]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/target.h
gdb: remove target_gdbarch
[thirdparty/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2023 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct trace_state_variable;
33 struct trace_status;
34 struct uploaded_tsv;
35 struct uploaded_tp;
36 struct static_tracepoint_marker;
37 struct traceframe_info;
38 struct expression;
39 struct dcache_struct;
40 struct inferior;
41
42 /* Define const gdb_byte using one identifier, to make it easy for
43 make-target-delegates.py to parse. */
44 typedef const gdb_byte const_gdb_byte;
45
46 #include "infrun.h"
47 #include "breakpoint.h"
48 #include "gdbsupport/scoped_restore.h"
49 #include "gdbsupport/refcounted-object.h"
50 #include "target-section.h"
51
52 /* This include file defines the interface between the main part
53 of the debugger, and the part which is target-specific, or
54 specific to the communications interface between us and the
55 target.
56
57 A TARGET is an interface between the debugger and a particular
58 kind of file or process. Targets can be STACKED in STRATA,
59 so that more than one target can potentially respond to a request.
60 In particular, memory accesses will walk down the stack of targets
61 until they find a target that is interested in handling that particular
62 address. STRATA are artificial boundaries on the stack, within
63 which particular kinds of targets live. Strata exist so that
64 people don't get confused by pushing e.g. a process target and then
65 a file target, and wondering why they can't see the current values
66 of variables any more (the file target is handling them and they
67 never get to the process target). So when you push a file target,
68 it goes into the file stratum, which is always below the process
69 stratum.
70
71 Note that rather than allow an empty stack, we always have the
72 dummy target at the bottom stratum, so we can call the target
73 methods without checking them. */
74
75 #include "target/target.h"
76 #include "target/resume.h"
77 #include "target/wait.h"
78 #include "target/waitstatus.h"
79 #include "bfd.h"
80 #include "symtab.h"
81 #include "memattr.h"
82 #include "gdbsupport/gdb_signals.h"
83 #include "btrace.h"
84 #include "record.h"
85 #include "command.h"
86 #include "disasm-flags.h"
87 #include "tracepoint.h"
88 #include "gdbsupport/fileio.h"
89 #include "gdbsupport/x86-xstate.h"
90
91 #include "gdbsupport/break-common.h"
92
93 enum strata
94 {
95 dummy_stratum, /* The lowest of the low */
96 file_stratum, /* Executable files, etc */
97 process_stratum, /* Executing processes or core dump files */
98 thread_stratum, /* Executing threads */
99 record_stratum, /* Support record debugging */
100 arch_stratum, /* Architecture overrides */
101 debug_stratum /* Target debug. Must be last. */
102 };
103
104 enum thread_control_capabilities
105 {
106 tc_none = 0, /* Default: can't control thread execution. */
107 tc_schedlock = 1, /* Can lock the thread scheduler. */
108 };
109
110 /* The structure below stores information about a system call.
111 It is basically used in the "catch syscall" command, and in
112 every function that gives information about a system call.
113
114 It's also good to mention that its fields represent everything
115 that we currently know about a syscall in GDB. */
116 struct syscall
117 {
118 /* The syscall number. */
119 int number;
120
121 /* The syscall name. */
122 const char *name;
123 };
124
125 /* Return a pretty printed form of TARGET_OPTIONS. */
126 extern std::string target_options_to_string (target_wait_flags target_options);
127
128 /* Possible types of events that the inferior handler will have to
129 deal with. */
130 enum inferior_event_type
131 {
132 /* Process a normal inferior event which will result in target_wait
133 being called. */
134 INF_REG_EVENT,
135 /* We are called to do stuff after the inferior stops. */
136 INF_EXEC_COMPLETE,
137 };
138 \f
139 /* Target objects which can be transfered using target_read,
140 target_write, et cetera. */
141
142 enum target_object
143 {
144 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
145 TARGET_OBJECT_AVR,
146 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
147 TARGET_OBJECT_MEMORY,
148 /* Memory, avoiding GDB's data cache and trusting the executable.
149 Target implementations of to_xfer_partial never need to handle
150 this object, and most callers should not use it. */
151 TARGET_OBJECT_RAW_MEMORY,
152 /* Memory known to be part of the target's stack. This is cached even
153 if it is not in a region marked as such, since it is known to be
154 "normal" RAM. */
155 TARGET_OBJECT_STACK_MEMORY,
156 /* Memory known to be part of the target code. This is cached even
157 if it is not in a region marked as such. */
158 TARGET_OBJECT_CODE_MEMORY,
159 /* Kernel Unwind Table. See "ia64-tdep.c". */
160 TARGET_OBJECT_UNWIND_TABLE,
161 /* Transfer auxilliary vector. */
162 TARGET_OBJECT_AUXV,
163 /* StackGhost cookie. See "sparc-tdep.c". */
164 TARGET_OBJECT_WCOOKIE,
165 /* Target memory map in XML format. */
166 TARGET_OBJECT_MEMORY_MAP,
167 /* Flash memory. This object can be used to write contents to
168 a previously erased flash memory. Using it without erasing
169 flash can have unexpected results. Addresses are physical
170 address on target, and not relative to flash start. */
171 TARGET_OBJECT_FLASH,
172 /* Available target-specific features, e.g. registers and coprocessors.
173 See "target-descriptions.c". ANNEX should never be empty. */
174 TARGET_OBJECT_AVAILABLE_FEATURES,
175 /* Currently loaded libraries, in XML format. */
176 TARGET_OBJECT_LIBRARIES,
177 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
178 TARGET_OBJECT_LIBRARIES_SVR4,
179 /* Currently loaded libraries specific to AIX systems, in XML format. */
180 TARGET_OBJECT_LIBRARIES_AIX,
181 /* Get OS specific data. The ANNEX specifies the type (running
182 processes, etc.). The data being transfered is expected to follow
183 the DTD specified in features/osdata.dtd. */
184 TARGET_OBJECT_OSDATA,
185 /* Extra signal info. Usually the contents of `siginfo_t' on unix
186 platforms. */
187 TARGET_OBJECT_SIGNAL_INFO,
188 /* The list of threads that are being debugged. */
189 TARGET_OBJECT_THREADS,
190 /* Collected static trace data. */
191 TARGET_OBJECT_STATIC_TRACE_DATA,
192 /* Traceframe info, in XML format. */
193 TARGET_OBJECT_TRACEFRAME_INFO,
194 /* Load maps for FDPIC systems. */
195 TARGET_OBJECT_FDPIC,
196 /* Darwin dynamic linker info data. */
197 TARGET_OBJECT_DARWIN_DYLD_INFO,
198 /* OpenVMS Unwind Information Block. */
199 TARGET_OBJECT_OPENVMS_UIB,
200 /* Branch trace data, in XML format. */
201 TARGET_OBJECT_BTRACE,
202 /* Branch trace configuration, in XML format. */
203 TARGET_OBJECT_BTRACE_CONF,
204 /* The pathname of the executable file that was run to create
205 a specified process. ANNEX should be a string representation
206 of the process ID of the process in question, in hexadecimal
207 format. */
208 TARGET_OBJECT_EXEC_FILE,
209 /* FreeBSD virtual memory mappings. */
210 TARGET_OBJECT_FREEBSD_VMMAP,
211 /* FreeBSD process strings. */
212 TARGET_OBJECT_FREEBSD_PS_STRINGS,
213 /* Possible future objects: TARGET_OBJECT_FILE, ... */
214 };
215
216 /* Possible values returned by target_xfer_partial, etc. */
217
218 enum target_xfer_status
219 {
220 /* Some bytes are transferred. */
221 TARGET_XFER_OK = 1,
222
223 /* No further transfer is possible. */
224 TARGET_XFER_EOF = 0,
225
226 /* The piece of the object requested is unavailable. */
227 TARGET_XFER_UNAVAILABLE = 2,
228
229 /* Generic I/O error. Note that it's important that this is '-1',
230 as we still have target_xfer-related code returning hardcoded
231 '-1' on error. */
232 TARGET_XFER_E_IO = -1,
233
234 /* Keep list in sync with target_xfer_status_to_string. */
235 };
236
237 /* Return the string form of STATUS. */
238
239 extern const char *
240 target_xfer_status_to_string (enum target_xfer_status status);
241
242 typedef enum target_xfer_status
243 target_xfer_partial_ftype (struct target_ops *ops,
244 enum target_object object,
245 const char *annex,
246 gdb_byte *readbuf,
247 const gdb_byte *writebuf,
248 ULONGEST offset,
249 ULONGEST len,
250 ULONGEST *xfered_len);
251
252 enum target_xfer_status
253 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
254 const gdb_byte *writebuf, ULONGEST memaddr,
255 LONGEST len, ULONGEST *xfered_len);
256
257 /* Request that OPS transfer up to LEN addressable units of the target's
258 OBJECT. When reading from a memory object, the size of an addressable unit
259 is architecture dependent and can be found using
260 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
261 byte long. BUF should point to a buffer large enough to hold the read data,
262 taking into account the addressable unit size. The OFFSET, for a seekable
263 object, specifies the starting point. The ANNEX can be used to provide
264 additional data-specific information to the target.
265
266 Return the number of addressable units actually transferred, or a negative
267 error code (an 'enum target_xfer_error' value) if the transfer is not
268 supported or otherwise fails. Return of a positive value less than
269 LEN indicates that no further transfer is possible. Unlike the raw
270 to_xfer_partial interface, callers of these functions do not need
271 to retry partial transfers. */
272
273 extern LONGEST target_read (struct target_ops *ops,
274 enum target_object object,
275 const char *annex, gdb_byte *buf,
276 ULONGEST offset, LONGEST len);
277
278 struct memory_read_result
279 {
280 memory_read_result (ULONGEST begin_, ULONGEST end_,
281 gdb::unique_xmalloc_ptr<gdb_byte> &&data_)
282 : begin (begin_),
283 end (end_),
284 data (std::move (data_))
285 {
286 }
287
288 ~memory_read_result () = default;
289
290 memory_read_result (memory_read_result &&other) = default;
291
292 DISABLE_COPY_AND_ASSIGN (memory_read_result);
293
294 /* First address that was read. */
295 ULONGEST begin;
296 /* Past-the-end address. */
297 ULONGEST end;
298 /* The data. */
299 gdb::unique_xmalloc_ptr<gdb_byte> data;
300 };
301
302 extern std::vector<memory_read_result> read_memory_robust
303 (struct target_ops *ops, const ULONGEST offset, const LONGEST len);
304
305 /* Request that OPS transfer up to LEN addressable units from BUF to the
306 target's OBJECT. When writing to a memory object, the addressable unit
307 size is architecture dependent and can be found using
308 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
309 byte long. The OFFSET, for a seekable object, specifies the starting point.
310 The ANNEX can be used to provide additional data-specific information to
311 the target.
312
313 Return the number of addressable units actually transferred, or a negative
314 error code (an 'enum target_xfer_status' value) if the transfer is not
315 supported or otherwise fails. Return of a positive value less than
316 LEN indicates that no further transfer is possible. Unlike the raw
317 to_xfer_partial interface, callers of these functions do not need to
318 retry partial transfers. */
319
320 extern LONGEST target_write (struct target_ops *ops,
321 enum target_object object,
322 const char *annex, const gdb_byte *buf,
323 ULONGEST offset, LONGEST len);
324
325 /* Similar to target_write, except that it also calls PROGRESS with
326 the number of bytes written and the opaque BATON after every
327 successful partial write (and before the first write). This is
328 useful for progress reporting and user interaction while writing
329 data. To abort the transfer, the progress callback can throw an
330 exception. */
331
332 LONGEST target_write_with_progress (struct target_ops *ops,
333 enum target_object object,
334 const char *annex, const gdb_byte *buf,
335 ULONGEST offset, LONGEST len,
336 void (*progress) (ULONGEST, void *),
337 void *baton);
338
339 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will be read
340 using OPS. The return value will be uninstantiated if the transfer fails or
341 is not supported.
342
343 This method should be used for objects sufficiently small to store
344 in a single xmalloc'd buffer, when no fixed bound on the object's
345 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
346 through this function. */
347
348 extern gdb::optional<gdb::byte_vector> target_read_alloc
349 (struct target_ops *ops, enum target_object object, const char *annex);
350
351 /* Read OBJECT/ANNEX using OPS. The result is a NUL-terminated character vector
352 (therefore usable as a NUL-terminated string). If an error occurs or the
353 transfer is unsupported, the return value will be uninstantiated. Empty
354 objects are returned as allocated but empty strings. Therefore, on success,
355 the returned vector is guaranteed to have at least one element. A warning is
356 issued if the result contains any embedded NUL bytes. */
357
358 extern gdb::optional<gdb::char_vector> target_read_stralloc
359 (struct target_ops *ops, enum target_object object, const char *annex);
360
361 /* See target_ops->to_xfer_partial. */
362 extern target_xfer_partial_ftype target_xfer_partial;
363
364 /* Wrappers to target read/write that perform memory transfers. They
365 throw an error if the memory transfer fails.
366
367 NOTE: cagney/2003-10-23: The naming schema is lifted from
368 "frame.h". The parameter order is lifted from get_frame_memory,
369 which in turn lifted it from read_memory. */
370
371 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
372 gdb_byte *buf, LONGEST len);
373 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
374 CORE_ADDR addr, int len,
375 enum bfd_endian byte_order);
376 \f
377 struct thread_info; /* fwd decl for parameter list below: */
378
379 /* The type of the callback to the to_async method. */
380
381 typedef void async_callback_ftype (enum inferior_event_type event_type,
382 void *context);
383
384 /* Normally target debug printing is purely type-based. However,
385 sometimes it is necessary to override the debug printing on a
386 per-argument basis. This macro can be used, attribute-style, to
387 name the target debug printing function for a particular method
388 argument. FUNC is the name of the function. The macro's
389 definition is empty because it is only used by the
390 make-target-delegates script. */
391
392 #define TARGET_DEBUG_PRINTER(FUNC)
393
394 /* These defines are used to mark target_ops methods. The script
395 make-target-delegates scans these and auto-generates the base
396 method implementations. There are four macros that can be used:
397
398 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
399 does nothing. This is only valid if the method return type is
400 'void'.
401
402 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
403 'tcomplain ()'. The base method simply makes this call, which is
404 assumed not to return.
405
406 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
407 base method returns this expression's value.
408
409 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
410 make-target-delegates does not generate a base method in this case,
411 but instead uses the argument function as the base method. */
412
413 #define TARGET_DEFAULT_IGNORE()
414 #define TARGET_DEFAULT_NORETURN(ARG)
415 #define TARGET_DEFAULT_RETURN(ARG)
416 #define TARGET_DEFAULT_FUNC(ARG)
417
418 /* Each target that can be activated with "target TARGET_NAME" passes
419 the address of one of these objects to add_target, which uses the
420 object's address as unique identifier, and registers the "target
421 TARGET_NAME" command using SHORTNAME as target name. */
422
423 struct target_info
424 {
425 /* Name of this target. */
426 const char *shortname;
427
428 /* Name for printing. */
429 const char *longname;
430
431 /* Documentation. Does not include trailing newline, and starts
432 with a one-line description (probably similar to longname). */
433 const char *doc;
434 };
435
436 struct target_ops
437 : public refcounted_object
438 {
439 /* Return this target's stratum. */
440 virtual strata stratum () const = 0;
441
442 /* To the target under this one. */
443 target_ops *beneath () const;
444
445 /* Free resources associated with the target. Note that singleton
446 targets, like e.g., native targets, are global objects, not
447 heap allocated, and are thus only deleted on GDB exit. The
448 main teardown entry point is the "close" method, below. */
449 virtual ~target_ops () {}
450
451 /* Return a reference to this target's unique target_info
452 object. */
453 virtual const target_info &info () const = 0;
454
455 /* Name this target type. */
456 const char *shortname () const
457 { return info ().shortname; }
458
459 const char *longname () const
460 { return info ().longname; }
461
462 /* Close the target. This is where the target can handle
463 teardown. Heap-allocated targets should delete themselves
464 before returning. */
465 virtual void close ();
466
467 /* Attaches to a process on the target side. Arguments are as
468 passed to the `attach' command by the user. This routine can
469 be called when the target is not on the target-stack, if the
470 target_ops::can_run method returns 1; in that case, it must push
471 itself onto the stack. Upon exit, the target should be ready
472 for normal operations, and should be ready to deliver the
473 status of the process immediately (without waiting) to an
474 upcoming target_wait call. */
475 virtual bool can_attach ();
476 virtual void attach (const char *, int);
477 virtual void post_attach (int)
478 TARGET_DEFAULT_IGNORE ();
479
480 /* Detaches from the inferior. Note that on targets that support
481 async execution (i.e., targets where it is possible to detach
482 from programs with threads running), the target is responsible
483 for removing breakpoints from the program before the actual
484 detach, otherwise the program dies when it hits one. */
485 virtual void detach (inferior *, int)
486 TARGET_DEFAULT_IGNORE ();
487
488 virtual void disconnect (const char *, int)
489 TARGET_DEFAULT_NORETURN (tcomplain ());
490 virtual void resume (ptid_t,
491 int TARGET_DEBUG_PRINTER (target_debug_print_step),
492 enum gdb_signal)
493 TARGET_DEFAULT_NORETURN (noprocess ());
494
495 /* Ensure that all resumed threads are committed to the target.
496
497 See the description of
498 process_stratum_target::commit_resumed_state for more
499 details. */
500 virtual void commit_resumed ()
501 TARGET_DEFAULT_IGNORE ();
502
503 /* See target_wait's description. Note that implementations of
504 this method must not assume that inferior_ptid on entry is
505 pointing at the thread or inferior that ends up reporting an
506 event. The reported event could be for some other thread in
507 the current inferior or even for a different process of the
508 current target. inferior_ptid may also be null_ptid on
509 entry. */
510 virtual ptid_t wait (ptid_t, struct target_waitstatus *,
511 target_wait_flags options)
512 TARGET_DEFAULT_FUNC (default_target_wait);
513 virtual void fetch_registers (struct regcache *, int)
514 TARGET_DEFAULT_IGNORE ();
515 virtual void store_registers (struct regcache *, int)
516 TARGET_DEFAULT_NORETURN (noprocess ());
517 virtual void prepare_to_store (struct regcache *)
518 TARGET_DEFAULT_NORETURN (noprocess ());
519
520 virtual void files_info ()
521 TARGET_DEFAULT_IGNORE ();
522 virtual int insert_breakpoint (struct gdbarch *,
523 struct bp_target_info *)
524 TARGET_DEFAULT_NORETURN (noprocess ());
525 virtual int remove_breakpoint (struct gdbarch *,
526 struct bp_target_info *,
527 enum remove_bp_reason)
528 TARGET_DEFAULT_NORETURN (noprocess ());
529
530 /* Returns true if the target stopped because it executed a
531 software breakpoint. This is necessary for correct background
532 execution / non-stop mode operation, and for correct PC
533 adjustment on targets where the PC needs to be adjusted when a
534 software breakpoint triggers. In these modes, by the time GDB
535 processes a breakpoint event, the breakpoint may already be
536 done from the target, so GDB needs to be able to tell whether
537 it should ignore the event and whether it should adjust the PC.
538 See adjust_pc_after_break. */
539 virtual bool stopped_by_sw_breakpoint ()
540 TARGET_DEFAULT_RETURN (false);
541 /* Returns true if the above method is supported. */
542 virtual bool supports_stopped_by_sw_breakpoint ()
543 TARGET_DEFAULT_RETURN (false);
544
545 /* Returns true if the target stopped for a hardware breakpoint.
546 Likewise, if the target supports hardware breakpoints, this
547 method is necessary for correct background execution / non-stop
548 mode operation. Even though hardware breakpoints do not
549 require PC adjustment, GDB needs to be able to tell whether the
550 hardware breakpoint event is a delayed event for a breakpoint
551 that is already gone and should thus be ignored. */
552 virtual bool stopped_by_hw_breakpoint ()
553 TARGET_DEFAULT_RETURN (false);
554 /* Returns true if the above method is supported. */
555 virtual bool supports_stopped_by_hw_breakpoint ()
556 TARGET_DEFAULT_RETURN (false);
557
558 virtual int can_use_hw_breakpoint (enum bptype, int, int)
559 TARGET_DEFAULT_RETURN (0);
560 virtual int ranged_break_num_registers ()
561 TARGET_DEFAULT_RETURN (-1);
562 virtual int insert_hw_breakpoint (struct gdbarch *,
563 struct bp_target_info *)
564 TARGET_DEFAULT_RETURN (-1);
565 virtual int remove_hw_breakpoint (struct gdbarch *,
566 struct bp_target_info *)
567 TARGET_DEFAULT_RETURN (-1);
568
569 /* Documentation of what the two routines below are expected to do is
570 provided with the corresponding target_* macros. */
571 virtual int remove_watchpoint (CORE_ADDR, int,
572 enum target_hw_bp_type, struct expression *)
573 TARGET_DEFAULT_RETURN (-1);
574 virtual int insert_watchpoint (CORE_ADDR, int,
575 enum target_hw_bp_type, struct expression *)
576 TARGET_DEFAULT_RETURN (-1);
577
578 virtual int insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
579 enum target_hw_bp_type)
580 TARGET_DEFAULT_RETURN (1);
581 virtual int remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
582 enum target_hw_bp_type)
583 TARGET_DEFAULT_RETURN (1);
584 virtual bool stopped_by_watchpoint ()
585 TARGET_DEFAULT_RETURN (false);
586 virtual bool have_steppable_watchpoint ()
587 TARGET_DEFAULT_RETURN (false);
588 virtual bool stopped_data_address (CORE_ADDR *)
589 TARGET_DEFAULT_RETURN (false);
590 virtual bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int)
591 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
592
593 /* Documentation of this routine is provided with the corresponding
594 target_* macro. */
595 virtual int region_ok_for_hw_watchpoint (CORE_ADDR, int)
596 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
597
598 virtual bool can_accel_watchpoint_condition (CORE_ADDR, int, int,
599 struct expression *)
600 TARGET_DEFAULT_RETURN (false);
601 virtual int masked_watch_num_registers (CORE_ADDR, CORE_ADDR)
602 TARGET_DEFAULT_RETURN (-1);
603
604 /* Return 1 for sure target can do single step. Return -1 for
605 unknown. Return 0 for target can't do. */
606 virtual int can_do_single_step ()
607 TARGET_DEFAULT_RETURN (-1);
608
609 virtual bool supports_terminal_ours ()
610 TARGET_DEFAULT_RETURN (false);
611 virtual void terminal_init ()
612 TARGET_DEFAULT_IGNORE ();
613 virtual void terminal_inferior ()
614 TARGET_DEFAULT_IGNORE ();
615 virtual void terminal_save_inferior ()
616 TARGET_DEFAULT_IGNORE ();
617 virtual void terminal_ours_for_output ()
618 TARGET_DEFAULT_IGNORE ();
619 virtual void terminal_ours ()
620 TARGET_DEFAULT_IGNORE ();
621 virtual void terminal_info (const char *, int)
622 TARGET_DEFAULT_FUNC (default_terminal_info);
623 virtual void kill ()
624 TARGET_DEFAULT_NORETURN (noprocess ());
625 virtual void load (const char *, int)
626 TARGET_DEFAULT_NORETURN (tcomplain ());
627 /* Start an inferior process and set inferior_ptid to its pid.
628 EXEC_FILE is the file to run.
629 ALLARGS is a string containing the arguments to the program.
630 ENV is the environment vector to pass. Errors reported with error().
631 On VxWorks and various standalone systems, we ignore exec_file. */
632 virtual bool can_create_inferior ();
633 virtual void create_inferior (const char *, const std::string &,
634 char **, int);
635 virtual int insert_fork_catchpoint (int)
636 TARGET_DEFAULT_RETURN (1);
637 virtual int remove_fork_catchpoint (int)
638 TARGET_DEFAULT_RETURN (1);
639 virtual int insert_vfork_catchpoint (int)
640 TARGET_DEFAULT_RETURN (1);
641 virtual int remove_vfork_catchpoint (int)
642 TARGET_DEFAULT_RETURN (1);
643 virtual void follow_fork (inferior *, ptid_t, target_waitkind, bool, bool)
644 TARGET_DEFAULT_FUNC (default_follow_fork);
645 virtual int insert_exec_catchpoint (int)
646 TARGET_DEFAULT_RETURN (1);
647 virtual int remove_exec_catchpoint (int)
648 TARGET_DEFAULT_RETURN (1);
649 virtual void follow_exec (inferior *, ptid_t, const char *)
650 TARGET_DEFAULT_IGNORE ();
651 virtual int set_syscall_catchpoint (int, bool, int,
652 gdb::array_view<const int>)
653 TARGET_DEFAULT_RETURN (1);
654 virtual void mourn_inferior ()
655 TARGET_DEFAULT_FUNC (default_mourn_inferior);
656
657 /* Note that can_run is special and can be invoked on an unpushed
658 target. Targets defining this method must also define
659 to_can_async_p and to_supports_non_stop. */
660 virtual bool can_run ();
661
662 /* Documentation of this routine is provided with the corresponding
663 target_* macro. */
664 virtual void pass_signals (gdb::array_view<const unsigned char> TARGET_DEBUG_PRINTER (target_debug_print_signals))
665 TARGET_DEFAULT_IGNORE ();
666
667 /* Documentation of this routine is provided with the
668 corresponding target_* function. */
669 virtual void program_signals (gdb::array_view<const unsigned char> TARGET_DEBUG_PRINTER (target_debug_print_signals))
670 TARGET_DEFAULT_IGNORE ();
671
672 virtual bool thread_alive (ptid_t ptid)
673 TARGET_DEFAULT_RETURN (false);
674 virtual void update_thread_list ()
675 TARGET_DEFAULT_IGNORE ();
676 virtual std::string pid_to_str (ptid_t)
677 TARGET_DEFAULT_FUNC (default_pid_to_str);
678 virtual const char *extra_thread_info (thread_info *)
679 TARGET_DEFAULT_RETURN (NULL);
680 virtual const char *thread_name (thread_info *)
681 TARGET_DEFAULT_RETURN (NULL);
682 virtual thread_info *thread_handle_to_thread_info (const gdb_byte *,
683 int,
684 inferior *inf)
685 TARGET_DEFAULT_RETURN (NULL);
686 /* See target_thread_info_to_thread_handle. */
687 virtual gdb::array_view<const_gdb_byte> thread_info_to_thread_handle (struct thread_info *)
688 TARGET_DEFAULT_RETURN (gdb::array_view<const gdb_byte> ());
689 virtual void stop (ptid_t)
690 TARGET_DEFAULT_IGNORE ();
691 virtual void interrupt ()
692 TARGET_DEFAULT_IGNORE ();
693 virtual void pass_ctrlc ()
694 TARGET_DEFAULT_FUNC (default_target_pass_ctrlc);
695 virtual void rcmd (const char *command, struct ui_file *output)
696 TARGET_DEFAULT_FUNC (default_rcmd);
697 virtual const char *pid_to_exec_file (int pid)
698 TARGET_DEFAULT_RETURN (NULL);
699 virtual void log_command (const char *)
700 TARGET_DEFAULT_IGNORE ();
701 virtual const target_section_table *get_section_table ()
702 TARGET_DEFAULT_RETURN (default_get_section_table ());
703
704 /* Provide default values for all "must have" methods. */
705 virtual bool has_all_memory () { return false; }
706 virtual bool has_memory () { return false; }
707 virtual bool has_stack () { return false; }
708 virtual bool has_registers () { return false; }
709 virtual bool has_execution (inferior *inf) { return false; }
710
711 /* Control thread execution. */
712 virtual thread_control_capabilities get_thread_control_capabilities ()
713 TARGET_DEFAULT_RETURN (tc_none);
714 virtual bool attach_no_wait ()
715 TARGET_DEFAULT_RETURN (0);
716 /* This method must be implemented in some situations. See the
717 comment on 'can_run'. */
718 virtual bool can_async_p ()
719 TARGET_DEFAULT_RETURN (false);
720 virtual bool is_async_p ()
721 TARGET_DEFAULT_RETURN (false);
722 virtual void async (bool)
723 TARGET_DEFAULT_NORETURN (tcomplain ());
724 virtual int async_wait_fd ()
725 TARGET_DEFAULT_NORETURN (noprocess ());
726 /* Return true if the target has pending events to report to the
727 core. If true, then GDB avoids resuming the target until all
728 pending events are consumed, so that multiple resumptions can
729 be coalesced as an optimization. Most targets can't tell
730 whether they have pending events without calling target_wait,
731 so we default to returning false. The only downside is that a
732 potential optimization is missed. */
733 virtual bool has_pending_events ()
734 TARGET_DEFAULT_RETURN (false);
735 virtual void thread_events (int)
736 TARGET_DEFAULT_IGNORE ();
737 /* This method must be implemented in some situations. See the
738 comment on 'can_run'. */
739 virtual bool supports_non_stop ()
740 TARGET_DEFAULT_RETURN (false);
741 /* Return true if the target operates in non-stop mode even with
742 "set non-stop off". */
743 virtual bool always_non_stop_p ()
744 TARGET_DEFAULT_RETURN (false);
745 /* find_memory_regions support method for gcore */
746 virtual int find_memory_regions (find_memory_region_ftype func, void *data)
747 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
748 /* make_corefile_notes support method for gcore */
749 virtual gdb::unique_xmalloc_ptr<char> make_corefile_notes (bfd *, int *)
750 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
751 /* get_bookmark support method for bookmarks */
752 virtual gdb_byte *get_bookmark (const char *, int)
753 TARGET_DEFAULT_NORETURN (tcomplain ());
754 /* goto_bookmark support method for bookmarks */
755 virtual void goto_bookmark (const gdb_byte *, int)
756 TARGET_DEFAULT_NORETURN (tcomplain ());
757 /* Return the thread-local address at OFFSET in the
758 thread-local storage for the thread PTID and the shared library
759 or executable file given by LOAD_MODULE_ADDR. If that block of
760 thread-local storage hasn't been allocated yet, this function
761 may throw an error. LOAD_MODULE_ADDR may be zero for statically
762 linked multithreaded inferiors. */
763 virtual CORE_ADDR get_thread_local_address (ptid_t ptid,
764 CORE_ADDR load_module_addr,
765 CORE_ADDR offset)
766 TARGET_DEFAULT_NORETURN (generic_tls_error ());
767
768 /* Request that OPS transfer up to LEN addressable units of the target's
769 OBJECT. When reading from a memory object, the size of an addressable
770 unit is architecture dependent and can be found using
771 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is
772 1 byte long. The OFFSET, for a seekable object, specifies the
773 starting point. The ANNEX can be used to provide additional
774 data-specific information to the target.
775
776 Return the transferred status, error or OK (an
777 'enum target_xfer_status' value). Save the number of addressable units
778 actually transferred in *XFERED_LEN if transfer is successful
779 (TARGET_XFER_OK) or the number unavailable units if the requested
780 data is unavailable (TARGET_XFER_UNAVAILABLE). *XFERED_LEN
781 smaller than LEN does not indicate the end of the object, only
782 the end of the transfer; higher level code should continue
783 transferring if desired. This is handled in target.c.
784
785 The interface does not support a "retry" mechanism. Instead it
786 assumes that at least one addressable unit will be transfered on each
787 successful call.
788
789 NOTE: cagney/2003-10-17: The current interface can lead to
790 fragmented transfers. Lower target levels should not implement
791 hacks, such as enlarging the transfer, in an attempt to
792 compensate for this. Instead, the target stack should be
793 extended so that it implements supply/collect methods and a
794 look-aside object cache. With that available, the lowest
795 target can safely and freely "push" data up the stack.
796
797 See target_read and target_write for more information. One,
798 and only one, of readbuf or writebuf must be non-NULL. */
799
800 virtual enum target_xfer_status xfer_partial (enum target_object object,
801 const char *annex,
802 gdb_byte *readbuf,
803 const gdb_byte *writebuf,
804 ULONGEST offset, ULONGEST len,
805 ULONGEST *xfered_len)
806 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
807
808 /* Return the limit on the size of any single memory transfer
809 for the target. */
810
811 virtual ULONGEST get_memory_xfer_limit ()
812 TARGET_DEFAULT_RETURN (ULONGEST_MAX);
813
814 /* Returns the memory map for the target. A return value of NULL
815 means that no memory map is available. If a memory address
816 does not fall within any returned regions, it's assumed to be
817 RAM. The returned memory regions should not overlap.
818
819 The order of regions does not matter; target_memory_map will
820 sort regions by starting address. For that reason, this
821 function should not be called directly except via
822 target_memory_map.
823
824 This method should not cache data; if the memory map could
825 change unexpectedly, it should be invalidated, and higher
826 layers will re-fetch it. */
827 virtual std::vector<mem_region> memory_map ()
828 TARGET_DEFAULT_RETURN (std::vector<mem_region> ());
829
830 /* Erases the region of flash memory starting at ADDRESS, of
831 length LENGTH.
832
833 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
834 on flash block boundaries, as reported by 'to_memory_map'. */
835 virtual void flash_erase (ULONGEST address, LONGEST length)
836 TARGET_DEFAULT_NORETURN (tcomplain ());
837
838 /* Finishes a flash memory write sequence. After this operation
839 all flash memory should be available for writing and the result
840 of reading from areas written by 'to_flash_write' should be
841 equal to what was written. */
842 virtual void flash_done ()
843 TARGET_DEFAULT_NORETURN (tcomplain ());
844
845 /* Describe the architecture-specific features of the current
846 inferior.
847
848 Returns the description found, or nullptr if no description was
849 available.
850
851 If some target features differ between threads, the description
852 returned by read_description (and the resulting gdbarch) won't
853 accurately describe all threads. In this case, the
854 thread_architecture method can be used to obtain gdbarches that
855 accurately describe each thread. */
856 virtual const struct target_desc *read_description ()
857 TARGET_DEFAULT_RETURN (NULL);
858
859 /* Build the PTID of the thread on which a given task is running,
860 based on LWP and THREAD. These values are extracted from the
861 task Private_Data section of the Ada Task Control Block, and
862 their interpretation depends on the target. */
863 virtual ptid_t get_ada_task_ptid (long lwp, ULONGEST thread)
864 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
865
866 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
867 Return 0 if *READPTR is already at the end of the buffer.
868 Return -1 if there is insufficient buffer for a whole entry.
869 Return 1 if an entry was read into *TYPEP and *VALP. */
870 virtual int auxv_parse (const gdb_byte **readptr,
871 const gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
872 TARGET_DEFAULT_FUNC (default_auxv_parse);
873
874 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
875 sequence of bytes in PATTERN with length PATTERN_LEN.
876
877 The result is 1 if found, 0 if not found, and -1 if there was an error
878 requiring halting of the search (e.g. memory read error).
879 If the pattern is found the address is recorded in FOUND_ADDRP. */
880 virtual int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
881 const gdb_byte *pattern, ULONGEST pattern_len,
882 CORE_ADDR *found_addrp)
883 TARGET_DEFAULT_FUNC (default_search_memory);
884
885 /* Can target execute in reverse? */
886 virtual bool can_execute_reverse ()
887 TARGET_DEFAULT_RETURN (false);
888
889 /* The direction the target is currently executing. Must be
890 implemented on targets that support reverse execution and async
891 mode. The default simply returns forward execution. */
892 virtual enum exec_direction_kind execution_direction ()
893 TARGET_DEFAULT_FUNC (default_execution_direction);
894
895 /* Does this target support debugging multiple processes
896 simultaneously? */
897 virtual bool supports_multi_process ()
898 TARGET_DEFAULT_RETURN (false);
899
900 /* Does this target support enabling and disabling tracepoints while a trace
901 experiment is running? */
902 virtual bool supports_enable_disable_tracepoint ()
903 TARGET_DEFAULT_RETURN (false);
904
905 /* Does this target support disabling address space randomization? */
906 virtual bool supports_disable_randomization ()
907 TARGET_DEFAULT_FUNC (find_default_supports_disable_randomization);
908
909 /* Does this target support the tracenz bytecode for string collection? */
910 virtual bool supports_string_tracing ()
911 TARGET_DEFAULT_RETURN (false);
912
913 /* Does this target support evaluation of breakpoint conditions on its
914 end? */
915 virtual bool supports_evaluation_of_breakpoint_conditions ()
916 TARGET_DEFAULT_RETURN (false);
917
918 /* Does this target support native dumpcore API? */
919 virtual bool supports_dumpcore ()
920 TARGET_DEFAULT_RETURN (false);
921
922 /* Generate the core file with native target API. */
923 virtual void dumpcore (const char *filename)
924 TARGET_DEFAULT_IGNORE ();
925
926 /* Does this target support evaluation of breakpoint commands on its
927 end? */
928 virtual bool can_run_breakpoint_commands ()
929 TARGET_DEFAULT_RETURN (false);
930
931 /* Determine current architecture of thread PTID.
932
933 The target is supposed to determine the architecture of the code where
934 the target is currently stopped at. The architecture information is
935 used to perform decr_pc_after_break adjustment, and also to determine
936 the frame architecture of the innermost frame. ptrace operations need to
937 operate according to the current inferior's gdbarch. */
938 virtual struct gdbarch *thread_architecture (ptid_t)
939 TARGET_DEFAULT_RETURN (NULL);
940
941 /* Determine current address space of thread PTID. */
942 virtual struct address_space *thread_address_space (ptid_t)
943 TARGET_DEFAULT_RETURN (NULL);
944
945 /* Target file operations. */
946
947 /* Return true if the filesystem seen by the current inferior
948 is the local filesystem, false otherwise. */
949 virtual bool filesystem_is_local ()
950 TARGET_DEFAULT_RETURN (true);
951
952 /* Open FILENAME on the target, in the filesystem as seen by INF,
953 using FLAGS and MODE. If INF is NULL, use the filesystem seen
954 by the debugger (GDB or, for remote targets, the remote stub).
955 If WARN_IF_SLOW is nonzero, print a warning message if the file
956 is being accessed over a link that may be slow. Return a
957 target file descriptor, or -1 if an error occurs (and set
958 *TARGET_ERRNO). */
959 virtual int fileio_open (struct inferior *inf, const char *filename,
960 int flags, int mode, int warn_if_slow,
961 fileio_error *target_errno);
962
963 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
964 Return the number of bytes written, or -1 if an error occurs
965 (and set *TARGET_ERRNO). */
966 virtual int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
967 ULONGEST offset, fileio_error *target_errno);
968
969 /* Read up to LEN bytes FD on the target into READ_BUF.
970 Return the number of bytes read, or -1 if an error occurs
971 (and set *TARGET_ERRNO). */
972 virtual int fileio_pread (int fd, gdb_byte *read_buf, int len,
973 ULONGEST offset, fileio_error *target_errno);
974
975 /* Get information about the file opened as FD and put it in
976 SB. Return 0 on success, or -1 if an error occurs (and set
977 *TARGET_ERRNO). */
978 virtual int fileio_fstat (int fd, struct stat *sb, fileio_error *target_errno);
979
980 /* Close FD on the target. Return 0, or -1 if an error occurs
981 (and set *TARGET_ERRNO). */
982 virtual int fileio_close (int fd, fileio_error *target_errno);
983
984 /* Unlink FILENAME on the target, in the filesystem as seen by
985 INF. If INF is NULL, use the filesystem seen by the debugger
986 (GDB or, for remote targets, the remote stub). Return 0, or
987 -1 if an error occurs (and set *TARGET_ERRNO). */
988 virtual int fileio_unlink (struct inferior *inf,
989 const char *filename,
990 fileio_error *target_errno);
991
992 /* Read value of symbolic link FILENAME on the target, in the
993 filesystem as seen by INF. If INF is NULL, use the filesystem
994 seen by the debugger (GDB or, for remote targets, the remote
995 stub). Return a string, or an empty optional if an error
996 occurs (and set *TARGET_ERRNO). */
997 virtual gdb::optional<std::string> fileio_readlink (struct inferior *inf,
998 const char *filename,
999 fileio_error *target_errno);
1000
1001 /* Implement the "info proc" command. Returns true if the target
1002 actually implemented the command, false otherwise. */
1003 virtual bool info_proc (const char *, enum info_proc_what);
1004
1005 /* Tracepoint-related operations. */
1006
1007 /* Prepare the target for a tracing run. */
1008 virtual void trace_init ()
1009 TARGET_DEFAULT_NORETURN (tcomplain ());
1010
1011 /* Send full details of a tracepoint location to the target. */
1012 virtual void download_tracepoint (struct bp_location *location)
1013 TARGET_DEFAULT_NORETURN (tcomplain ());
1014
1015 /* Is the target able to download tracepoint locations in current
1016 state? */
1017 virtual bool can_download_tracepoint ()
1018 TARGET_DEFAULT_RETURN (false);
1019
1020 /* Send full details of a trace state variable to the target. */
1021 virtual void download_trace_state_variable (const trace_state_variable &tsv)
1022 TARGET_DEFAULT_NORETURN (tcomplain ());
1023
1024 /* Enable a tracepoint on the target. */
1025 virtual void enable_tracepoint (struct bp_location *location)
1026 TARGET_DEFAULT_NORETURN (tcomplain ());
1027
1028 /* Disable a tracepoint on the target. */
1029 virtual void disable_tracepoint (struct bp_location *location)
1030 TARGET_DEFAULT_NORETURN (tcomplain ());
1031
1032 /* Inform the target info of memory regions that are readonly
1033 (such as text sections), and so it should return data from
1034 those rather than look in the trace buffer. */
1035 virtual void trace_set_readonly_regions ()
1036 TARGET_DEFAULT_NORETURN (tcomplain ());
1037
1038 /* Start a trace run. */
1039 virtual void trace_start ()
1040 TARGET_DEFAULT_NORETURN (tcomplain ());
1041
1042 /* Get the current status of a tracing run. */
1043 virtual int get_trace_status (struct trace_status *ts)
1044 TARGET_DEFAULT_RETURN (-1);
1045
1046 virtual void get_tracepoint_status (tracepoint *tp,
1047 struct uploaded_tp *utp)
1048 TARGET_DEFAULT_NORETURN (tcomplain ());
1049
1050 /* Stop a trace run. */
1051 virtual void trace_stop ()
1052 TARGET_DEFAULT_NORETURN (tcomplain ());
1053
1054 /* Ask the target to find a trace frame of the given type TYPE,
1055 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
1056 number of the trace frame, and also the tracepoint number at
1057 TPP. If no trace frame matches, return -1. May throw if the
1058 operation fails. */
1059 virtual int trace_find (enum trace_find_type type, int num,
1060 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
1061 TARGET_DEFAULT_RETURN (-1);
1062
1063 /* Get the value of the trace state variable number TSV, returning
1064 1 if the value is known and writing the value itself into the
1065 location pointed to by VAL, else returning 0. */
1066 virtual bool get_trace_state_variable_value (int tsv, LONGEST *val)
1067 TARGET_DEFAULT_RETURN (false);
1068
1069 virtual int save_trace_data (const char *filename)
1070 TARGET_DEFAULT_NORETURN (tcomplain ());
1071
1072 virtual int upload_tracepoints (struct uploaded_tp **utpp)
1073 TARGET_DEFAULT_RETURN (0);
1074
1075 virtual int upload_trace_state_variables (struct uploaded_tsv **utsvp)
1076 TARGET_DEFAULT_RETURN (0);
1077
1078 virtual LONGEST get_raw_trace_data (gdb_byte *buf,
1079 ULONGEST offset, LONGEST len)
1080 TARGET_DEFAULT_NORETURN (tcomplain ());
1081
1082 /* Get the minimum length of instruction on which a fast tracepoint
1083 may be set on the target. If this operation is unsupported,
1084 return -1. If for some reason the minimum length cannot be
1085 determined, return 0. */
1086 virtual int get_min_fast_tracepoint_insn_len ()
1087 TARGET_DEFAULT_RETURN (-1);
1088
1089 /* Set the target's tracing behavior in response to unexpected
1090 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
1091 virtual void set_disconnected_tracing (int val)
1092 TARGET_DEFAULT_IGNORE ();
1093 virtual void set_circular_trace_buffer (int val)
1094 TARGET_DEFAULT_IGNORE ();
1095 /* Set the size of trace buffer in the target. */
1096 virtual void set_trace_buffer_size (LONGEST val)
1097 TARGET_DEFAULT_IGNORE ();
1098
1099 /* Add/change textual notes about the trace run, returning true if
1100 successful, false otherwise. */
1101 virtual bool set_trace_notes (const char *user, const char *notes,
1102 const char *stopnotes)
1103 TARGET_DEFAULT_RETURN (false);
1104
1105 /* Return the processor core that thread PTID was last seen on.
1106 This information is updated only when:
1107 - update_thread_list is called
1108 - thread stops
1109 If the core cannot be determined -- either for the specified
1110 thread, or right now, or in this debug session, or for this
1111 target -- return -1. */
1112 virtual int core_of_thread (ptid_t ptid)
1113 TARGET_DEFAULT_RETURN (-1);
1114
1115 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
1116 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
1117 a match, 0 if there's a mismatch, and -1 if an error is
1118 encountered while reading memory. */
1119 virtual int verify_memory (const gdb_byte *data,
1120 CORE_ADDR memaddr, ULONGEST size)
1121 TARGET_DEFAULT_FUNC (default_verify_memory);
1122
1123 /* Return the address of the start of the Thread Information Block
1124 a Windows OS specific feature. */
1125 virtual bool get_tib_address (ptid_t ptid, CORE_ADDR *addr)
1126 TARGET_DEFAULT_NORETURN (tcomplain ());
1127
1128 /* Send the new settings of write permission variables. */
1129 virtual void set_permissions ()
1130 TARGET_DEFAULT_IGNORE ();
1131
1132 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
1133 with its details. Return true on success, false on failure. */
1134 virtual bool static_tracepoint_marker_at (CORE_ADDR,
1135 static_tracepoint_marker *marker)
1136 TARGET_DEFAULT_RETURN (false);
1137
1138 /* Return a vector of all tracepoints markers string id ID, or all
1139 markers if ID is NULL. */
1140 virtual std::vector<static_tracepoint_marker>
1141 static_tracepoint_markers_by_strid (const char *id)
1142 TARGET_DEFAULT_NORETURN (tcomplain ());
1143
1144 /* Return a traceframe info object describing the current
1145 traceframe's contents. This method should not cache data;
1146 higher layers take care of caching, invalidating, and
1147 re-fetching when necessary. */
1148 virtual traceframe_info_up traceframe_info ()
1149 TARGET_DEFAULT_NORETURN (tcomplain ());
1150
1151 /* Ask the target to use or not to use agent according to USE.
1152 Return true if successful, false otherwise. */
1153 virtual bool use_agent (bool use)
1154 TARGET_DEFAULT_NORETURN (tcomplain ());
1155
1156 /* Is the target able to use agent in current state? */
1157 virtual bool can_use_agent ()
1158 TARGET_DEFAULT_RETURN (false);
1159
1160 /* Enable branch tracing for TP using CONF configuration.
1161 Return a branch trace target information struct for reading and for
1162 disabling branch trace. */
1163 virtual struct btrace_target_info *enable_btrace (thread_info *tp,
1164 const struct btrace_config *conf)
1165 TARGET_DEFAULT_NORETURN (tcomplain ());
1166
1167 /* Disable branch tracing and deallocate TINFO. */
1168 virtual void disable_btrace (struct btrace_target_info *tinfo)
1169 TARGET_DEFAULT_NORETURN (tcomplain ());
1170
1171 /* Disable branch tracing and deallocate TINFO. This function is similar
1172 to to_disable_btrace, except that it is called during teardown and is
1173 only allowed to perform actions that are safe. A counter-example would
1174 be attempting to talk to a remote target. */
1175 virtual void teardown_btrace (struct btrace_target_info *tinfo)
1176 TARGET_DEFAULT_NORETURN (tcomplain ());
1177
1178 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1179 DATA is cleared before new trace is added. */
1180 virtual enum btrace_error read_btrace (struct btrace_data *data,
1181 struct btrace_target_info *btinfo,
1182 enum btrace_read_type type)
1183 TARGET_DEFAULT_NORETURN (tcomplain ());
1184
1185 /* Get the branch trace configuration. */
1186 virtual const struct btrace_config *btrace_conf (const struct btrace_target_info *)
1187 TARGET_DEFAULT_RETURN (NULL);
1188
1189 /* Current recording method. */
1190 virtual enum record_method record_method (ptid_t ptid)
1191 TARGET_DEFAULT_RETURN (RECORD_METHOD_NONE);
1192
1193 /* Stop trace recording. */
1194 virtual void stop_recording ()
1195 TARGET_DEFAULT_IGNORE ();
1196
1197 /* Print information about the recording. */
1198 virtual void info_record ()
1199 TARGET_DEFAULT_IGNORE ();
1200
1201 /* Save the recorded execution trace into a file. */
1202 virtual void save_record (const char *filename)
1203 TARGET_DEFAULT_NORETURN (tcomplain ());
1204
1205 /* Delete the recorded execution trace from the current position
1206 onwards. */
1207 virtual bool supports_delete_record ()
1208 TARGET_DEFAULT_RETURN (false);
1209 virtual void delete_record ()
1210 TARGET_DEFAULT_NORETURN (tcomplain ());
1211
1212 /* Query if the record target is currently replaying PTID. */
1213 virtual bool record_is_replaying (ptid_t ptid)
1214 TARGET_DEFAULT_RETURN (false);
1215
1216 /* Query if the record target will replay PTID if it were resumed in
1217 execution direction DIR. */
1218 virtual bool record_will_replay (ptid_t ptid, int dir)
1219 TARGET_DEFAULT_RETURN (false);
1220
1221 /* Stop replaying. */
1222 virtual void record_stop_replaying ()
1223 TARGET_DEFAULT_IGNORE ();
1224
1225 /* Go to the begin of the execution trace. */
1226 virtual void goto_record_begin ()
1227 TARGET_DEFAULT_NORETURN (tcomplain ());
1228
1229 /* Go to the end of the execution trace. */
1230 virtual void goto_record_end ()
1231 TARGET_DEFAULT_NORETURN (tcomplain ());
1232
1233 /* Go to a specific location in the recorded execution trace. */
1234 virtual void goto_record (ULONGEST insn)
1235 TARGET_DEFAULT_NORETURN (tcomplain ());
1236
1237 /* Disassemble SIZE instructions in the recorded execution trace from
1238 the current position.
1239 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1240 disassemble SIZE succeeding instructions. */
1241 virtual void insn_history (int size, gdb_disassembly_flags flags)
1242 TARGET_DEFAULT_NORETURN (tcomplain ());
1243
1244 /* Disassemble SIZE instructions in the recorded execution trace around
1245 FROM.
1246 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1247 disassemble SIZE instructions after FROM. */
1248 virtual void insn_history_from (ULONGEST from, int size,
1249 gdb_disassembly_flags flags)
1250 TARGET_DEFAULT_NORETURN (tcomplain ());
1251
1252 /* Disassemble a section of the recorded execution trace from instruction
1253 BEGIN (inclusive) to instruction END (inclusive). */
1254 virtual void insn_history_range (ULONGEST begin, ULONGEST end,
1255 gdb_disassembly_flags flags)
1256 TARGET_DEFAULT_NORETURN (tcomplain ());
1257
1258 /* Print a function trace of the recorded execution trace.
1259 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1260 succeeding functions. */
1261 virtual void call_history (int size, record_print_flags flags)
1262 TARGET_DEFAULT_NORETURN (tcomplain ());
1263
1264 /* Print a function trace of the recorded execution trace starting
1265 at function FROM.
1266 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1267 SIZE functions after FROM. */
1268 virtual void call_history_from (ULONGEST begin, int size, record_print_flags flags)
1269 TARGET_DEFAULT_NORETURN (tcomplain ());
1270
1271 /* Print a function trace of an execution trace section from function BEGIN
1272 (inclusive) to function END (inclusive). */
1273 virtual void call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
1274 TARGET_DEFAULT_NORETURN (tcomplain ());
1275
1276 /* True if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1277 non-empty annex. */
1278 virtual bool augmented_libraries_svr4_read ()
1279 TARGET_DEFAULT_RETURN (false);
1280
1281 /* Those unwinders are tried before any other arch unwinders. If
1282 SELF doesn't have unwinders, it should delegate to the
1283 "beneath" target. */
1284 virtual const struct frame_unwind *get_unwinder ()
1285 TARGET_DEFAULT_RETURN (NULL);
1286
1287 virtual const struct frame_unwind *get_tailcall_unwinder ()
1288 TARGET_DEFAULT_RETURN (NULL);
1289
1290 /* Prepare to generate a core file. */
1291 virtual void prepare_to_generate_core ()
1292 TARGET_DEFAULT_IGNORE ();
1293
1294 /* Cleanup after generating a core file. */
1295 virtual void done_generating_core ()
1296 TARGET_DEFAULT_IGNORE ();
1297
1298 /* Returns true if the target supports memory tagging, false otherwise. */
1299 virtual bool supports_memory_tagging ()
1300 TARGET_DEFAULT_RETURN (false);
1301
1302 /* Return the allocated memory tags of type TYPE associated with
1303 [ADDRESS, ADDRESS + LEN) in TAGS.
1304
1305 LEN is the number of bytes in the memory range. TAGS is a vector of
1306 bytes containing the tags found in the above memory range.
1307
1308 It is up to the architecture/target to interpret the bytes in the TAGS
1309 vector and read the tags appropriately.
1310
1311 Returns true if fetching the tags succeeded and false otherwise. */
1312 virtual bool fetch_memtags (CORE_ADDR address, size_t len,
1313 gdb::byte_vector &tags, int type)
1314 TARGET_DEFAULT_NORETURN (tcomplain ());
1315
1316 /* Write the allocation tags of type TYPE contained in TAGS to the memory
1317 range [ADDRESS, ADDRESS + LEN).
1318
1319 LEN is the number of bytes in the memory range. TAGS is a vector of
1320 bytes containing the tags to be stored to the memory range.
1321
1322 It is up to the architecture/target to interpret the bytes in the TAGS
1323 vector and store them appropriately.
1324
1325 Returns true if storing the tags succeeded and false otherwise. */
1326 virtual bool store_memtags (CORE_ADDR address, size_t len,
1327 const gdb::byte_vector &tags, int type)
1328 TARGET_DEFAULT_NORETURN (tcomplain ());
1329
1330 /* Return the x86 XSAVE extended state area layout. */
1331 virtual x86_xsave_layout fetch_x86_xsave_layout ()
1332 TARGET_DEFAULT_RETURN (x86_xsave_layout ());
1333 };
1334
1335 /* Deleter for std::unique_ptr. See comments in
1336 target_ops::~target_ops and target_ops::close about heap-allocated
1337 targets. */
1338 struct target_ops_deleter
1339 {
1340 void operator() (target_ops *target)
1341 {
1342 target->close ();
1343 }
1344 };
1345
1346 /* A unique pointer for target_ops. */
1347 typedef std::unique_ptr<target_ops, target_ops_deleter> target_ops_up;
1348
1349 /* A policy class to interface gdb::ref_ptr with target_ops. */
1350
1351 struct target_ops_ref_policy
1352 {
1353 static void incref (target_ops *t)
1354 {
1355 t->incref ();
1356 }
1357
1358 /* Decrement the reference count on T, and, if the reference count
1359 reaches zero, close the target. */
1360 static void decref (target_ops *t);
1361 };
1362
1363 /* A gdb::ref_ptr pointer to a target_ops. */
1364 typedef gdb::ref_ptr<target_ops, target_ops_ref_policy> target_ops_ref;
1365
1366 /* Native target backends call this once at initialization time to
1367 inform the core about which is the target that can respond to "run"
1368 or "attach". Note: native targets are always singletons. */
1369 extern void set_native_target (target_ops *target);
1370
1371 /* Get the registered native target, if there's one. Otherwise return
1372 NULL. */
1373 extern target_ops *get_native_target ();
1374
1375 /* Type that manages a target stack. See description of target stacks
1376 and strata at the top of the file. */
1377
1378 class target_stack
1379 {
1380 public:
1381 target_stack () = default;
1382 DISABLE_COPY_AND_ASSIGN (target_stack);
1383
1384 /* Push a new target into the stack of the existing target
1385 accessors, possibly superseding some existing accessor. */
1386 void push (target_ops *t);
1387
1388 /* Remove a target from the stack, wherever it may be. Return true
1389 if it was removed, false otherwise. */
1390 bool unpush (target_ops *t);
1391
1392 /* Returns true if T is pushed on the target stack. */
1393 bool is_pushed (const target_ops *t) const
1394 { return at (t->stratum ()) == t; }
1395
1396 /* Return the target at STRATUM. */
1397 target_ops *at (strata stratum) const { return m_stack[stratum].get (); }
1398
1399 /* Return the target at the top of the stack. */
1400 target_ops *top () const { return at (m_top); }
1401
1402 /* Find the next target down the stack from the specified target. */
1403 target_ops *find_beneath (const target_ops *t) const;
1404
1405 private:
1406 /* The stratum of the top target. */
1407 enum strata m_top {};
1408
1409 /* The stack, represented as an array, with one slot per stratum.
1410 If no target is pushed at some stratum, the corresponding slot is
1411 null. */
1412 std::array<target_ops_ref, (int) debug_stratum + 1> m_stack;
1413 };
1414
1415 /* Return the dummy target. */
1416 extern target_ops *get_dummy_target ();
1417
1418 /* Define easy words for doing these operations on our current target. */
1419
1420 extern const char *target_shortname ();
1421
1422 /* Find the correct target to use for "attach". If a target on the
1423 current stack supports attaching, then it is returned. Otherwise,
1424 the default run target is returned. */
1425
1426 extern struct target_ops *find_attach_target (void);
1427
1428 /* Find the correct target to use for "run". If a target on the
1429 current stack supports creating a new inferior, then it is
1430 returned. Otherwise, the default run target is returned. */
1431
1432 extern struct target_ops *find_run_target (void);
1433
1434 /* Some targets don't generate traps when attaching to the inferior,
1435 or their target_attach implementation takes care of the waiting.
1436 These targets must set to_attach_no_wait. */
1437
1438 extern bool target_attach_no_wait ();
1439
1440 /* The target_attach operation places a process under debugger control,
1441 and stops the process.
1442
1443 This operation provides a target-specific hook that allows the
1444 necessary bookkeeping to be performed after an attach completes. */
1445
1446 extern void target_post_attach (int pid);
1447
1448 /* Display a message indicating we're about to attach to a given
1449 process. */
1450
1451 extern void target_announce_attach (int from_tty, int pid);
1452
1453 /* Display a message indicating we're about to detach from the current
1454 inferior process. */
1455
1456 extern void target_announce_detach (int from_tty);
1457
1458 /* Takes a program previously attached to and detaches it.
1459 The program may resume execution (some targets do, some don't) and will
1460 no longer stop on signals, etc. We better not have left any breakpoints
1461 in the program or it'll die when it hits one. FROM_TTY says whether to be
1462 verbose or not. */
1463
1464 extern void target_detach (inferior *inf, int from_tty);
1465
1466 /* Disconnect from the current target without resuming it (leaving it
1467 waiting for a debugger). */
1468
1469 extern void target_disconnect (const char *, int);
1470
1471 /* Resume execution (or prepare for execution) of the current thread
1472 (INFERIOR_PTID), while optionally letting other threads of the
1473 current process or all processes run free.
1474
1475 STEP says whether to hardware single-step the current thread or to
1476 let it run free; SIGNAL is the signal to be given to the current
1477 thread, or GDB_SIGNAL_0 for no signal. The caller may not pass
1478 GDB_SIGNAL_DEFAULT.
1479
1480 SCOPE_PTID indicates the resumption scope. I.e., which threads
1481 (other than the current) run free. If resuming a single thread,
1482 SCOPE_PTID is the same thread as the current thread. A wildcard
1483 SCOPE_PTID (all threads, or all threads of process) lets threads
1484 other than the current (for which the wildcard SCOPE_PTID matches)
1485 resume with their 'thread->suspend.stop_signal' signal (usually
1486 GDB_SIGNAL_0) if it is in "pass" state, or with no signal if in "no
1487 pass" state. Note neither STEP nor SIGNAL apply to any thread
1488 other than the current.
1489
1490 In order to efficiently handle batches of resumption requests,
1491 targets may implement this method such that it records the
1492 resumption request, but defers the actual resumption to the
1493 target_commit_resume method implementation. See
1494 target_commit_resume below. */
1495 extern void target_resume (ptid_t scope_ptid,
1496 int step, enum gdb_signal signal);
1497
1498 /* Ensure that all resumed threads are committed to the target.
1499
1500 See the description of process_stratum_target::commit_resumed_state
1501 for more details. */
1502 extern void target_commit_resumed ();
1503
1504 /* For target_read_memory see target/target.h. */
1505
1506 /* The default target_ops::to_wait implementation. */
1507
1508 extern ptid_t default_target_wait (struct target_ops *ops,
1509 ptid_t ptid,
1510 struct target_waitstatus *status,
1511 target_wait_flags options);
1512
1513 /* Return true if the target has pending events to report to the core.
1514 See target_ops::has_pending_events(). */
1515
1516 extern bool target_has_pending_events ();
1517
1518 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1519
1520 extern void target_fetch_registers (struct regcache *regcache, int regno);
1521
1522 /* Store at least register REGNO, or all regs if REGNO == -1.
1523 It can store as many registers as it wants to, so target_prepare_to_store
1524 must have been previously called. Calls error() if there are problems. */
1525
1526 extern void target_store_registers (struct regcache *regcache, int regs);
1527
1528 /* Get ready to modify the registers array. On machines which store
1529 individual registers, this doesn't need to do anything. On machines
1530 which store all the registers in one fell swoop, this makes sure
1531 that REGISTERS contains all the registers from the program being
1532 debugged. */
1533
1534 extern void target_prepare_to_store (regcache *regcache);
1535
1536 /* Determine current address space of thread PTID. */
1537
1538 struct address_space *target_thread_address_space (ptid_t);
1539
1540 /* Implement the "info proc" command. This returns one if the request
1541 was handled, and zero otherwise. It can also throw an exception if
1542 an error was encountered while attempting to handle the
1543 request. */
1544
1545 int target_info_proc (const char *, enum info_proc_what);
1546
1547 /* Returns true if this target can disable address space randomization. */
1548
1549 int target_supports_disable_randomization (void);
1550
1551 /* Returns true if this target can enable and disable tracepoints
1552 while a trace experiment is running. */
1553
1554 extern bool target_supports_enable_disable_tracepoint ();
1555
1556 extern bool target_supports_string_tracing ();
1557
1558 /* Returns true if this target can handle breakpoint conditions
1559 on its end. */
1560
1561 extern bool target_supports_evaluation_of_breakpoint_conditions ();
1562
1563 /* Does this target support dumpcore API? */
1564
1565 extern bool target_supports_dumpcore ();
1566
1567 /* Generate the core file with target API. */
1568
1569 extern void target_dumpcore (const char *filename);
1570
1571 /* Returns true if this target can handle breakpoint commands
1572 on its end. */
1573
1574 extern bool target_can_run_breakpoint_commands ();
1575
1576 /* For target_read_memory see target/target.h. */
1577
1578 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1579 ssize_t len);
1580
1581 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1582
1583 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1584
1585 /* For target_write_memory see target/target.h. */
1586
1587 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1588 ssize_t len);
1589
1590 /* Fetches the target's memory map. If one is found it is sorted
1591 and returned, after some consistency checking. Otherwise, NULL
1592 is returned. */
1593 std::vector<mem_region> target_memory_map (void);
1594
1595 /* Erases all flash memory regions on the target. */
1596 void flash_erase_command (const char *cmd, int from_tty);
1597
1598 /* Erase the specified flash region. */
1599 void target_flash_erase (ULONGEST address, LONGEST length);
1600
1601 /* Finish a sequence of flash operations. */
1602 void target_flash_done (void);
1603
1604 /* Describes a request for a memory write operation. */
1605 struct memory_write_request
1606 {
1607 memory_write_request (ULONGEST begin_, ULONGEST end_,
1608 gdb_byte *data_ = nullptr, void *baton_ = nullptr)
1609 : begin (begin_), end (end_), data (data_), baton (baton_)
1610 {}
1611
1612 /* Begining address that must be written. */
1613 ULONGEST begin;
1614 /* Past-the-end address. */
1615 ULONGEST end;
1616 /* The data to write. */
1617 gdb_byte *data;
1618 /* A callback baton for progress reporting for this request. */
1619 void *baton;
1620 };
1621
1622 /* Enumeration specifying different flash preservation behaviour. */
1623 enum flash_preserve_mode
1624 {
1625 flash_preserve,
1626 flash_discard
1627 };
1628
1629 /* Write several memory blocks at once. This version can be more
1630 efficient than making several calls to target_write_memory, in
1631 particular because it can optimize accesses to flash memory.
1632
1633 Moreover, this is currently the only memory access function in gdb
1634 that supports writing to flash memory, and it should be used for
1635 all cases where access to flash memory is desirable.
1636
1637 REQUESTS is the vector of memory_write_request.
1638 PRESERVE_FLASH_P indicates what to do with blocks which must be
1639 erased, but not completely rewritten.
1640 PROGRESS_CB is a function that will be periodically called to provide
1641 feedback to user. It will be called with the baton corresponding
1642 to the request currently being written. It may also be called
1643 with a NULL baton, when preserved flash sectors are being rewritten.
1644
1645 The function returns 0 on success, and error otherwise. */
1646 int target_write_memory_blocks
1647 (const std::vector<memory_write_request> &requests,
1648 enum flash_preserve_mode preserve_flash_p,
1649 void (*progress_cb) (ULONGEST, void *));
1650
1651 /* Print a line about the current target. */
1652
1653 extern void target_files_info ();
1654
1655 /* Insert a breakpoint at address BP_TGT->placed_address in
1656 the target machine. Returns 0 for success, and returns non-zero or
1657 throws an error (with a detailed failure reason error code and
1658 message) otherwise. */
1659
1660 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1661 struct bp_target_info *bp_tgt);
1662
1663 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1664 machine. Result is 0 for success, non-zero for error. */
1665
1666 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1667 struct bp_target_info *bp_tgt,
1668 enum remove_bp_reason reason);
1669
1670 /* Return true if the target stack has a non-default
1671 "terminal_ours" method. */
1672
1673 extern bool target_supports_terminal_ours (void);
1674
1675 /* Kill the inferior process. Make it go away. */
1676
1677 extern void target_kill (void);
1678
1679 /* Load an executable file into the target process. This is expected
1680 to not only bring new code into the target process, but also to
1681 update GDB's symbol tables to match.
1682
1683 ARG contains command-line arguments, to be broken down with
1684 buildargv (). The first non-switch argument is the filename to
1685 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1686 0)), which is an offset to apply to the load addresses of FILE's
1687 sections. The target may define switches, or other non-switch
1688 arguments, as it pleases. */
1689
1690 extern void target_load (const char *arg, int from_tty);
1691
1692 /* On some targets, we can catch an inferior fork or vfork event when
1693 it occurs. These functions insert/remove an already-created
1694 catchpoint for such events. They return 0 for success, 1 if the
1695 catchpoint type is not supported and -1 for failure. */
1696
1697 extern int target_insert_fork_catchpoint (int pid);
1698
1699 extern int target_remove_fork_catchpoint (int pid);
1700
1701 extern int target_insert_vfork_catchpoint (int pid);
1702
1703 extern int target_remove_vfork_catchpoint (int pid);
1704
1705 /* Call the follow_fork method on the current target stack.
1706
1707 This function is called when the inferior forks or vforks, to perform any
1708 bookkeeping and fiddling necessary to continue debugging either the parent,
1709 the child or both. */
1710
1711 void target_follow_fork (inferior *inf, ptid_t child_ptid,
1712 target_waitkind fork_kind, bool follow_child,
1713 bool detach_fork);
1714
1715 /* Handle the target-specific bookkeeping required when the inferior makes an
1716 exec call.
1717
1718 The current inferior at the time of the call is the inferior that did the
1719 exec. FOLLOW_INF is the inferior in which execution continues post-exec.
1720 If "follow-exec-mode" is "same", FOLLOW_INF is the same as the current
1721 inferior, meaning that execution continues with the same inferior. If
1722 "follow-exec-mode" is "new", FOLLOW_INF is a different inferior, meaning
1723 that execution continues in a new inferior.
1724
1725 On exit, the target must leave FOLLOW_INF as the current inferior. */
1726
1727 void target_follow_exec (inferior *follow_inf, ptid_t ptid,
1728 const char *execd_pathname);
1729
1730 /* On some targets, we can catch an inferior exec event when it
1731 occurs. These functions insert/remove an already-created
1732 catchpoint for such events. They return 0 for success, 1 if the
1733 catchpoint type is not supported and -1 for failure. */
1734
1735 extern int target_insert_exec_catchpoint (int pid);
1736
1737 extern int target_remove_exec_catchpoint (int pid);
1738
1739 /* Syscall catch.
1740
1741 NEEDED is true if any syscall catch (of any kind) is requested.
1742 If NEEDED is false, it means the target can disable the mechanism to
1743 catch system calls because there are no more catchpoints of this type.
1744
1745 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1746 being requested. In this case, SYSCALL_COUNTS should be ignored.
1747
1748 SYSCALL_COUNTS is an array of ints, indexed by syscall number. An
1749 element in this array is nonzero if that syscall should be caught.
1750 This argument only matters if ANY_COUNT is zero.
1751
1752 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1753 for failure. */
1754
1755 extern int target_set_syscall_catchpoint
1756 (int pid, bool needed, int any_count,
1757 gdb::array_view<const int> syscall_counts);
1758
1759 /* The debugger has completed a blocking wait() call. There is now
1760 some process event that must be processed. This function should
1761 be defined by those targets that require the debugger to perform
1762 cleanup or internal state changes in response to the process event. */
1763
1764 /* For target_mourn_inferior see target/target.h. */
1765
1766 /* Does target have enough data to do a run or attach command? */
1767
1768 extern int target_can_run ();
1769
1770 /* Set list of signals to be handled in the target.
1771
1772 PASS_SIGNALS is an array indexed by target signal number
1773 (enum gdb_signal). For every signal whose entry in this array is
1774 non-zero, the target is allowed -but not required- to skip reporting
1775 arrival of the signal to the GDB core by returning from target_wait,
1776 and to pass the signal directly to the inferior instead.
1777
1778 However, if the target is hardware single-stepping a thread that is
1779 about to receive a signal, it needs to be reported in any case, even
1780 if mentioned in a previous target_pass_signals call. */
1781
1782 extern void target_pass_signals
1783 (gdb::array_view<const unsigned char> pass_signals);
1784
1785 /* Set list of signals the target may pass to the inferior. This
1786 directly maps to the "handle SIGNAL pass/nopass" setting.
1787
1788 PROGRAM_SIGNALS is an array indexed by target signal
1789 number (enum gdb_signal). For every signal whose entry in this
1790 array is non-zero, the target is allowed to pass the signal to the
1791 inferior. Signals not present in the array shall be silently
1792 discarded. This does not influence whether to pass signals to the
1793 inferior as a result of a target_resume call. This is useful in
1794 scenarios where the target needs to decide whether to pass or not a
1795 signal to the inferior without GDB core involvement, such as for
1796 example, when detaching (as threads may have been suspended with
1797 pending signals not reported to GDB). */
1798
1799 extern void target_program_signals
1800 (gdb::array_view<const unsigned char> program_signals);
1801
1802 /* Check to see if a thread is still alive. */
1803
1804 extern int target_thread_alive (ptid_t ptid);
1805
1806 /* Sync the target's threads with GDB's thread list. */
1807
1808 extern void target_update_thread_list (void);
1809
1810 /* Make target stop in a continuable fashion. (For instance, under
1811 Unix, this should act like SIGSTOP). Note that this function is
1812 asynchronous: it does not wait for the target to become stopped
1813 before returning. If this is the behavior you want please use
1814 target_stop_and_wait. */
1815
1816 extern void target_stop (ptid_t ptid);
1817
1818 /* Interrupt the target. Unlike target_stop, this does not specify
1819 which thread/process reports the stop. For most target this acts
1820 like raising a SIGINT, though that's not absolutely required. This
1821 function is asynchronous. */
1822
1823 extern void target_interrupt ();
1824
1825 /* Pass a ^C, as determined to have been pressed by checking the quit
1826 flag, to the target, as if the user had typed the ^C on the
1827 inferior's controlling terminal while the inferior was in the
1828 foreground. Remote targets may take the opportunity to detect the
1829 remote side is not responding and offer to disconnect. */
1830
1831 extern void target_pass_ctrlc (void);
1832
1833 /* The default target_ops::to_pass_ctrlc implementation. Simply calls
1834 target_interrupt. */
1835 extern void default_target_pass_ctrlc (struct target_ops *ops);
1836
1837 /* Send the specified COMMAND to the target's monitor
1838 (shell,interpreter) for execution. The result of the query is
1839 placed in OUTBUF. */
1840
1841 extern void target_rcmd (const char *command, struct ui_file *outbuf);
1842
1843 /* Does the target include memory? (Dummy targets don't.) */
1844
1845 extern int target_has_memory ();
1846
1847 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1848 we start a process.) */
1849
1850 extern int target_has_stack ();
1851
1852 /* Does the target have registers? (Exec files don't.) */
1853
1854 extern int target_has_registers ();
1855
1856 /* Does the target have execution? Can we make it jump (through
1857 hoops), or pop its stack a few times? This means that the current
1858 target is currently executing; for some targets, that's the same as
1859 whether or not the target is capable of execution, but there are
1860 also targets which can be current while not executing. In that
1861 case this will become true after to_create_inferior or
1862 to_attach. INF is the inferior to use; nullptr means to use the
1863 current inferior. */
1864
1865 extern bool target_has_execution (inferior *inf = nullptr);
1866
1867 /* Can the target support the debugger control of thread execution?
1868 Can it lock the thread scheduler? */
1869
1870 extern bool target_can_lock_scheduler ();
1871
1872 /* Controls whether async mode is permitted. */
1873 extern bool target_async_permitted;
1874
1875 /* Can the target support asynchronous execution? */
1876 extern bool target_can_async_p ();
1877
1878 /* An overload of the above that can be called when the target is not yet
1879 pushed, this calls TARGET::can_async_p directly. */
1880 extern bool target_can_async_p (struct target_ops *target);
1881
1882 /* Is the target in asynchronous execution mode? */
1883 extern bool target_is_async_p ();
1884
1885 /* Enables/disabled async target events. */
1886 extern void target_async (bool enable);
1887
1888 /* Enables/disables thread create and exit events. */
1889 extern void target_thread_events (int enable);
1890
1891 /* Whether support for controlling the target backends always in
1892 non-stop mode is enabled. */
1893 extern enum auto_boolean target_non_stop_enabled;
1894
1895 /* Is the target in non-stop mode? Some targets control the inferior
1896 in non-stop mode even with "set non-stop off". Always true if "set
1897 non-stop" is on. */
1898 extern bool target_is_non_stop_p ();
1899
1900 /* Return true if at least one inferior has a non-stop target. */
1901 extern bool exists_non_stop_target ();
1902
1903 extern exec_direction_kind target_execution_direction ();
1904
1905 /* Converts a process id to a string. Usually, the string just contains
1906 `process xyz', but on some systems it may contain
1907 `process xyz thread abc'. */
1908
1909 extern std::string target_pid_to_str (ptid_t ptid);
1910
1911 extern std::string normal_pid_to_str (ptid_t ptid);
1912
1913 /* Return a short string describing extra information about PID,
1914 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1915 is okay. */
1916
1917 extern const char *target_extra_thread_info (thread_info *tp);
1918
1919 /* Return the thread's name, or NULL if the target is unable to determine it.
1920 The returned value must not be freed by the caller.
1921
1922 You likely don't want to call this function, but use the thread_name
1923 function instead, which prefers the user-given thread name, if set. */
1924
1925 extern const char *target_thread_name (struct thread_info *);
1926
1927 /* Given a pointer to a thread library specific thread handle and
1928 its length, return a pointer to the corresponding thread_info struct. */
1929
1930 extern struct thread_info *target_thread_handle_to_thread_info
1931 (const gdb_byte *thread_handle, int handle_len, struct inferior *inf);
1932
1933 /* Given a thread, return the thread handle, a target-specific sequence of
1934 bytes which serves as a thread identifier within the program being
1935 debugged. */
1936 extern gdb::array_view<const gdb_byte> target_thread_info_to_thread_handle
1937 (struct thread_info *);
1938
1939 /* Attempts to find the pathname of the executable file
1940 that was run to create a specified process.
1941
1942 The process PID must be stopped when this operation is used.
1943
1944 If the executable file cannot be determined, NULL is returned.
1945
1946 Else, a pointer to a character string containing the pathname
1947 is returned. This string should be copied into a buffer by
1948 the client if the string will not be immediately used, or if
1949 it must persist. */
1950
1951 extern const char *target_pid_to_exec_file (int pid);
1952
1953 /* See the to_thread_architecture description in struct target_ops. */
1954
1955 extern gdbarch *target_thread_architecture (ptid_t ptid);
1956
1957 /*
1958 * Iterator function for target memory regions.
1959 * Calls a callback function once for each memory region 'mapped'
1960 * in the child process. Defined as a simple macro rather than
1961 * as a function macro so that it can be tested for nullity.
1962 */
1963
1964 extern int target_find_memory_regions (find_memory_region_ftype func,
1965 void *data);
1966
1967 /*
1968 * Compose corefile .note section.
1969 */
1970
1971 extern gdb::unique_xmalloc_ptr<char> target_make_corefile_notes (bfd *bfd,
1972 int *size_p);
1973
1974 /* Bookmark interfaces. */
1975 extern gdb_byte *target_get_bookmark (const char *args, int from_tty);
1976
1977 extern void target_goto_bookmark (const gdb_byte *arg, int from_tty);
1978
1979 /* Hardware watchpoint interfaces. */
1980
1981 /* GDB's current model is that there are three "kinds" of watchpoints,
1982 with respect to when they trigger and how you can move past them.
1983
1984 Those are: continuable, steppable, and non-steppable.
1985
1986 Continuable watchpoints are like x86's -- those trigger after the
1987 memory access's side effects are fully committed to memory. I.e.,
1988 they trap with the PC pointing at the next instruction already.
1989 Continuing past such a watchpoint is doable by just normally
1990 continuing, hence the name.
1991
1992 Both steppable and non-steppable watchpoints trap before the memory
1993 access. I.e, the PC points at the instruction that is accessing
1994 the memory. So GDB needs to single-step once past the current
1995 instruction in order to make the access effective and check whether
1996 the instruction's side effects change the watched expression.
1997
1998 Now, in order to step past that instruction, depending on
1999 architecture and target, you can have two situations:
2000
2001 - steppable watchpoints: you can single-step with the watchpoint
2002 still armed, and the watchpoint won't trigger again.
2003
2004 - non-steppable watchpoints: if you try to single-step with the
2005 watchpoint still armed, you'd trap the watchpoint again and the
2006 thread wouldn't make any progress. So GDB needs to temporarily
2007 remove the watchpoint in order to step past it.
2008
2009 If your target/architecture does not signal that it has either
2010 steppable or non-steppable watchpoints via either
2011 target_have_steppable_watchpoint or
2012 gdbarch_have_nonsteppable_watchpoint, GDB assumes continuable
2013 watchpoints. */
2014
2015 /* Returns true if we were stopped by a hardware watchpoint (memory read or
2016 write). Only the INFERIOR_PTID task is being queried. */
2017
2018 extern bool target_stopped_by_watchpoint ();
2019
2020 /* Returns true if the target stopped because it executed a
2021 software breakpoint instruction. */
2022
2023 extern bool target_stopped_by_sw_breakpoint ();
2024
2025 extern bool target_supports_stopped_by_sw_breakpoint ();
2026
2027 extern bool target_stopped_by_hw_breakpoint ();
2028
2029 extern bool target_supports_stopped_by_hw_breakpoint ();
2030
2031 /* True if we have steppable watchpoints */
2032
2033 extern bool target_have_steppable_watchpoint ();
2034
2035 /* Provide defaults for hardware watchpoint functions. */
2036
2037 /* If the *_hw_breakpoint functions have not been defined
2038 elsewhere use the definitions in the target vector. */
2039
2040 /* Returns positive if we can set a hardware watchpoint of type TYPE.
2041 Returns negative if the target doesn't have enough hardware debug
2042 registers available. Return zero if hardware watchpoint of type
2043 TYPE isn't supported. TYPE is one of bp_hardware_watchpoint,
2044 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
2045 CNT is the number of such watchpoints used so far, including this
2046 one. OTHERTYPE is the number of watchpoints of other types than
2047 this one used so far. */
2048
2049 extern int target_can_use_hardware_watchpoint (bptype type, int cnt,
2050 int othertype);
2051
2052 /* Returns the number of debug registers needed to watch the given
2053 memory region, or zero if not supported. */
2054
2055 extern int target_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len);
2056
2057 extern int target_can_do_single_step ();
2058
2059 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
2060 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
2061 COND is the expression for its condition, or NULL if there's none.
2062 Returns 0 for success, 1 if the watchpoint type is not supported,
2063 -1 for failure. */
2064
2065 extern int target_insert_watchpoint (CORE_ADDR addr, int len,
2066 target_hw_bp_type type, expression *cond);
2067
2068 extern int target_remove_watchpoint (CORE_ADDR addr, int len,
2069 target_hw_bp_type type, expression *cond);
2070
2071 /* Insert a new masked watchpoint at ADDR using the mask MASK.
2072 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
2073 or hw_access for an access watchpoint. Returns 0 for success, 1 if
2074 masked watchpoints are not supported, -1 for failure. */
2075
2076 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
2077 enum target_hw_bp_type);
2078
2079 /* Remove a masked watchpoint at ADDR with the mask MASK.
2080 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
2081 or hw_access for an access watchpoint. Returns 0 for success, non-zero
2082 for failure. */
2083
2084 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
2085 enum target_hw_bp_type);
2086
2087 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
2088 the target machine. Returns 0 for success, and returns non-zero or
2089 throws an error (with a detailed failure reason error code and
2090 message) otherwise. */
2091
2092 extern int target_insert_hw_breakpoint (gdbarch *gdbarch,
2093 bp_target_info *bp_tgt);
2094
2095 extern int target_remove_hw_breakpoint (gdbarch *gdbarch,
2096 bp_target_info *bp_tgt);
2097
2098 /* Return number of debug registers needed for a ranged breakpoint,
2099 or -1 if ranged breakpoints are not supported. */
2100
2101 extern int target_ranged_break_num_registers (void);
2102
2103 /* Return non-zero if target knows the data address which triggered this
2104 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
2105 INFERIOR_PTID task is being queried. */
2106 #define target_stopped_data_address(target, addr_p) \
2107 (target)->stopped_data_address (addr_p)
2108
2109 /* Return non-zero if ADDR is within the range of a watchpoint spanning
2110 LENGTH bytes beginning at START. */
2111 #define target_watchpoint_addr_within_range(target, addr, start, length) \
2112 (target)->watchpoint_addr_within_range (addr, start, length)
2113
2114 /* Return non-zero if the target is capable of using hardware to evaluate
2115 the condition expression. In this case, if the condition is false when
2116 the watched memory location changes, execution may continue without the
2117 debugger being notified.
2118
2119 Due to limitations in the hardware implementation, it may be capable of
2120 avoiding triggering the watchpoint in some cases where the condition
2121 expression is false, but may report some false positives as well.
2122 For this reason, GDB will still evaluate the condition expression when
2123 the watchpoint triggers. */
2124
2125 extern bool target_can_accel_watchpoint_condition (CORE_ADDR addr, int len,
2126 int type, expression *cond);
2127
2128 /* Return number of debug registers needed for a masked watchpoint,
2129 -1 if masked watchpoints are not supported or -2 if the given address
2130 and mask combination cannot be used. */
2131
2132 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
2133
2134 /* Target can execute in reverse? */
2135
2136 extern bool target_can_execute_reverse ();
2137
2138 extern const struct target_desc *target_read_description (struct target_ops *);
2139
2140 extern ptid_t target_get_ada_task_ptid (long lwp, ULONGEST tid);
2141
2142 /* Main entry point for searching memory. */
2143 extern int target_search_memory (CORE_ADDR start_addr,
2144 ULONGEST search_space_len,
2145 const gdb_byte *pattern,
2146 ULONGEST pattern_len,
2147 CORE_ADDR *found_addrp);
2148
2149 /* Target file operations. */
2150
2151 /* Return true if the filesystem seen by the current inferior
2152 is the local filesystem, zero otherwise. */
2153
2154 extern bool target_filesystem_is_local ();
2155
2156 /* Open FILENAME on the target, in the filesystem as seen by INF,
2157 using FLAGS and MODE. If INF is NULL, use the filesystem seen by
2158 the debugger (GDB or, for remote targets, the remote stub). Return
2159 a target file descriptor, or -1 if an error occurs (and set
2160 *TARGET_ERRNO). If WARN_IF_SLOW is true, print a warning message
2161 if the file is being accessed over a link that may be slow. */
2162 extern int target_fileio_open (struct inferior *inf,
2163 const char *filename, int flags,
2164 int mode, bool warn_if_slow,
2165 fileio_error *target_errno);
2166
2167 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2168 Return the number of bytes written, or -1 if an error occurs
2169 (and set *TARGET_ERRNO). */
2170 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2171 ULONGEST offset, fileio_error *target_errno);
2172
2173 /* Read up to LEN bytes FD on the target into READ_BUF.
2174 Return the number of bytes read, or -1 if an error occurs
2175 (and set *TARGET_ERRNO). */
2176 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2177 ULONGEST offset, fileio_error *target_errno);
2178
2179 /* Get information about the file opened as FD on the target
2180 and put it in SB. Return 0 on success, or -1 if an error
2181 occurs (and set *TARGET_ERRNO). */
2182 extern int target_fileio_fstat (int fd, struct stat *sb,
2183 fileio_error *target_errno);
2184
2185 /* Close FD on the target. Return 0, or -1 if an error occurs
2186 (and set *TARGET_ERRNO). */
2187 extern int target_fileio_close (int fd, fileio_error *target_errno);
2188
2189 /* Unlink FILENAME on the target, in the filesystem as seen by INF.
2190 If INF is NULL, use the filesystem seen by the debugger (GDB or,
2191 for remote targets, the remote stub). Return 0, or -1 if an error
2192 occurs (and set *TARGET_ERRNO). */
2193 extern int target_fileio_unlink (struct inferior *inf,
2194 const char *filename,
2195 fileio_error *target_errno);
2196
2197 /* Read value of symbolic link FILENAME on the target, in the
2198 filesystem as seen by INF. If INF is NULL, use the filesystem seen
2199 by the debugger (GDB or, for remote targets, the remote stub).
2200 Return a null-terminated string allocated via xmalloc, or NULL if
2201 an error occurs (and set *TARGET_ERRNO). */
2202 extern gdb::optional<std::string> target_fileio_readlink
2203 (struct inferior *inf, const char *filename, fileio_error *target_errno);
2204
2205 /* Read target file FILENAME, in the filesystem as seen by INF. If
2206 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2207 remote targets, the remote stub). The return value will be -1 if
2208 the transfer fails or is not supported; 0 if the object is empty;
2209 or the length of the object otherwise. If a positive value is
2210 returned, a sufficiently large buffer will be allocated using
2211 xmalloc and returned in *BUF_P containing the contents of the
2212 object.
2213
2214 This method should be used for objects sufficiently small to store
2215 in a single xmalloc'd buffer, when no fixed bound on the object's
2216 size is known in advance. */
2217 extern LONGEST target_fileio_read_alloc (struct inferior *inf,
2218 const char *filename,
2219 gdb_byte **buf_p);
2220
2221 /* Read target file FILENAME, in the filesystem as seen by INF. If
2222 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2223 remote targets, the remote stub). The result is NUL-terminated and
2224 returned as a string, allocated using xmalloc. If an error occurs
2225 or the transfer is unsupported, NULL is returned. Empty objects
2226 are returned as allocated but empty strings. A warning is issued
2227 if the result contains any embedded NUL bytes. */
2228 extern gdb::unique_xmalloc_ptr<char> target_fileio_read_stralloc
2229 (struct inferior *inf, const char *filename);
2230
2231 /* Invalidate the target associated with open handles that were open
2232 on target TARG, since we're about to close (and maybe destroy) the
2233 target. The handles remain open from the client's perspective, but
2234 trying to do anything with them other than closing them will fail
2235 with EIO. */
2236 extern void fileio_handles_invalidate_target (target_ops *targ);
2237
2238 /* Tracepoint-related operations. */
2239
2240 extern void target_trace_init ();
2241
2242 extern void target_download_tracepoint (bp_location *location);
2243
2244 extern bool target_can_download_tracepoint ();
2245
2246 extern void target_download_trace_state_variable (const trace_state_variable &tsv);
2247
2248 extern void target_enable_tracepoint (bp_location *loc);
2249
2250 extern void target_disable_tracepoint (bp_location *loc);
2251
2252 extern void target_trace_start ();
2253
2254 extern void target_trace_set_readonly_regions ();
2255
2256 extern int target_get_trace_status (trace_status *ts);
2257
2258 extern void target_get_tracepoint_status (tracepoint *tp, uploaded_tp *utp);
2259
2260 extern void target_trace_stop ();
2261
2262 extern int target_trace_find (trace_find_type type, int num, CORE_ADDR addr1,
2263 CORE_ADDR addr2, int *tpp);
2264
2265 extern bool target_get_trace_state_variable_value (int tsv, LONGEST *val);
2266
2267 extern int target_save_trace_data (const char *filename);
2268
2269 extern int target_upload_tracepoints (uploaded_tp **utpp);
2270
2271 extern int target_upload_trace_state_variables (uploaded_tsv **utsvp);
2272
2273 extern LONGEST target_get_raw_trace_data (gdb_byte *buf, ULONGEST offset,
2274 LONGEST len);
2275
2276 extern int target_get_min_fast_tracepoint_insn_len ();
2277
2278 extern void target_set_disconnected_tracing (int val);
2279
2280 extern void target_set_circular_trace_buffer (int val);
2281
2282 extern void target_set_trace_buffer_size (LONGEST val);
2283
2284 extern bool target_set_trace_notes (const char *user, const char *notes,
2285 const char *stopnotes);
2286
2287 extern bool target_get_tib_address (ptid_t ptid, CORE_ADDR *addr);
2288
2289 extern void target_set_permissions ();
2290
2291 extern bool target_static_tracepoint_marker_at
2292 (CORE_ADDR addr, static_tracepoint_marker *marker);
2293
2294 extern std::vector<static_tracepoint_marker>
2295 target_static_tracepoint_markers_by_strid (const char *marker_id);
2296
2297 extern traceframe_info_up target_traceframe_info ();
2298
2299 extern bool target_use_agent (bool use);
2300
2301 extern bool target_can_use_agent ();
2302
2303 extern bool target_augmented_libraries_svr4_read ();
2304
2305 extern bool target_supports_memory_tagging ();
2306
2307 extern bool target_fetch_memtags (CORE_ADDR address, size_t len,
2308 gdb::byte_vector &tags, int type);
2309
2310 extern bool target_store_memtags (CORE_ADDR address, size_t len,
2311 const gdb::byte_vector &tags, int type);
2312
2313 extern x86_xsave_layout target_fetch_x86_xsave_layout ();
2314
2315 /* Command logging facility. */
2316
2317 extern void target_log_command (const char *p);
2318
2319 extern int target_core_of_thread (ptid_t ptid);
2320
2321 /* See to_get_unwinder in struct target_ops. */
2322 extern const struct frame_unwind *target_get_unwinder (void);
2323
2324 /* See to_get_tailcall_unwinder in struct target_ops. */
2325 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2326
2327 /* This implements basic memory verification, reading target memory
2328 and performing the comparison here (as opposed to accelerated
2329 verification making use of the qCRC packet, for example). */
2330
2331 extern int simple_verify_memory (struct target_ops* ops,
2332 const gdb_byte *data,
2333 CORE_ADDR memaddr, ULONGEST size);
2334
2335 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2336 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2337 if there's a mismatch, and -1 if an error is encountered while
2338 reading memory. Throws an error if the functionality is found not
2339 to be supported by the current target. */
2340 int target_verify_memory (const gdb_byte *data,
2341 CORE_ADDR memaddr, ULONGEST size);
2342
2343 /* Routines for maintenance of the target structures...
2344
2345 add_target: Add a target to the list of all possible targets.
2346 This only makes sense for targets that should be activated using
2347 the "target TARGET_NAME ..." command.
2348
2349 push_target: Make this target the top of the stack of currently used
2350 targets, within its particular stratum of the stack. Result
2351 is 0 if now atop the stack, nonzero if not on top (maybe
2352 should warn user).
2353
2354 unpush_target: Remove this from the stack of currently used targets,
2355 no matter where it is on the list. Returns 0 if no
2356 change, 1 if removed from stack. */
2357
2358 /* Type of callback called when the user activates a target with
2359 "target TARGET_NAME". The callback routine takes the rest of the
2360 parameters from the command, and (if successful) pushes a new
2361 target onto the stack. */
2362 typedef void target_open_ftype (const char *args, int from_tty);
2363
2364 /* Add the target described by INFO to the list of possible targets
2365 and add a new command 'target $(INFO->shortname)'. Set COMPLETER
2366 as the command's completer if not NULL. */
2367
2368 extern void add_target (const target_info &info,
2369 target_open_ftype *func,
2370 completer_ftype *completer = NULL);
2371
2372 /* Adds a command ALIAS for the target described by INFO and marks it
2373 deprecated. This is useful for maintaining backwards compatibility
2374 when renaming targets. */
2375
2376 extern void add_deprecated_target_alias (const target_info &info,
2377 const char *alias);
2378
2379 /* A unique_ptr helper to unpush a target. */
2380
2381 struct target_unpusher
2382 {
2383 void operator() (struct target_ops *ops) const;
2384 };
2385
2386 /* A unique_ptr that unpushes a target on destruction. */
2387
2388 typedef std::unique_ptr<struct target_ops, target_unpusher> target_unpush_up;
2389
2390 extern void target_pre_inferior (int);
2391
2392 extern void target_preopen (int);
2393
2394 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2395 CORE_ADDR offset);
2396
2397 /* Return the "section" containing the specified address. */
2398 const struct target_section *target_section_by_addr (struct target_ops *target,
2399 CORE_ADDR addr);
2400
2401 /* Return the target section table this target (or the targets
2402 beneath) currently manipulate. */
2403
2404 extern const target_section_table *target_get_section_table
2405 (struct target_ops *target);
2406
2407 /* Default implementation of get_section_table for dummy_target. */
2408
2409 extern const target_section_table *default_get_section_table ();
2410
2411 /* From mem-break.c */
2412
2413 extern int memory_remove_breakpoint (struct target_ops *,
2414 struct gdbarch *, struct bp_target_info *,
2415 enum remove_bp_reason);
2416
2417 extern int memory_insert_breakpoint (struct target_ops *,
2418 struct gdbarch *, struct bp_target_info *);
2419
2420 /* Convenience template use to add memory breakpoints support to a
2421 target. */
2422
2423 template <typename BaseTarget>
2424 struct memory_breakpoint_target : public BaseTarget
2425 {
2426 int insert_breakpoint (struct gdbarch *gdbarch,
2427 struct bp_target_info *bp_tgt) override
2428 { return memory_insert_breakpoint (this, gdbarch, bp_tgt); }
2429
2430 int remove_breakpoint (struct gdbarch *gdbarch,
2431 struct bp_target_info *bp_tgt,
2432 enum remove_bp_reason reason) override
2433 { return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason); }
2434 };
2435
2436 /* Check whether the memory at the breakpoint's placed address still
2437 contains the expected breakpoint instruction. */
2438
2439 extern int memory_validate_breakpoint (struct gdbarch *gdbarch,
2440 struct bp_target_info *bp_tgt);
2441
2442 extern int default_memory_remove_breakpoint (struct gdbarch *,
2443 struct bp_target_info *);
2444
2445 extern int default_memory_insert_breakpoint (struct gdbarch *,
2446 struct bp_target_info *);
2447
2448
2449 /* From target.c */
2450
2451 extern void initialize_targets (void);
2452
2453 extern void noprocess (void) ATTRIBUTE_NORETURN;
2454
2455 extern void target_require_runnable (void);
2456
2457 /* Find the target at STRATUM. If no target is at that stratum,
2458 return NULL. */
2459
2460 struct target_ops *find_target_at (enum strata stratum);
2461
2462 /* Read OS data object of type TYPE from the target, and return it in XML
2463 format. The return value follows the same rules as target_read_stralloc. */
2464
2465 extern gdb::optional<gdb::char_vector> target_get_osdata (const char *type);
2466
2467 /* Stuff that should be shared among the various remote targets. */
2468
2469
2470 /* Timeout limit for response from target. */
2471 extern int remote_timeout;
2472
2473 \f
2474
2475 /* Set the show memory breakpoints mode to show, and return a
2476 scoped_restore to restore it back to the current value. */
2477 extern scoped_restore_tmpl<int>
2478 make_scoped_restore_show_memory_breakpoints (int show);
2479
2480 /* True if we should trust readonly sections from the
2481 executable when reading memory. */
2482 extern bool trust_readonly;
2483
2484 extern bool may_write_registers;
2485 extern bool may_write_memory;
2486 extern bool may_insert_breakpoints;
2487 extern bool may_insert_tracepoints;
2488 extern bool may_insert_fast_tracepoints;
2489 extern bool may_stop;
2490
2491 extern void update_target_permissions (void);
2492
2493 \f
2494 /* Imported from machine dependent code. */
2495
2496 /* See to_enable_btrace in struct target_ops. */
2497 extern struct btrace_target_info *
2498 target_enable_btrace (thread_info *tp, const struct btrace_config *);
2499
2500 /* See to_disable_btrace in struct target_ops. */
2501 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2502
2503 /* See to_teardown_btrace in struct target_ops. */
2504 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2505
2506 /* See to_read_btrace in struct target_ops. */
2507 extern enum btrace_error target_read_btrace (struct btrace_data *,
2508 struct btrace_target_info *,
2509 enum btrace_read_type);
2510
2511 /* See to_btrace_conf in struct target_ops. */
2512 extern const struct btrace_config *
2513 target_btrace_conf (const struct btrace_target_info *);
2514
2515 /* See to_stop_recording in struct target_ops. */
2516 extern void target_stop_recording (void);
2517
2518 /* See to_save_record in struct target_ops. */
2519 extern void target_save_record (const char *filename);
2520
2521 /* Query if the target supports deleting the execution log. */
2522 extern int target_supports_delete_record (void);
2523
2524 /* See to_delete_record in struct target_ops. */
2525 extern void target_delete_record (void);
2526
2527 /* See to_record_method. */
2528 extern enum record_method target_record_method (ptid_t ptid);
2529
2530 /* See to_record_is_replaying in struct target_ops. */
2531 extern int target_record_is_replaying (ptid_t ptid);
2532
2533 /* See to_record_will_replay in struct target_ops. */
2534 extern int target_record_will_replay (ptid_t ptid, int dir);
2535
2536 /* See to_record_stop_replaying in struct target_ops. */
2537 extern void target_record_stop_replaying (void);
2538
2539 /* See to_goto_record_begin in struct target_ops. */
2540 extern void target_goto_record_begin (void);
2541
2542 /* See to_goto_record_end in struct target_ops. */
2543 extern void target_goto_record_end (void);
2544
2545 /* See to_goto_record in struct target_ops. */
2546 extern void target_goto_record (ULONGEST insn);
2547
2548 /* See to_insn_history. */
2549 extern void target_insn_history (int size, gdb_disassembly_flags flags);
2550
2551 /* See to_insn_history_from. */
2552 extern void target_insn_history_from (ULONGEST from, int size,
2553 gdb_disassembly_flags flags);
2554
2555 /* See to_insn_history_range. */
2556 extern void target_insn_history_range (ULONGEST begin, ULONGEST end,
2557 gdb_disassembly_flags flags);
2558
2559 /* See to_call_history. */
2560 extern void target_call_history (int size, record_print_flags flags);
2561
2562 /* See to_call_history_from. */
2563 extern void target_call_history_from (ULONGEST begin, int size,
2564 record_print_flags flags);
2565
2566 /* See to_call_history_range. */
2567 extern void target_call_history_range (ULONGEST begin, ULONGEST end,
2568 record_print_flags flags);
2569
2570 /* See to_prepare_to_generate_core. */
2571 extern void target_prepare_to_generate_core (void);
2572
2573 /* See to_done_generating_core. */
2574 extern void target_done_generating_core (void);
2575
2576 #endif /* !defined (TARGET_H) */