]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/target.h
[gdb/build] Return gdb::array_view in thread_info_to_thread_handle
[thirdparty/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2023 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct trace_state_variable;
33 struct trace_status;
34 struct uploaded_tsv;
35 struct uploaded_tp;
36 struct static_tracepoint_marker;
37 struct traceframe_info;
38 struct expression;
39 struct dcache_struct;
40 struct inferior;
41
42 /* Define const gdb_byte using one identifier, to make it easy for
43 make-target-delegates.py to parse. */
44 typedef const gdb_byte const_gdb_byte;
45
46 #include "infrun.h" /* For enum exec_direction_kind. */
47 #include "breakpoint.h" /* For enum bptype. */
48 #include "gdbsupport/scoped_restore.h"
49 #include "gdbsupport/refcounted-object.h"
50 #include "target-section.h"
51
52 /* This include file defines the interface between the main part
53 of the debugger, and the part which is target-specific, or
54 specific to the communications interface between us and the
55 target.
56
57 A TARGET is an interface between the debugger and a particular
58 kind of file or process. Targets can be STACKED in STRATA,
59 so that more than one target can potentially respond to a request.
60 In particular, memory accesses will walk down the stack of targets
61 until they find a target that is interested in handling that particular
62 address. STRATA are artificial boundaries on the stack, within
63 which particular kinds of targets live. Strata exist so that
64 people don't get confused by pushing e.g. a process target and then
65 a file target, and wondering why they can't see the current values
66 of variables any more (the file target is handling them and they
67 never get to the process target). So when you push a file target,
68 it goes into the file stratum, which is always below the process
69 stratum.
70
71 Note that rather than allow an empty stack, we always have the
72 dummy target at the bottom stratum, so we can call the target
73 methods without checking them. */
74
75 #include "target/target.h"
76 #include "target/resume.h"
77 #include "target/wait.h"
78 #include "target/waitstatus.h"
79 #include "bfd.h"
80 #include "symtab.h"
81 #include "memattr.h"
82 #include "gdbsupport/gdb_signals.h"
83 #include "btrace.h"
84 #include "record.h"
85 #include "command.h"
86 #include "disasm-flags.h"
87 #include "tracepoint.h"
88 #include "gdbsupport/fileio.h"
89
90 #include "gdbsupport/break-common.h" /* For enum target_hw_bp_type. */
91
92 enum strata
93 {
94 dummy_stratum, /* The lowest of the low */
95 file_stratum, /* Executable files, etc */
96 process_stratum, /* Executing processes or core dump files */
97 thread_stratum, /* Executing threads */
98 record_stratum, /* Support record debugging */
99 arch_stratum, /* Architecture overrides */
100 debug_stratum /* Target debug. Must be last. */
101 };
102
103 enum thread_control_capabilities
104 {
105 tc_none = 0, /* Default: can't control thread execution. */
106 tc_schedlock = 1, /* Can lock the thread scheduler. */
107 };
108
109 /* The structure below stores information about a system call.
110 It is basically used in the "catch syscall" command, and in
111 every function that gives information about a system call.
112
113 It's also good to mention that its fields represent everything
114 that we currently know about a syscall in GDB. */
115 struct syscall
116 {
117 /* The syscall number. */
118 int number;
119
120 /* The syscall name. */
121 const char *name;
122 };
123
124 /* Return a pretty printed form of TARGET_OPTIONS. */
125 extern std::string target_options_to_string (target_wait_flags target_options);
126
127 /* Possible types of events that the inferior handler will have to
128 deal with. */
129 enum inferior_event_type
130 {
131 /* Process a normal inferior event which will result in target_wait
132 being called. */
133 INF_REG_EVENT,
134 /* We are called to do stuff after the inferior stops. */
135 INF_EXEC_COMPLETE,
136 };
137 \f
138 /* Target objects which can be transfered using target_read,
139 target_write, et cetera. */
140
141 enum target_object
142 {
143 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
144 TARGET_OBJECT_AVR,
145 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
146 TARGET_OBJECT_MEMORY,
147 /* Memory, avoiding GDB's data cache and trusting the executable.
148 Target implementations of to_xfer_partial never need to handle
149 this object, and most callers should not use it. */
150 TARGET_OBJECT_RAW_MEMORY,
151 /* Memory known to be part of the target's stack. This is cached even
152 if it is not in a region marked as such, since it is known to be
153 "normal" RAM. */
154 TARGET_OBJECT_STACK_MEMORY,
155 /* Memory known to be part of the target code. This is cached even
156 if it is not in a region marked as such. */
157 TARGET_OBJECT_CODE_MEMORY,
158 /* Kernel Unwind Table. See "ia64-tdep.c". */
159 TARGET_OBJECT_UNWIND_TABLE,
160 /* Transfer auxilliary vector. */
161 TARGET_OBJECT_AUXV,
162 /* StackGhost cookie. See "sparc-tdep.c". */
163 TARGET_OBJECT_WCOOKIE,
164 /* Target memory map in XML format. */
165 TARGET_OBJECT_MEMORY_MAP,
166 /* Flash memory. This object can be used to write contents to
167 a previously erased flash memory. Using it without erasing
168 flash can have unexpected results. Addresses are physical
169 address on target, and not relative to flash start. */
170 TARGET_OBJECT_FLASH,
171 /* Available target-specific features, e.g. registers and coprocessors.
172 See "target-descriptions.c". ANNEX should never be empty. */
173 TARGET_OBJECT_AVAILABLE_FEATURES,
174 /* Currently loaded libraries, in XML format. */
175 TARGET_OBJECT_LIBRARIES,
176 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
177 TARGET_OBJECT_LIBRARIES_SVR4,
178 /* Currently loaded libraries specific to AIX systems, in XML format. */
179 TARGET_OBJECT_LIBRARIES_AIX,
180 /* Get OS specific data. The ANNEX specifies the type (running
181 processes, etc.). The data being transfered is expected to follow
182 the DTD specified in features/osdata.dtd. */
183 TARGET_OBJECT_OSDATA,
184 /* Extra signal info. Usually the contents of `siginfo_t' on unix
185 platforms. */
186 TARGET_OBJECT_SIGNAL_INFO,
187 /* The list of threads that are being debugged. */
188 TARGET_OBJECT_THREADS,
189 /* Collected static trace data. */
190 TARGET_OBJECT_STATIC_TRACE_DATA,
191 /* Traceframe info, in XML format. */
192 TARGET_OBJECT_TRACEFRAME_INFO,
193 /* Load maps for FDPIC systems. */
194 TARGET_OBJECT_FDPIC,
195 /* Darwin dynamic linker info data. */
196 TARGET_OBJECT_DARWIN_DYLD_INFO,
197 /* OpenVMS Unwind Information Block. */
198 TARGET_OBJECT_OPENVMS_UIB,
199 /* Branch trace data, in XML format. */
200 TARGET_OBJECT_BTRACE,
201 /* Branch trace configuration, in XML format. */
202 TARGET_OBJECT_BTRACE_CONF,
203 /* The pathname of the executable file that was run to create
204 a specified process. ANNEX should be a string representation
205 of the process ID of the process in question, in hexadecimal
206 format. */
207 TARGET_OBJECT_EXEC_FILE,
208 /* FreeBSD virtual memory mappings. */
209 TARGET_OBJECT_FREEBSD_VMMAP,
210 /* FreeBSD process strings. */
211 TARGET_OBJECT_FREEBSD_PS_STRINGS,
212 /* Possible future objects: TARGET_OBJECT_FILE, ... */
213 };
214
215 /* Possible values returned by target_xfer_partial, etc. */
216
217 enum target_xfer_status
218 {
219 /* Some bytes are transferred. */
220 TARGET_XFER_OK = 1,
221
222 /* No further transfer is possible. */
223 TARGET_XFER_EOF = 0,
224
225 /* The piece of the object requested is unavailable. */
226 TARGET_XFER_UNAVAILABLE = 2,
227
228 /* Generic I/O error. Note that it's important that this is '-1',
229 as we still have target_xfer-related code returning hardcoded
230 '-1' on error. */
231 TARGET_XFER_E_IO = -1,
232
233 /* Keep list in sync with target_xfer_status_to_string. */
234 };
235
236 /* Return the string form of STATUS. */
237
238 extern const char *
239 target_xfer_status_to_string (enum target_xfer_status status);
240
241 typedef enum target_xfer_status
242 target_xfer_partial_ftype (struct target_ops *ops,
243 enum target_object object,
244 const char *annex,
245 gdb_byte *readbuf,
246 const gdb_byte *writebuf,
247 ULONGEST offset,
248 ULONGEST len,
249 ULONGEST *xfered_len);
250
251 enum target_xfer_status
252 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
253 const gdb_byte *writebuf, ULONGEST memaddr,
254 LONGEST len, ULONGEST *xfered_len);
255
256 /* Request that OPS transfer up to LEN addressable units of the target's
257 OBJECT. When reading from a memory object, the size of an addressable unit
258 is architecture dependent and can be found using
259 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
260 byte long. BUF should point to a buffer large enough to hold the read data,
261 taking into account the addressable unit size. The OFFSET, for a seekable
262 object, specifies the starting point. The ANNEX can be used to provide
263 additional data-specific information to the target.
264
265 Return the number of addressable units actually transferred, or a negative
266 error code (an 'enum target_xfer_error' value) if the transfer is not
267 supported or otherwise fails. Return of a positive value less than
268 LEN indicates that no further transfer is possible. Unlike the raw
269 to_xfer_partial interface, callers of these functions do not need
270 to retry partial transfers. */
271
272 extern LONGEST target_read (struct target_ops *ops,
273 enum target_object object,
274 const char *annex, gdb_byte *buf,
275 ULONGEST offset, LONGEST len);
276
277 struct memory_read_result
278 {
279 memory_read_result (ULONGEST begin_, ULONGEST end_,
280 gdb::unique_xmalloc_ptr<gdb_byte> &&data_)
281 : begin (begin_),
282 end (end_),
283 data (std::move (data_))
284 {
285 }
286
287 ~memory_read_result () = default;
288
289 memory_read_result (memory_read_result &&other) = default;
290
291 DISABLE_COPY_AND_ASSIGN (memory_read_result);
292
293 /* First address that was read. */
294 ULONGEST begin;
295 /* Past-the-end address. */
296 ULONGEST end;
297 /* The data. */
298 gdb::unique_xmalloc_ptr<gdb_byte> data;
299 };
300
301 extern std::vector<memory_read_result> read_memory_robust
302 (struct target_ops *ops, const ULONGEST offset, const LONGEST len);
303
304 /* Request that OPS transfer up to LEN addressable units from BUF to the
305 target's OBJECT. When writing to a memory object, the addressable unit
306 size is architecture dependent and can be found using
307 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
308 byte long. The OFFSET, for a seekable object, specifies the starting point.
309 The ANNEX can be used to provide additional data-specific information to
310 the target.
311
312 Return the number of addressable units actually transferred, or a negative
313 error code (an 'enum target_xfer_status' value) if the transfer is not
314 supported or otherwise fails. Return of a positive value less than
315 LEN indicates that no further transfer is possible. Unlike the raw
316 to_xfer_partial interface, callers of these functions do not need to
317 retry partial transfers. */
318
319 extern LONGEST target_write (struct target_ops *ops,
320 enum target_object object,
321 const char *annex, const gdb_byte *buf,
322 ULONGEST offset, LONGEST len);
323
324 /* Similar to target_write, except that it also calls PROGRESS with
325 the number of bytes written and the opaque BATON after every
326 successful partial write (and before the first write). This is
327 useful for progress reporting and user interaction while writing
328 data. To abort the transfer, the progress callback can throw an
329 exception. */
330
331 LONGEST target_write_with_progress (struct target_ops *ops,
332 enum target_object object,
333 const char *annex, const gdb_byte *buf,
334 ULONGEST offset, LONGEST len,
335 void (*progress) (ULONGEST, void *),
336 void *baton);
337
338 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will be read
339 using OPS. The return value will be uninstantiated if the transfer fails or
340 is not supported.
341
342 This method should be used for objects sufficiently small to store
343 in a single xmalloc'd buffer, when no fixed bound on the object's
344 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
345 through this function. */
346
347 extern gdb::optional<gdb::byte_vector> target_read_alloc
348 (struct target_ops *ops, enum target_object object, const char *annex);
349
350 /* Read OBJECT/ANNEX using OPS. The result is a NUL-terminated character vector
351 (therefore usable as a NUL-terminated string). If an error occurs or the
352 transfer is unsupported, the return value will be uninstantiated. Empty
353 objects are returned as allocated but empty strings. Therefore, on success,
354 the returned vector is guaranteed to have at least one element. A warning is
355 issued if the result contains any embedded NUL bytes. */
356
357 extern gdb::optional<gdb::char_vector> target_read_stralloc
358 (struct target_ops *ops, enum target_object object, const char *annex);
359
360 /* See target_ops->to_xfer_partial. */
361 extern target_xfer_partial_ftype target_xfer_partial;
362
363 /* Wrappers to target read/write that perform memory transfers. They
364 throw an error if the memory transfer fails.
365
366 NOTE: cagney/2003-10-23: The naming schema is lifted from
367 "frame.h". The parameter order is lifted from get_frame_memory,
368 which in turn lifted it from read_memory. */
369
370 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
371 gdb_byte *buf, LONGEST len);
372 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
373 CORE_ADDR addr, int len,
374 enum bfd_endian byte_order);
375 \f
376 struct thread_info; /* fwd decl for parameter list below: */
377
378 /* The type of the callback to the to_async method. */
379
380 typedef void async_callback_ftype (enum inferior_event_type event_type,
381 void *context);
382
383 /* Normally target debug printing is purely type-based. However,
384 sometimes it is necessary to override the debug printing on a
385 per-argument basis. This macro can be used, attribute-style, to
386 name the target debug printing function for a particular method
387 argument. FUNC is the name of the function. The macro's
388 definition is empty because it is only used by the
389 make-target-delegates script. */
390
391 #define TARGET_DEBUG_PRINTER(FUNC)
392
393 /* These defines are used to mark target_ops methods. The script
394 make-target-delegates scans these and auto-generates the base
395 method implementations. There are four macros that can be used:
396
397 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
398 does nothing. This is only valid if the method return type is
399 'void'.
400
401 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
402 'tcomplain ()'. The base method simply makes this call, which is
403 assumed not to return.
404
405 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
406 base method returns this expression's value.
407
408 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
409 make-target-delegates does not generate a base method in this case,
410 but instead uses the argument function as the base method. */
411
412 #define TARGET_DEFAULT_IGNORE()
413 #define TARGET_DEFAULT_NORETURN(ARG)
414 #define TARGET_DEFAULT_RETURN(ARG)
415 #define TARGET_DEFAULT_FUNC(ARG)
416
417 /* Each target that can be activated with "target TARGET_NAME" passes
418 the address of one of these objects to add_target, which uses the
419 object's address as unique identifier, and registers the "target
420 TARGET_NAME" command using SHORTNAME as target name. */
421
422 struct target_info
423 {
424 /* Name of this target. */
425 const char *shortname;
426
427 /* Name for printing. */
428 const char *longname;
429
430 /* Documentation. Does not include trailing newline, and starts
431 with a one-line description (probably similar to longname). */
432 const char *doc;
433 };
434
435 struct target_ops
436 : public refcounted_object
437 {
438 /* Return this target's stratum. */
439 virtual strata stratum () const = 0;
440
441 /* To the target under this one. */
442 target_ops *beneath () const;
443
444 /* Free resources associated with the target. Note that singleton
445 targets, like e.g., native targets, are global objects, not
446 heap allocated, and are thus only deleted on GDB exit. The
447 main teardown entry point is the "close" method, below. */
448 virtual ~target_ops () {}
449
450 /* Return a reference to this target's unique target_info
451 object. */
452 virtual const target_info &info () const = 0;
453
454 /* Name this target type. */
455 const char *shortname () const
456 { return info ().shortname; }
457
458 const char *longname () const
459 { return info ().longname; }
460
461 /* Close the target. This is where the target can handle
462 teardown. Heap-allocated targets should delete themselves
463 before returning. */
464 virtual void close ();
465
466 /* Attaches to a process on the target side. Arguments are as
467 passed to the `attach' command by the user. This routine can
468 be called when the target is not on the target-stack, if the
469 target_ops::can_run method returns 1; in that case, it must push
470 itself onto the stack. Upon exit, the target should be ready
471 for normal operations, and should be ready to deliver the
472 status of the process immediately (without waiting) to an
473 upcoming target_wait call. */
474 virtual bool can_attach ();
475 virtual void attach (const char *, int);
476 virtual void post_attach (int)
477 TARGET_DEFAULT_IGNORE ();
478
479 /* Detaches from the inferior. Note that on targets that support
480 async execution (i.e., targets where it is possible to detach
481 from programs with threads running), the target is responsible
482 for removing breakpoints from the program before the actual
483 detach, otherwise the program dies when it hits one. */
484 virtual void detach (inferior *, int)
485 TARGET_DEFAULT_IGNORE ();
486
487 virtual void disconnect (const char *, int)
488 TARGET_DEFAULT_NORETURN (tcomplain ());
489 virtual void resume (ptid_t,
490 int TARGET_DEBUG_PRINTER (target_debug_print_step),
491 enum gdb_signal)
492 TARGET_DEFAULT_NORETURN (noprocess ());
493
494 /* Ensure that all resumed threads are committed to the target.
495
496 See the description of
497 process_stratum_target::commit_resumed_state for more
498 details. */
499 virtual void commit_resumed ()
500 TARGET_DEFAULT_IGNORE ();
501
502 /* See target_wait's description. Note that implementations of
503 this method must not assume that inferior_ptid on entry is
504 pointing at the thread or inferior that ends up reporting an
505 event. The reported event could be for some other thread in
506 the current inferior or even for a different process of the
507 current target. inferior_ptid may also be null_ptid on
508 entry. */
509 virtual ptid_t wait (ptid_t, struct target_waitstatus *,
510 target_wait_flags options)
511 TARGET_DEFAULT_FUNC (default_target_wait);
512 virtual void fetch_registers (struct regcache *, int)
513 TARGET_DEFAULT_IGNORE ();
514 virtual void store_registers (struct regcache *, int)
515 TARGET_DEFAULT_NORETURN (noprocess ());
516 virtual void prepare_to_store (struct regcache *)
517 TARGET_DEFAULT_NORETURN (noprocess ());
518
519 virtual void files_info ()
520 TARGET_DEFAULT_IGNORE ();
521 virtual int insert_breakpoint (struct gdbarch *,
522 struct bp_target_info *)
523 TARGET_DEFAULT_NORETURN (noprocess ());
524 virtual int remove_breakpoint (struct gdbarch *,
525 struct bp_target_info *,
526 enum remove_bp_reason)
527 TARGET_DEFAULT_NORETURN (noprocess ());
528
529 /* Returns true if the target stopped because it executed a
530 software breakpoint. This is necessary for correct background
531 execution / non-stop mode operation, and for correct PC
532 adjustment on targets where the PC needs to be adjusted when a
533 software breakpoint triggers. In these modes, by the time GDB
534 processes a breakpoint event, the breakpoint may already be
535 done from the target, so GDB needs to be able to tell whether
536 it should ignore the event and whether it should adjust the PC.
537 See adjust_pc_after_break. */
538 virtual bool stopped_by_sw_breakpoint ()
539 TARGET_DEFAULT_RETURN (false);
540 /* Returns true if the above method is supported. */
541 virtual bool supports_stopped_by_sw_breakpoint ()
542 TARGET_DEFAULT_RETURN (false);
543
544 /* Returns true if the target stopped for a hardware breakpoint.
545 Likewise, if the target supports hardware breakpoints, this
546 method is necessary for correct background execution / non-stop
547 mode operation. Even though hardware breakpoints do not
548 require PC adjustment, GDB needs to be able to tell whether the
549 hardware breakpoint event is a delayed event for a breakpoint
550 that is already gone and should thus be ignored. */
551 virtual bool stopped_by_hw_breakpoint ()
552 TARGET_DEFAULT_RETURN (false);
553 /* Returns true if the above method is supported. */
554 virtual bool supports_stopped_by_hw_breakpoint ()
555 TARGET_DEFAULT_RETURN (false);
556
557 virtual int can_use_hw_breakpoint (enum bptype, int, int)
558 TARGET_DEFAULT_RETURN (0);
559 virtual int ranged_break_num_registers ()
560 TARGET_DEFAULT_RETURN (-1);
561 virtual int insert_hw_breakpoint (struct gdbarch *,
562 struct bp_target_info *)
563 TARGET_DEFAULT_RETURN (-1);
564 virtual int remove_hw_breakpoint (struct gdbarch *,
565 struct bp_target_info *)
566 TARGET_DEFAULT_RETURN (-1);
567
568 /* Documentation of what the two routines below are expected to do is
569 provided with the corresponding target_* macros. */
570 virtual int remove_watchpoint (CORE_ADDR, int,
571 enum target_hw_bp_type, struct expression *)
572 TARGET_DEFAULT_RETURN (-1);
573 virtual int insert_watchpoint (CORE_ADDR, int,
574 enum target_hw_bp_type, struct expression *)
575 TARGET_DEFAULT_RETURN (-1);
576
577 virtual int insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
578 enum target_hw_bp_type)
579 TARGET_DEFAULT_RETURN (1);
580 virtual int remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
581 enum target_hw_bp_type)
582 TARGET_DEFAULT_RETURN (1);
583 virtual bool stopped_by_watchpoint ()
584 TARGET_DEFAULT_RETURN (false);
585 virtual bool have_steppable_watchpoint ()
586 TARGET_DEFAULT_RETURN (false);
587 virtual bool stopped_data_address (CORE_ADDR *)
588 TARGET_DEFAULT_RETURN (false);
589 virtual bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int)
590 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
591
592 /* Documentation of this routine is provided with the corresponding
593 target_* macro. */
594 virtual int region_ok_for_hw_watchpoint (CORE_ADDR, int)
595 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
596
597 virtual bool can_accel_watchpoint_condition (CORE_ADDR, int, int,
598 struct expression *)
599 TARGET_DEFAULT_RETURN (false);
600 virtual int masked_watch_num_registers (CORE_ADDR, CORE_ADDR)
601 TARGET_DEFAULT_RETURN (-1);
602
603 /* Return 1 for sure target can do single step. Return -1 for
604 unknown. Return 0 for target can't do. */
605 virtual int can_do_single_step ()
606 TARGET_DEFAULT_RETURN (-1);
607
608 virtual bool supports_terminal_ours ()
609 TARGET_DEFAULT_RETURN (false);
610 virtual void terminal_init ()
611 TARGET_DEFAULT_IGNORE ();
612 virtual void terminal_inferior ()
613 TARGET_DEFAULT_IGNORE ();
614 virtual void terminal_save_inferior ()
615 TARGET_DEFAULT_IGNORE ();
616 virtual void terminal_ours_for_output ()
617 TARGET_DEFAULT_IGNORE ();
618 virtual void terminal_ours ()
619 TARGET_DEFAULT_IGNORE ();
620 virtual void terminal_info (const char *, int)
621 TARGET_DEFAULT_FUNC (default_terminal_info);
622 virtual void kill ()
623 TARGET_DEFAULT_NORETURN (noprocess ());
624 virtual void load (const char *, int)
625 TARGET_DEFAULT_NORETURN (tcomplain ());
626 /* Start an inferior process and set inferior_ptid to its pid.
627 EXEC_FILE is the file to run.
628 ALLARGS is a string containing the arguments to the program.
629 ENV is the environment vector to pass. Errors reported with error().
630 On VxWorks and various standalone systems, we ignore exec_file. */
631 virtual bool can_create_inferior ();
632 virtual void create_inferior (const char *, const std::string &,
633 char **, int);
634 virtual int insert_fork_catchpoint (int)
635 TARGET_DEFAULT_RETURN (1);
636 virtual int remove_fork_catchpoint (int)
637 TARGET_DEFAULT_RETURN (1);
638 virtual int insert_vfork_catchpoint (int)
639 TARGET_DEFAULT_RETURN (1);
640 virtual int remove_vfork_catchpoint (int)
641 TARGET_DEFAULT_RETURN (1);
642 virtual void follow_fork (inferior *, ptid_t, target_waitkind, bool, bool)
643 TARGET_DEFAULT_FUNC (default_follow_fork);
644 virtual int insert_exec_catchpoint (int)
645 TARGET_DEFAULT_RETURN (1);
646 virtual int remove_exec_catchpoint (int)
647 TARGET_DEFAULT_RETURN (1);
648 virtual void follow_exec (inferior *, ptid_t, const char *)
649 TARGET_DEFAULT_IGNORE ();
650 virtual int set_syscall_catchpoint (int, bool, int,
651 gdb::array_view<const int>)
652 TARGET_DEFAULT_RETURN (1);
653 virtual void mourn_inferior ()
654 TARGET_DEFAULT_FUNC (default_mourn_inferior);
655
656 /* Note that can_run is special and can be invoked on an unpushed
657 target. Targets defining this method must also define
658 to_can_async_p and to_supports_non_stop. */
659 virtual bool can_run ();
660
661 /* Documentation of this routine is provided with the corresponding
662 target_* macro. */
663 virtual void pass_signals (gdb::array_view<const unsigned char> TARGET_DEBUG_PRINTER (target_debug_print_signals))
664 TARGET_DEFAULT_IGNORE ();
665
666 /* Documentation of this routine is provided with the
667 corresponding target_* function. */
668 virtual void program_signals (gdb::array_view<const unsigned char> TARGET_DEBUG_PRINTER (target_debug_print_signals))
669 TARGET_DEFAULT_IGNORE ();
670
671 virtual bool thread_alive (ptid_t ptid)
672 TARGET_DEFAULT_RETURN (false);
673 virtual void update_thread_list ()
674 TARGET_DEFAULT_IGNORE ();
675 virtual std::string pid_to_str (ptid_t)
676 TARGET_DEFAULT_FUNC (default_pid_to_str);
677 virtual const char *extra_thread_info (thread_info *)
678 TARGET_DEFAULT_RETURN (NULL);
679 virtual const char *thread_name (thread_info *)
680 TARGET_DEFAULT_RETURN (NULL);
681 virtual thread_info *thread_handle_to_thread_info (const gdb_byte *,
682 int,
683 inferior *inf)
684 TARGET_DEFAULT_RETURN (NULL);
685 /* See target_thread_info_to_thread_handle. */
686 virtual gdb::array_view<const_gdb_byte> thread_info_to_thread_handle (struct thread_info *)
687 TARGET_DEFAULT_RETURN (gdb::array_view<const gdb_byte> ());
688 virtual void stop (ptid_t)
689 TARGET_DEFAULT_IGNORE ();
690 virtual void interrupt ()
691 TARGET_DEFAULT_IGNORE ();
692 virtual void pass_ctrlc ()
693 TARGET_DEFAULT_FUNC (default_target_pass_ctrlc);
694 virtual void rcmd (const char *command, struct ui_file *output)
695 TARGET_DEFAULT_FUNC (default_rcmd);
696 virtual const char *pid_to_exec_file (int pid)
697 TARGET_DEFAULT_RETURN (NULL);
698 virtual void log_command (const char *)
699 TARGET_DEFAULT_IGNORE ();
700 virtual const target_section_table *get_section_table ()
701 TARGET_DEFAULT_RETURN (default_get_section_table ());
702
703 /* Provide default values for all "must have" methods. */
704 virtual bool has_all_memory () { return false; }
705 virtual bool has_memory () { return false; }
706 virtual bool has_stack () { return false; }
707 virtual bool has_registers () { return false; }
708 virtual bool has_execution (inferior *inf) { return false; }
709
710 /* Control thread execution. */
711 virtual thread_control_capabilities get_thread_control_capabilities ()
712 TARGET_DEFAULT_RETURN (tc_none);
713 virtual bool attach_no_wait ()
714 TARGET_DEFAULT_RETURN (0);
715 /* This method must be implemented in some situations. See the
716 comment on 'can_run'. */
717 virtual bool can_async_p ()
718 TARGET_DEFAULT_RETURN (false);
719 virtual bool is_async_p ()
720 TARGET_DEFAULT_RETURN (false);
721 virtual void async (bool)
722 TARGET_DEFAULT_NORETURN (tcomplain ());
723 virtual int async_wait_fd ()
724 TARGET_DEFAULT_NORETURN (noprocess ());
725 /* Return true if the target has pending events to report to the
726 core. If true, then GDB avoids resuming the target until all
727 pending events are consumed, so that multiple resumptions can
728 be coalesced as an optimization. Most targets can't tell
729 whether they have pending events without calling target_wait,
730 so we default to returning false. The only downside is that a
731 potential optimization is missed. */
732 virtual bool has_pending_events ()
733 TARGET_DEFAULT_RETURN (false);
734 virtual void thread_events (int)
735 TARGET_DEFAULT_IGNORE ();
736 /* This method must be implemented in some situations. See the
737 comment on 'can_run'. */
738 virtual bool supports_non_stop ()
739 TARGET_DEFAULT_RETURN (false);
740 /* Return true if the target operates in non-stop mode even with
741 "set non-stop off". */
742 virtual bool always_non_stop_p ()
743 TARGET_DEFAULT_RETURN (false);
744 /* find_memory_regions support method for gcore */
745 virtual int find_memory_regions (find_memory_region_ftype func, void *data)
746 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
747 /* make_corefile_notes support method for gcore */
748 virtual gdb::unique_xmalloc_ptr<char> make_corefile_notes (bfd *, int *)
749 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
750 /* get_bookmark support method for bookmarks */
751 virtual gdb_byte *get_bookmark (const char *, int)
752 TARGET_DEFAULT_NORETURN (tcomplain ());
753 /* goto_bookmark support method for bookmarks */
754 virtual void goto_bookmark (const gdb_byte *, int)
755 TARGET_DEFAULT_NORETURN (tcomplain ());
756 /* Return the thread-local address at OFFSET in the
757 thread-local storage for the thread PTID and the shared library
758 or executable file given by LOAD_MODULE_ADDR. If that block of
759 thread-local storage hasn't been allocated yet, this function
760 may throw an error. LOAD_MODULE_ADDR may be zero for statically
761 linked multithreaded inferiors. */
762 virtual CORE_ADDR get_thread_local_address (ptid_t ptid,
763 CORE_ADDR load_module_addr,
764 CORE_ADDR offset)
765 TARGET_DEFAULT_NORETURN (generic_tls_error ());
766
767 /* Request that OPS transfer up to LEN addressable units of the target's
768 OBJECT. When reading from a memory object, the size of an addressable
769 unit is architecture dependent and can be found using
770 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is
771 1 byte long. The OFFSET, for a seekable object, specifies the
772 starting point. The ANNEX can be used to provide additional
773 data-specific information to the target.
774
775 Return the transferred status, error or OK (an
776 'enum target_xfer_status' value). Save the number of addressable units
777 actually transferred in *XFERED_LEN if transfer is successful
778 (TARGET_XFER_OK) or the number unavailable units if the requested
779 data is unavailable (TARGET_XFER_UNAVAILABLE). *XFERED_LEN
780 smaller than LEN does not indicate the end of the object, only
781 the end of the transfer; higher level code should continue
782 transferring if desired. This is handled in target.c.
783
784 The interface does not support a "retry" mechanism. Instead it
785 assumes that at least one addressable unit will be transfered on each
786 successful call.
787
788 NOTE: cagney/2003-10-17: The current interface can lead to
789 fragmented transfers. Lower target levels should not implement
790 hacks, such as enlarging the transfer, in an attempt to
791 compensate for this. Instead, the target stack should be
792 extended so that it implements supply/collect methods and a
793 look-aside object cache. With that available, the lowest
794 target can safely and freely "push" data up the stack.
795
796 See target_read and target_write for more information. One,
797 and only one, of readbuf or writebuf must be non-NULL. */
798
799 virtual enum target_xfer_status xfer_partial (enum target_object object,
800 const char *annex,
801 gdb_byte *readbuf,
802 const gdb_byte *writebuf,
803 ULONGEST offset, ULONGEST len,
804 ULONGEST *xfered_len)
805 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
806
807 /* Return the limit on the size of any single memory transfer
808 for the target. */
809
810 virtual ULONGEST get_memory_xfer_limit ()
811 TARGET_DEFAULT_RETURN (ULONGEST_MAX);
812
813 /* Returns the memory map for the target. A return value of NULL
814 means that no memory map is available. If a memory address
815 does not fall within any returned regions, it's assumed to be
816 RAM. The returned memory regions should not overlap.
817
818 The order of regions does not matter; target_memory_map will
819 sort regions by starting address. For that reason, this
820 function should not be called directly except via
821 target_memory_map.
822
823 This method should not cache data; if the memory map could
824 change unexpectedly, it should be invalidated, and higher
825 layers will re-fetch it. */
826 virtual std::vector<mem_region> memory_map ()
827 TARGET_DEFAULT_RETURN (std::vector<mem_region> ());
828
829 /* Erases the region of flash memory starting at ADDRESS, of
830 length LENGTH.
831
832 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
833 on flash block boundaries, as reported by 'to_memory_map'. */
834 virtual void flash_erase (ULONGEST address, LONGEST length)
835 TARGET_DEFAULT_NORETURN (tcomplain ());
836
837 /* Finishes a flash memory write sequence. After this operation
838 all flash memory should be available for writing and the result
839 of reading from areas written by 'to_flash_write' should be
840 equal to what was written. */
841 virtual void flash_done ()
842 TARGET_DEFAULT_NORETURN (tcomplain ());
843
844 /* Describe the architecture-specific features of the current
845 inferior.
846
847 Returns the description found, or nullptr if no description was
848 available.
849
850 If some target features differ between threads, the description
851 returned by read_description (and the resulting gdbarch) won't
852 accurately describe all threads. In this case, the
853 thread_architecture method can be used to obtain gdbarches that
854 accurately describe each thread. */
855 virtual const struct target_desc *read_description ()
856 TARGET_DEFAULT_RETURN (NULL);
857
858 /* Build the PTID of the thread on which a given task is running,
859 based on LWP and THREAD. These values are extracted from the
860 task Private_Data section of the Ada Task Control Block, and
861 their interpretation depends on the target. */
862 virtual ptid_t get_ada_task_ptid (long lwp, ULONGEST thread)
863 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
864
865 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
866 Return 0 if *READPTR is already at the end of the buffer.
867 Return -1 if there is insufficient buffer for a whole entry.
868 Return 1 if an entry was read into *TYPEP and *VALP. */
869 virtual int auxv_parse (const gdb_byte **readptr,
870 const gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
871 TARGET_DEFAULT_FUNC (default_auxv_parse);
872
873 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
874 sequence of bytes in PATTERN with length PATTERN_LEN.
875
876 The result is 1 if found, 0 if not found, and -1 if there was an error
877 requiring halting of the search (e.g. memory read error).
878 If the pattern is found the address is recorded in FOUND_ADDRP. */
879 virtual int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
880 const gdb_byte *pattern, ULONGEST pattern_len,
881 CORE_ADDR *found_addrp)
882 TARGET_DEFAULT_FUNC (default_search_memory);
883
884 /* Can target execute in reverse? */
885 virtual bool can_execute_reverse ()
886 TARGET_DEFAULT_RETURN (false);
887
888 /* The direction the target is currently executing. Must be
889 implemented on targets that support reverse execution and async
890 mode. The default simply returns forward execution. */
891 virtual enum exec_direction_kind execution_direction ()
892 TARGET_DEFAULT_FUNC (default_execution_direction);
893
894 /* Does this target support debugging multiple processes
895 simultaneously? */
896 virtual bool supports_multi_process ()
897 TARGET_DEFAULT_RETURN (false);
898
899 /* Does this target support enabling and disabling tracepoints while a trace
900 experiment is running? */
901 virtual bool supports_enable_disable_tracepoint ()
902 TARGET_DEFAULT_RETURN (false);
903
904 /* Does this target support disabling address space randomization? */
905 virtual bool supports_disable_randomization ()
906 TARGET_DEFAULT_FUNC (find_default_supports_disable_randomization);
907
908 /* Does this target support the tracenz bytecode for string collection? */
909 virtual bool supports_string_tracing ()
910 TARGET_DEFAULT_RETURN (false);
911
912 /* Does this target support evaluation of breakpoint conditions on its
913 end? */
914 virtual bool supports_evaluation_of_breakpoint_conditions ()
915 TARGET_DEFAULT_RETURN (false);
916
917 /* Does this target support native dumpcore API? */
918 virtual bool supports_dumpcore ()
919 TARGET_DEFAULT_RETURN (false);
920
921 /* Generate the core file with native target API. */
922 virtual void dumpcore (const char *filename)
923 TARGET_DEFAULT_IGNORE ();
924
925 /* Does this target support evaluation of breakpoint commands on its
926 end? */
927 virtual bool can_run_breakpoint_commands ()
928 TARGET_DEFAULT_RETURN (false);
929
930 /* Determine current architecture of thread PTID.
931
932 The target is supposed to determine the architecture of the code where
933 the target is currently stopped at. The architecture information is
934 used to perform decr_pc_after_break adjustment, and also to determine
935 the frame architecture of the innermost frame. ptrace operations need to
936 operate according to target_gdbarch (). */
937 virtual struct gdbarch *thread_architecture (ptid_t)
938 TARGET_DEFAULT_RETURN (NULL);
939
940 /* Determine current address space of thread PTID. */
941 virtual struct address_space *thread_address_space (ptid_t)
942 TARGET_DEFAULT_RETURN (NULL);
943
944 /* Target file operations. */
945
946 /* Return true if the filesystem seen by the current inferior
947 is the local filesystem, false otherwise. */
948 virtual bool filesystem_is_local ()
949 TARGET_DEFAULT_RETURN (true);
950
951 /* Open FILENAME on the target, in the filesystem as seen by INF,
952 using FLAGS and MODE. If INF is NULL, use the filesystem seen
953 by the debugger (GDB or, for remote targets, the remote stub).
954 If WARN_IF_SLOW is nonzero, print a warning message if the file
955 is being accessed over a link that may be slow. Return a
956 target file descriptor, or -1 if an error occurs (and set
957 *TARGET_ERRNO). */
958 virtual int fileio_open (struct inferior *inf, const char *filename,
959 int flags, int mode, int warn_if_slow,
960 fileio_error *target_errno);
961
962 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
963 Return the number of bytes written, or -1 if an error occurs
964 (and set *TARGET_ERRNO). */
965 virtual int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
966 ULONGEST offset, fileio_error *target_errno);
967
968 /* Read up to LEN bytes FD on the target into READ_BUF.
969 Return the number of bytes read, or -1 if an error occurs
970 (and set *TARGET_ERRNO). */
971 virtual int fileio_pread (int fd, gdb_byte *read_buf, int len,
972 ULONGEST offset, fileio_error *target_errno);
973
974 /* Get information about the file opened as FD and put it in
975 SB. Return 0 on success, or -1 if an error occurs (and set
976 *TARGET_ERRNO). */
977 virtual int fileio_fstat (int fd, struct stat *sb, fileio_error *target_errno);
978
979 /* Close FD on the target. Return 0, or -1 if an error occurs
980 (and set *TARGET_ERRNO). */
981 virtual int fileio_close (int fd, fileio_error *target_errno);
982
983 /* Unlink FILENAME on the target, in the filesystem as seen by
984 INF. If INF is NULL, use the filesystem seen by the debugger
985 (GDB or, for remote targets, the remote stub). Return 0, or
986 -1 if an error occurs (and set *TARGET_ERRNO). */
987 virtual int fileio_unlink (struct inferior *inf,
988 const char *filename,
989 fileio_error *target_errno);
990
991 /* Read value of symbolic link FILENAME on the target, in the
992 filesystem as seen by INF. If INF is NULL, use the filesystem
993 seen by the debugger (GDB or, for remote targets, the remote
994 stub). Return a string, or an empty optional if an error
995 occurs (and set *TARGET_ERRNO). */
996 virtual gdb::optional<std::string> fileio_readlink (struct inferior *inf,
997 const char *filename,
998 fileio_error *target_errno);
999
1000 /* Implement the "info proc" command. Returns true if the target
1001 actually implemented the command, false otherwise. */
1002 virtual bool info_proc (const char *, enum info_proc_what);
1003
1004 /* Tracepoint-related operations. */
1005
1006 /* Prepare the target for a tracing run. */
1007 virtual void trace_init ()
1008 TARGET_DEFAULT_NORETURN (tcomplain ());
1009
1010 /* Send full details of a tracepoint location to the target. */
1011 virtual void download_tracepoint (struct bp_location *location)
1012 TARGET_DEFAULT_NORETURN (tcomplain ());
1013
1014 /* Is the target able to download tracepoint locations in current
1015 state? */
1016 virtual bool can_download_tracepoint ()
1017 TARGET_DEFAULT_RETURN (false);
1018
1019 /* Send full details of a trace state variable to the target. */
1020 virtual void download_trace_state_variable (const trace_state_variable &tsv)
1021 TARGET_DEFAULT_NORETURN (tcomplain ());
1022
1023 /* Enable a tracepoint on the target. */
1024 virtual void enable_tracepoint (struct bp_location *location)
1025 TARGET_DEFAULT_NORETURN (tcomplain ());
1026
1027 /* Disable a tracepoint on the target. */
1028 virtual void disable_tracepoint (struct bp_location *location)
1029 TARGET_DEFAULT_NORETURN (tcomplain ());
1030
1031 /* Inform the target info of memory regions that are readonly
1032 (such as text sections), and so it should return data from
1033 those rather than look in the trace buffer. */
1034 virtual void trace_set_readonly_regions ()
1035 TARGET_DEFAULT_NORETURN (tcomplain ());
1036
1037 /* Start a trace run. */
1038 virtual void trace_start ()
1039 TARGET_DEFAULT_NORETURN (tcomplain ());
1040
1041 /* Get the current status of a tracing run. */
1042 virtual int get_trace_status (struct trace_status *ts)
1043 TARGET_DEFAULT_RETURN (-1);
1044
1045 virtual void get_tracepoint_status (struct breakpoint *tp,
1046 struct uploaded_tp *utp)
1047 TARGET_DEFAULT_NORETURN (tcomplain ());
1048
1049 /* Stop a trace run. */
1050 virtual void trace_stop ()
1051 TARGET_DEFAULT_NORETURN (tcomplain ());
1052
1053 /* Ask the target to find a trace frame of the given type TYPE,
1054 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
1055 number of the trace frame, and also the tracepoint number at
1056 TPP. If no trace frame matches, return -1. May throw if the
1057 operation fails. */
1058 virtual int trace_find (enum trace_find_type type, int num,
1059 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
1060 TARGET_DEFAULT_RETURN (-1);
1061
1062 /* Get the value of the trace state variable number TSV, returning
1063 1 if the value is known and writing the value itself into the
1064 location pointed to by VAL, else returning 0. */
1065 virtual bool get_trace_state_variable_value (int tsv, LONGEST *val)
1066 TARGET_DEFAULT_RETURN (false);
1067
1068 virtual int save_trace_data (const char *filename)
1069 TARGET_DEFAULT_NORETURN (tcomplain ());
1070
1071 virtual int upload_tracepoints (struct uploaded_tp **utpp)
1072 TARGET_DEFAULT_RETURN (0);
1073
1074 virtual int upload_trace_state_variables (struct uploaded_tsv **utsvp)
1075 TARGET_DEFAULT_RETURN (0);
1076
1077 virtual LONGEST get_raw_trace_data (gdb_byte *buf,
1078 ULONGEST offset, LONGEST len)
1079 TARGET_DEFAULT_NORETURN (tcomplain ());
1080
1081 /* Get the minimum length of instruction on which a fast tracepoint
1082 may be set on the target. If this operation is unsupported,
1083 return -1. If for some reason the minimum length cannot be
1084 determined, return 0. */
1085 virtual int get_min_fast_tracepoint_insn_len ()
1086 TARGET_DEFAULT_RETURN (-1);
1087
1088 /* Set the target's tracing behavior in response to unexpected
1089 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
1090 virtual void set_disconnected_tracing (int val)
1091 TARGET_DEFAULT_IGNORE ();
1092 virtual void set_circular_trace_buffer (int val)
1093 TARGET_DEFAULT_IGNORE ();
1094 /* Set the size of trace buffer in the target. */
1095 virtual void set_trace_buffer_size (LONGEST val)
1096 TARGET_DEFAULT_IGNORE ();
1097
1098 /* Add/change textual notes about the trace run, returning true if
1099 successful, false otherwise. */
1100 virtual bool set_trace_notes (const char *user, const char *notes,
1101 const char *stopnotes)
1102 TARGET_DEFAULT_RETURN (false);
1103
1104 /* Return the processor core that thread PTID was last seen on.
1105 This information is updated only when:
1106 - update_thread_list is called
1107 - thread stops
1108 If the core cannot be determined -- either for the specified
1109 thread, or right now, or in this debug session, or for this
1110 target -- return -1. */
1111 virtual int core_of_thread (ptid_t ptid)
1112 TARGET_DEFAULT_RETURN (-1);
1113
1114 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
1115 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
1116 a match, 0 if there's a mismatch, and -1 if an error is
1117 encountered while reading memory. */
1118 virtual int verify_memory (const gdb_byte *data,
1119 CORE_ADDR memaddr, ULONGEST size)
1120 TARGET_DEFAULT_FUNC (default_verify_memory);
1121
1122 /* Return the address of the start of the Thread Information Block
1123 a Windows OS specific feature. */
1124 virtual bool get_tib_address (ptid_t ptid, CORE_ADDR *addr)
1125 TARGET_DEFAULT_NORETURN (tcomplain ());
1126
1127 /* Send the new settings of write permission variables. */
1128 virtual void set_permissions ()
1129 TARGET_DEFAULT_IGNORE ();
1130
1131 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
1132 with its details. Return true on success, false on failure. */
1133 virtual bool static_tracepoint_marker_at (CORE_ADDR,
1134 static_tracepoint_marker *marker)
1135 TARGET_DEFAULT_RETURN (false);
1136
1137 /* Return a vector of all tracepoints markers string id ID, or all
1138 markers if ID is NULL. */
1139 virtual std::vector<static_tracepoint_marker>
1140 static_tracepoint_markers_by_strid (const char *id)
1141 TARGET_DEFAULT_NORETURN (tcomplain ());
1142
1143 /* Return a traceframe info object describing the current
1144 traceframe's contents. This method should not cache data;
1145 higher layers take care of caching, invalidating, and
1146 re-fetching when necessary. */
1147 virtual traceframe_info_up traceframe_info ()
1148 TARGET_DEFAULT_NORETURN (tcomplain ());
1149
1150 /* Ask the target to use or not to use agent according to USE.
1151 Return true if successful, false otherwise. */
1152 virtual bool use_agent (bool use)
1153 TARGET_DEFAULT_NORETURN (tcomplain ());
1154
1155 /* Is the target able to use agent in current state? */
1156 virtual bool can_use_agent ()
1157 TARGET_DEFAULT_RETURN (false);
1158
1159 /* Enable branch tracing for TP using CONF configuration.
1160 Return a branch trace target information struct for reading and for
1161 disabling branch trace. */
1162 virtual struct btrace_target_info *enable_btrace (thread_info *tp,
1163 const struct btrace_config *conf)
1164 TARGET_DEFAULT_NORETURN (tcomplain ());
1165
1166 /* Disable branch tracing and deallocate TINFO. */
1167 virtual void disable_btrace (struct btrace_target_info *tinfo)
1168 TARGET_DEFAULT_NORETURN (tcomplain ());
1169
1170 /* Disable branch tracing and deallocate TINFO. This function is similar
1171 to to_disable_btrace, except that it is called during teardown and is
1172 only allowed to perform actions that are safe. A counter-example would
1173 be attempting to talk to a remote target. */
1174 virtual void teardown_btrace (struct btrace_target_info *tinfo)
1175 TARGET_DEFAULT_NORETURN (tcomplain ());
1176
1177 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1178 DATA is cleared before new trace is added. */
1179 virtual enum btrace_error read_btrace (struct btrace_data *data,
1180 struct btrace_target_info *btinfo,
1181 enum btrace_read_type type)
1182 TARGET_DEFAULT_NORETURN (tcomplain ());
1183
1184 /* Get the branch trace configuration. */
1185 virtual const struct btrace_config *btrace_conf (const struct btrace_target_info *)
1186 TARGET_DEFAULT_RETURN (NULL);
1187
1188 /* Current recording method. */
1189 virtual enum record_method record_method (ptid_t ptid)
1190 TARGET_DEFAULT_RETURN (RECORD_METHOD_NONE);
1191
1192 /* Stop trace recording. */
1193 virtual void stop_recording ()
1194 TARGET_DEFAULT_IGNORE ();
1195
1196 /* Print information about the recording. */
1197 virtual void info_record ()
1198 TARGET_DEFAULT_IGNORE ();
1199
1200 /* Save the recorded execution trace into a file. */
1201 virtual void save_record (const char *filename)
1202 TARGET_DEFAULT_NORETURN (tcomplain ());
1203
1204 /* Delete the recorded execution trace from the current position
1205 onwards. */
1206 virtual bool supports_delete_record ()
1207 TARGET_DEFAULT_RETURN (false);
1208 virtual void delete_record ()
1209 TARGET_DEFAULT_NORETURN (tcomplain ());
1210
1211 /* Query if the record target is currently replaying PTID. */
1212 virtual bool record_is_replaying (ptid_t ptid)
1213 TARGET_DEFAULT_RETURN (false);
1214
1215 /* Query if the record target will replay PTID if it were resumed in
1216 execution direction DIR. */
1217 virtual bool record_will_replay (ptid_t ptid, int dir)
1218 TARGET_DEFAULT_RETURN (false);
1219
1220 /* Stop replaying. */
1221 virtual void record_stop_replaying ()
1222 TARGET_DEFAULT_IGNORE ();
1223
1224 /* Go to the begin of the execution trace. */
1225 virtual void goto_record_begin ()
1226 TARGET_DEFAULT_NORETURN (tcomplain ());
1227
1228 /* Go to the end of the execution trace. */
1229 virtual void goto_record_end ()
1230 TARGET_DEFAULT_NORETURN (tcomplain ());
1231
1232 /* Go to a specific location in the recorded execution trace. */
1233 virtual void goto_record (ULONGEST insn)
1234 TARGET_DEFAULT_NORETURN (tcomplain ());
1235
1236 /* Disassemble SIZE instructions in the recorded execution trace from
1237 the current position.
1238 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1239 disassemble SIZE succeeding instructions. */
1240 virtual void insn_history (int size, gdb_disassembly_flags flags)
1241 TARGET_DEFAULT_NORETURN (tcomplain ());
1242
1243 /* Disassemble SIZE instructions in the recorded execution trace around
1244 FROM.
1245 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1246 disassemble SIZE instructions after FROM. */
1247 virtual void insn_history_from (ULONGEST from, int size,
1248 gdb_disassembly_flags flags)
1249 TARGET_DEFAULT_NORETURN (tcomplain ());
1250
1251 /* Disassemble a section of the recorded execution trace from instruction
1252 BEGIN (inclusive) to instruction END (inclusive). */
1253 virtual void insn_history_range (ULONGEST begin, ULONGEST end,
1254 gdb_disassembly_flags flags)
1255 TARGET_DEFAULT_NORETURN (tcomplain ());
1256
1257 /* Print a function trace of the recorded execution trace.
1258 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1259 succeeding functions. */
1260 virtual void call_history (int size, record_print_flags flags)
1261 TARGET_DEFAULT_NORETURN (tcomplain ());
1262
1263 /* Print a function trace of the recorded execution trace starting
1264 at function FROM.
1265 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1266 SIZE functions after FROM. */
1267 virtual void call_history_from (ULONGEST begin, int size, record_print_flags flags)
1268 TARGET_DEFAULT_NORETURN (tcomplain ());
1269
1270 /* Print a function trace of an execution trace section from function BEGIN
1271 (inclusive) to function END (inclusive). */
1272 virtual void call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
1273 TARGET_DEFAULT_NORETURN (tcomplain ());
1274
1275 /* True if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1276 non-empty annex. */
1277 virtual bool augmented_libraries_svr4_read ()
1278 TARGET_DEFAULT_RETURN (false);
1279
1280 /* Those unwinders are tried before any other arch unwinders. If
1281 SELF doesn't have unwinders, it should delegate to the
1282 "beneath" target. */
1283 virtual const struct frame_unwind *get_unwinder ()
1284 TARGET_DEFAULT_RETURN (NULL);
1285
1286 virtual const struct frame_unwind *get_tailcall_unwinder ()
1287 TARGET_DEFAULT_RETURN (NULL);
1288
1289 /* Prepare to generate a core file. */
1290 virtual void prepare_to_generate_core ()
1291 TARGET_DEFAULT_IGNORE ();
1292
1293 /* Cleanup after generating a core file. */
1294 virtual void done_generating_core ()
1295 TARGET_DEFAULT_IGNORE ();
1296
1297 /* Returns true if the target supports memory tagging, false otherwise. */
1298 virtual bool supports_memory_tagging ()
1299 TARGET_DEFAULT_RETURN (false);
1300
1301 /* Return the allocated memory tags of type TYPE associated with
1302 [ADDRESS, ADDRESS + LEN) in TAGS.
1303
1304 LEN is the number of bytes in the memory range. TAGS is a vector of
1305 bytes containing the tags found in the above memory range.
1306
1307 It is up to the architecture/target to interpret the bytes in the TAGS
1308 vector and read the tags appropriately.
1309
1310 Returns true if fetching the tags succeeded and false otherwise. */
1311 virtual bool fetch_memtags (CORE_ADDR address, size_t len,
1312 gdb::byte_vector &tags, int type)
1313 TARGET_DEFAULT_NORETURN (tcomplain ());
1314
1315 /* Write the allocation tags of type TYPE contained in TAGS to the memory
1316 range [ADDRESS, ADDRESS + LEN).
1317
1318 LEN is the number of bytes in the memory range. TAGS is a vector of
1319 bytes containing the tags to be stored to the memory range.
1320
1321 It is up to the architecture/target to interpret the bytes in the TAGS
1322 vector and store them appropriately.
1323
1324 Returns true if storing the tags succeeded and false otherwise. */
1325 virtual bool store_memtags (CORE_ADDR address, size_t len,
1326 const gdb::byte_vector &tags, int type)
1327 TARGET_DEFAULT_NORETURN (tcomplain ());
1328 };
1329
1330 /* Deleter for std::unique_ptr. See comments in
1331 target_ops::~target_ops and target_ops::close about heap-allocated
1332 targets. */
1333 struct target_ops_deleter
1334 {
1335 void operator() (target_ops *target)
1336 {
1337 target->close ();
1338 }
1339 };
1340
1341 /* A unique pointer for target_ops. */
1342 typedef std::unique_ptr<target_ops, target_ops_deleter> target_ops_up;
1343
1344 /* A policy class to interface gdb::ref_ptr with target_ops. */
1345
1346 struct target_ops_ref_policy
1347 {
1348 static void incref (target_ops *t)
1349 {
1350 t->incref ();
1351 }
1352
1353 /* Decrement the reference count on T, and, if the reference count
1354 reaches zero, close the target. */
1355 static void decref (target_ops *t);
1356 };
1357
1358 /* A gdb::ref_ptr pointer to a target_ops. */
1359 typedef gdb::ref_ptr<target_ops, target_ops_ref_policy> target_ops_ref;
1360
1361 /* Native target backends call this once at initialization time to
1362 inform the core about which is the target that can respond to "run"
1363 or "attach". Note: native targets are always singletons. */
1364 extern void set_native_target (target_ops *target);
1365
1366 /* Get the registered native target, if there's one. Otherwise return
1367 NULL. */
1368 extern target_ops *get_native_target ();
1369
1370 /* Type that manages a target stack. See description of target stacks
1371 and strata at the top of the file. */
1372
1373 class target_stack
1374 {
1375 public:
1376 target_stack () = default;
1377 DISABLE_COPY_AND_ASSIGN (target_stack);
1378
1379 /* Push a new target into the stack of the existing target
1380 accessors, possibly superseding some existing accessor. */
1381 void push (target_ops *t);
1382
1383 /* Remove a target from the stack, wherever it may be. Return true
1384 if it was removed, false otherwise. */
1385 bool unpush (target_ops *t);
1386
1387 /* Returns true if T is pushed on the target stack. */
1388 bool is_pushed (const target_ops *t) const
1389 { return at (t->stratum ()) == t; }
1390
1391 /* Return the target at STRATUM. */
1392 target_ops *at (strata stratum) const { return m_stack[stratum].get (); }
1393
1394 /* Return the target at the top of the stack. */
1395 target_ops *top () const { return at (m_top); }
1396
1397 /* Find the next target down the stack from the specified target. */
1398 target_ops *find_beneath (const target_ops *t) const;
1399
1400 private:
1401 /* The stratum of the top target. */
1402 enum strata m_top {};
1403
1404 /* The stack, represented as an array, with one slot per stratum.
1405 If no target is pushed at some stratum, the corresponding slot is
1406 null. */
1407 std::array<target_ops_ref, (int) debug_stratum + 1> m_stack;
1408 };
1409
1410 /* Return the dummy target. */
1411 extern target_ops *get_dummy_target ();
1412
1413 /* Define easy words for doing these operations on our current target. */
1414
1415 extern const char *target_shortname ();
1416
1417 /* Find the correct target to use for "attach". If a target on the
1418 current stack supports attaching, then it is returned. Otherwise,
1419 the default run target is returned. */
1420
1421 extern struct target_ops *find_attach_target (void);
1422
1423 /* Find the correct target to use for "run". If a target on the
1424 current stack supports creating a new inferior, then it is
1425 returned. Otherwise, the default run target is returned. */
1426
1427 extern struct target_ops *find_run_target (void);
1428
1429 /* Some targets don't generate traps when attaching to the inferior,
1430 or their target_attach implementation takes care of the waiting.
1431 These targets must set to_attach_no_wait. */
1432
1433 extern bool target_attach_no_wait ();
1434
1435 /* The target_attach operation places a process under debugger control,
1436 and stops the process.
1437
1438 This operation provides a target-specific hook that allows the
1439 necessary bookkeeping to be performed after an attach completes. */
1440
1441 extern void target_post_attach (int pid);
1442
1443 /* Display a message indicating we're about to attach to a given
1444 process. */
1445
1446 extern void target_announce_attach (int from_tty, int pid);
1447
1448 /* Display a message indicating we're about to detach from the current
1449 inferior process. */
1450
1451 extern void target_announce_detach (int from_tty);
1452
1453 /* Takes a program previously attached to and detaches it.
1454 The program may resume execution (some targets do, some don't) and will
1455 no longer stop on signals, etc. We better not have left any breakpoints
1456 in the program or it'll die when it hits one. FROM_TTY says whether to be
1457 verbose or not. */
1458
1459 extern void target_detach (inferior *inf, int from_tty);
1460
1461 /* Disconnect from the current target without resuming it (leaving it
1462 waiting for a debugger). */
1463
1464 extern void target_disconnect (const char *, int);
1465
1466 /* Resume execution (or prepare for execution) of the current thread
1467 (INFERIOR_PTID), while optionally letting other threads of the
1468 current process or all processes run free.
1469
1470 STEP says whether to hardware single-step the current thread or to
1471 let it run free; SIGNAL is the signal to be given to the current
1472 thread, or GDB_SIGNAL_0 for no signal. The caller may not pass
1473 GDB_SIGNAL_DEFAULT.
1474
1475 SCOPE_PTID indicates the resumption scope. I.e., which threads
1476 (other than the current) run free. If resuming a single thread,
1477 SCOPE_PTID is the same thread as the current thread. A wildcard
1478 SCOPE_PTID (all threads, or all threads of process) lets threads
1479 other than the current (for which the wildcard SCOPE_PTID matches)
1480 resume with their 'thread->suspend.stop_signal' signal (usually
1481 GDB_SIGNAL_0) if it is in "pass" state, or with no signal if in "no
1482 pass" state. Note neither STEP nor SIGNAL apply to any thread
1483 other than the current.
1484
1485 In order to efficiently handle batches of resumption requests,
1486 targets may implement this method such that it records the
1487 resumption request, but defers the actual resumption to the
1488 target_commit_resume method implementation. See
1489 target_commit_resume below. */
1490 extern void target_resume (ptid_t scope_ptid,
1491 int step, enum gdb_signal signal);
1492
1493 /* Ensure that all resumed threads are committed to the target.
1494
1495 See the description of process_stratum_target::commit_resumed_state
1496 for more details. */
1497 extern void target_commit_resumed ();
1498
1499 /* For target_read_memory see target/target.h. */
1500
1501 /* The default target_ops::to_wait implementation. */
1502
1503 extern ptid_t default_target_wait (struct target_ops *ops,
1504 ptid_t ptid,
1505 struct target_waitstatus *status,
1506 target_wait_flags options);
1507
1508 /* Return true if the target has pending events to report to the core.
1509 See target_ops::has_pending_events(). */
1510
1511 extern bool target_has_pending_events ();
1512
1513 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1514
1515 extern void target_fetch_registers (struct regcache *regcache, int regno);
1516
1517 /* Store at least register REGNO, or all regs if REGNO == -1.
1518 It can store as many registers as it wants to, so target_prepare_to_store
1519 must have been previously called. Calls error() if there are problems. */
1520
1521 extern void target_store_registers (struct regcache *regcache, int regs);
1522
1523 /* Get ready to modify the registers array. On machines which store
1524 individual registers, this doesn't need to do anything. On machines
1525 which store all the registers in one fell swoop, this makes sure
1526 that REGISTERS contains all the registers from the program being
1527 debugged. */
1528
1529 extern void target_prepare_to_store (regcache *regcache);
1530
1531 /* Determine current address space of thread PTID. */
1532
1533 struct address_space *target_thread_address_space (ptid_t);
1534
1535 /* Implement the "info proc" command. This returns one if the request
1536 was handled, and zero otherwise. It can also throw an exception if
1537 an error was encountered while attempting to handle the
1538 request. */
1539
1540 int target_info_proc (const char *, enum info_proc_what);
1541
1542 /* Returns true if this target can disable address space randomization. */
1543
1544 int target_supports_disable_randomization (void);
1545
1546 /* Returns true if this target can enable and disable tracepoints
1547 while a trace experiment is running. */
1548
1549 extern bool target_supports_enable_disable_tracepoint ();
1550
1551 extern bool target_supports_string_tracing ();
1552
1553 /* Returns true if this target can handle breakpoint conditions
1554 on its end. */
1555
1556 extern bool target_supports_evaluation_of_breakpoint_conditions ();
1557
1558 /* Does this target support dumpcore API? */
1559
1560 extern bool target_supports_dumpcore ();
1561
1562 /* Generate the core file with target API. */
1563
1564 extern void target_dumpcore (const char *filename);
1565
1566 /* Returns true if this target can handle breakpoint commands
1567 on its end. */
1568
1569 extern bool target_can_run_breakpoint_commands ();
1570
1571 /* For target_read_memory see target/target.h. */
1572
1573 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1574 ssize_t len);
1575
1576 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1577
1578 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1579
1580 /* For target_write_memory see target/target.h. */
1581
1582 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1583 ssize_t len);
1584
1585 /* Fetches the target's memory map. If one is found it is sorted
1586 and returned, after some consistency checking. Otherwise, NULL
1587 is returned. */
1588 std::vector<mem_region> target_memory_map (void);
1589
1590 /* Erases all flash memory regions on the target. */
1591 void flash_erase_command (const char *cmd, int from_tty);
1592
1593 /* Erase the specified flash region. */
1594 void target_flash_erase (ULONGEST address, LONGEST length);
1595
1596 /* Finish a sequence of flash operations. */
1597 void target_flash_done (void);
1598
1599 /* Describes a request for a memory write operation. */
1600 struct memory_write_request
1601 {
1602 memory_write_request (ULONGEST begin_, ULONGEST end_,
1603 gdb_byte *data_ = nullptr, void *baton_ = nullptr)
1604 : begin (begin_), end (end_), data (data_), baton (baton_)
1605 {}
1606
1607 /* Begining address that must be written. */
1608 ULONGEST begin;
1609 /* Past-the-end address. */
1610 ULONGEST end;
1611 /* The data to write. */
1612 gdb_byte *data;
1613 /* A callback baton for progress reporting for this request. */
1614 void *baton;
1615 };
1616
1617 /* Enumeration specifying different flash preservation behaviour. */
1618 enum flash_preserve_mode
1619 {
1620 flash_preserve,
1621 flash_discard
1622 };
1623
1624 /* Write several memory blocks at once. This version can be more
1625 efficient than making several calls to target_write_memory, in
1626 particular because it can optimize accesses to flash memory.
1627
1628 Moreover, this is currently the only memory access function in gdb
1629 that supports writing to flash memory, and it should be used for
1630 all cases where access to flash memory is desirable.
1631
1632 REQUESTS is the vector of memory_write_request.
1633 PRESERVE_FLASH_P indicates what to do with blocks which must be
1634 erased, but not completely rewritten.
1635 PROGRESS_CB is a function that will be periodically called to provide
1636 feedback to user. It will be called with the baton corresponding
1637 to the request currently being written. It may also be called
1638 with a NULL baton, when preserved flash sectors are being rewritten.
1639
1640 The function returns 0 on success, and error otherwise. */
1641 int target_write_memory_blocks
1642 (const std::vector<memory_write_request> &requests,
1643 enum flash_preserve_mode preserve_flash_p,
1644 void (*progress_cb) (ULONGEST, void *));
1645
1646 /* Print a line about the current target. */
1647
1648 extern void target_files_info ();
1649
1650 /* Insert a breakpoint at address BP_TGT->placed_address in
1651 the target machine. Returns 0 for success, and returns non-zero or
1652 throws an error (with a detailed failure reason error code and
1653 message) otherwise. */
1654
1655 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1656 struct bp_target_info *bp_tgt);
1657
1658 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1659 machine. Result is 0 for success, non-zero for error. */
1660
1661 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1662 struct bp_target_info *bp_tgt,
1663 enum remove_bp_reason reason);
1664
1665 /* Return true if the target stack has a non-default
1666 "terminal_ours" method. */
1667
1668 extern bool target_supports_terminal_ours (void);
1669
1670 /* Kill the inferior process. Make it go away. */
1671
1672 extern void target_kill (void);
1673
1674 /* Load an executable file into the target process. This is expected
1675 to not only bring new code into the target process, but also to
1676 update GDB's symbol tables to match.
1677
1678 ARG contains command-line arguments, to be broken down with
1679 buildargv (). The first non-switch argument is the filename to
1680 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1681 0)), which is an offset to apply to the load addresses of FILE's
1682 sections. The target may define switches, or other non-switch
1683 arguments, as it pleases. */
1684
1685 extern void target_load (const char *arg, int from_tty);
1686
1687 /* On some targets, we can catch an inferior fork or vfork event when
1688 it occurs. These functions insert/remove an already-created
1689 catchpoint for such events. They return 0 for success, 1 if the
1690 catchpoint type is not supported and -1 for failure. */
1691
1692 extern int target_insert_fork_catchpoint (int pid);
1693
1694 extern int target_remove_fork_catchpoint (int pid);
1695
1696 extern int target_insert_vfork_catchpoint (int pid);
1697
1698 extern int target_remove_vfork_catchpoint (int pid);
1699
1700 /* Call the follow_fork method on the current target stack.
1701
1702 This function is called when the inferior forks or vforks, to perform any
1703 bookkeeping and fiddling necessary to continue debugging either the parent,
1704 the child or both. */
1705
1706 void target_follow_fork (inferior *inf, ptid_t child_ptid,
1707 target_waitkind fork_kind, bool follow_child,
1708 bool detach_fork);
1709
1710 /* Handle the target-specific bookkeeping required when the inferior makes an
1711 exec call.
1712
1713 The current inferior at the time of the call is the inferior that did the
1714 exec. FOLLOW_INF is the inferior in which execution continues post-exec.
1715 If "follow-exec-mode" is "same", FOLLOW_INF is the same as the current
1716 inferior, meaning that execution continues with the same inferior. If
1717 "follow-exec-mode" is "new", FOLLOW_INF is a different inferior, meaning
1718 that execution continues in a new inferior.
1719
1720 On exit, the target must leave FOLLOW_INF as the current inferior. */
1721
1722 void target_follow_exec (inferior *follow_inf, ptid_t ptid,
1723 const char *execd_pathname);
1724
1725 /* On some targets, we can catch an inferior exec event when it
1726 occurs. These functions insert/remove an already-created
1727 catchpoint for such events. They return 0 for success, 1 if the
1728 catchpoint type is not supported and -1 for failure. */
1729
1730 extern int target_insert_exec_catchpoint (int pid);
1731
1732 extern int target_remove_exec_catchpoint (int pid);
1733
1734 /* Syscall catch.
1735
1736 NEEDED is true if any syscall catch (of any kind) is requested.
1737 If NEEDED is false, it means the target can disable the mechanism to
1738 catch system calls because there are no more catchpoints of this type.
1739
1740 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1741 being requested. In this case, SYSCALL_COUNTS should be ignored.
1742
1743 SYSCALL_COUNTS is an array of ints, indexed by syscall number. An
1744 element in this array is nonzero if that syscall should be caught.
1745 This argument only matters if ANY_COUNT is zero.
1746
1747 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1748 for failure. */
1749
1750 extern int target_set_syscall_catchpoint
1751 (int pid, bool needed, int any_count,
1752 gdb::array_view<const int> syscall_counts);
1753
1754 /* The debugger has completed a blocking wait() call. There is now
1755 some process event that must be processed. This function should
1756 be defined by those targets that require the debugger to perform
1757 cleanup or internal state changes in response to the process event. */
1758
1759 /* For target_mourn_inferior see target/target.h. */
1760
1761 /* Does target have enough data to do a run or attach command? */
1762
1763 extern int target_can_run ();
1764
1765 /* Set list of signals to be handled in the target.
1766
1767 PASS_SIGNALS is an array indexed by target signal number
1768 (enum gdb_signal). For every signal whose entry in this array is
1769 non-zero, the target is allowed -but not required- to skip reporting
1770 arrival of the signal to the GDB core by returning from target_wait,
1771 and to pass the signal directly to the inferior instead.
1772
1773 However, if the target is hardware single-stepping a thread that is
1774 about to receive a signal, it needs to be reported in any case, even
1775 if mentioned in a previous target_pass_signals call. */
1776
1777 extern void target_pass_signals
1778 (gdb::array_view<const unsigned char> pass_signals);
1779
1780 /* Set list of signals the target may pass to the inferior. This
1781 directly maps to the "handle SIGNAL pass/nopass" setting.
1782
1783 PROGRAM_SIGNALS is an array indexed by target signal
1784 number (enum gdb_signal). For every signal whose entry in this
1785 array is non-zero, the target is allowed to pass the signal to the
1786 inferior. Signals not present in the array shall be silently
1787 discarded. This does not influence whether to pass signals to the
1788 inferior as a result of a target_resume call. This is useful in
1789 scenarios where the target needs to decide whether to pass or not a
1790 signal to the inferior without GDB core involvement, such as for
1791 example, when detaching (as threads may have been suspended with
1792 pending signals not reported to GDB). */
1793
1794 extern void target_program_signals
1795 (gdb::array_view<const unsigned char> program_signals);
1796
1797 /* Check to see if a thread is still alive. */
1798
1799 extern int target_thread_alive (ptid_t ptid);
1800
1801 /* Sync the target's threads with GDB's thread list. */
1802
1803 extern void target_update_thread_list (void);
1804
1805 /* Make target stop in a continuable fashion. (For instance, under
1806 Unix, this should act like SIGSTOP). Note that this function is
1807 asynchronous: it does not wait for the target to become stopped
1808 before returning. If this is the behavior you want please use
1809 target_stop_and_wait. */
1810
1811 extern void target_stop (ptid_t ptid);
1812
1813 /* Interrupt the target. Unlike target_stop, this does not specify
1814 which thread/process reports the stop. For most target this acts
1815 like raising a SIGINT, though that's not absolutely required. This
1816 function is asynchronous. */
1817
1818 extern void target_interrupt ();
1819
1820 /* Pass a ^C, as determined to have been pressed by checking the quit
1821 flag, to the target, as if the user had typed the ^C on the
1822 inferior's controlling terminal while the inferior was in the
1823 foreground. Remote targets may take the opportunity to detect the
1824 remote side is not responding and offer to disconnect. */
1825
1826 extern void target_pass_ctrlc (void);
1827
1828 /* The default target_ops::to_pass_ctrlc implementation. Simply calls
1829 target_interrupt. */
1830 extern void default_target_pass_ctrlc (struct target_ops *ops);
1831
1832 /* Send the specified COMMAND to the target's monitor
1833 (shell,interpreter) for execution. The result of the query is
1834 placed in OUTBUF. */
1835
1836 extern void target_rcmd (const char *command, struct ui_file *outbuf);
1837
1838 /* Does the target include memory? (Dummy targets don't.) */
1839
1840 extern int target_has_memory ();
1841
1842 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1843 we start a process.) */
1844
1845 extern int target_has_stack ();
1846
1847 /* Does the target have registers? (Exec files don't.) */
1848
1849 extern int target_has_registers ();
1850
1851 /* Does the target have execution? Can we make it jump (through
1852 hoops), or pop its stack a few times? This means that the current
1853 target is currently executing; for some targets, that's the same as
1854 whether or not the target is capable of execution, but there are
1855 also targets which can be current while not executing. In that
1856 case this will become true after to_create_inferior or
1857 to_attach. INF is the inferior to use; nullptr means to use the
1858 current inferior. */
1859
1860 extern bool target_has_execution (inferior *inf = nullptr);
1861
1862 /* Can the target support the debugger control of thread execution?
1863 Can it lock the thread scheduler? */
1864
1865 extern bool target_can_lock_scheduler ();
1866
1867 /* Controls whether async mode is permitted. */
1868 extern bool target_async_permitted;
1869
1870 /* Can the target support asynchronous execution? */
1871 extern bool target_can_async_p ();
1872
1873 /* An overload of the above that can be called when the target is not yet
1874 pushed, this calls TARGET::can_async_p directly. */
1875 extern bool target_can_async_p (struct target_ops *target);
1876
1877 /* Is the target in asynchronous execution mode? */
1878 extern bool target_is_async_p ();
1879
1880 /* Enables/disabled async target events. */
1881 extern void target_async (bool enable);
1882
1883 /* Enables/disables thread create and exit events. */
1884 extern void target_thread_events (int enable);
1885
1886 /* Whether support for controlling the target backends always in
1887 non-stop mode is enabled. */
1888 extern enum auto_boolean target_non_stop_enabled;
1889
1890 /* Is the target in non-stop mode? Some targets control the inferior
1891 in non-stop mode even with "set non-stop off". Always true if "set
1892 non-stop" is on. */
1893 extern bool target_is_non_stop_p ();
1894
1895 /* Return true if at least one inferior has a non-stop target. */
1896 extern bool exists_non_stop_target ();
1897
1898 extern exec_direction_kind target_execution_direction ();
1899
1900 /* Converts a process id to a string. Usually, the string just contains
1901 `process xyz', but on some systems it may contain
1902 `process xyz thread abc'. */
1903
1904 extern std::string target_pid_to_str (ptid_t ptid);
1905
1906 extern std::string normal_pid_to_str (ptid_t ptid);
1907
1908 /* Return a short string describing extra information about PID,
1909 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1910 is okay. */
1911
1912 extern const char *target_extra_thread_info (thread_info *tp);
1913
1914 /* Return the thread's name, or NULL if the target is unable to determine it.
1915 The returned value must not be freed by the caller.
1916
1917 You likely don't want to call this function, but use the thread_name
1918 function instead, which prefers the user-given thread name, if set. */
1919
1920 extern const char *target_thread_name (struct thread_info *);
1921
1922 /* Given a pointer to a thread library specific thread handle and
1923 its length, return a pointer to the corresponding thread_info struct. */
1924
1925 extern struct thread_info *target_thread_handle_to_thread_info
1926 (const gdb_byte *thread_handle, int handle_len, struct inferior *inf);
1927
1928 /* Given a thread, return the thread handle, a target-specific sequence of
1929 bytes which serves as a thread identifier within the program being
1930 debugged. */
1931 extern gdb::array_view<const gdb_byte> target_thread_info_to_thread_handle
1932 (struct thread_info *);
1933
1934 /* Attempts to find the pathname of the executable file
1935 that was run to create a specified process.
1936
1937 The process PID must be stopped when this operation is used.
1938
1939 If the executable file cannot be determined, NULL is returned.
1940
1941 Else, a pointer to a character string containing the pathname
1942 is returned. This string should be copied into a buffer by
1943 the client if the string will not be immediately used, or if
1944 it must persist. */
1945
1946 extern const char *target_pid_to_exec_file (int pid);
1947
1948 /* See the to_thread_architecture description in struct target_ops. */
1949
1950 extern gdbarch *target_thread_architecture (ptid_t ptid);
1951
1952 /*
1953 * Iterator function for target memory regions.
1954 * Calls a callback function once for each memory region 'mapped'
1955 * in the child process. Defined as a simple macro rather than
1956 * as a function macro so that it can be tested for nullity.
1957 */
1958
1959 extern int target_find_memory_regions (find_memory_region_ftype func,
1960 void *data);
1961
1962 /*
1963 * Compose corefile .note section.
1964 */
1965
1966 extern gdb::unique_xmalloc_ptr<char> target_make_corefile_notes (bfd *bfd,
1967 int *size_p);
1968
1969 /* Bookmark interfaces. */
1970 extern gdb_byte *target_get_bookmark (const char *args, int from_tty);
1971
1972 extern void target_goto_bookmark (const gdb_byte *arg, int from_tty);
1973
1974 /* Hardware watchpoint interfaces. */
1975
1976 /* GDB's current model is that there are three "kinds" of watchpoints,
1977 with respect to when they trigger and how you can move past them.
1978
1979 Those are: continuable, steppable, and non-steppable.
1980
1981 Continuable watchpoints are like x86's -- those trigger after the
1982 memory access's side effects are fully committed to memory. I.e.,
1983 they trap with the PC pointing at the next instruction already.
1984 Continuing past such a watchpoint is doable by just normally
1985 continuing, hence the name.
1986
1987 Both steppable and non-steppable watchpoints trap before the memory
1988 access. I.e, the PC points at the instruction that is accessing
1989 the memory. So GDB needs to single-step once past the current
1990 instruction in order to make the access effective and check whether
1991 the instruction's side effects change the watched expression.
1992
1993 Now, in order to step past that instruction, depending on
1994 architecture and target, you can have two situations:
1995
1996 - steppable watchpoints: you can single-step with the watchpoint
1997 still armed, and the watchpoint won't trigger again.
1998
1999 - non-steppable watchpoints: if you try to single-step with the
2000 watchpoint still armed, you'd trap the watchpoint again and the
2001 thread wouldn't make any progress. So GDB needs to temporarily
2002 remove the watchpoint in order to step past it.
2003
2004 If your target/architecture does not signal that it has either
2005 steppable or non-steppable watchpoints via either
2006 target_have_steppable_watchpoint or
2007 gdbarch_have_nonsteppable_watchpoint, GDB assumes continuable
2008 watchpoints. */
2009
2010 /* Returns true if we were stopped by a hardware watchpoint (memory read or
2011 write). Only the INFERIOR_PTID task is being queried. */
2012
2013 extern bool target_stopped_by_watchpoint ();
2014
2015 /* Returns true if the target stopped because it executed a
2016 software breakpoint instruction. */
2017
2018 extern bool target_stopped_by_sw_breakpoint ();
2019
2020 extern bool target_supports_stopped_by_sw_breakpoint ();
2021
2022 extern bool target_stopped_by_hw_breakpoint ();
2023
2024 extern bool target_supports_stopped_by_hw_breakpoint ();
2025
2026 /* True if we have steppable watchpoints */
2027
2028 extern bool target_have_steppable_watchpoint ();
2029
2030 /* Provide defaults for hardware watchpoint functions. */
2031
2032 /* If the *_hw_breakpoint functions have not been defined
2033 elsewhere use the definitions in the target vector. */
2034
2035 /* Returns positive if we can set a hardware watchpoint of type TYPE.
2036 Returns negative if the target doesn't have enough hardware debug
2037 registers available. Return zero if hardware watchpoint of type
2038 TYPE isn't supported. TYPE is one of bp_hardware_watchpoint,
2039 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
2040 CNT is the number of such watchpoints used so far, including this
2041 one. OTHERTYPE is the number of watchpoints of other types than
2042 this one used so far. */
2043
2044 extern int target_can_use_hardware_watchpoint (bptype type, int cnt,
2045 int othertype);
2046
2047 /* Returns the number of debug registers needed to watch the given
2048 memory region, or zero if not supported. */
2049
2050 extern int target_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len);
2051
2052 extern int target_can_do_single_step ();
2053
2054 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
2055 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
2056 COND is the expression for its condition, or NULL if there's none.
2057 Returns 0 for success, 1 if the watchpoint type is not supported,
2058 -1 for failure. */
2059
2060 extern int target_insert_watchpoint (CORE_ADDR addr, int len,
2061 target_hw_bp_type type, expression *cond);
2062
2063 extern int target_remove_watchpoint (CORE_ADDR addr, int len,
2064 target_hw_bp_type type, expression *cond);
2065
2066 /* Insert a new masked watchpoint at ADDR using the mask MASK.
2067 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
2068 or hw_access for an access watchpoint. Returns 0 for success, 1 if
2069 masked watchpoints are not supported, -1 for failure. */
2070
2071 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
2072 enum target_hw_bp_type);
2073
2074 /* Remove a masked watchpoint at ADDR with the mask MASK.
2075 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
2076 or hw_access for an access watchpoint. Returns 0 for success, non-zero
2077 for failure. */
2078
2079 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
2080 enum target_hw_bp_type);
2081
2082 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
2083 the target machine. Returns 0 for success, and returns non-zero or
2084 throws an error (with a detailed failure reason error code and
2085 message) otherwise. */
2086
2087 extern int target_insert_hw_breakpoint (gdbarch *gdbarch,
2088 bp_target_info *bp_tgt);
2089
2090 extern int target_remove_hw_breakpoint (gdbarch *gdbarch,
2091 bp_target_info *bp_tgt);
2092
2093 /* Return number of debug registers needed for a ranged breakpoint,
2094 or -1 if ranged breakpoints are not supported. */
2095
2096 extern int target_ranged_break_num_registers (void);
2097
2098 /* Return non-zero if target knows the data address which triggered this
2099 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
2100 INFERIOR_PTID task is being queried. */
2101 #define target_stopped_data_address(target, addr_p) \
2102 (target)->stopped_data_address (addr_p)
2103
2104 /* Return non-zero if ADDR is within the range of a watchpoint spanning
2105 LENGTH bytes beginning at START. */
2106 #define target_watchpoint_addr_within_range(target, addr, start, length) \
2107 (target)->watchpoint_addr_within_range (addr, start, length)
2108
2109 /* Return non-zero if the target is capable of using hardware to evaluate
2110 the condition expression. In this case, if the condition is false when
2111 the watched memory location changes, execution may continue without the
2112 debugger being notified.
2113
2114 Due to limitations in the hardware implementation, it may be capable of
2115 avoiding triggering the watchpoint in some cases where the condition
2116 expression is false, but may report some false positives as well.
2117 For this reason, GDB will still evaluate the condition expression when
2118 the watchpoint triggers. */
2119
2120 extern bool target_can_accel_watchpoint_condition (CORE_ADDR addr, int len,
2121 int type, expression *cond);
2122
2123 /* Return number of debug registers needed for a masked watchpoint,
2124 -1 if masked watchpoints are not supported or -2 if the given address
2125 and mask combination cannot be used. */
2126
2127 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
2128
2129 /* Target can execute in reverse? */
2130
2131 extern bool target_can_execute_reverse ();
2132
2133 extern const struct target_desc *target_read_description (struct target_ops *);
2134
2135 extern ptid_t target_get_ada_task_ptid (long lwp, ULONGEST tid);
2136
2137 /* Main entry point for searching memory. */
2138 extern int target_search_memory (CORE_ADDR start_addr,
2139 ULONGEST search_space_len,
2140 const gdb_byte *pattern,
2141 ULONGEST pattern_len,
2142 CORE_ADDR *found_addrp);
2143
2144 /* Target file operations. */
2145
2146 /* Return true if the filesystem seen by the current inferior
2147 is the local filesystem, zero otherwise. */
2148
2149 extern bool target_filesystem_is_local ();
2150
2151 /* Open FILENAME on the target, in the filesystem as seen by INF,
2152 using FLAGS and MODE. If INF is NULL, use the filesystem seen by
2153 the debugger (GDB or, for remote targets, the remote stub). Return
2154 a target file descriptor, or -1 if an error occurs (and set
2155 *TARGET_ERRNO). If WARN_IF_SLOW is true, print a warning message
2156 if the file is being accessed over a link that may be slow. */
2157 extern int target_fileio_open (struct inferior *inf,
2158 const char *filename, int flags,
2159 int mode, bool warn_if_slow,
2160 fileio_error *target_errno);
2161
2162 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2163 Return the number of bytes written, or -1 if an error occurs
2164 (and set *TARGET_ERRNO). */
2165 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2166 ULONGEST offset, fileio_error *target_errno);
2167
2168 /* Read up to LEN bytes FD on the target into READ_BUF.
2169 Return the number of bytes read, or -1 if an error occurs
2170 (and set *TARGET_ERRNO). */
2171 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2172 ULONGEST offset, fileio_error *target_errno);
2173
2174 /* Get information about the file opened as FD on the target
2175 and put it in SB. Return 0 on success, or -1 if an error
2176 occurs (and set *TARGET_ERRNO). */
2177 extern int target_fileio_fstat (int fd, struct stat *sb,
2178 fileio_error *target_errno);
2179
2180 /* Close FD on the target. Return 0, or -1 if an error occurs
2181 (and set *TARGET_ERRNO). */
2182 extern int target_fileio_close (int fd, fileio_error *target_errno);
2183
2184 /* Unlink FILENAME on the target, in the filesystem as seen by INF.
2185 If INF is NULL, use the filesystem seen by the debugger (GDB or,
2186 for remote targets, the remote stub). Return 0, or -1 if an error
2187 occurs (and set *TARGET_ERRNO). */
2188 extern int target_fileio_unlink (struct inferior *inf,
2189 const char *filename,
2190 fileio_error *target_errno);
2191
2192 /* Read value of symbolic link FILENAME on the target, in the
2193 filesystem as seen by INF. If INF is NULL, use the filesystem seen
2194 by the debugger (GDB or, for remote targets, the remote stub).
2195 Return a null-terminated string allocated via xmalloc, or NULL if
2196 an error occurs (and set *TARGET_ERRNO). */
2197 extern gdb::optional<std::string> target_fileio_readlink
2198 (struct inferior *inf, const char *filename, fileio_error *target_errno);
2199
2200 /* Read target file FILENAME, in the filesystem as seen by INF. If
2201 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2202 remote targets, the remote stub). The return value will be -1 if
2203 the transfer fails or is not supported; 0 if the object is empty;
2204 or the length of the object otherwise. If a positive value is
2205 returned, a sufficiently large buffer will be allocated using
2206 xmalloc and returned in *BUF_P containing the contents of the
2207 object.
2208
2209 This method should be used for objects sufficiently small to store
2210 in a single xmalloc'd buffer, when no fixed bound on the object's
2211 size is known in advance. */
2212 extern LONGEST target_fileio_read_alloc (struct inferior *inf,
2213 const char *filename,
2214 gdb_byte **buf_p);
2215
2216 /* Read target file FILENAME, in the filesystem as seen by INF. If
2217 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2218 remote targets, the remote stub). The result is NUL-terminated and
2219 returned as a string, allocated using xmalloc. If an error occurs
2220 or the transfer is unsupported, NULL is returned. Empty objects
2221 are returned as allocated but empty strings. A warning is issued
2222 if the result contains any embedded NUL bytes. */
2223 extern gdb::unique_xmalloc_ptr<char> target_fileio_read_stralloc
2224 (struct inferior *inf, const char *filename);
2225
2226 /* Invalidate the target associated with open handles that were open
2227 on target TARG, since we're about to close (and maybe destroy) the
2228 target. The handles remain open from the client's perspective, but
2229 trying to do anything with them other than closing them will fail
2230 with EIO. */
2231 extern void fileio_handles_invalidate_target (target_ops *targ);
2232
2233 /* Tracepoint-related operations. */
2234
2235 extern void target_trace_init ();
2236
2237 extern void target_download_tracepoint (bp_location *location);
2238
2239 extern bool target_can_download_tracepoint ();
2240
2241 extern void target_download_trace_state_variable (const trace_state_variable &tsv);
2242
2243 extern void target_enable_tracepoint (bp_location *loc);
2244
2245 extern void target_disable_tracepoint (bp_location *loc);
2246
2247 extern void target_trace_start ();
2248
2249 extern void target_trace_set_readonly_regions ();
2250
2251 extern int target_get_trace_status (trace_status *ts);
2252
2253 extern void target_get_tracepoint_status (breakpoint *tp, uploaded_tp *utp);
2254
2255 extern void target_trace_stop ();
2256
2257 extern int target_trace_find (trace_find_type type, int num, CORE_ADDR addr1,
2258 CORE_ADDR addr2, int *tpp);
2259
2260 extern bool target_get_trace_state_variable_value (int tsv, LONGEST *val);
2261
2262 extern int target_save_trace_data (const char *filename);
2263
2264 extern int target_upload_tracepoints (uploaded_tp **utpp);
2265
2266 extern int target_upload_trace_state_variables (uploaded_tsv **utsvp);
2267
2268 extern LONGEST target_get_raw_trace_data (gdb_byte *buf, ULONGEST offset,
2269 LONGEST len);
2270
2271 extern int target_get_min_fast_tracepoint_insn_len ();
2272
2273 extern void target_set_disconnected_tracing (int val);
2274
2275 extern void target_set_circular_trace_buffer (int val);
2276
2277 extern void target_set_trace_buffer_size (LONGEST val);
2278
2279 extern bool target_set_trace_notes (const char *user, const char *notes,
2280 const char *stopnotes);
2281
2282 extern bool target_get_tib_address (ptid_t ptid, CORE_ADDR *addr);
2283
2284 extern void target_set_permissions ();
2285
2286 extern bool target_static_tracepoint_marker_at
2287 (CORE_ADDR addr, static_tracepoint_marker *marker);
2288
2289 extern std::vector<static_tracepoint_marker>
2290 target_static_tracepoint_markers_by_strid (const char *marker_id);
2291
2292 extern traceframe_info_up target_traceframe_info ();
2293
2294 extern bool target_use_agent (bool use);
2295
2296 extern bool target_can_use_agent ();
2297
2298 extern bool target_augmented_libraries_svr4_read ();
2299
2300 extern bool target_supports_memory_tagging ();
2301
2302 extern bool target_fetch_memtags (CORE_ADDR address, size_t len,
2303 gdb::byte_vector &tags, int type);
2304
2305 extern bool target_store_memtags (CORE_ADDR address, size_t len,
2306 const gdb::byte_vector &tags, int type);
2307
2308 /* Command logging facility. */
2309
2310 extern void target_log_command (const char *p);
2311
2312 extern int target_core_of_thread (ptid_t ptid);
2313
2314 /* See to_get_unwinder in struct target_ops. */
2315 extern const struct frame_unwind *target_get_unwinder (void);
2316
2317 /* See to_get_tailcall_unwinder in struct target_ops. */
2318 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2319
2320 /* This implements basic memory verification, reading target memory
2321 and performing the comparison here (as opposed to accelerated
2322 verification making use of the qCRC packet, for example). */
2323
2324 extern int simple_verify_memory (struct target_ops* ops,
2325 const gdb_byte *data,
2326 CORE_ADDR memaddr, ULONGEST size);
2327
2328 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2329 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2330 if there's a mismatch, and -1 if an error is encountered while
2331 reading memory. Throws an error if the functionality is found not
2332 to be supported by the current target. */
2333 int target_verify_memory (const gdb_byte *data,
2334 CORE_ADDR memaddr, ULONGEST size);
2335
2336 /* Routines for maintenance of the target structures...
2337
2338 add_target: Add a target to the list of all possible targets.
2339 This only makes sense for targets that should be activated using
2340 the "target TARGET_NAME ..." command.
2341
2342 push_target: Make this target the top of the stack of currently used
2343 targets, within its particular stratum of the stack. Result
2344 is 0 if now atop the stack, nonzero if not on top (maybe
2345 should warn user).
2346
2347 unpush_target: Remove this from the stack of currently used targets,
2348 no matter where it is on the list. Returns 0 if no
2349 change, 1 if removed from stack. */
2350
2351 /* Type of callback called when the user activates a target with
2352 "target TARGET_NAME". The callback routine takes the rest of the
2353 parameters from the command, and (if successful) pushes a new
2354 target onto the stack. */
2355 typedef void target_open_ftype (const char *args, int from_tty);
2356
2357 /* Add the target described by INFO to the list of possible targets
2358 and add a new command 'target $(INFO->shortname)'. Set COMPLETER
2359 as the command's completer if not NULL. */
2360
2361 extern void add_target (const target_info &info,
2362 target_open_ftype *func,
2363 completer_ftype *completer = NULL);
2364
2365 /* Adds a command ALIAS for the target described by INFO and marks it
2366 deprecated. This is useful for maintaining backwards compatibility
2367 when renaming targets. */
2368
2369 extern void add_deprecated_target_alias (const target_info &info,
2370 const char *alias);
2371
2372 /* A unique_ptr helper to unpush a target. */
2373
2374 struct target_unpusher
2375 {
2376 void operator() (struct target_ops *ops) const;
2377 };
2378
2379 /* A unique_ptr that unpushes a target on destruction. */
2380
2381 typedef std::unique_ptr<struct target_ops, target_unpusher> target_unpush_up;
2382
2383 extern void target_pre_inferior (int);
2384
2385 extern void target_preopen (int);
2386
2387 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2388 CORE_ADDR offset);
2389
2390 /* Return the "section" containing the specified address. */
2391 const struct target_section *target_section_by_addr (struct target_ops *target,
2392 CORE_ADDR addr);
2393
2394 /* Return the target section table this target (or the targets
2395 beneath) currently manipulate. */
2396
2397 extern const target_section_table *target_get_section_table
2398 (struct target_ops *target);
2399
2400 /* Default implementation of get_section_table for dummy_target. */
2401
2402 extern const target_section_table *default_get_section_table ();
2403
2404 /* From mem-break.c */
2405
2406 extern int memory_remove_breakpoint (struct target_ops *,
2407 struct gdbarch *, struct bp_target_info *,
2408 enum remove_bp_reason);
2409
2410 extern int memory_insert_breakpoint (struct target_ops *,
2411 struct gdbarch *, struct bp_target_info *);
2412
2413 /* Convenience template use to add memory breakpoints support to a
2414 target. */
2415
2416 template <typename BaseTarget>
2417 struct memory_breakpoint_target : public BaseTarget
2418 {
2419 int insert_breakpoint (struct gdbarch *gdbarch,
2420 struct bp_target_info *bp_tgt) override
2421 { return memory_insert_breakpoint (this, gdbarch, bp_tgt); }
2422
2423 int remove_breakpoint (struct gdbarch *gdbarch,
2424 struct bp_target_info *bp_tgt,
2425 enum remove_bp_reason reason) override
2426 { return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason); }
2427 };
2428
2429 /* Check whether the memory at the breakpoint's placed address still
2430 contains the expected breakpoint instruction. */
2431
2432 extern int memory_validate_breakpoint (struct gdbarch *gdbarch,
2433 struct bp_target_info *bp_tgt);
2434
2435 extern int default_memory_remove_breakpoint (struct gdbarch *,
2436 struct bp_target_info *);
2437
2438 extern int default_memory_insert_breakpoint (struct gdbarch *,
2439 struct bp_target_info *);
2440
2441
2442 /* From target.c */
2443
2444 extern void initialize_targets (void);
2445
2446 extern void noprocess (void) ATTRIBUTE_NORETURN;
2447
2448 extern void target_require_runnable (void);
2449
2450 /* Find the target at STRATUM. If no target is at that stratum,
2451 return NULL. */
2452
2453 struct target_ops *find_target_at (enum strata stratum);
2454
2455 /* Read OS data object of type TYPE from the target, and return it in XML
2456 format. The return value follows the same rules as target_read_stralloc. */
2457
2458 extern gdb::optional<gdb::char_vector> target_get_osdata (const char *type);
2459
2460 /* Stuff that should be shared among the various remote targets. */
2461
2462
2463 /* Timeout limit for response from target. */
2464 extern int remote_timeout;
2465
2466 \f
2467
2468 /* Set the show memory breakpoints mode to show, and return a
2469 scoped_restore to restore it back to the current value. */
2470 extern scoped_restore_tmpl<int>
2471 make_scoped_restore_show_memory_breakpoints (int show);
2472
2473 extern bool may_write_registers;
2474 extern bool may_write_memory;
2475 extern bool may_insert_breakpoints;
2476 extern bool may_insert_tracepoints;
2477 extern bool may_insert_fast_tracepoints;
2478 extern bool may_stop;
2479
2480 extern void update_target_permissions (void);
2481
2482 \f
2483 /* Imported from machine dependent code. */
2484
2485 /* See to_enable_btrace in struct target_ops. */
2486 extern struct btrace_target_info *
2487 target_enable_btrace (thread_info *tp, const struct btrace_config *);
2488
2489 /* See to_disable_btrace in struct target_ops. */
2490 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2491
2492 /* See to_teardown_btrace in struct target_ops. */
2493 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2494
2495 /* See to_read_btrace in struct target_ops. */
2496 extern enum btrace_error target_read_btrace (struct btrace_data *,
2497 struct btrace_target_info *,
2498 enum btrace_read_type);
2499
2500 /* See to_btrace_conf in struct target_ops. */
2501 extern const struct btrace_config *
2502 target_btrace_conf (const struct btrace_target_info *);
2503
2504 /* See to_stop_recording in struct target_ops. */
2505 extern void target_stop_recording (void);
2506
2507 /* See to_save_record in struct target_ops. */
2508 extern void target_save_record (const char *filename);
2509
2510 /* Query if the target supports deleting the execution log. */
2511 extern int target_supports_delete_record (void);
2512
2513 /* See to_delete_record in struct target_ops. */
2514 extern void target_delete_record (void);
2515
2516 /* See to_record_method. */
2517 extern enum record_method target_record_method (ptid_t ptid);
2518
2519 /* See to_record_is_replaying in struct target_ops. */
2520 extern int target_record_is_replaying (ptid_t ptid);
2521
2522 /* See to_record_will_replay in struct target_ops. */
2523 extern int target_record_will_replay (ptid_t ptid, int dir);
2524
2525 /* See to_record_stop_replaying in struct target_ops. */
2526 extern void target_record_stop_replaying (void);
2527
2528 /* See to_goto_record_begin in struct target_ops. */
2529 extern void target_goto_record_begin (void);
2530
2531 /* See to_goto_record_end in struct target_ops. */
2532 extern void target_goto_record_end (void);
2533
2534 /* See to_goto_record in struct target_ops. */
2535 extern void target_goto_record (ULONGEST insn);
2536
2537 /* See to_insn_history. */
2538 extern void target_insn_history (int size, gdb_disassembly_flags flags);
2539
2540 /* See to_insn_history_from. */
2541 extern void target_insn_history_from (ULONGEST from, int size,
2542 gdb_disassembly_flags flags);
2543
2544 /* See to_insn_history_range. */
2545 extern void target_insn_history_range (ULONGEST begin, ULONGEST end,
2546 gdb_disassembly_flags flags);
2547
2548 /* See to_call_history. */
2549 extern void target_call_history (int size, record_print_flags flags);
2550
2551 /* See to_call_history_from. */
2552 extern void target_call_history_from (ULONGEST begin, int size,
2553 record_print_flags flags);
2554
2555 /* See to_call_history_range. */
2556 extern void target_call_history_range (ULONGEST begin, ULONGEST end,
2557 record_print_flags flags);
2558
2559 /* See to_prepare_to_generate_core. */
2560 extern void target_prepare_to_generate_core (void);
2561
2562 /* See to_done_generating_core. */
2563 extern void target_done_generating_core (void);
2564
2565 #endif /* !defined (TARGET_H) */