number is less the first one that we
3179 found for the function. This is more conservative then
3180 refine_prologue_limit which scans a large number of SALs
3181 looking for any in the prologue. */
3182 prologue_sal = sal;
3183 }
3184 }
3185
3186 if (prologue_sal.end < end_pc)
3187 /* Return the end of this line, or zero if we could not find a
3188 line. */
3189 return prologue_sal.end;
3190 else
3191 /* Don't return END_PC, which is past the end of the function. */
3192 return prologue_sal.pc;
3193 }
3194 \f
3195 /* If P is of the form "operator[ \t]+..." where `...' is
3196 some legitimate operator text, return a pointer to the
3197 beginning of the substring of the operator text.
3198 Otherwise, return "". */
3199
3200 static const char *
3201 operator_chars (const char *p, const char **end)
3202 {
3203 *end = "";
3204 if (strncmp (p, "operator", 8))
3205 return *end;
3206 p += 8;
3207
3208 /* Don't get faked out by `operator' being part of a longer
3209 identifier. */
3210 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3211 return *end;
3212
3213 /* Allow some whitespace between `operator' and the operator symbol. */
3214 while (*p == ' ' || *p == '\t')
3215 p++;
3216
3217 /* Recognize 'operator TYPENAME'. */
3218
3219 if (isalpha (*p) || *p == '_' || *p == '$')
3220 {
3221 const char *q = p + 1;
3222
3223 while (isalnum (*q) || *q == '_' || *q == '$')
3224 q++;
3225 *end = q;
3226 return p;
3227 }
3228
3229 while (*p)
3230 switch (*p)
3231 {
3232 case '\\': /* regexp quoting */
3233 if (p[1] == '*')
3234 {
3235 if (p[2] == '=') /* 'operator\*=' */
3236 *end = p + 3;
3237 else /* 'operator\*' */
3238 *end = p + 2;
3239 return p;
3240 }
3241 else if (p[1] == '[')
3242 {
3243 if (p[2] == ']')
3244 error (_("mismatched quoting on brackets, "
3245 "try 'operator\\[\\]'"));
3246 else if (p[2] == '\\' && p[3] == ']')
3247 {
3248 *end = p + 4; /* 'operator\[\]' */
3249 return p;
3250 }
3251 else
3252 error (_("nothing is allowed between '[' and ']'"));
3253 }
3254 else
3255 {
3256 /* Gratuitous qoute: skip it and move on. */
3257 p++;
3258 continue;
3259 }
3260 break;
3261 case '!':
3262 case '=':
3263 case '*':
3264 case '/':
3265 case '%':
3266 case '^':
3267 if (p[1] == '=')
3268 *end = p + 2;
3269 else
3270 *end = p + 1;
3271 return p;
3272 case '<':
3273 case '>':
3274 case '+':
3275 case '-':
3276 case '&':
3277 case '|':
3278 if (p[0] == '-' && p[1] == '>')
3279 {
3280 /* Struct pointer member operator 'operator->'. */
3281 if (p[2] == '*')
3282 {
3283 *end = p + 3; /* 'operator->*' */
3284 return p;
3285 }
3286 else if (p[2] == '\\')
3287 {
3288 *end = p + 4; /* Hopefully 'operator->\*' */
3289 return p;
3290 }
3291 else
3292 {
3293 *end = p + 2; /* 'operator->' */
3294 return p;
3295 }
3296 }
3297 if (p[1] == '=' || p[1] == p[0])
3298 *end = p + 2;
3299 else
3300 *end = p + 1;
3301 return p;
3302 case '~':
3303 case ',':
3304 *end = p + 1;
3305 return p;
3306 case '(':
3307 if (p[1] != ')')
3308 error (_("`operator ()' must be specified "
3309 "without whitespace in `()'"));
3310 *end = p + 2;
3311 return p;
3312 case '?':
3313 if (p[1] != ':')
3314 error (_("`operator ?:' must be specified "
3315 "without whitespace in `?:'"));
3316 *end = p + 2;
3317 return p;
3318 case '[':
3319 if (p[1] != ']')
3320 error (_("`operator []' must be specified "
3321 "without whitespace in `[]'"));
3322 *end = p + 2;
3323 return p;
3324 default:
3325 error (_("`operator %s' not supported"), p);
3326 break;
3327 }
3328
3329 *end = "";
3330 return *end;
3331 }
3332 \f
3333
3334 /* Cache to watch for file names already seen by filename_seen. */
3335
3336 struct filename_seen_cache
3337 {
3338 /* Table of files seen so far. */
3339 htab_t tab;
3340 /* Initial size of the table. It automagically grows from here. */
3341 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3342 };
3343
3344 /* filename_seen_cache constructor. */
3345
3346 static struct filename_seen_cache *
3347 create_filename_seen_cache (void)
3348 {
3349 struct filename_seen_cache *cache;
3350
3351 cache = XNEW (struct filename_seen_cache);
3352 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3353 filename_hash, filename_eq,
3354 NULL, xcalloc, xfree);
3355
3356 return cache;
3357 }
3358
3359 /* Empty the cache, but do not delete it. */
3360
3361 static void
3362 clear_filename_seen_cache (struct filename_seen_cache *cache)
3363 {
3364 htab_empty (cache->tab);
3365 }
3366
3367 /* filename_seen_cache destructor.
3368 This takes a void * argument as it is generally used as a cleanup. */
3369
3370 static void
3371 delete_filename_seen_cache (void *ptr)
3372 {
3373 struct filename_seen_cache *cache = ptr;
3374
3375 htab_delete (cache->tab);
3376 xfree (cache);
3377 }
3378
3379 /* If FILE is not already in the table of files in CACHE, return zero;
3380 otherwise return non-zero. Optionally add FILE to the table if ADD
3381 is non-zero.
3382
3383 NOTE: We don't manage space for FILE, we assume FILE lives as long
3384 as the caller needs. */
3385
3386 static int
3387 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
3388 {
3389 void **slot;
3390
3391 /* Is FILE in tab? */
3392 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
3393 if (*slot != NULL)
3394 return 1;
3395
3396 /* No; maybe add it to tab. */
3397 if (add)
3398 *slot = (char *) file;
3399
3400 return 0;
3401 }
3402
3403 /* Data structure to maintain printing state for output_source_filename. */
3404
3405 struct output_source_filename_data
3406 {
3407 /* Cache of what we've seen so far. */
3408 struct filename_seen_cache *filename_seen_cache;
3409
3410 /* Flag of whether we're printing the first one. */
3411 int first;
3412 };
3413
3414 /* Slave routine for sources_info. Force line breaks at ,'s.
3415 NAME is the name to print.
3416 DATA contains the state for printing and watching for duplicates. */
3417
3418 static void
3419 output_source_filename (const char *name,
3420 struct output_source_filename_data *data)
3421 {
3422 /* Since a single source file can result in several partial symbol
3423 tables, we need to avoid printing it more than once. Note: if
3424 some of the psymtabs are read in and some are not, it gets
3425 printed both under "Source files for which symbols have been
3426 read" and "Source files for which symbols will be read in on
3427 demand". I consider this a reasonable way to deal with the
3428 situation. I'm not sure whether this can also happen for
3429 symtabs; it doesn't hurt to check. */
3430
3431 /* Was NAME already seen? */
3432 if (filename_seen (data->filename_seen_cache, name, 1))
3433 {
3434 /* Yes; don't print it again. */
3435 return;
3436 }
3437
3438 /* No; print it and reset *FIRST. */
3439 if (! data->first)
3440 printf_filtered (", ");
3441 data->first = 0;
3442
3443 wrap_here ("");
3444 fputs_filtered (name, gdb_stdout);
3445 }
3446
3447 /* A callback for map_partial_symbol_filenames. */
3448
3449 static void
3450 output_partial_symbol_filename (const char *filename, const char *fullname,
3451 void *data)
3452 {
3453 output_source_filename (fullname ? fullname : filename, data);
3454 }
3455
3456 static void
3457 sources_info (char *ignore, int from_tty)
3458 {
3459 struct symtab *s;
3460 struct objfile *objfile;
3461 struct output_source_filename_data data;
3462 struct cleanup *cleanups;
3463
3464 if (!have_full_symbols () && !have_partial_symbols ())
3465 {
3466 error (_("No symbol table is loaded. Use the \"file\" command."));
3467 }
3468
3469 data.filename_seen_cache = create_filename_seen_cache ();
3470 cleanups = make_cleanup (delete_filename_seen_cache,
3471 data.filename_seen_cache);
3472
3473 printf_filtered ("Source files for which symbols have been read in:\n\n");
3474
3475 data.first = 1;
3476 ALL_SYMTABS (objfile, s)
3477 {
3478 const char *fullname = symtab_to_fullname (s);
3479
3480 output_source_filename (fullname, &data);
3481 }
3482 printf_filtered ("\n\n");
3483
3484 printf_filtered ("Source files for which symbols "
3485 "will be read in on demand:\n\n");
3486
3487 clear_filename_seen_cache (data.filename_seen_cache);
3488 data.first = 1;
3489 map_symbol_filenames (output_partial_symbol_filename, &data,
3490 1 /*need_fullname*/);
3491 printf_filtered ("\n");
3492
3493 do_cleanups (cleanups);
3494 }
3495
3496 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
3497 non-zero compare only lbasename of FILES. */
3498
3499 static int
3500 file_matches (const char *file, const char *files[], int nfiles, int basenames)
3501 {
3502 int i;
3503
3504 if (file != NULL && nfiles != 0)
3505 {
3506 for (i = 0; i < nfiles; i++)
3507 {
3508 if (compare_filenames_for_search (file, (basenames
3509 ? lbasename (files[i])
3510 : files[i])))
3511 return 1;
3512 }
3513 }
3514 else if (nfiles == 0)
3515 return 1;
3516 return 0;
3517 }
3518
3519 /* Free any memory associated with a search. */
3520
3521 void
3522 free_search_symbols (struct symbol_search *symbols)
3523 {
3524 struct symbol_search *p;
3525 struct symbol_search *next;
3526
3527 for (p = symbols; p != NULL; p = next)
3528 {
3529 next = p->next;
3530 xfree (p);
3531 }
3532 }
3533
3534 static void
3535 do_free_search_symbols_cleanup (void *symbolsp)
3536 {
3537 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
3538
3539 free_search_symbols (symbols);
3540 }
3541
3542 struct cleanup *
3543 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
3544 {
3545 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
3546 }
3547
3548 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
3549 sort symbols, not minimal symbols. */
3550
3551 static int
3552 compare_search_syms (const void *sa, const void *sb)
3553 {
3554 struct symbol_search *sym_a = *(struct symbol_search **) sa;
3555 struct symbol_search *sym_b = *(struct symbol_search **) sb;
3556 int c;
3557
3558 c = FILENAME_CMP (sym_a->symtab->filename, sym_b->symtab->filename);
3559 if (c != 0)
3560 return c;
3561
3562 if (sym_a->block != sym_b->block)
3563 return sym_a->block - sym_b->block;
3564
3565 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
3566 SYMBOL_PRINT_NAME (sym_b->symbol));
3567 }
3568
3569 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
3570 The duplicates are freed, and the new list is returned in
3571 *NEW_HEAD, *NEW_TAIL. */
3572
3573 static void
3574 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
3575 struct symbol_search **new_head,
3576 struct symbol_search **new_tail)
3577 {
3578 struct symbol_search **symbols, *symp, *old_next;
3579 int i, j, nunique;
3580
3581 gdb_assert (found != NULL && nfound > 0);
3582
3583 /* Build an array out of the list so we can easily sort them. */
3584 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3585 * nfound);
3586 symp = found;
3587 for (i = 0; i < nfound; i++)
3588 {
3589 gdb_assert (symp != NULL);
3590 gdb_assert (symp->block >= 0 && symp->block <= 1);
3591 symbols[i] = symp;
3592 symp = symp->next;
3593 }
3594 gdb_assert (symp == NULL);
3595
3596 qsort (symbols, nfound, sizeof (struct symbol_search *),
3597 compare_search_syms);
3598
3599 /* Collapse out the dups. */
3600 for (i = 1, j = 1; i < nfound; ++i)
3601 {
3602 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
3603 symbols[j++] = symbols[i];
3604 else
3605 xfree (symbols[i]);
3606 }
3607 nunique = j;
3608 symbols[j - 1]->next = NULL;
3609
3610 /* Rebuild the linked list. */
3611 for (i = 0; i < nunique - 1; i++)
3612 symbols[i]->next = symbols[i + 1];
3613 symbols[nunique - 1]->next = NULL;
3614
3615 *new_head = symbols[0];
3616 *new_tail = symbols[nunique - 1];
3617 xfree (symbols);
3618 }
3619
3620 /* An object of this type is passed as the user_data to the
3621 expand_symtabs_matching method. */
3622 struct search_symbols_data
3623 {
3624 int nfiles;
3625 const char **files;
3626
3627 /* It is true if PREG contains valid data, false otherwise. */
3628 unsigned preg_p : 1;
3629 regex_t preg;
3630 };
3631
3632 /* A callback for expand_symtabs_matching. */
3633
3634 static int
3635 search_symbols_file_matches (const char *filename, void *user_data,
3636 int basenames)
3637 {
3638 struct search_symbols_data *data = user_data;
3639
3640 return file_matches (filename, data->files, data->nfiles, basenames);
3641 }
3642
3643 /* A callback for expand_symtabs_matching. */
3644
3645 static int
3646 search_symbols_name_matches (const char *symname, void *user_data)
3647 {
3648 struct search_symbols_data *data = user_data;
3649
3650 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3651 }
3652
3653 /* Search the symbol table for matches to the regular expression REGEXP,
3654 returning the results in *MATCHES.
3655
3656 Only symbols of KIND are searched:
3657 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3658 and constants (enums)
3659 FUNCTIONS_DOMAIN - search all functions
3660 TYPES_DOMAIN - search all type names
3661 ALL_DOMAIN - an internal error for this function
3662
3663 free_search_symbols should be called when *MATCHES is no longer needed.
3664
3665 Within each file the results are sorted locally; each symtab's global and
3666 static blocks are separately alphabetized.
3667 Duplicate entries are removed. */
3668
3669 void
3670 search_symbols (const char *regexp, enum search_domain kind,
3671 int nfiles, const char *files[],
3672 struct symbol_search **matches)
3673 {
3674 struct symtab *s;
3675 const struct blockvector *bv;
3676 struct block *b;
3677 int i = 0;
3678 struct block_iterator iter;
3679 struct symbol *sym;
3680 struct objfile *objfile;
3681 struct minimal_symbol *msymbol;
3682 int found_misc = 0;
3683 static const enum minimal_symbol_type types[]
3684 = {mst_data, mst_text, mst_abs};
3685 static const enum minimal_symbol_type types2[]
3686 = {mst_bss, mst_file_text, mst_abs};
3687 static const enum minimal_symbol_type types3[]
3688 = {mst_file_data, mst_solib_trampoline, mst_abs};
3689 static const enum minimal_symbol_type types4[]
3690 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3691 enum minimal_symbol_type ourtype;
3692 enum minimal_symbol_type ourtype2;
3693 enum minimal_symbol_type ourtype3;
3694 enum minimal_symbol_type ourtype4;
3695 struct symbol_search *found;
3696 struct symbol_search *tail;
3697 struct search_symbols_data datum;
3698 int nfound;
3699
3700 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3701 CLEANUP_CHAIN is freed only in the case of an error. */
3702 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3703 struct cleanup *retval_chain;
3704
3705 gdb_assert (kind <= TYPES_DOMAIN);
3706
3707 ourtype = types[kind];
3708 ourtype2 = types2[kind];
3709 ourtype3 = types3[kind];
3710 ourtype4 = types4[kind];
3711
3712 *matches = NULL;
3713 datum.preg_p = 0;
3714
3715 if (regexp != NULL)
3716 {
3717 /* Make sure spacing is right for C++ operators.
3718 This is just a courtesy to make the matching less sensitive
3719 to how many spaces the user leaves between 'operator'
3720 and <TYPENAME> or <OPERATOR>. */
3721 const char *opend;
3722 const char *opname = operator_chars (regexp, &opend);
3723 int errcode;
3724
3725 if (*opname)
3726 {
3727 int fix = -1; /* -1 means ok; otherwise number of
3728 spaces needed. */
3729
3730 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3731 {
3732 /* There should 1 space between 'operator' and 'TYPENAME'. */
3733 if (opname[-1] != ' ' || opname[-2] == ' ')
3734 fix = 1;
3735 }
3736 else
3737 {
3738 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3739 if (opname[-1] == ' ')
3740 fix = 0;
3741 }
3742 /* If wrong number of spaces, fix it. */
3743 if (fix >= 0)
3744 {
3745 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3746
3747 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3748 regexp = tmp;
3749 }
3750 }
3751
3752 errcode = regcomp (&datum.preg, regexp,
3753 REG_NOSUB | (case_sensitivity == case_sensitive_off
3754 ? REG_ICASE : 0));
3755 if (errcode != 0)
3756 {
3757 char *err = get_regcomp_error (errcode, &datum.preg);
3758
3759 make_cleanup (xfree, err);
3760 error (_("Invalid regexp (%s): %s"), err, regexp);
3761 }
3762 datum.preg_p = 1;
3763 make_regfree_cleanup (&datum.preg);
3764 }
3765
3766 /* Search through the partial symtabs *first* for all symbols
3767 matching the regexp. That way we don't have to reproduce all of
3768 the machinery below. */
3769
3770 datum.nfiles = nfiles;
3771 datum.files = files;
3772 expand_symtabs_matching ((nfiles == 0
3773 ? NULL
3774 : search_symbols_file_matches),
3775 search_symbols_name_matches,
3776 kind, &datum);
3777
3778 /* Here, we search through the minimal symbol tables for functions
3779 and variables that match, and force their symbols to be read.
3780 This is in particular necessary for demangled variable names,
3781 which are no longer put into the partial symbol tables.
3782 The symbol will then be found during the scan of symtabs below.
3783
3784 For functions, find_pc_symtab should succeed if we have debug info
3785 for the function, for variables we have to call
3786 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3787 has debug info.
3788 If the lookup fails, set found_misc so that we will rescan to print
3789 any matching symbols without debug info.
3790 We only search the objfile the msymbol came from, we no longer search
3791 all objfiles. In large programs (1000s of shared libs) searching all
3792 objfiles is not worth the pain. */
3793
3794 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3795 {
3796 ALL_MSYMBOLS (objfile, msymbol)
3797 {
3798 QUIT;
3799
3800 if (msymbol->created_by_gdb)
3801 continue;
3802
3803 if (MSYMBOL_TYPE (msymbol) == ourtype
3804 || MSYMBOL_TYPE (msymbol) == ourtype2
3805 || MSYMBOL_TYPE (msymbol) == ourtype3
3806 || MSYMBOL_TYPE (msymbol) == ourtype4)
3807 {
3808 if (!datum.preg_p
3809 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
3810 NULL, 0) == 0)
3811 {
3812 /* Note: An important side-effect of these lookup functions
3813 is to expand the symbol table if msymbol is found, for the
3814 benefit of the next loop on ALL_PRIMARY_SYMTABS. */
3815 if (kind == FUNCTIONS_DOMAIN
3816 ? find_pc_symtab (MSYMBOL_VALUE_ADDRESS (objfile,
3817 msymbol)) == NULL
3818 : (lookup_symbol_in_objfile_from_linkage_name
3819 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3820 == NULL))
3821 found_misc = 1;
3822 }
3823 }
3824 }
3825 }
3826
3827 found = NULL;
3828 tail = NULL;
3829 nfound = 0;
3830 retval_chain = make_cleanup_free_search_symbols (&found);
3831
3832 ALL_PRIMARY_SYMTABS (objfile, s)
3833 {
3834 bv = BLOCKVECTOR (s);
3835 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3836 {
3837 b = BLOCKVECTOR_BLOCK (bv, i);
3838 ALL_BLOCK_SYMBOLS (b, iter, sym)
3839 {
3840 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3841
3842 QUIT;
3843
3844 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
3845 a substring of symtab_to_fullname as it may contain "./" etc. */
3846 if ((file_matches (real_symtab->filename, files, nfiles, 0)
3847 || ((basenames_may_differ
3848 || file_matches (lbasename (real_symtab->filename),
3849 files, nfiles, 1))
3850 && file_matches (symtab_to_fullname (real_symtab),
3851 files, nfiles, 0)))
3852 && ((!datum.preg_p
3853 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3854 NULL, 0) == 0)
3855 && ((kind == VARIABLES_DOMAIN
3856 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3857 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3858 && SYMBOL_CLASS (sym) != LOC_BLOCK
3859 /* LOC_CONST can be used for more than just enums,
3860 e.g., c++ static const members.
3861 We only want to skip enums here. */
3862 && !(SYMBOL_CLASS (sym) == LOC_CONST
3863 && TYPE_CODE (SYMBOL_TYPE (sym))
3864 == TYPE_CODE_ENUM))
3865 || (kind == FUNCTIONS_DOMAIN
3866 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3867 || (kind == TYPES_DOMAIN
3868 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3869 {
3870 /* match */
3871 struct symbol_search *psr = (struct symbol_search *)
3872 xmalloc (sizeof (struct symbol_search));
3873 psr->block = i;
3874 psr->symtab = real_symtab;
3875 psr->symbol = sym;
3876 memset (&psr->msymbol, 0, sizeof (psr->msymbol));
3877 psr->next = NULL;
3878 if (tail == NULL)
3879 found = psr;
3880 else
3881 tail->next = psr;
3882 tail = psr;
3883 nfound ++;
3884 }
3885 }
3886 }
3887 }
3888
3889 if (found != NULL)
3890 {
3891 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
3892 /* Note: nfound is no longer useful beyond this point. */
3893 }
3894
3895 /* If there are no eyes, avoid all contact. I mean, if there are
3896 no debug symbols, then print directly from the msymbol_vector. */
3897
3898 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3899 {
3900 ALL_MSYMBOLS (objfile, msymbol)
3901 {
3902 QUIT;
3903
3904 if (msymbol->created_by_gdb)
3905 continue;
3906
3907 if (MSYMBOL_TYPE (msymbol) == ourtype
3908 || MSYMBOL_TYPE (msymbol) == ourtype2
3909 || MSYMBOL_TYPE (msymbol) == ourtype3
3910 || MSYMBOL_TYPE (msymbol) == ourtype4)
3911 {
3912 if (!datum.preg_p
3913 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
3914 NULL, 0) == 0)
3915 {
3916 /* For functions we can do a quick check of whether the
3917 symbol might be found via find_pc_symtab. */
3918 if (kind != FUNCTIONS_DOMAIN
3919 || find_pc_symtab (MSYMBOL_VALUE_ADDRESS (objfile,
3920 msymbol)) == NULL)
3921 {
3922 if (lookup_symbol_in_objfile_from_linkage_name
3923 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3924 == NULL)
3925 {
3926 /* match */
3927 struct symbol_search *psr = (struct symbol_search *)
3928 xmalloc (sizeof (struct symbol_search));
3929 psr->block = i;
3930 psr->msymbol.minsym = msymbol;
3931 psr->msymbol.objfile = objfile;
3932 psr->symtab = NULL;
3933 psr->symbol = NULL;
3934 psr->next = NULL;
3935 if (tail == NULL)
3936 found = psr;
3937 else
3938 tail->next = psr;
3939 tail = psr;
3940 }
3941 }
3942 }
3943 }
3944 }
3945 }
3946
3947 discard_cleanups (retval_chain);
3948 do_cleanups (old_chain);
3949 *matches = found;
3950 }
3951
3952 /* Helper function for symtab_symbol_info, this function uses
3953 the data returned from search_symbols() to print information
3954 regarding the match to gdb_stdout. */
3955
3956 static void
3957 print_symbol_info (enum search_domain kind,
3958 struct symtab *s, struct symbol *sym,
3959 int block, const char *last)
3960 {
3961 const char *s_filename = symtab_to_filename_for_display (s);
3962
3963 if (last == NULL || filename_cmp (last, s_filename) != 0)
3964 {
3965 fputs_filtered ("\nFile ", gdb_stdout);
3966 fputs_filtered (s_filename, gdb_stdout);
3967 fputs_filtered (":\n", gdb_stdout);
3968 }
3969
3970 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3971 printf_filtered ("static ");
3972
3973 /* Typedef that is not a C++ class. */
3974 if (kind == TYPES_DOMAIN
3975 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3976 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3977 /* variable, func, or typedef-that-is-c++-class. */
3978 else if (kind < TYPES_DOMAIN
3979 || (kind == TYPES_DOMAIN
3980 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3981 {
3982 type_print (SYMBOL_TYPE (sym),
3983 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3984 ? "" : SYMBOL_PRINT_NAME (sym)),
3985 gdb_stdout, 0);
3986
3987 printf_filtered (";\n");
3988 }
3989 }
3990
3991 /* This help function for symtab_symbol_info() prints information
3992 for non-debugging symbols to gdb_stdout. */
3993
3994 static void
3995 print_msymbol_info (struct bound_minimal_symbol msymbol)
3996 {
3997 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
3998 char *tmp;
3999
4000 if (gdbarch_addr_bit (gdbarch) <= 32)
4001 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4002 & (CORE_ADDR) 0xffffffff,
4003 8);
4004 else
4005 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4006 16);
4007 printf_filtered ("%s %s\n",
4008 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
4009 }
4010
4011 /* This is the guts of the commands "info functions", "info types", and
4012 "info variables". It calls search_symbols to find all matches and then
4013 print_[m]symbol_info to print out some useful information about the
4014 matches. */
4015
4016 static void
4017 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
4018 {
4019 static const char * const classnames[] =
4020 {"variable", "function", "type"};
4021 struct symbol_search *symbols;
4022 struct symbol_search *p;
4023 struct cleanup *old_chain;
4024 const char *last_filename = NULL;
4025 int first = 1;
4026
4027 gdb_assert (kind <= TYPES_DOMAIN);
4028
4029 /* Must make sure that if we're interrupted, symbols gets freed. */
4030 search_symbols (regexp, kind, 0, NULL, &symbols);
4031 old_chain = make_cleanup_free_search_symbols (&symbols);
4032
4033 if (regexp != NULL)
4034 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4035 classnames[kind], regexp);
4036 else
4037 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4038
4039 for (p = symbols; p != NULL; p = p->next)
4040 {
4041 QUIT;
4042
4043 if (p->msymbol.minsym != NULL)
4044 {
4045 if (first)
4046 {
4047 printf_filtered (_("\nNon-debugging symbols:\n"));
4048 first = 0;
4049 }
4050 print_msymbol_info (p->msymbol);
4051 }
4052 else
4053 {
4054 print_symbol_info (kind,
4055 p->symtab,
4056 p->symbol,
4057 p->block,
4058 last_filename);
4059 last_filename = symtab_to_filename_for_display (p->symtab);
4060 }
4061 }
4062
4063 do_cleanups (old_chain);
4064 }
4065
4066 static void
4067 variables_info (char *regexp, int from_tty)
4068 {
4069 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
4070 }
4071
4072 static void
4073 functions_info (char *regexp, int from_tty)
4074 {
4075 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
4076 }
4077
4078
4079 static void
4080 types_info (char *regexp, int from_tty)
4081 {
4082 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
4083 }
4084
4085 /* Breakpoint all functions matching regular expression. */
4086
4087 void
4088 rbreak_command_wrapper (char *regexp, int from_tty)
4089 {
4090 rbreak_command (regexp, from_tty);
4091 }
4092
4093 /* A cleanup function that calls end_rbreak_breakpoints. */
4094
4095 static void
4096 do_end_rbreak_breakpoints (void *ignore)
4097 {
4098 end_rbreak_breakpoints ();
4099 }
4100
4101 static void
4102 rbreak_command (char *regexp, int from_tty)
4103 {
4104 struct symbol_search *ss;
4105 struct symbol_search *p;
4106 struct cleanup *old_chain;
4107 char *string = NULL;
4108 int len = 0;
4109 const char **files = NULL;
4110 const char *file_name;
4111 int nfiles = 0;
4112
4113 if (regexp)
4114 {
4115 char *colon = strchr (regexp, ':');
4116
4117 if (colon && *(colon + 1) != ':')
4118 {
4119 int colon_index;
4120 char *local_name;
4121
4122 colon_index = colon - regexp;
4123 local_name = alloca (colon_index + 1);
4124 memcpy (local_name, regexp, colon_index);
4125 local_name[colon_index--] = 0;
4126 while (isspace (local_name[colon_index]))
4127 local_name[colon_index--] = 0;
4128 file_name = local_name;
4129 files = &file_name;
4130 nfiles = 1;
4131 regexp = skip_spaces (colon + 1);
4132 }
4133 }
4134
4135 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
4136 old_chain = make_cleanup_free_search_symbols (&ss);
4137 make_cleanup (free_current_contents, &string);
4138
4139 start_rbreak_breakpoints ();
4140 make_cleanup (do_end_rbreak_breakpoints, NULL);
4141 for (p = ss; p != NULL; p = p->next)
4142 {
4143 if (p->msymbol.minsym == NULL)
4144 {
4145 const char *fullname = symtab_to_fullname (p->symtab);
4146
4147 int newlen = (strlen (fullname)
4148 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
4149 + 4);
4150
4151 if (newlen > len)
4152 {
4153 string = xrealloc (string, newlen);
4154 len = newlen;
4155 }
4156 strcpy (string, fullname);
4157 strcat (string, ":'");
4158 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
4159 strcat (string, "'");
4160 break_command (string, from_tty);
4161 print_symbol_info (FUNCTIONS_DOMAIN,
4162 p->symtab,
4163 p->symbol,
4164 p->block,
4165 symtab_to_filename_for_display (p->symtab));
4166 }
4167 else
4168 {
4169 int newlen = (strlen (MSYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
4170
4171 if (newlen > len)
4172 {
4173 string = xrealloc (string, newlen);
4174 len = newlen;
4175 }
4176 strcpy (string, "'");
4177 strcat (string, MSYMBOL_LINKAGE_NAME (p->msymbol.minsym));
4178 strcat (string, "'");
4179
4180 break_command (string, from_tty);
4181 printf_filtered ("<function, no debug info> %s;\n",
4182 MSYMBOL_PRINT_NAME (p->msymbol.minsym));
4183 }
4184 }
4185
4186 do_cleanups (old_chain);
4187 }
4188 \f
4189
4190 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4191
4192 Either sym_text[sym_text_len] != '(' and then we search for any
4193 symbol starting with SYM_TEXT text.
4194
4195 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4196 be terminated at that point. Partial symbol tables do not have parameters
4197 information. */
4198
4199 static int
4200 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
4201 {
4202 int (*ncmp) (const char *, const char *, size_t);
4203
4204 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
4205
4206 if (ncmp (name, sym_text, sym_text_len) != 0)
4207 return 0;
4208
4209 if (sym_text[sym_text_len] == '(')
4210 {
4211 /* User searches for `name(someth...'. Require NAME to be terminated.
4212 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4213 present but accept even parameters presence. In this case this
4214 function is in fact strcmp_iw but whitespace skipping is not supported
4215 for tab completion. */
4216
4217 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4218 return 0;
4219 }
4220
4221 return 1;
4222 }
4223
4224 /* Free any memory associated with a completion list. */
4225
4226 static void
4227 free_completion_list (VEC (char_ptr) **list_ptr)
4228 {
4229 int i;
4230 char *p;
4231
4232 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
4233 xfree (p);
4234 VEC_free (char_ptr, *list_ptr);
4235 }
4236
4237 /* Callback for make_cleanup. */
4238
4239 static void
4240 do_free_completion_list (void *list)
4241 {
4242 free_completion_list (list);
4243 }
4244
4245 /* Helper routine for make_symbol_completion_list. */
4246
4247 static VEC (char_ptr) *return_val;
4248
4249 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4250 completion_list_add_name \
4251 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4252
4253 #define MCOMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4254 completion_list_add_name \
4255 (MSYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4256
4257 /* Test to see if the symbol specified by SYMNAME (which is already
4258 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4259 characters. If so, add it to the current completion list. */
4260
4261 static void
4262 completion_list_add_name (const char *symname,
4263 const char *sym_text, int sym_text_len,
4264 const char *text, const char *word)
4265 {
4266 /* Clip symbols that cannot match. */
4267 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4268 return;
4269
4270 /* We have a match for a completion, so add SYMNAME to the current list
4271 of matches. Note that the name is moved to freshly malloc'd space. */
4272
4273 {
4274 char *new;
4275
4276 if (word == sym_text)
4277 {
4278 new = xmalloc (strlen (symname) + 5);
4279 strcpy (new, symname);
4280 }
4281 else if (word > sym_text)
4282 {
4283 /* Return some portion of symname. */
4284 new = xmalloc (strlen (symname) + 5);
4285 strcpy (new, symname + (word - sym_text));
4286 }
4287 else
4288 {
4289 /* Return some of SYM_TEXT plus symname. */
4290 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
4291 strncpy (new, word, sym_text - word);
4292 new[sym_text - word] = '\0';
4293 strcat (new, symname);
4294 }
4295
4296 VEC_safe_push (char_ptr, return_val, new);
4297 }
4298 }
4299
4300 /* ObjC: In case we are completing on a selector, look as the msymbol
4301 again and feed all the selectors into the mill. */
4302
4303 static void
4304 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4305 const char *sym_text, int sym_text_len,
4306 const char *text, const char *word)
4307 {
4308 static char *tmp = NULL;
4309 static unsigned int tmplen = 0;
4310
4311 const char *method, *category, *selector;
4312 char *tmp2 = NULL;
4313
4314 method = MSYMBOL_NATURAL_NAME (msymbol);
4315
4316 /* Is it a method? */
4317 if ((method[0] != '-') && (method[0] != '+'))
4318 return;
4319
4320 if (sym_text[0] == '[')
4321 /* Complete on shortened method method. */
4322 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4323
4324 while ((strlen (method) + 1) >= tmplen)
4325 {
4326 if (tmplen == 0)
4327 tmplen = 1024;
4328 else
4329 tmplen *= 2;
4330 tmp = xrealloc (tmp, tmplen);
4331 }
4332 selector = strchr (method, ' ');
4333 if (selector != NULL)
4334 selector++;
4335
4336 category = strchr (method, '(');
4337
4338 if ((category != NULL) && (selector != NULL))
4339 {
4340 memcpy (tmp, method, (category - method));
4341 tmp[category - method] = ' ';
4342 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4343 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4344 if (sym_text[0] == '[')
4345 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4346 }
4347
4348 if (selector != NULL)
4349 {
4350 /* Complete on selector only. */
4351 strcpy (tmp, selector);
4352 tmp2 = strchr (tmp, ']');
4353 if (tmp2 != NULL)
4354 *tmp2 = '\0';
4355
4356 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4357 }
4358 }
4359
4360 /* Break the non-quoted text based on the characters which are in
4361 symbols. FIXME: This should probably be language-specific. */
4362
4363 static const char *
4364 language_search_unquoted_string (const char *text, const char *p)
4365 {
4366 for (; p > text; --p)
4367 {
4368 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4369 continue;
4370 else
4371 {
4372 if ((current_language->la_language == language_objc))
4373 {
4374 if (p[-1] == ':') /* Might be part of a method name. */
4375 continue;
4376 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4377 p -= 2; /* Beginning of a method name. */
4378 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4379 { /* Might be part of a method name. */
4380 const char *t = p;
4381
4382 /* Seeing a ' ' or a '(' is not conclusive evidence
4383 that we are in the middle of a method name. However,
4384 finding "-[" or "+[" should be pretty un-ambiguous.
4385 Unfortunately we have to find it now to decide. */
4386
4387 while (t > text)
4388 if (isalnum (t[-1]) || t[-1] == '_' ||
4389 t[-1] == ' ' || t[-1] == ':' ||
4390 t[-1] == '(' || t[-1] == ')')
4391 --t;
4392 else
4393 break;
4394
4395 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4396 p = t - 2; /* Method name detected. */
4397 /* Else we leave with p unchanged. */
4398 }
4399 }
4400 break;
4401 }
4402 }
4403 return p;
4404 }
4405
4406 static void
4407 completion_list_add_fields (struct symbol *sym, const char *sym_text,
4408 int sym_text_len, const char *text,
4409 const char *word)
4410 {
4411 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4412 {
4413 struct type *t = SYMBOL_TYPE (sym);
4414 enum type_code c = TYPE_CODE (t);
4415 int j;
4416
4417 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4418 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4419 if (TYPE_FIELD_NAME (t, j))
4420 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4421 sym_text, sym_text_len, text, word);
4422 }
4423 }
4424
4425 /* Type of the user_data argument passed to add_macro_name or
4426 symbol_completion_matcher. The contents are simply whatever is
4427 needed by completion_list_add_name. */
4428 struct add_name_data
4429 {
4430 const char *sym_text;
4431 int sym_text_len;
4432 const char *text;
4433 const char *word;
4434 };
4435
4436 /* A callback used with macro_for_each and macro_for_each_in_scope.
4437 This adds a macro's name to the current completion list. */
4438
4439 static void
4440 add_macro_name (const char *name, const struct macro_definition *ignore,
4441 struct macro_source_file *ignore2, int ignore3,
4442 void *user_data)
4443 {
4444 struct add_name_data *datum = (struct add_name_data *) user_data;
4445
4446 completion_list_add_name (name,
4447 datum->sym_text, datum->sym_text_len,
4448 datum->text, datum->word);
4449 }
4450
4451 /* A callback for expand_symtabs_matching. */
4452
4453 static int
4454 symbol_completion_matcher (const char *name, void *user_data)
4455 {
4456 struct add_name_data *datum = (struct add_name_data *) user_data;
4457
4458 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4459 }
4460
4461 VEC (char_ptr) *
4462 default_make_symbol_completion_list_break_on (const char *text,
4463 const char *word,
4464 const char *break_on,
4465 enum type_code code)
4466 {
4467 /* Problem: All of the symbols have to be copied because readline
4468 frees them. I'm not going to worry about this; hopefully there
4469 won't be that many. */
4470
4471 struct symbol *sym;
4472 struct symtab *s;
4473 struct minimal_symbol *msymbol;
4474 struct objfile *objfile;
4475 const struct block *b;
4476 const struct block *surrounding_static_block, *surrounding_global_block;
4477 struct block_iterator iter;
4478 /* The symbol we are completing on. Points in same buffer as text. */
4479 const char *sym_text;
4480 /* Length of sym_text. */
4481 int sym_text_len;
4482 struct add_name_data datum;
4483 struct cleanup *back_to;
4484
4485 /* Now look for the symbol we are supposed to complete on. */
4486 {
4487 const char *p;
4488 char quote_found;
4489 const char *quote_pos = NULL;
4490
4491 /* First see if this is a quoted string. */
4492 quote_found = '\0';
4493 for (p = text; *p != '\0'; ++p)
4494 {
4495 if (quote_found != '\0')
4496 {
4497 if (*p == quote_found)
4498 /* Found close quote. */
4499 quote_found = '\0';
4500 else if (*p == '\\' && p[1] == quote_found)
4501 /* A backslash followed by the quote character
4502 doesn't end the string. */
4503 ++p;
4504 }
4505 else if (*p == '\'' || *p == '"')
4506 {
4507 quote_found = *p;
4508 quote_pos = p;
4509 }
4510 }
4511 if (quote_found == '\'')
4512 /* A string within single quotes can be a symbol, so complete on it. */
4513 sym_text = quote_pos + 1;
4514 else if (quote_found == '"')
4515 /* A double-quoted string is never a symbol, nor does it make sense
4516 to complete it any other way. */
4517 {
4518 return NULL;
4519 }
4520 else
4521 {
4522 /* It is not a quoted string. Break it based on the characters
4523 which are in symbols. */
4524 while (p > text)
4525 {
4526 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4527 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4528 --p;
4529 else
4530 break;
4531 }
4532 sym_text = p;
4533 }
4534 }
4535
4536 sym_text_len = strlen (sym_text);
4537
4538 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4539
4540 if (current_language->la_language == language_cplus
4541 || current_language->la_language == language_java
4542 || current_language->la_language == language_fortran)
4543 {
4544 /* These languages may have parameters entered by user but they are never
4545 present in the partial symbol tables. */
4546
4547 const char *cs = memchr (sym_text, '(', sym_text_len);
4548
4549 if (cs)
4550 sym_text_len = cs - sym_text;
4551 }
4552 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4553
4554 return_val = NULL;
4555 back_to = make_cleanup (do_free_completion_list, &return_val);
4556
4557 datum.sym_text = sym_text;
4558 datum.sym_text_len = sym_text_len;
4559 datum.text = text;
4560 datum.word = word;
4561
4562 /* Look through the partial symtabs for all symbols which begin
4563 by matching SYM_TEXT. Expand all CUs that you find to the list.
4564 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4565 expand_symtabs_matching (NULL, symbol_completion_matcher, ALL_DOMAIN,
4566 &datum);
4567
4568 /* At this point scan through the misc symbol vectors and add each
4569 symbol you find to the list. Eventually we want to ignore
4570 anything that isn't a text symbol (everything else will be
4571 handled by the psymtab code above). */
4572
4573 if (code == TYPE_CODE_UNDEF)
4574 {
4575 ALL_MSYMBOLS (objfile, msymbol)
4576 {
4577 QUIT;
4578 MCOMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
4579 word);
4580
4581 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
4582 word);
4583 }
4584 }
4585
4586 /* Search upwards from currently selected frame (so that we can
4587 complete on local vars). Also catch fields of types defined in
4588 this places which match our text string. Only complete on types
4589 visible from current context. */
4590
4591 b = get_selected_block (0);
4592 surrounding_static_block = block_static_block (b);
4593 surrounding_global_block = block_global_block (b);
4594 if (surrounding_static_block != NULL)
4595 while (b != surrounding_static_block)
4596 {
4597 QUIT;
4598
4599 ALL_BLOCK_SYMBOLS (b, iter, sym)
4600 {
4601 if (code == TYPE_CODE_UNDEF)
4602 {
4603 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4604 word);
4605 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4606 word);
4607 }
4608 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4609 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
4610 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4611 word);
4612 }
4613
4614 /* Stop when we encounter an enclosing function. Do not stop for
4615 non-inlined functions - the locals of the enclosing function
4616 are in scope for a nested function. */
4617 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4618 break;
4619 b = BLOCK_SUPERBLOCK (b);
4620 }
4621
4622 /* Add fields from the file's types; symbols will be added below. */
4623
4624 if (code == TYPE_CODE_UNDEF)
4625 {
4626 if (surrounding_static_block != NULL)
4627 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4628 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4629
4630 if (surrounding_global_block != NULL)
4631 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4632 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4633 }
4634
4635 /* Go through the symtabs and check the externs and statics for
4636 symbols which match. */
4637
4638 ALL_PRIMARY_SYMTABS (objfile, s)
4639 {
4640 QUIT;
4641 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4642 ALL_BLOCK_SYMBOLS (b, iter, sym)
4643 {
4644 if (code == TYPE_CODE_UNDEF
4645 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4646 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4647 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4648 }
4649 }
4650
4651 ALL_PRIMARY_SYMTABS (objfile, s)
4652 {
4653 QUIT;
4654 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4655 ALL_BLOCK_SYMBOLS (b, iter, sym)
4656 {
4657 if (code == TYPE_CODE_UNDEF
4658 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4659 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4660 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4661 }
4662 }
4663
4664 /* Skip macros if we are completing a struct tag -- arguable but
4665 usually what is expected. */
4666 if (current_language->la_macro_expansion == macro_expansion_c
4667 && code == TYPE_CODE_UNDEF)
4668 {
4669 struct macro_scope *scope;
4670
4671 /* Add any macros visible in the default scope. Note that this
4672 may yield the occasional wrong result, because an expression
4673 might be evaluated in a scope other than the default. For
4674 example, if the user types "break file:line if <TAB>", the
4675 resulting expression will be evaluated at "file:line" -- but
4676 at there does not seem to be a way to detect this at
4677 completion time. */
4678 scope = default_macro_scope ();
4679 if (scope)
4680 {
4681 macro_for_each_in_scope (scope->file, scope->line,
4682 add_macro_name, &datum);
4683 xfree (scope);
4684 }
4685
4686 /* User-defined macros are always visible. */
4687 macro_for_each (macro_user_macros, add_macro_name, &datum);
4688 }
4689
4690 discard_cleanups (back_to);
4691 return (return_val);
4692 }
4693
4694 VEC (char_ptr) *
4695 default_make_symbol_completion_list (const char *text, const char *word,
4696 enum type_code code)
4697 {
4698 return default_make_symbol_completion_list_break_on (text, word, "", code);
4699 }
4700
4701 /* Return a vector of all symbols (regardless of class) which begin by
4702 matching TEXT. If the answer is no symbols, then the return value
4703 is NULL. */
4704
4705 VEC (char_ptr) *
4706 make_symbol_completion_list (const char *text, const char *word)
4707 {
4708 return current_language->la_make_symbol_completion_list (text, word,
4709 TYPE_CODE_UNDEF);
4710 }
4711
4712 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
4713 symbols whose type code is CODE. */
4714
4715 VEC (char_ptr) *
4716 make_symbol_completion_type (const char *text, const char *word,
4717 enum type_code code)
4718 {
4719 gdb_assert (code == TYPE_CODE_UNION
4720 || code == TYPE_CODE_STRUCT
4721 || code == TYPE_CODE_CLASS
4722 || code == TYPE_CODE_ENUM);
4723 return current_language->la_make_symbol_completion_list (text, word, code);
4724 }
4725
4726 /* Like make_symbol_completion_list, but suitable for use as a
4727 completion function. */
4728
4729 VEC (char_ptr) *
4730 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4731 const char *text, const char *word)
4732 {
4733 return make_symbol_completion_list (text, word);
4734 }
4735
4736 /* Like make_symbol_completion_list, but returns a list of symbols
4737 defined in a source file FILE. */
4738
4739 VEC (char_ptr) *
4740 make_file_symbol_completion_list (const char *text, const char *word,
4741 const char *srcfile)
4742 {
4743 struct symbol *sym;
4744 struct symtab *s;
4745 struct block *b;
4746 struct block_iterator iter;
4747 /* The symbol we are completing on. Points in same buffer as text. */
4748 const char *sym_text;
4749 /* Length of sym_text. */
4750 int sym_text_len;
4751
4752 /* Now look for the symbol we are supposed to complete on.
4753 FIXME: This should be language-specific. */
4754 {
4755 const char *p;
4756 char quote_found;
4757 const char *quote_pos = NULL;
4758
4759 /* First see if this is a quoted string. */
4760 quote_found = '\0';
4761 for (p = text; *p != '\0'; ++p)
4762 {
4763 if (quote_found != '\0')
4764 {
4765 if (*p == quote_found)
4766 /* Found close quote. */
4767 quote_found = '\0';
4768 else if (*p == '\\' && p[1] == quote_found)
4769 /* A backslash followed by the quote character
4770 doesn't end the string. */
4771 ++p;
4772 }
4773 else if (*p == '\'' || *p == '"')
4774 {
4775 quote_found = *p;
4776 quote_pos = p;
4777 }
4778 }
4779 if (quote_found == '\'')
4780 /* A string within single quotes can be a symbol, so complete on it. */
4781 sym_text = quote_pos + 1;
4782 else if (quote_found == '"')
4783 /* A double-quoted string is never a symbol, nor does it make sense
4784 to complete it any other way. */
4785 {
4786 return NULL;
4787 }
4788 else
4789 {
4790 /* Not a quoted string. */
4791 sym_text = language_search_unquoted_string (text, p);
4792 }
4793 }
4794
4795 sym_text_len = strlen (sym_text);
4796
4797 return_val = NULL;
4798
4799 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4800 in). */
4801 s = lookup_symtab (srcfile);
4802 if (s == NULL)
4803 {
4804 /* Maybe they typed the file with leading directories, while the
4805 symbol tables record only its basename. */
4806 const char *tail = lbasename (srcfile);
4807
4808 if (tail > srcfile)
4809 s = lookup_symtab (tail);
4810 }
4811
4812 /* If we have no symtab for that file, return an empty list. */
4813 if (s == NULL)
4814 return (return_val);
4815
4816 /* Go through this symtab and check the externs and statics for
4817 symbols which match. */
4818
4819 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4820 ALL_BLOCK_SYMBOLS (b, iter, sym)
4821 {
4822 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4823 }
4824
4825 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4826 ALL_BLOCK_SYMBOLS (b, iter, sym)
4827 {
4828 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4829 }
4830
4831 return (return_val);
4832 }
4833
4834 /* A helper function for make_source_files_completion_list. It adds
4835 another file name to a list of possible completions, growing the
4836 list as necessary. */
4837
4838 static void
4839 add_filename_to_list (const char *fname, const char *text, const char *word,
4840 VEC (char_ptr) **list)
4841 {
4842 char *new;
4843 size_t fnlen = strlen (fname);
4844
4845 if (word == text)
4846 {
4847 /* Return exactly fname. */
4848 new = xmalloc (fnlen + 5);
4849 strcpy (new, fname);
4850 }
4851 else if (word > text)
4852 {
4853 /* Return some portion of fname. */
4854 new = xmalloc (fnlen + 5);
4855 strcpy (new, fname + (word - text));
4856 }
4857 else
4858 {
4859 /* Return some of TEXT plus fname. */
4860 new = xmalloc (fnlen + (text - word) + 5);
4861 strncpy (new, word, text - word);
4862 new[text - word] = '\0';
4863 strcat (new, fname);
4864 }
4865 VEC_safe_push (char_ptr, *list, new);
4866 }
4867
4868 static int
4869 not_interesting_fname (const char *fname)
4870 {
4871 static const char *illegal_aliens[] = {
4872 "_globals_", /* inserted by coff_symtab_read */
4873 NULL
4874 };
4875 int i;
4876
4877 for (i = 0; illegal_aliens[i]; i++)
4878 {
4879 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4880 return 1;
4881 }
4882 return 0;
4883 }
4884
4885 /* An object of this type is passed as the user_data argument to
4886 map_partial_symbol_filenames. */
4887 struct add_partial_filename_data
4888 {
4889 struct filename_seen_cache *filename_seen_cache;
4890 const char *text;
4891 const char *word;
4892 int text_len;
4893 VEC (char_ptr) **list;
4894 };
4895
4896 /* A callback for map_partial_symbol_filenames. */
4897
4898 static void
4899 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4900 void *user_data)
4901 {
4902 struct add_partial_filename_data *data = user_data;
4903
4904 if (not_interesting_fname (filename))
4905 return;
4906 if (!filename_seen (data->filename_seen_cache, filename, 1)
4907 && filename_ncmp (filename, data->text, data->text_len) == 0)
4908 {
4909 /* This file matches for a completion; add it to the
4910 current list of matches. */
4911 add_filename_to_list (filename, data->text, data->word, data->list);
4912 }
4913 else
4914 {
4915 const char *base_name = lbasename (filename);
4916
4917 if (base_name != filename
4918 && !filename_seen (data->filename_seen_cache, base_name, 1)
4919 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4920 add_filename_to_list (base_name, data->text, data->word, data->list);
4921 }
4922 }
4923
4924 /* Return a vector of all source files whose names begin with matching
4925 TEXT. The file names are looked up in the symbol tables of this
4926 program. If the answer is no matchess, then the return value is
4927 NULL. */
4928
4929 VEC (char_ptr) *
4930 make_source_files_completion_list (const char *text, const char *word)
4931 {
4932 struct symtab *s;
4933 struct objfile *objfile;
4934 size_t text_len = strlen (text);
4935 VEC (char_ptr) *list = NULL;
4936 const char *base_name;
4937 struct add_partial_filename_data datum;
4938 struct filename_seen_cache *filename_seen_cache;
4939 struct cleanup *back_to, *cache_cleanup;
4940
4941 if (!have_full_symbols () && !have_partial_symbols ())
4942 return list;
4943
4944 back_to = make_cleanup (do_free_completion_list, &list);
4945
4946 filename_seen_cache = create_filename_seen_cache ();
4947 cache_cleanup = make_cleanup (delete_filename_seen_cache,
4948 filename_seen_cache);
4949
4950 ALL_SYMTABS (objfile, s)
4951 {
4952 if (not_interesting_fname (s->filename))
4953 continue;
4954 if (!filename_seen (filename_seen_cache, s->filename, 1)
4955 && filename_ncmp (s->filename, text, text_len) == 0)
4956 {
4957 /* This file matches for a completion; add it to the current
4958 list of matches. */
4959 add_filename_to_list (s->filename, text, word, &list);
4960 }
4961 else
4962 {
4963 /* NOTE: We allow the user to type a base name when the
4964 debug info records leading directories, but not the other
4965 way around. This is what subroutines of breakpoint
4966 command do when they parse file names. */
4967 base_name = lbasename (s->filename);
4968 if (base_name != s->filename
4969 && !filename_seen (filename_seen_cache, base_name, 1)
4970 && filename_ncmp (base_name, text, text_len) == 0)
4971 add_filename_to_list (base_name, text, word, &list);
4972 }
4973 }
4974
4975 datum.filename_seen_cache = filename_seen_cache;
4976 datum.text = text;
4977 datum.word = word;
4978 datum.text_len = text_len;
4979 datum.list = &list;
4980 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4981 0 /*need_fullname*/);
4982
4983 do_cleanups (cache_cleanup);
4984 discard_cleanups (back_to);
4985
4986 return list;
4987 }
4988 \f
4989 /* Track MAIN */
4990
4991 /* Return the "main_info" object for the current program space. If
4992 the object has not yet been created, create it and fill in some
4993 default values. */
4994
4995 static struct main_info *
4996 get_main_info (void)
4997 {
4998 struct main_info *info = program_space_data (current_program_space,
4999 main_progspace_key);
5000
5001 if (info == NULL)
5002 {
5003 /* It may seem strange to store the main name in the progspace
5004 and also in whatever objfile happens to see a main name in
5005 its debug info. The reason for this is mainly historical:
5006 gdb returned "main" as the name even if no function named
5007 "main" was defined the program; and this approach lets us
5008 keep compatibility. */
5009 info = XCNEW (struct main_info);
5010 info->language_of_main = language_unknown;
5011 set_program_space_data (current_program_space, main_progspace_key,
5012 info);
5013 }
5014
5015 return info;
5016 }
5017
5018 /* A cleanup to destroy a struct main_info when a progspace is
5019 destroyed. */
5020
5021 static void
5022 main_info_cleanup (struct program_space *pspace, void *data)
5023 {
5024 struct main_info *info = data;
5025
5026 if (info != NULL)
5027 xfree (info->name_of_main);
5028 xfree (info);
5029 }
5030
5031 static void
5032 set_main_name (const char *name, enum language lang)
5033 {
5034 struct main_info *info = get_main_info ();
5035
5036 if (info->name_of_main != NULL)
5037 {
5038 xfree (info->name_of_main);
5039 info->name_of_main = NULL;
5040 info->language_of_main = language_unknown;
5041 }
5042 if (name != NULL)
5043 {
5044 info->name_of_main = xstrdup (name);
5045 info->language_of_main = lang;
5046 }
5047 }
5048
5049 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5050 accordingly. */
5051
5052 static void
5053 find_main_name (void)
5054 {
5055 const char *new_main_name;
5056 struct objfile *objfile;
5057
5058 /* First check the objfiles to see whether a debuginfo reader has
5059 picked up the appropriate main name. Historically the main name
5060 was found in a more or less random way; this approach instead
5061 relies on the order of objfile creation -- which still isn't
5062 guaranteed to get the correct answer, but is just probably more
5063 accurate. */
5064 ALL_OBJFILES (objfile)
5065 {
5066 if (objfile->per_bfd->name_of_main != NULL)
5067 {
5068 set_main_name (objfile->per_bfd->name_of_main,
5069 objfile->per_bfd->language_of_main);
5070 return;
5071 }
5072 }
5073
5074 /* Try to see if the main procedure is in Ada. */
5075 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5076 be to add a new method in the language vector, and call this
5077 method for each language until one of them returns a non-empty
5078 name. This would allow us to remove this hard-coded call to
5079 an Ada function. It is not clear that this is a better approach
5080 at this point, because all methods need to be written in a way
5081 such that false positives never be returned. For instance, it is
5082 important that a method does not return a wrong name for the main
5083 procedure if the main procedure is actually written in a different
5084 language. It is easy to guaranty this with Ada, since we use a
5085 special symbol generated only when the main in Ada to find the name
5086 of the main procedure. It is difficult however to see how this can
5087 be guarantied for languages such as C, for instance. This suggests
5088 that order of call for these methods becomes important, which means
5089 a more complicated approach. */
5090 new_main_name = ada_main_name ();
5091 if (new_main_name != NULL)
5092 {
5093 set_main_name (new_main_name, language_ada);
5094 return;
5095 }
5096
5097 new_main_name = d_main_name ();
5098 if (new_main_name != NULL)
5099 {
5100 set_main_name (new_main_name, language_d);
5101 return;
5102 }
5103
5104 new_main_name = go_main_name ();
5105 if (new_main_name != NULL)
5106 {
5107 set_main_name (new_main_name, language_go);
5108 return;
5109 }
5110
5111 new_main_name = pascal_main_name ();
5112 if (new_main_name != NULL)
5113 {
5114 set_main_name (new_main_name, language_pascal);
5115 return;
5116 }
5117
5118 /* The languages above didn't identify the name of the main procedure.
5119 Fallback to "main". */
5120 set_main_name ("main", language_unknown);
5121 }
5122
5123 char *
5124 main_name (void)
5125 {
5126 struct main_info *info = get_main_info ();
5127
5128 if (info->name_of_main == NULL)
5129 find_main_name ();
5130
5131 return info->name_of_main;
5132 }
5133
5134 /* Return the language of the main function. If it is not known,
5135 return language_unknown. */
5136
5137 enum language
5138 main_language (void)
5139 {
5140 struct main_info *info = get_main_info ();
5141
5142 if (info->name_of_main == NULL)
5143 find_main_name ();
5144
5145 return info->language_of_main;
5146 }
5147
5148 /* Handle ``executable_changed'' events for the symtab module. */
5149
5150 static void
5151 symtab_observer_executable_changed (void)
5152 {
5153 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5154 set_main_name (NULL, language_unknown);
5155 }
5156
5157 /* Return 1 if the supplied producer string matches the ARM RealView
5158 compiler (armcc). */
5159
5160 int
5161 producer_is_realview (const char *producer)
5162 {
5163 static const char *const arm_idents[] = {
5164 "ARM C Compiler, ADS",
5165 "Thumb C Compiler, ADS",
5166 "ARM C++ Compiler, ADS",
5167 "Thumb C++ Compiler, ADS",
5168 "ARM/Thumb C/C++ Compiler, RVCT",
5169 "ARM C/C++ Compiler, RVCT"
5170 };
5171 int i;
5172
5173 if (producer == NULL)
5174 return 0;
5175
5176 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5177 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
5178 return 1;
5179
5180 return 0;
5181 }
5182
5183 \f
5184
5185 /* The next index to hand out in response to a registration request. */
5186
5187 static int next_aclass_value = LOC_FINAL_VALUE;
5188
5189 /* The maximum number of "aclass" registrations we support. This is
5190 constant for convenience. */
5191 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5192
5193 /* The objects representing the various "aclass" values. The elements
5194 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5195 elements are those registered at gdb initialization time. */
5196
5197 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5198
5199 /* The globally visible pointer. This is separate from 'symbol_impl'
5200 so that it can be const. */
5201
5202 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5203
5204 /* Make sure we saved enough room in struct symbol. */
5205
5206 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5207
5208 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5209 is the ops vector associated with this index. This returns the new
5210 index, which should be used as the aclass_index field for symbols
5211 of this type. */
5212
5213 int
5214 register_symbol_computed_impl (enum address_class aclass,
5215 const struct symbol_computed_ops *ops)
5216 {
5217 int result = next_aclass_value++;
5218
5219 gdb_assert (aclass == LOC_COMPUTED);
5220 gdb_assert (result < MAX_SYMBOL_IMPLS);
5221 symbol_impl[result].aclass = aclass;
5222 symbol_impl[result].ops_computed = ops;
5223
5224 /* Sanity check OPS. */
5225 gdb_assert (ops != NULL);
5226 gdb_assert (ops->tracepoint_var_ref != NULL);
5227 gdb_assert (ops->describe_location != NULL);
5228 gdb_assert (ops->read_needs_frame != NULL);
5229 gdb_assert (ops->read_variable != NULL);
5230
5231 return result;
5232 }
5233
5234 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5235 OPS is the ops vector associated with this index. This returns the
5236 new index, which should be used as the aclass_index field for symbols
5237 of this type. */
5238
5239 int
5240 register_symbol_block_impl (enum address_class aclass,
5241 const struct symbol_block_ops *ops)
5242 {
5243 int result = next_aclass_value++;
5244
5245 gdb_assert (aclass == LOC_BLOCK);
5246 gdb_assert (result < MAX_SYMBOL_IMPLS);
5247 symbol_impl[result].aclass = aclass;
5248 symbol_impl[result].ops_block = ops;
5249
5250 /* Sanity check OPS. */
5251 gdb_assert (ops != NULL);
5252 gdb_assert (ops->find_frame_base_location != NULL);
5253
5254 return result;
5255 }
5256
5257 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5258 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5259 this index. This returns the new index, which should be used as
5260 the aclass_index field for symbols of this type. */
5261
5262 int
5263 register_symbol_register_impl (enum address_class aclass,
5264 const struct symbol_register_ops *ops)
5265 {
5266 int result = next_aclass_value++;
5267
5268 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5269 gdb_assert (result < MAX_SYMBOL_IMPLS);
5270 symbol_impl[result].aclass = aclass;
5271 symbol_impl[result].ops_register = ops;
5272
5273 return result;
5274 }
5275
5276 /* Initialize elements of 'symbol_impl' for the constants in enum
5277 address_class. */
5278
5279 static void
5280 initialize_ordinary_address_classes (void)
5281 {
5282 int i;
5283
5284 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5285 symbol_impl[i].aclass = i;
5286 }
5287
5288 \f
5289
5290 /* Initialize the symbol SYM. */
5291
5292 void
5293 initialize_symbol (struct symbol *sym)
5294 {
5295 memset (sym, 0, sizeof (*sym));
5296 SYMBOL_SECTION (sym) = -1;
5297 }
5298
5299 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5300 obstack. */
5301
5302 struct symbol *
5303 allocate_symbol (struct objfile *objfile)
5304 {
5305 struct symbol *result;
5306
5307 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5308 SYMBOL_SECTION (result) = -1;
5309
5310 return result;
5311 }
5312
5313 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5314 obstack. */
5315
5316 struct template_symbol *
5317 allocate_template_symbol (struct objfile *objfile)
5318 {
5319 struct template_symbol *result;
5320
5321 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5322 SYMBOL_SECTION (&result->base) = -1;
5323
5324 return result;
5325 }
5326
5327 \f
5328
5329 void
5330 _initialize_symtab (void)
5331 {
5332 initialize_ordinary_address_classes ();
5333
5334 main_progspace_key
5335 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
5336
5337 add_info ("variables", variables_info, _("\
5338 All global and static variable names, or those matching REGEXP."));
5339 if (dbx_commands)
5340 add_com ("whereis", class_info, variables_info, _("\
5341 All global and static variable names, or those matching REGEXP."));
5342
5343 add_info ("functions", functions_info,
5344 _("All function names, or those matching REGEXP."));
5345
5346 /* FIXME: This command has at least the following problems:
5347 1. It prints builtin types (in a very strange and confusing fashion).
5348 2. It doesn't print right, e.g. with
5349 typedef struct foo *FOO
5350 type_print prints "FOO" when we want to make it (in this situation)
5351 print "struct foo *".
5352 I also think "ptype" or "whatis" is more likely to be useful (but if
5353 there is much disagreement "info types" can be fixed). */
5354 add_info ("types", types_info,
5355 _("All type names, or those matching REGEXP."));
5356
5357 add_info ("sources", sources_info,
5358 _("Source files in the program."));
5359
5360 add_com ("rbreak", class_breakpoint, rbreak_command,
5361 _("Set a breakpoint for all functions matching REGEXP."));
5362
5363 if (xdb_commands)
5364 {
5365 add_com ("lf", class_info, sources_info,
5366 _("Source files in the program"));
5367 add_com ("lg", class_info, variables_info, _("\
5368 All global and static variable names, or those matching REGEXP."));
5369 }
5370
5371 add_setshow_enum_cmd ("multiple-symbols", no_class,
5372 multiple_symbols_modes, &multiple_symbols_mode,
5373 _("\
5374 Set the debugger behavior when more than one symbol are possible matches\n\
5375 in an expression."), _("\
5376 Show how the debugger handles ambiguities in expressions."), _("\
5377 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5378 NULL, NULL, &setlist, &showlist);
5379
5380 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5381 &basenames_may_differ, _("\
5382 Set whether a source file may have multiple base names."), _("\
5383 Show whether a source file may have multiple base names."), _("\
5384 (A \"base name\" is the name of a file with the directory part removed.\n\
5385 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5386 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5387 before comparing them. Canonicalization is an expensive operation,\n\
5388 but it allows the same file be known by more than one base name.\n\
5389 If not set (the default), all source files are assumed to have just\n\
5390 one base name, and gdb will do file name comparisons more efficiently."),
5391 NULL, NULL,
5392 &setlist, &showlist);
5393
5394 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
5395 _("Set debugging of symbol table creation."),
5396 _("Show debugging of symbol table creation."), _("\
5397 When enabled (non-zero), debugging messages are printed when building\n\
5398 symbol tables. A value of 1 (one) normally provides enough information.\n\
5399 A value greater than 1 provides more verbose information."),
5400 NULL,
5401 NULL,
5402 &setdebuglist, &showdebuglist);
5403
5404 observer_attach_executable_changed (symtab_observer_executable_changed);
5405 }