]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/symtab.c
(lookup_global_symbol_from_objfile): Simplify.
[thirdparty/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <sys/stat.h>
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observer.h"
58 #include "solist.h"
59 #include "macrotab.h"
60 #include "macroscope.h"
61
62 #include "parser-defs.h"
63
64 /* Forward declarations for local functions. */
65
66 static void rbreak_command (char *, int);
67
68 static int find_line_common (struct linetable *, int, int *, int);
69
70 static struct symbol *lookup_symbol_aux (const char *name,
71 const struct block *block,
72 const domain_enum domain,
73 enum language language,
74 struct field_of_this_result *);
75
76 static
77 struct symbol *lookup_local_symbol (const char *name,
78 const struct block *block,
79 const domain_enum domain,
80 enum language language);
81
82 static struct symbol *
83 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
84 const char *name, const domain_enum domain);
85
86 extern initialize_file_ftype _initialize_symtab;
87
88 /* Program space key for finding name and language of "main". */
89
90 static const struct program_space_data *main_progspace_key;
91
92 /* Type of the data stored on the program space. */
93
94 struct main_info
95 {
96 /* Name of "main". */
97
98 char *name_of_main;
99
100 /* Language of "main". */
101
102 enum language language_of_main;
103 };
104
105 /* When non-zero, print debugging messages related to symtab creation. */
106 unsigned int symtab_create_debug = 0;
107
108 /* Non-zero if a file may be known by two different basenames.
109 This is the uncommon case, and significantly slows down gdb.
110 Default set to "off" to not slow down the common case. */
111 int basenames_may_differ = 0;
112
113 /* Allow the user to configure the debugger behavior with respect
114 to multiple-choice menus when more than one symbol matches during
115 a symbol lookup. */
116
117 const char multiple_symbols_ask[] = "ask";
118 const char multiple_symbols_all[] = "all";
119 const char multiple_symbols_cancel[] = "cancel";
120 static const char *const multiple_symbols_modes[] =
121 {
122 multiple_symbols_ask,
123 multiple_symbols_all,
124 multiple_symbols_cancel,
125 NULL
126 };
127 static const char *multiple_symbols_mode = multiple_symbols_all;
128
129 /* Read-only accessor to AUTO_SELECT_MODE. */
130
131 const char *
132 multiple_symbols_select_mode (void)
133 {
134 return multiple_symbols_mode;
135 }
136
137 /* Block in which the most recently searched-for symbol was found.
138 Might be better to make this a parameter to lookup_symbol and
139 value_of_this. */
140
141 const struct block *block_found;
142
143 /* Return the name of a domain_enum. */
144
145 const char *
146 domain_name (domain_enum e)
147 {
148 switch (e)
149 {
150 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
151 case VAR_DOMAIN: return "VAR_DOMAIN";
152 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
153 case MODULE_DOMAIN: return "MODULE_DOMAIN";
154 case LABEL_DOMAIN: return "LABEL_DOMAIN";
155 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
156 default: gdb_assert_not_reached ("bad domain_enum");
157 }
158 }
159
160 /* Return the name of a search_domain . */
161
162 const char *
163 search_domain_name (enum search_domain e)
164 {
165 switch (e)
166 {
167 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
168 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
169 case TYPES_DOMAIN: return "TYPES_DOMAIN";
170 case ALL_DOMAIN: return "ALL_DOMAIN";
171 default: gdb_assert_not_reached ("bad search_domain");
172 }
173 }
174
175 /* See symtab.h. */
176
177 struct symtab *
178 compunit_primary_filetab (const struct compunit_symtab *cust)
179 {
180 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
181
182 /* The primary file symtab is the first one in the list. */
183 return COMPUNIT_FILETABS (cust);
184 }
185
186 /* See symtab.h. */
187
188 enum language
189 compunit_language (const struct compunit_symtab *cust)
190 {
191 struct symtab *symtab = compunit_primary_filetab (cust);
192
193 /* The language of the compunit symtab is the language of its primary
194 source file. */
195 return SYMTAB_LANGUAGE (symtab);
196 }
197
198 /* See whether FILENAME matches SEARCH_NAME using the rule that we
199 advertise to the user. (The manual's description of linespecs
200 describes what we advertise). Returns true if they match, false
201 otherwise. */
202
203 int
204 compare_filenames_for_search (const char *filename, const char *search_name)
205 {
206 int len = strlen (filename);
207 size_t search_len = strlen (search_name);
208
209 if (len < search_len)
210 return 0;
211
212 /* The tail of FILENAME must match. */
213 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
214 return 0;
215
216 /* Either the names must completely match, or the character
217 preceding the trailing SEARCH_NAME segment of FILENAME must be a
218 directory separator.
219
220 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
221 cannot match FILENAME "/path//dir/file.c" - as user has requested
222 absolute path. The sama applies for "c:\file.c" possibly
223 incorrectly hypothetically matching "d:\dir\c:\file.c".
224
225 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
226 compatible with SEARCH_NAME "file.c". In such case a compiler had
227 to put the "c:file.c" name into debug info. Such compatibility
228 works only on GDB built for DOS host. */
229 return (len == search_len
230 || (!IS_ABSOLUTE_PATH (search_name)
231 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
232 || (HAS_DRIVE_SPEC (filename)
233 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
234 }
235
236 /* Check for a symtab of a specific name by searching some symtabs.
237 This is a helper function for callbacks of iterate_over_symtabs.
238
239 If NAME is not absolute, then REAL_PATH is NULL
240 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
241
242 The return value, NAME, REAL_PATH, CALLBACK, and DATA
243 are identical to the `map_symtabs_matching_filename' method of
244 quick_symbol_functions.
245
246 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
247 Each symtab within the specified compunit symtab is also searched.
248 AFTER_LAST is one past the last compunit symtab to search; NULL means to
249 search until the end of the list. */
250
251 int
252 iterate_over_some_symtabs (const char *name,
253 const char *real_path,
254 int (*callback) (struct symtab *symtab,
255 void *data),
256 void *data,
257 struct compunit_symtab *first,
258 struct compunit_symtab *after_last)
259 {
260 struct compunit_symtab *cust;
261 struct symtab *s;
262 const char* base_name = lbasename (name);
263
264 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
265 {
266 ALL_COMPUNIT_FILETABS (cust, s)
267 {
268 if (compare_filenames_for_search (s->filename, name))
269 {
270 if (callback (s, data))
271 return 1;
272 continue;
273 }
274
275 /* Before we invoke realpath, which can get expensive when many
276 files are involved, do a quick comparison of the basenames. */
277 if (! basenames_may_differ
278 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
279 continue;
280
281 if (compare_filenames_for_search (symtab_to_fullname (s), name))
282 {
283 if (callback (s, data))
284 return 1;
285 continue;
286 }
287
288 /* If the user gave us an absolute path, try to find the file in
289 this symtab and use its absolute path. */
290 if (real_path != NULL)
291 {
292 const char *fullname = symtab_to_fullname (s);
293
294 gdb_assert (IS_ABSOLUTE_PATH (real_path));
295 gdb_assert (IS_ABSOLUTE_PATH (name));
296 if (FILENAME_CMP (real_path, fullname) == 0)
297 {
298 if (callback (s, data))
299 return 1;
300 continue;
301 }
302 }
303 }
304 }
305
306 return 0;
307 }
308
309 /* Check for a symtab of a specific name; first in symtabs, then in
310 psymtabs. *If* there is no '/' in the name, a match after a '/'
311 in the symtab filename will also work.
312
313 Calls CALLBACK with each symtab that is found and with the supplied
314 DATA. If CALLBACK returns true, the search stops. */
315
316 void
317 iterate_over_symtabs (const char *name,
318 int (*callback) (struct symtab *symtab,
319 void *data),
320 void *data)
321 {
322 struct objfile *objfile;
323 char *real_path = NULL;
324 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
325
326 /* Here we are interested in canonicalizing an absolute path, not
327 absolutizing a relative path. */
328 if (IS_ABSOLUTE_PATH (name))
329 {
330 real_path = gdb_realpath (name);
331 make_cleanup (xfree, real_path);
332 gdb_assert (IS_ABSOLUTE_PATH (real_path));
333 }
334
335 ALL_OBJFILES (objfile)
336 {
337 if (iterate_over_some_symtabs (name, real_path, callback, data,
338 objfile->compunit_symtabs, NULL))
339 {
340 do_cleanups (cleanups);
341 return;
342 }
343 }
344
345 /* Same search rules as above apply here, but now we look thru the
346 psymtabs. */
347
348 ALL_OBJFILES (objfile)
349 {
350 if (objfile->sf
351 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
352 name,
353 real_path,
354 callback,
355 data))
356 {
357 do_cleanups (cleanups);
358 return;
359 }
360 }
361
362 do_cleanups (cleanups);
363 }
364
365 /* The callback function used by lookup_symtab. */
366
367 static int
368 lookup_symtab_callback (struct symtab *symtab, void *data)
369 {
370 struct symtab **result_ptr = data;
371
372 *result_ptr = symtab;
373 return 1;
374 }
375
376 /* A wrapper for iterate_over_symtabs that returns the first matching
377 symtab, or NULL. */
378
379 struct symtab *
380 lookup_symtab (const char *name)
381 {
382 struct symtab *result = NULL;
383
384 iterate_over_symtabs (name, lookup_symtab_callback, &result);
385 return result;
386 }
387
388 \f
389 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
390 full method name, which consist of the class name (from T), the unadorned
391 method name from METHOD_ID, and the signature for the specific overload,
392 specified by SIGNATURE_ID. Note that this function is g++ specific. */
393
394 char *
395 gdb_mangle_name (struct type *type, int method_id, int signature_id)
396 {
397 int mangled_name_len;
398 char *mangled_name;
399 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
400 struct fn_field *method = &f[signature_id];
401 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
402 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
403 const char *newname = type_name_no_tag (type);
404
405 /* Does the form of physname indicate that it is the full mangled name
406 of a constructor (not just the args)? */
407 int is_full_physname_constructor;
408
409 int is_constructor;
410 int is_destructor = is_destructor_name (physname);
411 /* Need a new type prefix. */
412 char *const_prefix = method->is_const ? "C" : "";
413 char *volatile_prefix = method->is_volatile ? "V" : "";
414 char buf[20];
415 int len = (newname == NULL ? 0 : strlen (newname));
416
417 /* Nothing to do if physname already contains a fully mangled v3 abi name
418 or an operator name. */
419 if ((physname[0] == '_' && physname[1] == 'Z')
420 || is_operator_name (field_name))
421 return xstrdup (physname);
422
423 is_full_physname_constructor = is_constructor_name (physname);
424
425 is_constructor = is_full_physname_constructor
426 || (newname && strcmp (field_name, newname) == 0);
427
428 if (!is_destructor)
429 is_destructor = (strncmp (physname, "__dt", 4) == 0);
430
431 if (is_destructor || is_full_physname_constructor)
432 {
433 mangled_name = (char *) xmalloc (strlen (physname) + 1);
434 strcpy (mangled_name, physname);
435 return mangled_name;
436 }
437
438 if (len == 0)
439 {
440 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
441 }
442 else if (physname[0] == 't' || physname[0] == 'Q')
443 {
444 /* The physname for template and qualified methods already includes
445 the class name. */
446 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
447 newname = NULL;
448 len = 0;
449 }
450 else
451 {
452 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
453 volatile_prefix, len);
454 }
455 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
456 + strlen (buf) + len + strlen (physname) + 1);
457
458 mangled_name = (char *) xmalloc (mangled_name_len);
459 if (is_constructor)
460 mangled_name[0] = '\0';
461 else
462 strcpy (mangled_name, field_name);
463
464 strcat (mangled_name, buf);
465 /* If the class doesn't have a name, i.e. newname NULL, then we just
466 mangle it using 0 for the length of the class. Thus it gets mangled
467 as something starting with `::' rather than `classname::'. */
468 if (newname != NULL)
469 strcat (mangled_name, newname);
470
471 strcat (mangled_name, physname);
472 return (mangled_name);
473 }
474
475 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
476 correctly allocated. */
477
478 void
479 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
480 const char *name,
481 struct obstack *obstack)
482 {
483 if (gsymbol->language == language_ada)
484 {
485 if (name == NULL)
486 {
487 gsymbol->ada_mangled = 0;
488 gsymbol->language_specific.obstack = obstack;
489 }
490 else
491 {
492 gsymbol->ada_mangled = 1;
493 gsymbol->language_specific.mangled_lang.demangled_name = name;
494 }
495 }
496 else
497 gsymbol->language_specific.mangled_lang.demangled_name = name;
498 }
499
500 /* Return the demangled name of GSYMBOL. */
501
502 const char *
503 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
504 {
505 if (gsymbol->language == language_ada)
506 {
507 if (!gsymbol->ada_mangled)
508 return NULL;
509 /* Fall through. */
510 }
511
512 return gsymbol->language_specific.mangled_lang.demangled_name;
513 }
514
515 \f
516 /* Initialize the language dependent portion of a symbol
517 depending upon the language for the symbol. */
518
519 void
520 symbol_set_language (struct general_symbol_info *gsymbol,
521 enum language language,
522 struct obstack *obstack)
523 {
524 gsymbol->language = language;
525 if (gsymbol->language == language_cplus
526 || gsymbol->language == language_d
527 || gsymbol->language == language_go
528 || gsymbol->language == language_java
529 || gsymbol->language == language_objc
530 || gsymbol->language == language_fortran)
531 {
532 symbol_set_demangled_name (gsymbol, NULL, obstack);
533 }
534 else if (gsymbol->language == language_ada)
535 {
536 gdb_assert (gsymbol->ada_mangled == 0);
537 gsymbol->language_specific.obstack = obstack;
538 }
539 else
540 {
541 memset (&gsymbol->language_specific, 0,
542 sizeof (gsymbol->language_specific));
543 }
544 }
545
546 /* Functions to initialize a symbol's mangled name. */
547
548 /* Objects of this type are stored in the demangled name hash table. */
549 struct demangled_name_entry
550 {
551 const char *mangled;
552 char demangled[1];
553 };
554
555 /* Hash function for the demangled name hash. */
556
557 static hashval_t
558 hash_demangled_name_entry (const void *data)
559 {
560 const struct demangled_name_entry *e = data;
561
562 return htab_hash_string (e->mangled);
563 }
564
565 /* Equality function for the demangled name hash. */
566
567 static int
568 eq_demangled_name_entry (const void *a, const void *b)
569 {
570 const struct demangled_name_entry *da = a;
571 const struct demangled_name_entry *db = b;
572
573 return strcmp (da->mangled, db->mangled) == 0;
574 }
575
576 /* Create the hash table used for demangled names. Each hash entry is
577 a pair of strings; one for the mangled name and one for the demangled
578 name. The entry is hashed via just the mangled name. */
579
580 static void
581 create_demangled_names_hash (struct objfile *objfile)
582 {
583 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
584 The hash table code will round this up to the next prime number.
585 Choosing a much larger table size wastes memory, and saves only about
586 1% in symbol reading. */
587
588 objfile->per_bfd->demangled_names_hash = htab_create_alloc
589 (256, hash_demangled_name_entry, eq_demangled_name_entry,
590 NULL, xcalloc, xfree);
591 }
592
593 /* Try to determine the demangled name for a symbol, based on the
594 language of that symbol. If the language is set to language_auto,
595 it will attempt to find any demangling algorithm that works and
596 then set the language appropriately. The returned name is allocated
597 by the demangler and should be xfree'd. */
598
599 static char *
600 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
601 const char *mangled)
602 {
603 char *demangled = NULL;
604
605 if (gsymbol->language == language_unknown)
606 gsymbol->language = language_auto;
607
608 if (gsymbol->language == language_objc
609 || gsymbol->language == language_auto)
610 {
611 demangled =
612 objc_demangle (mangled, 0);
613 if (demangled != NULL)
614 {
615 gsymbol->language = language_objc;
616 return demangled;
617 }
618 }
619 if (gsymbol->language == language_cplus
620 || gsymbol->language == language_auto)
621 {
622 demangled =
623 gdb_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
624 if (demangled != NULL)
625 {
626 gsymbol->language = language_cplus;
627 return demangled;
628 }
629 }
630 if (gsymbol->language == language_java)
631 {
632 demangled =
633 gdb_demangle (mangled,
634 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
635 if (demangled != NULL)
636 {
637 gsymbol->language = language_java;
638 return demangled;
639 }
640 }
641 if (gsymbol->language == language_d
642 || gsymbol->language == language_auto)
643 {
644 demangled = d_demangle(mangled, 0);
645 if (demangled != NULL)
646 {
647 gsymbol->language = language_d;
648 return demangled;
649 }
650 }
651 /* FIXME(dje): Continually adding languages here is clumsy.
652 Better to just call la_demangle if !auto, and if auto then call
653 a utility routine that tries successive languages in turn and reports
654 which one it finds. I realize the la_demangle options may be different
655 for different languages but there's already a FIXME for that. */
656 if (gsymbol->language == language_go
657 || gsymbol->language == language_auto)
658 {
659 demangled = go_demangle (mangled, 0);
660 if (demangled != NULL)
661 {
662 gsymbol->language = language_go;
663 return demangled;
664 }
665 }
666
667 /* We could support `gsymbol->language == language_fortran' here to provide
668 module namespaces also for inferiors with only minimal symbol table (ELF
669 symbols). Just the mangling standard is not standardized across compilers
670 and there is no DW_AT_producer available for inferiors with only the ELF
671 symbols to check the mangling kind. */
672
673 /* Check for Ada symbols last. See comment below explaining why. */
674
675 if (gsymbol->language == language_auto)
676 {
677 const char *demangled = ada_decode (mangled);
678
679 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
680 {
681 /* Set the gsymbol language to Ada, but still return NULL.
682 Two reasons for that:
683
684 1. For Ada, we prefer computing the symbol's decoded name
685 on the fly rather than pre-compute it, in order to save
686 memory (Ada projects are typically very large).
687
688 2. There are some areas in the definition of the GNAT
689 encoding where, with a bit of bad luck, we might be able
690 to decode a non-Ada symbol, generating an incorrect
691 demangled name (Eg: names ending with "TB" for instance
692 are identified as task bodies and so stripped from
693 the decoded name returned).
694
695 Returning NULL, here, helps us get a little bit of
696 the best of both worlds. Because we're last, we should
697 not affect any of the other languages that were able to
698 demangle the symbol before us; we get to correctly tag
699 Ada symbols as such; and even if we incorrectly tagged
700 a non-Ada symbol, which should be rare, any routing
701 through the Ada language should be transparent (Ada
702 tries to behave much like C/C++ with non-Ada symbols). */
703 gsymbol->language = language_ada;
704 return NULL;
705 }
706 }
707
708 return NULL;
709 }
710
711 /* Set both the mangled and demangled (if any) names for GSYMBOL based
712 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
713 objfile's obstack; but if COPY_NAME is 0 and if NAME is
714 NUL-terminated, then this function assumes that NAME is already
715 correctly saved (either permanently or with a lifetime tied to the
716 objfile), and it will not be copied.
717
718 The hash table corresponding to OBJFILE is used, and the memory
719 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
720 so the pointer can be discarded after calling this function. */
721
722 /* We have to be careful when dealing with Java names: when we run
723 into a Java minimal symbol, we don't know it's a Java symbol, so it
724 gets demangled as a C++ name. This is unfortunate, but there's not
725 much we can do about it: but when demangling partial symbols and
726 regular symbols, we'd better not reuse the wrong demangled name.
727 (See PR gdb/1039.) We solve this by putting a distinctive prefix
728 on Java names when storing them in the hash table. */
729
730 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
731 don't mind the Java prefix so much: different languages have
732 different demangling requirements, so it's only natural that we
733 need to keep language data around in our demangling cache. But
734 it's not good that the minimal symbol has the wrong demangled name.
735 Unfortunately, I can't think of any easy solution to that
736 problem. */
737
738 #define JAVA_PREFIX "##JAVA$$"
739 #define JAVA_PREFIX_LEN 8
740
741 void
742 symbol_set_names (struct general_symbol_info *gsymbol,
743 const char *linkage_name, int len, int copy_name,
744 struct objfile *objfile)
745 {
746 struct demangled_name_entry **slot;
747 /* A 0-terminated copy of the linkage name. */
748 const char *linkage_name_copy;
749 /* A copy of the linkage name that might have a special Java prefix
750 added to it, for use when looking names up in the hash table. */
751 const char *lookup_name;
752 /* The length of lookup_name. */
753 int lookup_len;
754 struct demangled_name_entry entry;
755 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
756
757 if (gsymbol->language == language_ada)
758 {
759 /* In Ada, we do the symbol lookups using the mangled name, so
760 we can save some space by not storing the demangled name.
761
762 As a side note, we have also observed some overlap between
763 the C++ mangling and Ada mangling, similarly to what has
764 been observed with Java. Because we don't store the demangled
765 name with the symbol, we don't need to use the same trick
766 as Java. */
767 if (!copy_name)
768 gsymbol->name = linkage_name;
769 else
770 {
771 char *name = obstack_alloc (&per_bfd->storage_obstack, len + 1);
772
773 memcpy (name, linkage_name, len);
774 name[len] = '\0';
775 gsymbol->name = name;
776 }
777 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
778
779 return;
780 }
781
782 if (per_bfd->demangled_names_hash == NULL)
783 create_demangled_names_hash (objfile);
784
785 /* The stabs reader generally provides names that are not
786 NUL-terminated; most of the other readers don't do this, so we
787 can just use the given copy, unless we're in the Java case. */
788 if (gsymbol->language == language_java)
789 {
790 char *alloc_name;
791
792 lookup_len = len + JAVA_PREFIX_LEN;
793 alloc_name = alloca (lookup_len + 1);
794 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
795 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
796 alloc_name[lookup_len] = '\0';
797
798 lookup_name = alloc_name;
799 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
800 }
801 else if (linkage_name[len] != '\0')
802 {
803 char *alloc_name;
804
805 lookup_len = len;
806 alloc_name = alloca (lookup_len + 1);
807 memcpy (alloc_name, linkage_name, len);
808 alloc_name[lookup_len] = '\0';
809
810 lookup_name = alloc_name;
811 linkage_name_copy = alloc_name;
812 }
813 else
814 {
815 lookup_len = len;
816 lookup_name = linkage_name;
817 linkage_name_copy = linkage_name;
818 }
819
820 entry.mangled = lookup_name;
821 slot = ((struct demangled_name_entry **)
822 htab_find_slot (per_bfd->demangled_names_hash,
823 &entry, INSERT));
824
825 /* If this name is not in the hash table, add it. */
826 if (*slot == NULL
827 /* A C version of the symbol may have already snuck into the table.
828 This happens to, e.g., main.init (__go_init_main). Cope. */
829 || (gsymbol->language == language_go
830 && (*slot)->demangled[0] == '\0'))
831 {
832 char *demangled_name = symbol_find_demangled_name (gsymbol,
833 linkage_name_copy);
834 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
835
836 /* Suppose we have demangled_name==NULL, copy_name==0, and
837 lookup_name==linkage_name. In this case, we already have the
838 mangled name saved, and we don't have a demangled name. So,
839 you might think we could save a little space by not recording
840 this in the hash table at all.
841
842 It turns out that it is actually important to still save such
843 an entry in the hash table, because storing this name gives
844 us better bcache hit rates for partial symbols. */
845 if (!copy_name && lookup_name == linkage_name)
846 {
847 *slot = obstack_alloc (&per_bfd->storage_obstack,
848 offsetof (struct demangled_name_entry,
849 demangled)
850 + demangled_len + 1);
851 (*slot)->mangled = lookup_name;
852 }
853 else
854 {
855 char *mangled_ptr;
856
857 /* If we must copy the mangled name, put it directly after
858 the demangled name so we can have a single
859 allocation. */
860 *slot = obstack_alloc (&per_bfd->storage_obstack,
861 offsetof (struct demangled_name_entry,
862 demangled)
863 + lookup_len + demangled_len + 2);
864 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
865 strcpy (mangled_ptr, lookup_name);
866 (*slot)->mangled = mangled_ptr;
867 }
868
869 if (demangled_name != NULL)
870 {
871 strcpy ((*slot)->demangled, demangled_name);
872 xfree (demangled_name);
873 }
874 else
875 (*slot)->demangled[0] = '\0';
876 }
877
878 gsymbol->name = (*slot)->mangled + lookup_len - len;
879 if ((*slot)->demangled[0] != '\0')
880 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
881 &per_bfd->storage_obstack);
882 else
883 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
884 }
885
886 /* Return the source code name of a symbol. In languages where
887 demangling is necessary, this is the demangled name. */
888
889 const char *
890 symbol_natural_name (const struct general_symbol_info *gsymbol)
891 {
892 switch (gsymbol->language)
893 {
894 case language_cplus:
895 case language_d:
896 case language_go:
897 case language_java:
898 case language_objc:
899 case language_fortran:
900 if (symbol_get_demangled_name (gsymbol) != NULL)
901 return symbol_get_demangled_name (gsymbol);
902 break;
903 case language_ada:
904 return ada_decode_symbol (gsymbol);
905 default:
906 break;
907 }
908 return gsymbol->name;
909 }
910
911 /* Return the demangled name for a symbol based on the language for
912 that symbol. If no demangled name exists, return NULL. */
913
914 const char *
915 symbol_demangled_name (const struct general_symbol_info *gsymbol)
916 {
917 const char *dem_name = NULL;
918
919 switch (gsymbol->language)
920 {
921 case language_cplus:
922 case language_d:
923 case language_go:
924 case language_java:
925 case language_objc:
926 case language_fortran:
927 dem_name = symbol_get_demangled_name (gsymbol);
928 break;
929 case language_ada:
930 dem_name = ada_decode_symbol (gsymbol);
931 break;
932 default:
933 break;
934 }
935 return dem_name;
936 }
937
938 /* Return the search name of a symbol---generally the demangled or
939 linkage name of the symbol, depending on how it will be searched for.
940 If there is no distinct demangled name, then returns the same value
941 (same pointer) as SYMBOL_LINKAGE_NAME. */
942
943 const char *
944 symbol_search_name (const struct general_symbol_info *gsymbol)
945 {
946 if (gsymbol->language == language_ada)
947 return gsymbol->name;
948 else
949 return symbol_natural_name (gsymbol);
950 }
951
952 /* Initialize the structure fields to zero values. */
953
954 void
955 init_sal (struct symtab_and_line *sal)
956 {
957 memset (sal, 0, sizeof (*sal));
958 }
959 \f
960
961 /* Return 1 if the two sections are the same, or if they could
962 plausibly be copies of each other, one in an original object
963 file and another in a separated debug file. */
964
965 int
966 matching_obj_sections (struct obj_section *obj_first,
967 struct obj_section *obj_second)
968 {
969 asection *first = obj_first? obj_first->the_bfd_section : NULL;
970 asection *second = obj_second? obj_second->the_bfd_section : NULL;
971 struct objfile *obj;
972
973 /* If they're the same section, then they match. */
974 if (first == second)
975 return 1;
976
977 /* If either is NULL, give up. */
978 if (first == NULL || second == NULL)
979 return 0;
980
981 /* This doesn't apply to absolute symbols. */
982 if (first->owner == NULL || second->owner == NULL)
983 return 0;
984
985 /* If they're in the same object file, they must be different sections. */
986 if (first->owner == second->owner)
987 return 0;
988
989 /* Check whether the two sections are potentially corresponding. They must
990 have the same size, address, and name. We can't compare section indexes,
991 which would be more reliable, because some sections may have been
992 stripped. */
993 if (bfd_get_section_size (first) != bfd_get_section_size (second))
994 return 0;
995
996 /* In-memory addresses may start at a different offset, relativize them. */
997 if (bfd_get_section_vma (first->owner, first)
998 - bfd_get_start_address (first->owner)
999 != bfd_get_section_vma (second->owner, second)
1000 - bfd_get_start_address (second->owner))
1001 return 0;
1002
1003 if (bfd_get_section_name (first->owner, first) == NULL
1004 || bfd_get_section_name (second->owner, second) == NULL
1005 || strcmp (bfd_get_section_name (first->owner, first),
1006 bfd_get_section_name (second->owner, second)) != 0)
1007 return 0;
1008
1009 /* Otherwise check that they are in corresponding objfiles. */
1010
1011 ALL_OBJFILES (obj)
1012 if (obj->obfd == first->owner)
1013 break;
1014 gdb_assert (obj != NULL);
1015
1016 if (obj->separate_debug_objfile != NULL
1017 && obj->separate_debug_objfile->obfd == second->owner)
1018 return 1;
1019 if (obj->separate_debug_objfile_backlink != NULL
1020 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1021 return 1;
1022
1023 return 0;
1024 }
1025
1026 /* See symtab.h. */
1027
1028 void
1029 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1030 {
1031 struct objfile *objfile;
1032 struct bound_minimal_symbol msymbol;
1033
1034 /* If we know that this is not a text address, return failure. This is
1035 necessary because we loop based on texthigh and textlow, which do
1036 not include the data ranges. */
1037 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1038 if (msymbol.minsym
1039 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1040 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1041 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1042 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1043 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1044 return;
1045
1046 ALL_OBJFILES (objfile)
1047 {
1048 struct compunit_symtab *cust = NULL;
1049
1050 if (objfile->sf)
1051 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1052 pc, section, 0);
1053 if (cust)
1054 return;
1055 }
1056 }
1057 \f
1058 /* Debug symbols usually don't have section information. We need to dig that
1059 out of the minimal symbols and stash that in the debug symbol. */
1060
1061 void
1062 fixup_section (struct general_symbol_info *ginfo,
1063 CORE_ADDR addr, struct objfile *objfile)
1064 {
1065 struct minimal_symbol *msym;
1066
1067 /* First, check whether a minimal symbol with the same name exists
1068 and points to the same address. The address check is required
1069 e.g. on PowerPC64, where the minimal symbol for a function will
1070 point to the function descriptor, while the debug symbol will
1071 point to the actual function code. */
1072 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1073 if (msym)
1074 ginfo->section = MSYMBOL_SECTION (msym);
1075 else
1076 {
1077 /* Static, function-local variables do appear in the linker
1078 (minimal) symbols, but are frequently given names that won't
1079 be found via lookup_minimal_symbol(). E.g., it has been
1080 observed in frv-uclinux (ELF) executables that a static,
1081 function-local variable named "foo" might appear in the
1082 linker symbols as "foo.6" or "foo.3". Thus, there is no
1083 point in attempting to extend the lookup-by-name mechanism to
1084 handle this case due to the fact that there can be multiple
1085 names.
1086
1087 So, instead, search the section table when lookup by name has
1088 failed. The ``addr'' and ``endaddr'' fields may have already
1089 been relocated. If so, the relocation offset (i.e. the
1090 ANOFFSET value) needs to be subtracted from these values when
1091 performing the comparison. We unconditionally subtract it,
1092 because, when no relocation has been performed, the ANOFFSET
1093 value will simply be zero.
1094
1095 The address of the symbol whose section we're fixing up HAS
1096 NOT BEEN adjusted (relocated) yet. It can't have been since
1097 the section isn't yet known and knowing the section is
1098 necessary in order to add the correct relocation value. In
1099 other words, we wouldn't even be in this function (attempting
1100 to compute the section) if it were already known.
1101
1102 Note that it is possible to search the minimal symbols
1103 (subtracting the relocation value if necessary) to find the
1104 matching minimal symbol, but this is overkill and much less
1105 efficient. It is not necessary to find the matching minimal
1106 symbol, only its section.
1107
1108 Note that this technique (of doing a section table search)
1109 can fail when unrelocated section addresses overlap. For
1110 this reason, we still attempt a lookup by name prior to doing
1111 a search of the section table. */
1112
1113 struct obj_section *s;
1114 int fallback = -1;
1115
1116 ALL_OBJFILE_OSECTIONS (objfile, s)
1117 {
1118 int idx = s - objfile->sections;
1119 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1120
1121 if (fallback == -1)
1122 fallback = idx;
1123
1124 if (obj_section_addr (s) - offset <= addr
1125 && addr < obj_section_endaddr (s) - offset)
1126 {
1127 ginfo->section = idx;
1128 return;
1129 }
1130 }
1131
1132 /* If we didn't find the section, assume it is in the first
1133 section. If there is no allocated section, then it hardly
1134 matters what we pick, so just pick zero. */
1135 if (fallback == -1)
1136 ginfo->section = 0;
1137 else
1138 ginfo->section = fallback;
1139 }
1140 }
1141
1142 struct symbol *
1143 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1144 {
1145 CORE_ADDR addr;
1146
1147 if (!sym)
1148 return NULL;
1149
1150 /* We either have an OBJFILE, or we can get at it from the sym's
1151 symtab. Anything else is a bug. */
1152 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1153
1154 if (objfile == NULL)
1155 objfile = SYMBOL_OBJFILE (sym);
1156
1157 if (SYMBOL_OBJ_SECTION (objfile, sym))
1158 return sym;
1159
1160 /* We should have an objfile by now. */
1161 gdb_assert (objfile);
1162
1163 switch (SYMBOL_CLASS (sym))
1164 {
1165 case LOC_STATIC:
1166 case LOC_LABEL:
1167 addr = SYMBOL_VALUE_ADDRESS (sym);
1168 break;
1169 case LOC_BLOCK:
1170 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1171 break;
1172
1173 default:
1174 /* Nothing else will be listed in the minsyms -- no use looking
1175 it up. */
1176 return sym;
1177 }
1178
1179 fixup_section (&sym->ginfo, addr, objfile);
1180
1181 return sym;
1182 }
1183
1184 /* Compute the demangled form of NAME as used by the various symbol
1185 lookup functions. The result is stored in *RESULT_NAME. Returns a
1186 cleanup which can be used to clean up the result.
1187
1188 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1189 Normally, Ada symbol lookups are performed using the encoded name
1190 rather than the demangled name, and so it might seem to make sense
1191 for this function to return an encoded version of NAME.
1192 Unfortunately, we cannot do this, because this function is used in
1193 circumstances where it is not appropriate to try to encode NAME.
1194 For instance, when displaying the frame info, we demangle the name
1195 of each parameter, and then perform a symbol lookup inside our
1196 function using that demangled name. In Ada, certain functions
1197 have internally-generated parameters whose name contain uppercase
1198 characters. Encoding those name would result in those uppercase
1199 characters to become lowercase, and thus cause the symbol lookup
1200 to fail. */
1201
1202 struct cleanup *
1203 demangle_for_lookup (const char *name, enum language lang,
1204 const char **result_name)
1205 {
1206 char *demangled_name = NULL;
1207 const char *modified_name = NULL;
1208 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1209
1210 modified_name = name;
1211
1212 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1213 lookup, so we can always binary search. */
1214 if (lang == language_cplus)
1215 {
1216 demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1217 if (demangled_name)
1218 {
1219 modified_name = demangled_name;
1220 make_cleanup (xfree, demangled_name);
1221 }
1222 else
1223 {
1224 /* If we were given a non-mangled name, canonicalize it
1225 according to the language (so far only for C++). */
1226 demangled_name = cp_canonicalize_string (name);
1227 if (demangled_name)
1228 {
1229 modified_name = demangled_name;
1230 make_cleanup (xfree, demangled_name);
1231 }
1232 }
1233 }
1234 else if (lang == language_java)
1235 {
1236 demangled_name = gdb_demangle (name,
1237 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1238 if (demangled_name)
1239 {
1240 modified_name = demangled_name;
1241 make_cleanup (xfree, demangled_name);
1242 }
1243 }
1244 else if (lang == language_d)
1245 {
1246 demangled_name = d_demangle (name, 0);
1247 if (demangled_name)
1248 {
1249 modified_name = demangled_name;
1250 make_cleanup (xfree, demangled_name);
1251 }
1252 }
1253 else if (lang == language_go)
1254 {
1255 demangled_name = go_demangle (name, 0);
1256 if (demangled_name)
1257 {
1258 modified_name = demangled_name;
1259 make_cleanup (xfree, demangled_name);
1260 }
1261 }
1262
1263 *result_name = modified_name;
1264 return cleanup;
1265 }
1266
1267 /* See symtab.h.
1268
1269 This function (or rather its subordinates) have a bunch of loops and
1270 it would seem to be attractive to put in some QUIT's (though I'm not really
1271 sure whether it can run long enough to be really important). But there
1272 are a few calls for which it would appear to be bad news to quit
1273 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1274 that there is C++ code below which can error(), but that probably
1275 doesn't affect these calls since they are looking for a known
1276 variable and thus can probably assume it will never hit the C++
1277 code). */
1278
1279 struct symbol *
1280 lookup_symbol_in_language (const char *name, const struct block *block,
1281 const domain_enum domain, enum language lang,
1282 struct field_of_this_result *is_a_field_of_this)
1283 {
1284 const char *modified_name;
1285 struct symbol *returnval;
1286 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1287
1288 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1289 is_a_field_of_this);
1290 do_cleanups (cleanup);
1291
1292 return returnval;
1293 }
1294
1295 /* See symtab.h. */
1296
1297 struct symbol *
1298 lookup_symbol (const char *name, const struct block *block,
1299 domain_enum domain,
1300 struct field_of_this_result *is_a_field_of_this)
1301 {
1302 return lookup_symbol_in_language (name, block, domain,
1303 current_language->la_language,
1304 is_a_field_of_this);
1305 }
1306
1307 /* See symtab.h. */
1308
1309 struct symbol *
1310 lookup_language_this (const struct language_defn *lang,
1311 const struct block *block)
1312 {
1313 if (lang->la_name_of_this == NULL || block == NULL)
1314 return NULL;
1315
1316 while (block)
1317 {
1318 struct symbol *sym;
1319
1320 sym = block_lookup_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1321 if (sym != NULL)
1322 {
1323 block_found = block;
1324 return sym;
1325 }
1326 if (BLOCK_FUNCTION (block))
1327 break;
1328 block = BLOCK_SUPERBLOCK (block);
1329 }
1330
1331 return NULL;
1332 }
1333
1334 /* Given TYPE, a structure/union,
1335 return 1 if the component named NAME from the ultimate target
1336 structure/union is defined, otherwise, return 0. */
1337
1338 static int
1339 check_field (struct type *type, const char *name,
1340 struct field_of_this_result *is_a_field_of_this)
1341 {
1342 int i;
1343
1344 /* The type may be a stub. */
1345 CHECK_TYPEDEF (type);
1346
1347 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1348 {
1349 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1350
1351 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1352 {
1353 is_a_field_of_this->type = type;
1354 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1355 return 1;
1356 }
1357 }
1358
1359 /* C++: If it was not found as a data field, then try to return it
1360 as a pointer to a method. */
1361
1362 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1363 {
1364 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1365 {
1366 is_a_field_of_this->type = type;
1367 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1368 return 1;
1369 }
1370 }
1371
1372 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1373 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1374 return 1;
1375
1376 return 0;
1377 }
1378
1379 /* Behave like lookup_symbol except that NAME is the natural name
1380 (e.g., demangled name) of the symbol that we're looking for. */
1381
1382 static struct symbol *
1383 lookup_symbol_aux (const char *name, const struct block *block,
1384 const domain_enum domain, enum language language,
1385 struct field_of_this_result *is_a_field_of_this)
1386 {
1387 struct symbol *sym;
1388 const struct language_defn *langdef;
1389
1390 /* Make sure we do something sensible with is_a_field_of_this, since
1391 the callers that set this parameter to some non-null value will
1392 certainly use it later. If we don't set it, the contents of
1393 is_a_field_of_this are undefined. */
1394 if (is_a_field_of_this != NULL)
1395 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1396
1397 /* Search specified block and its superiors. Don't search
1398 STATIC_BLOCK or GLOBAL_BLOCK. */
1399
1400 sym = lookup_local_symbol (name, block, domain, language);
1401 if (sym != NULL)
1402 return sym;
1403
1404 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1405 check to see if NAME is a field of `this'. */
1406
1407 langdef = language_def (language);
1408
1409 /* Don't do this check if we are searching for a struct. It will
1410 not be found by check_field, but will be found by other
1411 means. */
1412 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1413 {
1414 struct symbol *sym = lookup_language_this (langdef, block);
1415
1416 if (sym)
1417 {
1418 struct type *t = sym->type;
1419
1420 /* I'm not really sure that type of this can ever
1421 be typedefed; just be safe. */
1422 CHECK_TYPEDEF (t);
1423 if (TYPE_CODE (t) == TYPE_CODE_PTR
1424 || TYPE_CODE (t) == TYPE_CODE_REF)
1425 t = TYPE_TARGET_TYPE (t);
1426
1427 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1428 && TYPE_CODE (t) != TYPE_CODE_UNION)
1429 error (_("Internal error: `%s' is not an aggregate"),
1430 langdef->la_name_of_this);
1431
1432 if (check_field (t, name, is_a_field_of_this))
1433 return NULL;
1434 }
1435 }
1436
1437 /* Now do whatever is appropriate for LANGUAGE to look
1438 up static and global variables. */
1439
1440 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1441 if (sym != NULL)
1442 return sym;
1443
1444 /* Now search all static file-level symbols. Not strictly correct,
1445 but more useful than an error. */
1446
1447 return lookup_static_symbol (name, domain);
1448 }
1449
1450 /* Check to see if the symbol is defined in BLOCK or its superiors.
1451 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1452
1453 static struct symbol *
1454 lookup_local_symbol (const char *name, const struct block *block,
1455 const domain_enum domain,
1456 enum language language)
1457 {
1458 struct symbol *sym;
1459 const struct block *static_block = block_static_block (block);
1460 const char *scope = block_scope (block);
1461
1462 /* Check if either no block is specified or it's a global block. */
1463
1464 if (static_block == NULL)
1465 return NULL;
1466
1467 while (block != static_block)
1468 {
1469 sym = lookup_symbol_in_block (name, block, domain);
1470 if (sym != NULL)
1471 return sym;
1472
1473 if (language == language_cplus || language == language_fortran)
1474 {
1475 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1476 domain);
1477 if (sym != NULL)
1478 return sym;
1479 }
1480
1481 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1482 break;
1483 block = BLOCK_SUPERBLOCK (block);
1484 }
1485
1486 /* We've reached the end of the function without finding a result. */
1487
1488 return NULL;
1489 }
1490
1491 /* See symtab.h. */
1492
1493 struct objfile *
1494 lookup_objfile_from_block (const struct block *block)
1495 {
1496 struct objfile *obj;
1497 struct compunit_symtab *cust;
1498
1499 if (block == NULL)
1500 return NULL;
1501
1502 block = block_global_block (block);
1503 /* Look through all blockvectors. */
1504 ALL_COMPUNITS (obj, cust)
1505 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
1506 GLOBAL_BLOCK))
1507 {
1508 if (obj->separate_debug_objfile_backlink)
1509 obj = obj->separate_debug_objfile_backlink;
1510
1511 return obj;
1512 }
1513
1514 return NULL;
1515 }
1516
1517 /* See symtab.h. */
1518
1519 struct symbol *
1520 lookup_symbol_in_block (const char *name, const struct block *block,
1521 const domain_enum domain)
1522 {
1523 struct symbol *sym;
1524
1525 sym = block_lookup_symbol (block, name, domain);
1526 if (sym)
1527 {
1528 block_found = block;
1529 return fixup_symbol_section (sym, NULL);
1530 }
1531
1532 return NULL;
1533 }
1534
1535 /* See symtab.h. */
1536
1537 struct symbol *
1538 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
1539 const char *name,
1540 const domain_enum domain)
1541 {
1542 struct objfile *objfile;
1543
1544 for (objfile = main_objfile;
1545 objfile;
1546 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1547 {
1548 struct symbol *sym = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
1549 name, domain);
1550
1551 if (sym != NULL)
1552 return sym;
1553 }
1554
1555 return NULL;
1556 }
1557
1558 /* Check to see if the symbol is defined in one of the OBJFILE's
1559 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1560 depending on whether or not we want to search global symbols or
1561 static symbols. */
1562
1563 static struct symbol *
1564 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
1565 const char *name, const domain_enum domain)
1566 {
1567 struct compunit_symtab *cust;
1568
1569 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
1570
1571 ALL_OBJFILE_COMPUNITS (objfile, cust)
1572 {
1573 const struct blockvector *bv;
1574 const struct block *block;
1575 struct symbol *sym;
1576
1577 bv = COMPUNIT_BLOCKVECTOR (cust);
1578 block = BLOCKVECTOR_BLOCK (bv, block_index);
1579 sym = block_lookup_symbol_primary (block, name, domain);
1580 if (sym)
1581 {
1582 block_found = block;
1583 return fixup_symbol_section (sym, objfile);
1584 }
1585 }
1586
1587 return NULL;
1588 }
1589
1590 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
1591 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1592 and all associated separate debug objfiles.
1593
1594 Normally we only look in OBJFILE, and not any separate debug objfiles
1595 because the outer loop will cause them to be searched too. This case is
1596 different. Here we're called from search_symbols where it will only
1597 call us for the the objfile that contains a matching minsym. */
1598
1599 static struct symbol *
1600 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1601 const char *linkage_name,
1602 domain_enum domain)
1603 {
1604 enum language lang = current_language->la_language;
1605 const char *modified_name;
1606 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1607 &modified_name);
1608 struct objfile *main_objfile, *cur_objfile;
1609
1610 if (objfile->separate_debug_objfile_backlink)
1611 main_objfile = objfile->separate_debug_objfile_backlink;
1612 else
1613 main_objfile = objfile;
1614
1615 for (cur_objfile = main_objfile;
1616 cur_objfile;
1617 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1618 {
1619 struct symbol *sym;
1620
1621 sym = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
1622 modified_name, domain);
1623 if (sym == NULL)
1624 sym = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
1625 modified_name, domain);
1626 if (sym != NULL)
1627 {
1628 do_cleanups (cleanup);
1629 return sym;
1630 }
1631 }
1632
1633 do_cleanups (cleanup);
1634 return NULL;
1635 }
1636
1637 /* A helper function that throws an exception when a symbol was found
1638 in a psymtab but not in a symtab. */
1639
1640 static void ATTRIBUTE_NORETURN
1641 error_in_psymtab_expansion (int block_index, const char *name,
1642 struct compunit_symtab *cust)
1643 {
1644 error (_("\
1645 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1646 %s may be an inlined function, or may be a template function\n \
1647 (if a template, try specifying an instantiation: %s<type>)."),
1648 block_index == GLOBAL_BLOCK ? "global" : "static",
1649 name,
1650 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
1651 name, name);
1652 }
1653
1654 /* A helper function for various lookup routines that interfaces with
1655 the "quick" symbol table functions. */
1656
1657 static struct symbol *
1658 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
1659 const char *name, const domain_enum domain)
1660 {
1661 struct compunit_symtab *cust;
1662 const struct blockvector *bv;
1663 const struct block *block;
1664 struct symbol *sym;
1665
1666 if (!objfile->sf)
1667 return NULL;
1668 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
1669 if (cust == NULL)
1670 return NULL;
1671
1672 bv = COMPUNIT_BLOCKVECTOR (cust);
1673 block = BLOCKVECTOR_BLOCK (bv, block_index);
1674 sym = block_lookup_symbol (block, name, domain);
1675 if (!sym)
1676 error_in_psymtab_expansion (block_index, name, cust);
1677 block_found = block;
1678 return fixup_symbol_section (sym, objfile);
1679 }
1680
1681 /* See symtab.h. */
1682
1683 struct symbol *
1684 basic_lookup_symbol_nonlocal (const char *name,
1685 const struct block *block,
1686 const domain_enum domain)
1687 {
1688 struct symbol *sym;
1689
1690 /* NOTE: carlton/2003-05-19: The comments below were written when
1691 this (or what turned into this) was part of lookup_symbol_aux;
1692 I'm much less worried about these questions now, since these
1693 decisions have turned out well, but I leave these comments here
1694 for posterity. */
1695
1696 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1697 not it would be appropriate to search the current global block
1698 here as well. (That's what this code used to do before the
1699 is_a_field_of_this check was moved up.) On the one hand, it's
1700 redundant with the lookup in all objfiles search that happens
1701 next. On the other hand, if decode_line_1 is passed an argument
1702 like filename:var, then the user presumably wants 'var' to be
1703 searched for in filename. On the third hand, there shouldn't be
1704 multiple global variables all of which are named 'var', and it's
1705 not like decode_line_1 has ever restricted its search to only
1706 global variables in a single filename. All in all, only
1707 searching the static block here seems best: it's correct and it's
1708 cleanest. */
1709
1710 /* NOTE: carlton/2002-12-05: There's also a possible performance
1711 issue here: if you usually search for global symbols in the
1712 current file, then it would be slightly better to search the
1713 current global block before searching all the symtabs. But there
1714 are other factors that have a much greater effect on performance
1715 than that one, so I don't think we should worry about that for
1716 now. */
1717
1718 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
1719 the current objfile. Searching the current objfile first is useful
1720 for both matching user expectations as well as performance. */
1721
1722 sym = lookup_symbol_in_static_block (name, block, domain);
1723 if (sym != NULL)
1724 return sym;
1725
1726 return lookup_global_symbol (name, block, domain);
1727 }
1728
1729 /* See symtab.h. */
1730
1731 struct symbol *
1732 lookup_symbol_in_static_block (const char *name,
1733 const struct block *block,
1734 const domain_enum domain)
1735 {
1736 const struct block *static_block = block_static_block (block);
1737
1738 if (static_block != NULL)
1739 return lookup_symbol_in_block (name, static_block, domain);
1740 else
1741 return NULL;
1742 }
1743
1744 /* Perform the standard symbol lookup of NAME in OBJFILE:
1745 1) First search expanded symtabs, and if not found
1746 2) Search the "quick" symtabs (partial or .gdb_index).
1747 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
1748
1749 static struct symbol *
1750 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
1751 const char *name, const domain_enum domain)
1752 {
1753 struct symbol *result;
1754
1755 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
1756 name, domain);
1757 if (result == NULL)
1758 {
1759 result = lookup_symbol_via_quick_fns (objfile, block_index,
1760 name, domain);
1761 }
1762
1763 return result;
1764 }
1765
1766 /* See symtab.h. */
1767
1768 struct symbol *
1769 lookup_static_symbol (const char *name, const domain_enum domain)
1770 {
1771 struct objfile *objfile;
1772 struct symbol *result;
1773
1774 ALL_OBJFILES (objfile)
1775 {
1776 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
1777 if (result != NULL)
1778 return result;
1779 }
1780
1781 return NULL;
1782 }
1783
1784 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1785
1786 struct global_sym_lookup_data
1787 {
1788 /* The name of the symbol we are searching for. */
1789 const char *name;
1790
1791 /* The domain to use for our search. */
1792 domain_enum domain;
1793
1794 /* The field where the callback should store the symbol if found.
1795 It should be initialized to NULL before the search is started. */
1796 struct symbol *result;
1797 };
1798
1799 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1800 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1801 OBJFILE. The arguments for the search are passed via CB_DATA,
1802 which in reality is a pointer to struct global_sym_lookup_data. */
1803
1804 static int
1805 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1806 void *cb_data)
1807 {
1808 struct global_sym_lookup_data *data =
1809 (struct global_sym_lookup_data *) cb_data;
1810
1811 gdb_assert (data->result == NULL);
1812
1813 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
1814 data->name, data->domain);
1815
1816 /* If we found a match, tell the iterator to stop. Otherwise,
1817 keep going. */
1818 return (data->result != NULL);
1819 }
1820
1821 /* See symtab.h. */
1822
1823 struct symbol *
1824 lookup_global_symbol (const char *name,
1825 const struct block *block,
1826 const domain_enum domain)
1827 {
1828 struct symbol *sym = NULL;
1829 struct objfile *objfile = NULL;
1830 struct global_sym_lookup_data lookup_data;
1831
1832 /* Call library-specific lookup procedure. */
1833 objfile = lookup_objfile_from_block (block);
1834 if (objfile != NULL)
1835 sym = solib_global_lookup (objfile, name, domain);
1836 if (sym != NULL)
1837 return sym;
1838
1839 memset (&lookup_data, 0, sizeof (lookup_data));
1840 lookup_data.name = name;
1841 lookup_data.domain = domain;
1842 gdbarch_iterate_over_objfiles_in_search_order
1843 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
1844 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1845
1846 return lookup_data.result;
1847 }
1848
1849 int
1850 symbol_matches_domain (enum language symbol_language,
1851 domain_enum symbol_domain,
1852 domain_enum domain)
1853 {
1854 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1855 A Java class declaration also defines a typedef for the class.
1856 Similarly, any Ada type declaration implicitly defines a typedef. */
1857 if (symbol_language == language_cplus
1858 || symbol_language == language_d
1859 || symbol_language == language_java
1860 || symbol_language == language_ada)
1861 {
1862 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1863 && symbol_domain == STRUCT_DOMAIN)
1864 return 1;
1865 }
1866 /* For all other languages, strict match is required. */
1867 return (symbol_domain == domain);
1868 }
1869
1870 /* See symtab.h. */
1871
1872 struct type *
1873 lookup_transparent_type (const char *name)
1874 {
1875 return current_language->la_lookup_transparent_type (name);
1876 }
1877
1878 /* A helper for basic_lookup_transparent_type that interfaces with the
1879 "quick" symbol table functions. */
1880
1881 static struct type *
1882 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
1883 const char *name)
1884 {
1885 struct compunit_symtab *cust;
1886 const struct blockvector *bv;
1887 struct block *block;
1888 struct symbol *sym;
1889
1890 if (!objfile->sf)
1891 return NULL;
1892 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
1893 STRUCT_DOMAIN);
1894 if (cust == NULL)
1895 return NULL;
1896
1897 bv = COMPUNIT_BLOCKVECTOR (cust);
1898 block = BLOCKVECTOR_BLOCK (bv, block_index);
1899 sym = block_lookup_symbol (block, name, STRUCT_DOMAIN);
1900 if (!sym)
1901 error_in_psymtab_expansion (block_index, name, cust);
1902
1903 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1904 return SYMBOL_TYPE (sym);
1905
1906 return NULL;
1907 }
1908
1909 /* The standard implementation of lookup_transparent_type. This code
1910 was modeled on lookup_symbol -- the parts not relevant to looking
1911 up types were just left out. In particular it's assumed here that
1912 types are available in STRUCT_DOMAIN and only in file-static or
1913 global blocks. */
1914
1915 struct type *
1916 basic_lookup_transparent_type (const char *name)
1917 {
1918 struct symbol *sym;
1919 struct compunit_symtab *cust;
1920 const struct blockvector *bv;
1921 struct objfile *objfile;
1922 struct block *block;
1923 struct type *t;
1924
1925 /* Now search all the global symbols. Do the symtab's first, then
1926 check the psymtab's. If a psymtab indicates the existence
1927 of the desired name as a global, then do psymtab-to-symtab
1928 conversion on the fly and return the found symbol. */
1929
1930 ALL_OBJFILES (objfile)
1931 {
1932 ALL_OBJFILE_COMPUNITS (objfile, cust)
1933 {
1934 bv = COMPUNIT_BLOCKVECTOR (cust);
1935 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1936 sym = block_lookup_symbol (block, name, STRUCT_DOMAIN);
1937 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1938 {
1939 return SYMBOL_TYPE (sym);
1940 }
1941 }
1942 }
1943
1944 ALL_OBJFILES (objfile)
1945 {
1946 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1947 if (t)
1948 return t;
1949 }
1950
1951 /* Now search the static file-level symbols.
1952 Not strictly correct, but more useful than an error.
1953 Do the symtab's first, then
1954 check the psymtab's. If a psymtab indicates the existence
1955 of the desired name as a file-level static, then do psymtab-to-symtab
1956 conversion on the fly and return the found symbol. */
1957
1958 ALL_OBJFILES (objfile)
1959 {
1960 ALL_OBJFILE_COMPUNITS (objfile, cust)
1961 {
1962 bv = COMPUNIT_BLOCKVECTOR (cust);
1963 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1964 sym = block_lookup_symbol (block, name, STRUCT_DOMAIN);
1965 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1966 {
1967 return SYMBOL_TYPE (sym);
1968 }
1969 }
1970 }
1971
1972 ALL_OBJFILES (objfile)
1973 {
1974 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1975 if (t)
1976 return t;
1977 }
1978
1979 return (struct type *) 0;
1980 }
1981
1982 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
1983
1984 For each symbol that matches, CALLBACK is called. The symbol and
1985 DATA are passed to the callback.
1986
1987 If CALLBACK returns zero, the iteration ends. Otherwise, the
1988 search continues. */
1989
1990 void
1991 iterate_over_symbols (const struct block *block, const char *name,
1992 const domain_enum domain,
1993 symbol_found_callback_ftype *callback,
1994 void *data)
1995 {
1996 struct block_iterator iter;
1997 struct symbol *sym;
1998
1999 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2000 {
2001 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2002 SYMBOL_DOMAIN (sym), domain))
2003 {
2004 if (!callback (sym, data))
2005 return;
2006 }
2007 }
2008 }
2009
2010 /* Find the compunit symtab associated with PC and SECTION.
2011 This will read in debug info as necessary. */
2012
2013 struct compunit_symtab *
2014 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2015 {
2016 struct compunit_symtab *cust;
2017 struct compunit_symtab *best_cust = NULL;
2018 struct objfile *objfile;
2019 CORE_ADDR distance = 0;
2020 struct bound_minimal_symbol msymbol;
2021
2022 /* If we know that this is not a text address, return failure. This is
2023 necessary because we loop based on the block's high and low code
2024 addresses, which do not include the data ranges, and because
2025 we call find_pc_sect_psymtab which has a similar restriction based
2026 on the partial_symtab's texthigh and textlow. */
2027 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2028 if (msymbol.minsym
2029 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2030 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2031 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2032 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2033 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2034 return NULL;
2035
2036 /* Search all symtabs for the one whose file contains our address, and which
2037 is the smallest of all the ones containing the address. This is designed
2038 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2039 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2040 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2041
2042 This happens for native ecoff format, where code from included files
2043 gets its own symtab. The symtab for the included file should have
2044 been read in already via the dependency mechanism.
2045 It might be swifter to create several symtabs with the same name
2046 like xcoff does (I'm not sure).
2047
2048 It also happens for objfiles that have their functions reordered.
2049 For these, the symtab we are looking for is not necessarily read in. */
2050
2051 ALL_COMPUNITS (objfile, cust)
2052 {
2053 struct block *b;
2054 const struct blockvector *bv;
2055
2056 bv = COMPUNIT_BLOCKVECTOR (cust);
2057 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2058
2059 if (BLOCK_START (b) <= pc
2060 && BLOCK_END (b) > pc
2061 && (distance == 0
2062 || BLOCK_END (b) - BLOCK_START (b) < distance))
2063 {
2064 /* For an objfile that has its functions reordered,
2065 find_pc_psymtab will find the proper partial symbol table
2066 and we simply return its corresponding symtab. */
2067 /* In order to better support objfiles that contain both
2068 stabs and coff debugging info, we continue on if a psymtab
2069 can't be found. */
2070 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2071 {
2072 struct compunit_symtab *result;
2073
2074 result
2075 = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2076 msymbol,
2077 pc, section,
2078 0);
2079 if (result != NULL)
2080 return result;
2081 }
2082 if (section != 0)
2083 {
2084 struct block_iterator iter;
2085 struct symbol *sym = NULL;
2086
2087 ALL_BLOCK_SYMBOLS (b, iter, sym)
2088 {
2089 fixup_symbol_section (sym, objfile);
2090 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2091 section))
2092 break;
2093 }
2094 if (sym == NULL)
2095 continue; /* No symbol in this symtab matches
2096 section. */
2097 }
2098 distance = BLOCK_END (b) - BLOCK_START (b);
2099 best_cust = cust;
2100 }
2101 }
2102
2103 if (best_cust != NULL)
2104 return best_cust;
2105
2106 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2107
2108 ALL_OBJFILES (objfile)
2109 {
2110 struct compunit_symtab *result;
2111
2112 if (!objfile->sf)
2113 continue;
2114 result = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2115 msymbol,
2116 pc, section,
2117 1);
2118 if (result != NULL)
2119 return result;
2120 }
2121
2122 return NULL;
2123 }
2124
2125 /* Find the compunit symtab associated with PC.
2126 This will read in debug info as necessary.
2127 Backward compatibility, no section. */
2128
2129 struct compunit_symtab *
2130 find_pc_compunit_symtab (CORE_ADDR pc)
2131 {
2132 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2133 }
2134 \f
2135
2136 /* Find the source file and line number for a given PC value and SECTION.
2137 Return a structure containing a symtab pointer, a line number,
2138 and a pc range for the entire source line.
2139 The value's .pc field is NOT the specified pc.
2140 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2141 use the line that ends there. Otherwise, in that case, the line
2142 that begins there is used. */
2143
2144 /* The big complication here is that a line may start in one file, and end just
2145 before the start of another file. This usually occurs when you #include
2146 code in the middle of a subroutine. To properly find the end of a line's PC
2147 range, we must search all symtabs associated with this compilation unit, and
2148 find the one whose first PC is closer than that of the next line in this
2149 symtab. */
2150
2151 /* If it's worth the effort, we could be using a binary search. */
2152
2153 struct symtab_and_line
2154 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2155 {
2156 struct compunit_symtab *cust;
2157 struct symtab *iter_s;
2158 struct linetable *l;
2159 int len;
2160 int i;
2161 struct linetable_entry *item;
2162 struct symtab_and_line val;
2163 const struct blockvector *bv;
2164 struct bound_minimal_symbol msymbol;
2165
2166 /* Info on best line seen so far, and where it starts, and its file. */
2167
2168 struct linetable_entry *best = NULL;
2169 CORE_ADDR best_end = 0;
2170 struct symtab *best_symtab = 0;
2171
2172 /* Store here the first line number
2173 of a file which contains the line at the smallest pc after PC.
2174 If we don't find a line whose range contains PC,
2175 we will use a line one less than this,
2176 with a range from the start of that file to the first line's pc. */
2177 struct linetable_entry *alt = NULL;
2178
2179 /* Info on best line seen in this file. */
2180
2181 struct linetable_entry *prev;
2182
2183 /* If this pc is not from the current frame,
2184 it is the address of the end of a call instruction.
2185 Quite likely that is the start of the following statement.
2186 But what we want is the statement containing the instruction.
2187 Fudge the pc to make sure we get that. */
2188
2189 init_sal (&val); /* initialize to zeroes */
2190
2191 val.pspace = current_program_space;
2192
2193 /* It's tempting to assume that, if we can't find debugging info for
2194 any function enclosing PC, that we shouldn't search for line
2195 number info, either. However, GAS can emit line number info for
2196 assembly files --- very helpful when debugging hand-written
2197 assembly code. In such a case, we'd have no debug info for the
2198 function, but we would have line info. */
2199
2200 if (notcurrent)
2201 pc -= 1;
2202
2203 /* elz: added this because this function returned the wrong
2204 information if the pc belongs to a stub (import/export)
2205 to call a shlib function. This stub would be anywhere between
2206 two functions in the target, and the line info was erroneously
2207 taken to be the one of the line before the pc. */
2208
2209 /* RT: Further explanation:
2210
2211 * We have stubs (trampolines) inserted between procedures.
2212 *
2213 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2214 * exists in the main image.
2215 *
2216 * In the minimal symbol table, we have a bunch of symbols
2217 * sorted by start address. The stubs are marked as "trampoline",
2218 * the others appear as text. E.g.:
2219 *
2220 * Minimal symbol table for main image
2221 * main: code for main (text symbol)
2222 * shr1: stub (trampoline symbol)
2223 * foo: code for foo (text symbol)
2224 * ...
2225 * Minimal symbol table for "shr1" image:
2226 * ...
2227 * shr1: code for shr1 (text symbol)
2228 * ...
2229 *
2230 * So the code below is trying to detect if we are in the stub
2231 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2232 * and if found, do the symbolization from the real-code address
2233 * rather than the stub address.
2234 *
2235 * Assumptions being made about the minimal symbol table:
2236 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2237 * if we're really in the trampoline.s If we're beyond it (say
2238 * we're in "foo" in the above example), it'll have a closer
2239 * symbol (the "foo" text symbol for example) and will not
2240 * return the trampoline.
2241 * 2. lookup_minimal_symbol_text() will find a real text symbol
2242 * corresponding to the trampoline, and whose address will
2243 * be different than the trampoline address. I put in a sanity
2244 * check for the address being the same, to avoid an
2245 * infinite recursion.
2246 */
2247 msymbol = lookup_minimal_symbol_by_pc (pc);
2248 if (msymbol.minsym != NULL)
2249 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
2250 {
2251 struct bound_minimal_symbol mfunsym
2252 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
2253 NULL);
2254
2255 if (mfunsym.minsym == NULL)
2256 /* I eliminated this warning since it is coming out
2257 * in the following situation:
2258 * gdb shmain // test program with shared libraries
2259 * (gdb) break shr1 // function in shared lib
2260 * Warning: In stub for ...
2261 * In the above situation, the shared lib is not loaded yet,
2262 * so of course we can't find the real func/line info,
2263 * but the "break" still works, and the warning is annoying.
2264 * So I commented out the warning. RT */
2265 /* warning ("In stub for %s; unable to find real function/line info",
2266 SYMBOL_LINKAGE_NAME (msymbol)); */
2267 ;
2268 /* fall through */
2269 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
2270 == BMSYMBOL_VALUE_ADDRESS (msymbol))
2271 /* Avoid infinite recursion */
2272 /* See above comment about why warning is commented out. */
2273 /* warning ("In stub for %s; unable to find real function/line info",
2274 SYMBOL_LINKAGE_NAME (msymbol)); */
2275 ;
2276 /* fall through */
2277 else
2278 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
2279 }
2280
2281
2282 cust = find_pc_sect_compunit_symtab (pc, section);
2283 if (cust == NULL)
2284 {
2285 /* If no symbol information, return previous pc. */
2286 if (notcurrent)
2287 pc++;
2288 val.pc = pc;
2289 return val;
2290 }
2291
2292 bv = COMPUNIT_BLOCKVECTOR (cust);
2293
2294 /* Look at all the symtabs that share this blockvector.
2295 They all have the same apriori range, that we found was right;
2296 but they have different line tables. */
2297
2298 ALL_COMPUNIT_FILETABS (cust, iter_s)
2299 {
2300 /* Find the best line in this symtab. */
2301 l = SYMTAB_LINETABLE (iter_s);
2302 if (!l)
2303 continue;
2304 len = l->nitems;
2305 if (len <= 0)
2306 {
2307 /* I think len can be zero if the symtab lacks line numbers
2308 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2309 I'm not sure which, and maybe it depends on the symbol
2310 reader). */
2311 continue;
2312 }
2313
2314 prev = NULL;
2315 item = l->item; /* Get first line info. */
2316
2317 /* Is this file's first line closer than the first lines of other files?
2318 If so, record this file, and its first line, as best alternate. */
2319 if (item->pc > pc && (!alt || item->pc < alt->pc))
2320 alt = item;
2321
2322 for (i = 0; i < len; i++, item++)
2323 {
2324 /* Leave prev pointing to the linetable entry for the last line
2325 that started at or before PC. */
2326 if (item->pc > pc)
2327 break;
2328
2329 prev = item;
2330 }
2331
2332 /* At this point, prev points at the line whose start addr is <= pc, and
2333 item points at the next line. If we ran off the end of the linetable
2334 (pc >= start of the last line), then prev == item. If pc < start of
2335 the first line, prev will not be set. */
2336
2337 /* Is this file's best line closer than the best in the other files?
2338 If so, record this file, and its best line, as best so far. Don't
2339 save prev if it represents the end of a function (i.e. line number
2340 0) instead of a real line. */
2341
2342 if (prev && prev->line && (!best || prev->pc > best->pc))
2343 {
2344 best = prev;
2345 best_symtab = iter_s;
2346
2347 /* Discard BEST_END if it's before the PC of the current BEST. */
2348 if (best_end <= best->pc)
2349 best_end = 0;
2350 }
2351
2352 /* If another line (denoted by ITEM) is in the linetable and its
2353 PC is after BEST's PC, but before the current BEST_END, then
2354 use ITEM's PC as the new best_end. */
2355 if (best && i < len && item->pc > best->pc
2356 && (best_end == 0 || best_end > item->pc))
2357 best_end = item->pc;
2358 }
2359
2360 if (!best_symtab)
2361 {
2362 /* If we didn't find any line number info, just return zeros.
2363 We used to return alt->line - 1 here, but that could be
2364 anywhere; if we don't have line number info for this PC,
2365 don't make some up. */
2366 val.pc = pc;
2367 }
2368 else if (best->line == 0)
2369 {
2370 /* If our best fit is in a range of PC's for which no line
2371 number info is available (line number is zero) then we didn't
2372 find any valid line information. */
2373 val.pc = pc;
2374 }
2375 else
2376 {
2377 val.symtab = best_symtab;
2378 val.line = best->line;
2379 val.pc = best->pc;
2380 if (best_end && (!alt || best_end < alt->pc))
2381 val.end = best_end;
2382 else if (alt)
2383 val.end = alt->pc;
2384 else
2385 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2386 }
2387 val.section = section;
2388 return val;
2389 }
2390
2391 /* Backward compatibility (no section). */
2392
2393 struct symtab_and_line
2394 find_pc_line (CORE_ADDR pc, int notcurrent)
2395 {
2396 struct obj_section *section;
2397
2398 section = find_pc_overlay (pc);
2399 if (pc_in_unmapped_range (pc, section))
2400 pc = overlay_mapped_address (pc, section);
2401 return find_pc_sect_line (pc, section, notcurrent);
2402 }
2403
2404 /* See symtab.h. */
2405
2406 struct symtab *
2407 find_pc_line_symtab (CORE_ADDR pc)
2408 {
2409 struct symtab_and_line sal;
2410
2411 /* This always passes zero for NOTCURRENT to find_pc_line.
2412 There are currently no callers that ever pass non-zero. */
2413 sal = find_pc_line (pc, 0);
2414 return sal.symtab;
2415 }
2416 \f
2417 /* Find line number LINE in any symtab whose name is the same as
2418 SYMTAB.
2419
2420 If found, return the symtab that contains the linetable in which it was
2421 found, set *INDEX to the index in the linetable of the best entry
2422 found, and set *EXACT_MATCH nonzero if the value returned is an
2423 exact match.
2424
2425 If not found, return NULL. */
2426
2427 struct symtab *
2428 find_line_symtab (struct symtab *symtab, int line,
2429 int *index, int *exact_match)
2430 {
2431 int exact = 0; /* Initialized here to avoid a compiler warning. */
2432
2433 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2434 so far seen. */
2435
2436 int best_index;
2437 struct linetable *best_linetable;
2438 struct symtab *best_symtab;
2439
2440 /* First try looking it up in the given symtab. */
2441 best_linetable = SYMTAB_LINETABLE (symtab);
2442 best_symtab = symtab;
2443 best_index = find_line_common (best_linetable, line, &exact, 0);
2444 if (best_index < 0 || !exact)
2445 {
2446 /* Didn't find an exact match. So we better keep looking for
2447 another symtab with the same name. In the case of xcoff,
2448 multiple csects for one source file (produced by IBM's FORTRAN
2449 compiler) produce multiple symtabs (this is unavoidable
2450 assuming csects can be at arbitrary places in memory and that
2451 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2452
2453 /* BEST is the smallest linenumber > LINE so far seen,
2454 or 0 if none has been seen so far.
2455 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2456 int best;
2457
2458 struct objfile *objfile;
2459 struct compunit_symtab *cu;
2460 struct symtab *s;
2461
2462 if (best_index >= 0)
2463 best = best_linetable->item[best_index].line;
2464 else
2465 best = 0;
2466
2467 ALL_OBJFILES (objfile)
2468 {
2469 if (objfile->sf)
2470 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
2471 symtab_to_fullname (symtab));
2472 }
2473
2474 ALL_FILETABS (objfile, cu, s)
2475 {
2476 struct linetable *l;
2477 int ind;
2478
2479 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2480 continue;
2481 if (FILENAME_CMP (symtab_to_fullname (symtab),
2482 symtab_to_fullname (s)) != 0)
2483 continue;
2484 l = SYMTAB_LINETABLE (s);
2485 ind = find_line_common (l, line, &exact, 0);
2486 if (ind >= 0)
2487 {
2488 if (exact)
2489 {
2490 best_index = ind;
2491 best_linetable = l;
2492 best_symtab = s;
2493 goto done;
2494 }
2495 if (best == 0 || l->item[ind].line < best)
2496 {
2497 best = l->item[ind].line;
2498 best_index = ind;
2499 best_linetable = l;
2500 best_symtab = s;
2501 }
2502 }
2503 }
2504 }
2505 done:
2506 if (best_index < 0)
2507 return NULL;
2508
2509 if (index)
2510 *index = best_index;
2511 if (exact_match)
2512 *exact_match = exact;
2513
2514 return best_symtab;
2515 }
2516
2517 /* Given SYMTAB, returns all the PCs function in the symtab that
2518 exactly match LINE. Returns NULL if there are no exact matches,
2519 but updates BEST_ITEM in this case. */
2520
2521 VEC (CORE_ADDR) *
2522 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2523 struct linetable_entry **best_item)
2524 {
2525 int start = 0;
2526 VEC (CORE_ADDR) *result = NULL;
2527
2528 /* First, collect all the PCs that are at this line. */
2529 while (1)
2530 {
2531 int was_exact;
2532 int idx;
2533
2534 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
2535 start);
2536 if (idx < 0)
2537 break;
2538
2539 if (!was_exact)
2540 {
2541 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
2542
2543 if (*best_item == NULL || item->line < (*best_item)->line)
2544 *best_item = item;
2545
2546 break;
2547 }
2548
2549 VEC_safe_push (CORE_ADDR, result,
2550 SYMTAB_LINETABLE (symtab)->item[idx].pc);
2551 start = idx + 1;
2552 }
2553
2554 return result;
2555 }
2556
2557 \f
2558 /* Set the PC value for a given source file and line number and return true.
2559 Returns zero for invalid line number (and sets the PC to 0).
2560 The source file is specified with a struct symtab. */
2561
2562 int
2563 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2564 {
2565 struct linetable *l;
2566 int ind;
2567
2568 *pc = 0;
2569 if (symtab == 0)
2570 return 0;
2571
2572 symtab = find_line_symtab (symtab, line, &ind, NULL);
2573 if (symtab != NULL)
2574 {
2575 l = SYMTAB_LINETABLE (symtab);
2576 *pc = l->item[ind].pc;
2577 return 1;
2578 }
2579 else
2580 return 0;
2581 }
2582
2583 /* Find the range of pc values in a line.
2584 Store the starting pc of the line into *STARTPTR
2585 and the ending pc (start of next line) into *ENDPTR.
2586 Returns 1 to indicate success.
2587 Returns 0 if could not find the specified line. */
2588
2589 int
2590 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2591 CORE_ADDR *endptr)
2592 {
2593 CORE_ADDR startaddr;
2594 struct symtab_and_line found_sal;
2595
2596 startaddr = sal.pc;
2597 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2598 return 0;
2599
2600 /* This whole function is based on address. For example, if line 10 has
2601 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2602 "info line *0x123" should say the line goes from 0x100 to 0x200
2603 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2604 This also insures that we never give a range like "starts at 0x134
2605 and ends at 0x12c". */
2606
2607 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2608 if (found_sal.line != sal.line)
2609 {
2610 /* The specified line (sal) has zero bytes. */
2611 *startptr = found_sal.pc;
2612 *endptr = found_sal.pc;
2613 }
2614 else
2615 {
2616 *startptr = found_sal.pc;
2617 *endptr = found_sal.end;
2618 }
2619 return 1;
2620 }
2621
2622 /* Given a line table and a line number, return the index into the line
2623 table for the pc of the nearest line whose number is >= the specified one.
2624 Return -1 if none is found. The value is >= 0 if it is an index.
2625 START is the index at which to start searching the line table.
2626
2627 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2628
2629 static int
2630 find_line_common (struct linetable *l, int lineno,
2631 int *exact_match, int start)
2632 {
2633 int i;
2634 int len;
2635
2636 /* BEST is the smallest linenumber > LINENO so far seen,
2637 or 0 if none has been seen so far.
2638 BEST_INDEX identifies the item for it. */
2639
2640 int best_index = -1;
2641 int best = 0;
2642
2643 *exact_match = 0;
2644
2645 if (lineno <= 0)
2646 return -1;
2647 if (l == 0)
2648 return -1;
2649
2650 len = l->nitems;
2651 for (i = start; i < len; i++)
2652 {
2653 struct linetable_entry *item = &(l->item[i]);
2654
2655 if (item->line == lineno)
2656 {
2657 /* Return the first (lowest address) entry which matches. */
2658 *exact_match = 1;
2659 return i;
2660 }
2661
2662 if (item->line > lineno && (best == 0 || item->line < best))
2663 {
2664 best = item->line;
2665 best_index = i;
2666 }
2667 }
2668
2669 /* If we got here, we didn't get an exact match. */
2670 return best_index;
2671 }
2672
2673 int
2674 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2675 {
2676 struct symtab_and_line sal;
2677
2678 sal = find_pc_line (pc, 0);
2679 *startptr = sal.pc;
2680 *endptr = sal.end;
2681 return sal.symtab != 0;
2682 }
2683
2684 /* Given a function symbol SYM, find the symtab and line for the start
2685 of the function.
2686 If the argument FUNFIRSTLINE is nonzero, we want the first line
2687 of real code inside the function. */
2688
2689 struct symtab_and_line
2690 find_function_start_sal (struct symbol *sym, int funfirstline)
2691 {
2692 struct symtab_and_line sal;
2693
2694 fixup_symbol_section (sym, NULL);
2695 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2696 SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym), 0);
2697
2698 /* We always should have a line for the function start address.
2699 If we don't, something is odd. Create a plain SAL refering
2700 just the PC and hope that skip_prologue_sal (if requested)
2701 can find a line number for after the prologue. */
2702 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2703 {
2704 init_sal (&sal);
2705 sal.pspace = current_program_space;
2706 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2707 sal.section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2708 }
2709
2710 if (funfirstline)
2711 skip_prologue_sal (&sal);
2712
2713 return sal;
2714 }
2715
2716 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2717 address for that function that has an entry in SYMTAB's line info
2718 table. If such an entry cannot be found, return FUNC_ADDR
2719 unaltered. */
2720
2721 static CORE_ADDR
2722 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2723 {
2724 CORE_ADDR func_start, func_end;
2725 struct linetable *l;
2726 int i;
2727
2728 /* Give up if this symbol has no lineinfo table. */
2729 l = SYMTAB_LINETABLE (symtab);
2730 if (l == NULL)
2731 return func_addr;
2732
2733 /* Get the range for the function's PC values, or give up if we
2734 cannot, for some reason. */
2735 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2736 return func_addr;
2737
2738 /* Linetable entries are ordered by PC values, see the commentary in
2739 symtab.h where `struct linetable' is defined. Thus, the first
2740 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2741 address we are looking for. */
2742 for (i = 0; i < l->nitems; i++)
2743 {
2744 struct linetable_entry *item = &(l->item[i]);
2745
2746 /* Don't use line numbers of zero, they mark special entries in
2747 the table. See the commentary on symtab.h before the
2748 definition of struct linetable. */
2749 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2750 return item->pc;
2751 }
2752
2753 return func_addr;
2754 }
2755
2756 /* Adjust SAL to the first instruction past the function prologue.
2757 If the PC was explicitly specified, the SAL is not changed.
2758 If the line number was explicitly specified, at most the SAL's PC
2759 is updated. If SAL is already past the prologue, then do nothing. */
2760
2761 void
2762 skip_prologue_sal (struct symtab_and_line *sal)
2763 {
2764 struct symbol *sym;
2765 struct symtab_and_line start_sal;
2766 struct cleanup *old_chain;
2767 CORE_ADDR pc, saved_pc;
2768 struct obj_section *section;
2769 const char *name;
2770 struct objfile *objfile;
2771 struct gdbarch *gdbarch;
2772 const struct block *b, *function_block;
2773 int force_skip, skip;
2774
2775 /* Do not change the SAL if PC was specified explicitly. */
2776 if (sal->explicit_pc)
2777 return;
2778
2779 old_chain = save_current_space_and_thread ();
2780 switch_to_program_space_and_thread (sal->pspace);
2781
2782 sym = find_pc_sect_function (sal->pc, sal->section);
2783 if (sym != NULL)
2784 {
2785 fixup_symbol_section (sym, NULL);
2786
2787 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2788 section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2789 name = SYMBOL_LINKAGE_NAME (sym);
2790 objfile = SYMBOL_OBJFILE (sym);
2791 }
2792 else
2793 {
2794 struct bound_minimal_symbol msymbol
2795 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2796
2797 if (msymbol.minsym == NULL)
2798 {
2799 do_cleanups (old_chain);
2800 return;
2801 }
2802
2803 objfile = msymbol.objfile;
2804 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
2805 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
2806 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
2807 }
2808
2809 gdbarch = get_objfile_arch (objfile);
2810
2811 /* Process the prologue in two passes. In the first pass try to skip the
2812 prologue (SKIP is true) and verify there is a real need for it (indicated
2813 by FORCE_SKIP). If no such reason was found run a second pass where the
2814 prologue is not skipped (SKIP is false). */
2815
2816 skip = 1;
2817 force_skip = 1;
2818
2819 /* Be conservative - allow direct PC (without skipping prologue) only if we
2820 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2821 have to be set by the caller so we use SYM instead. */
2822 if (sym && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (SYMBOL_SYMTAB (sym))))
2823 force_skip = 0;
2824
2825 saved_pc = pc;
2826 do
2827 {
2828 pc = saved_pc;
2829
2830 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2831 so that gdbarch_skip_prologue has something unique to work on. */
2832 if (section_is_overlay (section) && !section_is_mapped (section))
2833 pc = overlay_unmapped_address (pc, section);
2834
2835 /* Skip "first line" of function (which is actually its prologue). */
2836 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2837 if (gdbarch_skip_entrypoint_p (gdbarch))
2838 pc = gdbarch_skip_entrypoint (gdbarch, pc);
2839 if (skip)
2840 pc = gdbarch_skip_prologue (gdbarch, pc);
2841
2842 /* For overlays, map pc back into its mapped VMA range. */
2843 pc = overlay_mapped_address (pc, section);
2844
2845 /* Calculate line number. */
2846 start_sal = find_pc_sect_line (pc, section, 0);
2847
2848 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2849 line is still part of the same function. */
2850 if (skip && start_sal.pc != pc
2851 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2852 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2853 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
2854 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
2855 {
2856 /* First pc of next line */
2857 pc = start_sal.end;
2858 /* Recalculate the line number (might not be N+1). */
2859 start_sal = find_pc_sect_line (pc, section, 0);
2860 }
2861
2862 /* On targets with executable formats that don't have a concept of
2863 constructors (ELF with .init has, PE doesn't), gcc emits a call
2864 to `__main' in `main' between the prologue and before user
2865 code. */
2866 if (gdbarch_skip_main_prologue_p (gdbarch)
2867 && name && strcmp_iw (name, "main") == 0)
2868 {
2869 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2870 /* Recalculate the line number (might not be N+1). */
2871 start_sal = find_pc_sect_line (pc, section, 0);
2872 force_skip = 1;
2873 }
2874 }
2875 while (!force_skip && skip--);
2876
2877 /* If we still don't have a valid source line, try to find the first
2878 PC in the lineinfo table that belongs to the same function. This
2879 happens with COFF debug info, which does not seem to have an
2880 entry in lineinfo table for the code after the prologue which has
2881 no direct relation to source. For example, this was found to be
2882 the case with the DJGPP target using "gcc -gcoff" when the
2883 compiler inserted code after the prologue to make sure the stack
2884 is aligned. */
2885 if (!force_skip && sym && start_sal.symtab == NULL)
2886 {
2887 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2888 /* Recalculate the line number. */
2889 start_sal = find_pc_sect_line (pc, section, 0);
2890 }
2891
2892 do_cleanups (old_chain);
2893
2894 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2895 forward SAL to the end of the prologue. */
2896 if (sal->pc >= pc)
2897 return;
2898
2899 sal->pc = pc;
2900 sal->section = section;
2901
2902 /* Unless the explicit_line flag was set, update the SAL line
2903 and symtab to correspond to the modified PC location. */
2904 if (sal->explicit_line)
2905 return;
2906
2907 sal->symtab = start_sal.symtab;
2908 sal->line = start_sal.line;
2909 sal->end = start_sal.end;
2910
2911 /* Check if we are now inside an inlined function. If we can,
2912 use the call site of the function instead. */
2913 b = block_for_pc_sect (sal->pc, sal->section);
2914 function_block = NULL;
2915 while (b != NULL)
2916 {
2917 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2918 function_block = b;
2919 else if (BLOCK_FUNCTION (b) != NULL)
2920 break;
2921 b = BLOCK_SUPERBLOCK (b);
2922 }
2923 if (function_block != NULL
2924 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2925 {
2926 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2927 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2928 }
2929 }
2930
2931 /* Given PC at the function's start address, attempt to find the
2932 prologue end using SAL information. Return zero if the skip fails.
2933
2934 A non-optimized prologue traditionally has one SAL for the function
2935 and a second for the function body. A single line function has
2936 them both pointing at the same line.
2937
2938 An optimized prologue is similar but the prologue may contain
2939 instructions (SALs) from the instruction body. Need to skip those
2940 while not getting into the function body.
2941
2942 The functions end point and an increasing SAL line are used as
2943 indicators of the prologue's endpoint.
2944
2945 This code is based on the function refine_prologue_limit
2946 (found in ia64). */
2947
2948 CORE_ADDR
2949 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
2950 {
2951 struct symtab_and_line prologue_sal;
2952 CORE_ADDR start_pc;
2953 CORE_ADDR end_pc;
2954 const struct block *bl;
2955
2956 /* Get an initial range for the function. */
2957 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
2958 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
2959
2960 prologue_sal = find_pc_line (start_pc, 0);
2961 if (prologue_sal.line != 0)
2962 {
2963 /* For languages other than assembly, treat two consecutive line
2964 entries at the same address as a zero-instruction prologue.
2965 The GNU assembler emits separate line notes for each instruction
2966 in a multi-instruction macro, but compilers generally will not
2967 do this. */
2968 if (prologue_sal.symtab->language != language_asm)
2969 {
2970 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
2971 int idx = 0;
2972
2973 /* Skip any earlier lines, and any end-of-sequence marker
2974 from a previous function. */
2975 while (linetable->item[idx].pc != prologue_sal.pc
2976 || linetable->item[idx].line == 0)
2977 idx++;
2978
2979 if (idx+1 < linetable->nitems
2980 && linetable->item[idx+1].line != 0
2981 && linetable->item[idx+1].pc == start_pc)
2982 return start_pc;
2983 }
2984
2985 /* If there is only one sal that covers the entire function,
2986 then it is probably a single line function, like
2987 "foo(){}". */
2988 if (prologue_sal.end >= end_pc)
2989 return 0;
2990
2991 while (prologue_sal.end < end_pc)
2992 {
2993 struct symtab_and_line sal;
2994
2995 sal = find_pc_line (prologue_sal.end, 0);
2996 if (sal.line == 0)
2997 break;
2998 /* Assume that a consecutive SAL for the same (or larger)
2999 line mark the prologue -> body transition. */
3000 if (sal.line >= prologue_sal.line)
3001 break;
3002 /* Likewise if we are in a different symtab altogether
3003 (e.g. within a file included via #include).  */
3004 if (sal.symtab != prologue_sal.symtab)
3005 break;
3006
3007 /* The line number is smaller. Check that it's from the
3008 same function, not something inlined. If it's inlined,
3009 then there is no point comparing the line numbers. */
3010 bl = block_for_pc (prologue_sal.end);
3011 while (bl)
3012 {
3013 if (block_inlined_p (bl))
3014 break;
3015 if (BLOCK_FUNCTION (bl))
3016 {
3017 bl = NULL;
3018 break;
3019 }
3020 bl = BLOCK_SUPERBLOCK (bl);
3021 }
3022 if (bl != NULL)
3023 break;
3024
3025 /* The case in which compiler's optimizer/scheduler has
3026 moved instructions into the prologue. We look ahead in
3027 the function looking for address ranges whose
3028 corresponding line number is less the first one that we
3029 found for the function. This is more conservative then
3030 refine_prologue_limit which scans a large number of SALs
3031 looking for any in the prologue. */
3032 prologue_sal = sal;
3033 }
3034 }
3035
3036 if (prologue_sal.end < end_pc)
3037 /* Return the end of this line, or zero if we could not find a
3038 line. */
3039 return prologue_sal.end;
3040 else
3041 /* Don't return END_PC, which is past the end of the function. */
3042 return prologue_sal.pc;
3043 }
3044 \f
3045 /* If P is of the form "operator[ \t]+..." where `...' is
3046 some legitimate operator text, return a pointer to the
3047 beginning of the substring of the operator text.
3048 Otherwise, return "". */
3049
3050 static const char *
3051 operator_chars (const char *p, const char **end)
3052 {
3053 *end = "";
3054 if (strncmp (p, "operator", 8))
3055 return *end;
3056 p += 8;
3057
3058 /* Don't get faked out by `operator' being part of a longer
3059 identifier. */
3060 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3061 return *end;
3062
3063 /* Allow some whitespace between `operator' and the operator symbol. */
3064 while (*p == ' ' || *p == '\t')
3065 p++;
3066
3067 /* Recognize 'operator TYPENAME'. */
3068
3069 if (isalpha (*p) || *p == '_' || *p == '$')
3070 {
3071 const char *q = p + 1;
3072
3073 while (isalnum (*q) || *q == '_' || *q == '$')
3074 q++;
3075 *end = q;
3076 return p;
3077 }
3078
3079 while (*p)
3080 switch (*p)
3081 {
3082 case '\\': /* regexp quoting */
3083 if (p[1] == '*')
3084 {
3085 if (p[2] == '=') /* 'operator\*=' */
3086 *end = p + 3;
3087 else /* 'operator\*' */
3088 *end = p + 2;
3089 return p;
3090 }
3091 else if (p[1] == '[')
3092 {
3093 if (p[2] == ']')
3094 error (_("mismatched quoting on brackets, "
3095 "try 'operator\\[\\]'"));
3096 else if (p[2] == '\\' && p[3] == ']')
3097 {
3098 *end = p + 4; /* 'operator\[\]' */
3099 return p;
3100 }
3101 else
3102 error (_("nothing is allowed between '[' and ']'"));
3103 }
3104 else
3105 {
3106 /* Gratuitous qoute: skip it and move on. */
3107 p++;
3108 continue;
3109 }
3110 break;
3111 case '!':
3112 case '=':
3113 case '*':
3114 case '/':
3115 case '%':
3116 case '^':
3117 if (p[1] == '=')
3118 *end = p + 2;
3119 else
3120 *end = p + 1;
3121 return p;
3122 case '<':
3123 case '>':
3124 case '+':
3125 case '-':
3126 case '&':
3127 case '|':
3128 if (p[0] == '-' && p[1] == '>')
3129 {
3130 /* Struct pointer member operator 'operator->'. */
3131 if (p[2] == '*')
3132 {
3133 *end = p + 3; /* 'operator->*' */
3134 return p;
3135 }
3136 else if (p[2] == '\\')
3137 {
3138 *end = p + 4; /* Hopefully 'operator->\*' */
3139 return p;
3140 }
3141 else
3142 {
3143 *end = p + 2; /* 'operator->' */
3144 return p;
3145 }
3146 }
3147 if (p[1] == '=' || p[1] == p[0])
3148 *end = p + 2;
3149 else
3150 *end = p + 1;
3151 return p;
3152 case '~':
3153 case ',':
3154 *end = p + 1;
3155 return p;
3156 case '(':
3157 if (p[1] != ')')
3158 error (_("`operator ()' must be specified "
3159 "without whitespace in `()'"));
3160 *end = p + 2;
3161 return p;
3162 case '?':
3163 if (p[1] != ':')
3164 error (_("`operator ?:' must be specified "
3165 "without whitespace in `?:'"));
3166 *end = p + 2;
3167 return p;
3168 case '[':
3169 if (p[1] != ']')
3170 error (_("`operator []' must be specified "
3171 "without whitespace in `[]'"));
3172 *end = p + 2;
3173 return p;
3174 default:
3175 error (_("`operator %s' not supported"), p);
3176 break;
3177 }
3178
3179 *end = "";
3180 return *end;
3181 }
3182 \f
3183
3184 /* Cache to watch for file names already seen by filename_seen. */
3185
3186 struct filename_seen_cache
3187 {
3188 /* Table of files seen so far. */
3189 htab_t tab;
3190 /* Initial size of the table. It automagically grows from here. */
3191 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3192 };
3193
3194 /* filename_seen_cache constructor. */
3195
3196 static struct filename_seen_cache *
3197 create_filename_seen_cache (void)
3198 {
3199 struct filename_seen_cache *cache;
3200
3201 cache = XNEW (struct filename_seen_cache);
3202 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3203 filename_hash, filename_eq,
3204 NULL, xcalloc, xfree);
3205
3206 return cache;
3207 }
3208
3209 /* Empty the cache, but do not delete it. */
3210
3211 static void
3212 clear_filename_seen_cache (struct filename_seen_cache *cache)
3213 {
3214 htab_empty (cache->tab);
3215 }
3216
3217 /* filename_seen_cache destructor.
3218 This takes a void * argument as it is generally used as a cleanup. */
3219
3220 static void
3221 delete_filename_seen_cache (void *ptr)
3222 {
3223 struct filename_seen_cache *cache = ptr;
3224
3225 htab_delete (cache->tab);
3226 xfree (cache);
3227 }
3228
3229 /* If FILE is not already in the table of files in CACHE, return zero;
3230 otherwise return non-zero. Optionally add FILE to the table if ADD
3231 is non-zero.
3232
3233 NOTE: We don't manage space for FILE, we assume FILE lives as long
3234 as the caller needs. */
3235
3236 static int
3237 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
3238 {
3239 void **slot;
3240
3241 /* Is FILE in tab? */
3242 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
3243 if (*slot != NULL)
3244 return 1;
3245
3246 /* No; maybe add it to tab. */
3247 if (add)
3248 *slot = (char *) file;
3249
3250 return 0;
3251 }
3252
3253 /* Data structure to maintain printing state for output_source_filename. */
3254
3255 struct output_source_filename_data
3256 {
3257 /* Cache of what we've seen so far. */
3258 struct filename_seen_cache *filename_seen_cache;
3259
3260 /* Flag of whether we're printing the first one. */
3261 int first;
3262 };
3263
3264 /* Slave routine for sources_info. Force line breaks at ,'s.
3265 NAME is the name to print.
3266 DATA contains the state for printing and watching for duplicates. */
3267
3268 static void
3269 output_source_filename (const char *name,
3270 struct output_source_filename_data *data)
3271 {
3272 /* Since a single source file can result in several partial symbol
3273 tables, we need to avoid printing it more than once. Note: if
3274 some of the psymtabs are read in and some are not, it gets
3275 printed both under "Source files for which symbols have been
3276 read" and "Source files for which symbols will be read in on
3277 demand". I consider this a reasonable way to deal with the
3278 situation. I'm not sure whether this can also happen for
3279 symtabs; it doesn't hurt to check. */
3280
3281 /* Was NAME already seen? */
3282 if (filename_seen (data->filename_seen_cache, name, 1))
3283 {
3284 /* Yes; don't print it again. */
3285 return;
3286 }
3287
3288 /* No; print it and reset *FIRST. */
3289 if (! data->first)
3290 printf_filtered (", ");
3291 data->first = 0;
3292
3293 wrap_here ("");
3294 fputs_filtered (name, gdb_stdout);
3295 }
3296
3297 /* A callback for map_partial_symbol_filenames. */
3298
3299 static void
3300 output_partial_symbol_filename (const char *filename, const char *fullname,
3301 void *data)
3302 {
3303 output_source_filename (fullname ? fullname : filename, data);
3304 }
3305
3306 static void
3307 sources_info (char *ignore, int from_tty)
3308 {
3309 struct compunit_symtab *cu;
3310 struct symtab *s;
3311 struct objfile *objfile;
3312 struct output_source_filename_data data;
3313 struct cleanup *cleanups;
3314
3315 if (!have_full_symbols () && !have_partial_symbols ())
3316 {
3317 error (_("No symbol table is loaded. Use the \"file\" command."));
3318 }
3319
3320 data.filename_seen_cache = create_filename_seen_cache ();
3321 cleanups = make_cleanup (delete_filename_seen_cache,
3322 data.filename_seen_cache);
3323
3324 printf_filtered ("Source files for which symbols have been read in:\n\n");
3325
3326 data.first = 1;
3327 ALL_FILETABS (objfile, cu, s)
3328 {
3329 const char *fullname = symtab_to_fullname (s);
3330
3331 output_source_filename (fullname, &data);
3332 }
3333 printf_filtered ("\n\n");
3334
3335 printf_filtered ("Source files for which symbols "
3336 "will be read in on demand:\n\n");
3337
3338 clear_filename_seen_cache (data.filename_seen_cache);
3339 data.first = 1;
3340 map_symbol_filenames (output_partial_symbol_filename, &data,
3341 1 /*need_fullname*/);
3342 printf_filtered ("\n");
3343
3344 do_cleanups (cleanups);
3345 }
3346
3347 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
3348 non-zero compare only lbasename of FILES. */
3349
3350 static int
3351 file_matches (const char *file, const char *files[], int nfiles, int basenames)
3352 {
3353 int i;
3354
3355 if (file != NULL && nfiles != 0)
3356 {
3357 for (i = 0; i < nfiles; i++)
3358 {
3359 if (compare_filenames_for_search (file, (basenames
3360 ? lbasename (files[i])
3361 : files[i])))
3362 return 1;
3363 }
3364 }
3365 else if (nfiles == 0)
3366 return 1;
3367 return 0;
3368 }
3369
3370 /* Free any memory associated with a search. */
3371
3372 void
3373 free_search_symbols (struct symbol_search *symbols)
3374 {
3375 struct symbol_search *p;
3376 struct symbol_search *next;
3377
3378 for (p = symbols; p != NULL; p = next)
3379 {
3380 next = p->next;
3381 xfree (p);
3382 }
3383 }
3384
3385 static void
3386 do_free_search_symbols_cleanup (void *symbolsp)
3387 {
3388 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
3389
3390 free_search_symbols (symbols);
3391 }
3392
3393 struct cleanup *
3394 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
3395 {
3396 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
3397 }
3398
3399 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
3400 sort symbols, not minimal symbols. */
3401
3402 static int
3403 compare_search_syms (const void *sa, const void *sb)
3404 {
3405 struct symbol_search *sym_a = *(struct symbol_search **) sa;
3406 struct symbol_search *sym_b = *(struct symbol_search **) sb;
3407 int c;
3408
3409 c = FILENAME_CMP (sym_a->symtab->filename, sym_b->symtab->filename);
3410 if (c != 0)
3411 return c;
3412
3413 if (sym_a->block != sym_b->block)
3414 return sym_a->block - sym_b->block;
3415
3416 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
3417 SYMBOL_PRINT_NAME (sym_b->symbol));
3418 }
3419
3420 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
3421 The duplicates are freed, and the new list is returned in
3422 *NEW_HEAD, *NEW_TAIL. */
3423
3424 static void
3425 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
3426 struct symbol_search **new_head,
3427 struct symbol_search **new_tail)
3428 {
3429 struct symbol_search **symbols, *symp, *old_next;
3430 int i, j, nunique;
3431
3432 gdb_assert (found != NULL && nfound > 0);
3433
3434 /* Build an array out of the list so we can easily sort them. */
3435 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3436 * nfound);
3437 symp = found;
3438 for (i = 0; i < nfound; i++)
3439 {
3440 gdb_assert (symp != NULL);
3441 gdb_assert (symp->block >= 0 && symp->block <= 1);
3442 symbols[i] = symp;
3443 symp = symp->next;
3444 }
3445 gdb_assert (symp == NULL);
3446
3447 qsort (symbols, nfound, sizeof (struct symbol_search *),
3448 compare_search_syms);
3449
3450 /* Collapse out the dups. */
3451 for (i = 1, j = 1; i < nfound; ++i)
3452 {
3453 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
3454 symbols[j++] = symbols[i];
3455 else
3456 xfree (symbols[i]);
3457 }
3458 nunique = j;
3459 symbols[j - 1]->next = NULL;
3460
3461 /* Rebuild the linked list. */
3462 for (i = 0; i < nunique - 1; i++)
3463 symbols[i]->next = symbols[i + 1];
3464 symbols[nunique - 1]->next = NULL;
3465
3466 *new_head = symbols[0];
3467 *new_tail = symbols[nunique - 1];
3468 xfree (symbols);
3469 }
3470
3471 /* An object of this type is passed as the user_data to the
3472 expand_symtabs_matching method. */
3473 struct search_symbols_data
3474 {
3475 int nfiles;
3476 const char **files;
3477
3478 /* It is true if PREG contains valid data, false otherwise. */
3479 unsigned preg_p : 1;
3480 regex_t preg;
3481 };
3482
3483 /* A callback for expand_symtabs_matching. */
3484
3485 static int
3486 search_symbols_file_matches (const char *filename, void *user_data,
3487 int basenames)
3488 {
3489 struct search_symbols_data *data = user_data;
3490
3491 return file_matches (filename, data->files, data->nfiles, basenames);
3492 }
3493
3494 /* A callback for expand_symtabs_matching. */
3495
3496 static int
3497 search_symbols_name_matches (const char *symname, void *user_data)
3498 {
3499 struct search_symbols_data *data = user_data;
3500
3501 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3502 }
3503
3504 /* Search the symbol table for matches to the regular expression REGEXP,
3505 returning the results in *MATCHES.
3506
3507 Only symbols of KIND are searched:
3508 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3509 and constants (enums)
3510 FUNCTIONS_DOMAIN - search all functions
3511 TYPES_DOMAIN - search all type names
3512 ALL_DOMAIN - an internal error for this function
3513
3514 free_search_symbols should be called when *MATCHES is no longer needed.
3515
3516 Within each file the results are sorted locally; each symtab's global and
3517 static blocks are separately alphabetized.
3518 Duplicate entries are removed. */
3519
3520 void
3521 search_symbols (const char *regexp, enum search_domain kind,
3522 int nfiles, const char *files[],
3523 struct symbol_search **matches)
3524 {
3525 struct compunit_symtab *cust;
3526 const struct blockvector *bv;
3527 struct block *b;
3528 int i = 0;
3529 struct block_iterator iter;
3530 struct symbol *sym;
3531 struct objfile *objfile;
3532 struct minimal_symbol *msymbol;
3533 int found_misc = 0;
3534 static const enum minimal_symbol_type types[]
3535 = {mst_data, mst_text, mst_abs};
3536 static const enum minimal_symbol_type types2[]
3537 = {mst_bss, mst_file_text, mst_abs};
3538 static const enum minimal_symbol_type types3[]
3539 = {mst_file_data, mst_solib_trampoline, mst_abs};
3540 static const enum minimal_symbol_type types4[]
3541 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3542 enum minimal_symbol_type ourtype;
3543 enum minimal_symbol_type ourtype2;
3544 enum minimal_symbol_type ourtype3;
3545 enum minimal_symbol_type ourtype4;
3546 struct symbol_search *found;
3547 struct symbol_search *tail;
3548 struct search_symbols_data datum;
3549 int nfound;
3550
3551 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3552 CLEANUP_CHAIN is freed only in the case of an error. */
3553 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3554 struct cleanup *retval_chain;
3555
3556 gdb_assert (kind <= TYPES_DOMAIN);
3557
3558 ourtype = types[kind];
3559 ourtype2 = types2[kind];
3560 ourtype3 = types3[kind];
3561 ourtype4 = types4[kind];
3562
3563 *matches = NULL;
3564 datum.preg_p = 0;
3565
3566 if (regexp != NULL)
3567 {
3568 /* Make sure spacing is right for C++ operators.
3569 This is just a courtesy to make the matching less sensitive
3570 to how many spaces the user leaves between 'operator'
3571 and <TYPENAME> or <OPERATOR>. */
3572 const char *opend;
3573 const char *opname = operator_chars (regexp, &opend);
3574 int errcode;
3575
3576 if (*opname)
3577 {
3578 int fix = -1; /* -1 means ok; otherwise number of
3579 spaces needed. */
3580
3581 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3582 {
3583 /* There should 1 space between 'operator' and 'TYPENAME'. */
3584 if (opname[-1] != ' ' || opname[-2] == ' ')
3585 fix = 1;
3586 }
3587 else
3588 {
3589 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3590 if (opname[-1] == ' ')
3591 fix = 0;
3592 }
3593 /* If wrong number of spaces, fix it. */
3594 if (fix >= 0)
3595 {
3596 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3597
3598 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3599 regexp = tmp;
3600 }
3601 }
3602
3603 errcode = regcomp (&datum.preg, regexp,
3604 REG_NOSUB | (case_sensitivity == case_sensitive_off
3605 ? REG_ICASE : 0));
3606 if (errcode != 0)
3607 {
3608 char *err = get_regcomp_error (errcode, &datum.preg);
3609
3610 make_cleanup (xfree, err);
3611 error (_("Invalid regexp (%s): %s"), err, regexp);
3612 }
3613 datum.preg_p = 1;
3614 make_regfree_cleanup (&datum.preg);
3615 }
3616
3617 /* Search through the partial symtabs *first* for all symbols
3618 matching the regexp. That way we don't have to reproduce all of
3619 the machinery below. */
3620
3621 datum.nfiles = nfiles;
3622 datum.files = files;
3623 expand_symtabs_matching ((nfiles == 0
3624 ? NULL
3625 : search_symbols_file_matches),
3626 search_symbols_name_matches,
3627 kind, &datum);
3628
3629 /* Here, we search through the minimal symbol tables for functions
3630 and variables that match, and force their symbols to be read.
3631 This is in particular necessary for demangled variable names,
3632 which are no longer put into the partial symbol tables.
3633 The symbol will then be found during the scan of symtabs below.
3634
3635 For functions, find_pc_symtab should succeed if we have debug info
3636 for the function, for variables we have to call
3637 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3638 has debug info.
3639 If the lookup fails, set found_misc so that we will rescan to print
3640 any matching symbols without debug info.
3641 We only search the objfile the msymbol came from, we no longer search
3642 all objfiles. In large programs (1000s of shared libs) searching all
3643 objfiles is not worth the pain. */
3644
3645 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3646 {
3647 ALL_MSYMBOLS (objfile, msymbol)
3648 {
3649 QUIT;
3650
3651 if (msymbol->created_by_gdb)
3652 continue;
3653
3654 if (MSYMBOL_TYPE (msymbol) == ourtype
3655 || MSYMBOL_TYPE (msymbol) == ourtype2
3656 || MSYMBOL_TYPE (msymbol) == ourtype3
3657 || MSYMBOL_TYPE (msymbol) == ourtype4)
3658 {
3659 if (!datum.preg_p
3660 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
3661 NULL, 0) == 0)
3662 {
3663 /* Note: An important side-effect of these lookup functions
3664 is to expand the symbol table if msymbol is found, for the
3665 benefit of the next loop on ALL_COMPUNITS. */
3666 if (kind == FUNCTIONS_DOMAIN
3667 ? (find_pc_compunit_symtab
3668 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL)
3669 : (lookup_symbol_in_objfile_from_linkage_name
3670 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3671 == NULL))
3672 found_misc = 1;
3673 }
3674 }
3675 }
3676 }
3677
3678 found = NULL;
3679 tail = NULL;
3680 nfound = 0;
3681 retval_chain = make_cleanup_free_search_symbols (&found);
3682
3683 ALL_COMPUNITS (objfile, cust)
3684 {
3685 bv = COMPUNIT_BLOCKVECTOR (cust);
3686 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3687 {
3688 b = BLOCKVECTOR_BLOCK (bv, i);
3689 ALL_BLOCK_SYMBOLS (b, iter, sym)
3690 {
3691 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3692
3693 QUIT;
3694
3695 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
3696 a substring of symtab_to_fullname as it may contain "./" etc. */
3697 if ((file_matches (real_symtab->filename, files, nfiles, 0)
3698 || ((basenames_may_differ
3699 || file_matches (lbasename (real_symtab->filename),
3700 files, nfiles, 1))
3701 && file_matches (symtab_to_fullname (real_symtab),
3702 files, nfiles, 0)))
3703 && ((!datum.preg_p
3704 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3705 NULL, 0) == 0)
3706 && ((kind == VARIABLES_DOMAIN
3707 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3708 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3709 && SYMBOL_CLASS (sym) != LOC_BLOCK
3710 /* LOC_CONST can be used for more than just enums,
3711 e.g., c++ static const members.
3712 We only want to skip enums here. */
3713 && !(SYMBOL_CLASS (sym) == LOC_CONST
3714 && (TYPE_CODE (SYMBOL_TYPE (sym))
3715 == TYPE_CODE_ENUM)))
3716 || (kind == FUNCTIONS_DOMAIN
3717 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3718 || (kind == TYPES_DOMAIN
3719 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3720 {
3721 /* match */
3722 struct symbol_search *psr = (struct symbol_search *)
3723 xmalloc (sizeof (struct symbol_search));
3724 psr->block = i;
3725 psr->symtab = real_symtab;
3726 psr->symbol = sym;
3727 memset (&psr->msymbol, 0, sizeof (psr->msymbol));
3728 psr->next = NULL;
3729 if (tail == NULL)
3730 found = psr;
3731 else
3732 tail->next = psr;
3733 tail = psr;
3734 nfound ++;
3735 }
3736 }
3737 }
3738 }
3739
3740 if (found != NULL)
3741 {
3742 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
3743 /* Note: nfound is no longer useful beyond this point. */
3744 }
3745
3746 /* If there are no eyes, avoid all contact. I mean, if there are
3747 no debug symbols, then add matching minsyms. */
3748
3749 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3750 {
3751 ALL_MSYMBOLS (objfile, msymbol)
3752 {
3753 QUIT;
3754
3755 if (msymbol->created_by_gdb)
3756 continue;
3757
3758 if (MSYMBOL_TYPE (msymbol) == ourtype
3759 || MSYMBOL_TYPE (msymbol) == ourtype2
3760 || MSYMBOL_TYPE (msymbol) == ourtype3
3761 || MSYMBOL_TYPE (msymbol) == ourtype4)
3762 {
3763 if (!datum.preg_p
3764 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
3765 NULL, 0) == 0)
3766 {
3767 /* For functions we can do a quick check of whether the
3768 symbol might be found via find_pc_symtab. */
3769 if (kind != FUNCTIONS_DOMAIN
3770 || (find_pc_compunit_symtab
3771 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL))
3772 {
3773 if (lookup_symbol_in_objfile_from_linkage_name
3774 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3775 == NULL)
3776 {
3777 /* match */
3778 struct symbol_search *psr = (struct symbol_search *)
3779 xmalloc (sizeof (struct symbol_search));
3780 psr->block = i;
3781 psr->msymbol.minsym = msymbol;
3782 psr->msymbol.objfile = objfile;
3783 psr->symtab = NULL;
3784 psr->symbol = NULL;
3785 psr->next = NULL;
3786 if (tail == NULL)
3787 found = psr;
3788 else
3789 tail->next = psr;
3790 tail = psr;
3791 }
3792 }
3793 }
3794 }
3795 }
3796 }
3797
3798 discard_cleanups (retval_chain);
3799 do_cleanups (old_chain);
3800 *matches = found;
3801 }
3802
3803 /* Helper function for symtab_symbol_info, this function uses
3804 the data returned from search_symbols() to print information
3805 regarding the match to gdb_stdout. */
3806
3807 static void
3808 print_symbol_info (enum search_domain kind,
3809 struct symtab *s, struct symbol *sym,
3810 int block, const char *last)
3811 {
3812 const char *s_filename = symtab_to_filename_for_display (s);
3813
3814 if (last == NULL || filename_cmp (last, s_filename) != 0)
3815 {
3816 fputs_filtered ("\nFile ", gdb_stdout);
3817 fputs_filtered (s_filename, gdb_stdout);
3818 fputs_filtered (":\n", gdb_stdout);
3819 }
3820
3821 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3822 printf_filtered ("static ");
3823
3824 /* Typedef that is not a C++ class. */
3825 if (kind == TYPES_DOMAIN
3826 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3827 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3828 /* variable, func, or typedef-that-is-c++-class. */
3829 else if (kind < TYPES_DOMAIN
3830 || (kind == TYPES_DOMAIN
3831 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3832 {
3833 type_print (SYMBOL_TYPE (sym),
3834 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3835 ? "" : SYMBOL_PRINT_NAME (sym)),
3836 gdb_stdout, 0);
3837
3838 printf_filtered (";\n");
3839 }
3840 }
3841
3842 /* This help function for symtab_symbol_info() prints information
3843 for non-debugging symbols to gdb_stdout. */
3844
3845 static void
3846 print_msymbol_info (struct bound_minimal_symbol msymbol)
3847 {
3848 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
3849 char *tmp;
3850
3851 if (gdbarch_addr_bit (gdbarch) <= 32)
3852 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
3853 & (CORE_ADDR) 0xffffffff,
3854 8);
3855 else
3856 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
3857 16);
3858 printf_filtered ("%s %s\n",
3859 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
3860 }
3861
3862 /* This is the guts of the commands "info functions", "info types", and
3863 "info variables". It calls search_symbols to find all matches and then
3864 print_[m]symbol_info to print out some useful information about the
3865 matches. */
3866
3867 static void
3868 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3869 {
3870 static const char * const classnames[] =
3871 {"variable", "function", "type"};
3872 struct symbol_search *symbols;
3873 struct symbol_search *p;
3874 struct cleanup *old_chain;
3875 const char *last_filename = NULL;
3876 int first = 1;
3877
3878 gdb_assert (kind <= TYPES_DOMAIN);
3879
3880 /* Must make sure that if we're interrupted, symbols gets freed. */
3881 search_symbols (regexp, kind, 0, NULL, &symbols);
3882 old_chain = make_cleanup_free_search_symbols (&symbols);
3883
3884 if (regexp != NULL)
3885 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
3886 classnames[kind], regexp);
3887 else
3888 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
3889
3890 for (p = symbols; p != NULL; p = p->next)
3891 {
3892 QUIT;
3893
3894 if (p->msymbol.minsym != NULL)
3895 {
3896 if (first)
3897 {
3898 printf_filtered (_("\nNon-debugging symbols:\n"));
3899 first = 0;
3900 }
3901 print_msymbol_info (p->msymbol);
3902 }
3903 else
3904 {
3905 print_symbol_info (kind,
3906 p->symtab,
3907 p->symbol,
3908 p->block,
3909 last_filename);
3910 last_filename = symtab_to_filename_for_display (p->symtab);
3911 }
3912 }
3913
3914 do_cleanups (old_chain);
3915 }
3916
3917 static void
3918 variables_info (char *regexp, int from_tty)
3919 {
3920 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3921 }
3922
3923 static void
3924 functions_info (char *regexp, int from_tty)
3925 {
3926 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3927 }
3928
3929
3930 static void
3931 types_info (char *regexp, int from_tty)
3932 {
3933 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3934 }
3935
3936 /* Breakpoint all functions matching regular expression. */
3937
3938 void
3939 rbreak_command_wrapper (char *regexp, int from_tty)
3940 {
3941 rbreak_command (regexp, from_tty);
3942 }
3943
3944 /* A cleanup function that calls end_rbreak_breakpoints. */
3945
3946 static void
3947 do_end_rbreak_breakpoints (void *ignore)
3948 {
3949 end_rbreak_breakpoints ();
3950 }
3951
3952 static void
3953 rbreak_command (char *regexp, int from_tty)
3954 {
3955 struct symbol_search *ss;
3956 struct symbol_search *p;
3957 struct cleanup *old_chain;
3958 char *string = NULL;
3959 int len = 0;
3960 const char **files = NULL;
3961 const char *file_name;
3962 int nfiles = 0;
3963
3964 if (regexp)
3965 {
3966 char *colon = strchr (regexp, ':');
3967
3968 if (colon && *(colon + 1) != ':')
3969 {
3970 int colon_index;
3971 char *local_name;
3972
3973 colon_index = colon - regexp;
3974 local_name = alloca (colon_index + 1);
3975 memcpy (local_name, regexp, colon_index);
3976 local_name[colon_index--] = 0;
3977 while (isspace (local_name[colon_index]))
3978 local_name[colon_index--] = 0;
3979 file_name = local_name;
3980 files = &file_name;
3981 nfiles = 1;
3982 regexp = skip_spaces (colon + 1);
3983 }
3984 }
3985
3986 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3987 old_chain = make_cleanup_free_search_symbols (&ss);
3988 make_cleanup (free_current_contents, &string);
3989
3990 start_rbreak_breakpoints ();
3991 make_cleanup (do_end_rbreak_breakpoints, NULL);
3992 for (p = ss; p != NULL; p = p->next)
3993 {
3994 if (p->msymbol.minsym == NULL)
3995 {
3996 const char *fullname = symtab_to_fullname (p->symtab);
3997
3998 int newlen = (strlen (fullname)
3999 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
4000 + 4);
4001
4002 if (newlen > len)
4003 {
4004 string = xrealloc (string, newlen);
4005 len = newlen;
4006 }
4007 strcpy (string, fullname);
4008 strcat (string, ":'");
4009 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
4010 strcat (string, "'");
4011 break_command (string, from_tty);
4012 print_symbol_info (FUNCTIONS_DOMAIN,
4013 p->symtab,
4014 p->symbol,
4015 p->block,
4016 symtab_to_filename_for_display (p->symtab));
4017 }
4018 else
4019 {
4020 int newlen = (strlen (MSYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
4021
4022 if (newlen > len)
4023 {
4024 string = xrealloc (string, newlen);
4025 len = newlen;
4026 }
4027 strcpy (string, "'");
4028 strcat (string, MSYMBOL_LINKAGE_NAME (p->msymbol.minsym));
4029 strcat (string, "'");
4030
4031 break_command (string, from_tty);
4032 printf_filtered ("<function, no debug info> %s;\n",
4033 MSYMBOL_PRINT_NAME (p->msymbol.minsym));
4034 }
4035 }
4036
4037 do_cleanups (old_chain);
4038 }
4039 \f
4040
4041 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4042
4043 Either sym_text[sym_text_len] != '(' and then we search for any
4044 symbol starting with SYM_TEXT text.
4045
4046 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4047 be terminated at that point. Partial symbol tables do not have parameters
4048 information. */
4049
4050 static int
4051 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
4052 {
4053 int (*ncmp) (const char *, const char *, size_t);
4054
4055 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
4056
4057 if (ncmp (name, sym_text, sym_text_len) != 0)
4058 return 0;
4059
4060 if (sym_text[sym_text_len] == '(')
4061 {
4062 /* User searches for `name(someth...'. Require NAME to be terminated.
4063 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4064 present but accept even parameters presence. In this case this
4065 function is in fact strcmp_iw but whitespace skipping is not supported
4066 for tab completion. */
4067
4068 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4069 return 0;
4070 }
4071
4072 return 1;
4073 }
4074
4075 /* Free any memory associated with a completion list. */
4076
4077 static void
4078 free_completion_list (VEC (char_ptr) **list_ptr)
4079 {
4080 int i;
4081 char *p;
4082
4083 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
4084 xfree (p);
4085 VEC_free (char_ptr, *list_ptr);
4086 }
4087
4088 /* Callback for make_cleanup. */
4089
4090 static void
4091 do_free_completion_list (void *list)
4092 {
4093 free_completion_list (list);
4094 }
4095
4096 /* Helper routine for make_symbol_completion_list. */
4097
4098 static VEC (char_ptr) *return_val;
4099
4100 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4101 completion_list_add_name \
4102 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4103
4104 #define MCOMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4105 completion_list_add_name \
4106 (MSYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4107
4108 /* Test to see if the symbol specified by SYMNAME (which is already
4109 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4110 characters. If so, add it to the current completion list. */
4111
4112 static void
4113 completion_list_add_name (const char *symname,
4114 const char *sym_text, int sym_text_len,
4115 const char *text, const char *word)
4116 {
4117 /* Clip symbols that cannot match. */
4118 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4119 return;
4120
4121 /* We have a match for a completion, so add SYMNAME to the current list
4122 of matches. Note that the name is moved to freshly malloc'd space. */
4123
4124 {
4125 char *new;
4126
4127 if (word == sym_text)
4128 {
4129 new = xmalloc (strlen (symname) + 5);
4130 strcpy (new, symname);
4131 }
4132 else if (word > sym_text)
4133 {
4134 /* Return some portion of symname. */
4135 new = xmalloc (strlen (symname) + 5);
4136 strcpy (new, symname + (word - sym_text));
4137 }
4138 else
4139 {
4140 /* Return some of SYM_TEXT plus symname. */
4141 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
4142 strncpy (new, word, sym_text - word);
4143 new[sym_text - word] = '\0';
4144 strcat (new, symname);
4145 }
4146
4147 VEC_safe_push (char_ptr, return_val, new);
4148 }
4149 }
4150
4151 /* ObjC: In case we are completing on a selector, look as the msymbol
4152 again and feed all the selectors into the mill. */
4153
4154 static void
4155 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4156 const char *sym_text, int sym_text_len,
4157 const char *text, const char *word)
4158 {
4159 static char *tmp = NULL;
4160 static unsigned int tmplen = 0;
4161
4162 const char *method, *category, *selector;
4163 char *tmp2 = NULL;
4164
4165 method = MSYMBOL_NATURAL_NAME (msymbol);
4166
4167 /* Is it a method? */
4168 if ((method[0] != '-') && (method[0] != '+'))
4169 return;
4170
4171 if (sym_text[0] == '[')
4172 /* Complete on shortened method method. */
4173 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4174
4175 while ((strlen (method) + 1) >= tmplen)
4176 {
4177 if (tmplen == 0)
4178 tmplen = 1024;
4179 else
4180 tmplen *= 2;
4181 tmp = xrealloc (tmp, tmplen);
4182 }
4183 selector = strchr (method, ' ');
4184 if (selector != NULL)
4185 selector++;
4186
4187 category = strchr (method, '(');
4188
4189 if ((category != NULL) && (selector != NULL))
4190 {
4191 memcpy (tmp, method, (category - method));
4192 tmp[category - method] = ' ';
4193 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4194 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4195 if (sym_text[0] == '[')
4196 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4197 }
4198
4199 if (selector != NULL)
4200 {
4201 /* Complete on selector only. */
4202 strcpy (tmp, selector);
4203 tmp2 = strchr (tmp, ']');
4204 if (tmp2 != NULL)
4205 *tmp2 = '\0';
4206
4207 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4208 }
4209 }
4210
4211 /* Break the non-quoted text based on the characters which are in
4212 symbols. FIXME: This should probably be language-specific. */
4213
4214 static const char *
4215 language_search_unquoted_string (const char *text, const char *p)
4216 {
4217 for (; p > text; --p)
4218 {
4219 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4220 continue;
4221 else
4222 {
4223 if ((current_language->la_language == language_objc))
4224 {
4225 if (p[-1] == ':') /* Might be part of a method name. */
4226 continue;
4227 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4228 p -= 2; /* Beginning of a method name. */
4229 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4230 { /* Might be part of a method name. */
4231 const char *t = p;
4232
4233 /* Seeing a ' ' or a '(' is not conclusive evidence
4234 that we are in the middle of a method name. However,
4235 finding "-[" or "+[" should be pretty un-ambiguous.
4236 Unfortunately we have to find it now to decide. */
4237
4238 while (t > text)
4239 if (isalnum (t[-1]) || t[-1] == '_' ||
4240 t[-1] == ' ' || t[-1] == ':' ||
4241 t[-1] == '(' || t[-1] == ')')
4242 --t;
4243 else
4244 break;
4245
4246 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4247 p = t - 2; /* Method name detected. */
4248 /* Else we leave with p unchanged. */
4249 }
4250 }
4251 break;
4252 }
4253 }
4254 return p;
4255 }
4256
4257 static void
4258 completion_list_add_fields (struct symbol *sym, const char *sym_text,
4259 int sym_text_len, const char *text,
4260 const char *word)
4261 {
4262 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4263 {
4264 struct type *t = SYMBOL_TYPE (sym);
4265 enum type_code c = TYPE_CODE (t);
4266 int j;
4267
4268 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4269 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4270 if (TYPE_FIELD_NAME (t, j))
4271 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4272 sym_text, sym_text_len, text, word);
4273 }
4274 }
4275
4276 /* Type of the user_data argument passed to add_macro_name or
4277 symbol_completion_matcher. The contents are simply whatever is
4278 needed by completion_list_add_name. */
4279 struct add_name_data
4280 {
4281 const char *sym_text;
4282 int sym_text_len;
4283 const char *text;
4284 const char *word;
4285 };
4286
4287 /* A callback used with macro_for_each and macro_for_each_in_scope.
4288 This adds a macro's name to the current completion list. */
4289
4290 static void
4291 add_macro_name (const char *name, const struct macro_definition *ignore,
4292 struct macro_source_file *ignore2, int ignore3,
4293 void *user_data)
4294 {
4295 struct add_name_data *datum = (struct add_name_data *) user_data;
4296
4297 completion_list_add_name (name,
4298 datum->sym_text, datum->sym_text_len,
4299 datum->text, datum->word);
4300 }
4301
4302 /* A callback for expand_symtabs_matching. */
4303
4304 static int
4305 symbol_completion_matcher (const char *name, void *user_data)
4306 {
4307 struct add_name_data *datum = (struct add_name_data *) user_data;
4308
4309 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4310 }
4311
4312 VEC (char_ptr) *
4313 default_make_symbol_completion_list_break_on (const char *text,
4314 const char *word,
4315 const char *break_on,
4316 enum type_code code)
4317 {
4318 /* Problem: All of the symbols have to be copied because readline
4319 frees them. I'm not going to worry about this; hopefully there
4320 won't be that many. */
4321
4322 struct symbol *sym;
4323 struct compunit_symtab *cust;
4324 struct minimal_symbol *msymbol;
4325 struct objfile *objfile;
4326 const struct block *b;
4327 const struct block *surrounding_static_block, *surrounding_global_block;
4328 struct block_iterator iter;
4329 /* The symbol we are completing on. Points in same buffer as text. */
4330 const char *sym_text;
4331 /* Length of sym_text. */
4332 int sym_text_len;
4333 struct add_name_data datum;
4334 struct cleanup *back_to;
4335
4336 /* Now look for the symbol we are supposed to complete on. */
4337 {
4338 const char *p;
4339 char quote_found;
4340 const char *quote_pos = NULL;
4341
4342 /* First see if this is a quoted string. */
4343 quote_found = '\0';
4344 for (p = text; *p != '\0'; ++p)
4345 {
4346 if (quote_found != '\0')
4347 {
4348 if (*p == quote_found)
4349 /* Found close quote. */
4350 quote_found = '\0';
4351 else if (*p == '\\' && p[1] == quote_found)
4352 /* A backslash followed by the quote character
4353 doesn't end the string. */
4354 ++p;
4355 }
4356 else if (*p == '\'' || *p == '"')
4357 {
4358 quote_found = *p;
4359 quote_pos = p;
4360 }
4361 }
4362 if (quote_found == '\'')
4363 /* A string within single quotes can be a symbol, so complete on it. */
4364 sym_text = quote_pos + 1;
4365 else if (quote_found == '"')
4366 /* A double-quoted string is never a symbol, nor does it make sense
4367 to complete it any other way. */
4368 {
4369 return NULL;
4370 }
4371 else
4372 {
4373 /* It is not a quoted string. Break it based on the characters
4374 which are in symbols. */
4375 while (p > text)
4376 {
4377 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4378 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4379 --p;
4380 else
4381 break;
4382 }
4383 sym_text = p;
4384 }
4385 }
4386
4387 sym_text_len = strlen (sym_text);
4388
4389 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4390
4391 if (current_language->la_language == language_cplus
4392 || current_language->la_language == language_java
4393 || current_language->la_language == language_fortran)
4394 {
4395 /* These languages may have parameters entered by user but they are never
4396 present in the partial symbol tables. */
4397
4398 const char *cs = memchr (sym_text, '(', sym_text_len);
4399
4400 if (cs)
4401 sym_text_len = cs - sym_text;
4402 }
4403 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4404
4405 return_val = NULL;
4406 back_to = make_cleanup (do_free_completion_list, &return_val);
4407
4408 datum.sym_text = sym_text;
4409 datum.sym_text_len = sym_text_len;
4410 datum.text = text;
4411 datum.word = word;
4412
4413 /* Look through the partial symtabs for all symbols which begin
4414 by matching SYM_TEXT. Expand all CUs that you find to the list.
4415 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4416 expand_symtabs_matching (NULL, symbol_completion_matcher, ALL_DOMAIN,
4417 &datum);
4418
4419 /* At this point scan through the misc symbol vectors and add each
4420 symbol you find to the list. Eventually we want to ignore
4421 anything that isn't a text symbol (everything else will be
4422 handled by the psymtab code above). */
4423
4424 if (code == TYPE_CODE_UNDEF)
4425 {
4426 ALL_MSYMBOLS (objfile, msymbol)
4427 {
4428 QUIT;
4429 MCOMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
4430 word);
4431
4432 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
4433 word);
4434 }
4435 }
4436
4437 /* Search upwards from currently selected frame (so that we can
4438 complete on local vars). Also catch fields of types defined in
4439 this places which match our text string. Only complete on types
4440 visible from current context. */
4441
4442 b = get_selected_block (0);
4443 surrounding_static_block = block_static_block (b);
4444 surrounding_global_block = block_global_block (b);
4445 if (surrounding_static_block != NULL)
4446 while (b != surrounding_static_block)
4447 {
4448 QUIT;
4449
4450 ALL_BLOCK_SYMBOLS (b, iter, sym)
4451 {
4452 if (code == TYPE_CODE_UNDEF)
4453 {
4454 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4455 word);
4456 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4457 word);
4458 }
4459 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4460 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
4461 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4462 word);
4463 }
4464
4465 /* Stop when we encounter an enclosing function. Do not stop for
4466 non-inlined functions - the locals of the enclosing function
4467 are in scope for a nested function. */
4468 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4469 break;
4470 b = BLOCK_SUPERBLOCK (b);
4471 }
4472
4473 /* Add fields from the file's types; symbols will be added below. */
4474
4475 if (code == TYPE_CODE_UNDEF)
4476 {
4477 if (surrounding_static_block != NULL)
4478 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4479 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4480
4481 if (surrounding_global_block != NULL)
4482 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4483 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4484 }
4485
4486 /* Go through the symtabs and check the externs and statics for
4487 symbols which match. */
4488
4489 ALL_COMPUNITS (objfile, cust)
4490 {
4491 QUIT;
4492 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), GLOBAL_BLOCK);
4493 ALL_BLOCK_SYMBOLS (b, iter, sym)
4494 {
4495 if (code == TYPE_CODE_UNDEF
4496 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4497 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4498 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4499 }
4500 }
4501
4502 ALL_COMPUNITS (objfile, cust)
4503 {
4504 QUIT;
4505 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), STATIC_BLOCK);
4506 ALL_BLOCK_SYMBOLS (b, iter, sym)
4507 {
4508 if (code == TYPE_CODE_UNDEF
4509 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4510 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4511 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4512 }
4513 }
4514
4515 /* Skip macros if we are completing a struct tag -- arguable but
4516 usually what is expected. */
4517 if (current_language->la_macro_expansion == macro_expansion_c
4518 && code == TYPE_CODE_UNDEF)
4519 {
4520 struct macro_scope *scope;
4521
4522 /* Add any macros visible in the default scope. Note that this
4523 may yield the occasional wrong result, because an expression
4524 might be evaluated in a scope other than the default. For
4525 example, if the user types "break file:line if <TAB>", the
4526 resulting expression will be evaluated at "file:line" -- but
4527 at there does not seem to be a way to detect this at
4528 completion time. */
4529 scope = default_macro_scope ();
4530 if (scope)
4531 {
4532 macro_for_each_in_scope (scope->file, scope->line,
4533 add_macro_name, &datum);
4534 xfree (scope);
4535 }
4536
4537 /* User-defined macros are always visible. */
4538 macro_for_each (macro_user_macros, add_macro_name, &datum);
4539 }
4540
4541 discard_cleanups (back_to);
4542 return (return_val);
4543 }
4544
4545 VEC (char_ptr) *
4546 default_make_symbol_completion_list (const char *text, const char *word,
4547 enum type_code code)
4548 {
4549 return default_make_symbol_completion_list_break_on (text, word, "", code);
4550 }
4551
4552 /* Return a vector of all symbols (regardless of class) which begin by
4553 matching TEXT. If the answer is no symbols, then the return value
4554 is NULL. */
4555
4556 VEC (char_ptr) *
4557 make_symbol_completion_list (const char *text, const char *word)
4558 {
4559 return current_language->la_make_symbol_completion_list (text, word,
4560 TYPE_CODE_UNDEF);
4561 }
4562
4563 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
4564 symbols whose type code is CODE. */
4565
4566 VEC (char_ptr) *
4567 make_symbol_completion_type (const char *text, const char *word,
4568 enum type_code code)
4569 {
4570 gdb_assert (code == TYPE_CODE_UNION
4571 || code == TYPE_CODE_STRUCT
4572 || code == TYPE_CODE_ENUM);
4573 return current_language->la_make_symbol_completion_list (text, word, code);
4574 }
4575
4576 /* Like make_symbol_completion_list, but suitable for use as a
4577 completion function. */
4578
4579 VEC (char_ptr) *
4580 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4581 const char *text, const char *word)
4582 {
4583 return make_symbol_completion_list (text, word);
4584 }
4585
4586 /* Like make_symbol_completion_list, but returns a list of symbols
4587 defined in a source file FILE. */
4588
4589 VEC (char_ptr) *
4590 make_file_symbol_completion_list (const char *text, const char *word,
4591 const char *srcfile)
4592 {
4593 struct symbol *sym;
4594 struct symtab *s;
4595 struct block *b;
4596 struct block_iterator iter;
4597 /* The symbol we are completing on. Points in same buffer as text. */
4598 const char *sym_text;
4599 /* Length of sym_text. */
4600 int sym_text_len;
4601
4602 /* Now look for the symbol we are supposed to complete on.
4603 FIXME: This should be language-specific. */
4604 {
4605 const char *p;
4606 char quote_found;
4607 const char *quote_pos = NULL;
4608
4609 /* First see if this is a quoted string. */
4610 quote_found = '\0';
4611 for (p = text; *p != '\0'; ++p)
4612 {
4613 if (quote_found != '\0')
4614 {
4615 if (*p == quote_found)
4616 /* Found close quote. */
4617 quote_found = '\0';
4618 else if (*p == '\\' && p[1] == quote_found)
4619 /* A backslash followed by the quote character
4620 doesn't end the string. */
4621 ++p;
4622 }
4623 else if (*p == '\'' || *p == '"')
4624 {
4625 quote_found = *p;
4626 quote_pos = p;
4627 }
4628 }
4629 if (quote_found == '\'')
4630 /* A string within single quotes can be a symbol, so complete on it. */
4631 sym_text = quote_pos + 1;
4632 else if (quote_found == '"')
4633 /* A double-quoted string is never a symbol, nor does it make sense
4634 to complete it any other way. */
4635 {
4636 return NULL;
4637 }
4638 else
4639 {
4640 /* Not a quoted string. */
4641 sym_text = language_search_unquoted_string (text, p);
4642 }
4643 }
4644
4645 sym_text_len = strlen (sym_text);
4646
4647 return_val = NULL;
4648
4649 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4650 in). */
4651 s = lookup_symtab (srcfile);
4652 if (s == NULL)
4653 {
4654 /* Maybe they typed the file with leading directories, while the
4655 symbol tables record only its basename. */
4656 const char *tail = lbasename (srcfile);
4657
4658 if (tail > srcfile)
4659 s = lookup_symtab (tail);
4660 }
4661
4662 /* If we have no symtab for that file, return an empty list. */
4663 if (s == NULL)
4664 return (return_val);
4665
4666 /* Go through this symtab and check the externs and statics for
4667 symbols which match. */
4668
4669 b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), GLOBAL_BLOCK);
4670 ALL_BLOCK_SYMBOLS (b, iter, sym)
4671 {
4672 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4673 }
4674
4675 b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), STATIC_BLOCK);
4676 ALL_BLOCK_SYMBOLS (b, iter, sym)
4677 {
4678 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4679 }
4680
4681 return (return_val);
4682 }
4683
4684 /* A helper function for make_source_files_completion_list. It adds
4685 another file name to a list of possible completions, growing the
4686 list as necessary. */
4687
4688 static void
4689 add_filename_to_list (const char *fname, const char *text, const char *word,
4690 VEC (char_ptr) **list)
4691 {
4692 char *new;
4693 size_t fnlen = strlen (fname);
4694
4695 if (word == text)
4696 {
4697 /* Return exactly fname. */
4698 new = xmalloc (fnlen + 5);
4699 strcpy (new, fname);
4700 }
4701 else if (word > text)
4702 {
4703 /* Return some portion of fname. */
4704 new = xmalloc (fnlen + 5);
4705 strcpy (new, fname + (word - text));
4706 }
4707 else
4708 {
4709 /* Return some of TEXT plus fname. */
4710 new = xmalloc (fnlen + (text - word) + 5);
4711 strncpy (new, word, text - word);
4712 new[text - word] = '\0';
4713 strcat (new, fname);
4714 }
4715 VEC_safe_push (char_ptr, *list, new);
4716 }
4717
4718 static int
4719 not_interesting_fname (const char *fname)
4720 {
4721 static const char *illegal_aliens[] = {
4722 "_globals_", /* inserted by coff_symtab_read */
4723 NULL
4724 };
4725 int i;
4726
4727 for (i = 0; illegal_aliens[i]; i++)
4728 {
4729 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4730 return 1;
4731 }
4732 return 0;
4733 }
4734
4735 /* An object of this type is passed as the user_data argument to
4736 map_partial_symbol_filenames. */
4737 struct add_partial_filename_data
4738 {
4739 struct filename_seen_cache *filename_seen_cache;
4740 const char *text;
4741 const char *word;
4742 int text_len;
4743 VEC (char_ptr) **list;
4744 };
4745
4746 /* A callback for map_partial_symbol_filenames. */
4747
4748 static void
4749 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4750 void *user_data)
4751 {
4752 struct add_partial_filename_data *data = user_data;
4753
4754 if (not_interesting_fname (filename))
4755 return;
4756 if (!filename_seen (data->filename_seen_cache, filename, 1)
4757 && filename_ncmp (filename, data->text, data->text_len) == 0)
4758 {
4759 /* This file matches for a completion; add it to the
4760 current list of matches. */
4761 add_filename_to_list (filename, data->text, data->word, data->list);
4762 }
4763 else
4764 {
4765 const char *base_name = lbasename (filename);
4766
4767 if (base_name != filename
4768 && !filename_seen (data->filename_seen_cache, base_name, 1)
4769 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4770 add_filename_to_list (base_name, data->text, data->word, data->list);
4771 }
4772 }
4773
4774 /* Return a vector of all source files whose names begin with matching
4775 TEXT. The file names are looked up in the symbol tables of this
4776 program. If the answer is no matchess, then the return value is
4777 NULL. */
4778
4779 VEC (char_ptr) *
4780 make_source_files_completion_list (const char *text, const char *word)
4781 {
4782 struct compunit_symtab *cu;
4783 struct symtab *s;
4784 struct objfile *objfile;
4785 size_t text_len = strlen (text);
4786 VEC (char_ptr) *list = NULL;
4787 const char *base_name;
4788 struct add_partial_filename_data datum;
4789 struct filename_seen_cache *filename_seen_cache;
4790 struct cleanup *back_to, *cache_cleanup;
4791
4792 if (!have_full_symbols () && !have_partial_symbols ())
4793 return list;
4794
4795 back_to = make_cleanup (do_free_completion_list, &list);
4796
4797 filename_seen_cache = create_filename_seen_cache ();
4798 cache_cleanup = make_cleanup (delete_filename_seen_cache,
4799 filename_seen_cache);
4800
4801 ALL_FILETABS (objfile, cu, s)
4802 {
4803 if (not_interesting_fname (s->filename))
4804 continue;
4805 if (!filename_seen (filename_seen_cache, s->filename, 1)
4806 && filename_ncmp (s->filename, text, text_len) == 0)
4807 {
4808 /* This file matches for a completion; add it to the current
4809 list of matches. */
4810 add_filename_to_list (s->filename, text, word, &list);
4811 }
4812 else
4813 {
4814 /* NOTE: We allow the user to type a base name when the
4815 debug info records leading directories, but not the other
4816 way around. This is what subroutines of breakpoint
4817 command do when they parse file names. */
4818 base_name = lbasename (s->filename);
4819 if (base_name != s->filename
4820 && !filename_seen (filename_seen_cache, base_name, 1)
4821 && filename_ncmp (base_name, text, text_len) == 0)
4822 add_filename_to_list (base_name, text, word, &list);
4823 }
4824 }
4825
4826 datum.filename_seen_cache = filename_seen_cache;
4827 datum.text = text;
4828 datum.word = word;
4829 datum.text_len = text_len;
4830 datum.list = &list;
4831 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4832 0 /*need_fullname*/);
4833
4834 do_cleanups (cache_cleanup);
4835 discard_cleanups (back_to);
4836
4837 return list;
4838 }
4839 \f
4840 /* Track MAIN */
4841
4842 /* Return the "main_info" object for the current program space. If
4843 the object has not yet been created, create it and fill in some
4844 default values. */
4845
4846 static struct main_info *
4847 get_main_info (void)
4848 {
4849 struct main_info *info = program_space_data (current_program_space,
4850 main_progspace_key);
4851
4852 if (info == NULL)
4853 {
4854 /* It may seem strange to store the main name in the progspace
4855 and also in whatever objfile happens to see a main name in
4856 its debug info. The reason for this is mainly historical:
4857 gdb returned "main" as the name even if no function named
4858 "main" was defined the program; and this approach lets us
4859 keep compatibility. */
4860 info = XCNEW (struct main_info);
4861 info->language_of_main = language_unknown;
4862 set_program_space_data (current_program_space, main_progspace_key,
4863 info);
4864 }
4865
4866 return info;
4867 }
4868
4869 /* A cleanup to destroy a struct main_info when a progspace is
4870 destroyed. */
4871
4872 static void
4873 main_info_cleanup (struct program_space *pspace, void *data)
4874 {
4875 struct main_info *info = data;
4876
4877 if (info != NULL)
4878 xfree (info->name_of_main);
4879 xfree (info);
4880 }
4881
4882 static void
4883 set_main_name (const char *name, enum language lang)
4884 {
4885 struct main_info *info = get_main_info ();
4886
4887 if (info->name_of_main != NULL)
4888 {
4889 xfree (info->name_of_main);
4890 info->name_of_main = NULL;
4891 info->language_of_main = language_unknown;
4892 }
4893 if (name != NULL)
4894 {
4895 info->name_of_main = xstrdup (name);
4896 info->language_of_main = lang;
4897 }
4898 }
4899
4900 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4901 accordingly. */
4902
4903 static void
4904 find_main_name (void)
4905 {
4906 const char *new_main_name;
4907 struct objfile *objfile;
4908
4909 /* First check the objfiles to see whether a debuginfo reader has
4910 picked up the appropriate main name. Historically the main name
4911 was found in a more or less random way; this approach instead
4912 relies on the order of objfile creation -- which still isn't
4913 guaranteed to get the correct answer, but is just probably more
4914 accurate. */
4915 ALL_OBJFILES (objfile)
4916 {
4917 if (objfile->per_bfd->name_of_main != NULL)
4918 {
4919 set_main_name (objfile->per_bfd->name_of_main,
4920 objfile->per_bfd->language_of_main);
4921 return;
4922 }
4923 }
4924
4925 /* Try to see if the main procedure is in Ada. */
4926 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4927 be to add a new method in the language vector, and call this
4928 method for each language until one of them returns a non-empty
4929 name. This would allow us to remove this hard-coded call to
4930 an Ada function. It is not clear that this is a better approach
4931 at this point, because all methods need to be written in a way
4932 such that false positives never be returned. For instance, it is
4933 important that a method does not return a wrong name for the main
4934 procedure if the main procedure is actually written in a different
4935 language. It is easy to guaranty this with Ada, since we use a
4936 special symbol generated only when the main in Ada to find the name
4937 of the main procedure. It is difficult however to see how this can
4938 be guarantied for languages such as C, for instance. This suggests
4939 that order of call for these methods becomes important, which means
4940 a more complicated approach. */
4941 new_main_name = ada_main_name ();
4942 if (new_main_name != NULL)
4943 {
4944 set_main_name (new_main_name, language_ada);
4945 return;
4946 }
4947
4948 new_main_name = d_main_name ();
4949 if (new_main_name != NULL)
4950 {
4951 set_main_name (new_main_name, language_d);
4952 return;
4953 }
4954
4955 new_main_name = go_main_name ();
4956 if (new_main_name != NULL)
4957 {
4958 set_main_name (new_main_name, language_go);
4959 return;
4960 }
4961
4962 new_main_name = pascal_main_name ();
4963 if (new_main_name != NULL)
4964 {
4965 set_main_name (new_main_name, language_pascal);
4966 return;
4967 }
4968
4969 /* The languages above didn't identify the name of the main procedure.
4970 Fallback to "main". */
4971 set_main_name ("main", language_unknown);
4972 }
4973
4974 char *
4975 main_name (void)
4976 {
4977 struct main_info *info = get_main_info ();
4978
4979 if (info->name_of_main == NULL)
4980 find_main_name ();
4981
4982 return info->name_of_main;
4983 }
4984
4985 /* Return the language of the main function. If it is not known,
4986 return language_unknown. */
4987
4988 enum language
4989 main_language (void)
4990 {
4991 struct main_info *info = get_main_info ();
4992
4993 if (info->name_of_main == NULL)
4994 find_main_name ();
4995
4996 return info->language_of_main;
4997 }
4998
4999 /* Handle ``executable_changed'' events for the symtab module. */
5000
5001 static void
5002 symtab_observer_executable_changed (void)
5003 {
5004 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5005 set_main_name (NULL, language_unknown);
5006 }
5007
5008 /* Return 1 if the supplied producer string matches the ARM RealView
5009 compiler (armcc). */
5010
5011 int
5012 producer_is_realview (const char *producer)
5013 {
5014 static const char *const arm_idents[] = {
5015 "ARM C Compiler, ADS",
5016 "Thumb C Compiler, ADS",
5017 "ARM C++ Compiler, ADS",
5018 "Thumb C++ Compiler, ADS",
5019 "ARM/Thumb C/C++ Compiler, RVCT",
5020 "ARM C/C++ Compiler, RVCT"
5021 };
5022 int i;
5023
5024 if (producer == NULL)
5025 return 0;
5026
5027 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5028 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
5029 return 1;
5030
5031 return 0;
5032 }
5033
5034 \f
5035
5036 /* The next index to hand out in response to a registration request. */
5037
5038 static int next_aclass_value = LOC_FINAL_VALUE;
5039
5040 /* The maximum number of "aclass" registrations we support. This is
5041 constant for convenience. */
5042 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5043
5044 /* The objects representing the various "aclass" values. The elements
5045 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5046 elements are those registered at gdb initialization time. */
5047
5048 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5049
5050 /* The globally visible pointer. This is separate from 'symbol_impl'
5051 so that it can be const. */
5052
5053 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5054
5055 /* Make sure we saved enough room in struct symbol. */
5056
5057 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5058
5059 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5060 is the ops vector associated with this index. This returns the new
5061 index, which should be used as the aclass_index field for symbols
5062 of this type. */
5063
5064 int
5065 register_symbol_computed_impl (enum address_class aclass,
5066 const struct symbol_computed_ops *ops)
5067 {
5068 int result = next_aclass_value++;
5069
5070 gdb_assert (aclass == LOC_COMPUTED);
5071 gdb_assert (result < MAX_SYMBOL_IMPLS);
5072 symbol_impl[result].aclass = aclass;
5073 symbol_impl[result].ops_computed = ops;
5074
5075 /* Sanity check OPS. */
5076 gdb_assert (ops != NULL);
5077 gdb_assert (ops->tracepoint_var_ref != NULL);
5078 gdb_assert (ops->describe_location != NULL);
5079 gdb_assert (ops->read_needs_frame != NULL);
5080 gdb_assert (ops->read_variable != NULL);
5081
5082 return result;
5083 }
5084
5085 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5086 OPS is the ops vector associated with this index. This returns the
5087 new index, which should be used as the aclass_index field for symbols
5088 of this type. */
5089
5090 int
5091 register_symbol_block_impl (enum address_class aclass,
5092 const struct symbol_block_ops *ops)
5093 {
5094 int result = next_aclass_value++;
5095
5096 gdb_assert (aclass == LOC_BLOCK);
5097 gdb_assert (result < MAX_SYMBOL_IMPLS);
5098 symbol_impl[result].aclass = aclass;
5099 symbol_impl[result].ops_block = ops;
5100
5101 /* Sanity check OPS. */
5102 gdb_assert (ops != NULL);
5103 gdb_assert (ops->find_frame_base_location != NULL);
5104
5105 return result;
5106 }
5107
5108 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5109 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5110 this index. This returns the new index, which should be used as
5111 the aclass_index field for symbols of this type. */
5112
5113 int
5114 register_symbol_register_impl (enum address_class aclass,
5115 const struct symbol_register_ops *ops)
5116 {
5117 int result = next_aclass_value++;
5118
5119 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5120 gdb_assert (result < MAX_SYMBOL_IMPLS);
5121 symbol_impl[result].aclass = aclass;
5122 symbol_impl[result].ops_register = ops;
5123
5124 return result;
5125 }
5126
5127 /* Initialize elements of 'symbol_impl' for the constants in enum
5128 address_class. */
5129
5130 static void
5131 initialize_ordinary_address_classes (void)
5132 {
5133 int i;
5134
5135 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5136 symbol_impl[i].aclass = i;
5137 }
5138
5139 \f
5140
5141 /* Initialize the symbol SYM. */
5142
5143 void
5144 initialize_symbol (struct symbol *sym)
5145 {
5146 memset (sym, 0, sizeof (*sym));
5147 SYMBOL_SECTION (sym) = -1;
5148 }
5149
5150 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5151 obstack. */
5152
5153 struct symbol *
5154 allocate_symbol (struct objfile *objfile)
5155 {
5156 struct symbol *result;
5157
5158 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5159 SYMBOL_SECTION (result) = -1;
5160
5161 return result;
5162 }
5163
5164 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5165 obstack. */
5166
5167 struct template_symbol *
5168 allocate_template_symbol (struct objfile *objfile)
5169 {
5170 struct template_symbol *result;
5171
5172 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5173 SYMBOL_SECTION (&result->base) = -1;
5174
5175 return result;
5176 }
5177
5178 \f
5179
5180 void
5181 _initialize_symtab (void)
5182 {
5183 initialize_ordinary_address_classes ();
5184
5185 main_progspace_key
5186 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
5187
5188 add_info ("variables", variables_info, _("\
5189 All global and static variable names, or those matching REGEXP."));
5190 if (dbx_commands)
5191 add_com ("whereis", class_info, variables_info, _("\
5192 All global and static variable names, or those matching REGEXP."));
5193
5194 add_info ("functions", functions_info,
5195 _("All function names, or those matching REGEXP."));
5196
5197 /* FIXME: This command has at least the following problems:
5198 1. It prints builtin types (in a very strange and confusing fashion).
5199 2. It doesn't print right, e.g. with
5200 typedef struct foo *FOO
5201 type_print prints "FOO" when we want to make it (in this situation)
5202 print "struct foo *".
5203 I also think "ptype" or "whatis" is more likely to be useful (but if
5204 there is much disagreement "info types" can be fixed). */
5205 add_info ("types", types_info,
5206 _("All type names, or those matching REGEXP."));
5207
5208 add_info ("sources", sources_info,
5209 _("Source files in the program."));
5210
5211 add_com ("rbreak", class_breakpoint, rbreak_command,
5212 _("Set a breakpoint for all functions matching REGEXP."));
5213
5214 if (xdb_commands)
5215 {
5216 add_com ("lf", class_info, sources_info,
5217 _("Source files in the program"));
5218 add_com ("lg", class_info, variables_info, _("\
5219 All global and static variable names, or those matching REGEXP."));
5220 }
5221
5222 add_setshow_enum_cmd ("multiple-symbols", no_class,
5223 multiple_symbols_modes, &multiple_symbols_mode,
5224 _("\
5225 Set the debugger behavior when more than one symbol are possible matches\n\
5226 in an expression."), _("\
5227 Show how the debugger handles ambiguities in expressions."), _("\
5228 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5229 NULL, NULL, &setlist, &showlist);
5230
5231 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5232 &basenames_may_differ, _("\
5233 Set whether a source file may have multiple base names."), _("\
5234 Show whether a source file may have multiple base names."), _("\
5235 (A \"base name\" is the name of a file with the directory part removed.\n\
5236 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5237 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5238 before comparing them. Canonicalization is an expensive operation,\n\
5239 but it allows the same file be known by more than one base name.\n\
5240 If not set (the default), all source files are assumed to have just\n\
5241 one base name, and gdb will do file name comparisons more efficiently."),
5242 NULL, NULL,
5243 &setlist, &showlist);
5244
5245 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
5246 _("Set debugging of symbol table creation."),
5247 _("Show debugging of symbol table creation."), _("\
5248 When enabled (non-zero), debugging messages are printed when building\n\
5249 symbol tables. A value of 1 (one) normally provides enough information.\n\
5250 A value greater than 1 provides more verbose information."),
5251 NULL,
5252 NULL,
5253 &setdebuglist, &showdebuglist);
5254
5255 observer_attach_executable_changed (symtab_observer_executable_changed);
5256 }