]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/target.h
Add support for enabling and disabling tracepoints while a trace
[thirdparty/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support. Written by John Gilmore.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #if !defined (TARGET_H)
25 #define TARGET_H
26
27 struct objfile;
28 struct ui_file;
29 struct mem_attrib;
30 struct target_ops;
31 struct bp_location;
32 struct bp_target_info;
33 struct regcache;
34 struct target_section_table;
35 struct trace_state_variable;
36 struct trace_status;
37 struct uploaded_tsv;
38 struct uploaded_tp;
39 struct static_tracepoint_marker;
40 struct traceframe_info;
41 struct expression;
42
43 /* This include file defines the interface between the main part
44 of the debugger, and the part which is target-specific, or
45 specific to the communications interface between us and the
46 target.
47
48 A TARGET is an interface between the debugger and a particular
49 kind of file or process. Targets can be STACKED in STRATA,
50 so that more than one target can potentially respond to a request.
51 In particular, memory accesses will walk down the stack of targets
52 until they find a target that is interested in handling that particular
53 address. STRATA are artificial boundaries on the stack, within
54 which particular kinds of targets live. Strata exist so that
55 people don't get confused by pushing e.g. a process target and then
56 a file target, and wondering why they can't see the current values
57 of variables any more (the file target is handling them and they
58 never get to the process target). So when you push a file target,
59 it goes into the file stratum, which is always below the process
60 stratum. */
61
62 #include "bfd.h"
63 #include "symtab.h"
64 #include "memattr.h"
65 #include "vec.h"
66 #include "gdb_signals.h"
67
68 enum strata
69 {
70 dummy_stratum, /* The lowest of the low */
71 file_stratum, /* Executable files, etc */
72 process_stratum, /* Executing processes or core dump files */
73 thread_stratum, /* Executing threads */
74 record_stratum, /* Support record debugging */
75 arch_stratum /* Architecture overrides */
76 };
77
78 enum thread_control_capabilities
79 {
80 tc_none = 0, /* Default: can't control thread execution. */
81 tc_schedlock = 1, /* Can lock the thread scheduler. */
82 };
83
84 /* Stuff for target_wait. */
85
86 /* Generally, what has the program done? */
87 enum target_waitkind
88 {
89 /* The program has exited. The exit status is in value.integer. */
90 TARGET_WAITKIND_EXITED,
91
92 /* The program has stopped with a signal. Which signal is in
93 value.sig. */
94 TARGET_WAITKIND_STOPPED,
95
96 /* The program has terminated with a signal. Which signal is in
97 value.sig. */
98 TARGET_WAITKIND_SIGNALLED,
99
100 /* The program is letting us know that it dynamically loaded something
101 (e.g. it called load(2) on AIX). */
102 TARGET_WAITKIND_LOADED,
103
104 /* The program has forked. A "related" process' PTID is in
105 value.related_pid. I.e., if the child forks, value.related_pid
106 is the parent's ID. */
107
108 TARGET_WAITKIND_FORKED,
109
110 /* The program has vforked. A "related" process's PTID is in
111 value.related_pid. */
112
113 TARGET_WAITKIND_VFORKED,
114
115 /* The program has exec'ed a new executable file. The new file's
116 pathname is pointed to by value.execd_pathname. */
117
118 TARGET_WAITKIND_EXECD,
119
120 /* The program had previously vforked, and now the child is done
121 with the shared memory region, because it exec'ed or exited.
122 Note that the event is reported to the vfork parent. This is
123 only used if GDB did not stay attached to the vfork child,
124 otherwise, a TARGET_WAITKIND_EXECD or
125 TARGET_WAITKIND_EXIT|SIGNALLED event associated with the child
126 has the same effect. */
127 TARGET_WAITKIND_VFORK_DONE,
128
129 /* The program has entered or returned from a system call. On
130 HP-UX, this is used in the hardware watchpoint implementation.
131 The syscall's unique integer ID number is in value.syscall_id. */
132
133 TARGET_WAITKIND_SYSCALL_ENTRY,
134 TARGET_WAITKIND_SYSCALL_RETURN,
135
136 /* Nothing happened, but we stopped anyway. This perhaps should be handled
137 within target_wait, but I'm not sure target_wait should be resuming the
138 inferior. */
139 TARGET_WAITKIND_SPURIOUS,
140
141 /* An event has occured, but we should wait again.
142 Remote_async_wait() returns this when there is an event
143 on the inferior, but the rest of the world is not interested in
144 it. The inferior has not stopped, but has just sent some output
145 to the console, for instance. In this case, we want to go back
146 to the event loop and wait there for another event from the
147 inferior, rather than being stuck in the remote_async_wait()
148 function. sThis way the event loop is responsive to other events,
149 like for instance the user typing. */
150 TARGET_WAITKIND_IGNORE,
151
152 /* The target has run out of history information,
153 and cannot run backward any further. */
154 TARGET_WAITKIND_NO_HISTORY
155 };
156
157 struct target_waitstatus
158 {
159 enum target_waitkind kind;
160
161 /* Forked child pid, execd pathname, exit status, signal number or
162 syscall number. */
163 union
164 {
165 int integer;
166 enum target_signal sig;
167 ptid_t related_pid;
168 char *execd_pathname;
169 int syscall_number;
170 }
171 value;
172 };
173
174 /* Options that can be passed to target_wait. */
175
176 /* Return immediately if there's no event already queued. If this
177 options is not requested, target_wait blocks waiting for an
178 event. */
179 #define TARGET_WNOHANG 1
180
181 /* The structure below stores information about a system call.
182 It is basically used in the "catch syscall" command, and in
183 every function that gives information about a system call.
184
185 It's also good to mention that its fields represent everything
186 that we currently know about a syscall in GDB. */
187 struct syscall
188 {
189 /* The syscall number. */
190 int number;
191
192 /* The syscall name. */
193 const char *name;
194 };
195
196 /* Return a pretty printed form of target_waitstatus.
197 Space for the result is malloc'd, caller must free. */
198 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
199
200 /* Possible types of events that the inferior handler will have to
201 deal with. */
202 enum inferior_event_type
203 {
204 /* There is a request to quit the inferior, abandon it. */
205 INF_QUIT_REQ,
206 /* Process a normal inferior event which will result in target_wait
207 being called. */
208 INF_REG_EVENT,
209 /* Deal with an error on the inferior. */
210 INF_ERROR,
211 /* We are called because a timer went off. */
212 INF_TIMER,
213 /* We are called to do stuff after the inferior stops. */
214 INF_EXEC_COMPLETE,
215 /* We are called to do some stuff after the inferior stops, but we
216 are expected to reenter the proceed() and
217 handle_inferior_event() functions. This is used only in case of
218 'step n' like commands. */
219 INF_EXEC_CONTINUE
220 };
221 \f
222 /* Target objects which can be transfered using target_read,
223 target_write, et cetera. */
224
225 enum target_object
226 {
227 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
228 TARGET_OBJECT_AVR,
229 /* SPU target specific transfer. See "spu-tdep.c". */
230 TARGET_OBJECT_SPU,
231 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
232 TARGET_OBJECT_MEMORY,
233 /* Memory, avoiding GDB's data cache and trusting the executable.
234 Target implementations of to_xfer_partial never need to handle
235 this object, and most callers should not use it. */
236 TARGET_OBJECT_RAW_MEMORY,
237 /* Memory known to be part of the target's stack. This is cached even
238 if it is not in a region marked as such, since it is known to be
239 "normal" RAM. */
240 TARGET_OBJECT_STACK_MEMORY,
241 /* Kernel Unwind Table. See "ia64-tdep.c". */
242 TARGET_OBJECT_UNWIND_TABLE,
243 /* Transfer auxilliary vector. */
244 TARGET_OBJECT_AUXV,
245 /* StackGhost cookie. See "sparc-tdep.c". */
246 TARGET_OBJECT_WCOOKIE,
247 /* Target memory map in XML format. */
248 TARGET_OBJECT_MEMORY_MAP,
249 /* Flash memory. This object can be used to write contents to
250 a previously erased flash memory. Using it without erasing
251 flash can have unexpected results. Addresses are physical
252 address on target, and not relative to flash start. */
253 TARGET_OBJECT_FLASH,
254 /* Available target-specific features, e.g. registers and coprocessors.
255 See "target-descriptions.c". ANNEX should never be empty. */
256 TARGET_OBJECT_AVAILABLE_FEATURES,
257 /* Currently loaded libraries, in XML format. */
258 TARGET_OBJECT_LIBRARIES,
259 /* Get OS specific data. The ANNEX specifies the type (running
260 processes, etc.). The data being transfered is expected to follow
261 the DTD specified in features/osdata.dtd. */
262 TARGET_OBJECT_OSDATA,
263 /* Extra signal info. Usually the contents of `siginfo_t' on unix
264 platforms. */
265 TARGET_OBJECT_SIGNAL_INFO,
266 /* The list of threads that are being debugged. */
267 TARGET_OBJECT_THREADS,
268 /* Collected static trace data. */
269 TARGET_OBJECT_STATIC_TRACE_DATA,
270 /* The HP-UX registers (those that can be obtained or modified by using
271 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
272 TARGET_OBJECT_HPUX_UREGS,
273 /* The HP-UX shared library linkage pointer. ANNEX should be a string
274 image of the code address whose linkage pointer we are looking for.
275
276 The size of the data transfered is always 8 bytes (the size of an
277 address on ia64). */
278 TARGET_OBJECT_HPUX_SOLIB_GOT,
279 /* Traceframe info, in XML format. */
280 TARGET_OBJECT_TRACEFRAME_INFO,
281 /* Possible future objects: TARGET_OBJECT_FILE, ... */
282 };
283
284 /* Enumeration of the kinds of traceframe searches that a target may
285 be able to perform. */
286
287 enum trace_find_type
288 {
289 tfind_number,
290 tfind_pc,
291 tfind_tp,
292 tfind_range,
293 tfind_outside,
294 };
295
296 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
297 DEF_VEC_P(static_tracepoint_marker_p);
298
299 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
300 OBJECT. The OFFSET, for a seekable object, specifies the
301 starting point. The ANNEX can be used to provide additional
302 data-specific information to the target.
303
304 Return the number of bytes actually transfered, or -1 if the
305 transfer is not supported or otherwise fails. Return of a positive
306 value less than LEN indicates that no further transfer is possible.
307 Unlike the raw to_xfer_partial interface, callers of these
308 functions do not need to retry partial transfers. */
309
310 extern LONGEST target_read (struct target_ops *ops,
311 enum target_object object,
312 const char *annex, gdb_byte *buf,
313 ULONGEST offset, LONGEST len);
314
315 struct memory_read_result
316 {
317 /* First address that was read. */
318 ULONGEST begin;
319 /* Past-the-end address. */
320 ULONGEST end;
321 /* The data. */
322 gdb_byte *data;
323 };
324 typedef struct memory_read_result memory_read_result_s;
325 DEF_VEC_O(memory_read_result_s);
326
327 extern void free_memory_read_result_vector (void *);
328
329 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
330 ULONGEST offset,
331 LONGEST len);
332
333 extern LONGEST target_write (struct target_ops *ops,
334 enum target_object object,
335 const char *annex, const gdb_byte *buf,
336 ULONGEST offset, LONGEST len);
337
338 /* Similar to target_write, except that it also calls PROGRESS with
339 the number of bytes written and the opaque BATON after every
340 successful partial write (and before the first write). This is
341 useful for progress reporting and user interaction while writing
342 data. To abort the transfer, the progress callback can throw an
343 exception. */
344
345 LONGEST target_write_with_progress (struct target_ops *ops,
346 enum target_object object,
347 const char *annex, const gdb_byte *buf,
348 ULONGEST offset, LONGEST len,
349 void (*progress) (ULONGEST, void *),
350 void *baton);
351
352 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
353 be read using OPS. The return value will be -1 if the transfer
354 fails or is not supported; 0 if the object is empty; or the length
355 of the object otherwise. If a positive value is returned, a
356 sufficiently large buffer will be allocated using xmalloc and
357 returned in *BUF_P containing the contents of the object.
358
359 This method should be used for objects sufficiently small to store
360 in a single xmalloc'd buffer, when no fixed bound on the object's
361 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
362 through this function. */
363
364 extern LONGEST target_read_alloc (struct target_ops *ops,
365 enum target_object object,
366 const char *annex, gdb_byte **buf_p);
367
368 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
369 returned as a string, allocated using xmalloc. If an error occurs
370 or the transfer is unsupported, NULL is returned. Empty objects
371 are returned as allocated but empty strings. A warning is issued
372 if the result contains any embedded NUL bytes. */
373
374 extern char *target_read_stralloc (struct target_ops *ops,
375 enum target_object object,
376 const char *annex);
377
378 /* Wrappers to target read/write that perform memory transfers. They
379 throw an error if the memory transfer fails.
380
381 NOTE: cagney/2003-10-23: The naming schema is lifted from
382 "frame.h". The parameter order is lifted from get_frame_memory,
383 which in turn lifted it from read_memory. */
384
385 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
386 gdb_byte *buf, LONGEST len);
387 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
388 CORE_ADDR addr, int len,
389 enum bfd_endian byte_order);
390 \f
391 struct thread_info; /* fwd decl for parameter list below: */
392
393 struct target_ops
394 {
395 struct target_ops *beneath; /* To the target under this one. */
396 char *to_shortname; /* Name this target type */
397 char *to_longname; /* Name for printing */
398 char *to_doc; /* Documentation. Does not include trailing
399 newline, and starts with a one-line descrip-
400 tion (probably similar to to_longname). */
401 /* Per-target scratch pad. */
402 void *to_data;
403 /* The open routine takes the rest of the parameters from the
404 command, and (if successful) pushes a new target onto the
405 stack. Targets should supply this routine, if only to provide
406 an error message. */
407 void (*to_open) (char *, int);
408 /* Old targets with a static target vector provide "to_close".
409 New re-entrant targets provide "to_xclose" and that is expected
410 to xfree everything (including the "struct target_ops"). */
411 void (*to_xclose) (struct target_ops *targ, int quitting);
412 void (*to_close) (int);
413 void (*to_attach) (struct target_ops *ops, char *, int);
414 void (*to_post_attach) (int);
415 void (*to_detach) (struct target_ops *ops, char *, int);
416 void (*to_disconnect) (struct target_ops *, char *, int);
417 void (*to_resume) (struct target_ops *, ptid_t, int, enum target_signal);
418 ptid_t (*to_wait) (struct target_ops *,
419 ptid_t, struct target_waitstatus *, int);
420 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
421 void (*to_store_registers) (struct target_ops *, struct regcache *, int);
422 void (*to_prepare_to_store) (struct regcache *);
423
424 /* Transfer LEN bytes of memory between GDB address MYADDR and
425 target address MEMADDR. If WRITE, transfer them to the target, else
426 transfer them from the target. TARGET is the target from which we
427 get this function.
428
429 Return value, N, is one of the following:
430
431 0 means that we can't handle this. If errno has been set, it is the
432 error which prevented us from doing it (FIXME: What about bfd_error?).
433
434 positive (call it N) means that we have transferred N bytes
435 starting at MEMADDR. We might be able to handle more bytes
436 beyond this length, but no promises.
437
438 negative (call its absolute value N) means that we cannot
439 transfer right at MEMADDR, but we could transfer at least
440 something at MEMADDR + N.
441
442 NOTE: cagney/2004-10-01: This has been entirely superseeded by
443 to_xfer_partial and inferior inheritance. */
444
445 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
446 int len, int write,
447 struct mem_attrib *attrib,
448 struct target_ops *target);
449
450 void (*to_files_info) (struct target_ops *);
451 int (*to_insert_breakpoint) (struct gdbarch *, struct bp_target_info *);
452 int (*to_remove_breakpoint) (struct gdbarch *, struct bp_target_info *);
453 int (*to_can_use_hw_breakpoint) (int, int, int);
454 int (*to_ranged_break_num_registers) (struct target_ops *);
455 int (*to_insert_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
456 int (*to_remove_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
457
458 /* Documentation of what the two routines below are expected to do is
459 provided with the corresponding target_* macros. */
460 int (*to_remove_watchpoint) (CORE_ADDR, int, int, struct expression *);
461 int (*to_insert_watchpoint) (CORE_ADDR, int, int, struct expression *);
462
463 int (*to_insert_mask_watchpoint) (struct target_ops *,
464 CORE_ADDR, CORE_ADDR, int);
465 int (*to_remove_mask_watchpoint) (struct target_ops *,
466 CORE_ADDR, CORE_ADDR, int);
467 int (*to_stopped_by_watchpoint) (void);
468 int to_have_steppable_watchpoint;
469 int to_have_continuable_watchpoint;
470 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
471 int (*to_watchpoint_addr_within_range) (struct target_ops *,
472 CORE_ADDR, CORE_ADDR, int);
473
474 /* Documentation of this routine is provided with the corresponding
475 target_* macro. */
476 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
477
478 int (*to_can_accel_watchpoint_condition) (CORE_ADDR, int, int,
479 struct expression *);
480 int (*to_masked_watch_num_registers) (struct target_ops *,
481 CORE_ADDR, CORE_ADDR);
482 void (*to_terminal_init) (void);
483 void (*to_terminal_inferior) (void);
484 void (*to_terminal_ours_for_output) (void);
485 void (*to_terminal_ours) (void);
486 void (*to_terminal_save_ours) (void);
487 void (*to_terminal_info) (char *, int);
488 void (*to_kill) (struct target_ops *);
489 void (*to_load) (char *, int);
490 void (*to_create_inferior) (struct target_ops *,
491 char *, char *, char **, int);
492 void (*to_post_startup_inferior) (ptid_t);
493 int (*to_insert_fork_catchpoint) (int);
494 int (*to_remove_fork_catchpoint) (int);
495 int (*to_insert_vfork_catchpoint) (int);
496 int (*to_remove_vfork_catchpoint) (int);
497 int (*to_follow_fork) (struct target_ops *, int);
498 int (*to_insert_exec_catchpoint) (int);
499 int (*to_remove_exec_catchpoint) (int);
500 int (*to_set_syscall_catchpoint) (int, int, int, int, int *);
501 int (*to_has_exited) (int, int, int *);
502 void (*to_mourn_inferior) (struct target_ops *);
503 int (*to_can_run) (void);
504
505 /* Documentation of this routine is provided with the corresponding
506 target_* macro. */
507 void (*to_pass_signals) (int, unsigned char *);
508
509 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
510 void (*to_find_new_threads) (struct target_ops *);
511 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
512 char *(*to_extra_thread_info) (struct thread_info *);
513 char *(*to_thread_name) (struct thread_info *);
514 void (*to_stop) (ptid_t);
515 void (*to_rcmd) (char *command, struct ui_file *output);
516 char *(*to_pid_to_exec_file) (int pid);
517 void (*to_log_command) (const char *);
518 struct target_section_table *(*to_get_section_table) (struct target_ops *);
519 enum strata to_stratum;
520 int (*to_has_all_memory) (struct target_ops *);
521 int (*to_has_memory) (struct target_ops *);
522 int (*to_has_stack) (struct target_ops *);
523 int (*to_has_registers) (struct target_ops *);
524 int (*to_has_execution) (struct target_ops *, ptid_t);
525 int to_has_thread_control; /* control thread execution */
526 int to_attach_no_wait;
527 /* ASYNC target controls */
528 int (*to_can_async_p) (void);
529 int (*to_is_async_p) (void);
530 void (*to_async) (void (*) (enum inferior_event_type, void *), void *);
531 int (*to_async_mask) (int);
532 int (*to_supports_non_stop) (void);
533 /* find_memory_regions support method for gcore */
534 int (*to_find_memory_regions) (find_memory_region_ftype func, void *data);
535 /* make_corefile_notes support method for gcore */
536 char * (*to_make_corefile_notes) (bfd *, int *);
537 /* get_bookmark support method for bookmarks */
538 gdb_byte * (*to_get_bookmark) (char *, int);
539 /* goto_bookmark support method for bookmarks */
540 void (*to_goto_bookmark) (gdb_byte *, int);
541 /* Return the thread-local address at OFFSET in the
542 thread-local storage for the thread PTID and the shared library
543 or executable file given by OBJFILE. If that block of
544 thread-local storage hasn't been allocated yet, this function
545 may return an error. */
546 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
547 ptid_t ptid,
548 CORE_ADDR load_module_addr,
549 CORE_ADDR offset);
550
551 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
552 OBJECT. The OFFSET, for a seekable object, specifies the
553 starting point. The ANNEX can be used to provide additional
554 data-specific information to the target.
555
556 Return the number of bytes actually transfered, zero when no
557 further transfer is possible, and -1 when the transfer is not
558 supported. Return of a positive value smaller than LEN does
559 not indicate the end of the object, only the end of the
560 transfer; higher level code should continue transferring if
561 desired. This is handled in target.c.
562
563 The interface does not support a "retry" mechanism. Instead it
564 assumes that at least one byte will be transfered on each
565 successful call.
566
567 NOTE: cagney/2003-10-17: The current interface can lead to
568 fragmented transfers. Lower target levels should not implement
569 hacks, such as enlarging the transfer, in an attempt to
570 compensate for this. Instead, the target stack should be
571 extended so that it implements supply/collect methods and a
572 look-aside object cache. With that available, the lowest
573 target can safely and freely "push" data up the stack.
574
575 See target_read and target_write for more information. One,
576 and only one, of readbuf or writebuf must be non-NULL. */
577
578 LONGEST (*to_xfer_partial) (struct target_ops *ops,
579 enum target_object object, const char *annex,
580 gdb_byte *readbuf, const gdb_byte *writebuf,
581 ULONGEST offset, LONGEST len);
582
583 /* Returns the memory map for the target. A return value of NULL
584 means that no memory map is available. If a memory address
585 does not fall within any returned regions, it's assumed to be
586 RAM. The returned memory regions should not overlap.
587
588 The order of regions does not matter; target_memory_map will
589 sort regions by starting address. For that reason, this
590 function should not be called directly except via
591 target_memory_map.
592
593 This method should not cache data; if the memory map could
594 change unexpectedly, it should be invalidated, and higher
595 layers will re-fetch it. */
596 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
597
598 /* Erases the region of flash memory starting at ADDRESS, of
599 length LENGTH.
600
601 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
602 on flash block boundaries, as reported by 'to_memory_map'. */
603 void (*to_flash_erase) (struct target_ops *,
604 ULONGEST address, LONGEST length);
605
606 /* Finishes a flash memory write sequence. After this operation
607 all flash memory should be available for writing and the result
608 of reading from areas written by 'to_flash_write' should be
609 equal to what was written. */
610 void (*to_flash_done) (struct target_ops *);
611
612 /* Describe the architecture-specific features of this target.
613 Returns the description found, or NULL if no description
614 was available. */
615 const struct target_desc *(*to_read_description) (struct target_ops *ops);
616
617 /* Build the PTID of the thread on which a given task is running,
618 based on LWP and THREAD. These values are extracted from the
619 task Private_Data section of the Ada Task Control Block, and
620 their interpretation depends on the target. */
621 ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
622
623 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
624 Return 0 if *READPTR is already at the end of the buffer.
625 Return -1 if there is insufficient buffer for a whole entry.
626 Return 1 if an entry was read into *TYPEP and *VALP. */
627 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
628 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
629
630 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
631 sequence of bytes in PATTERN with length PATTERN_LEN.
632
633 The result is 1 if found, 0 if not found, and -1 if there was an error
634 requiring halting of the search (e.g. memory read error).
635 If the pattern is found the address is recorded in FOUND_ADDRP. */
636 int (*to_search_memory) (struct target_ops *ops,
637 CORE_ADDR start_addr, ULONGEST search_space_len,
638 const gdb_byte *pattern, ULONGEST pattern_len,
639 CORE_ADDR *found_addrp);
640
641 /* Can target execute in reverse? */
642 int (*to_can_execute_reverse) (void);
643
644 /* Does this target support debugging multiple processes
645 simultaneously? */
646 int (*to_supports_multi_process) (void);
647
648 /* Does this target support enabling and disabling tracepoints while a trace
649 experiment is running? */
650 int (*to_supports_enable_disable_tracepoint) (void);
651
652 /* Determine current architecture of thread PTID.
653
654 The target is supposed to determine the architecture of the code where
655 the target is currently stopped at (on Cell, if a target is in spu_run,
656 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
657 This is architecture used to perform decr_pc_after_break adjustment,
658 and also determines the frame architecture of the innermost frame.
659 ptrace operations need to operate according to target_gdbarch.
660
661 The default implementation always returns target_gdbarch. */
662 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
663
664 /* Determine current address space of thread PTID.
665
666 The default implementation always returns the inferior's
667 address space. */
668 struct address_space *(*to_thread_address_space) (struct target_ops *,
669 ptid_t);
670
671 /* Tracepoint-related operations. */
672
673 /* Prepare the target for a tracing run. */
674 void (*to_trace_init) (void);
675
676 /* Send full details of a tracepoint to the target. */
677 void (*to_download_tracepoint) (struct breakpoint *t);
678
679 /* Send full details of a trace state variable to the target. */
680 void (*to_download_trace_state_variable) (struct trace_state_variable *tsv);
681
682 /* Enable a tracepoint on the target. */
683 void (*to_enable_tracepoint) (struct bp_location *location);
684
685 /* Disable a tracepoint on the target. */
686 void (*to_disable_tracepoint) (struct bp_location *location);
687
688 /* Inform the target info of memory regions that are readonly
689 (such as text sections), and so it should return data from
690 those rather than look in the trace buffer. */
691 void (*to_trace_set_readonly_regions) (void);
692
693 /* Start a trace run. */
694 void (*to_trace_start) (void);
695
696 /* Get the current status of a tracing run. */
697 int (*to_get_trace_status) (struct trace_status *ts);
698
699 /* Stop a trace run. */
700 void (*to_trace_stop) (void);
701
702 /* Ask the target to find a trace frame of the given type TYPE,
703 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
704 number of the trace frame, and also the tracepoint number at
705 TPP. If no trace frame matches, return -1. May throw if the
706 operation fails. */
707 int (*to_trace_find) (enum trace_find_type type, int num,
708 ULONGEST addr1, ULONGEST addr2, int *tpp);
709
710 /* Get the value of the trace state variable number TSV, returning
711 1 if the value is known and writing the value itself into the
712 location pointed to by VAL, else returning 0. */
713 int (*to_get_trace_state_variable_value) (int tsv, LONGEST *val);
714
715 int (*to_save_trace_data) (const char *filename);
716
717 int (*to_upload_tracepoints) (struct uploaded_tp **utpp);
718
719 int (*to_upload_trace_state_variables) (struct uploaded_tsv **utsvp);
720
721 LONGEST (*to_get_raw_trace_data) (gdb_byte *buf,
722 ULONGEST offset, LONGEST len);
723
724 /* Set the target's tracing behavior in response to unexpected
725 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
726 void (*to_set_disconnected_tracing) (int val);
727 void (*to_set_circular_trace_buffer) (int val);
728
729 /* Return the processor core that thread PTID was last seen on.
730 This information is updated only when:
731 - update_thread_list is called
732 - thread stops
733 If the core cannot be determined -- either for the specified
734 thread, or right now, or in this debug session, or for this
735 target -- return -1. */
736 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
737
738 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
739 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
740 a match, 0 if there's a mismatch, and -1 if an error is
741 encountered while reading memory. */
742 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
743 CORE_ADDR memaddr, ULONGEST size);
744
745 /* Return the address of the start of the Thread Information Block
746 a Windows OS specific feature. */
747 int (*to_get_tib_address) (ptid_t ptid, CORE_ADDR *addr);
748
749 /* Send the new settings of write permission variables. */
750 void (*to_set_permissions) (void);
751
752 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
753 with its details. Return 1 on success, 0 on failure. */
754 int (*to_static_tracepoint_marker_at) (CORE_ADDR,
755 struct static_tracepoint_marker *marker);
756
757 /* Return a vector of all tracepoints markers string id ID, or all
758 markers if ID is NULL. */
759 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
760 (const char *id);
761
762 /* Return a traceframe info object describing the current
763 traceframe's contents. This method should not cache data;
764 higher layers take care of caching, invalidating, and
765 re-fetching when necessary. */
766 struct traceframe_info *(*to_traceframe_info) (void);
767
768 int to_magic;
769 /* Need sub-structure for target machine related rather than comm related?
770 */
771 };
772
773 /* Magic number for checking ops size. If a struct doesn't end with this
774 number, somebody changed the declaration but didn't change all the
775 places that initialize one. */
776
777 #define OPS_MAGIC 3840
778
779 /* The ops structure for our "current" target process. This should
780 never be NULL. If there is no target, it points to the dummy_target. */
781
782 extern struct target_ops current_target;
783
784 /* Define easy words for doing these operations on our current target. */
785
786 #define target_shortname (current_target.to_shortname)
787 #define target_longname (current_target.to_longname)
788
789 /* Does whatever cleanup is required for a target that we are no
790 longer going to be calling. QUITTING indicates that GDB is exiting
791 and should not get hung on an error (otherwise it is important to
792 perform clean termination, even if it takes a while). This routine
793 is automatically always called when popping the target off the
794 target stack (to_beneath is undefined). Closing file descriptors
795 and freeing all memory allocated memory are typical things it
796 should do. */
797
798 void target_close (struct target_ops *targ, int quitting);
799
800 /* Attaches to a process on the target side. Arguments are as passed
801 to the `attach' command by the user. This routine can be called
802 when the target is not on the target-stack, if the target_can_run
803 routine returns 1; in that case, it must push itself onto the stack.
804 Upon exit, the target should be ready for normal operations, and
805 should be ready to deliver the status of the process immediately
806 (without waiting) to an upcoming target_wait call. */
807
808 void target_attach (char *, int);
809
810 /* Some targets don't generate traps when attaching to the inferior,
811 or their target_attach implementation takes care of the waiting.
812 These targets must set to_attach_no_wait. */
813
814 #define target_attach_no_wait \
815 (current_target.to_attach_no_wait)
816
817 /* The target_attach operation places a process under debugger control,
818 and stops the process.
819
820 This operation provides a target-specific hook that allows the
821 necessary bookkeeping to be performed after an attach completes. */
822 #define target_post_attach(pid) \
823 (*current_target.to_post_attach) (pid)
824
825 /* Takes a program previously attached to and detaches it.
826 The program may resume execution (some targets do, some don't) and will
827 no longer stop on signals, etc. We better not have left any breakpoints
828 in the program or it'll die when it hits one. ARGS is arguments
829 typed by the user (e.g. a signal to send the process). FROM_TTY
830 says whether to be verbose or not. */
831
832 extern void target_detach (char *, int);
833
834 /* Disconnect from the current target without resuming it (leaving it
835 waiting for a debugger). */
836
837 extern void target_disconnect (char *, int);
838
839 /* Resume execution of the target process PTID. STEP says whether to
840 single-step or to run free; SIGGNAL is the signal to be given to
841 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
842 pass TARGET_SIGNAL_DEFAULT. */
843
844 extern void target_resume (ptid_t ptid, int step, enum target_signal signal);
845
846 /* Wait for process pid to do something. PTID = -1 to wait for any
847 pid to do something. Return pid of child, or -1 in case of error;
848 store status through argument pointer STATUS. Note that it is
849 _NOT_ OK to throw_exception() out of target_wait() without popping
850 the debugging target from the stack; GDB isn't prepared to get back
851 to the prompt with a debugging target but without the frame cache,
852 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
853 options. */
854
855 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
856 int options);
857
858 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
859
860 extern void target_fetch_registers (struct regcache *regcache, int regno);
861
862 /* Store at least register REGNO, or all regs if REGNO == -1.
863 It can store as many registers as it wants to, so target_prepare_to_store
864 must have been previously called. Calls error() if there are problems. */
865
866 extern void target_store_registers (struct regcache *regcache, int regs);
867
868 /* Get ready to modify the registers array. On machines which store
869 individual registers, this doesn't need to do anything. On machines
870 which store all the registers in one fell swoop, this makes sure
871 that REGISTERS contains all the registers from the program being
872 debugged. */
873
874 #define target_prepare_to_store(regcache) \
875 (*current_target.to_prepare_to_store) (regcache)
876
877 /* Determine current address space of thread PTID. */
878
879 struct address_space *target_thread_address_space (ptid_t);
880
881 /* Returns true if this target can debug multiple processes
882 simultaneously. */
883
884 #define target_supports_multi_process() \
885 (*current_target.to_supports_multi_process) ()
886
887 /* Returns true if this target can enable and disable tracepoints
888 while a trace experiment is running. */
889
890 #define target_supports_enable_disable_tracepoint() \
891 (*current_target.to_supports_enable_disable_tracepoint) ()
892
893 /* Invalidate all target dcaches. */
894 extern void target_dcache_invalidate (void);
895
896 extern int target_read_string (CORE_ADDR, char **, int, int *);
897
898 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
899
900 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
901
902 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
903 int len);
904
905 /* Fetches the target's memory map. If one is found it is sorted
906 and returned, after some consistency checking. Otherwise, NULL
907 is returned. */
908 VEC(mem_region_s) *target_memory_map (void);
909
910 /* Erase the specified flash region. */
911 void target_flash_erase (ULONGEST address, LONGEST length);
912
913 /* Finish a sequence of flash operations. */
914 void target_flash_done (void);
915
916 /* Describes a request for a memory write operation. */
917 struct memory_write_request
918 {
919 /* Begining address that must be written. */
920 ULONGEST begin;
921 /* Past-the-end address. */
922 ULONGEST end;
923 /* The data to write. */
924 gdb_byte *data;
925 /* A callback baton for progress reporting for this request. */
926 void *baton;
927 };
928 typedef struct memory_write_request memory_write_request_s;
929 DEF_VEC_O(memory_write_request_s);
930
931 /* Enumeration specifying different flash preservation behaviour. */
932 enum flash_preserve_mode
933 {
934 flash_preserve,
935 flash_discard
936 };
937
938 /* Write several memory blocks at once. This version can be more
939 efficient than making several calls to target_write_memory, in
940 particular because it can optimize accesses to flash memory.
941
942 Moreover, this is currently the only memory access function in gdb
943 that supports writing to flash memory, and it should be used for
944 all cases where access to flash memory is desirable.
945
946 REQUESTS is the vector (see vec.h) of memory_write_request.
947 PRESERVE_FLASH_P indicates what to do with blocks which must be
948 erased, but not completely rewritten.
949 PROGRESS_CB is a function that will be periodically called to provide
950 feedback to user. It will be called with the baton corresponding
951 to the request currently being written. It may also be called
952 with a NULL baton, when preserved flash sectors are being rewritten.
953
954 The function returns 0 on success, and error otherwise. */
955 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
956 enum flash_preserve_mode preserve_flash_p,
957 void (*progress_cb) (ULONGEST, void *));
958
959 /* From infrun.c. */
960
961 extern int inferior_has_forked (ptid_t pid, ptid_t *child_pid);
962
963 extern int inferior_has_vforked (ptid_t pid, ptid_t *child_pid);
964
965 extern int inferior_has_execd (ptid_t pid, char **execd_pathname);
966
967 extern int inferior_has_called_syscall (ptid_t pid, int *syscall_number);
968
969 /* Print a line about the current target. */
970
971 #define target_files_info() \
972 (*current_target.to_files_info) (&current_target)
973
974 /* Insert a breakpoint at address BP_TGT->placed_address in the target
975 machine. Result is 0 for success, or an errno value. */
976
977 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
978 struct bp_target_info *bp_tgt);
979
980 /* Remove a breakpoint at address BP_TGT->placed_address in the target
981 machine. Result is 0 for success, or an errno value. */
982
983 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
984 struct bp_target_info *bp_tgt);
985
986 /* Initialize the terminal settings we record for the inferior,
987 before we actually run the inferior. */
988
989 #define target_terminal_init() \
990 (*current_target.to_terminal_init) ()
991
992 /* Put the inferior's terminal settings into effect.
993 This is preparation for starting or resuming the inferior. */
994
995 extern void target_terminal_inferior (void);
996
997 /* Put some of our terminal settings into effect,
998 enough to get proper results from our output,
999 but do not change into or out of RAW mode
1000 so that no input is discarded.
1001
1002 After doing this, either terminal_ours or terminal_inferior
1003 should be called to get back to a normal state of affairs. */
1004
1005 #define target_terminal_ours_for_output() \
1006 (*current_target.to_terminal_ours_for_output) ()
1007
1008 /* Put our terminal settings into effect.
1009 First record the inferior's terminal settings
1010 so they can be restored properly later. */
1011
1012 #define target_terminal_ours() \
1013 (*current_target.to_terminal_ours) ()
1014
1015 /* Save our terminal settings.
1016 This is called from TUI after entering or leaving the curses
1017 mode. Since curses modifies our terminal this call is here
1018 to take this change into account. */
1019
1020 #define target_terminal_save_ours() \
1021 (*current_target.to_terminal_save_ours) ()
1022
1023 /* Print useful information about our terminal status, if such a thing
1024 exists. */
1025
1026 #define target_terminal_info(arg, from_tty) \
1027 (*current_target.to_terminal_info) (arg, from_tty)
1028
1029 /* Kill the inferior process. Make it go away. */
1030
1031 extern void target_kill (void);
1032
1033 /* Load an executable file into the target process. This is expected
1034 to not only bring new code into the target process, but also to
1035 update GDB's symbol tables to match.
1036
1037 ARG contains command-line arguments, to be broken down with
1038 buildargv (). The first non-switch argument is the filename to
1039 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1040 0)), which is an offset to apply to the load addresses of FILE's
1041 sections. The target may define switches, or other non-switch
1042 arguments, as it pleases. */
1043
1044 extern void target_load (char *arg, int from_tty);
1045
1046 /* Start an inferior process and set inferior_ptid to its pid.
1047 EXEC_FILE is the file to run.
1048 ALLARGS is a string containing the arguments to the program.
1049 ENV is the environment vector to pass. Errors reported with error().
1050 On VxWorks and various standalone systems, we ignore exec_file. */
1051
1052 void target_create_inferior (char *exec_file, char *args,
1053 char **env, int from_tty);
1054
1055 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1056 notification of inferior events such as fork and vork immediately
1057 after the inferior is created. (This because of how gdb gets an
1058 inferior created via invoking a shell to do it. In such a scenario,
1059 if the shell init file has commands in it, the shell will fork and
1060 exec for each of those commands, and we will see each such fork
1061 event. Very bad.)
1062
1063 Such targets will supply an appropriate definition for this function. */
1064
1065 #define target_post_startup_inferior(ptid) \
1066 (*current_target.to_post_startup_inferior) (ptid)
1067
1068 /* On some targets, we can catch an inferior fork or vfork event when
1069 it occurs. These functions insert/remove an already-created
1070 catchpoint for such events. They return 0 for success, 1 if the
1071 catchpoint type is not supported and -1 for failure. */
1072
1073 #define target_insert_fork_catchpoint(pid) \
1074 (*current_target.to_insert_fork_catchpoint) (pid)
1075
1076 #define target_remove_fork_catchpoint(pid) \
1077 (*current_target.to_remove_fork_catchpoint) (pid)
1078
1079 #define target_insert_vfork_catchpoint(pid) \
1080 (*current_target.to_insert_vfork_catchpoint) (pid)
1081
1082 #define target_remove_vfork_catchpoint(pid) \
1083 (*current_target.to_remove_vfork_catchpoint) (pid)
1084
1085 /* If the inferior forks or vforks, this function will be called at
1086 the next resume in order to perform any bookkeeping and fiddling
1087 necessary to continue debugging either the parent or child, as
1088 requested, and releasing the other. Information about the fork
1089 or vfork event is available via get_last_target_status ().
1090 This function returns 1 if the inferior should not be resumed
1091 (i.e. there is another event pending). */
1092
1093 int target_follow_fork (int follow_child);
1094
1095 /* On some targets, we can catch an inferior exec event when it
1096 occurs. These functions insert/remove an already-created
1097 catchpoint for such events. They return 0 for success, 1 if the
1098 catchpoint type is not supported and -1 for failure. */
1099
1100 #define target_insert_exec_catchpoint(pid) \
1101 (*current_target.to_insert_exec_catchpoint) (pid)
1102
1103 #define target_remove_exec_catchpoint(pid) \
1104 (*current_target.to_remove_exec_catchpoint) (pid)
1105
1106 /* Syscall catch.
1107
1108 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1109 If NEEDED is zero, it means the target can disable the mechanism to
1110 catch system calls because there are no more catchpoints of this type.
1111
1112 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1113 being requested. In this case, both TABLE_SIZE and TABLE should
1114 be ignored.
1115
1116 TABLE_SIZE is the number of elements in TABLE. It only matters if
1117 ANY_COUNT is zero.
1118
1119 TABLE is an array of ints, indexed by syscall number. An element in
1120 this array is nonzero if that syscall should be caught. This argument
1121 only matters if ANY_COUNT is zero.
1122
1123 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1124 for failure. */
1125
1126 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1127 (*current_target.to_set_syscall_catchpoint) (pid, needed, any_count, \
1128 table_size, table)
1129
1130 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1131 exit code of PID, if any. */
1132
1133 #define target_has_exited(pid,wait_status,exit_status) \
1134 (*current_target.to_has_exited) (pid,wait_status,exit_status)
1135
1136 /* The debugger has completed a blocking wait() call. There is now
1137 some process event that must be processed. This function should
1138 be defined by those targets that require the debugger to perform
1139 cleanup or internal state changes in response to the process event. */
1140
1141 /* The inferior process has died. Do what is right. */
1142
1143 void target_mourn_inferior (void);
1144
1145 /* Does target have enough data to do a run or attach command? */
1146
1147 #define target_can_run(t) \
1148 ((t)->to_can_run) ()
1149
1150 /* Set list of signals to be handled in the target.
1151
1152 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1153 (enum target_signal). For every signal whose entry in this array is
1154 non-zero, the target is allowed -but not required- to skip reporting
1155 arrival of the signal to the GDB core by returning from target_wait,
1156 and to pass the signal directly to the inferior instead.
1157
1158 However, if the target is hardware single-stepping a thread that is
1159 about to receive a signal, it needs to be reported in any case, even
1160 if mentioned in a previous target_pass_signals call. */
1161
1162 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1163
1164 /* Check to see if a thread is still alive. */
1165
1166 extern int target_thread_alive (ptid_t ptid);
1167
1168 /* Query for new threads and add them to the thread list. */
1169
1170 extern void target_find_new_threads (void);
1171
1172 /* Make target stop in a continuable fashion. (For instance, under
1173 Unix, this should act like SIGSTOP). This function is normally
1174 used by GUIs to implement a stop button. */
1175
1176 extern void target_stop (ptid_t ptid);
1177
1178 /* Send the specified COMMAND to the target's monitor
1179 (shell,interpreter) for execution. The result of the query is
1180 placed in OUTBUF. */
1181
1182 #define target_rcmd(command, outbuf) \
1183 (*current_target.to_rcmd) (command, outbuf)
1184
1185
1186 /* Does the target include all of memory, or only part of it? This
1187 determines whether we look up the target chain for other parts of
1188 memory if this target can't satisfy a request. */
1189
1190 extern int target_has_all_memory_1 (void);
1191 #define target_has_all_memory target_has_all_memory_1 ()
1192
1193 /* Does the target include memory? (Dummy targets don't.) */
1194
1195 extern int target_has_memory_1 (void);
1196 #define target_has_memory target_has_memory_1 ()
1197
1198 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1199 we start a process.) */
1200
1201 extern int target_has_stack_1 (void);
1202 #define target_has_stack target_has_stack_1 ()
1203
1204 /* Does the target have registers? (Exec files don't.) */
1205
1206 extern int target_has_registers_1 (void);
1207 #define target_has_registers target_has_registers_1 ()
1208
1209 /* Does the target have execution? Can we make it jump (through
1210 hoops), or pop its stack a few times? This means that the current
1211 target is currently executing; for some targets, that's the same as
1212 whether or not the target is capable of execution, but there are
1213 also targets which can be current while not executing. In that
1214 case this will become true after target_create_inferior or
1215 target_attach. */
1216
1217 extern int target_has_execution_1 (ptid_t);
1218
1219 /* Like target_has_execution_1, but always passes inferior_ptid. */
1220
1221 extern int target_has_execution_current (void);
1222
1223 #define target_has_execution target_has_execution_current ()
1224
1225 /* Default implementations for process_stratum targets. Return true
1226 if there's a selected inferior, false otherwise. */
1227
1228 extern int default_child_has_all_memory (struct target_ops *ops);
1229 extern int default_child_has_memory (struct target_ops *ops);
1230 extern int default_child_has_stack (struct target_ops *ops);
1231 extern int default_child_has_registers (struct target_ops *ops);
1232 extern int default_child_has_execution (struct target_ops *ops,
1233 ptid_t the_ptid);
1234
1235 /* Can the target support the debugger control of thread execution?
1236 Can it lock the thread scheduler? */
1237
1238 #define target_can_lock_scheduler \
1239 (current_target.to_has_thread_control & tc_schedlock)
1240
1241 /* Should the target enable async mode if it is supported? Temporary
1242 cludge until async mode is a strict superset of sync mode. */
1243 extern int target_async_permitted;
1244
1245 /* Can the target support asynchronous execution? */
1246 #define target_can_async_p() (current_target.to_can_async_p ())
1247
1248 /* Is the target in asynchronous execution mode? */
1249 #define target_is_async_p() (current_target.to_is_async_p ())
1250
1251 int target_supports_non_stop (void);
1252
1253 /* Put the target in async mode with the specified callback function. */
1254 #define target_async(CALLBACK,CONTEXT) \
1255 (current_target.to_async ((CALLBACK), (CONTEXT)))
1256
1257 /* This is to be used ONLY within call_function_by_hand(). It provides
1258 a workaround, to have inferior function calls done in sychronous
1259 mode, even though the target is asynchronous. After
1260 target_async_mask(0) is called, calls to target_can_async_p() will
1261 return FALSE , so that target_resume() will not try to start the
1262 target asynchronously. After the inferior stops, we IMMEDIATELY
1263 restore the previous nature of the target, by calling
1264 target_async_mask(1). After that, target_can_async_p() will return
1265 TRUE. ANY OTHER USE OF THIS FEATURE IS DEPRECATED.
1266
1267 FIXME ezannoni 1999-12-13: we won't need this once we move
1268 the turning async on and off to the single execution commands,
1269 from where it is done currently, in remote_resume(). */
1270
1271 #define target_async_mask(MASK) \
1272 (current_target.to_async_mask (MASK))
1273
1274 /* Converts a process id to a string. Usually, the string just contains
1275 `process xyz', but on some systems it may contain
1276 `process xyz thread abc'. */
1277
1278 extern char *target_pid_to_str (ptid_t ptid);
1279
1280 extern char *normal_pid_to_str (ptid_t ptid);
1281
1282 /* Return a short string describing extra information about PID,
1283 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1284 is okay. */
1285
1286 #define target_extra_thread_info(TP) \
1287 (current_target.to_extra_thread_info (TP))
1288
1289 /* Return the thread's name. A NULL result means that the target
1290 could not determine this thread's name. */
1291
1292 extern char *target_thread_name (struct thread_info *);
1293
1294 /* Attempts to find the pathname of the executable file
1295 that was run to create a specified process.
1296
1297 The process PID must be stopped when this operation is used.
1298
1299 If the executable file cannot be determined, NULL is returned.
1300
1301 Else, a pointer to a character string containing the pathname
1302 is returned. This string should be copied into a buffer by
1303 the client if the string will not be immediately used, or if
1304 it must persist. */
1305
1306 #define target_pid_to_exec_file(pid) \
1307 (current_target.to_pid_to_exec_file) (pid)
1308
1309 /* See the to_thread_architecture description in struct target_ops. */
1310
1311 #define target_thread_architecture(ptid) \
1312 (current_target.to_thread_architecture (&current_target, ptid))
1313
1314 /*
1315 * Iterator function for target memory regions.
1316 * Calls a callback function once for each memory region 'mapped'
1317 * in the child process. Defined as a simple macro rather than
1318 * as a function macro so that it can be tested for nullity.
1319 */
1320
1321 #define target_find_memory_regions(FUNC, DATA) \
1322 (current_target.to_find_memory_regions) (FUNC, DATA)
1323
1324 /*
1325 * Compose corefile .note section.
1326 */
1327
1328 #define target_make_corefile_notes(BFD, SIZE_P) \
1329 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1330
1331 /* Bookmark interfaces. */
1332 #define target_get_bookmark(ARGS, FROM_TTY) \
1333 (current_target.to_get_bookmark) (ARGS, FROM_TTY)
1334
1335 #define target_goto_bookmark(ARG, FROM_TTY) \
1336 (current_target.to_goto_bookmark) (ARG, FROM_TTY)
1337
1338 /* Hardware watchpoint interfaces. */
1339
1340 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1341 write). Only the INFERIOR_PTID task is being queried. */
1342
1343 #define target_stopped_by_watchpoint \
1344 (*current_target.to_stopped_by_watchpoint)
1345
1346 /* Non-zero if we have steppable watchpoints */
1347
1348 #define target_have_steppable_watchpoint \
1349 (current_target.to_have_steppable_watchpoint)
1350
1351 /* Non-zero if we have continuable watchpoints */
1352
1353 #define target_have_continuable_watchpoint \
1354 (current_target.to_have_continuable_watchpoint)
1355
1356 /* Provide defaults for hardware watchpoint functions. */
1357
1358 /* If the *_hw_beakpoint functions have not been defined
1359 elsewhere use the definitions in the target vector. */
1360
1361 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1362 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1363 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1364 (including this one?). OTHERTYPE is who knows what... */
1365
1366 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1367 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1368
1369 /* Returns the number of debug registers needed to watch the given
1370 memory region, or zero if not supported. */
1371
1372 #define target_region_ok_for_hw_watchpoint(addr, len) \
1373 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1374
1375
1376 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1377 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1378 COND is the expression for its condition, or NULL if there's none.
1379 Returns 0 for success, 1 if the watchpoint type is not supported,
1380 -1 for failure. */
1381
1382 #define target_insert_watchpoint(addr, len, type, cond) \
1383 (*current_target.to_insert_watchpoint) (addr, len, type, cond)
1384
1385 #define target_remove_watchpoint(addr, len, type, cond) \
1386 (*current_target.to_remove_watchpoint) (addr, len, type, cond)
1387
1388 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1389 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1390 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1391 masked watchpoints are not supported, -1 for failure. */
1392
1393 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1394
1395 /* Remove a masked watchpoint at ADDR with the mask MASK.
1396 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1397 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1398 for failure. */
1399
1400 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1401
1402 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1403 (*current_target.to_insert_hw_breakpoint) (gdbarch, bp_tgt)
1404
1405 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1406 (*current_target.to_remove_hw_breakpoint) (gdbarch, bp_tgt)
1407
1408 /* Return number of debug registers needed for a ranged breakpoint,
1409 or -1 if ranged breakpoints are not supported. */
1410
1411 extern int target_ranged_break_num_registers (void);
1412
1413 /* Return non-zero if target knows the data address which triggered this
1414 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1415 INFERIOR_PTID task is being queried. */
1416 #define target_stopped_data_address(target, addr_p) \
1417 (*target.to_stopped_data_address) (target, addr_p)
1418
1419 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1420 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1421
1422 /* Return non-zero if the target is capable of using hardware to evaluate
1423 the condition expression. In this case, if the condition is false when
1424 the watched memory location changes, execution may continue without the
1425 debugger being notified.
1426
1427 Due to limitations in the hardware implementation, it may be capable of
1428 avoiding triggering the watchpoint in some cases where the condition
1429 expression is false, but may report some false positives as well.
1430 For this reason, GDB will still evaluate the condition expression when
1431 the watchpoint triggers. */
1432 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1433 (*current_target.to_can_accel_watchpoint_condition) (addr, len, type, cond)
1434
1435 /* Return number of debug registers needed for a masked watchpoint,
1436 -1 if masked watchpoints are not supported or -2 if the given address
1437 and mask combination cannot be used. */
1438
1439 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1440
1441 /* Target can execute in reverse? */
1442 #define target_can_execute_reverse \
1443 (current_target.to_can_execute_reverse ? \
1444 current_target.to_can_execute_reverse () : 0)
1445
1446 extern const struct target_desc *target_read_description (struct target_ops *);
1447
1448 #define target_get_ada_task_ptid(lwp, tid) \
1449 (*current_target.to_get_ada_task_ptid) (lwp,tid)
1450
1451 /* Utility implementation of searching memory. */
1452 extern int simple_search_memory (struct target_ops* ops,
1453 CORE_ADDR start_addr,
1454 ULONGEST search_space_len,
1455 const gdb_byte *pattern,
1456 ULONGEST pattern_len,
1457 CORE_ADDR *found_addrp);
1458
1459 /* Main entry point for searching memory. */
1460 extern int target_search_memory (CORE_ADDR start_addr,
1461 ULONGEST search_space_len,
1462 const gdb_byte *pattern,
1463 ULONGEST pattern_len,
1464 CORE_ADDR *found_addrp);
1465
1466 /* Tracepoint-related operations. */
1467
1468 #define target_trace_init() \
1469 (*current_target.to_trace_init) ()
1470
1471 #define target_download_tracepoint(t) \
1472 (*current_target.to_download_tracepoint) (t)
1473
1474 #define target_download_trace_state_variable(tsv) \
1475 (*current_target.to_download_trace_state_variable) (tsv)
1476
1477 #define target_enable_tracepoint(loc) \
1478 (*current_target.to_enable_tracepoint) (loc)
1479
1480 #define target_disable_tracepoint(loc) \
1481 (*current_target.to_disable_tracepoint) (loc)
1482
1483 #define target_trace_start() \
1484 (*current_target.to_trace_start) ()
1485
1486 #define target_trace_set_readonly_regions() \
1487 (*current_target.to_trace_set_readonly_regions) ()
1488
1489 #define target_get_trace_status(ts) \
1490 (*current_target.to_get_trace_status) (ts)
1491
1492 #define target_trace_stop() \
1493 (*current_target.to_trace_stop) ()
1494
1495 #define target_trace_find(type,num,addr1,addr2,tpp) \
1496 (*current_target.to_trace_find) ((type), (num), (addr1), (addr2), (tpp))
1497
1498 #define target_get_trace_state_variable_value(tsv,val) \
1499 (*current_target.to_get_trace_state_variable_value) ((tsv), (val))
1500
1501 #define target_save_trace_data(filename) \
1502 (*current_target.to_save_trace_data) (filename)
1503
1504 #define target_upload_tracepoints(utpp) \
1505 (*current_target.to_upload_tracepoints) (utpp)
1506
1507 #define target_upload_trace_state_variables(utsvp) \
1508 (*current_target.to_upload_trace_state_variables) (utsvp)
1509
1510 #define target_get_raw_trace_data(buf,offset,len) \
1511 (*current_target.to_get_raw_trace_data) ((buf), (offset), (len))
1512
1513 #define target_set_disconnected_tracing(val) \
1514 (*current_target.to_set_disconnected_tracing) (val)
1515
1516 #define target_set_circular_trace_buffer(val) \
1517 (*current_target.to_set_circular_trace_buffer) (val)
1518
1519 #define target_get_tib_address(ptid, addr) \
1520 (*current_target.to_get_tib_address) ((ptid), (addr))
1521
1522 #define target_set_permissions() \
1523 (*current_target.to_set_permissions) ()
1524
1525 #define target_static_tracepoint_marker_at(addr, marker) \
1526 (*current_target.to_static_tracepoint_marker_at) (addr, marker)
1527
1528 #define target_static_tracepoint_markers_by_strid(marker_id) \
1529 (*current_target.to_static_tracepoint_markers_by_strid) (marker_id)
1530
1531 #define target_traceframe_info() \
1532 (*current_target.to_traceframe_info) ()
1533
1534 /* Command logging facility. */
1535
1536 #define target_log_command(p) \
1537 do \
1538 if (current_target.to_log_command) \
1539 (*current_target.to_log_command) (p); \
1540 while (0)
1541
1542
1543 extern int target_core_of_thread (ptid_t ptid);
1544
1545 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1546 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1547 if there's a mismatch, and -1 if an error is encountered while
1548 reading memory. Throws an error if the functionality is found not
1549 to be supported by the current target. */
1550 int target_verify_memory (const gdb_byte *data,
1551 CORE_ADDR memaddr, ULONGEST size);
1552
1553 /* Routines for maintenance of the target structures...
1554
1555 add_target: Add a target to the list of all possible targets.
1556
1557 push_target: Make this target the top of the stack of currently used
1558 targets, within its particular stratum of the stack. Result
1559 is 0 if now atop the stack, nonzero if not on top (maybe
1560 should warn user).
1561
1562 unpush_target: Remove this from the stack of currently used targets,
1563 no matter where it is on the list. Returns 0 if no
1564 change, 1 if removed from stack.
1565
1566 pop_target: Remove the top thing on the stack of current targets. */
1567
1568 extern void add_target (struct target_ops *);
1569
1570 extern void push_target (struct target_ops *);
1571
1572 extern int unpush_target (struct target_ops *);
1573
1574 extern void target_pre_inferior (int);
1575
1576 extern void target_preopen (int);
1577
1578 extern void pop_target (void);
1579
1580 /* Does whatever cleanup is required to get rid of all pushed targets.
1581 QUITTING is propagated to target_close; it indicates that GDB is
1582 exiting and should not get hung on an error (otherwise it is
1583 important to perform clean termination, even if it takes a
1584 while). */
1585 extern void pop_all_targets (int quitting);
1586
1587 /* Like pop_all_targets, but pops only targets whose stratum is
1588 strictly above ABOVE_STRATUM. */
1589 extern void pop_all_targets_above (enum strata above_stratum, int quitting);
1590
1591 extern int target_is_pushed (struct target_ops *t);
1592
1593 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1594 CORE_ADDR offset);
1595
1596 /* Struct target_section maps address ranges to file sections. It is
1597 mostly used with BFD files, but can be used without (e.g. for handling
1598 raw disks, or files not in formats handled by BFD). */
1599
1600 struct target_section
1601 {
1602 CORE_ADDR addr; /* Lowest address in section */
1603 CORE_ADDR endaddr; /* 1+highest address in section */
1604
1605 struct bfd_section *the_bfd_section;
1606
1607 bfd *bfd; /* BFD file pointer */
1608 };
1609
1610 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
1611
1612 struct target_section_table
1613 {
1614 struct target_section *sections;
1615 struct target_section *sections_end;
1616 };
1617
1618 /* Return the "section" containing the specified address. */
1619 struct target_section *target_section_by_addr (struct target_ops *target,
1620 CORE_ADDR addr);
1621
1622 /* Return the target section table this target (or the targets
1623 beneath) currently manipulate. */
1624
1625 extern struct target_section_table *target_get_section_table
1626 (struct target_ops *target);
1627
1628 /* From mem-break.c */
1629
1630 extern int memory_remove_breakpoint (struct gdbarch *,
1631 struct bp_target_info *);
1632
1633 extern int memory_insert_breakpoint (struct gdbarch *,
1634 struct bp_target_info *);
1635
1636 extern int default_memory_remove_breakpoint (struct gdbarch *,
1637 struct bp_target_info *);
1638
1639 extern int default_memory_insert_breakpoint (struct gdbarch *,
1640 struct bp_target_info *);
1641
1642
1643 /* From target.c */
1644
1645 extern void initialize_targets (void);
1646
1647 extern void noprocess (void) ATTRIBUTE_NORETURN;
1648
1649 extern void target_require_runnable (void);
1650
1651 extern void find_default_attach (struct target_ops *, char *, int);
1652
1653 extern void find_default_create_inferior (struct target_ops *,
1654 char *, char *, char **, int);
1655
1656 extern struct target_ops *find_run_target (void);
1657
1658 extern struct target_ops *find_target_beneath (struct target_ops *);
1659
1660 /* Read OS data object of type TYPE from the target, and return it in
1661 XML format. The result is NUL-terminated and returned as a string,
1662 allocated using xmalloc. If an error occurs or the transfer is
1663 unsupported, NULL is returned. Empty objects are returned as
1664 allocated but empty strings. */
1665
1666 extern char *target_get_osdata (const char *type);
1667
1668 \f
1669 /* Stuff that should be shared among the various remote targets. */
1670
1671 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1672 information (higher values, more information). */
1673 extern int remote_debug;
1674
1675 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1676 extern int baud_rate;
1677 /* Timeout limit for response from target. */
1678 extern int remote_timeout;
1679
1680 \f
1681 /* Functions for helping to write a native target. */
1682
1683 /* This is for native targets which use a unix/POSIX-style waitstatus. */
1684 extern void store_waitstatus (struct target_waitstatus *, int);
1685
1686 /* These are in common/signals.c, but they're only used by gdb. */
1687 extern enum target_signal default_target_signal_from_host (struct gdbarch *,
1688 int);
1689 extern int default_target_signal_to_host (struct gdbarch *,
1690 enum target_signal);
1691
1692 /* Convert from a number used in a GDB command to an enum target_signal. */
1693 extern enum target_signal target_signal_from_command (int);
1694 /* End of files in common/signals.c. */
1695
1696 /* Set the show memory breakpoints mode to show, and installs a cleanup
1697 to restore it back to the current value. */
1698 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1699
1700 extern int may_write_registers;
1701 extern int may_write_memory;
1702 extern int may_insert_breakpoints;
1703 extern int may_insert_tracepoints;
1704 extern int may_insert_fast_tracepoints;
1705 extern int may_stop;
1706
1707 extern void update_target_permissions (void);
1708
1709 \f
1710 /* Imported from machine dependent code. */
1711
1712 /* Blank target vector entries are initialized to target_ignore. */
1713 void target_ignore (void);
1714
1715 #endif /* !defined (TARGET_H) */