]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/v850-tdep.c
Update years in copyright notice for the GDB files.
[thirdparty/binutils-gdb.git] / gdb / v850-tdep.c
1 /* Target-dependent code for the NEC V850 for GDB, the GNU debugger.
2
3 Copyright (C) 1996-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "frame-base.h"
23 #include "trad-frame.h"
24 #include "frame-unwind.h"
25 #include "dwarf2-frame.h"
26 #include "gdbtypes.h"
27 #include "inferior.h"
28 #include "gdb_string.h"
29 #include "gdb_assert.h"
30 #include "gdbcore.h"
31 #include "arch-utils.h"
32 #include "regcache.h"
33 #include "dis-asm.h"
34 #include "osabi.h"
35
36 enum
37 {
38 E_R0_REGNUM,
39 E_R1_REGNUM,
40 E_R2_REGNUM,
41 E_R3_REGNUM, E_SP_REGNUM = E_R3_REGNUM,
42 E_R4_REGNUM,
43 E_R5_REGNUM,
44 E_R6_REGNUM, E_ARG0_REGNUM = E_R6_REGNUM,
45 E_R7_REGNUM,
46 E_R8_REGNUM,
47 E_R9_REGNUM, E_ARGLAST_REGNUM = E_R9_REGNUM,
48 E_R10_REGNUM, E_V0_REGNUM = E_R10_REGNUM,
49 E_R11_REGNUM, E_V1_REGNUM = E_R11_REGNUM,
50 E_R12_REGNUM,
51 E_R13_REGNUM,
52 E_R14_REGNUM,
53 E_R15_REGNUM,
54 E_R16_REGNUM,
55 E_R17_REGNUM,
56 E_R18_REGNUM,
57 E_R19_REGNUM,
58 E_R20_REGNUM,
59 E_R21_REGNUM,
60 E_R22_REGNUM,
61 E_R23_REGNUM,
62 E_R24_REGNUM,
63 E_R25_REGNUM,
64 E_R26_REGNUM,
65 E_R27_REGNUM,
66 E_R28_REGNUM,
67 E_R29_REGNUM, E_FP_REGNUM = E_R29_REGNUM,
68 E_R30_REGNUM, E_EP_REGNUM = E_R30_REGNUM,
69 E_R31_REGNUM, E_LP_REGNUM = E_R31_REGNUM,
70 E_R32_REGNUM, E_SR0_REGNUM = E_R32_REGNUM,
71 E_R33_REGNUM,
72 E_R34_REGNUM,
73 E_R35_REGNUM,
74 E_R36_REGNUM,
75 E_R37_REGNUM, E_PS_REGNUM = E_R37_REGNUM,
76 E_R38_REGNUM,
77 E_R39_REGNUM,
78 E_R40_REGNUM,
79 E_R41_REGNUM,
80 E_R42_REGNUM,
81 E_R43_REGNUM,
82 E_R44_REGNUM,
83 E_R45_REGNUM,
84 E_R46_REGNUM,
85 E_R47_REGNUM,
86 E_R48_REGNUM,
87 E_R49_REGNUM,
88 E_R50_REGNUM,
89 E_R51_REGNUM,
90 E_R52_REGNUM, E_CTBP_REGNUM = E_R52_REGNUM,
91 E_R53_REGNUM,
92 E_R54_REGNUM,
93 E_R55_REGNUM,
94 E_R56_REGNUM,
95 E_R57_REGNUM,
96 E_R58_REGNUM,
97 E_R59_REGNUM,
98 E_R60_REGNUM,
99 E_R61_REGNUM,
100 E_R62_REGNUM,
101 E_R63_REGNUM,
102 E_R64_REGNUM, E_PC_REGNUM = E_R64_REGNUM,
103 E_R65_REGNUM,
104 E_NUM_OF_V850_REGS,
105 E_NUM_OF_V850E_REGS = E_NUM_OF_V850_REGS,
106
107 /* mpu0 system registers */
108 E_R66_REGNUM = E_NUM_OF_V850_REGS,
109 E_R67_REGNUM,
110 E_R68_REGNUM,
111 E_R69_REGNUM,
112 E_R70_REGNUM,
113 E_R71_REGNUM,
114 E_R72_REGNUM,
115 E_R73_REGNUM,
116 E_R74_REGNUM,
117 E_R75_REGNUM,
118 E_R76_REGNUM,
119 E_R77_REGNUM,
120 E_R78_REGNUM,
121 E_R79_REGNUM,
122 E_R80_REGNUM,
123 E_R81_REGNUM,
124 E_R82_REGNUM,
125 E_R83_REGNUM,
126 E_R84_REGNUM,
127 E_R85_REGNUM,
128 E_R86_REGNUM,
129 E_R87_REGNUM,
130 E_R88_REGNUM,
131 E_R89_REGNUM,
132 E_R90_REGNUM,
133 E_R91_REGNUM,
134 E_R92_REGNUM,
135 E_R93_REGNUM,
136
137 /* mpu1 system registers */
138
139 E_R94_REGNUM,
140 E_R95_REGNUM,
141 E_R96_REGNUM,
142 E_R97_REGNUM,
143 E_R98_REGNUM,
144 E_R99_REGNUM,
145 E_R100_REGNUM,
146 E_R101_REGNUM,
147 E_R102_REGNUM,
148 E_R103_REGNUM,
149 E_R104_REGNUM,
150 E_R105_REGNUM,
151 E_R106_REGNUM,
152 E_R107_REGNUM,
153 E_R108_REGNUM,
154 E_R109_REGNUM,
155 E_R110_REGNUM,
156 E_R111_REGNUM,
157 E_R112_REGNUM,
158 E_R113_REGNUM,
159 E_R114_REGNUM,
160 E_R115_REGNUM,
161 E_R116_REGNUM,
162 E_R117_REGNUM,
163 E_R118_REGNUM,
164 E_R119_REGNUM,
165 E_R120_REGNUM,
166 E_R121_REGNUM,
167
168 /* fpu system registers */
169 E_R122_REGNUM,
170 E_R123_REGNUM,
171 E_R124_REGNUM,
172 E_R125_REGNUM,
173 E_R126_REGNUM,
174 E_R127_REGNUM,
175 E_R128_REGNUM, E_FPSR_REGNUM = E_R128_REGNUM,
176 E_R129_REGNUM, E_FPEPC_REGNUM = E_R129_REGNUM,
177 E_R130_REGNUM, E_FPST_REGNUM = E_R130_REGNUM,
178 E_R131_REGNUM, E_FPCC_REGNUM = E_R131_REGNUM,
179 E_R132_REGNUM, E_FPCFG_REGNUM = E_R132_REGNUM,
180 E_R133_REGNUM,
181 E_R134_REGNUM,
182 E_R135_REGNUM,
183 E_R136_REGNUM,
184 E_R137_REGNUM,
185 E_R138_REGNUM,
186 E_R139_REGNUM,
187 E_R140_REGNUM,
188 E_R141_REGNUM,
189 E_R142_REGNUM,
190 E_R143_REGNUM,
191 E_R144_REGNUM,
192 E_R145_REGNUM,
193 E_R146_REGNUM,
194 E_R147_REGNUM,
195 E_R148_REGNUM,
196 E_NUM_REGS
197 };
198
199 enum
200 {
201 v850_reg_size = 4
202 };
203
204 /* Size of return datatype which fits into all return registers. */
205 enum
206 {
207 E_MAX_RETTYPE_SIZE_IN_REGS = 2 * v850_reg_size
208 };
209
210 struct v850_frame_cache
211 {
212 /* Base address. */
213 CORE_ADDR base;
214 LONGEST sp_offset;
215 CORE_ADDR pc;
216
217 /* Flag showing that a frame has been created in the prologue code. */
218 int uses_fp;
219
220 /* Saved registers. */
221 struct trad_frame_saved_reg *saved_regs;
222 };
223
224 /* Info gleaned from scanning a function's prologue. */
225 struct pifsr /* Info about one saved register. */
226 {
227 int offset; /* Offset from sp or fp. */
228 int cur_frameoffset; /* Current frameoffset. */
229 int reg; /* Saved register number. */
230 };
231
232 static const char *
233 v850_register_name (struct gdbarch *gdbarch, int regnum)
234 {
235 static const char *v850_reg_names[] =
236 { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
237 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
238 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
239 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
240 "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7",
241 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15",
242 "sr16", "sr17", "sr18", "sr19", "sr20", "sr21", "sr22", "sr23",
243 "sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31",
244 "pc", "fp"
245 };
246 if (regnum < 0 || regnum > E_NUM_OF_V850_REGS)
247 return NULL;
248 return v850_reg_names[regnum];
249 }
250
251 static const char *
252 v850e_register_name (struct gdbarch *gdbarch, int regnum)
253 {
254 static const char *v850e_reg_names[] =
255 {
256 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
257 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
258 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
259 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
260 "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7",
261 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15",
262 "ctpc", "ctpsw", "dbpc", "dbpsw", "ctbp", "sr21", "sr22", "sr23",
263 "sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31",
264 "pc", "fp"
265 };
266 if (regnum < 0 || regnum > E_NUM_OF_V850E_REGS)
267 return NULL;
268 return v850e_reg_names[regnum];
269 }
270
271 static const char *
272 v850e2_register_name (struct gdbarch *gdbarch, int regnum)
273 {
274 static const char *v850e2_reg_names[] =
275 {
276 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
277 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
278 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
279 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
280
281 "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7",
282 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15",
283 "ctpc", "ctpsw", "dbpc", "dbpsw", "ctbp", "sr21", "sr22", "sr23",
284 "sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31",
285 "pc", "fp"
286
287 /* mpu0 system registers */
288 "vip", "sr33", "sr34", "sr35", "vmecr", "vmtid", "vmadr", "sr39",
289 "vpecr", "vptid", "vpadr", "sr43", "vdecr", "vdtid", "sr46", "sr47",
290 "sr48", "sr49", "sr50", "sr51", "sr52", "sr53", "sr54", "sr55",
291 "sr56", "sr57", "sr58", "sr59",
292
293 /* mpu1 system registers */
294 "mpm", "mpc", "tid", "ppa", "ppm", "ppc", "dcc", "dcv0",
295 "dcv1", "sr69", "spal", "spau", "ipa0l", "ipa0u", "ipa1l", "ipa1u",
296 "iap2l", "ipa2u", "ipa3l", "ipa3u", "dpa0l", "dpa0u", "dpa1l", "dpa1u",
297 "dpa2l", "dpa2u", "dpa3l", "dpa3u",
298
299 /* fpu system registers */
300 "sr88", "sr89", "sr90", "sr91", "sr92", "sr93", "fpsr", "fpepc",
301 "fpst", "fpcc", "fpcfg", "sr99", "sr100", "sr101", "sr102", "sr103",
302 "sr104", "sr105", "sr106", "sr107", "sr108", "sr109", "sr110", "sr111",
303 "sr112", "sr113", "sr114", "sr115"
304 };
305 if (regnum < 0 || regnum >= E_NUM_REGS)
306 return NULL;
307 return v850e2_reg_names[regnum];
308 }
309
310 /* Returns the default type for register N. */
311
312 static struct type *
313 v850_register_type (struct gdbarch *gdbarch, int regnum)
314 {
315 if (regnum == E_PC_REGNUM)
316 return builtin_type (gdbarch)->builtin_func_ptr;
317 return builtin_type (gdbarch)->builtin_int32;
318 }
319
320 static int
321 v850_type_is_scalar (struct type *t)
322 {
323 return (TYPE_CODE (t) != TYPE_CODE_STRUCT
324 && TYPE_CODE (t) != TYPE_CODE_UNION
325 && TYPE_CODE (t) != TYPE_CODE_ARRAY);
326 }
327
328 /* Should call_function allocate stack space for a struct return? */
329 static int
330 v850_use_struct_convention (struct type *type)
331 {
332 int i;
333 struct type *fld_type, *tgt_type;
334
335 /* 1. The value is greater than 8 bytes -> returned by copying. */
336 if (TYPE_LENGTH (type) > 8)
337 return 1;
338
339 /* 2. The value is a single basic type -> returned in register. */
340 if (v850_type_is_scalar (type))
341 return 0;
342
343 /* The value is a structure or union with a single element and that
344 element is either a single basic type or an array of a single basic
345 type whose size is greater than or equal to 4 -> returned in register. */
346 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
347 || TYPE_CODE (type) == TYPE_CODE_UNION)
348 && TYPE_NFIELDS (type) == 1)
349 {
350 fld_type = TYPE_FIELD_TYPE (type, 0);
351 if (v850_type_is_scalar (fld_type) && TYPE_LENGTH (fld_type) >= 4)
352 return 0;
353
354 if (TYPE_CODE (fld_type) == TYPE_CODE_ARRAY)
355 {
356 tgt_type = TYPE_TARGET_TYPE (fld_type);
357 if (v850_type_is_scalar (tgt_type) && TYPE_LENGTH (tgt_type) >= 4)
358 return 0;
359 }
360 }
361
362 /* The value is a structure whose first element is an integer or a float,
363 and which contains no arrays of more than two elements -> returned in
364 register. */
365 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
366 && v850_type_is_scalar (TYPE_FIELD_TYPE (type, 0))
367 && TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == 4)
368 {
369 for (i = 1; i < TYPE_NFIELDS (type); ++i)
370 {
371 fld_type = TYPE_FIELD_TYPE (type, 0);
372 if (TYPE_CODE (fld_type) == TYPE_CODE_ARRAY)
373 {
374 tgt_type = TYPE_TARGET_TYPE (fld_type);
375 if (TYPE_LENGTH (fld_type) >= 0 && TYPE_LENGTH (tgt_type) >= 0
376 && TYPE_LENGTH (fld_type) / TYPE_LENGTH (tgt_type) > 2)
377 return 1;
378 }
379 }
380 return 0;
381 }
382
383 /* The value is a union which contains at least one field which
384 would be returned in registers according to these rules ->
385 returned in register. */
386 if (TYPE_CODE (type) == TYPE_CODE_UNION)
387 {
388 for (i = 0; i < TYPE_NFIELDS (type); ++i)
389 {
390 fld_type = TYPE_FIELD_TYPE (type, 0);
391 if (!v850_use_struct_convention (fld_type))
392 return 0;
393 }
394 }
395
396 return 1;
397 }
398
399 /* Structure for mapping bits in register lists to register numbers. */
400 struct reg_list
401 {
402 long mask;
403 int regno;
404 };
405
406 /* Helper function for v850_scan_prologue to handle prepare instruction. */
407
408 static void
409 v850_handle_prepare (int insn, int insn2, CORE_ADDR * current_pc_ptr,
410 struct v850_frame_cache *pi, struct pifsr **pifsr_ptr)
411 {
412 CORE_ADDR current_pc = *current_pc_ptr;
413 struct pifsr *pifsr = *pifsr_ptr;
414 long next = insn2 & 0xffff;
415 long list12 = ((insn & 1) << 16) + (next & 0xffe0);
416 long offset = (insn & 0x3e) << 1;
417 static struct reg_list reg_table[] =
418 {
419 {0x00800, 20}, /* r20 */
420 {0x00400, 21}, /* r21 */
421 {0x00200, 22}, /* r22 */
422 {0x00100, 23}, /* r23 */
423 {0x08000, 24}, /* r24 */
424 {0x04000, 25}, /* r25 */
425 {0x02000, 26}, /* r26 */
426 {0x01000, 27}, /* r27 */
427 {0x00080, 28}, /* r28 */
428 {0x00040, 29}, /* r29 */
429 {0x10000, 30}, /* ep */
430 {0x00020, 31}, /* lp */
431 {0, 0} /* end of table */
432 };
433 int i;
434
435 if ((next & 0x1f) == 0x0b) /* skip imm16 argument */
436 current_pc += 2;
437 else if ((next & 0x1f) == 0x13) /* skip imm16 argument */
438 current_pc += 2;
439 else if ((next & 0x1f) == 0x1b) /* skip imm32 argument */
440 current_pc += 4;
441
442 /* Calculate the total size of the saved registers, and add it to the
443 immediate value used to adjust SP. */
444 for (i = 0; reg_table[i].mask != 0; i++)
445 if (list12 & reg_table[i].mask)
446 offset += v850_reg_size;
447 pi->sp_offset -= offset;
448
449 /* Calculate the offsets of the registers relative to the value the SP
450 will have after the registers have been pushed and the imm5 value has
451 been subtracted from it. */
452 if (pifsr)
453 {
454 for (i = 0; reg_table[i].mask != 0; i++)
455 {
456 if (list12 & reg_table[i].mask)
457 {
458 int reg = reg_table[i].regno;
459 offset -= v850_reg_size;
460 pifsr->reg = reg;
461 pifsr->offset = offset;
462 pifsr->cur_frameoffset = pi->sp_offset;
463 pifsr++;
464 }
465 }
466 }
467
468 /* Set result parameters. */
469 *current_pc_ptr = current_pc;
470 *pifsr_ptr = pifsr;
471 }
472
473
474 /* Helper function for v850_scan_prologue to handle pushm/pushl instructions.
475 The SR bit of the register list is not supported. gcc does not generate
476 this bit. */
477
478 static void
479 v850_handle_pushm (int insn, int insn2, struct v850_frame_cache *pi,
480 struct pifsr **pifsr_ptr)
481 {
482 struct pifsr *pifsr = *pifsr_ptr;
483 long list12 = ((insn & 0x0f) << 16) + (insn2 & 0xfff0);
484 long offset = 0;
485 static struct reg_list pushml_reg_table[] =
486 {
487 {0x80000, E_PS_REGNUM}, /* PSW */
488 {0x40000, 1}, /* r1 */
489 {0x20000, 2}, /* r2 */
490 {0x10000, 3}, /* r3 */
491 {0x00800, 4}, /* r4 */
492 {0x00400, 5}, /* r5 */
493 {0x00200, 6}, /* r6 */
494 {0x00100, 7}, /* r7 */
495 {0x08000, 8}, /* r8 */
496 {0x04000, 9}, /* r9 */
497 {0x02000, 10}, /* r10 */
498 {0x01000, 11}, /* r11 */
499 {0x00080, 12}, /* r12 */
500 {0x00040, 13}, /* r13 */
501 {0x00020, 14}, /* r14 */
502 {0x00010, 15}, /* r15 */
503 {0, 0} /* end of table */
504 };
505 static struct reg_list pushmh_reg_table[] =
506 {
507 {0x80000, 16}, /* r16 */
508 {0x40000, 17}, /* r17 */
509 {0x20000, 18}, /* r18 */
510 {0x10000, 19}, /* r19 */
511 {0x00800, 20}, /* r20 */
512 {0x00400, 21}, /* r21 */
513 {0x00200, 22}, /* r22 */
514 {0x00100, 23}, /* r23 */
515 {0x08000, 24}, /* r24 */
516 {0x04000, 25}, /* r25 */
517 {0x02000, 26}, /* r26 */
518 {0x01000, 27}, /* r27 */
519 {0x00080, 28}, /* r28 */
520 {0x00040, 29}, /* r29 */
521 {0x00010, 30}, /* r30 */
522 {0x00020, 31}, /* r31 */
523 {0, 0} /* end of table */
524 };
525 struct reg_list *reg_table;
526 int i;
527
528 /* Is this a pushml or a pushmh? */
529 if ((insn2 & 7) == 1)
530 reg_table = pushml_reg_table;
531 else
532 reg_table = pushmh_reg_table;
533
534 /* Calculate the total size of the saved registers, and add it to the
535 immediate value used to adjust SP. */
536 for (i = 0; reg_table[i].mask != 0; i++)
537 if (list12 & reg_table[i].mask)
538 offset += v850_reg_size;
539 pi->sp_offset -= offset;
540
541 /* Calculate the offsets of the registers relative to the value the SP
542 will have after the registers have been pushed and the imm5 value is
543 subtracted from it. */
544 if (pifsr)
545 {
546 for (i = 0; reg_table[i].mask != 0; i++)
547 {
548 if (list12 & reg_table[i].mask)
549 {
550 int reg = reg_table[i].regno;
551 offset -= v850_reg_size;
552 pifsr->reg = reg;
553 pifsr->offset = offset;
554 pifsr->cur_frameoffset = pi->sp_offset;
555 pifsr++;
556 }
557 }
558 }
559
560 /* Set result parameters. */
561 *pifsr_ptr = pifsr;
562 }
563
564 /* Helper function to evaluate if register is one of the "save" registers.
565 This allows to simplify conditionals in v850_analyze_prologue a lot. */
566
567 static int
568 v850_is_save_register (int reg)
569 {
570 /* The caller-save registers are R2, R20 - R29 and R31. All other
571 registers are either special purpose (PC, SP), argument registers,
572 or just considered free for use in the caller. */
573 return reg == E_R2_REGNUM
574 || (reg >= E_R20_REGNUM && reg <= E_R29_REGNUM)
575 || reg == E_R31_REGNUM;
576 }
577
578 /* Scan the prologue of the function that contains PC, and record what
579 we find in PI. Returns the pc after the prologue. Note that the
580 addresses saved in frame->saved_regs are just frame relative (negative
581 offsets from the frame pointer). This is because we don't know the
582 actual value of the frame pointer yet. In some circumstances, the
583 frame pointer can't be determined till after we have scanned the
584 prologue. */
585
586 static CORE_ADDR
587 v850_analyze_prologue (struct gdbarch *gdbarch,
588 CORE_ADDR func_addr, CORE_ADDR pc,
589 struct v850_frame_cache *pi, ULONGEST ctbp)
590 {
591 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
592 CORE_ADDR prologue_end, current_pc;
593 struct pifsr pifsrs[E_NUM_REGS + 1];
594 struct pifsr *pifsr, *pifsr_tmp;
595 int ep_used;
596 int reg;
597 CORE_ADDR save_pc, save_end;
598 int regsave_func_p;
599 int r12_tmp;
600
601 memset (&pifsrs, 0, sizeof pifsrs);
602 pifsr = &pifsrs[0];
603
604 prologue_end = pc;
605
606 /* Now, search the prologue looking for instructions that setup fp, save
607 rp, adjust sp and such. We also record the frame offset of any saved
608 registers. */
609
610 pi->sp_offset = 0;
611 pi->uses_fp = 0;
612 ep_used = 0;
613 regsave_func_p = 0;
614 save_pc = 0;
615 save_end = 0;
616 r12_tmp = 0;
617
618 for (current_pc = func_addr; current_pc < prologue_end;)
619 {
620 int insn;
621 int insn2 = -1; /* dummy value */
622
623 insn = read_memory_integer (current_pc, 2, byte_order);
624 current_pc += 2;
625 if ((insn & 0x0780) >= 0x0600) /* Four byte instruction? */
626 {
627 insn2 = read_memory_integer (current_pc, 2, byte_order);
628 current_pc += 2;
629 }
630
631 if ((insn & 0xffc0) == ((10 << 11) | 0x0780) && !regsave_func_p)
632 { /* jarl <func>,10 */
633 long low_disp = insn2 & ~(long) 1;
634 long disp = (((((insn & 0x3f) << 16) + low_disp)
635 & ~(long) 1) ^ 0x00200000) - 0x00200000;
636
637 save_pc = current_pc;
638 save_end = prologue_end;
639 regsave_func_p = 1;
640 current_pc += disp - 4;
641 prologue_end = (current_pc
642 + (2 * 3) /* moves to/from ep */
643 + 4 /* addi <const>,sp,sp */
644 + 2 /* jmp [r10] */
645 + (2 * 12) /* sst.w to save r2, r20-r29, r31 */
646 + 20); /* slop area */
647 }
648 else if ((insn & 0xffc0) == 0x0200 && !regsave_func_p)
649 { /* callt <imm6> */
650 long adr = ctbp + ((insn & 0x3f) << 1);
651
652 save_pc = current_pc;
653 save_end = prologue_end;
654 regsave_func_p = 1;
655 current_pc = ctbp + (read_memory_unsigned_integer (adr, 2, byte_order)
656 & 0xffff);
657 prologue_end = (current_pc
658 + (2 * 3) /* prepare list2,imm5,sp/imm */
659 + 4 /* ctret */
660 + 20); /* slop area */
661 continue;
662 }
663 else if ((insn & 0xffc0) == 0x0780) /* prepare list2,imm5 */
664 {
665 v850_handle_prepare (insn, insn2, &current_pc, pi, &pifsr);
666 continue;
667 }
668 else if (insn == 0x07e0 && regsave_func_p && insn2 == 0x0144)
669 { /* ctret after processing register save. */
670 current_pc = save_pc;
671 prologue_end = save_end;
672 regsave_func_p = 0;
673 continue;
674 }
675 else if ((insn & 0xfff0) == 0x07e0 && (insn2 & 5) == 1)
676 { /* pushml, pushmh */
677 v850_handle_pushm (insn, insn2, pi, &pifsr);
678 continue;
679 }
680 else if ((insn & 0xffe0) == 0x0060 && regsave_func_p)
681 { /* jmp after processing register save. */
682 current_pc = save_pc;
683 prologue_end = save_end;
684 regsave_func_p = 0;
685 continue;
686 }
687 else if ((insn & 0x07c0) == 0x0780 /* jarl or jr */
688 || (insn & 0xffe0) == 0x0060 /* jmp */
689 || (insn & 0x0780) == 0x0580) /* branch */
690 {
691 break; /* Ran into end of prologue. */
692 }
693
694 else if ((insn & 0xffe0) == ((E_SP_REGNUM << 11) | 0x0240))
695 /* add <imm>,sp */
696 pi->sp_offset += ((insn & 0x1f) ^ 0x10) - 0x10;
697 else if (insn == ((E_SP_REGNUM << 11) | 0x0600 | E_SP_REGNUM))
698 /* addi <imm>,sp,sp */
699 pi->sp_offset += insn2;
700 else if (insn == ((E_FP_REGNUM << 11) | 0x0000 | E_SP_REGNUM))
701 /* mov sp,fp */
702 pi->uses_fp = 1;
703 else if (insn == ((E_R12_REGNUM << 11) | 0x0640 | E_R0_REGNUM))
704 /* movhi hi(const),r0,r12 */
705 r12_tmp = insn2 << 16;
706 else if (insn == ((E_R12_REGNUM << 11) | 0x0620 | E_R12_REGNUM))
707 /* movea lo(const),r12,r12 */
708 r12_tmp += insn2;
709 else if (insn == ((E_SP_REGNUM << 11) | 0x01c0 | E_R12_REGNUM) && r12_tmp)
710 /* add r12,sp */
711 pi->sp_offset += r12_tmp;
712 else if (insn == ((E_EP_REGNUM << 11) | 0x0000 | E_SP_REGNUM))
713 /* mov sp,ep */
714 ep_used = 1;
715 else if (insn == ((E_EP_REGNUM << 11) | 0x0000 | E_R1_REGNUM))
716 /* mov r1,ep */
717 ep_used = 0;
718 else if (((insn & 0x07ff) == (0x0760 | E_SP_REGNUM)
719 || (pi->uses_fp
720 && (insn & 0x07ff) == (0x0760 | E_FP_REGNUM)))
721 && pifsr
722 && v850_is_save_register (reg = (insn >> 11) & 0x1f))
723 {
724 /* st.w <reg>,<offset>[sp] or st.w <reg>,<offset>[fp] */
725 pifsr->reg = reg;
726 pifsr->offset = insn2 & ~1;
727 pifsr->cur_frameoffset = pi->sp_offset;
728 pifsr++;
729 }
730 else if (ep_used
731 && ((insn & 0x0781) == 0x0501)
732 && pifsr
733 && v850_is_save_register (reg = (insn >> 11) & 0x1f))
734 {
735 /* sst.w <reg>,<offset>[ep] */
736 pifsr->reg = reg;
737 pifsr->offset = (insn & 0x007e) << 1;
738 pifsr->cur_frameoffset = pi->sp_offset;
739 pifsr++;
740 }
741 }
742
743 /* Fix up any offsets to the final offset. If a frame pointer was created,
744 use it instead of the stack pointer. */
745 for (pifsr_tmp = pifsrs; pifsr_tmp != pifsr; pifsr_tmp++)
746 {
747 pifsr_tmp->offset -= pi->sp_offset - pifsr_tmp->cur_frameoffset;
748 pi->saved_regs[pifsr_tmp->reg].addr = pifsr_tmp->offset;
749 }
750
751 return current_pc;
752 }
753
754 /* Return the address of the first code past the prologue of the function. */
755
756 static CORE_ADDR
757 v850_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
758 {
759 CORE_ADDR func_addr, func_end;
760
761 /* See what the symbol table says. */
762
763 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
764 {
765 struct symtab_and_line sal;
766
767 sal = find_pc_line (func_addr, 0);
768 if (sal.line != 0 && sal.end < func_end)
769 return sal.end;
770
771 /* Either there's no line info, or the line after the prologue is after
772 the end of the function. In this case, there probably isn't a
773 prologue. */
774 return pc;
775 }
776
777 /* We can't find the start of this function, so there's nothing we
778 can do. */
779 return pc;
780 }
781
782 static CORE_ADDR
783 v850_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
784 {
785 return sp & ~3;
786 }
787
788 /* Setup arguments and LP for a call to the target. First four args
789 go in R6->R9, subsequent args go into sp + 16 -> sp + ... Structs
790 are passed by reference. 64 bit quantities (doubles and long longs)
791 may be split between the regs and the stack. When calling a function
792 that returns a struct, a pointer to the struct is passed in as a secret
793 first argument (always in R6).
794
795 Stack space for the args has NOT been allocated: that job is up to us. */
796
797 static CORE_ADDR
798 v850_push_dummy_call (struct gdbarch *gdbarch,
799 struct value *function,
800 struct regcache *regcache,
801 CORE_ADDR bp_addr,
802 int nargs,
803 struct value **args,
804 CORE_ADDR sp,
805 int struct_return,
806 CORE_ADDR struct_addr)
807 {
808 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
809 int argreg;
810 int argnum;
811 int len = 0;
812 int stack_offset;
813
814 /* The offset onto the stack at which we will start copying parameters
815 (after the registers are used up) begins at 16 rather than at zero.
816 That's how the ABI is defined, though there's no indication that these
817 16 bytes are used for anything, not even for saving incoming
818 argument registers. */
819 stack_offset = 16;
820
821 /* Now make space on the stack for the args. */
822 for (argnum = 0; argnum < nargs; argnum++)
823 len += ((TYPE_LENGTH (value_type (args[argnum])) + 3) & ~3);
824 sp -= len + stack_offset;
825
826 argreg = E_ARG0_REGNUM;
827 /* The struct_return pointer occupies the first parameter register. */
828 if (struct_return)
829 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
830
831 /* Now load as many as possible of the first arguments into
832 registers, and push the rest onto the stack. There are 16 bytes
833 in four registers available. Loop thru args from first to last. */
834 for (argnum = 0; argnum < nargs; argnum++)
835 {
836 int len;
837 gdb_byte *val;
838 gdb_byte valbuf[v850_reg_size];
839
840 if (!v850_type_is_scalar (value_type (*args))
841 && TYPE_LENGTH (value_type (*args)) > E_MAX_RETTYPE_SIZE_IN_REGS)
842 {
843 store_unsigned_integer (valbuf, 4, byte_order,
844 value_address (*args));
845 len = 4;
846 val = valbuf;
847 }
848 else
849 {
850 len = TYPE_LENGTH (value_type (*args));
851 val = (gdb_byte *) value_contents (*args);
852 }
853
854 while (len > 0)
855 if (argreg <= E_ARGLAST_REGNUM)
856 {
857 CORE_ADDR regval;
858
859 regval = extract_unsigned_integer (val, v850_reg_size, byte_order);
860 regcache_cooked_write_unsigned (regcache, argreg, regval);
861
862 len -= v850_reg_size;
863 val += v850_reg_size;
864 argreg++;
865 }
866 else
867 {
868 write_memory (sp + stack_offset, val, 4);
869
870 len -= 4;
871 val += 4;
872 stack_offset += 4;
873 }
874 args++;
875 }
876
877 /* Store return address. */
878 regcache_cooked_write_unsigned (regcache, E_LP_REGNUM, bp_addr);
879
880 /* Update stack pointer. */
881 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
882
883 return sp;
884 }
885
886 static void
887 v850_extract_return_value (struct type *type, struct regcache *regcache,
888 gdb_byte *valbuf)
889 {
890 struct gdbarch *gdbarch = get_regcache_arch (regcache);
891 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
892 int len = TYPE_LENGTH (type);
893
894 if (len <= v850_reg_size)
895 {
896 ULONGEST val;
897
898 regcache_cooked_read_unsigned (regcache, E_V0_REGNUM, &val);
899 store_unsigned_integer (valbuf, len, byte_order, val);
900 }
901 else if (len <= 2 * v850_reg_size)
902 {
903 int i, regnum = E_V0_REGNUM;
904 gdb_byte buf[v850_reg_size];
905 for (i = 0; len > 0; i += 4, len -= 4)
906 {
907 regcache_raw_read (regcache, regnum++, buf);
908 memcpy (valbuf + i, buf, len > 4 ? 4 : len);
909 }
910 }
911 }
912
913 static void
914 v850_store_return_value (struct type *type, struct regcache *regcache,
915 const gdb_byte *valbuf)
916 {
917 struct gdbarch *gdbarch = get_regcache_arch (regcache);
918 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
919 int len = TYPE_LENGTH (type);
920
921 if (len <= v850_reg_size)
922 regcache_cooked_write_unsigned
923 (regcache, E_V0_REGNUM,
924 extract_unsigned_integer (valbuf, len, byte_order));
925 else if (len <= 2 * v850_reg_size)
926 {
927 int i, regnum = E_V0_REGNUM;
928 for (i = 0; i < len; i += 4)
929 regcache_raw_write (regcache, regnum++, valbuf + i);
930 }
931 }
932
933 static enum return_value_convention
934 v850_return_value (struct gdbarch *gdbarch, struct value *function,
935 struct type *type, struct regcache *regcache,
936 gdb_byte *readbuf, const gdb_byte *writebuf)
937 {
938 if (v850_use_struct_convention (type))
939 return RETURN_VALUE_STRUCT_CONVENTION;
940 if (writebuf)
941 v850_store_return_value (type, regcache, writebuf);
942 else if (readbuf)
943 v850_extract_return_value (type, regcache, readbuf);
944 return RETURN_VALUE_REGISTER_CONVENTION;
945 }
946
947 const static unsigned char *
948 v850_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
949 {
950 static unsigned char breakpoint[] = { 0x85, 0x05 };
951 *lenptr = sizeof (breakpoint);
952 return breakpoint;
953 }
954
955 static struct v850_frame_cache *
956 v850_alloc_frame_cache (struct frame_info *this_frame)
957 {
958 struct v850_frame_cache *cache;
959
960 cache = FRAME_OBSTACK_ZALLOC (struct v850_frame_cache);
961 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
962
963 /* Base address. */
964 cache->base = 0;
965 cache->sp_offset = 0;
966 cache->pc = 0;
967
968 /* Frameless until proven otherwise. */
969 cache->uses_fp = 0;
970
971 return cache;
972 }
973
974 static struct v850_frame_cache *
975 v850_frame_cache (struct frame_info *this_frame, void **this_cache)
976 {
977 struct gdbarch *gdbarch = get_frame_arch (this_frame);
978 struct v850_frame_cache *cache;
979 CORE_ADDR current_pc;
980 int i;
981
982 if (*this_cache)
983 return *this_cache;
984
985 cache = v850_alloc_frame_cache (this_frame);
986 *this_cache = cache;
987
988 /* In principle, for normal frames, fp holds the frame pointer,
989 which holds the base address for the current stack frame.
990 However, for functions that don't need it, the frame pointer is
991 optional. For these "frameless" functions the frame pointer is
992 actually the frame pointer of the calling frame. */
993 cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM);
994 if (cache->base == 0)
995 return cache;
996
997 cache->pc = get_frame_func (this_frame);
998 current_pc = get_frame_pc (this_frame);
999 if (cache->pc != 0)
1000 {
1001 ULONGEST ctbp;
1002 ctbp = get_frame_register_unsigned (this_frame, E_CTBP_REGNUM);
1003 v850_analyze_prologue (gdbarch, cache->pc, current_pc, cache, ctbp);
1004 }
1005
1006 if (!cache->uses_fp)
1007 {
1008 /* We didn't find a valid frame, which means that CACHE->base
1009 currently holds the frame pointer for our calling frame. If
1010 we're at the start of a function, or somewhere half-way its
1011 prologue, the function's frame probably hasn't been fully
1012 setup yet. Try to reconstruct the base address for the stack
1013 frame by looking at the stack pointer. For truly "frameless"
1014 functions this might work too. */
1015 cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
1016 }
1017
1018 /* Now that we have the base address for the stack frame we can
1019 calculate the value of sp in the calling frame. */
1020 trad_frame_set_value (cache->saved_regs, E_SP_REGNUM,
1021 cache->base - cache->sp_offset);
1022
1023 /* Adjust all the saved registers such that they contain addresses
1024 instead of offsets. */
1025 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1026 if (trad_frame_addr_p (cache->saved_regs, i))
1027 cache->saved_regs[i].addr += cache->base;
1028
1029 /* The call instruction moves the caller's PC in the callee's LP.
1030 Since this is an unwind, do the reverse. Copy the location of LP
1031 into PC (the address / regnum) so that a request for PC will be
1032 converted into a request for the LP. */
1033
1034 cache->saved_regs[E_PC_REGNUM] = cache->saved_regs[E_LP_REGNUM];
1035
1036 return cache;
1037 }
1038
1039
1040 static struct value *
1041 v850_frame_prev_register (struct frame_info *this_frame,
1042 void **this_cache, int regnum)
1043 {
1044 struct v850_frame_cache *cache = v850_frame_cache (this_frame, this_cache);
1045
1046 gdb_assert (regnum >= 0);
1047
1048 return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum);
1049 }
1050
1051 static void
1052 v850_frame_this_id (struct frame_info *this_frame, void **this_cache,
1053 struct frame_id *this_id)
1054 {
1055 struct v850_frame_cache *cache = v850_frame_cache (this_frame, this_cache);
1056
1057 /* This marks the outermost frame. */
1058 if (cache->base == 0)
1059 return;
1060
1061 *this_id = frame_id_build (cache->saved_regs[E_SP_REGNUM].addr, cache->pc);
1062 }
1063
1064 static const struct frame_unwind v850_frame_unwind = {
1065 NORMAL_FRAME,
1066 default_frame_unwind_stop_reason,
1067 v850_frame_this_id,
1068 v850_frame_prev_register,
1069 NULL,
1070 default_frame_sniffer
1071 };
1072
1073 static CORE_ADDR
1074 v850_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1075 {
1076 return frame_unwind_register_unsigned (next_frame,
1077 gdbarch_sp_regnum (gdbarch));
1078 }
1079
1080 static CORE_ADDR
1081 v850_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1082 {
1083 return frame_unwind_register_unsigned (next_frame,
1084 gdbarch_pc_regnum (gdbarch));
1085 }
1086
1087 static struct frame_id
1088 v850_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1089 {
1090 CORE_ADDR sp = get_frame_register_unsigned (this_frame,
1091 gdbarch_sp_regnum (gdbarch));
1092 return frame_id_build (sp, get_frame_pc (this_frame));
1093 }
1094
1095 static CORE_ADDR
1096 v850_frame_base_address (struct frame_info *this_frame, void **this_cache)
1097 {
1098 struct v850_frame_cache *cache = v850_frame_cache (this_frame, this_cache);
1099
1100 return cache->base;
1101 }
1102
1103 static const struct frame_base v850_frame_base = {
1104 &v850_frame_unwind,
1105 v850_frame_base_address,
1106 v850_frame_base_address,
1107 v850_frame_base_address
1108 };
1109
1110 static struct gdbarch *
1111 v850_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1112 {
1113 struct gdbarch *gdbarch;
1114
1115 /* Change the register names based on the current machine type. */
1116 if (info.bfd_arch_info->arch != bfd_arch_v850)
1117 return NULL;
1118
1119 gdbarch = gdbarch_alloc (&info, NULL);
1120
1121 switch (info.bfd_arch_info->mach)
1122 {
1123 case bfd_mach_v850:
1124 set_gdbarch_register_name (gdbarch, v850_register_name);
1125 set_gdbarch_num_regs (gdbarch, E_NUM_OF_V850_REGS);
1126 break;
1127 case bfd_mach_v850e:
1128 case bfd_mach_v850e1:
1129 set_gdbarch_register_name (gdbarch, v850e_register_name);
1130 set_gdbarch_num_regs (gdbarch, E_NUM_OF_V850E_REGS);
1131 break;
1132 case bfd_mach_v850e2:
1133 case bfd_mach_v850e2v3:
1134 set_gdbarch_register_name (gdbarch, v850e2_register_name);
1135 set_gdbarch_num_regs (gdbarch, E_NUM_REGS);
1136 break;
1137 }
1138
1139 set_gdbarch_num_pseudo_regs (gdbarch, 0);
1140 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
1141 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
1142 set_gdbarch_fp0_regnum (gdbarch, -1);
1143
1144 set_gdbarch_register_type (gdbarch, v850_register_type);
1145
1146 set_gdbarch_char_signed (gdbarch, 1);
1147 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1148 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1149 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1150 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1151
1152 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1153 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1154 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
1155
1156 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1157 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1158
1159 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1160 set_gdbarch_breakpoint_from_pc (gdbarch, v850_breakpoint_from_pc);
1161
1162 set_gdbarch_return_value (gdbarch, v850_return_value);
1163 set_gdbarch_push_dummy_call (gdbarch, v850_push_dummy_call);
1164 set_gdbarch_skip_prologue (gdbarch, v850_skip_prologue);
1165
1166 set_gdbarch_print_insn (gdbarch, print_insn_v850);
1167
1168 set_gdbarch_frame_align (gdbarch, v850_frame_align);
1169 set_gdbarch_unwind_sp (gdbarch, v850_unwind_sp);
1170 set_gdbarch_unwind_pc (gdbarch, v850_unwind_pc);
1171 set_gdbarch_dummy_id (gdbarch, v850_dummy_id);
1172 frame_base_set_default (gdbarch, &v850_frame_base);
1173
1174 /* Hook in ABI-specific overrides, if they have been registered. */
1175 gdbarch_init_osabi (info, gdbarch);
1176
1177 dwarf2_append_unwinders (gdbarch);
1178 frame_unwind_append_unwinder (gdbarch, &v850_frame_unwind);
1179
1180 return gdbarch;
1181 }
1182
1183 extern initialize_file_ftype _initialize_v850_tdep; /* -Wmissing-prototypes */
1184
1185 void
1186 _initialize_v850_tdep (void)
1187 {
1188 register_gdbarch_init (bfd_arch_v850, v850_gdbarch_init);
1189 }