]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/target.h
2012-03-05 Tristan Gingold <gingold@adacore.com>
[thirdparty/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2012 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40
41 /* This include file defines the interface between the main part
42 of the debugger, and the part which is target-specific, or
43 specific to the communications interface between us and the
44 target.
45
46 A TARGET is an interface between the debugger and a particular
47 kind of file or process. Targets can be STACKED in STRATA,
48 so that more than one target can potentially respond to a request.
49 In particular, memory accesses will walk down the stack of targets
50 until they find a target that is interested in handling that particular
51 address. STRATA are artificial boundaries on the stack, within
52 which particular kinds of targets live. Strata exist so that
53 people don't get confused by pushing e.g. a process target and then
54 a file target, and wondering why they can't see the current values
55 of variables any more (the file target is handling them and they
56 never get to the process target). So when you push a file target,
57 it goes into the file stratum, which is always below the process
58 stratum. */
59
60 #include "bfd.h"
61 #include "symtab.h"
62 #include "memattr.h"
63 #include "vec.h"
64 #include "gdb_signals.h"
65
66 enum strata
67 {
68 dummy_stratum, /* The lowest of the low */
69 file_stratum, /* Executable files, etc */
70 process_stratum, /* Executing processes or core dump files */
71 thread_stratum, /* Executing threads */
72 record_stratum, /* Support record debugging */
73 arch_stratum /* Architecture overrides */
74 };
75
76 enum thread_control_capabilities
77 {
78 tc_none = 0, /* Default: can't control thread execution. */
79 tc_schedlock = 1, /* Can lock the thread scheduler. */
80 };
81
82 /* Stuff for target_wait. */
83
84 /* Generally, what has the program done? */
85 enum target_waitkind
86 {
87 /* The program has exited. The exit status is in value.integer. */
88 TARGET_WAITKIND_EXITED,
89
90 /* The program has stopped with a signal. Which signal is in
91 value.sig. */
92 TARGET_WAITKIND_STOPPED,
93
94 /* The program has terminated with a signal. Which signal is in
95 value.sig. */
96 TARGET_WAITKIND_SIGNALLED,
97
98 /* The program is letting us know that it dynamically loaded something
99 (e.g. it called load(2) on AIX). */
100 TARGET_WAITKIND_LOADED,
101
102 /* The program has forked. A "related" process' PTID is in
103 value.related_pid. I.e., if the child forks, value.related_pid
104 is the parent's ID. */
105
106 TARGET_WAITKIND_FORKED,
107
108 /* The program has vforked. A "related" process's PTID is in
109 value.related_pid. */
110
111 TARGET_WAITKIND_VFORKED,
112
113 /* The program has exec'ed a new executable file. The new file's
114 pathname is pointed to by value.execd_pathname. */
115
116 TARGET_WAITKIND_EXECD,
117
118 /* The program had previously vforked, and now the child is done
119 with the shared memory region, because it exec'ed or exited.
120 Note that the event is reported to the vfork parent. This is
121 only used if GDB did not stay attached to the vfork child,
122 otherwise, a TARGET_WAITKIND_EXECD or
123 TARGET_WAITKIND_EXIT|SIGNALLED event associated with the child
124 has the same effect. */
125 TARGET_WAITKIND_VFORK_DONE,
126
127 /* The program has entered or returned from a system call. On
128 HP-UX, this is used in the hardware watchpoint implementation.
129 The syscall's unique integer ID number is in value.syscall_id. */
130
131 TARGET_WAITKIND_SYSCALL_ENTRY,
132 TARGET_WAITKIND_SYSCALL_RETURN,
133
134 /* Nothing happened, but we stopped anyway. This perhaps should be handled
135 within target_wait, but I'm not sure target_wait should be resuming the
136 inferior. */
137 TARGET_WAITKIND_SPURIOUS,
138
139 /* An event has occured, but we should wait again.
140 Remote_async_wait() returns this when there is an event
141 on the inferior, but the rest of the world is not interested in
142 it. The inferior has not stopped, but has just sent some output
143 to the console, for instance. In this case, we want to go back
144 to the event loop and wait there for another event from the
145 inferior, rather than being stuck in the remote_async_wait()
146 function. sThis way the event loop is responsive to other events,
147 like for instance the user typing. */
148 TARGET_WAITKIND_IGNORE,
149
150 /* The target has run out of history information,
151 and cannot run backward any further. */
152 TARGET_WAITKIND_NO_HISTORY,
153
154 /* There are no resumed children left in the program. */
155 TARGET_WAITKIND_NO_RESUMED
156 };
157
158 struct target_waitstatus
159 {
160 enum target_waitkind kind;
161
162 /* Forked child pid, execd pathname, exit status, signal number or
163 syscall number. */
164 union
165 {
166 int integer;
167 enum target_signal sig;
168 ptid_t related_pid;
169 char *execd_pathname;
170 int syscall_number;
171 }
172 value;
173 };
174
175 /* Options that can be passed to target_wait. */
176
177 /* Return immediately if there's no event already queued. If this
178 options is not requested, target_wait blocks waiting for an
179 event. */
180 #define TARGET_WNOHANG 1
181
182 /* The structure below stores information about a system call.
183 It is basically used in the "catch syscall" command, and in
184 every function that gives information about a system call.
185
186 It's also good to mention that its fields represent everything
187 that we currently know about a syscall in GDB. */
188 struct syscall
189 {
190 /* The syscall number. */
191 int number;
192
193 /* The syscall name. */
194 const char *name;
195 };
196
197 /* Return a pretty printed form of target_waitstatus.
198 Space for the result is malloc'd, caller must free. */
199 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
200
201 /* Possible types of events that the inferior handler will have to
202 deal with. */
203 enum inferior_event_type
204 {
205 /* Process a normal inferior event which will result in target_wait
206 being called. */
207 INF_REG_EVENT,
208 /* We are called because a timer went off. */
209 INF_TIMER,
210 /* We are called to do stuff after the inferior stops. */
211 INF_EXEC_COMPLETE,
212 /* We are called to do some stuff after the inferior stops, but we
213 are expected to reenter the proceed() and
214 handle_inferior_event() functions. This is used only in case of
215 'step n' like commands. */
216 INF_EXEC_CONTINUE
217 };
218 \f
219 /* Target objects which can be transfered using target_read,
220 target_write, et cetera. */
221
222 enum target_object
223 {
224 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
225 TARGET_OBJECT_AVR,
226 /* SPU target specific transfer. See "spu-tdep.c". */
227 TARGET_OBJECT_SPU,
228 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
229 TARGET_OBJECT_MEMORY,
230 /* Memory, avoiding GDB's data cache and trusting the executable.
231 Target implementations of to_xfer_partial never need to handle
232 this object, and most callers should not use it. */
233 TARGET_OBJECT_RAW_MEMORY,
234 /* Memory known to be part of the target's stack. This is cached even
235 if it is not in a region marked as such, since it is known to be
236 "normal" RAM. */
237 TARGET_OBJECT_STACK_MEMORY,
238 /* Kernel Unwind Table. See "ia64-tdep.c". */
239 TARGET_OBJECT_UNWIND_TABLE,
240 /* Transfer auxilliary vector. */
241 TARGET_OBJECT_AUXV,
242 /* StackGhost cookie. See "sparc-tdep.c". */
243 TARGET_OBJECT_WCOOKIE,
244 /* Target memory map in XML format. */
245 TARGET_OBJECT_MEMORY_MAP,
246 /* Flash memory. This object can be used to write contents to
247 a previously erased flash memory. Using it without erasing
248 flash can have unexpected results. Addresses are physical
249 address on target, and not relative to flash start. */
250 TARGET_OBJECT_FLASH,
251 /* Available target-specific features, e.g. registers and coprocessors.
252 See "target-descriptions.c". ANNEX should never be empty. */
253 TARGET_OBJECT_AVAILABLE_FEATURES,
254 /* Currently loaded libraries, in XML format. */
255 TARGET_OBJECT_LIBRARIES,
256 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
257 TARGET_OBJECT_LIBRARIES_SVR4,
258 /* Get OS specific data. The ANNEX specifies the type (running
259 processes, etc.). The data being transfered is expected to follow
260 the DTD specified in features/osdata.dtd. */
261 TARGET_OBJECT_OSDATA,
262 /* Extra signal info. Usually the contents of `siginfo_t' on unix
263 platforms. */
264 TARGET_OBJECT_SIGNAL_INFO,
265 /* The list of threads that are being debugged. */
266 TARGET_OBJECT_THREADS,
267 /* Collected static trace data. */
268 TARGET_OBJECT_STATIC_TRACE_DATA,
269 /* The HP-UX registers (those that can be obtained or modified by using
270 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
271 TARGET_OBJECT_HPUX_UREGS,
272 /* The HP-UX shared library linkage pointer. ANNEX should be a string
273 image of the code address whose linkage pointer we are looking for.
274
275 The size of the data transfered is always 8 bytes (the size of an
276 address on ia64). */
277 TARGET_OBJECT_HPUX_SOLIB_GOT,
278 /* Traceframe info, in XML format. */
279 TARGET_OBJECT_TRACEFRAME_INFO,
280 /* Load maps for FDPIC systems. */
281 TARGET_OBJECT_FDPIC,
282 /* Darwin dynamic linker info data. */
283 TARGET_OBJECT_DARWIN_DYLD_INFO,
284 /* OpenVMS Unwind Information Block. */
285 TARGET_OBJECT_OPENVMS_UIB
286 /* Possible future objects: TARGET_OBJECT_FILE, ... */
287 };
288
289 /* Enumeration of the kinds of traceframe searches that a target may
290 be able to perform. */
291
292 enum trace_find_type
293 {
294 tfind_number,
295 tfind_pc,
296 tfind_tp,
297 tfind_range,
298 tfind_outside,
299 };
300
301 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
302 DEF_VEC_P(static_tracepoint_marker_p);
303
304 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
305 OBJECT. The OFFSET, for a seekable object, specifies the
306 starting point. The ANNEX can be used to provide additional
307 data-specific information to the target.
308
309 Return the number of bytes actually transfered, or -1 if the
310 transfer is not supported or otherwise fails. Return of a positive
311 value less than LEN indicates that no further transfer is possible.
312 Unlike the raw to_xfer_partial interface, callers of these
313 functions do not need to retry partial transfers. */
314
315 extern LONGEST target_read (struct target_ops *ops,
316 enum target_object object,
317 const char *annex, gdb_byte *buf,
318 ULONGEST offset, LONGEST len);
319
320 struct memory_read_result
321 {
322 /* First address that was read. */
323 ULONGEST begin;
324 /* Past-the-end address. */
325 ULONGEST end;
326 /* The data. */
327 gdb_byte *data;
328 };
329 typedef struct memory_read_result memory_read_result_s;
330 DEF_VEC_O(memory_read_result_s);
331
332 extern void free_memory_read_result_vector (void *);
333
334 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
335 ULONGEST offset,
336 LONGEST len);
337
338 extern LONGEST target_write (struct target_ops *ops,
339 enum target_object object,
340 const char *annex, const gdb_byte *buf,
341 ULONGEST offset, LONGEST len);
342
343 /* Similar to target_write, except that it also calls PROGRESS with
344 the number of bytes written and the opaque BATON after every
345 successful partial write (and before the first write). This is
346 useful for progress reporting and user interaction while writing
347 data. To abort the transfer, the progress callback can throw an
348 exception. */
349
350 LONGEST target_write_with_progress (struct target_ops *ops,
351 enum target_object object,
352 const char *annex, const gdb_byte *buf,
353 ULONGEST offset, LONGEST len,
354 void (*progress) (ULONGEST, void *),
355 void *baton);
356
357 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
358 be read using OPS. The return value will be -1 if the transfer
359 fails or is not supported; 0 if the object is empty; or the length
360 of the object otherwise. If a positive value is returned, a
361 sufficiently large buffer will be allocated using xmalloc and
362 returned in *BUF_P containing the contents of the object.
363
364 This method should be used for objects sufficiently small to store
365 in a single xmalloc'd buffer, when no fixed bound on the object's
366 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
367 through this function. */
368
369 extern LONGEST target_read_alloc (struct target_ops *ops,
370 enum target_object object,
371 const char *annex, gdb_byte **buf_p);
372
373 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
374 returned as a string, allocated using xmalloc. If an error occurs
375 or the transfer is unsupported, NULL is returned. Empty objects
376 are returned as allocated but empty strings. A warning is issued
377 if the result contains any embedded NUL bytes. */
378
379 extern char *target_read_stralloc (struct target_ops *ops,
380 enum target_object object,
381 const char *annex);
382
383 /* Wrappers to target read/write that perform memory transfers. They
384 throw an error if the memory transfer fails.
385
386 NOTE: cagney/2003-10-23: The naming schema is lifted from
387 "frame.h". The parameter order is lifted from get_frame_memory,
388 which in turn lifted it from read_memory. */
389
390 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
391 gdb_byte *buf, LONGEST len);
392 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
393 CORE_ADDR addr, int len,
394 enum bfd_endian byte_order);
395 \f
396 struct thread_info; /* fwd decl for parameter list below: */
397
398 struct target_ops
399 {
400 struct target_ops *beneath; /* To the target under this one. */
401 char *to_shortname; /* Name this target type */
402 char *to_longname; /* Name for printing */
403 char *to_doc; /* Documentation. Does not include trailing
404 newline, and starts with a one-line descrip-
405 tion (probably similar to to_longname). */
406 /* Per-target scratch pad. */
407 void *to_data;
408 /* The open routine takes the rest of the parameters from the
409 command, and (if successful) pushes a new target onto the
410 stack. Targets should supply this routine, if only to provide
411 an error message. */
412 void (*to_open) (char *, int);
413 /* Old targets with a static target vector provide "to_close".
414 New re-entrant targets provide "to_xclose" and that is expected
415 to xfree everything (including the "struct target_ops"). */
416 void (*to_xclose) (struct target_ops *targ, int quitting);
417 void (*to_close) (int);
418 void (*to_attach) (struct target_ops *ops, char *, int);
419 void (*to_post_attach) (int);
420 void (*to_detach) (struct target_ops *ops, char *, int);
421 void (*to_disconnect) (struct target_ops *, char *, int);
422 void (*to_resume) (struct target_ops *, ptid_t, int, enum target_signal);
423 ptid_t (*to_wait) (struct target_ops *,
424 ptid_t, struct target_waitstatus *, int);
425 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
426 void (*to_store_registers) (struct target_ops *, struct regcache *, int);
427 void (*to_prepare_to_store) (struct regcache *);
428
429 /* Transfer LEN bytes of memory between GDB address MYADDR and
430 target address MEMADDR. If WRITE, transfer them to the target, else
431 transfer them from the target. TARGET is the target from which we
432 get this function.
433
434 Return value, N, is one of the following:
435
436 0 means that we can't handle this. If errno has been set, it is the
437 error which prevented us from doing it (FIXME: What about bfd_error?).
438
439 positive (call it N) means that we have transferred N bytes
440 starting at MEMADDR. We might be able to handle more bytes
441 beyond this length, but no promises.
442
443 negative (call its absolute value N) means that we cannot
444 transfer right at MEMADDR, but we could transfer at least
445 something at MEMADDR + N.
446
447 NOTE: cagney/2004-10-01: This has been entirely superseeded by
448 to_xfer_partial and inferior inheritance. */
449
450 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
451 int len, int write,
452 struct mem_attrib *attrib,
453 struct target_ops *target);
454
455 void (*to_files_info) (struct target_ops *);
456 int (*to_insert_breakpoint) (struct gdbarch *, struct bp_target_info *);
457 int (*to_remove_breakpoint) (struct gdbarch *, struct bp_target_info *);
458 int (*to_can_use_hw_breakpoint) (int, int, int);
459 int (*to_ranged_break_num_registers) (struct target_ops *);
460 int (*to_insert_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
461 int (*to_remove_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
462
463 /* Documentation of what the two routines below are expected to do is
464 provided with the corresponding target_* macros. */
465 int (*to_remove_watchpoint) (CORE_ADDR, int, int, struct expression *);
466 int (*to_insert_watchpoint) (CORE_ADDR, int, int, struct expression *);
467
468 int (*to_insert_mask_watchpoint) (struct target_ops *,
469 CORE_ADDR, CORE_ADDR, int);
470 int (*to_remove_mask_watchpoint) (struct target_ops *,
471 CORE_ADDR, CORE_ADDR, int);
472 int (*to_stopped_by_watchpoint) (void);
473 int to_have_steppable_watchpoint;
474 int to_have_continuable_watchpoint;
475 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
476 int (*to_watchpoint_addr_within_range) (struct target_ops *,
477 CORE_ADDR, CORE_ADDR, int);
478
479 /* Documentation of this routine is provided with the corresponding
480 target_* macro. */
481 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
482
483 int (*to_can_accel_watchpoint_condition) (CORE_ADDR, int, int,
484 struct expression *);
485 int (*to_masked_watch_num_registers) (struct target_ops *,
486 CORE_ADDR, CORE_ADDR);
487 void (*to_terminal_init) (void);
488 void (*to_terminal_inferior) (void);
489 void (*to_terminal_ours_for_output) (void);
490 void (*to_terminal_ours) (void);
491 void (*to_terminal_save_ours) (void);
492 void (*to_terminal_info) (char *, int);
493 void (*to_kill) (struct target_ops *);
494 void (*to_load) (char *, int);
495 void (*to_create_inferior) (struct target_ops *,
496 char *, char *, char **, int);
497 void (*to_post_startup_inferior) (ptid_t);
498 int (*to_insert_fork_catchpoint) (int);
499 int (*to_remove_fork_catchpoint) (int);
500 int (*to_insert_vfork_catchpoint) (int);
501 int (*to_remove_vfork_catchpoint) (int);
502 int (*to_follow_fork) (struct target_ops *, int);
503 int (*to_insert_exec_catchpoint) (int);
504 int (*to_remove_exec_catchpoint) (int);
505 int (*to_set_syscall_catchpoint) (int, int, int, int, int *);
506 int (*to_has_exited) (int, int, int *);
507 void (*to_mourn_inferior) (struct target_ops *);
508 int (*to_can_run) (void);
509
510 /* Documentation of this routine is provided with the corresponding
511 target_* macro. */
512 void (*to_pass_signals) (int, unsigned char *);
513
514 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
515 void (*to_find_new_threads) (struct target_ops *);
516 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
517 char *(*to_extra_thread_info) (struct thread_info *);
518 char *(*to_thread_name) (struct thread_info *);
519 void (*to_stop) (ptid_t);
520 void (*to_rcmd) (char *command, struct ui_file *output);
521 char *(*to_pid_to_exec_file) (int pid);
522 void (*to_log_command) (const char *);
523 struct target_section_table *(*to_get_section_table) (struct target_ops *);
524 enum strata to_stratum;
525 int (*to_has_all_memory) (struct target_ops *);
526 int (*to_has_memory) (struct target_ops *);
527 int (*to_has_stack) (struct target_ops *);
528 int (*to_has_registers) (struct target_ops *);
529 int (*to_has_execution) (struct target_ops *, ptid_t);
530 int to_has_thread_control; /* control thread execution */
531 int to_attach_no_wait;
532 /* ASYNC target controls */
533 int (*to_can_async_p) (void);
534 int (*to_is_async_p) (void);
535 void (*to_async) (void (*) (enum inferior_event_type, void *), void *);
536 int (*to_supports_non_stop) (void);
537 /* find_memory_regions support method for gcore */
538 int (*to_find_memory_regions) (find_memory_region_ftype func, void *data);
539 /* make_corefile_notes support method for gcore */
540 char * (*to_make_corefile_notes) (bfd *, int *);
541 /* get_bookmark support method for bookmarks */
542 gdb_byte * (*to_get_bookmark) (char *, int);
543 /* goto_bookmark support method for bookmarks */
544 void (*to_goto_bookmark) (gdb_byte *, int);
545 /* Return the thread-local address at OFFSET in the
546 thread-local storage for the thread PTID and the shared library
547 or executable file given by OBJFILE. If that block of
548 thread-local storage hasn't been allocated yet, this function
549 may return an error. */
550 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
551 ptid_t ptid,
552 CORE_ADDR load_module_addr,
553 CORE_ADDR offset);
554
555 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
556 OBJECT. The OFFSET, for a seekable object, specifies the
557 starting point. The ANNEX can be used to provide additional
558 data-specific information to the target.
559
560 Return the number of bytes actually transfered, zero when no
561 further transfer is possible, and -1 when the transfer is not
562 supported. Return of a positive value smaller than LEN does
563 not indicate the end of the object, only the end of the
564 transfer; higher level code should continue transferring if
565 desired. This is handled in target.c.
566
567 The interface does not support a "retry" mechanism. Instead it
568 assumes that at least one byte will be transfered on each
569 successful call.
570
571 NOTE: cagney/2003-10-17: The current interface can lead to
572 fragmented transfers. Lower target levels should not implement
573 hacks, such as enlarging the transfer, in an attempt to
574 compensate for this. Instead, the target stack should be
575 extended so that it implements supply/collect methods and a
576 look-aside object cache. With that available, the lowest
577 target can safely and freely "push" data up the stack.
578
579 See target_read and target_write for more information. One,
580 and only one, of readbuf or writebuf must be non-NULL. */
581
582 LONGEST (*to_xfer_partial) (struct target_ops *ops,
583 enum target_object object, const char *annex,
584 gdb_byte *readbuf, const gdb_byte *writebuf,
585 ULONGEST offset, LONGEST len);
586
587 /* Returns the memory map for the target. A return value of NULL
588 means that no memory map is available. If a memory address
589 does not fall within any returned regions, it's assumed to be
590 RAM. The returned memory regions should not overlap.
591
592 The order of regions does not matter; target_memory_map will
593 sort regions by starting address. For that reason, this
594 function should not be called directly except via
595 target_memory_map.
596
597 This method should not cache data; if the memory map could
598 change unexpectedly, it should be invalidated, and higher
599 layers will re-fetch it. */
600 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
601
602 /* Erases the region of flash memory starting at ADDRESS, of
603 length LENGTH.
604
605 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
606 on flash block boundaries, as reported by 'to_memory_map'. */
607 void (*to_flash_erase) (struct target_ops *,
608 ULONGEST address, LONGEST length);
609
610 /* Finishes a flash memory write sequence. After this operation
611 all flash memory should be available for writing and the result
612 of reading from areas written by 'to_flash_write' should be
613 equal to what was written. */
614 void (*to_flash_done) (struct target_ops *);
615
616 /* Describe the architecture-specific features of this target.
617 Returns the description found, or NULL if no description
618 was available. */
619 const struct target_desc *(*to_read_description) (struct target_ops *ops);
620
621 /* Build the PTID of the thread on which a given task is running,
622 based on LWP and THREAD. These values are extracted from the
623 task Private_Data section of the Ada Task Control Block, and
624 their interpretation depends on the target. */
625 ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
626
627 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
628 Return 0 if *READPTR is already at the end of the buffer.
629 Return -1 if there is insufficient buffer for a whole entry.
630 Return 1 if an entry was read into *TYPEP and *VALP. */
631 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
632 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
633
634 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
635 sequence of bytes in PATTERN with length PATTERN_LEN.
636
637 The result is 1 if found, 0 if not found, and -1 if there was an error
638 requiring halting of the search (e.g. memory read error).
639 If the pattern is found the address is recorded in FOUND_ADDRP. */
640 int (*to_search_memory) (struct target_ops *ops,
641 CORE_ADDR start_addr, ULONGEST search_space_len,
642 const gdb_byte *pattern, ULONGEST pattern_len,
643 CORE_ADDR *found_addrp);
644
645 /* Can target execute in reverse? */
646 int (*to_can_execute_reverse) (void);
647
648 /* The direction the target is currently executing. Must be
649 implemented on targets that support reverse execution and async
650 mode. The default simply returns forward execution. */
651 enum exec_direction_kind (*to_execution_direction) (void);
652
653 /* Does this target support debugging multiple processes
654 simultaneously? */
655 int (*to_supports_multi_process) (void);
656
657 /* Does this target support enabling and disabling tracepoints while a trace
658 experiment is running? */
659 int (*to_supports_enable_disable_tracepoint) (void);
660
661 /* Does this target support disabling address space randomization? */
662 int (*to_supports_disable_randomization) (void);
663
664 /* Does this target support the tracenz bytecode for string collection? */
665 int (*to_supports_string_tracing) (void);
666
667 /* Does this target support evaluation of breakpoint conditions on its
668 end? */
669 int (*to_supports_evaluation_of_breakpoint_conditions) (void);
670
671 /* Determine current architecture of thread PTID.
672
673 The target is supposed to determine the architecture of the code where
674 the target is currently stopped at (on Cell, if a target is in spu_run,
675 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
676 This is architecture used to perform decr_pc_after_break adjustment,
677 and also determines the frame architecture of the innermost frame.
678 ptrace operations need to operate according to target_gdbarch.
679
680 The default implementation always returns target_gdbarch. */
681 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
682
683 /* Determine current address space of thread PTID.
684
685 The default implementation always returns the inferior's
686 address space. */
687 struct address_space *(*to_thread_address_space) (struct target_ops *,
688 ptid_t);
689
690 /* Target file operations. */
691
692 /* Open FILENAME on the target, using FLAGS and MODE. Return a
693 target file descriptor, or -1 if an error occurs (and set
694 *TARGET_ERRNO). */
695 int (*to_fileio_open) (const char *filename, int flags, int mode,
696 int *target_errno);
697
698 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
699 Return the number of bytes written, or -1 if an error occurs
700 (and set *TARGET_ERRNO). */
701 int (*to_fileio_pwrite) (int fd, const gdb_byte *write_buf, int len,
702 ULONGEST offset, int *target_errno);
703
704 /* Read up to LEN bytes FD on the target into READ_BUF.
705 Return the number of bytes read, or -1 if an error occurs
706 (and set *TARGET_ERRNO). */
707 int (*to_fileio_pread) (int fd, gdb_byte *read_buf, int len,
708 ULONGEST offset, int *target_errno);
709
710 /* Close FD on the target. Return 0, or -1 if an error occurs
711 (and set *TARGET_ERRNO). */
712 int (*to_fileio_close) (int fd, int *target_errno);
713
714 /* Unlink FILENAME on the target. Return 0, or -1 if an error
715 occurs (and set *TARGET_ERRNO). */
716 int (*to_fileio_unlink) (const char *filename, int *target_errno);
717
718 /* Read value of symbolic link FILENAME on the target. Return a
719 null-terminated string allocated via xmalloc, or NULL if an error
720 occurs (and set *TARGET_ERRNO). */
721 char *(*to_fileio_readlink) (const char *filename, int *target_errno);
722
723
724 /* Implement the "info proc" command. */
725 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
726
727 /* Tracepoint-related operations. */
728
729 /* Prepare the target for a tracing run. */
730 void (*to_trace_init) (void);
731
732 /* Send full details of a tracepoint location to the target. */
733 void (*to_download_tracepoint) (struct bp_location *location);
734
735 /* Is the target able to download tracepoint locations in current
736 state? */
737 int (*to_can_download_tracepoint) (void);
738
739 /* Send full details of a trace state variable to the target. */
740 void (*to_download_trace_state_variable) (struct trace_state_variable *tsv);
741
742 /* Enable a tracepoint on the target. */
743 void (*to_enable_tracepoint) (struct bp_location *location);
744
745 /* Disable a tracepoint on the target. */
746 void (*to_disable_tracepoint) (struct bp_location *location);
747
748 /* Inform the target info of memory regions that are readonly
749 (such as text sections), and so it should return data from
750 those rather than look in the trace buffer. */
751 void (*to_trace_set_readonly_regions) (void);
752
753 /* Start a trace run. */
754 void (*to_trace_start) (void);
755
756 /* Get the current status of a tracing run. */
757 int (*to_get_trace_status) (struct trace_status *ts);
758
759 void (*to_get_tracepoint_status) (struct breakpoint *tp,
760 struct uploaded_tp *utp);
761
762 /* Stop a trace run. */
763 void (*to_trace_stop) (void);
764
765 /* Ask the target to find a trace frame of the given type TYPE,
766 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
767 number of the trace frame, and also the tracepoint number at
768 TPP. If no trace frame matches, return -1. May throw if the
769 operation fails. */
770 int (*to_trace_find) (enum trace_find_type type, int num,
771 ULONGEST addr1, ULONGEST addr2, int *tpp);
772
773 /* Get the value of the trace state variable number TSV, returning
774 1 if the value is known and writing the value itself into the
775 location pointed to by VAL, else returning 0. */
776 int (*to_get_trace_state_variable_value) (int tsv, LONGEST *val);
777
778 int (*to_save_trace_data) (const char *filename);
779
780 int (*to_upload_tracepoints) (struct uploaded_tp **utpp);
781
782 int (*to_upload_trace_state_variables) (struct uploaded_tsv **utsvp);
783
784 LONGEST (*to_get_raw_trace_data) (gdb_byte *buf,
785 ULONGEST offset, LONGEST len);
786
787 /* Get the minimum length of instruction on which a fast tracepoint
788 may be set on the target. If this operation is unsupported,
789 return -1. If for some reason the minimum length cannot be
790 determined, return 0. */
791 int (*to_get_min_fast_tracepoint_insn_len) (void);
792
793 /* Set the target's tracing behavior in response to unexpected
794 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
795 void (*to_set_disconnected_tracing) (int val);
796 void (*to_set_circular_trace_buffer) (int val);
797
798 /* Add/change textual notes about the trace run, returning 1 if
799 successful, 0 otherwise. */
800 int (*to_set_trace_notes) (char *user, char *notes, char* stopnotes);
801
802 /* Return the processor core that thread PTID was last seen on.
803 This information is updated only when:
804 - update_thread_list is called
805 - thread stops
806 If the core cannot be determined -- either for the specified
807 thread, or right now, or in this debug session, or for this
808 target -- return -1. */
809 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
810
811 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
812 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
813 a match, 0 if there's a mismatch, and -1 if an error is
814 encountered while reading memory. */
815 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
816 CORE_ADDR memaddr, ULONGEST size);
817
818 /* Return the address of the start of the Thread Information Block
819 a Windows OS specific feature. */
820 int (*to_get_tib_address) (ptid_t ptid, CORE_ADDR *addr);
821
822 /* Send the new settings of write permission variables. */
823 void (*to_set_permissions) (void);
824
825 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
826 with its details. Return 1 on success, 0 on failure. */
827 int (*to_static_tracepoint_marker_at) (CORE_ADDR,
828 struct static_tracepoint_marker *marker);
829
830 /* Return a vector of all tracepoints markers string id ID, or all
831 markers if ID is NULL. */
832 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
833 (const char *id);
834
835 /* Return a traceframe info object describing the current
836 traceframe's contents. This method should not cache data;
837 higher layers take care of caching, invalidating, and
838 re-fetching when necessary. */
839 struct traceframe_info *(*to_traceframe_info) (void);
840
841 /* Ask the target to use or not to use agent according to USE. Return 1
842 successful, 0 otherwise. */
843 int (*to_use_agent) (int use);
844
845 /* Is the target able to use agent in current state? */
846 int (*to_can_use_agent) (void);
847
848 int to_magic;
849 /* Need sub-structure for target machine related rather than comm related?
850 */
851 };
852
853 /* Magic number for checking ops size. If a struct doesn't end with this
854 number, somebody changed the declaration but didn't change all the
855 places that initialize one. */
856
857 #define OPS_MAGIC 3840
858
859 /* The ops structure for our "current" target process. This should
860 never be NULL. If there is no target, it points to the dummy_target. */
861
862 extern struct target_ops current_target;
863
864 /* Define easy words for doing these operations on our current target. */
865
866 #define target_shortname (current_target.to_shortname)
867 #define target_longname (current_target.to_longname)
868
869 /* Does whatever cleanup is required for a target that we are no
870 longer going to be calling. QUITTING indicates that GDB is exiting
871 and should not get hung on an error (otherwise it is important to
872 perform clean termination, even if it takes a while). This routine
873 is automatically always called after popping the target off the
874 target stack - the target's own methods are no longer available
875 through the target vector. Closing file descriptors and freeing all
876 memory allocated memory are typical things it should do. */
877
878 void target_close (struct target_ops *targ, int quitting);
879
880 /* Attaches to a process on the target side. Arguments are as passed
881 to the `attach' command by the user. This routine can be called
882 when the target is not on the target-stack, if the target_can_run
883 routine returns 1; in that case, it must push itself onto the stack.
884 Upon exit, the target should be ready for normal operations, and
885 should be ready to deliver the status of the process immediately
886 (without waiting) to an upcoming target_wait call. */
887
888 void target_attach (char *, int);
889
890 /* Some targets don't generate traps when attaching to the inferior,
891 or their target_attach implementation takes care of the waiting.
892 These targets must set to_attach_no_wait. */
893
894 #define target_attach_no_wait \
895 (current_target.to_attach_no_wait)
896
897 /* The target_attach operation places a process under debugger control,
898 and stops the process.
899
900 This operation provides a target-specific hook that allows the
901 necessary bookkeeping to be performed after an attach completes. */
902 #define target_post_attach(pid) \
903 (*current_target.to_post_attach) (pid)
904
905 /* Takes a program previously attached to and detaches it.
906 The program may resume execution (some targets do, some don't) and will
907 no longer stop on signals, etc. We better not have left any breakpoints
908 in the program or it'll die when it hits one. ARGS is arguments
909 typed by the user (e.g. a signal to send the process). FROM_TTY
910 says whether to be verbose or not. */
911
912 extern void target_detach (char *, int);
913
914 /* Disconnect from the current target without resuming it (leaving it
915 waiting for a debugger). */
916
917 extern void target_disconnect (char *, int);
918
919 /* Resume execution of the target process PTID. STEP says whether to
920 single-step or to run free; SIGGNAL is the signal to be given to
921 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
922 pass TARGET_SIGNAL_DEFAULT. */
923
924 extern void target_resume (ptid_t ptid, int step, enum target_signal signal);
925
926 /* Wait for process pid to do something. PTID = -1 to wait for any
927 pid to do something. Return pid of child, or -1 in case of error;
928 store status through argument pointer STATUS. Note that it is
929 _NOT_ OK to throw_exception() out of target_wait() without popping
930 the debugging target from the stack; GDB isn't prepared to get back
931 to the prompt with a debugging target but without the frame cache,
932 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
933 options. */
934
935 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
936 int options);
937
938 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
939
940 extern void target_fetch_registers (struct regcache *regcache, int regno);
941
942 /* Store at least register REGNO, or all regs if REGNO == -1.
943 It can store as many registers as it wants to, so target_prepare_to_store
944 must have been previously called. Calls error() if there are problems. */
945
946 extern void target_store_registers (struct regcache *regcache, int regs);
947
948 /* Get ready to modify the registers array. On machines which store
949 individual registers, this doesn't need to do anything. On machines
950 which store all the registers in one fell swoop, this makes sure
951 that REGISTERS contains all the registers from the program being
952 debugged. */
953
954 #define target_prepare_to_store(regcache) \
955 (*current_target.to_prepare_to_store) (regcache)
956
957 /* Determine current address space of thread PTID. */
958
959 struct address_space *target_thread_address_space (ptid_t);
960
961 /* Implement the "info proc" command. */
962
963 void target_info_proc (char *, enum info_proc_what);
964
965 /* Returns true if this target can debug multiple processes
966 simultaneously. */
967
968 #define target_supports_multi_process() \
969 (*current_target.to_supports_multi_process) ()
970
971 /* Returns true if this target can disable address space randomization. */
972
973 int target_supports_disable_randomization (void);
974
975 /* Returns true if this target can enable and disable tracepoints
976 while a trace experiment is running. */
977
978 #define target_supports_enable_disable_tracepoint() \
979 (*current_target.to_supports_enable_disable_tracepoint) ()
980
981 #define target_supports_string_tracing() \
982 (*current_target.to_supports_string_tracing) ()
983
984 /* Returns true if this target can handle breakpoint conditions
985 on its end. */
986
987 #define target_supports_evaluation_of_breakpoint_conditions() \
988 (*current_target.to_supports_evaluation_of_breakpoint_conditions) ()
989
990 /* Invalidate all target dcaches. */
991 extern void target_dcache_invalidate (void);
992
993 extern int target_read_string (CORE_ADDR, char **, int, int *);
994
995 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
996
997 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
998
999 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1000 int len);
1001
1002 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1003 int len);
1004
1005 /* Fetches the target's memory map. If one is found it is sorted
1006 and returned, after some consistency checking. Otherwise, NULL
1007 is returned. */
1008 VEC(mem_region_s) *target_memory_map (void);
1009
1010 /* Erase the specified flash region. */
1011 void target_flash_erase (ULONGEST address, LONGEST length);
1012
1013 /* Finish a sequence of flash operations. */
1014 void target_flash_done (void);
1015
1016 /* Describes a request for a memory write operation. */
1017 struct memory_write_request
1018 {
1019 /* Begining address that must be written. */
1020 ULONGEST begin;
1021 /* Past-the-end address. */
1022 ULONGEST end;
1023 /* The data to write. */
1024 gdb_byte *data;
1025 /* A callback baton for progress reporting for this request. */
1026 void *baton;
1027 };
1028 typedef struct memory_write_request memory_write_request_s;
1029 DEF_VEC_O(memory_write_request_s);
1030
1031 /* Enumeration specifying different flash preservation behaviour. */
1032 enum flash_preserve_mode
1033 {
1034 flash_preserve,
1035 flash_discard
1036 };
1037
1038 /* Write several memory blocks at once. This version can be more
1039 efficient than making several calls to target_write_memory, in
1040 particular because it can optimize accesses to flash memory.
1041
1042 Moreover, this is currently the only memory access function in gdb
1043 that supports writing to flash memory, and it should be used for
1044 all cases where access to flash memory is desirable.
1045
1046 REQUESTS is the vector (see vec.h) of memory_write_request.
1047 PRESERVE_FLASH_P indicates what to do with blocks which must be
1048 erased, but not completely rewritten.
1049 PROGRESS_CB is a function that will be periodically called to provide
1050 feedback to user. It will be called with the baton corresponding
1051 to the request currently being written. It may also be called
1052 with a NULL baton, when preserved flash sectors are being rewritten.
1053
1054 The function returns 0 on success, and error otherwise. */
1055 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1056 enum flash_preserve_mode preserve_flash_p,
1057 void (*progress_cb) (ULONGEST, void *));
1058
1059 /* From infrun.c. */
1060
1061 extern int inferior_has_forked (ptid_t pid, ptid_t *child_pid);
1062
1063 extern int inferior_has_vforked (ptid_t pid, ptid_t *child_pid);
1064
1065 extern int inferior_has_execd (ptid_t pid, char **execd_pathname);
1066
1067 extern int inferior_has_called_syscall (ptid_t pid, int *syscall_number);
1068
1069 /* Print a line about the current target. */
1070
1071 #define target_files_info() \
1072 (*current_target.to_files_info) (&current_target)
1073
1074 /* Insert a breakpoint at address BP_TGT->placed_address in the target
1075 machine. Result is 0 for success, or an errno value. */
1076
1077 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1078 struct bp_target_info *bp_tgt);
1079
1080 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1081 machine. Result is 0 for success, or an errno value. */
1082
1083 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1084 struct bp_target_info *bp_tgt);
1085
1086 /* Initialize the terminal settings we record for the inferior,
1087 before we actually run the inferior. */
1088
1089 #define target_terminal_init() \
1090 (*current_target.to_terminal_init) ()
1091
1092 /* Put the inferior's terminal settings into effect.
1093 This is preparation for starting or resuming the inferior. */
1094
1095 extern void target_terminal_inferior (void);
1096
1097 /* Put some of our terminal settings into effect,
1098 enough to get proper results from our output,
1099 but do not change into or out of RAW mode
1100 so that no input is discarded.
1101
1102 After doing this, either terminal_ours or terminal_inferior
1103 should be called to get back to a normal state of affairs. */
1104
1105 #define target_terminal_ours_for_output() \
1106 (*current_target.to_terminal_ours_for_output) ()
1107
1108 /* Put our terminal settings into effect.
1109 First record the inferior's terminal settings
1110 so they can be restored properly later. */
1111
1112 #define target_terminal_ours() \
1113 (*current_target.to_terminal_ours) ()
1114
1115 /* Save our terminal settings.
1116 This is called from TUI after entering or leaving the curses
1117 mode. Since curses modifies our terminal this call is here
1118 to take this change into account. */
1119
1120 #define target_terminal_save_ours() \
1121 (*current_target.to_terminal_save_ours) ()
1122
1123 /* Print useful information about our terminal status, if such a thing
1124 exists. */
1125
1126 #define target_terminal_info(arg, from_tty) \
1127 (*current_target.to_terminal_info) (arg, from_tty)
1128
1129 /* Kill the inferior process. Make it go away. */
1130
1131 extern void target_kill (void);
1132
1133 /* Load an executable file into the target process. This is expected
1134 to not only bring new code into the target process, but also to
1135 update GDB's symbol tables to match.
1136
1137 ARG contains command-line arguments, to be broken down with
1138 buildargv (). The first non-switch argument is the filename to
1139 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1140 0)), which is an offset to apply to the load addresses of FILE's
1141 sections. The target may define switches, or other non-switch
1142 arguments, as it pleases. */
1143
1144 extern void target_load (char *arg, int from_tty);
1145
1146 /* Start an inferior process and set inferior_ptid to its pid.
1147 EXEC_FILE is the file to run.
1148 ALLARGS is a string containing the arguments to the program.
1149 ENV is the environment vector to pass. Errors reported with error().
1150 On VxWorks and various standalone systems, we ignore exec_file. */
1151
1152 void target_create_inferior (char *exec_file, char *args,
1153 char **env, int from_tty);
1154
1155 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1156 notification of inferior events such as fork and vork immediately
1157 after the inferior is created. (This because of how gdb gets an
1158 inferior created via invoking a shell to do it. In such a scenario,
1159 if the shell init file has commands in it, the shell will fork and
1160 exec for each of those commands, and we will see each such fork
1161 event. Very bad.)
1162
1163 Such targets will supply an appropriate definition for this function. */
1164
1165 #define target_post_startup_inferior(ptid) \
1166 (*current_target.to_post_startup_inferior) (ptid)
1167
1168 /* On some targets, we can catch an inferior fork or vfork event when
1169 it occurs. These functions insert/remove an already-created
1170 catchpoint for such events. They return 0 for success, 1 if the
1171 catchpoint type is not supported and -1 for failure. */
1172
1173 #define target_insert_fork_catchpoint(pid) \
1174 (*current_target.to_insert_fork_catchpoint) (pid)
1175
1176 #define target_remove_fork_catchpoint(pid) \
1177 (*current_target.to_remove_fork_catchpoint) (pid)
1178
1179 #define target_insert_vfork_catchpoint(pid) \
1180 (*current_target.to_insert_vfork_catchpoint) (pid)
1181
1182 #define target_remove_vfork_catchpoint(pid) \
1183 (*current_target.to_remove_vfork_catchpoint) (pid)
1184
1185 /* If the inferior forks or vforks, this function will be called at
1186 the next resume in order to perform any bookkeeping and fiddling
1187 necessary to continue debugging either the parent or child, as
1188 requested, and releasing the other. Information about the fork
1189 or vfork event is available via get_last_target_status ().
1190 This function returns 1 if the inferior should not be resumed
1191 (i.e. there is another event pending). */
1192
1193 int target_follow_fork (int follow_child);
1194
1195 /* On some targets, we can catch an inferior exec event when it
1196 occurs. These functions insert/remove an already-created
1197 catchpoint for such events. They return 0 for success, 1 if the
1198 catchpoint type is not supported and -1 for failure. */
1199
1200 #define target_insert_exec_catchpoint(pid) \
1201 (*current_target.to_insert_exec_catchpoint) (pid)
1202
1203 #define target_remove_exec_catchpoint(pid) \
1204 (*current_target.to_remove_exec_catchpoint) (pid)
1205
1206 /* Syscall catch.
1207
1208 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1209 If NEEDED is zero, it means the target can disable the mechanism to
1210 catch system calls because there are no more catchpoints of this type.
1211
1212 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1213 being requested. In this case, both TABLE_SIZE and TABLE should
1214 be ignored.
1215
1216 TABLE_SIZE is the number of elements in TABLE. It only matters if
1217 ANY_COUNT is zero.
1218
1219 TABLE is an array of ints, indexed by syscall number. An element in
1220 this array is nonzero if that syscall should be caught. This argument
1221 only matters if ANY_COUNT is zero.
1222
1223 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1224 for failure. */
1225
1226 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1227 (*current_target.to_set_syscall_catchpoint) (pid, needed, any_count, \
1228 table_size, table)
1229
1230 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1231 exit code of PID, if any. */
1232
1233 #define target_has_exited(pid,wait_status,exit_status) \
1234 (*current_target.to_has_exited) (pid,wait_status,exit_status)
1235
1236 /* The debugger has completed a blocking wait() call. There is now
1237 some process event that must be processed. This function should
1238 be defined by those targets that require the debugger to perform
1239 cleanup or internal state changes in response to the process event. */
1240
1241 /* The inferior process has died. Do what is right. */
1242
1243 void target_mourn_inferior (void);
1244
1245 /* Does target have enough data to do a run or attach command? */
1246
1247 #define target_can_run(t) \
1248 ((t)->to_can_run) ()
1249
1250 /* Set list of signals to be handled in the target.
1251
1252 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1253 (enum target_signal). For every signal whose entry in this array is
1254 non-zero, the target is allowed -but not required- to skip reporting
1255 arrival of the signal to the GDB core by returning from target_wait,
1256 and to pass the signal directly to the inferior instead.
1257
1258 However, if the target is hardware single-stepping a thread that is
1259 about to receive a signal, it needs to be reported in any case, even
1260 if mentioned in a previous target_pass_signals call. */
1261
1262 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1263
1264 /* Check to see if a thread is still alive. */
1265
1266 extern int target_thread_alive (ptid_t ptid);
1267
1268 /* Query for new threads and add them to the thread list. */
1269
1270 extern void target_find_new_threads (void);
1271
1272 /* Make target stop in a continuable fashion. (For instance, under
1273 Unix, this should act like SIGSTOP). This function is normally
1274 used by GUIs to implement a stop button. */
1275
1276 extern void target_stop (ptid_t ptid);
1277
1278 /* Send the specified COMMAND to the target's monitor
1279 (shell,interpreter) for execution. The result of the query is
1280 placed in OUTBUF. */
1281
1282 #define target_rcmd(command, outbuf) \
1283 (*current_target.to_rcmd) (command, outbuf)
1284
1285
1286 /* Does the target include all of memory, or only part of it? This
1287 determines whether we look up the target chain for other parts of
1288 memory if this target can't satisfy a request. */
1289
1290 extern int target_has_all_memory_1 (void);
1291 #define target_has_all_memory target_has_all_memory_1 ()
1292
1293 /* Does the target include memory? (Dummy targets don't.) */
1294
1295 extern int target_has_memory_1 (void);
1296 #define target_has_memory target_has_memory_1 ()
1297
1298 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1299 we start a process.) */
1300
1301 extern int target_has_stack_1 (void);
1302 #define target_has_stack target_has_stack_1 ()
1303
1304 /* Does the target have registers? (Exec files don't.) */
1305
1306 extern int target_has_registers_1 (void);
1307 #define target_has_registers target_has_registers_1 ()
1308
1309 /* Does the target have execution? Can we make it jump (through
1310 hoops), or pop its stack a few times? This means that the current
1311 target is currently executing; for some targets, that's the same as
1312 whether or not the target is capable of execution, but there are
1313 also targets which can be current while not executing. In that
1314 case this will become true after target_create_inferior or
1315 target_attach. */
1316
1317 extern int target_has_execution_1 (ptid_t);
1318
1319 /* Like target_has_execution_1, but always passes inferior_ptid. */
1320
1321 extern int target_has_execution_current (void);
1322
1323 #define target_has_execution target_has_execution_current ()
1324
1325 /* Default implementations for process_stratum targets. Return true
1326 if there's a selected inferior, false otherwise. */
1327
1328 extern int default_child_has_all_memory (struct target_ops *ops);
1329 extern int default_child_has_memory (struct target_ops *ops);
1330 extern int default_child_has_stack (struct target_ops *ops);
1331 extern int default_child_has_registers (struct target_ops *ops);
1332 extern int default_child_has_execution (struct target_ops *ops,
1333 ptid_t the_ptid);
1334
1335 /* Can the target support the debugger control of thread execution?
1336 Can it lock the thread scheduler? */
1337
1338 #define target_can_lock_scheduler \
1339 (current_target.to_has_thread_control & tc_schedlock)
1340
1341 /* Should the target enable async mode if it is supported? Temporary
1342 cludge until async mode is a strict superset of sync mode. */
1343 extern int target_async_permitted;
1344
1345 /* Can the target support asynchronous execution? */
1346 #define target_can_async_p() (current_target.to_can_async_p ())
1347
1348 /* Is the target in asynchronous execution mode? */
1349 #define target_is_async_p() (current_target.to_is_async_p ())
1350
1351 int target_supports_non_stop (void);
1352
1353 /* Put the target in async mode with the specified callback function. */
1354 #define target_async(CALLBACK,CONTEXT) \
1355 (current_target.to_async ((CALLBACK), (CONTEXT)))
1356
1357 #define target_execution_direction() \
1358 (current_target.to_execution_direction ())
1359
1360 /* Converts a process id to a string. Usually, the string just contains
1361 `process xyz', but on some systems it may contain
1362 `process xyz thread abc'. */
1363
1364 extern char *target_pid_to_str (ptid_t ptid);
1365
1366 extern char *normal_pid_to_str (ptid_t ptid);
1367
1368 /* Return a short string describing extra information about PID,
1369 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1370 is okay. */
1371
1372 #define target_extra_thread_info(TP) \
1373 (current_target.to_extra_thread_info (TP))
1374
1375 /* Return the thread's name. A NULL result means that the target
1376 could not determine this thread's name. */
1377
1378 extern char *target_thread_name (struct thread_info *);
1379
1380 /* Attempts to find the pathname of the executable file
1381 that was run to create a specified process.
1382
1383 The process PID must be stopped when this operation is used.
1384
1385 If the executable file cannot be determined, NULL is returned.
1386
1387 Else, a pointer to a character string containing the pathname
1388 is returned. This string should be copied into a buffer by
1389 the client if the string will not be immediately used, or if
1390 it must persist. */
1391
1392 #define target_pid_to_exec_file(pid) \
1393 (current_target.to_pid_to_exec_file) (pid)
1394
1395 /* See the to_thread_architecture description in struct target_ops. */
1396
1397 #define target_thread_architecture(ptid) \
1398 (current_target.to_thread_architecture (&current_target, ptid))
1399
1400 /*
1401 * Iterator function for target memory regions.
1402 * Calls a callback function once for each memory region 'mapped'
1403 * in the child process. Defined as a simple macro rather than
1404 * as a function macro so that it can be tested for nullity.
1405 */
1406
1407 #define target_find_memory_regions(FUNC, DATA) \
1408 (current_target.to_find_memory_regions) (FUNC, DATA)
1409
1410 /*
1411 * Compose corefile .note section.
1412 */
1413
1414 #define target_make_corefile_notes(BFD, SIZE_P) \
1415 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1416
1417 /* Bookmark interfaces. */
1418 #define target_get_bookmark(ARGS, FROM_TTY) \
1419 (current_target.to_get_bookmark) (ARGS, FROM_TTY)
1420
1421 #define target_goto_bookmark(ARG, FROM_TTY) \
1422 (current_target.to_goto_bookmark) (ARG, FROM_TTY)
1423
1424 /* Hardware watchpoint interfaces. */
1425
1426 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1427 write). Only the INFERIOR_PTID task is being queried. */
1428
1429 #define target_stopped_by_watchpoint \
1430 (*current_target.to_stopped_by_watchpoint)
1431
1432 /* Non-zero if we have steppable watchpoints */
1433
1434 #define target_have_steppable_watchpoint \
1435 (current_target.to_have_steppable_watchpoint)
1436
1437 /* Non-zero if we have continuable watchpoints */
1438
1439 #define target_have_continuable_watchpoint \
1440 (current_target.to_have_continuable_watchpoint)
1441
1442 /* Provide defaults for hardware watchpoint functions. */
1443
1444 /* If the *_hw_beakpoint functions have not been defined
1445 elsewhere use the definitions in the target vector. */
1446
1447 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1448 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1449 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1450 (including this one?). OTHERTYPE is who knows what... */
1451
1452 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1453 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1454
1455 /* Returns the number of debug registers needed to watch the given
1456 memory region, or zero if not supported. */
1457
1458 #define target_region_ok_for_hw_watchpoint(addr, len) \
1459 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1460
1461
1462 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1463 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1464 COND is the expression for its condition, or NULL if there's none.
1465 Returns 0 for success, 1 if the watchpoint type is not supported,
1466 -1 for failure. */
1467
1468 #define target_insert_watchpoint(addr, len, type, cond) \
1469 (*current_target.to_insert_watchpoint) (addr, len, type, cond)
1470
1471 #define target_remove_watchpoint(addr, len, type, cond) \
1472 (*current_target.to_remove_watchpoint) (addr, len, type, cond)
1473
1474 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1475 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1476 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1477 masked watchpoints are not supported, -1 for failure. */
1478
1479 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1480
1481 /* Remove a masked watchpoint at ADDR with the mask MASK.
1482 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1483 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1484 for failure. */
1485
1486 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1487
1488 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1489 (*current_target.to_insert_hw_breakpoint) (gdbarch, bp_tgt)
1490
1491 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1492 (*current_target.to_remove_hw_breakpoint) (gdbarch, bp_tgt)
1493
1494 /* Return number of debug registers needed for a ranged breakpoint,
1495 or -1 if ranged breakpoints are not supported. */
1496
1497 extern int target_ranged_break_num_registers (void);
1498
1499 /* Return non-zero if target knows the data address which triggered this
1500 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1501 INFERIOR_PTID task is being queried. */
1502 #define target_stopped_data_address(target, addr_p) \
1503 (*target.to_stopped_data_address) (target, addr_p)
1504
1505 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1506 LENGTH bytes beginning at START. */
1507 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1508 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1509
1510 /* Return non-zero if the target is capable of using hardware to evaluate
1511 the condition expression. In this case, if the condition is false when
1512 the watched memory location changes, execution may continue without the
1513 debugger being notified.
1514
1515 Due to limitations in the hardware implementation, it may be capable of
1516 avoiding triggering the watchpoint in some cases where the condition
1517 expression is false, but may report some false positives as well.
1518 For this reason, GDB will still evaluate the condition expression when
1519 the watchpoint triggers. */
1520 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1521 (*current_target.to_can_accel_watchpoint_condition) (addr, len, type, cond)
1522
1523 /* Return number of debug registers needed for a masked watchpoint,
1524 -1 if masked watchpoints are not supported or -2 if the given address
1525 and mask combination cannot be used. */
1526
1527 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1528
1529 /* Target can execute in reverse? */
1530 #define target_can_execute_reverse \
1531 (current_target.to_can_execute_reverse ? \
1532 current_target.to_can_execute_reverse () : 0)
1533
1534 extern const struct target_desc *target_read_description (struct target_ops *);
1535
1536 #define target_get_ada_task_ptid(lwp, tid) \
1537 (*current_target.to_get_ada_task_ptid) (lwp,tid)
1538
1539 /* Utility implementation of searching memory. */
1540 extern int simple_search_memory (struct target_ops* ops,
1541 CORE_ADDR start_addr,
1542 ULONGEST search_space_len,
1543 const gdb_byte *pattern,
1544 ULONGEST pattern_len,
1545 CORE_ADDR *found_addrp);
1546
1547 /* Main entry point for searching memory. */
1548 extern int target_search_memory (CORE_ADDR start_addr,
1549 ULONGEST search_space_len,
1550 const gdb_byte *pattern,
1551 ULONGEST pattern_len,
1552 CORE_ADDR *found_addrp);
1553
1554 /* Target file operations. */
1555
1556 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1557 target file descriptor, or -1 if an error occurs (and set
1558 *TARGET_ERRNO). */
1559 extern int target_fileio_open (const char *filename, int flags, int mode,
1560 int *target_errno);
1561
1562 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1563 Return the number of bytes written, or -1 if an error occurs
1564 (and set *TARGET_ERRNO). */
1565 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1566 ULONGEST offset, int *target_errno);
1567
1568 /* Read up to LEN bytes FD on the target into READ_BUF.
1569 Return the number of bytes read, or -1 if an error occurs
1570 (and set *TARGET_ERRNO). */
1571 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1572 ULONGEST offset, int *target_errno);
1573
1574 /* Close FD on the target. Return 0, or -1 if an error occurs
1575 (and set *TARGET_ERRNO). */
1576 extern int target_fileio_close (int fd, int *target_errno);
1577
1578 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1579 occurs (and set *TARGET_ERRNO). */
1580 extern int target_fileio_unlink (const char *filename, int *target_errno);
1581
1582 /* Read value of symbolic link FILENAME on the target. Return a
1583 null-terminated string allocated via xmalloc, or NULL if an error
1584 occurs (and set *TARGET_ERRNO). */
1585 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1586
1587 /* Read target file FILENAME. The return value will be -1 if the transfer
1588 fails or is not supported; 0 if the object is empty; or the length
1589 of the object otherwise. If a positive value is returned, a
1590 sufficiently large buffer will be allocated using xmalloc and
1591 returned in *BUF_P containing the contents of the object.
1592
1593 This method should be used for objects sufficiently small to store
1594 in a single xmalloc'd buffer, when no fixed bound on the object's
1595 size is known in advance. */
1596 extern LONGEST target_fileio_read_alloc (const char *filename,
1597 gdb_byte **buf_p);
1598
1599 /* Read target file FILENAME. The result is NUL-terminated and
1600 returned as a string, allocated using xmalloc. If an error occurs
1601 or the transfer is unsupported, NULL is returned. Empty objects
1602 are returned as allocated but empty strings. A warning is issued
1603 if the result contains any embedded NUL bytes. */
1604 extern char *target_fileio_read_stralloc (const char *filename);
1605
1606
1607 /* Tracepoint-related operations. */
1608
1609 #define target_trace_init() \
1610 (*current_target.to_trace_init) ()
1611
1612 #define target_download_tracepoint(t) \
1613 (*current_target.to_download_tracepoint) (t)
1614
1615 #define target_can_download_tracepoint() \
1616 (*current_target.to_can_download_tracepoint) ()
1617
1618 #define target_download_trace_state_variable(tsv) \
1619 (*current_target.to_download_trace_state_variable) (tsv)
1620
1621 #define target_enable_tracepoint(loc) \
1622 (*current_target.to_enable_tracepoint) (loc)
1623
1624 #define target_disable_tracepoint(loc) \
1625 (*current_target.to_disable_tracepoint) (loc)
1626
1627 #define target_trace_start() \
1628 (*current_target.to_trace_start) ()
1629
1630 #define target_trace_set_readonly_regions() \
1631 (*current_target.to_trace_set_readonly_regions) ()
1632
1633 #define target_get_trace_status(ts) \
1634 (*current_target.to_get_trace_status) (ts)
1635
1636 #define target_get_tracepoint_status(tp,utp) \
1637 (*current_target.to_get_tracepoint_status) (tp, utp)
1638
1639 #define target_trace_stop() \
1640 (*current_target.to_trace_stop) ()
1641
1642 #define target_trace_find(type,num,addr1,addr2,tpp) \
1643 (*current_target.to_trace_find) ((type), (num), (addr1), (addr2), (tpp))
1644
1645 #define target_get_trace_state_variable_value(tsv,val) \
1646 (*current_target.to_get_trace_state_variable_value) ((tsv), (val))
1647
1648 #define target_save_trace_data(filename) \
1649 (*current_target.to_save_trace_data) (filename)
1650
1651 #define target_upload_tracepoints(utpp) \
1652 (*current_target.to_upload_tracepoints) (utpp)
1653
1654 #define target_upload_trace_state_variables(utsvp) \
1655 (*current_target.to_upload_trace_state_variables) (utsvp)
1656
1657 #define target_get_raw_trace_data(buf,offset,len) \
1658 (*current_target.to_get_raw_trace_data) ((buf), (offset), (len))
1659
1660 #define target_get_min_fast_tracepoint_insn_len() \
1661 (*current_target.to_get_min_fast_tracepoint_insn_len) ()
1662
1663 #define target_set_disconnected_tracing(val) \
1664 (*current_target.to_set_disconnected_tracing) (val)
1665
1666 #define target_set_circular_trace_buffer(val) \
1667 (*current_target.to_set_circular_trace_buffer) (val)
1668
1669 #define target_set_trace_notes(user,notes,stopnotes) \
1670 (*current_target.to_set_trace_notes) ((user), (notes), (stopnotes))
1671
1672 #define target_get_tib_address(ptid, addr) \
1673 (*current_target.to_get_tib_address) ((ptid), (addr))
1674
1675 #define target_set_permissions() \
1676 (*current_target.to_set_permissions) ()
1677
1678 #define target_static_tracepoint_marker_at(addr, marker) \
1679 (*current_target.to_static_tracepoint_marker_at) (addr, marker)
1680
1681 #define target_static_tracepoint_markers_by_strid(marker_id) \
1682 (*current_target.to_static_tracepoint_markers_by_strid) (marker_id)
1683
1684 #define target_traceframe_info() \
1685 (*current_target.to_traceframe_info) ()
1686
1687 #define target_use_agent(use) \
1688 (*current_target.to_use_agent) (use)
1689
1690 #define target_can_use_agent() \
1691 (*current_target.to_can_use_agent) ()
1692
1693 /* Command logging facility. */
1694
1695 #define target_log_command(p) \
1696 do \
1697 if (current_target.to_log_command) \
1698 (*current_target.to_log_command) (p); \
1699 while (0)
1700
1701
1702 extern int target_core_of_thread (ptid_t ptid);
1703
1704 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1705 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1706 if there's a mismatch, and -1 if an error is encountered while
1707 reading memory. Throws an error if the functionality is found not
1708 to be supported by the current target. */
1709 int target_verify_memory (const gdb_byte *data,
1710 CORE_ADDR memaddr, ULONGEST size);
1711
1712 /* Routines for maintenance of the target structures...
1713
1714 add_target: Add a target to the list of all possible targets.
1715
1716 push_target: Make this target the top of the stack of currently used
1717 targets, within its particular stratum of the stack. Result
1718 is 0 if now atop the stack, nonzero if not on top (maybe
1719 should warn user).
1720
1721 unpush_target: Remove this from the stack of currently used targets,
1722 no matter where it is on the list. Returns 0 if no
1723 change, 1 if removed from stack.
1724
1725 pop_target: Remove the top thing on the stack of current targets. */
1726
1727 extern void add_target (struct target_ops *);
1728
1729 extern void push_target (struct target_ops *);
1730
1731 extern int unpush_target (struct target_ops *);
1732
1733 extern void target_pre_inferior (int);
1734
1735 extern void target_preopen (int);
1736
1737 extern void pop_target (void);
1738
1739 /* Does whatever cleanup is required to get rid of all pushed targets.
1740 QUITTING is propagated to target_close; it indicates that GDB is
1741 exiting and should not get hung on an error (otherwise it is
1742 important to perform clean termination, even if it takes a
1743 while). */
1744 extern void pop_all_targets (int quitting);
1745
1746 /* Like pop_all_targets, but pops only targets whose stratum is
1747 strictly above ABOVE_STRATUM. */
1748 extern void pop_all_targets_above (enum strata above_stratum, int quitting);
1749
1750 extern int target_is_pushed (struct target_ops *t);
1751
1752 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1753 CORE_ADDR offset);
1754
1755 /* Struct target_section maps address ranges to file sections. It is
1756 mostly used with BFD files, but can be used without (e.g. for handling
1757 raw disks, or files not in formats handled by BFD). */
1758
1759 struct target_section
1760 {
1761 CORE_ADDR addr; /* Lowest address in section */
1762 CORE_ADDR endaddr; /* 1+highest address in section */
1763
1764 struct bfd_section *the_bfd_section;
1765
1766 bfd *bfd; /* BFD file pointer */
1767 };
1768
1769 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
1770
1771 struct target_section_table
1772 {
1773 struct target_section *sections;
1774 struct target_section *sections_end;
1775 };
1776
1777 /* Return the "section" containing the specified address. */
1778 struct target_section *target_section_by_addr (struct target_ops *target,
1779 CORE_ADDR addr);
1780
1781 /* Return the target section table this target (or the targets
1782 beneath) currently manipulate. */
1783
1784 extern struct target_section_table *target_get_section_table
1785 (struct target_ops *target);
1786
1787 /* From mem-break.c */
1788
1789 extern int memory_remove_breakpoint (struct gdbarch *,
1790 struct bp_target_info *);
1791
1792 extern int memory_insert_breakpoint (struct gdbarch *,
1793 struct bp_target_info *);
1794
1795 extern int default_memory_remove_breakpoint (struct gdbarch *,
1796 struct bp_target_info *);
1797
1798 extern int default_memory_insert_breakpoint (struct gdbarch *,
1799 struct bp_target_info *);
1800
1801
1802 /* From target.c */
1803
1804 extern void initialize_targets (void);
1805
1806 extern void noprocess (void) ATTRIBUTE_NORETURN;
1807
1808 extern void target_require_runnable (void);
1809
1810 extern void find_default_attach (struct target_ops *, char *, int);
1811
1812 extern void find_default_create_inferior (struct target_ops *,
1813 char *, char *, char **, int);
1814
1815 extern struct target_ops *find_run_target (void);
1816
1817 extern struct target_ops *find_target_beneath (struct target_ops *);
1818
1819 /* Read OS data object of type TYPE from the target, and return it in
1820 XML format. The result is NUL-terminated and returned as a string,
1821 allocated using xmalloc. If an error occurs or the transfer is
1822 unsupported, NULL is returned. Empty objects are returned as
1823 allocated but empty strings. */
1824
1825 extern char *target_get_osdata (const char *type);
1826
1827 \f
1828 /* Stuff that should be shared among the various remote targets. */
1829
1830 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1831 information (higher values, more information). */
1832 extern int remote_debug;
1833
1834 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1835 extern int baud_rate;
1836 /* Timeout limit for response from target. */
1837 extern int remote_timeout;
1838
1839 \f
1840 /* Functions for helping to write a native target. */
1841
1842 /* This is for native targets which use a unix/POSIX-style waitstatus. */
1843 extern void store_waitstatus (struct target_waitstatus *, int);
1844
1845 /* Set the show memory breakpoints mode to show, and installs a cleanup
1846 to restore it back to the current value. */
1847 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1848
1849 extern int may_write_registers;
1850 extern int may_write_memory;
1851 extern int may_insert_breakpoints;
1852 extern int may_insert_tracepoints;
1853 extern int may_insert_fast_tracepoints;
1854 extern int may_stop;
1855
1856 extern void update_target_permissions (void);
1857
1858 \f
1859 /* Imported from machine dependent code. */
1860
1861 /* Blank target vector entries are initialized to target_ignore. */
1862 void target_ignore (void);
1863
1864 #endif /* !defined (TARGET_H) */