]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/target.h
Convert struct target_ops to C++
[thirdparty/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41 struct inferior;
42
43 #include "infrun.h" /* For enum exec_direction_kind. */
44 #include "breakpoint.h" /* For enum bptype. */
45 #include "common/scoped_restore.h"
46
47 /* This include file defines the interface between the main part
48 of the debugger, and the part which is target-specific, or
49 specific to the communications interface between us and the
50 target.
51
52 A TARGET is an interface between the debugger and a particular
53 kind of file or process. Targets can be STACKED in STRATA,
54 so that more than one target can potentially respond to a request.
55 In particular, memory accesses will walk down the stack of targets
56 until they find a target that is interested in handling that particular
57 address. STRATA are artificial boundaries on the stack, within
58 which particular kinds of targets live. Strata exist so that
59 people don't get confused by pushing e.g. a process target and then
60 a file target, and wondering why they can't see the current values
61 of variables any more (the file target is handling them and they
62 never get to the process target). So when you push a file target,
63 it goes into the file stratum, which is always below the process
64 stratum. */
65
66 #include "target/target.h"
67 #include "target/resume.h"
68 #include "target/wait.h"
69 #include "target/waitstatus.h"
70 #include "bfd.h"
71 #include "symtab.h"
72 #include "memattr.h"
73 #include "vec.h"
74 #include "gdb_signals.h"
75 #include "btrace.h"
76 #include "record.h"
77 #include "command.h"
78 #include "disasm.h"
79 #include "tracepoint.h"
80
81 #include "break-common.h" /* For enum target_hw_bp_type. */
82
83 enum strata
84 {
85 dummy_stratum, /* The lowest of the low */
86 file_stratum, /* Executable files, etc */
87 process_stratum, /* Executing processes or core dump files */
88 thread_stratum, /* Executing threads */
89 record_stratum, /* Support record debugging */
90 arch_stratum, /* Architecture overrides */
91 debug_stratum /* Target debug. Must be last. */
92 };
93
94 enum thread_control_capabilities
95 {
96 tc_none = 0, /* Default: can't control thread execution. */
97 tc_schedlock = 1, /* Can lock the thread scheduler. */
98 };
99
100 /* The structure below stores information about a system call.
101 It is basically used in the "catch syscall" command, and in
102 every function that gives information about a system call.
103
104 It's also good to mention that its fields represent everything
105 that we currently know about a syscall in GDB. */
106 struct syscall
107 {
108 /* The syscall number. */
109 int number;
110
111 /* The syscall name. */
112 const char *name;
113 };
114
115 /* Return a pretty printed form of TARGET_OPTIONS.
116 Space for the result is malloc'd, caller must free. */
117 extern char *target_options_to_string (int target_options);
118
119 /* Possible types of events that the inferior handler will have to
120 deal with. */
121 enum inferior_event_type
122 {
123 /* Process a normal inferior event which will result in target_wait
124 being called. */
125 INF_REG_EVENT,
126 /* We are called to do stuff after the inferior stops. */
127 INF_EXEC_COMPLETE,
128 };
129 \f
130 /* Target objects which can be transfered using target_read,
131 target_write, et cetera. */
132
133 enum target_object
134 {
135 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
136 TARGET_OBJECT_AVR,
137 /* SPU target specific transfer. See "spu-tdep.c". */
138 TARGET_OBJECT_SPU,
139 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
140 TARGET_OBJECT_MEMORY,
141 /* Memory, avoiding GDB's data cache and trusting the executable.
142 Target implementations of to_xfer_partial never need to handle
143 this object, and most callers should not use it. */
144 TARGET_OBJECT_RAW_MEMORY,
145 /* Memory known to be part of the target's stack. This is cached even
146 if it is not in a region marked as such, since it is known to be
147 "normal" RAM. */
148 TARGET_OBJECT_STACK_MEMORY,
149 /* Memory known to be part of the target code. This is cached even
150 if it is not in a region marked as such. */
151 TARGET_OBJECT_CODE_MEMORY,
152 /* Kernel Unwind Table. See "ia64-tdep.c". */
153 TARGET_OBJECT_UNWIND_TABLE,
154 /* Transfer auxilliary vector. */
155 TARGET_OBJECT_AUXV,
156 /* StackGhost cookie. See "sparc-tdep.c". */
157 TARGET_OBJECT_WCOOKIE,
158 /* Target memory map in XML format. */
159 TARGET_OBJECT_MEMORY_MAP,
160 /* Flash memory. This object can be used to write contents to
161 a previously erased flash memory. Using it without erasing
162 flash can have unexpected results. Addresses are physical
163 address on target, and not relative to flash start. */
164 TARGET_OBJECT_FLASH,
165 /* Available target-specific features, e.g. registers and coprocessors.
166 See "target-descriptions.c". ANNEX should never be empty. */
167 TARGET_OBJECT_AVAILABLE_FEATURES,
168 /* Currently loaded libraries, in XML format. */
169 TARGET_OBJECT_LIBRARIES,
170 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
171 TARGET_OBJECT_LIBRARIES_SVR4,
172 /* Currently loaded libraries specific to AIX systems, in XML format. */
173 TARGET_OBJECT_LIBRARIES_AIX,
174 /* Get OS specific data. The ANNEX specifies the type (running
175 processes, etc.). The data being transfered is expected to follow
176 the DTD specified in features/osdata.dtd. */
177 TARGET_OBJECT_OSDATA,
178 /* Extra signal info. Usually the contents of `siginfo_t' on unix
179 platforms. */
180 TARGET_OBJECT_SIGNAL_INFO,
181 /* The list of threads that are being debugged. */
182 TARGET_OBJECT_THREADS,
183 /* Collected static trace data. */
184 TARGET_OBJECT_STATIC_TRACE_DATA,
185 /* Traceframe info, in XML format. */
186 TARGET_OBJECT_TRACEFRAME_INFO,
187 /* Load maps for FDPIC systems. */
188 TARGET_OBJECT_FDPIC,
189 /* Darwin dynamic linker info data. */
190 TARGET_OBJECT_DARWIN_DYLD_INFO,
191 /* OpenVMS Unwind Information Block. */
192 TARGET_OBJECT_OPENVMS_UIB,
193 /* Branch trace data, in XML format. */
194 TARGET_OBJECT_BTRACE,
195 /* Branch trace configuration, in XML format. */
196 TARGET_OBJECT_BTRACE_CONF,
197 /* The pathname of the executable file that was run to create
198 a specified process. ANNEX should be a string representation
199 of the process ID of the process in question, in hexadecimal
200 format. */
201 TARGET_OBJECT_EXEC_FILE,
202 /* Possible future objects: TARGET_OBJECT_FILE, ... */
203 };
204
205 /* Possible values returned by target_xfer_partial, etc. */
206
207 enum target_xfer_status
208 {
209 /* Some bytes are transferred. */
210 TARGET_XFER_OK = 1,
211
212 /* No further transfer is possible. */
213 TARGET_XFER_EOF = 0,
214
215 /* The piece of the object requested is unavailable. */
216 TARGET_XFER_UNAVAILABLE = 2,
217
218 /* Generic I/O error. Note that it's important that this is '-1',
219 as we still have target_xfer-related code returning hardcoded
220 '-1' on error. */
221 TARGET_XFER_E_IO = -1,
222
223 /* Keep list in sync with target_xfer_status_to_string. */
224 };
225
226 /* Return the string form of STATUS. */
227
228 extern const char *
229 target_xfer_status_to_string (enum target_xfer_status status);
230
231 typedef enum target_xfer_status
232 target_xfer_partial_ftype (struct target_ops *ops,
233 enum target_object object,
234 const char *annex,
235 gdb_byte *readbuf,
236 const gdb_byte *writebuf,
237 ULONGEST offset,
238 ULONGEST len,
239 ULONGEST *xfered_len);
240
241 enum target_xfer_status
242 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
243 const gdb_byte *writebuf, ULONGEST memaddr,
244 LONGEST len, ULONGEST *xfered_len);
245
246 /* Request that OPS transfer up to LEN addressable units of the target's
247 OBJECT. When reading from a memory object, the size of an addressable unit
248 is architecture dependent and can be found using
249 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
250 byte long. BUF should point to a buffer large enough to hold the read data,
251 taking into account the addressable unit size. The OFFSET, for a seekable
252 object, specifies the starting point. The ANNEX can be used to provide
253 additional data-specific information to the target.
254
255 Return the number of addressable units actually transferred, or a negative
256 error code (an 'enum target_xfer_error' value) if the transfer is not
257 supported or otherwise fails. Return of a positive value less than
258 LEN indicates that no further transfer is possible. Unlike the raw
259 to_xfer_partial interface, callers of these functions do not need
260 to retry partial transfers. */
261
262 extern LONGEST target_read (struct target_ops *ops,
263 enum target_object object,
264 const char *annex, gdb_byte *buf,
265 ULONGEST offset, LONGEST len);
266
267 struct memory_read_result
268 {
269 memory_read_result (ULONGEST begin_, ULONGEST end_,
270 gdb::unique_xmalloc_ptr<gdb_byte> &&data_)
271 : begin (begin_),
272 end (end_),
273 data (std::move (data_))
274 {
275 }
276
277 ~memory_read_result () = default;
278
279 memory_read_result (memory_read_result &&other) = default;
280
281 DISABLE_COPY_AND_ASSIGN (memory_read_result);
282
283 /* First address that was read. */
284 ULONGEST begin;
285 /* Past-the-end address. */
286 ULONGEST end;
287 /* The data. */
288 gdb::unique_xmalloc_ptr<gdb_byte> data;
289 };
290
291 extern std::vector<memory_read_result> read_memory_robust
292 (struct target_ops *ops, const ULONGEST offset, const LONGEST len);
293
294 /* Request that OPS transfer up to LEN addressable units from BUF to the
295 target's OBJECT. When writing to a memory object, the addressable unit
296 size is architecture dependent and can be found using
297 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
298 byte long. The OFFSET, for a seekable object, specifies the starting point.
299 The ANNEX can be used to provide additional data-specific information to
300 the target.
301
302 Return the number of addressable units actually transferred, or a negative
303 error code (an 'enum target_xfer_status' value) if the transfer is not
304 supported or otherwise fails. Return of a positive value less than
305 LEN indicates that no further transfer is possible. Unlike the raw
306 to_xfer_partial interface, callers of these functions do not need to
307 retry partial transfers. */
308
309 extern LONGEST target_write (struct target_ops *ops,
310 enum target_object object,
311 const char *annex, const gdb_byte *buf,
312 ULONGEST offset, LONGEST len);
313
314 /* Similar to target_write, except that it also calls PROGRESS with
315 the number of bytes written and the opaque BATON after every
316 successful partial write (and before the first write). This is
317 useful for progress reporting and user interaction while writing
318 data. To abort the transfer, the progress callback can throw an
319 exception. */
320
321 LONGEST target_write_with_progress (struct target_ops *ops,
322 enum target_object object,
323 const char *annex, const gdb_byte *buf,
324 ULONGEST offset, LONGEST len,
325 void (*progress) (ULONGEST, void *),
326 void *baton);
327
328 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will be read
329 using OPS. The return value will be uninstantiated if the transfer fails or
330 is not supported.
331
332 This method should be used for objects sufficiently small to store
333 in a single xmalloc'd buffer, when no fixed bound on the object's
334 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
335 through this function. */
336
337 extern gdb::optional<gdb::byte_vector> target_read_alloc
338 (struct target_ops *ops, enum target_object object, const char *annex);
339
340 /* Read OBJECT/ANNEX using OPS. The result is a NUL-terminated character vector
341 (therefore usable as a NUL-terminated string). If an error occurs or the
342 transfer is unsupported, the return value will be uninstantiated. Empty
343 objects are returned as allocated but empty strings. Therefore, on success,
344 the returned vector is guaranteed to have at least one element. A warning is
345 issued if the result contains any embedded NUL bytes. */
346
347 extern gdb::optional<gdb::char_vector> target_read_stralloc
348 (struct target_ops *ops, enum target_object object, const char *annex);
349
350 /* See target_ops->to_xfer_partial. */
351 extern target_xfer_partial_ftype target_xfer_partial;
352
353 /* Wrappers to target read/write that perform memory transfers. They
354 throw an error if the memory transfer fails.
355
356 NOTE: cagney/2003-10-23: The naming schema is lifted from
357 "frame.h". The parameter order is lifted from get_frame_memory,
358 which in turn lifted it from read_memory. */
359
360 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
361 gdb_byte *buf, LONGEST len);
362 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
363 CORE_ADDR addr, int len,
364 enum bfd_endian byte_order);
365 \f
366 struct thread_info; /* fwd decl for parameter list below: */
367
368 /* The type of the callback to the to_async method. */
369
370 typedef void async_callback_ftype (enum inferior_event_type event_type,
371 void *context);
372
373 /* Normally target debug printing is purely type-based. However,
374 sometimes it is necessary to override the debug printing on a
375 per-argument basis. This macro can be used, attribute-style, to
376 name the target debug printing function for a particular method
377 argument. FUNC is the name of the function. The macro's
378 definition is empty because it is only used by the
379 make-target-delegates script. */
380
381 #define TARGET_DEBUG_PRINTER(FUNC)
382
383 /* These defines are used to mark target_ops methods. The script
384 make-target-delegates scans these and auto-generates the base
385 method implementations. There are four macros that can be used:
386
387 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
388 does nothing. This is only valid if the method return type is
389 'void'.
390
391 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
392 'tcomplain ()'. The base method simply makes this call, which is
393 assumed not to return.
394
395 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
396 base method returns this expression's value.
397
398 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
399 make-target-delegates does not generate a base method in this case,
400 but instead uses the argument function as the base method. */
401
402 #define TARGET_DEFAULT_IGNORE()
403 #define TARGET_DEFAULT_NORETURN(ARG)
404 #define TARGET_DEFAULT_RETURN(ARG)
405 #define TARGET_DEFAULT_FUNC(ARG)
406
407 struct target_ops
408 {
409 struct target_ops *beneath; /* To the target under this one. */
410
411 virtual ~target_ops () {}
412
413 /* Name this target type. */
414 virtual const char *shortname () = 0;
415
416 /* Name for printing. */
417 virtual const char *longname () = 0;
418
419 /* Documentation. Does not include trailing newline, and starts
420 ith a one-line description (probably similar to longname). */
421 virtual const char *doc () = 0;
422
423 /* The open routine takes the rest of the parameters from the
424 command, and (if successful) pushes a new target onto the
425 stack. Targets should supply this routine, if only to provide
426 an error message. */
427 virtual void open (const char *, int);
428
429 /* Close the target. This is where the target can handle
430 teardown. Heap-allocated targets should delete themselves
431 before returning. */
432 virtual void close ();
433
434 /* Attaches to a process on the target side. Arguments are as
435 passed to the `attach' command by the user. This routine can
436 be called when the target is not on the target-stack, if the
437 target_ops::can_run method returns 1; in that case, it must push
438 itself onto the stack. Upon exit, the target should be ready
439 for normal operations, and should be ready to deliver the
440 status of the process immediately (without waiting) to an
441 upcoming target_wait call. */
442 virtual bool can_attach ();
443 virtual void attach (const char *, int);
444 virtual void post_attach (int)
445 TARGET_DEFAULT_IGNORE ();
446 virtual void detach (inferior *, int)
447 TARGET_DEFAULT_IGNORE ();
448 virtual void disconnect (const char *, int)
449 TARGET_DEFAULT_NORETURN (tcomplain ());
450 virtual void resume (ptid_t,
451 int TARGET_DEBUG_PRINTER (target_debug_print_step),
452 enum gdb_signal)
453 TARGET_DEFAULT_NORETURN (noprocess ());
454 virtual void commit_resume ()
455 TARGET_DEFAULT_IGNORE ();
456 virtual ptid_t wait (ptid_t, struct target_waitstatus *,
457 int TARGET_DEBUG_PRINTER (target_debug_print_options))
458 TARGET_DEFAULT_FUNC (default_target_wait);
459 virtual void fetch_registers (struct regcache *, int)
460 TARGET_DEFAULT_IGNORE ();
461 virtual void store_registers (struct regcache *, int)
462 TARGET_DEFAULT_NORETURN (noprocess ());
463 virtual void prepare_to_store (struct regcache *)
464 TARGET_DEFAULT_NORETURN (noprocess ());
465
466 virtual void files_info ()
467 TARGET_DEFAULT_IGNORE ();
468 virtual int insert_breakpoint (struct gdbarch *,
469 struct bp_target_info *)
470 TARGET_DEFAULT_NORETURN (noprocess ());
471 virtual int remove_breakpoint (struct gdbarch *,
472 struct bp_target_info *,
473 enum remove_bp_reason)
474 TARGET_DEFAULT_NORETURN (noprocess ());
475
476 /* Returns true if the target stopped because it executed a
477 software breakpoint. This is necessary for correct background
478 execution / non-stop mode operation, and for correct PC
479 adjustment on targets where the PC needs to be adjusted when a
480 software breakpoint triggers. In these modes, by the time GDB
481 processes a breakpoint event, the breakpoint may already be
482 done from the target, so GDB needs to be able to tell whether
483 it should ignore the event and whether it should adjust the PC.
484 See adjust_pc_after_break. */
485 virtual int stopped_by_sw_breakpoint ()
486 TARGET_DEFAULT_RETURN (0);
487 /* Returns true if the above method is supported. */
488 virtual int supports_stopped_by_sw_breakpoint ()
489 TARGET_DEFAULT_RETURN (0);
490
491 /* Returns true if the target stopped for a hardware breakpoint.
492 Likewise, if the target supports hardware breakpoints, this
493 method is necessary for correct background execution / non-stop
494 mode operation. Even though hardware breakpoints do not
495 require PC adjustment, GDB needs to be able to tell whether the
496 hardware breakpoint event is a delayed event for a breakpoint
497 that is already gone and should thus be ignored. */
498 virtual int stopped_by_hw_breakpoint ()
499 TARGET_DEFAULT_RETURN (0);
500 /* Returns true if the above method is supported. */
501 virtual int supports_stopped_by_hw_breakpoint ()
502 TARGET_DEFAULT_RETURN (0);
503
504 virtual int can_use_hw_breakpoint (enum bptype, int, int)
505 TARGET_DEFAULT_RETURN (0);
506 virtual int ranged_break_num_registers ()
507 TARGET_DEFAULT_RETURN (-1);
508 virtual int insert_hw_breakpoint (struct gdbarch *,
509 struct bp_target_info *)
510 TARGET_DEFAULT_RETURN (-1);
511 virtual int remove_hw_breakpoint (struct gdbarch *,
512 struct bp_target_info *)
513 TARGET_DEFAULT_RETURN (-1);
514
515 /* Documentation of what the two routines below are expected to do is
516 provided with the corresponding target_* macros. */
517 virtual int remove_watchpoint (CORE_ADDR, int,
518 enum target_hw_bp_type, struct expression *)
519 TARGET_DEFAULT_RETURN (-1);
520 virtual int insert_watchpoint (CORE_ADDR, int,
521 enum target_hw_bp_type, struct expression *)
522 TARGET_DEFAULT_RETURN (-1);
523
524 virtual int insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
525 enum target_hw_bp_type)
526 TARGET_DEFAULT_RETURN (1);
527 virtual int remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
528 enum target_hw_bp_type)
529 TARGET_DEFAULT_RETURN (1);
530 virtual int stopped_by_watchpoint ()
531 TARGET_DEFAULT_RETURN (0);
532 virtual int have_steppable_watchpoint ()
533 TARGET_DEFAULT_RETURN (0);
534 virtual bool have_continuable_watchpoint ()
535 TARGET_DEFAULT_RETURN (0);
536 virtual int stopped_data_address (CORE_ADDR *)
537 TARGET_DEFAULT_RETURN (0);
538 virtual int watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int)
539 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
540
541 /* Documentation of this routine is provided with the corresponding
542 target_* macro. */
543 virtual int region_ok_for_hw_watchpoint (CORE_ADDR, int)
544 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
545
546 virtual int can_accel_watchpoint_condition (CORE_ADDR, int, int,
547 struct expression *)
548 TARGET_DEFAULT_RETURN (0);
549 virtual int masked_watch_num_registers (CORE_ADDR, CORE_ADDR)
550 TARGET_DEFAULT_RETURN (-1);
551
552 /* Return 1 for sure target can do single step. Return -1 for
553 unknown. Return 0 for target can't do. */
554 virtual int can_do_single_step ()
555 TARGET_DEFAULT_RETURN (-1);
556
557 virtual bool supports_terminal_ours ()
558 TARGET_DEFAULT_RETURN (0);
559 virtual void terminal_init ()
560 TARGET_DEFAULT_IGNORE ();
561 virtual void terminal_inferior ()
562 TARGET_DEFAULT_IGNORE ();
563 virtual void terminal_save_inferior ()
564 TARGET_DEFAULT_IGNORE ();
565 virtual void terminal_ours_for_output ()
566 TARGET_DEFAULT_IGNORE ();
567 virtual void terminal_ours ()
568 TARGET_DEFAULT_IGNORE ();
569 virtual void terminal_info (const char *, int)
570 TARGET_DEFAULT_FUNC (default_terminal_info);
571 virtual void kill ()
572 TARGET_DEFAULT_NORETURN (noprocess ());
573 virtual void load (const char *, int)
574 TARGET_DEFAULT_NORETURN (tcomplain ());
575 /* Start an inferior process and set inferior_ptid to its pid.
576 EXEC_FILE is the file to run.
577 ALLARGS is a string containing the arguments to the program.
578 ENV is the environment vector to pass. Errors reported with error().
579 On VxWorks and various standalone systems, we ignore exec_file. */
580 virtual bool can_create_inferior ();
581 virtual void create_inferior (const char *, const std::string &,
582 char **, int);
583 virtual void post_startup_inferior (ptid_t)
584 TARGET_DEFAULT_IGNORE ();
585 virtual int insert_fork_catchpoint (int)
586 TARGET_DEFAULT_RETURN (1);
587 virtual int remove_fork_catchpoint (int)
588 TARGET_DEFAULT_RETURN (1);
589 virtual int insert_vfork_catchpoint (int)
590 TARGET_DEFAULT_RETURN (1);
591 virtual int remove_vfork_catchpoint (int)
592 TARGET_DEFAULT_RETURN (1);
593 virtual int follow_fork (int, int)
594 TARGET_DEFAULT_FUNC (default_follow_fork);
595 virtual int insert_exec_catchpoint (int)
596 TARGET_DEFAULT_RETURN (1);
597 virtual int remove_exec_catchpoint (int)
598 TARGET_DEFAULT_RETURN (1);
599 virtual void follow_exec (struct inferior *, char *)
600 TARGET_DEFAULT_IGNORE ();
601 virtual int set_syscall_catchpoint (int, bool, int,
602 gdb::array_view<const int>)
603 TARGET_DEFAULT_RETURN (1);
604 virtual void mourn_inferior ()
605 TARGET_DEFAULT_FUNC (default_mourn_inferior);
606
607 /* Note that can_run is special and can be invoked on an unpushed
608 target. Targets defining this method must also define
609 to_can_async_p and to_supports_non_stop. */
610 virtual int can_run ();
611
612 /* Documentation of this routine is provided with the corresponding
613 target_* macro. */
614 virtual void pass_signals (int,
615 unsigned char * TARGET_DEBUG_PRINTER (target_debug_print_signals))
616 TARGET_DEFAULT_IGNORE ();
617
618 /* Documentation of this routine is provided with the
619 corresponding target_* function. */
620 virtual void program_signals (int,
621 unsigned char * TARGET_DEBUG_PRINTER (target_debug_print_signals))
622 TARGET_DEFAULT_IGNORE ();
623
624 virtual int thread_alive (ptid_t ptid)
625 TARGET_DEFAULT_RETURN (0);
626 virtual void update_thread_list ()
627 TARGET_DEFAULT_IGNORE ();
628 virtual const char *pid_to_str (ptid_t)
629 TARGET_DEFAULT_FUNC (default_pid_to_str);
630 virtual const char *extra_thread_info (thread_info *)
631 TARGET_DEFAULT_RETURN (NULL);
632 virtual const char *thread_name (thread_info *)
633 TARGET_DEFAULT_RETURN (NULL);
634 virtual thread_info *thread_handle_to_thread_info (const gdb_byte *,
635 int,
636 inferior *inf)
637 TARGET_DEFAULT_RETURN (NULL);
638 virtual void stop (ptid_t)
639 TARGET_DEFAULT_IGNORE ();
640 virtual void interrupt ()
641 TARGET_DEFAULT_IGNORE ();
642 virtual void pass_ctrlc ()
643 TARGET_DEFAULT_FUNC (default_target_pass_ctrlc);
644 virtual void rcmd (const char *command, struct ui_file *output)
645 TARGET_DEFAULT_FUNC (default_rcmd);
646 virtual char *pid_to_exec_file (int pid)
647 TARGET_DEFAULT_RETURN (NULL);
648 virtual void log_command (const char *)
649 TARGET_DEFAULT_IGNORE ();
650 virtual struct target_section_table *get_section_table ()
651 TARGET_DEFAULT_RETURN (NULL);
652 enum strata to_stratum;
653
654 /* Provide default values for all "must have" methods. */
655 virtual int has_all_memory () { return 0; }
656 virtual int has_memory () { return 0; }
657 virtual int has_stack () { return 0; }
658 virtual int has_registers () { return 0; }
659 virtual int has_execution (ptid_t) { return 0; }
660
661 /* Control thread execution. */
662 virtual thread_control_capabilities get_thread_control_capabilities ()
663 TARGET_DEFAULT_RETURN (tc_none);
664 virtual bool attach_no_wait ()
665 TARGET_DEFAULT_RETURN (0);
666 /* This method must be implemented in some situations. See the
667 comment on 'can_run'. */
668 virtual int can_async_p ()
669 TARGET_DEFAULT_RETURN (0);
670 virtual int is_async_p ()
671 TARGET_DEFAULT_RETURN (0);
672 virtual void async (int)
673 TARGET_DEFAULT_NORETURN (tcomplain ());
674 virtual void thread_events (int)
675 TARGET_DEFAULT_IGNORE ();
676 /* This method must be implemented in some situations. See the
677 comment on 'can_run'. */
678 virtual int supports_non_stop ()
679 TARGET_DEFAULT_RETURN (0);
680 /* Return true if the target operates in non-stop mode even with
681 "set non-stop off". */
682 virtual int always_non_stop_p ()
683 TARGET_DEFAULT_RETURN (0);
684 /* find_memory_regions support method for gcore */
685 virtual int find_memory_regions (find_memory_region_ftype func, void *data)
686 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
687 /* make_corefile_notes support method for gcore */
688 virtual char *make_corefile_notes (bfd *, int *)
689 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
690 /* get_bookmark support method for bookmarks */
691 virtual gdb_byte *get_bookmark (const char *, int)
692 TARGET_DEFAULT_NORETURN (tcomplain ());
693 /* goto_bookmark support method for bookmarks */
694 virtual void goto_bookmark (const gdb_byte *, int)
695 TARGET_DEFAULT_NORETURN (tcomplain ());
696 /* Return the thread-local address at OFFSET in the
697 thread-local storage for the thread PTID and the shared library
698 or executable file given by OBJFILE. If that block of
699 thread-local storage hasn't been allocated yet, this function
700 may return an error. LOAD_MODULE_ADDR may be zero for statically
701 linked multithreaded inferiors. */
702 virtual CORE_ADDR get_thread_local_address (ptid_t ptid,
703 CORE_ADDR load_module_addr,
704 CORE_ADDR offset)
705 TARGET_DEFAULT_NORETURN (generic_tls_error ());
706
707 /* Request that OPS transfer up to LEN addressable units of the target's
708 OBJECT. When reading from a memory object, the size of an addressable
709 unit is architecture dependent and can be found using
710 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is
711 1 byte long. The OFFSET, for a seekable object, specifies the
712 starting point. The ANNEX can be used to provide additional
713 data-specific information to the target.
714
715 Return the transferred status, error or OK (an
716 'enum target_xfer_status' value). Save the number of addressable units
717 actually transferred in *XFERED_LEN if transfer is successful
718 (TARGET_XFER_OK) or the number unavailable units if the requested
719 data is unavailable (TARGET_XFER_UNAVAILABLE). *XFERED_LEN
720 smaller than LEN does not indicate the end of the object, only
721 the end of the transfer; higher level code should continue
722 transferring if desired. This is handled in target.c.
723
724 The interface does not support a "retry" mechanism. Instead it
725 assumes that at least one addressable unit will be transfered on each
726 successful call.
727
728 NOTE: cagney/2003-10-17: The current interface can lead to
729 fragmented transfers. Lower target levels should not implement
730 hacks, such as enlarging the transfer, in an attempt to
731 compensate for this. Instead, the target stack should be
732 extended so that it implements supply/collect methods and a
733 look-aside object cache. With that available, the lowest
734 target can safely and freely "push" data up the stack.
735
736 See target_read and target_write for more information. One,
737 and only one, of readbuf or writebuf must be non-NULL. */
738
739 virtual enum target_xfer_status xfer_partial (enum target_object object,
740 const char *annex,
741 gdb_byte *readbuf,
742 const gdb_byte *writebuf,
743 ULONGEST offset, ULONGEST len,
744 ULONGEST *xfered_len)
745 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
746
747 /* Return the limit on the size of any single memory transfer
748 for the target. */
749
750 virtual ULONGEST get_memory_xfer_limit ()
751 TARGET_DEFAULT_RETURN (ULONGEST_MAX);
752
753 /* Returns the memory map for the target. A return value of NULL
754 means that no memory map is available. If a memory address
755 does not fall within any returned regions, it's assumed to be
756 RAM. The returned memory regions should not overlap.
757
758 The order of regions does not matter; target_memory_map will
759 sort regions by starting address. For that reason, this
760 function should not be called directly except via
761 target_memory_map.
762
763 This method should not cache data; if the memory map could
764 change unexpectedly, it should be invalidated, and higher
765 layers will re-fetch it. */
766 virtual std::vector<mem_region> memory_map ()
767 TARGET_DEFAULT_RETURN (std::vector<mem_region> ());
768
769 /* Erases the region of flash memory starting at ADDRESS, of
770 length LENGTH.
771
772 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
773 on flash block boundaries, as reported by 'to_memory_map'. */
774 virtual void flash_erase (ULONGEST address, LONGEST length)
775 TARGET_DEFAULT_NORETURN (tcomplain ());
776
777 /* Finishes a flash memory write sequence. After this operation
778 all flash memory should be available for writing and the result
779 of reading from areas written by 'to_flash_write' should be
780 equal to what was written. */
781 virtual void flash_done ()
782 TARGET_DEFAULT_NORETURN (tcomplain ());
783
784 /* Describe the architecture-specific features of this target. If
785 OPS doesn't have a description, this should delegate to the
786 "beneath" target. Returns the description found, or NULL if no
787 description was available. */
788 virtual const struct target_desc *read_description ()
789 TARGET_DEFAULT_RETURN (NULL);
790
791 /* Build the PTID of the thread on which a given task is running,
792 based on LWP and THREAD. These values are extracted from the
793 task Private_Data section of the Ada Task Control Block, and
794 their interpretation depends on the target. */
795 virtual ptid_t get_ada_task_ptid (long lwp, long thread)
796 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
797
798 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
799 Return 0 if *READPTR is already at the end of the buffer.
800 Return -1 if there is insufficient buffer for a whole entry.
801 Return 1 if an entry was read into *TYPEP and *VALP. */
802 virtual int auxv_parse (gdb_byte **readptr,
803 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
804 TARGET_DEFAULT_FUNC (default_auxv_parse);
805
806 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
807 sequence of bytes in PATTERN with length PATTERN_LEN.
808
809 The result is 1 if found, 0 if not found, and -1 if there was an error
810 requiring halting of the search (e.g. memory read error).
811 If the pattern is found the address is recorded in FOUND_ADDRP. */
812 virtual int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
813 const gdb_byte *pattern, ULONGEST pattern_len,
814 CORE_ADDR *found_addrp)
815 TARGET_DEFAULT_FUNC (default_search_memory);
816
817 /* Can target execute in reverse? */
818 virtual int can_execute_reverse ()
819 TARGET_DEFAULT_RETURN (0);
820
821 /* The direction the target is currently executing. Must be
822 implemented on targets that support reverse execution and async
823 mode. The default simply returns forward execution. */
824 virtual enum exec_direction_kind execution_direction ()
825 TARGET_DEFAULT_FUNC (default_execution_direction);
826
827 /* Does this target support debugging multiple processes
828 simultaneously? */
829 virtual int supports_multi_process ()
830 TARGET_DEFAULT_RETURN (0);
831
832 /* Does this target support enabling and disabling tracepoints while a trace
833 experiment is running? */
834 virtual int supports_enable_disable_tracepoint ()
835 TARGET_DEFAULT_RETURN (0);
836
837 /* Does this target support disabling address space randomization? */
838 virtual int supports_disable_randomization ()
839 TARGET_DEFAULT_FUNC (find_default_supports_disable_randomization);
840
841 /* Does this target support the tracenz bytecode for string collection? */
842 virtual int supports_string_tracing ()
843 TARGET_DEFAULT_RETURN (0);
844
845 /* Does this target support evaluation of breakpoint conditions on its
846 end? */
847 virtual int supports_evaluation_of_breakpoint_conditions ()
848 TARGET_DEFAULT_RETURN (0);
849
850 /* Does this target support evaluation of breakpoint commands on its
851 end? */
852 virtual int can_run_breakpoint_commands ()
853 TARGET_DEFAULT_RETURN (0);
854
855 /* Determine current architecture of thread PTID.
856
857 The target is supposed to determine the architecture of the code where
858 the target is currently stopped at (on Cell, if a target is in spu_run,
859 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
860 This is architecture used to perform decr_pc_after_break adjustment,
861 and also determines the frame architecture of the innermost frame.
862 ptrace operations need to operate according to target_gdbarch ().
863
864 The default implementation always returns target_gdbarch (). */
865 virtual struct gdbarch *thread_architecture (ptid_t)
866 TARGET_DEFAULT_FUNC (default_thread_architecture);
867
868 /* Determine current address space of thread PTID.
869
870 The default implementation always returns the inferior's
871 address space. */
872 virtual struct address_space *thread_address_space (ptid_t)
873 TARGET_DEFAULT_FUNC (default_thread_address_space);
874
875 /* Target file operations. */
876
877 /* Return nonzero if the filesystem seen by the current inferior
878 is the local filesystem, zero otherwise. */
879 virtual int filesystem_is_local ()
880 TARGET_DEFAULT_RETURN (1);
881
882 /* Open FILENAME on the target, in the filesystem as seen by INF,
883 using FLAGS and MODE. If INF is NULL, use the filesystem seen
884 by the debugger (GDB or, for remote targets, the remote stub).
885 If WARN_IF_SLOW is nonzero, print a warning message if the file
886 is being accessed over a link that may be slow. Return a
887 target file descriptor, or -1 if an error occurs (and set
888 *TARGET_ERRNO). */
889 virtual int fileio_open (struct inferior *inf, const char *filename,
890 int flags, int mode, int warn_if_slow,
891 int *target_errno);
892
893 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
894 Return the number of bytes written, or -1 if an error occurs
895 (and set *TARGET_ERRNO). */
896 virtual int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
897 ULONGEST offset, int *target_errno);
898
899 /* Read up to LEN bytes FD on the target into READ_BUF.
900 Return the number of bytes read, or -1 if an error occurs
901 (and set *TARGET_ERRNO). */
902 virtual int fileio_pread (int fd, gdb_byte *read_buf, int len,
903 ULONGEST offset, int *target_errno);
904
905 /* Get information about the file opened as FD and put it in
906 SB. Return 0 on success, or -1 if an error occurs (and set
907 *TARGET_ERRNO). */
908 virtual int fileio_fstat (int fd, struct stat *sb, int *target_errno);
909
910 /* Close FD on the target. Return 0, or -1 if an error occurs
911 (and set *TARGET_ERRNO). */
912 virtual int fileio_close (int fd, int *target_errno);
913
914 /* Unlink FILENAME on the target, in the filesystem as seen by
915 INF. If INF is NULL, use the filesystem seen by the debugger
916 (GDB or, for remote targets, the remote stub). Return 0, or
917 -1 if an error occurs (and set *TARGET_ERRNO). */
918 virtual int fileio_unlink (struct inferior *inf,
919 const char *filename,
920 int *target_errno);
921
922 /* Read value of symbolic link FILENAME on the target, in the
923 filesystem as seen by INF. If INF is NULL, use the filesystem
924 seen by the debugger (GDB or, for remote targets, the remote
925 stub). Return a string, or an empty optional if an error
926 occurs (and set *TARGET_ERRNO). */
927 virtual gdb::optional<std::string> fileio_readlink (struct inferior *inf,
928 const char *filename,
929 int *target_errno);
930
931 /* Implement the "info proc" command. Returns true if the target
932 actually implemented the command, false otherwise. */
933 virtual bool info_proc (const char *, enum info_proc_what);
934
935 /* Tracepoint-related operations. */
936
937 /* Prepare the target for a tracing run. */
938 virtual void trace_init ()
939 TARGET_DEFAULT_NORETURN (tcomplain ());
940
941 /* Send full details of a tracepoint location to the target. */
942 virtual void download_tracepoint (struct bp_location *location)
943 TARGET_DEFAULT_NORETURN (tcomplain ());
944
945 /* Is the target able to download tracepoint locations in current
946 state? */
947 virtual int can_download_tracepoint ()
948 TARGET_DEFAULT_RETURN (0);
949
950 /* Send full details of a trace state variable to the target. */
951 virtual void download_trace_state_variable (const trace_state_variable &tsv)
952 TARGET_DEFAULT_NORETURN (tcomplain ());
953
954 /* Enable a tracepoint on the target. */
955 virtual void enable_tracepoint (struct bp_location *location)
956 TARGET_DEFAULT_NORETURN (tcomplain ());
957
958 /* Disable a tracepoint on the target. */
959 virtual void disable_tracepoint (struct bp_location *location)
960 TARGET_DEFAULT_NORETURN (tcomplain ());
961
962 /* Inform the target info of memory regions that are readonly
963 (such as text sections), and so it should return data from
964 those rather than look in the trace buffer. */
965 virtual void trace_set_readonly_regions ()
966 TARGET_DEFAULT_NORETURN (tcomplain ());
967
968 /* Start a trace run. */
969 virtual void trace_start ()
970 TARGET_DEFAULT_NORETURN (tcomplain ());
971
972 /* Get the current status of a tracing run. */
973 virtual int get_trace_status (struct trace_status *ts)
974 TARGET_DEFAULT_RETURN (-1);
975
976 virtual void get_tracepoint_status (struct breakpoint *tp,
977 struct uploaded_tp *utp)
978 TARGET_DEFAULT_NORETURN (tcomplain ());
979
980 /* Stop a trace run. */
981 virtual void trace_stop ()
982 TARGET_DEFAULT_NORETURN (tcomplain ());
983
984 /* Ask the target to find a trace frame of the given type TYPE,
985 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
986 number of the trace frame, and also the tracepoint number at
987 TPP. If no trace frame matches, return -1. May throw if the
988 operation fails. */
989 virtual int trace_find (enum trace_find_type type, int num,
990 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
991 TARGET_DEFAULT_RETURN (-1);
992
993 /* Get the value of the trace state variable number TSV, returning
994 1 if the value is known and writing the value itself into the
995 location pointed to by VAL, else returning 0. */
996 virtual int get_trace_state_variable_value (int tsv, LONGEST *val)
997 TARGET_DEFAULT_RETURN (0);
998
999 virtual int save_trace_data (const char *filename)
1000 TARGET_DEFAULT_NORETURN (tcomplain ());
1001
1002 virtual int upload_tracepoints (struct uploaded_tp **utpp)
1003 TARGET_DEFAULT_RETURN (0);
1004
1005 virtual int upload_trace_state_variables (struct uploaded_tsv **utsvp)
1006 TARGET_DEFAULT_RETURN (0);
1007
1008 virtual LONGEST get_raw_trace_data (gdb_byte *buf,
1009 ULONGEST offset, LONGEST len)
1010 TARGET_DEFAULT_NORETURN (tcomplain ());
1011
1012 /* Get the minimum length of instruction on which a fast tracepoint
1013 may be set on the target. If this operation is unsupported,
1014 return -1. If for some reason the minimum length cannot be
1015 determined, return 0. */
1016 virtual int get_min_fast_tracepoint_insn_len ()
1017 TARGET_DEFAULT_RETURN (-1);
1018
1019 /* Set the target's tracing behavior in response to unexpected
1020 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
1021 virtual void set_disconnected_tracing (int val)
1022 TARGET_DEFAULT_IGNORE ();
1023 virtual void set_circular_trace_buffer (int val)
1024 TARGET_DEFAULT_IGNORE ();
1025 /* Set the size of trace buffer in the target. */
1026 virtual void set_trace_buffer_size (LONGEST val)
1027 TARGET_DEFAULT_IGNORE ();
1028
1029 /* Add/change textual notes about the trace run, returning 1 if
1030 successful, 0 otherwise. */
1031 virtual int set_trace_notes (const char *user, const char *notes,
1032 const char *stopnotes)
1033 TARGET_DEFAULT_RETURN (0);
1034
1035 /* Return the processor core that thread PTID was last seen on.
1036 This information is updated only when:
1037 - update_thread_list is called
1038 - thread stops
1039 If the core cannot be determined -- either for the specified
1040 thread, or right now, or in this debug session, or for this
1041 target -- return -1. */
1042 virtual int core_of_thread (ptid_t ptid)
1043 TARGET_DEFAULT_RETURN (-1);
1044
1045 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
1046 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
1047 a match, 0 if there's a mismatch, and -1 if an error is
1048 encountered while reading memory. */
1049 virtual int verify_memory (const gdb_byte *data,
1050 CORE_ADDR memaddr, ULONGEST size)
1051 TARGET_DEFAULT_FUNC (default_verify_memory);
1052
1053 /* Return the address of the start of the Thread Information Block
1054 a Windows OS specific feature. */
1055 virtual int get_tib_address (ptid_t ptid, CORE_ADDR *addr)
1056 TARGET_DEFAULT_NORETURN (tcomplain ());
1057
1058 /* Send the new settings of write permission variables. */
1059 virtual void set_permissions ()
1060 TARGET_DEFAULT_IGNORE ();
1061
1062 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
1063 with its details. Return true on success, false on failure. */
1064 virtual bool static_tracepoint_marker_at (CORE_ADDR,
1065 static_tracepoint_marker *marker)
1066 TARGET_DEFAULT_RETURN (false);
1067
1068 /* Return a vector of all tracepoints markers string id ID, or all
1069 markers if ID is NULL. */
1070 virtual std::vector<static_tracepoint_marker> static_tracepoint_markers_by_strid (const char *id)
1071 TARGET_DEFAULT_NORETURN (tcomplain ());
1072
1073 /* Return a traceframe info object describing the current
1074 traceframe's contents. This method should not cache data;
1075 higher layers take care of caching, invalidating, and
1076 re-fetching when necessary. */
1077 virtual traceframe_info_up traceframe_info ()
1078 TARGET_DEFAULT_NORETURN (tcomplain ());
1079
1080 /* Ask the target to use or not to use agent according to USE. Return 1
1081 successful, 0 otherwise. */
1082 virtual int use_agent (int use)
1083 TARGET_DEFAULT_NORETURN (tcomplain ());
1084
1085 /* Is the target able to use agent in current state? */
1086 virtual int can_use_agent ()
1087 TARGET_DEFAULT_RETURN (0);
1088
1089 /* Enable branch tracing for PTID using CONF configuration.
1090 Return a branch trace target information struct for reading and for
1091 disabling branch trace. */
1092 virtual struct btrace_target_info *enable_btrace (ptid_t ptid,
1093 const struct btrace_config *conf)
1094 TARGET_DEFAULT_NORETURN (tcomplain ());
1095
1096 /* Disable branch tracing and deallocate TINFO. */
1097 virtual void disable_btrace (struct btrace_target_info *tinfo)
1098 TARGET_DEFAULT_NORETURN (tcomplain ());
1099
1100 /* Disable branch tracing and deallocate TINFO. This function is similar
1101 to to_disable_btrace, except that it is called during teardown and is
1102 only allowed to perform actions that are safe. A counter-example would
1103 be attempting to talk to a remote target. */
1104 virtual void teardown_btrace (struct btrace_target_info *tinfo)
1105 TARGET_DEFAULT_NORETURN (tcomplain ());
1106
1107 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1108 DATA is cleared before new trace is added. */
1109 virtual enum btrace_error read_btrace (struct btrace_data *data,
1110 struct btrace_target_info *btinfo,
1111 enum btrace_read_type type)
1112 TARGET_DEFAULT_NORETURN (tcomplain ());
1113
1114 /* Get the branch trace configuration. */
1115 virtual const struct btrace_config *btrace_conf (const struct btrace_target_info *)
1116 TARGET_DEFAULT_RETURN (NULL);
1117
1118 /* Current recording method. */
1119 virtual enum record_method record_method (ptid_t ptid)
1120 TARGET_DEFAULT_RETURN (RECORD_METHOD_NONE);
1121
1122 /* Stop trace recording. */
1123 virtual void stop_recording ()
1124 TARGET_DEFAULT_IGNORE ();
1125
1126 /* Print information about the recording. */
1127 virtual void info_record ()
1128 TARGET_DEFAULT_IGNORE ();
1129
1130 /* Save the recorded execution trace into a file. */
1131 virtual void save_record (const char *filename)
1132 TARGET_DEFAULT_NORETURN (tcomplain ());
1133
1134 /* Delete the recorded execution trace from the current position
1135 onwards. */
1136 virtual bool supports_delete_record ()
1137 TARGET_DEFAULT_RETURN (false);
1138 virtual void delete_record ()
1139 TARGET_DEFAULT_NORETURN (tcomplain ());
1140
1141 /* Query if the record target is currently replaying PTID. */
1142 virtual int record_is_replaying (ptid_t ptid)
1143 TARGET_DEFAULT_RETURN (0);
1144
1145 /* Query if the record target will replay PTID if it were resumed in
1146 execution direction DIR. */
1147 virtual int record_will_replay (ptid_t ptid, int dir)
1148 TARGET_DEFAULT_RETURN (0);
1149
1150 /* Stop replaying. */
1151 virtual void record_stop_replaying ()
1152 TARGET_DEFAULT_IGNORE ();
1153
1154 /* Go to the begin of the execution trace. */
1155 virtual void goto_record_begin ()
1156 TARGET_DEFAULT_NORETURN (tcomplain ());
1157
1158 /* Go to the end of the execution trace. */
1159 virtual void goto_record_end ()
1160 TARGET_DEFAULT_NORETURN (tcomplain ());
1161
1162 /* Go to a specific location in the recorded execution trace. */
1163 virtual void goto_record (ULONGEST insn)
1164 TARGET_DEFAULT_NORETURN (tcomplain ());
1165
1166 /* Disassemble SIZE instructions in the recorded execution trace from
1167 the current position.
1168 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1169 disassemble SIZE succeeding instructions. */
1170 virtual void insn_history (int size, gdb_disassembly_flags flags)
1171 TARGET_DEFAULT_NORETURN (tcomplain ());
1172
1173 /* Disassemble SIZE instructions in the recorded execution trace around
1174 FROM.
1175 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1176 disassemble SIZE instructions after FROM. */
1177 virtual void insn_history_from (ULONGEST from, int size,
1178 gdb_disassembly_flags flags)
1179 TARGET_DEFAULT_NORETURN (tcomplain ());
1180
1181 /* Disassemble a section of the recorded execution trace from instruction
1182 BEGIN (inclusive) to instruction END (inclusive). */
1183 virtual void insn_history_range (ULONGEST begin, ULONGEST end,
1184 gdb_disassembly_flags flags)
1185 TARGET_DEFAULT_NORETURN (tcomplain ());
1186
1187 /* Print a function trace of the recorded execution trace.
1188 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1189 succeeding functions. */
1190 virtual void call_history (int size, record_print_flags flags)
1191 TARGET_DEFAULT_NORETURN (tcomplain ());
1192
1193 /* Print a function trace of the recorded execution trace starting
1194 at function FROM.
1195 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1196 SIZE functions after FROM. */
1197 virtual void call_history_from (ULONGEST begin, int size, record_print_flags flags)
1198 TARGET_DEFAULT_NORETURN (tcomplain ());
1199
1200 /* Print a function trace of an execution trace section from function BEGIN
1201 (inclusive) to function END (inclusive). */
1202 virtual void call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
1203 TARGET_DEFAULT_NORETURN (tcomplain ());
1204
1205 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1206 non-empty annex. */
1207 virtual int augmented_libraries_svr4_read ()
1208 TARGET_DEFAULT_RETURN (0);
1209
1210 /* Those unwinders are tried before any other arch unwinders. If
1211 SELF doesn't have unwinders, it should delegate to the
1212 "beneath" target. */
1213 virtual const struct frame_unwind *get_unwinder ()
1214 TARGET_DEFAULT_RETURN (NULL);
1215
1216 virtual const struct frame_unwind *get_tailcall_unwinder ()
1217 TARGET_DEFAULT_RETURN (NULL);
1218
1219 /* Prepare to generate a core file. */
1220 virtual void prepare_to_generate_core ()
1221 TARGET_DEFAULT_IGNORE ();
1222
1223 /* Cleanup after generating a core file. */
1224 virtual void done_generating_core ()
1225 TARGET_DEFAULT_IGNORE ();
1226 };
1227
1228 /* The ops structure for our "current" target process. This should
1229 never be NULL. If there is no target, it points to the dummy_target. */
1230
1231 extern struct target_ops *target_stack;
1232
1233 /* Define easy words for doing these operations on our current target. */
1234
1235 #define target_shortname (target_stack->shortname ())
1236 #define target_longname (target_stack->longname ())
1237
1238 /* Does whatever cleanup is required for a target that we are no
1239 longer going to be calling. This routine is automatically always
1240 called after popping the target off the target stack - the target's
1241 own methods are no longer available through the target vector.
1242 Closing file descriptors and freeing all memory allocated memory are
1243 typical things it should do. */
1244
1245 void target_close (struct target_ops *targ);
1246
1247 /* Find the correct target to use for "attach". If a target on the
1248 current stack supports attaching, then it is returned. Otherwise,
1249 the default run target is returned. */
1250
1251 extern struct target_ops *find_attach_target (void);
1252
1253 /* Find the correct target to use for "run". If a target on the
1254 current stack supports creating a new inferior, then it is
1255 returned. Otherwise, the default run target is returned. */
1256
1257 extern struct target_ops *find_run_target (void);
1258
1259 /* Some targets don't generate traps when attaching to the inferior,
1260 or their target_attach implementation takes care of the waiting.
1261 These targets must set to_attach_no_wait. */
1262
1263 #define target_attach_no_wait() \
1264 (target_stack->attach_no_wait ())
1265
1266 /* The target_attach operation places a process under debugger control,
1267 and stops the process.
1268
1269 This operation provides a target-specific hook that allows the
1270 necessary bookkeeping to be performed after an attach completes. */
1271 #define target_post_attach(pid) \
1272 (target_stack->post_attach) (pid)
1273
1274 /* Display a message indicating we're about to detach from the current
1275 inferior process. */
1276
1277 extern void target_announce_detach (int from_tty);
1278
1279 /* Takes a program previously attached to and detaches it.
1280 The program may resume execution (some targets do, some don't) and will
1281 no longer stop on signals, etc. We better not have left any breakpoints
1282 in the program or it'll die when it hits one. FROM_TTY says whether to be
1283 verbose or not. */
1284
1285 extern void target_detach (inferior *inf, int from_tty);
1286
1287 /* Disconnect from the current target without resuming it (leaving it
1288 waiting for a debugger). */
1289
1290 extern void target_disconnect (const char *, int);
1291
1292 /* Resume execution (or prepare for execution) of a target thread,
1293 process or all processes. STEP says whether to hardware
1294 single-step or to run free; SIGGNAL is the signal to be given to
1295 the target, or GDB_SIGNAL_0 for no signal. The caller may not pass
1296 GDB_SIGNAL_DEFAULT. A specific PTID means `step/resume only this
1297 process id'. A wildcard PTID (all threads, or all threads of
1298 process) means `step/resume INFERIOR_PTID, and let other threads
1299 (for which the wildcard PTID matches) resume with their
1300 'thread->suspend.stop_signal' signal (usually GDB_SIGNAL_0) if it
1301 is in "pass" state, or with no signal if in "no pass" state.
1302
1303 In order to efficiently handle batches of resumption requests,
1304 targets may implement this method such that it records the
1305 resumption request, but defers the actual resumption to the
1306 target_commit_resume method implementation. See
1307 target_commit_resume below. */
1308 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1309
1310 /* Commit a series of resumption requests previously prepared with
1311 target_resume calls.
1312
1313 GDB always calls target_commit_resume after calling target_resume
1314 one or more times. A target may thus use this method in
1315 coordination with the target_resume method to batch target-side
1316 resumption requests. In that case, the target doesn't actually
1317 resume in its target_resume implementation. Instead, it prepares
1318 the resumption in target_resume, and defers the actual resumption
1319 to target_commit_resume. E.g., the remote target uses this to
1320 coalesce multiple resumption requests in a single vCont packet. */
1321 extern void target_commit_resume ();
1322
1323 /* Setup to defer target_commit_resume calls, and reactivate
1324 target_commit_resume on destruction, if it was previously
1325 active. */
1326 extern scoped_restore_tmpl<int> make_scoped_defer_target_commit_resume ();
1327
1328 /* For target_read_memory see target/target.h. */
1329
1330 /* The default target_ops::to_wait implementation. */
1331
1332 extern ptid_t default_target_wait (struct target_ops *ops,
1333 ptid_t ptid,
1334 struct target_waitstatus *status,
1335 int options);
1336
1337 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1338
1339 extern void target_fetch_registers (struct regcache *regcache, int regno);
1340
1341 /* Store at least register REGNO, or all regs if REGNO == -1.
1342 It can store as many registers as it wants to, so target_prepare_to_store
1343 must have been previously called. Calls error() if there are problems. */
1344
1345 extern void target_store_registers (struct regcache *regcache, int regs);
1346
1347 /* Get ready to modify the registers array. On machines which store
1348 individual registers, this doesn't need to do anything. On machines
1349 which store all the registers in one fell swoop, this makes sure
1350 that REGISTERS contains all the registers from the program being
1351 debugged. */
1352
1353 #define target_prepare_to_store(regcache) \
1354 (target_stack->prepare_to_store) (regcache)
1355
1356 /* Determine current address space of thread PTID. */
1357
1358 struct address_space *target_thread_address_space (ptid_t);
1359
1360 /* Implement the "info proc" command. This returns one if the request
1361 was handled, and zero otherwise. It can also throw an exception if
1362 an error was encountered while attempting to handle the
1363 request. */
1364
1365 int target_info_proc (const char *, enum info_proc_what);
1366
1367 /* Returns true if this target can disable address space randomization. */
1368
1369 int target_supports_disable_randomization (void);
1370
1371 /* Returns true if this target can enable and disable tracepoints
1372 while a trace experiment is running. */
1373
1374 #define target_supports_enable_disable_tracepoint() \
1375 (target_stack->supports_enable_disable_tracepoint) ()
1376
1377 #define target_supports_string_tracing() \
1378 (target_stack->supports_string_tracing) ()
1379
1380 /* Returns true if this target can handle breakpoint conditions
1381 on its end. */
1382
1383 #define target_supports_evaluation_of_breakpoint_conditions() \
1384 (target_stack->supports_evaluation_of_breakpoint_conditions) ()
1385
1386 /* Returns true if this target can handle breakpoint commands
1387 on its end. */
1388
1389 #define target_can_run_breakpoint_commands() \
1390 (target_stack->can_run_breakpoint_commands) ()
1391
1392 extern int target_read_string (CORE_ADDR, gdb::unique_xmalloc_ptr<char> *,
1393 int, int *);
1394
1395 /* For target_read_memory see target/target.h. */
1396
1397 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1398 ssize_t len);
1399
1400 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1401
1402 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1403
1404 /* For target_write_memory see target/target.h. */
1405
1406 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1407 ssize_t len);
1408
1409 /* Fetches the target's memory map. If one is found it is sorted
1410 and returned, after some consistency checking. Otherwise, NULL
1411 is returned. */
1412 std::vector<mem_region> target_memory_map (void);
1413
1414 /* Erases all flash memory regions on the target. */
1415 void flash_erase_command (const char *cmd, int from_tty);
1416
1417 /* Erase the specified flash region. */
1418 void target_flash_erase (ULONGEST address, LONGEST length);
1419
1420 /* Finish a sequence of flash operations. */
1421 void target_flash_done (void);
1422
1423 /* Describes a request for a memory write operation. */
1424 struct memory_write_request
1425 {
1426 memory_write_request (ULONGEST begin_, ULONGEST end_,
1427 gdb_byte *data_ = nullptr, void *baton_ = nullptr)
1428 : begin (begin_), end (end_), data (data_), baton (baton_)
1429 {}
1430
1431 /* Begining address that must be written. */
1432 ULONGEST begin;
1433 /* Past-the-end address. */
1434 ULONGEST end;
1435 /* The data to write. */
1436 gdb_byte *data;
1437 /* A callback baton for progress reporting for this request. */
1438 void *baton;
1439 };
1440
1441 /* Enumeration specifying different flash preservation behaviour. */
1442 enum flash_preserve_mode
1443 {
1444 flash_preserve,
1445 flash_discard
1446 };
1447
1448 /* Write several memory blocks at once. This version can be more
1449 efficient than making several calls to target_write_memory, in
1450 particular because it can optimize accesses to flash memory.
1451
1452 Moreover, this is currently the only memory access function in gdb
1453 that supports writing to flash memory, and it should be used for
1454 all cases where access to flash memory is desirable.
1455
1456 REQUESTS is the vector (see vec.h) of memory_write_request.
1457 PRESERVE_FLASH_P indicates what to do with blocks which must be
1458 erased, but not completely rewritten.
1459 PROGRESS_CB is a function that will be periodically called to provide
1460 feedback to user. It will be called with the baton corresponding
1461 to the request currently being written. It may also be called
1462 with a NULL baton, when preserved flash sectors are being rewritten.
1463
1464 The function returns 0 on success, and error otherwise. */
1465 int target_write_memory_blocks
1466 (const std::vector<memory_write_request> &requests,
1467 enum flash_preserve_mode preserve_flash_p,
1468 void (*progress_cb) (ULONGEST, void *));
1469
1470 /* Print a line about the current target. */
1471
1472 #define target_files_info() \
1473 (target_stack->files_info) ()
1474
1475 /* Insert a breakpoint at address BP_TGT->placed_address in
1476 the target machine. Returns 0 for success, and returns non-zero or
1477 throws an error (with a detailed failure reason error code and
1478 message) otherwise. */
1479
1480 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1481 struct bp_target_info *bp_tgt);
1482
1483 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1484 machine. Result is 0 for success, non-zero for error. */
1485
1486 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1487 struct bp_target_info *bp_tgt,
1488 enum remove_bp_reason reason);
1489
1490 /* Return true if the target stack has a non-default
1491 "terminal_ours" method. */
1492
1493 extern int target_supports_terminal_ours (void);
1494
1495 /* Kill the inferior process. Make it go away. */
1496
1497 extern void target_kill (void);
1498
1499 /* Load an executable file into the target process. This is expected
1500 to not only bring new code into the target process, but also to
1501 update GDB's symbol tables to match.
1502
1503 ARG contains command-line arguments, to be broken down with
1504 buildargv (). The first non-switch argument is the filename to
1505 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1506 0)), which is an offset to apply to the load addresses of FILE's
1507 sections. The target may define switches, or other non-switch
1508 arguments, as it pleases. */
1509
1510 extern void target_load (const char *arg, int from_tty);
1511
1512 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1513 notification of inferior events such as fork and vork immediately
1514 after the inferior is created. (This because of how gdb gets an
1515 inferior created via invoking a shell to do it. In such a scenario,
1516 if the shell init file has commands in it, the shell will fork and
1517 exec for each of those commands, and we will see each such fork
1518 event. Very bad.)
1519
1520 Such targets will supply an appropriate definition for this function. */
1521
1522 #define target_post_startup_inferior(ptid) \
1523 (target_stack->post_startup_inferior) (ptid)
1524
1525 /* On some targets, we can catch an inferior fork or vfork event when
1526 it occurs. These functions insert/remove an already-created
1527 catchpoint for such events. They return 0 for success, 1 if the
1528 catchpoint type is not supported and -1 for failure. */
1529
1530 #define target_insert_fork_catchpoint(pid) \
1531 (target_stack->insert_fork_catchpoint) (pid)
1532
1533 #define target_remove_fork_catchpoint(pid) \
1534 (target_stack->remove_fork_catchpoint) (pid)
1535
1536 #define target_insert_vfork_catchpoint(pid) \
1537 (target_stack->insert_vfork_catchpoint) (pid)
1538
1539 #define target_remove_vfork_catchpoint(pid) \
1540 (target_stack->remove_vfork_catchpoint) (pid)
1541
1542 /* If the inferior forks or vforks, this function will be called at
1543 the next resume in order to perform any bookkeeping and fiddling
1544 necessary to continue debugging either the parent or child, as
1545 requested, and releasing the other. Information about the fork
1546 or vfork event is available via get_last_target_status ().
1547 This function returns 1 if the inferior should not be resumed
1548 (i.e. there is another event pending). */
1549
1550 int target_follow_fork (int follow_child, int detach_fork);
1551
1552 /* Handle the target-specific bookkeeping required when the inferior
1553 makes an exec call. INF is the exec'd inferior. */
1554
1555 void target_follow_exec (struct inferior *inf, char *execd_pathname);
1556
1557 /* On some targets, we can catch an inferior exec event when it
1558 occurs. These functions insert/remove an already-created
1559 catchpoint for such events. They return 0 for success, 1 if the
1560 catchpoint type is not supported and -1 for failure. */
1561
1562 #define target_insert_exec_catchpoint(pid) \
1563 (target_stack->insert_exec_catchpoint) (pid)
1564
1565 #define target_remove_exec_catchpoint(pid) \
1566 (target_stack->remove_exec_catchpoint) (pid)
1567
1568 /* Syscall catch.
1569
1570 NEEDED is true if any syscall catch (of any kind) is requested.
1571 If NEEDED is false, it means the target can disable the mechanism to
1572 catch system calls because there are no more catchpoints of this type.
1573
1574 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1575 being requested. In this case, SYSCALL_COUNTS should be ignored.
1576
1577 SYSCALL_COUNTS is an array of ints, indexed by syscall number. An
1578 element in this array is nonzero if that syscall should be caught.
1579 This argument only matters if ANY_COUNT is zero.
1580
1581 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1582 for failure. */
1583
1584 #define target_set_syscall_catchpoint(pid, needed, any_count, syscall_counts) \
1585 (target_stack->set_syscall_catchpoint) (pid, needed, any_count, \
1586 syscall_counts)
1587
1588 /* The debugger has completed a blocking wait() call. There is now
1589 some process event that must be processed. This function should
1590 be defined by those targets that require the debugger to perform
1591 cleanup or internal state changes in response to the process event. */
1592
1593 /* For target_mourn_inferior see target/target.h. */
1594
1595 /* Does target have enough data to do a run or attach command? */
1596
1597 extern int target_can_run ();
1598
1599 /* Set list of signals to be handled in the target.
1600
1601 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1602 (enum gdb_signal). For every signal whose entry in this array is
1603 non-zero, the target is allowed -but not required- to skip reporting
1604 arrival of the signal to the GDB core by returning from target_wait,
1605 and to pass the signal directly to the inferior instead.
1606
1607 However, if the target is hardware single-stepping a thread that is
1608 about to receive a signal, it needs to be reported in any case, even
1609 if mentioned in a previous target_pass_signals call. */
1610
1611 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1612
1613 /* Set list of signals the target may pass to the inferior. This
1614 directly maps to the "handle SIGNAL pass/nopass" setting.
1615
1616 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1617 number (enum gdb_signal). For every signal whose entry in this
1618 array is non-zero, the target is allowed to pass the signal to the
1619 inferior. Signals not present in the array shall be silently
1620 discarded. This does not influence whether to pass signals to the
1621 inferior as a result of a target_resume call. This is useful in
1622 scenarios where the target needs to decide whether to pass or not a
1623 signal to the inferior without GDB core involvement, such as for
1624 example, when detaching (as threads may have been suspended with
1625 pending signals not reported to GDB). */
1626
1627 extern void target_program_signals (int nsig, unsigned char *program_signals);
1628
1629 /* Check to see if a thread is still alive. */
1630
1631 extern int target_thread_alive (ptid_t ptid);
1632
1633 /* Sync the target's threads with GDB's thread list. */
1634
1635 extern void target_update_thread_list (void);
1636
1637 /* Make target stop in a continuable fashion. (For instance, under
1638 Unix, this should act like SIGSTOP). Note that this function is
1639 asynchronous: it does not wait for the target to become stopped
1640 before returning. If this is the behavior you want please use
1641 target_stop_and_wait. */
1642
1643 extern void target_stop (ptid_t ptid);
1644
1645 /* Interrupt the target. Unlike target_stop, this does not specify
1646 which thread/process reports the stop. For most target this acts
1647 like raising a SIGINT, though that's not absolutely required. This
1648 function is asynchronous. */
1649
1650 extern void target_interrupt ();
1651
1652 /* Pass a ^C, as determined to have been pressed by checking the quit
1653 flag, to the target, as if the user had typed the ^C on the
1654 inferior's controlling terminal while the inferior was in the
1655 foreground. Remote targets may take the opportunity to detect the
1656 remote side is not responding and offer to disconnect. */
1657
1658 extern void target_pass_ctrlc (void);
1659
1660 /* The default target_ops::to_pass_ctrlc implementation. Simply calls
1661 target_interrupt. */
1662 extern void default_target_pass_ctrlc (struct target_ops *ops);
1663
1664 /* Send the specified COMMAND to the target's monitor
1665 (shell,interpreter) for execution. The result of the query is
1666 placed in OUTBUF. */
1667
1668 #define target_rcmd(command, outbuf) \
1669 (target_stack->rcmd) (command, outbuf)
1670
1671
1672 /* Does the target include all of memory, or only part of it? This
1673 determines whether we look up the target chain for other parts of
1674 memory if this target can't satisfy a request. */
1675
1676 extern int target_has_all_memory_1 (void);
1677 #define target_has_all_memory target_has_all_memory_1 ()
1678
1679 /* Does the target include memory? (Dummy targets don't.) */
1680
1681 extern int target_has_memory_1 (void);
1682 #define target_has_memory target_has_memory_1 ()
1683
1684 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1685 we start a process.) */
1686
1687 extern int target_has_stack_1 (void);
1688 #define target_has_stack target_has_stack_1 ()
1689
1690 /* Does the target have registers? (Exec files don't.) */
1691
1692 extern int target_has_registers_1 (void);
1693 #define target_has_registers target_has_registers_1 ()
1694
1695 /* Does the target have execution? Can we make it jump (through
1696 hoops), or pop its stack a few times? This means that the current
1697 target is currently executing; for some targets, that's the same as
1698 whether or not the target is capable of execution, but there are
1699 also targets which can be current while not executing. In that
1700 case this will become true after to_create_inferior or
1701 to_attach. */
1702
1703 extern int target_has_execution_1 (ptid_t);
1704
1705 /* Like target_has_execution_1, but always passes inferior_ptid. */
1706
1707 extern int target_has_execution_current (void);
1708
1709 #define target_has_execution target_has_execution_current ()
1710
1711 /* Default implementations for process_stratum targets. Return true
1712 if there's a selected inferior, false otherwise. */
1713
1714 extern int default_child_has_all_memory ();
1715 extern int default_child_has_memory ();
1716 extern int default_child_has_stack ();
1717 extern int default_child_has_registers ();
1718 extern int default_child_has_execution (ptid_t the_ptid);
1719
1720 /* Can the target support the debugger control of thread execution?
1721 Can it lock the thread scheduler? */
1722
1723 #define target_can_lock_scheduler \
1724 (target_stack->get_thread_control_capabilities () & tc_schedlock)
1725
1726 /* Controls whether async mode is permitted. */
1727 extern int target_async_permitted;
1728
1729 /* Can the target support asynchronous execution? */
1730 #define target_can_async_p() (target_stack->can_async_p ())
1731
1732 /* Is the target in asynchronous execution mode? */
1733 #define target_is_async_p() (target_stack->is_async_p ())
1734
1735 /* Enables/disabled async target events. */
1736 extern void target_async (int enable);
1737
1738 /* Enables/disables thread create and exit events. */
1739 extern void target_thread_events (int enable);
1740
1741 /* Whether support for controlling the target backends always in
1742 non-stop mode is enabled. */
1743 extern enum auto_boolean target_non_stop_enabled;
1744
1745 /* Is the target in non-stop mode? Some targets control the inferior
1746 in non-stop mode even with "set non-stop off". Always true if "set
1747 non-stop" is on. */
1748 extern int target_is_non_stop_p (void);
1749
1750 #define target_execution_direction() \
1751 (target_stack->execution_direction ())
1752
1753 /* Converts a process id to a string. Usually, the string just contains
1754 `process xyz', but on some systems it may contain
1755 `process xyz thread abc'. */
1756
1757 extern const char *target_pid_to_str (ptid_t ptid);
1758
1759 extern const char *normal_pid_to_str (ptid_t ptid);
1760
1761 /* Return a short string describing extra information about PID,
1762 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1763 is okay. */
1764
1765 #define target_extra_thread_info(TP) \
1766 (target_stack->extra_thread_info (TP))
1767
1768 /* Return the thread's name, or NULL if the target is unable to determine it.
1769 The returned value must not be freed by the caller. */
1770
1771 extern const char *target_thread_name (struct thread_info *);
1772
1773 /* Given a pointer to a thread library specific thread handle and
1774 its length, return a pointer to the corresponding thread_info struct. */
1775
1776 extern struct thread_info *target_thread_handle_to_thread_info
1777 (const gdb_byte *thread_handle, int handle_len, struct inferior *inf);
1778
1779 /* Attempts to find the pathname of the executable file
1780 that was run to create a specified process.
1781
1782 The process PID must be stopped when this operation is used.
1783
1784 If the executable file cannot be determined, NULL is returned.
1785
1786 Else, a pointer to a character string containing the pathname
1787 is returned. This string should be copied into a buffer by
1788 the client if the string will not be immediately used, or if
1789 it must persist. */
1790
1791 #define target_pid_to_exec_file(pid) \
1792 (target_stack->pid_to_exec_file) (pid)
1793
1794 /* See the to_thread_architecture description in struct target_ops. */
1795
1796 #define target_thread_architecture(ptid) \
1797 (target_stack->thread_architecture (ptid))
1798
1799 /*
1800 * Iterator function for target memory regions.
1801 * Calls a callback function once for each memory region 'mapped'
1802 * in the child process. Defined as a simple macro rather than
1803 * as a function macro so that it can be tested for nullity.
1804 */
1805
1806 #define target_find_memory_regions(FUNC, DATA) \
1807 (target_stack->find_memory_regions) (FUNC, DATA)
1808
1809 /*
1810 * Compose corefile .note section.
1811 */
1812
1813 #define target_make_corefile_notes(BFD, SIZE_P) \
1814 (target_stack->make_corefile_notes) (BFD, SIZE_P)
1815
1816 /* Bookmark interfaces. */
1817 #define target_get_bookmark(ARGS, FROM_TTY) \
1818 (target_stack->get_bookmark) (ARGS, FROM_TTY)
1819
1820 #define target_goto_bookmark(ARG, FROM_TTY) \
1821 (target_stack->goto_bookmark) (ARG, FROM_TTY)
1822
1823 /* Hardware watchpoint interfaces. */
1824
1825 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1826 write). Only the INFERIOR_PTID task is being queried. */
1827
1828 #define target_stopped_by_watchpoint() \
1829 ((target_stack->stopped_by_watchpoint) ())
1830
1831 /* Returns non-zero if the target stopped because it executed a
1832 software breakpoint instruction. */
1833
1834 #define target_stopped_by_sw_breakpoint() \
1835 ((target_stack->stopped_by_sw_breakpoint) ())
1836
1837 #define target_supports_stopped_by_sw_breakpoint() \
1838 ((target_stack->supports_stopped_by_sw_breakpoint) ())
1839
1840 #define target_stopped_by_hw_breakpoint() \
1841 ((target_stack->stopped_by_hw_breakpoint) ())
1842
1843 #define target_supports_stopped_by_hw_breakpoint() \
1844 ((target_stack->supports_stopped_by_hw_breakpoint) ())
1845
1846 /* Non-zero if we have steppable watchpoints */
1847
1848 #define target_have_steppable_watchpoint \
1849 (target_stack->have_steppable_watchpoint ())
1850
1851 /* Non-zero if we have continuable watchpoints */
1852
1853 #define target_have_continuable_watchpoint \
1854 (target_stack->have_continuable_watchpoint ())
1855
1856 /* Provide defaults for hardware watchpoint functions. */
1857
1858 /* If the *_hw_beakpoint functions have not been defined
1859 elsewhere use the definitions in the target vector. */
1860
1861 /* Returns positive if we can set a hardware watchpoint of type TYPE.
1862 Returns negative if the target doesn't have enough hardware debug
1863 registers available. Return zero if hardware watchpoint of type
1864 TYPE isn't supported. TYPE is one of bp_hardware_watchpoint,
1865 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
1866 CNT is the number of such watchpoints used so far, including this
1867 one. OTHERTYPE is the number of watchpoints of other types than
1868 this one used so far. */
1869
1870 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1871 (target_stack->can_use_hw_breakpoint) ( \
1872 TYPE, CNT, OTHERTYPE)
1873
1874 /* Returns the number of debug registers needed to watch the given
1875 memory region, or zero if not supported. */
1876
1877 #define target_region_ok_for_hw_watchpoint(addr, len) \
1878 (target_stack->region_ok_for_hw_watchpoint) (addr, len)
1879
1880
1881 #define target_can_do_single_step() \
1882 (target_stack->can_do_single_step) ()
1883
1884 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1885 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1886 COND is the expression for its condition, or NULL if there's none.
1887 Returns 0 for success, 1 if the watchpoint type is not supported,
1888 -1 for failure. */
1889
1890 #define target_insert_watchpoint(addr, len, type, cond) \
1891 (target_stack->insert_watchpoint) (addr, len, type, cond)
1892
1893 #define target_remove_watchpoint(addr, len, type, cond) \
1894 (target_stack->remove_watchpoint) (addr, len, type, cond)
1895
1896 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1897 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1898 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1899 masked watchpoints are not supported, -1 for failure. */
1900
1901 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
1902 enum target_hw_bp_type);
1903
1904 /* Remove a masked watchpoint at ADDR with the mask MASK.
1905 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1906 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1907 for failure. */
1908
1909 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
1910 enum target_hw_bp_type);
1911
1912 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1913 the target machine. Returns 0 for success, and returns non-zero or
1914 throws an error (with a detailed failure reason error code and
1915 message) otherwise. */
1916
1917 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1918 (target_stack->insert_hw_breakpoint) (gdbarch, bp_tgt)
1919
1920 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1921 (target_stack->remove_hw_breakpoint) (gdbarch, bp_tgt)
1922
1923 /* Return number of debug registers needed for a ranged breakpoint,
1924 or -1 if ranged breakpoints are not supported. */
1925
1926 extern int target_ranged_break_num_registers (void);
1927
1928 /* Return non-zero if target knows the data address which triggered this
1929 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1930 INFERIOR_PTID task is being queried. */
1931 #define target_stopped_data_address(target, addr_p) \
1932 (target)->stopped_data_address (addr_p)
1933
1934 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1935 LENGTH bytes beginning at START. */
1936 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1937 (target)->watchpoint_addr_within_range (addr, start, length)
1938
1939 /* Return non-zero if the target is capable of using hardware to evaluate
1940 the condition expression. In this case, if the condition is false when
1941 the watched memory location changes, execution may continue without the
1942 debugger being notified.
1943
1944 Due to limitations in the hardware implementation, it may be capable of
1945 avoiding triggering the watchpoint in some cases where the condition
1946 expression is false, but may report some false positives as well.
1947 For this reason, GDB will still evaluate the condition expression when
1948 the watchpoint triggers. */
1949 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1950 (target_stack->can_accel_watchpoint_condition) (addr, len, type, cond)
1951
1952 /* Return number of debug registers needed for a masked watchpoint,
1953 -1 if masked watchpoints are not supported or -2 if the given address
1954 and mask combination cannot be used. */
1955
1956 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1957
1958 /* Target can execute in reverse? */
1959 #define target_can_execute_reverse \
1960 target_stack->can_execute_reverse ()
1961
1962 extern const struct target_desc *target_read_description (struct target_ops *);
1963
1964 #define target_get_ada_task_ptid(lwp, tid) \
1965 (target_stack->get_ada_task_ptid) (lwp,tid)
1966
1967 /* Utility implementation of searching memory. */
1968 extern int simple_search_memory (struct target_ops* ops,
1969 CORE_ADDR start_addr,
1970 ULONGEST search_space_len,
1971 const gdb_byte *pattern,
1972 ULONGEST pattern_len,
1973 CORE_ADDR *found_addrp);
1974
1975 /* Main entry point for searching memory. */
1976 extern int target_search_memory (CORE_ADDR start_addr,
1977 ULONGEST search_space_len,
1978 const gdb_byte *pattern,
1979 ULONGEST pattern_len,
1980 CORE_ADDR *found_addrp);
1981
1982 /* Target file operations. */
1983
1984 /* Return nonzero if the filesystem seen by the current inferior
1985 is the local filesystem, zero otherwise. */
1986 #define target_filesystem_is_local() \
1987 target_stack->filesystem_is_local ()
1988
1989 /* Open FILENAME on the target, in the filesystem as seen by INF,
1990 using FLAGS and MODE. If INF is NULL, use the filesystem seen
1991 by the debugger (GDB or, for remote targets, the remote stub).
1992 Return a target file descriptor, or -1 if an error occurs (and
1993 set *TARGET_ERRNO). */
1994 extern int target_fileio_open (struct inferior *inf,
1995 const char *filename, int flags,
1996 int mode, int *target_errno);
1997
1998 /* Like target_fileio_open, but print a warning message if the
1999 file is being accessed over a link that may be slow. */
2000 extern int target_fileio_open_warn_if_slow (struct inferior *inf,
2001 const char *filename,
2002 int flags,
2003 int mode,
2004 int *target_errno);
2005
2006 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2007 Return the number of bytes written, or -1 if an error occurs
2008 (and set *TARGET_ERRNO). */
2009 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2010 ULONGEST offset, int *target_errno);
2011
2012 /* Read up to LEN bytes FD on the target into READ_BUF.
2013 Return the number of bytes read, or -1 if an error occurs
2014 (and set *TARGET_ERRNO). */
2015 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2016 ULONGEST offset, int *target_errno);
2017
2018 /* Get information about the file opened as FD on the target
2019 and put it in SB. Return 0 on success, or -1 if an error
2020 occurs (and set *TARGET_ERRNO). */
2021 extern int target_fileio_fstat (int fd, struct stat *sb,
2022 int *target_errno);
2023
2024 /* Close FD on the target. Return 0, or -1 if an error occurs
2025 (and set *TARGET_ERRNO). */
2026 extern int target_fileio_close (int fd, int *target_errno);
2027
2028 /* Unlink FILENAME on the target, in the filesystem as seen by INF.
2029 If INF is NULL, use the filesystem seen by the debugger (GDB or,
2030 for remote targets, the remote stub). Return 0, or -1 if an error
2031 occurs (and set *TARGET_ERRNO). */
2032 extern int target_fileio_unlink (struct inferior *inf,
2033 const char *filename,
2034 int *target_errno);
2035
2036 /* Read value of symbolic link FILENAME on the target, in the
2037 filesystem as seen by INF. If INF is NULL, use the filesystem seen
2038 by the debugger (GDB or, for remote targets, the remote stub).
2039 Return a null-terminated string allocated via xmalloc, or NULL if
2040 an error occurs (and set *TARGET_ERRNO). */
2041 extern gdb::optional<std::string> target_fileio_readlink
2042 (struct inferior *inf, const char *filename, int *target_errno);
2043
2044 /* Read target file FILENAME, in the filesystem as seen by INF. If
2045 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2046 remote targets, the remote stub). The return value will be -1 if
2047 the transfer fails or is not supported; 0 if the object is empty;
2048 or the length of the object otherwise. If a positive value is
2049 returned, a sufficiently large buffer will be allocated using
2050 xmalloc and returned in *BUF_P containing the contents of the
2051 object.
2052
2053 This method should be used for objects sufficiently small to store
2054 in a single xmalloc'd buffer, when no fixed bound on the object's
2055 size is known in advance. */
2056 extern LONGEST target_fileio_read_alloc (struct inferior *inf,
2057 const char *filename,
2058 gdb_byte **buf_p);
2059
2060 /* Read target file FILENAME, in the filesystem as seen by INF. If
2061 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2062 remote targets, the remote stub). The result is NUL-terminated and
2063 returned as a string, allocated using xmalloc. If an error occurs
2064 or the transfer is unsupported, NULL is returned. Empty objects
2065 are returned as allocated but empty strings. A warning is issued
2066 if the result contains any embedded NUL bytes. */
2067 extern gdb::unique_xmalloc_ptr<char> target_fileio_read_stralloc
2068 (struct inferior *inf, const char *filename);
2069
2070
2071 /* Tracepoint-related operations. */
2072
2073 #define target_trace_init() \
2074 (target_stack->trace_init) ()
2075
2076 #define target_download_tracepoint(t) \
2077 (target_stack->download_tracepoint) (t)
2078
2079 #define target_can_download_tracepoint() \
2080 (target_stack->can_download_tracepoint) ()
2081
2082 #define target_download_trace_state_variable(tsv) \
2083 (target_stack->download_trace_state_variable) (tsv)
2084
2085 #define target_enable_tracepoint(loc) \
2086 (target_stack->enable_tracepoint) (loc)
2087
2088 #define target_disable_tracepoint(loc) \
2089 (target_stack->disable_tracepoint) (loc)
2090
2091 #define target_trace_start() \
2092 (target_stack->trace_start) ()
2093
2094 #define target_trace_set_readonly_regions() \
2095 (target_stack->trace_set_readonly_regions) ()
2096
2097 #define target_get_trace_status(ts) \
2098 (target_stack->get_trace_status) (ts)
2099
2100 #define target_get_tracepoint_status(tp,utp) \
2101 (target_stack->get_tracepoint_status) (tp, utp)
2102
2103 #define target_trace_stop() \
2104 (target_stack->trace_stop) ()
2105
2106 #define target_trace_find(type,num,addr1,addr2,tpp) \
2107 (target_stack->trace_find) (\
2108 (type), (num), (addr1), (addr2), (tpp))
2109
2110 #define target_get_trace_state_variable_value(tsv,val) \
2111 (target_stack->get_trace_state_variable_value) ((tsv), (val))
2112
2113 #define target_save_trace_data(filename) \
2114 (target_stack->save_trace_data) (filename)
2115
2116 #define target_upload_tracepoints(utpp) \
2117 (target_stack->upload_tracepoints) (utpp)
2118
2119 #define target_upload_trace_state_variables(utsvp) \
2120 (target_stack->upload_trace_state_variables) (utsvp)
2121
2122 #define target_get_raw_trace_data(buf,offset,len) \
2123 (target_stack->get_raw_trace_data) ((buf), (offset), (len))
2124
2125 #define target_get_min_fast_tracepoint_insn_len() \
2126 (target_stack->get_min_fast_tracepoint_insn_len) ()
2127
2128 #define target_set_disconnected_tracing(val) \
2129 (target_stack->set_disconnected_tracing) (val)
2130
2131 #define target_set_circular_trace_buffer(val) \
2132 (target_stack->set_circular_trace_buffer) (val)
2133
2134 #define target_set_trace_buffer_size(val) \
2135 (target_stack->set_trace_buffer_size) (val)
2136
2137 #define target_set_trace_notes(user,notes,stopnotes) \
2138 (target_stack->set_trace_notes) ((user), (notes), (stopnotes))
2139
2140 #define target_get_tib_address(ptid, addr) \
2141 (target_stack->get_tib_address) ((ptid), (addr))
2142
2143 #define target_set_permissions() \
2144 (target_stack->set_permissions) ()
2145
2146 #define target_static_tracepoint_marker_at(addr, marker) \
2147 (target_stack->static_tracepoint_marker_at) (addr, marker)
2148
2149 #define target_static_tracepoint_markers_by_strid(marker_id) \
2150 (target_stack->static_tracepoint_markers_by_strid) (marker_id)
2151
2152 #define target_traceframe_info() \
2153 (target_stack->traceframe_info) ()
2154
2155 #define target_use_agent(use) \
2156 (target_stack->use_agent) (use)
2157
2158 #define target_can_use_agent() \
2159 (target_stack->can_use_agent) ()
2160
2161 #define target_augmented_libraries_svr4_read() \
2162 (target_stack->augmented_libraries_svr4_read) ()
2163
2164 /* Command logging facility. */
2165
2166 #define target_log_command(p) \
2167 (target_stack->log_command) (p)
2168
2169
2170 extern int target_core_of_thread (ptid_t ptid);
2171
2172 /* See to_get_unwinder in struct target_ops. */
2173 extern const struct frame_unwind *target_get_unwinder (void);
2174
2175 /* See to_get_tailcall_unwinder in struct target_ops. */
2176 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2177
2178 /* This implements basic memory verification, reading target memory
2179 and performing the comparison here (as opposed to accelerated
2180 verification making use of the qCRC packet, for example). */
2181
2182 extern int simple_verify_memory (struct target_ops* ops,
2183 const gdb_byte *data,
2184 CORE_ADDR memaddr, ULONGEST size);
2185
2186 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2187 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2188 if there's a mismatch, and -1 if an error is encountered while
2189 reading memory. Throws an error if the functionality is found not
2190 to be supported by the current target. */
2191 int target_verify_memory (const gdb_byte *data,
2192 CORE_ADDR memaddr, ULONGEST size);
2193
2194 /* Routines for maintenance of the target structures...
2195
2196 add_target: Add a target to the list of all possible targets.
2197 This only makes sense for targets that should be activated using
2198 the "target TARGET_NAME ..." command.
2199
2200 push_target: Make this target the top of the stack of currently used
2201 targets, within its particular stratum of the stack. Result
2202 is 0 if now atop the stack, nonzero if not on top (maybe
2203 should warn user).
2204
2205 unpush_target: Remove this from the stack of currently used targets,
2206 no matter where it is on the list. Returns 0 if no
2207 change, 1 if removed from stack. */
2208
2209 extern void add_target (struct target_ops *);
2210
2211 extern void add_target_with_completer (struct target_ops *t,
2212 completer_ftype *completer);
2213
2214 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
2215 for maintaining backwards compatibility when renaming targets. */
2216
2217 extern void add_deprecated_target_alias (struct target_ops *t,
2218 const char *alias);
2219
2220 extern void push_target (struct target_ops *);
2221
2222 extern int unpush_target (struct target_ops *);
2223
2224 extern void target_pre_inferior (int);
2225
2226 extern void target_preopen (int);
2227
2228 /* Does whatever cleanup is required to get rid of all pushed targets. */
2229 extern void pop_all_targets (void);
2230
2231 /* Like pop_all_targets, but pops only targets whose stratum is at or
2232 above STRATUM. */
2233 extern void pop_all_targets_at_and_above (enum strata stratum);
2234
2235 /* Like pop_all_targets, but pops only targets whose stratum is
2236 strictly above ABOVE_STRATUM. */
2237 extern void pop_all_targets_above (enum strata above_stratum);
2238
2239 extern int target_is_pushed (struct target_ops *t);
2240
2241 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2242 CORE_ADDR offset);
2243
2244 /* Struct target_section maps address ranges to file sections. It is
2245 mostly used with BFD files, but can be used without (e.g. for handling
2246 raw disks, or files not in formats handled by BFD). */
2247
2248 struct target_section
2249 {
2250 CORE_ADDR addr; /* Lowest address in section */
2251 CORE_ADDR endaddr; /* 1+highest address in section */
2252
2253 struct bfd_section *the_bfd_section;
2254
2255 /* The "owner" of the section.
2256 It can be any unique value. It is set by add_target_sections
2257 and used by remove_target_sections.
2258 For example, for executables it is a pointer to exec_bfd and
2259 for shlibs it is the so_list pointer. */
2260 void *owner;
2261 };
2262
2263 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2264
2265 struct target_section_table
2266 {
2267 struct target_section *sections;
2268 struct target_section *sections_end;
2269 };
2270
2271 /* Return the "section" containing the specified address. */
2272 struct target_section *target_section_by_addr (struct target_ops *target,
2273 CORE_ADDR addr);
2274
2275 /* Return the target section table this target (or the targets
2276 beneath) currently manipulate. */
2277
2278 extern struct target_section_table *target_get_section_table
2279 (struct target_ops *target);
2280
2281 /* From mem-break.c */
2282
2283 extern int memory_remove_breakpoint (struct target_ops *,
2284 struct gdbarch *, struct bp_target_info *,
2285 enum remove_bp_reason);
2286
2287 extern int memory_insert_breakpoint (struct target_ops *,
2288 struct gdbarch *, struct bp_target_info *);
2289
2290 /* Convenience template use to add memory breakpoints support to a
2291 target. */
2292
2293 template <typename BaseTarget>
2294 struct memory_breakpoint_target : public BaseTarget
2295 {
2296 int insert_breakpoint (struct gdbarch *gdbarch,
2297 struct bp_target_info *bp_tgt) override
2298 { return memory_insert_breakpoint (this, gdbarch, bp_tgt); }
2299
2300 int remove_breakpoint (struct gdbarch *gdbarch,
2301 struct bp_target_info *bp_tgt,
2302 enum remove_bp_reason reason) override
2303 { return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason); }
2304 };
2305
2306 /* Check whether the memory at the breakpoint's placed address still
2307 contains the expected breakpoint instruction. */
2308
2309 extern int memory_validate_breakpoint (struct gdbarch *gdbarch,
2310 struct bp_target_info *bp_tgt);
2311
2312 extern int default_memory_remove_breakpoint (struct gdbarch *,
2313 struct bp_target_info *);
2314
2315 extern int default_memory_insert_breakpoint (struct gdbarch *,
2316 struct bp_target_info *);
2317
2318
2319 /* From target.c */
2320
2321 extern void initialize_targets (void);
2322
2323 extern void noprocess (void) ATTRIBUTE_NORETURN;
2324
2325 extern void target_require_runnable (void);
2326
2327 extern struct target_ops *find_target_beneath (struct target_ops *);
2328
2329 /* Find the target at STRATUM. If no target is at that stratum,
2330 return NULL. */
2331
2332 struct target_ops *find_target_at (enum strata stratum);
2333
2334 /* Read OS data object of type TYPE from the target, and return it in XML
2335 format. The return value follows the same rules as target_read_stralloc. */
2336
2337 extern gdb::optional<gdb::char_vector> target_get_osdata (const char *type);
2338
2339 /* Stuff that should be shared among the various remote targets. */
2340
2341 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2342 information (higher values, more information). */
2343 extern int remote_debug;
2344
2345 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2346 extern int baud_rate;
2347
2348 /* Parity for serial port */
2349 extern int serial_parity;
2350
2351 /* Timeout limit for response from target. */
2352 extern int remote_timeout;
2353
2354 \f
2355
2356 /* Set the show memory breakpoints mode to show, and return a
2357 scoped_restore to restore it back to the current value. */
2358 extern scoped_restore_tmpl<int>
2359 make_scoped_restore_show_memory_breakpoints (int show);
2360
2361 extern int may_write_registers;
2362 extern int may_write_memory;
2363 extern int may_insert_breakpoints;
2364 extern int may_insert_tracepoints;
2365 extern int may_insert_fast_tracepoints;
2366 extern int may_stop;
2367
2368 extern void update_target_permissions (void);
2369
2370 \f
2371 /* Imported from machine dependent code. */
2372
2373 /* See to_enable_btrace in struct target_ops. */
2374 extern struct btrace_target_info *
2375 target_enable_btrace (ptid_t ptid, const struct btrace_config *);
2376
2377 /* See to_disable_btrace in struct target_ops. */
2378 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2379
2380 /* See to_teardown_btrace in struct target_ops. */
2381 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2382
2383 /* See to_read_btrace in struct target_ops. */
2384 extern enum btrace_error target_read_btrace (struct btrace_data *,
2385 struct btrace_target_info *,
2386 enum btrace_read_type);
2387
2388 /* See to_btrace_conf in struct target_ops. */
2389 extern const struct btrace_config *
2390 target_btrace_conf (const struct btrace_target_info *);
2391
2392 /* See to_stop_recording in struct target_ops. */
2393 extern void target_stop_recording (void);
2394
2395 /* See to_save_record in struct target_ops. */
2396 extern void target_save_record (const char *filename);
2397
2398 /* Query if the target supports deleting the execution log. */
2399 extern int target_supports_delete_record (void);
2400
2401 /* See to_delete_record in struct target_ops. */
2402 extern void target_delete_record (void);
2403
2404 /* See to_record_method. */
2405 extern enum record_method target_record_method (ptid_t ptid);
2406
2407 /* See to_record_is_replaying in struct target_ops. */
2408 extern int target_record_is_replaying (ptid_t ptid);
2409
2410 /* See to_record_will_replay in struct target_ops. */
2411 extern int target_record_will_replay (ptid_t ptid, int dir);
2412
2413 /* See to_record_stop_replaying in struct target_ops. */
2414 extern void target_record_stop_replaying (void);
2415
2416 /* See to_goto_record_begin in struct target_ops. */
2417 extern void target_goto_record_begin (void);
2418
2419 /* See to_goto_record_end in struct target_ops. */
2420 extern void target_goto_record_end (void);
2421
2422 /* See to_goto_record in struct target_ops. */
2423 extern void target_goto_record (ULONGEST insn);
2424
2425 /* See to_insn_history. */
2426 extern void target_insn_history (int size, gdb_disassembly_flags flags);
2427
2428 /* See to_insn_history_from. */
2429 extern void target_insn_history_from (ULONGEST from, int size,
2430 gdb_disassembly_flags flags);
2431
2432 /* See to_insn_history_range. */
2433 extern void target_insn_history_range (ULONGEST begin, ULONGEST end,
2434 gdb_disassembly_flags flags);
2435
2436 /* See to_call_history. */
2437 extern void target_call_history (int size, record_print_flags flags);
2438
2439 /* See to_call_history_from. */
2440 extern void target_call_history_from (ULONGEST begin, int size,
2441 record_print_flags flags);
2442
2443 /* See to_call_history_range. */
2444 extern void target_call_history_range (ULONGEST begin, ULONGEST end,
2445 record_print_flags flags);
2446
2447 /* See to_prepare_to_generate_core. */
2448 extern void target_prepare_to_generate_core (void);
2449
2450 /* See to_done_generating_core. */
2451 extern void target_done_generating_core (void);
2452
2453 #if GDB_SELF_TEST
2454 namespace selftests {
2455
2456 /* A mock process_stratum target_ops that doesn't read/write registers
2457 anywhere. */
2458
2459 class test_target_ops : public target_ops
2460 {
2461 public:
2462 test_target_ops ()
2463 : target_ops {}
2464 {
2465 to_stratum = process_stratum;
2466 }
2467
2468 const char *shortname () override
2469 {
2470 return NULL;
2471 }
2472
2473 const char *longname () override
2474 {
2475 return NULL;
2476 }
2477
2478 const char *doc () override
2479 {
2480 return NULL;
2481 }
2482
2483 int has_registers () override
2484 {
2485 return 1;
2486 }
2487
2488 int has_stack () override
2489 {
2490 return 1;
2491 }
2492
2493 int has_memory () override
2494 {
2495 return 1;
2496 }
2497
2498 void prepare_to_store (regcache *regs) override
2499 {
2500 }
2501
2502 void store_registers (regcache *regs, int regno) override
2503 {
2504 }
2505 };
2506
2507
2508 } // namespace selftests
2509 #endif /* GDB_SELF_TEST */
2510
2511 #endif /* !defined (TARGET_H) */