]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/valops.c
* config/sh/tm-sh.h (BELIEVE_PCC_PROMOTION): Define, so that
[thirdparty/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2 Copyright 1986, 87, 89, 91, 92, 93, 94, 95, 96, 97, 1998
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "gdbcore.h"
28 #include "target.h"
29 #include "demangle.h"
30 #include "language.h"
31 #include "gdbcmd.h"
32
33 #include <errno.h>
34 #include "gdb_string.h"
35
36 /* Default to coercing float to double in function calls only when there is
37 no prototype. Otherwise on targets where the debug information is incorrect
38 for either the prototype or non-prototype case, we can force it by defining
39 COERCE_FLOAT_TO_DOUBLE in the target configuration file. */
40
41 #ifndef COERCE_FLOAT_TO_DOUBLE
42 #define COERCE_FLOAT_TO_DOUBLE (param_type == NULL)
43 #endif
44
45 /* Flag indicating HP compilers were used; needed to correctly handle some
46 value operations with HP aCC code/runtime. */
47 extern int hp_som_som_object_present;
48
49
50 /* Local functions. */
51
52 static int typecmp PARAMS ((int staticp, struct type *t1[], value_ptr t2[]));
53
54 #ifdef CALL_DUMMY
55 static CORE_ADDR find_function_addr PARAMS ((value_ptr, struct type **));
56 static value_ptr value_arg_coerce PARAMS ((value_ptr, struct type *, int));
57 #endif
58
59
60 #ifndef PUSH_ARGUMENTS
61 static CORE_ADDR value_push PARAMS ((CORE_ADDR, value_ptr));
62 #endif
63
64 static value_ptr search_struct_field PARAMS ((char *, value_ptr, int,
65 struct type *, int));
66
67 static value_ptr search_struct_field_aux PARAMS ((char *, value_ptr, int,
68 struct type *, int, int *, char *,
69 struct type **));
70
71 static value_ptr search_struct_method PARAMS ((char *, value_ptr *,
72 value_ptr *,
73 int, int *, struct type *));
74
75 static int check_field_in PARAMS ((struct type *, const char *));
76
77 static CORE_ADDR allocate_space_in_inferior PARAMS ((int));
78
79 static value_ptr cast_into_complex PARAMS ((struct type *, value_ptr));
80
81 void _initialize_valops PARAMS ((void));
82
83 #define VALUE_SUBSTRING_START(VAL) VALUE_FRAME(VAL)
84
85 /* Flag for whether we want to abandon failed expression evals by default. */
86
87 #if 0
88 static int auto_abandon = 0;
89 #endif
90
91 int overload_resolution = 0;
92
93
94 \f
95 /* Find the address of function name NAME in the inferior. */
96
97 value_ptr
98 find_function_in_inferior (name)
99 char *name;
100 {
101 register struct symbol *sym;
102 sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
103 if (sym != NULL)
104 {
105 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
106 {
107 error ("\"%s\" exists in this program but is not a function.",
108 name);
109 }
110 return value_of_variable (sym, NULL);
111 }
112 else
113 {
114 struct minimal_symbol *msymbol = lookup_minimal_symbol(name, NULL, NULL);
115 if (msymbol != NULL)
116 {
117 struct type *type;
118 LONGEST maddr;
119 type = lookup_pointer_type (builtin_type_char);
120 type = lookup_function_type (type);
121 type = lookup_pointer_type (type);
122 maddr = (LONGEST) SYMBOL_VALUE_ADDRESS (msymbol);
123 return value_from_longest (type, maddr);
124 }
125 else
126 {
127 if (!target_has_execution)
128 error ("evaluation of this expression requires the target program to be active");
129 else
130 error ("evaluation of this expression requires the program to have a function \"%s\".", name);
131 }
132 }
133 }
134
135 /* Allocate NBYTES of space in the inferior using the inferior's malloc
136 and return a value that is a pointer to the allocated space. */
137
138 value_ptr
139 value_allocate_space_in_inferior (len)
140 int len;
141 {
142 value_ptr blocklen;
143 register value_ptr val = find_function_in_inferior ("malloc");
144
145 blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
146 val = call_function_by_hand (val, 1, &blocklen);
147 if (value_logical_not (val))
148 {
149 if (!target_has_execution)
150 error ("No memory available to program now: you need to start the target first");
151 else
152 error ("No memory available to program: call to malloc failed");
153 }
154 return val;
155 }
156
157 static CORE_ADDR
158 allocate_space_in_inferior (len)
159 int len;
160 {
161 return value_as_long (value_allocate_space_in_inferior (len));
162 }
163
164 /* Cast value ARG2 to type TYPE and return as a value.
165 More general than a C cast: accepts any two types of the same length,
166 and if ARG2 is an lvalue it can be cast into anything at all. */
167 /* In C++, casts may change pointer or object representations. */
168
169 value_ptr
170 value_cast (type, arg2)
171 struct type *type;
172 register value_ptr arg2;
173 {
174 register enum type_code code1;
175 register enum type_code code2;
176 register int scalar;
177 struct type *type2;
178
179 int convert_to_boolean = 0;
180
181 if (VALUE_TYPE (arg2) == type)
182 return arg2;
183
184 CHECK_TYPEDEF (type);
185 code1 = TYPE_CODE (type);
186 COERCE_REF(arg2);
187 type2 = check_typedef (VALUE_TYPE (arg2));
188
189 /* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
190 is treated like a cast to (TYPE [N])OBJECT,
191 where N is sizeof(OBJECT)/sizeof(TYPE). */
192 if (code1 == TYPE_CODE_ARRAY)
193 {
194 struct type *element_type = TYPE_TARGET_TYPE (type);
195 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
196 if (element_length > 0
197 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
198 {
199 struct type *range_type = TYPE_INDEX_TYPE (type);
200 int val_length = TYPE_LENGTH (type2);
201 LONGEST low_bound, high_bound, new_length;
202 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
203 low_bound = 0, high_bound = 0;
204 new_length = val_length / element_length;
205 if (val_length % element_length != 0)
206 warning("array element type size does not divide object size in cast");
207 /* FIXME-type-allocation: need a way to free this type when we are
208 done with it. */
209 range_type = create_range_type ((struct type *) NULL,
210 TYPE_TARGET_TYPE (range_type),
211 low_bound,
212 new_length + low_bound - 1);
213 VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
214 element_type, range_type);
215 return arg2;
216 }
217 }
218
219 if (current_language->c_style_arrays
220 && TYPE_CODE (type2) == TYPE_CODE_ARRAY)
221 arg2 = value_coerce_array (arg2);
222
223 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
224 arg2 = value_coerce_function (arg2);
225
226 type2 = check_typedef (VALUE_TYPE (arg2));
227 COERCE_VARYING_ARRAY (arg2, type2);
228 code2 = TYPE_CODE (type2);
229
230 if (code1 == TYPE_CODE_COMPLEX)
231 return cast_into_complex (type, arg2);
232 if (code1 == TYPE_CODE_BOOL)
233 {
234 code1 = TYPE_CODE_INT;
235 convert_to_boolean = 1;
236 }
237 if (code1 == TYPE_CODE_CHAR)
238 code1 = TYPE_CODE_INT;
239 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
240 code2 = TYPE_CODE_INT;
241
242 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
243 || code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
244
245 if ( code1 == TYPE_CODE_STRUCT
246 && code2 == TYPE_CODE_STRUCT
247 && TYPE_NAME (type) != 0)
248 {
249 /* Look in the type of the source to see if it contains the
250 type of the target as a superclass. If so, we'll need to
251 offset the object in addition to changing its type. */
252 value_ptr v = search_struct_field (type_name_no_tag (type),
253 arg2, 0, type2, 1);
254 if (v)
255 {
256 VALUE_TYPE (v) = type;
257 return v;
258 }
259 }
260 if (code1 == TYPE_CODE_FLT && scalar)
261 return value_from_double (type, value_as_double (arg2));
262 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
263 || code1 == TYPE_CODE_RANGE)
264 && (scalar || code2 == TYPE_CODE_PTR))
265 {
266 LONGEST longest;
267
268 if (hp_som_som_object_present && /* if target compiled by HP aCC */
269 (code2 == TYPE_CODE_PTR))
270 {
271 unsigned int * ptr;
272 value_ptr retvalp;
273
274 switch (TYPE_CODE (TYPE_TARGET_TYPE (type2)))
275 {
276 /* With HP aCC, pointers to data members have a bias */
277 case TYPE_CODE_MEMBER:
278 retvalp = value_from_longest (type, value_as_long (arg2));
279 ptr = (unsigned int *) VALUE_CONTENTS (retvalp); /* force evaluation */
280 *ptr &= ~0x20000000; /* zap 29th bit to remove bias */
281 return retvalp;
282
283 /* While pointers to methods don't really point to a function */
284 case TYPE_CODE_METHOD:
285 error ("Pointers to methods not supported with HP aCC");
286
287 default:
288 break; /* fall out and go to normal handling */
289 }
290 }
291 longest = value_as_long (arg2);
292 return value_from_longest (type, convert_to_boolean ? (LONGEST) (longest ? 1 : 0) : longest);
293 }
294 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
295 {
296 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
297 {
298 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
299 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
300 if ( TYPE_CODE (t1) == TYPE_CODE_STRUCT
301 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
302 && !value_logical_not (arg2))
303 {
304 value_ptr v;
305
306 /* Look in the type of the source to see if it contains the
307 type of the target as a superclass. If so, we'll need to
308 offset the pointer rather than just change its type. */
309 if (TYPE_NAME (t1) != NULL)
310 {
311 v = search_struct_field (type_name_no_tag (t1),
312 value_ind (arg2), 0, t2, 1);
313 if (v)
314 {
315 v = value_addr (v);
316 VALUE_TYPE (v) = type;
317 return v;
318 }
319 }
320
321 /* Look in the type of the target to see if it contains the
322 type of the source as a superclass. If so, we'll need to
323 offset the pointer rather than just change its type.
324 FIXME: This fails silently with virtual inheritance. */
325 if (TYPE_NAME (t2) != NULL)
326 {
327 v = search_struct_field (type_name_no_tag (t2),
328 value_zero (t1, not_lval), 0, t1, 1);
329 if (v)
330 {
331 value_ptr v2 = value_ind (arg2);
332 VALUE_ADDRESS (v2) -= VALUE_ADDRESS (v)
333 + VALUE_OFFSET (v);
334 v2 = value_addr (v2);
335 VALUE_TYPE (v2) = type;
336 return v2;
337 }
338 }
339 }
340 /* No superclass found, just fall through to change ptr type. */
341 }
342 VALUE_TYPE (arg2) = type;
343 VALUE_ENCLOSING_TYPE (arg2) = type; /* pai: chk_val */
344 VALUE_POINTED_TO_OFFSET (arg2) = 0; /* pai: chk_val */
345 return arg2;
346 }
347 else if (chill_varying_type (type))
348 {
349 struct type *range1, *range2, *eltype1, *eltype2;
350 value_ptr val;
351 int count1, count2;
352 LONGEST low_bound, high_bound;
353 char *valaddr, *valaddr_data;
354 /* For lint warning about eltype2 possibly uninitialized: */
355 eltype2 = NULL;
356 if (code2 == TYPE_CODE_BITSTRING)
357 error ("not implemented: converting bitstring to varying type");
358 if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING)
359 || (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))),
360 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)),
361 (TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2)
362 /* || TYPE_CODE (eltype1) != TYPE_CODE (eltype2) */ )))
363 error ("Invalid conversion to varying type");
364 range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0);
365 range2 = TYPE_FIELD_TYPE (type2, 0);
366 if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0)
367 count1 = -1;
368 else
369 count1 = high_bound - low_bound + 1;
370 if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0)
371 count1 = -1, count2 = 0; /* To force error before */
372 else
373 count2 = high_bound - low_bound + 1;
374 if (count2 > count1)
375 error ("target varying type is too small");
376 val = allocate_value (type);
377 valaddr = VALUE_CONTENTS_RAW (val);
378 valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8;
379 /* Set val's __var_length field to count2. */
380 store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)),
381 count2);
382 /* Set the __var_data field to count2 elements copied from arg2. */
383 memcpy (valaddr_data, VALUE_CONTENTS (arg2),
384 count2 * TYPE_LENGTH (eltype2));
385 /* Zero the rest of the __var_data field of val. */
386 memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0',
387 (count1 - count2) * TYPE_LENGTH (eltype2));
388 return val;
389 }
390 else if (VALUE_LVAL (arg2) == lval_memory)
391 {
392 return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
393 VALUE_BFD_SECTION (arg2));
394 }
395 else if (code1 == TYPE_CODE_VOID)
396 {
397 return value_zero (builtin_type_void, not_lval);
398 }
399 else
400 {
401 error ("Invalid cast.");
402 return 0;
403 }
404 }
405
406 /* Create a value of type TYPE that is zero, and return it. */
407
408 value_ptr
409 value_zero (type, lv)
410 struct type *type;
411 enum lval_type lv;
412 {
413 register value_ptr val = allocate_value (type);
414
415 memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
416 VALUE_LVAL (val) = lv;
417
418 return val;
419 }
420
421 /* Return a value with type TYPE located at ADDR.
422
423 Call value_at only if the data needs to be fetched immediately;
424 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
425 value_at_lazy instead. value_at_lazy simply records the address of
426 the data and sets the lazy-evaluation-required flag. The lazy flag
427 is tested in the VALUE_CONTENTS macro, which is used if and when
428 the contents are actually required.
429
430 Note: value_at does *NOT* handle embedded offsets; perform such
431 adjustments before or after calling it. */
432
433 value_ptr
434 value_at (type, addr, sect)
435 struct type *type;
436 CORE_ADDR addr;
437 asection *sect;
438 {
439 register value_ptr val;
440
441 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
442 error ("Attempt to dereference a generic pointer.");
443
444 val = allocate_value (type);
445
446 #ifdef GDB_TARGET_IS_D10V
447 if (TYPE_CODE (type) == TYPE_CODE_PTR
448 && TYPE_TARGET_TYPE (type)
449 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
450 {
451 /* pointer to function */
452 unsigned long num;
453 unsigned short snum;
454 snum = read_memory_unsigned_integer (addr, 2);
455 num = D10V_MAKE_IADDR(snum);
456 store_address ( VALUE_CONTENTS_RAW (val), 4, num);
457 }
458 else if (TYPE_CODE(type) == TYPE_CODE_PTR)
459 {
460 /* pointer to data */
461 unsigned long num;
462 unsigned short snum;
463 snum = read_memory_unsigned_integer (addr, 2);
464 num = D10V_MAKE_DADDR(snum);
465 store_address ( VALUE_CONTENTS_RAW (val), 4, num);
466 }
467 else
468 #endif
469 read_memory_section (addr, VALUE_CONTENTS_ALL_RAW (val), TYPE_LENGTH (type), sect);
470
471 VALUE_LVAL (val) = lval_memory;
472 VALUE_ADDRESS (val) = addr;
473 VALUE_BFD_SECTION (val) = sect;
474
475 return val;
476 }
477
478 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
479
480 value_ptr
481 value_at_lazy (type, addr, sect)
482 struct type *type;
483 CORE_ADDR addr;
484 asection *sect;
485 {
486 register value_ptr val;
487
488 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
489 error ("Attempt to dereference a generic pointer.");
490
491 val = allocate_value (type);
492
493 VALUE_LVAL (val) = lval_memory;
494 VALUE_ADDRESS (val) = addr;
495 VALUE_LAZY (val) = 1;
496 VALUE_BFD_SECTION (val) = sect;
497
498 return val;
499 }
500
501 /* Called only from the VALUE_CONTENTS and VALUE_CONTENTS_ALL macros,
502 if the current data for a variable needs to be loaded into
503 VALUE_CONTENTS(VAL). Fetches the data from the user's process, and
504 clears the lazy flag to indicate that the data in the buffer is valid.
505
506 If the value is zero-length, we avoid calling read_memory, which would
507 abort. We mark the value as fetched anyway -- all 0 bytes of it.
508
509 This function returns a value because it is used in the VALUE_CONTENTS
510 macro as part of an expression, where a void would not work. The
511 value is ignored. */
512
513 int
514 value_fetch_lazy (val)
515 register value_ptr val;
516 {
517 CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
518 int length = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val));
519
520 #ifdef GDB_TARGET_IS_D10V
521 struct type *type = VALUE_TYPE(val);
522 if (TYPE_CODE (type) == TYPE_CODE_PTR
523 && TYPE_TARGET_TYPE (type)
524 && (TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC))
525 {
526 /* pointer to function */
527 unsigned long num;
528 unsigned short snum;
529 snum = read_memory_unsigned_integer (addr, 2);
530 num = D10V_MAKE_IADDR(snum);
531 store_address ( VALUE_CONTENTS_RAW (val), 4, num);
532 }
533 else if (TYPE_CODE(type) == TYPE_CODE_PTR)
534 {
535 /* pointer to data */
536 unsigned long num;
537 unsigned short snum;
538 snum = read_memory_unsigned_integer (addr, 2);
539 num = D10V_MAKE_DADDR(snum);
540 store_address ( VALUE_CONTENTS_RAW (val), 4, num);
541 }
542 else
543 #endif
544
545 if (length)
546 read_memory_section (addr, VALUE_CONTENTS_ALL_RAW (val), length,
547 VALUE_BFD_SECTION (val));
548 VALUE_LAZY (val) = 0;
549 return 0;
550 }
551
552
553 /* Store the contents of FROMVAL into the location of TOVAL.
554 Return a new value with the location of TOVAL and contents of FROMVAL. */
555
556 value_ptr
557 value_assign (toval, fromval)
558 register value_ptr toval, fromval;
559 {
560 register struct type *type;
561 register value_ptr val;
562 char raw_buffer[MAX_REGISTER_RAW_SIZE];
563 int use_buffer = 0;
564
565 if (!toval->modifiable)
566 error ("Left operand of assignment is not a modifiable lvalue.");
567
568 COERCE_REF (toval);
569
570 type = VALUE_TYPE (toval);
571 if (VALUE_LVAL (toval) != lval_internalvar)
572 fromval = value_cast (type, fromval);
573 else
574 COERCE_ARRAY (fromval);
575 CHECK_TYPEDEF (type);
576
577 /* If TOVAL is a special machine register requiring conversion
578 of program values to a special raw format,
579 convert FROMVAL's contents now, with result in `raw_buffer',
580 and set USE_BUFFER to the number of bytes to write. */
581
582 #ifdef REGISTER_CONVERTIBLE
583 if (VALUE_REGNO (toval) >= 0
584 && REGISTER_CONVERTIBLE (VALUE_REGNO (toval)))
585 {
586 int regno = VALUE_REGNO (toval);
587 if (REGISTER_CONVERTIBLE (regno))
588 {
589 struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
590 REGISTER_CONVERT_TO_RAW (fromtype, regno,
591 VALUE_CONTENTS (fromval), raw_buffer);
592 use_buffer = REGISTER_RAW_SIZE (regno);
593 }
594 }
595 #endif
596
597 switch (VALUE_LVAL (toval))
598 {
599 case lval_internalvar:
600 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
601 val = value_copy (VALUE_INTERNALVAR (toval)->value);
602 VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval);
603 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
604 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
605 return val;
606
607 case lval_internalvar_component:
608 set_internalvar_component (VALUE_INTERNALVAR (toval),
609 VALUE_OFFSET (toval),
610 VALUE_BITPOS (toval),
611 VALUE_BITSIZE (toval),
612 fromval);
613 break;
614
615 case lval_memory:
616 if (VALUE_BITSIZE (toval))
617 {
618 char buffer[sizeof (LONGEST)];
619 /* We assume that the argument to read_memory is in units of
620 host chars. FIXME: Is that correct? */
621 int len = (VALUE_BITPOS (toval)
622 + VALUE_BITSIZE (toval)
623 + HOST_CHAR_BIT - 1)
624 / HOST_CHAR_BIT;
625
626 if (len > (int) sizeof (LONGEST))
627 error ("Can't handle bitfields which don't fit in a %d bit word.",
628 sizeof (LONGEST) * HOST_CHAR_BIT);
629
630 read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
631 buffer, len);
632 modify_field (buffer, value_as_long (fromval),
633 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
634 write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
635 buffer, len);
636 }
637 else if (use_buffer)
638 write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
639 raw_buffer, use_buffer);
640 else
641 write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
642 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
643 break;
644
645 case lval_register:
646 if (VALUE_BITSIZE (toval))
647 {
648 char buffer[sizeof (LONGEST)];
649 int len = REGISTER_RAW_SIZE (VALUE_REGNO (toval));
650
651 if (len > (int) sizeof (LONGEST))
652 error ("Can't handle bitfields in registers larger than %d bits.",
653 sizeof (LONGEST) * HOST_CHAR_BIT);
654
655 if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
656 > len * HOST_CHAR_BIT)
657 /* Getting this right would involve being very careful about
658 byte order. */
659 error ("\
660 Can't handle bitfield which doesn't fit in a single register.");
661
662 read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
663 buffer, len);
664 modify_field (buffer, value_as_long (fromval),
665 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
666 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
667 buffer, len);
668 }
669 else if (use_buffer)
670 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
671 raw_buffer, use_buffer);
672 else
673 {
674 /* Do any conversion necessary when storing this type to more
675 than one register. */
676 #ifdef REGISTER_CONVERT_FROM_TYPE
677 memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
678 REGISTER_CONVERT_FROM_TYPE(VALUE_REGNO (toval), type, raw_buffer);
679 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
680 raw_buffer, TYPE_LENGTH (type));
681 #else
682 write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
683 VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
684 #endif
685 }
686 /* Assigning to the stack pointer, frame pointer, and other
687 (architecture and calling convention specific) registers may
688 cause the frame cache to be out of date. We just do this
689 on all assignments to registers for simplicity; I doubt the slowdown
690 matters. */
691 reinit_frame_cache ();
692 break;
693
694 case lval_reg_frame_relative:
695 {
696 /* value is stored in a series of registers in the frame
697 specified by the structure. Copy that value out, modify
698 it, and copy it back in. */
699 int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
700 int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
701 int byte_offset = VALUE_OFFSET (toval) % reg_size;
702 int reg_offset = VALUE_OFFSET (toval) / reg_size;
703 int amount_copied;
704
705 /* Make the buffer large enough in all cases. */
706 char *buffer = (char *) alloca (amount_to_copy
707 + sizeof (LONGEST)
708 + MAX_REGISTER_RAW_SIZE);
709
710 int regno;
711 struct frame_info *frame;
712
713 /* Figure out which frame this is in currently. */
714 for (frame = get_current_frame ();
715 frame && FRAME_FP (frame) != VALUE_FRAME (toval);
716 frame = get_prev_frame (frame))
717 ;
718
719 if (!frame)
720 error ("Value being assigned to is no longer active.");
721
722 amount_to_copy += (reg_size - amount_to_copy % reg_size);
723
724 /* Copy it out. */
725 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
726 amount_copied = 0);
727 amount_copied < amount_to_copy;
728 amount_copied += reg_size, regno++)
729 {
730 get_saved_register (buffer + amount_copied,
731 (int *)NULL, (CORE_ADDR *)NULL,
732 frame, regno, (enum lval_type *)NULL);
733 }
734
735 /* Modify what needs to be modified. */
736 if (VALUE_BITSIZE (toval))
737 modify_field (buffer + byte_offset,
738 value_as_long (fromval),
739 VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
740 else if (use_buffer)
741 memcpy (buffer + byte_offset, raw_buffer, use_buffer);
742 else
743 memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
744 TYPE_LENGTH (type));
745
746 /* Copy it back. */
747 for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
748 amount_copied = 0);
749 amount_copied < amount_to_copy;
750 amount_copied += reg_size, regno++)
751 {
752 enum lval_type lval;
753 CORE_ADDR addr;
754 int optim;
755
756 /* Just find out where to put it. */
757 get_saved_register ((char *)NULL,
758 &optim, &addr, frame, regno, &lval);
759
760 if (optim)
761 error ("Attempt to assign to a value that was optimized out.");
762 if (lval == lval_memory)
763 write_memory (addr, buffer + amount_copied, reg_size);
764 else if (lval == lval_register)
765 write_register_bytes (addr, buffer + amount_copied, reg_size);
766 else
767 error ("Attempt to assign to an unmodifiable value.");
768 }
769 }
770 break;
771
772
773 default:
774 error ("Left operand of assignment is not an lvalue.");
775 }
776
777 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
778 If the field is signed, and is negative, then sign extend. */
779 if ((VALUE_BITSIZE (toval) > 0)
780 && (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
781 {
782 LONGEST fieldval = value_as_long (fromval);
783 LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
784
785 fieldval &= valmask;
786 if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
787 fieldval |= ~valmask;
788
789 fromval = value_from_longest (type, fieldval);
790 }
791
792 val = value_copy (toval);
793 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
794 TYPE_LENGTH (type));
795 VALUE_TYPE (val) = type;
796 VALUE_ENCLOSING_TYPE (val) = VALUE_ENCLOSING_TYPE (fromval);
797 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (fromval);
798 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (fromval);
799
800 return val;
801 }
802
803 /* Extend a value VAL to COUNT repetitions of its type. */
804
805 value_ptr
806 value_repeat (arg1, count)
807 value_ptr arg1;
808 int count;
809 {
810 register value_ptr val;
811
812 if (VALUE_LVAL (arg1) != lval_memory)
813 error ("Only values in memory can be extended with '@'.");
814 if (count < 1)
815 error ("Invalid number %d of repetitions.", count);
816
817 val = allocate_repeat_value (VALUE_ENCLOSING_TYPE (arg1), count);
818
819 read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
820 VALUE_CONTENTS_ALL_RAW (val),
821 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)));
822 VALUE_LVAL (val) = lval_memory;
823 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
824
825 return val;
826 }
827
828 value_ptr
829 value_of_variable (var, b)
830 struct symbol *var;
831 struct block *b;
832 {
833 value_ptr val;
834 struct frame_info *frame = NULL;
835
836 if (!b)
837 frame = NULL; /* Use selected frame. */
838 else if (symbol_read_needs_frame (var))
839 {
840 frame = block_innermost_frame (b);
841 if (!frame)
842 {
843 if (BLOCK_FUNCTION (b)
844 && SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)))
845 error ("No frame is currently executing in block %s.",
846 SYMBOL_SOURCE_NAME (BLOCK_FUNCTION (b)));
847 else
848 error ("No frame is currently executing in specified block");
849 }
850 }
851
852 val = read_var_value (var, frame);
853 if (!val)
854 error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
855
856 return val;
857 }
858
859 /* Given a value which is an array, return a value which is a pointer to its
860 first element, regardless of whether or not the array has a nonzero lower
861 bound.
862
863 FIXME: A previous comment here indicated that this routine should be
864 substracting the array's lower bound. It's not clear to me that this
865 is correct. Given an array subscripting operation, it would certainly
866 work to do the adjustment here, essentially computing:
867
868 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
869
870 However I believe a more appropriate and logical place to account for
871 the lower bound is to do so in value_subscript, essentially computing:
872
873 (&array[0] + ((index - lowerbound) * sizeof array[0]))
874
875 As further evidence consider what would happen with operations other
876 than array subscripting, where the caller would get back a value that
877 had an address somewhere before the actual first element of the array,
878 and the information about the lower bound would be lost because of
879 the coercion to pointer type.
880 */
881
882 value_ptr
883 value_coerce_array (arg1)
884 value_ptr arg1;
885 {
886 register struct type *type = check_typedef (VALUE_TYPE (arg1));
887
888 if (VALUE_LVAL (arg1) != lval_memory)
889 error ("Attempt to take address of value not located in memory.");
890
891 return value_from_longest (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
892 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
893 }
894
895 /* Given a value which is a function, return a value which is a pointer
896 to it. */
897
898 value_ptr
899 value_coerce_function (arg1)
900 value_ptr arg1;
901 {
902 value_ptr retval;
903
904 if (VALUE_LVAL (arg1) != lval_memory)
905 error ("Attempt to take address of value not located in memory.");
906
907 retval = value_from_longest (lookup_pointer_type (VALUE_TYPE (arg1)),
908 (LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
909 VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
910 return retval;
911 }
912
913 /* Return a pointer value for the object for which ARG1 is the contents. */
914
915 value_ptr
916 value_addr (arg1)
917 value_ptr arg1;
918 {
919 value_ptr arg2;
920
921 struct type *type = check_typedef (VALUE_TYPE (arg1));
922 if (TYPE_CODE (type) == TYPE_CODE_REF)
923 {
924 /* Copy the value, but change the type from (T&) to (T*).
925 We keep the same location information, which is efficient,
926 and allows &(&X) to get the location containing the reference. */
927 arg2 = value_copy (arg1);
928 VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
929 return arg2;
930 }
931 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
932 return value_coerce_function (arg1);
933
934 if (VALUE_LVAL (arg1) != lval_memory)
935 error ("Attempt to take address of value not located in memory.");
936
937 /* Get target memory address */
938 arg2 = value_from_longest (lookup_pointer_type (VALUE_TYPE (arg1)),
939 (LONGEST) (VALUE_ADDRESS (arg1)
940 + VALUE_OFFSET (arg1)
941 + VALUE_EMBEDDED_OFFSET (arg1)));
942
943 /* This may be a pointer to a base subobject; so remember the
944 full derived object's type ... */
945 VALUE_ENCLOSING_TYPE (arg2) = lookup_pointer_type (VALUE_ENCLOSING_TYPE (arg1));
946 /* ... and also the relative position of the subobject in the full object */
947 VALUE_POINTED_TO_OFFSET (arg2) = VALUE_EMBEDDED_OFFSET (arg1);
948 VALUE_BFD_SECTION (arg2) = VALUE_BFD_SECTION (arg1);
949 return arg2;
950 }
951
952 /* Given a value of a pointer type, apply the C unary * operator to it. */
953
954 value_ptr
955 value_ind (arg1)
956 value_ptr arg1;
957 {
958 struct type *base_type;
959 value_ptr arg2;
960 value_ptr real_val;
961
962 COERCE_ARRAY (arg1);
963
964 base_type = check_typedef (VALUE_TYPE (arg1));
965
966 if (TYPE_CODE (base_type) == TYPE_CODE_MEMBER)
967 error ("not implemented: member types in value_ind");
968
969 /* Allow * on an integer so we can cast it to whatever we want.
970 This returns an int, which seems like the most C-like thing
971 to do. "long long" variables are rare enough that
972 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
973 if (TYPE_CODE (base_type) == TYPE_CODE_INT)
974 return value_at (builtin_type_int,
975 (CORE_ADDR) value_as_long (arg1),
976 VALUE_BFD_SECTION (arg1));
977 else if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
978 {
979 struct type *enc_type;
980 /* We may be pointing to something embedded in a larger object */
981 /* Get the real type of the enclosing object */
982 enc_type = check_typedef (VALUE_ENCLOSING_TYPE (arg1));
983 enc_type = TYPE_TARGET_TYPE (enc_type);
984 /* Retrieve the enclosing object pointed to */
985 arg2 = value_at_lazy (enc_type,
986 value_as_pointer (arg1) - VALUE_POINTED_TO_OFFSET (arg1),
987 VALUE_BFD_SECTION (arg1));
988 /* Re-adjust type */
989 VALUE_TYPE (arg2) = TYPE_TARGET_TYPE (base_type);
990 /* Add embedding info */
991 VALUE_ENCLOSING_TYPE (arg2) = enc_type;
992 VALUE_EMBEDDED_OFFSET (arg2) = VALUE_POINTED_TO_OFFSET (arg1);
993
994 /* We may be pointing to an object of some derived type */
995 arg2 = value_full_object (arg2, NULL, 0, 0, 0);
996 return arg2;
997 }
998
999 error ("Attempt to take contents of a non-pointer value.");
1000 return 0; /* For lint -- never reached */
1001 }
1002 \f
1003 /* Pushing small parts of stack frames. */
1004
1005 /* Push one word (the size of object that a register holds). */
1006
1007 CORE_ADDR
1008 push_word (sp, word)
1009 CORE_ADDR sp;
1010 ULONGEST word;
1011 {
1012 register int len = REGISTER_SIZE;
1013 char buffer[MAX_REGISTER_RAW_SIZE];
1014
1015 store_unsigned_integer (buffer, len, word);
1016 if (INNER_THAN (1, 2))
1017 {
1018 /* stack grows downward */
1019 sp -= len;
1020 write_memory (sp, buffer, len);
1021 }
1022 else
1023 {
1024 /* stack grows upward */
1025 write_memory (sp, buffer, len);
1026 sp += len;
1027 }
1028
1029 return sp;
1030 }
1031
1032 /* Push LEN bytes with data at BUFFER. */
1033
1034 CORE_ADDR
1035 push_bytes (sp, buffer, len)
1036 CORE_ADDR sp;
1037 char *buffer;
1038 int len;
1039 {
1040 if (INNER_THAN (1, 2))
1041 {
1042 /* stack grows downward */
1043 sp -= len;
1044 write_memory (sp, buffer, len);
1045 }
1046 else
1047 {
1048 /* stack grows upward */
1049 write_memory (sp, buffer, len);
1050 sp += len;
1051 }
1052
1053 return sp;
1054 }
1055
1056 /* Push onto the stack the specified value VALUE. */
1057
1058 #ifndef PUSH_ARGUMENTS
1059
1060 static CORE_ADDR
1061 value_push (sp, arg)
1062 register CORE_ADDR sp;
1063 value_ptr arg;
1064 {
1065 register int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
1066
1067 if (INNER_THAN (1, 2))
1068 {
1069 /* stack grows downward */
1070 sp -= len;
1071 write_memory (sp, VALUE_CONTENTS_ALL (arg), len);
1072 }
1073 else
1074 {
1075 /* stack grows upward */
1076 write_memory (sp, VALUE_CONTENTS_ALL (arg), len);
1077 sp += len;
1078 }
1079
1080 return sp;
1081 }
1082
1083 #endif /* !PUSH_ARGUMENTS */
1084
1085 #ifdef CALL_DUMMY
1086 /* Perform the standard coercions that are specified
1087 for arguments to be passed to C functions.
1088
1089 If PARAM_TYPE is non-NULL, it is the expected parameter type.
1090 IS_PROTOTYPED is non-zero if the function declaration is prototyped. */
1091
1092 static value_ptr
1093 value_arg_coerce (arg, param_type, is_prototyped)
1094 value_ptr arg;
1095 struct type *param_type;
1096 int is_prototyped;
1097 {
1098 register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1099 register struct type *type
1100 = param_type ? check_typedef (param_type) : arg_type;
1101
1102 switch (TYPE_CODE (type))
1103 {
1104 case TYPE_CODE_REF:
1105 if (TYPE_CODE (arg_type) != TYPE_CODE_REF)
1106 {
1107 arg = value_addr (arg);
1108 VALUE_TYPE (arg) = param_type;
1109 return arg;
1110 }
1111 break;
1112 case TYPE_CODE_INT:
1113 case TYPE_CODE_CHAR:
1114 case TYPE_CODE_BOOL:
1115 case TYPE_CODE_ENUM:
1116 /* If we don't have a prototype, coerce to integer type if necessary. */
1117 if (!is_prototyped)
1118 {
1119 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1120 type = builtin_type_int;
1121 }
1122 /* Currently all target ABIs require at least the width of an integer
1123 type for an argument. We may have to conditionalize the following
1124 type coercion for future targets. */
1125 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
1126 type = builtin_type_int;
1127 break;
1128 case TYPE_CODE_FLT:
1129 /* FIXME: We should always convert floats to doubles in the
1130 non-prototyped case. As many debugging formats include
1131 no information about prototyping, we have to live with
1132 COERCE_FLOAT_TO_DOUBLE for now. */
1133 if (!is_prototyped && COERCE_FLOAT_TO_DOUBLE)
1134 {
1135 if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
1136 type = builtin_type_double;
1137 else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
1138 type = builtin_type_long_double;
1139 }
1140 break;
1141 case TYPE_CODE_FUNC:
1142 type = lookup_pointer_type (type);
1143 break;
1144 case TYPE_CODE_ARRAY:
1145 if (current_language->c_style_arrays)
1146 type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1147 break;
1148 case TYPE_CODE_UNDEF:
1149 case TYPE_CODE_PTR:
1150 case TYPE_CODE_STRUCT:
1151 case TYPE_CODE_UNION:
1152 case TYPE_CODE_VOID:
1153 case TYPE_CODE_SET:
1154 case TYPE_CODE_RANGE:
1155 case TYPE_CODE_STRING:
1156 case TYPE_CODE_BITSTRING:
1157 case TYPE_CODE_ERROR:
1158 case TYPE_CODE_MEMBER:
1159 case TYPE_CODE_METHOD:
1160 case TYPE_CODE_COMPLEX:
1161 default:
1162 break;
1163 }
1164
1165 return value_cast (type, arg);
1166 }
1167
1168 /* Determine a function's address and its return type from its value.
1169 Calls error() if the function is not valid for calling. */
1170
1171 static CORE_ADDR
1172 find_function_addr (function, retval_type)
1173 value_ptr function;
1174 struct type **retval_type;
1175 {
1176 register struct type *ftype = check_typedef (VALUE_TYPE (function));
1177 register enum type_code code = TYPE_CODE (ftype);
1178 struct type *value_type;
1179 CORE_ADDR funaddr;
1180
1181 /* If it's a member function, just look at the function
1182 part of it. */
1183
1184 /* Determine address to call. */
1185 if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
1186 {
1187 funaddr = VALUE_ADDRESS (function);
1188 value_type = TYPE_TARGET_TYPE (ftype);
1189 }
1190 else if (code == TYPE_CODE_PTR)
1191 {
1192 funaddr = value_as_pointer (function);
1193 ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
1194 if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
1195 || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
1196 {
1197 #ifdef CONVERT_FROM_FUNC_PTR_ADDR
1198 /* FIXME: This is a workaround for the unusual function
1199 pointer representation on the RS/6000, see comment
1200 in config/rs6000/tm-rs6000.h */
1201 funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
1202 #endif
1203 value_type = TYPE_TARGET_TYPE (ftype);
1204 }
1205 else
1206 value_type = builtin_type_int;
1207 }
1208 else if (code == TYPE_CODE_INT)
1209 {
1210 /* Handle the case of functions lacking debugging info.
1211 Their values are characters since their addresses are char */
1212 if (TYPE_LENGTH (ftype) == 1)
1213 funaddr = value_as_pointer (value_addr (function));
1214 else
1215 /* Handle integer used as address of a function. */
1216 funaddr = (CORE_ADDR) value_as_long (function);
1217
1218 value_type = builtin_type_int;
1219 }
1220 else
1221 error ("Invalid data type for function to be called.");
1222
1223 *retval_type = value_type;
1224 return funaddr;
1225 }
1226
1227 /* All this stuff with a dummy frame may seem unnecessarily complicated
1228 (why not just save registers in GDB?). The purpose of pushing a dummy
1229 frame which looks just like a real frame is so that if you call a
1230 function and then hit a breakpoint (get a signal, etc), "backtrace"
1231 will look right. Whether the backtrace needs to actually show the
1232 stack at the time the inferior function was called is debatable, but
1233 it certainly needs to not display garbage. So if you are contemplating
1234 making dummy frames be different from normal frames, consider that. */
1235
1236 /* Perform a function call in the inferior.
1237 ARGS is a vector of values of arguments (NARGS of them).
1238 FUNCTION is a value, the function to be called.
1239 Returns a value representing what the function returned.
1240 May fail to return, if a breakpoint or signal is hit
1241 during the execution of the function.
1242
1243 ARGS is modified to contain coerced values. */
1244
1245 value_ptr
1246 call_function_by_hand (function, nargs, args)
1247 value_ptr function;
1248 int nargs;
1249 value_ptr *args;
1250 {
1251 register CORE_ADDR sp;
1252 register int i;
1253 CORE_ADDR start_sp;
1254 /* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
1255 is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
1256 and remove any extra bytes which might exist because ULONGEST is
1257 bigger than REGISTER_SIZE.
1258
1259 NOTE: This is pretty wierd, as the call dummy is actually a
1260 sequence of instructions. But CISC machines will have
1261 to pack the instructions into REGISTER_SIZE units (and
1262 so will RISC machines for which INSTRUCTION_SIZE is not
1263 REGISTER_SIZE). */
1264
1265 static ULONGEST dummy[] = CALL_DUMMY;
1266 char dummy1[REGISTER_SIZE * sizeof dummy / sizeof (ULONGEST)];
1267 CORE_ADDR old_sp;
1268 struct type *value_type;
1269 unsigned char struct_return;
1270 CORE_ADDR struct_addr = 0;
1271 struct inferior_status inf_status;
1272 struct cleanup *old_chain;
1273 CORE_ADDR funaddr;
1274 int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
1275 CORE_ADDR real_pc;
1276 struct type *param_type = NULL;
1277 struct type *ftype = check_typedef (SYMBOL_TYPE (function));
1278
1279 if (!target_has_execution)
1280 noprocess();
1281
1282 save_inferior_status (&inf_status, 1);
1283 old_chain = make_cleanup ((make_cleanup_func) restore_inferior_status,
1284 &inf_status);
1285
1286 /* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
1287 (and POP_FRAME for restoring them). (At least on most machines)
1288 they are saved on the stack in the inferior. */
1289 PUSH_DUMMY_FRAME;
1290
1291 old_sp = sp = read_sp ();
1292
1293 if (INNER_THAN (1, 2))
1294 {
1295 /* Stack grows down */
1296 sp -= sizeof dummy1;
1297 start_sp = sp;
1298 }
1299 else
1300 {
1301 /* Stack grows up */
1302 start_sp = sp;
1303 sp += sizeof dummy1;
1304 }
1305
1306 funaddr = find_function_addr (function, &value_type);
1307 CHECK_TYPEDEF (value_type);
1308
1309 {
1310 struct block *b = block_for_pc (funaddr);
1311 /* If compiled without -g, assume GCC 2. */
1312 using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
1313 }
1314
1315 /* Are we returning a value using a structure return or a normal
1316 value return? */
1317
1318 struct_return = using_struct_return (function, funaddr, value_type,
1319 using_gcc);
1320
1321 /* Create a call sequence customized for this function
1322 and the number of arguments for it. */
1323 for (i = 0; i < (int) (sizeof (dummy) / sizeof (dummy[0])); i++)
1324 store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
1325 REGISTER_SIZE,
1326 (ULONGEST)dummy[i]);
1327
1328 #ifdef GDB_TARGET_IS_HPPA
1329 real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1330 value_type, using_gcc);
1331 #else
1332 FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
1333 value_type, using_gcc);
1334 real_pc = start_sp;
1335 #endif
1336
1337 #if CALL_DUMMY_LOCATION == ON_STACK
1338 write_memory (start_sp, (char *)dummy1, sizeof dummy1);
1339 #endif /* On stack. */
1340
1341 #if CALL_DUMMY_LOCATION == BEFORE_TEXT_END
1342 /* Convex Unix prohibits executing in the stack segment. */
1343 /* Hope there is empty room at the top of the text segment. */
1344 {
1345 extern CORE_ADDR text_end;
1346 static checked = 0;
1347 if (!checked)
1348 for (start_sp = text_end - sizeof dummy1; start_sp < text_end; ++start_sp)
1349 if (read_memory_integer (start_sp, 1) != 0)
1350 error ("text segment full -- no place to put call");
1351 checked = 1;
1352 sp = old_sp;
1353 real_pc = text_end - sizeof dummy1;
1354 write_memory (real_pc, (char *)dummy1, sizeof dummy1);
1355 }
1356 #endif /* Before text_end. */
1357
1358 #if CALL_DUMMY_LOCATION == AFTER_TEXT_END
1359 {
1360 extern CORE_ADDR text_end;
1361 int errcode;
1362 sp = old_sp;
1363 real_pc = text_end;
1364 errcode = target_write_memory (real_pc, (char *)dummy1, sizeof dummy1);
1365 if (errcode != 0)
1366 error ("Cannot write text segment -- call_function failed");
1367 }
1368 #endif /* After text_end. */
1369
1370 #if CALL_DUMMY_LOCATION == AT_ENTRY_POINT
1371 real_pc = funaddr;
1372 #endif /* At entry point. */
1373
1374 #ifdef lint
1375 sp = old_sp; /* It really is used, for some ifdef's... */
1376 #endif
1377
1378 if (nargs < TYPE_NFIELDS (ftype))
1379 error ("too few arguments in function call");
1380
1381 for (i = nargs - 1; i >= 0; i--)
1382 {
1383 /* If we're off the end of the known arguments, do the standard
1384 promotions. FIXME: if we had a prototype, this should only
1385 be allowed if ... were present. */
1386 if (i >= TYPE_NFIELDS (ftype))
1387 args[i] = value_arg_coerce (args[i], NULL, 0);
1388
1389 else
1390 {
1391 int is_prototyped = TYPE_FLAGS (ftype) & TYPE_FLAG_PROTOTYPED;
1392 param_type = TYPE_FIELD_TYPE (ftype, i);
1393
1394 args[i] = value_arg_coerce (args[i], param_type, is_prototyped);
1395 }
1396
1397 /*elz: this code is to handle the case in which the function to be called
1398 has a pointer to function as parameter and the corresponding actual argument
1399 is the address of a function and not a pointer to function variable.
1400 In aCC compiled code, the calls through pointers to functions (in the body
1401 of the function called by hand) are made via $$dyncall_external which
1402 requires some registers setting, this is taken care of if we call
1403 via a function pointer variable, but not via a function address.
1404 In cc this is not a problem. */
1405
1406 if (using_gcc == 0)
1407 if (param_type)
1408 /* if this parameter is a pointer to function*/
1409 if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
1410 if (TYPE_CODE (param_type->target_type) == TYPE_CODE_FUNC)
1411 /* elz: FIXME here should go the test about the compiler used
1412 to compile the target. We want to issue the error
1413 message only if the compiler used was HP's aCC.
1414 If we used HP's cc, then there is no problem and no need
1415 to return at this point */
1416 if (using_gcc == 0) /* && compiler == aCC*/
1417 /* go see if the actual parameter is a variable of type
1418 pointer to function or just a function */
1419 if (args[i]->lval == not_lval)
1420 {
1421 char *arg_name;
1422 if (find_pc_partial_function((CORE_ADDR)args[i]->aligner.contents[0], &arg_name, NULL, NULL))
1423 error("\
1424 You cannot use function <%s> as argument. \n\
1425 You must use a pointer to function type variable. Command ignored.", arg_name);
1426 }
1427 }
1428
1429 #if defined (REG_STRUCT_HAS_ADDR)
1430 {
1431 /* This is a machine like the sparc, where we may need to pass a pointer
1432 to the structure, not the structure itself. */
1433 for (i = nargs - 1; i >= 0; i--)
1434 {
1435 struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
1436 if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
1437 || TYPE_CODE (arg_type) == TYPE_CODE_UNION
1438 || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
1439 || TYPE_CODE (arg_type) == TYPE_CODE_STRING
1440 || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
1441 || TYPE_CODE (arg_type) == TYPE_CODE_SET
1442 || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
1443 && TYPE_LENGTH (arg_type) > 8)
1444 )
1445 && REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
1446 {
1447 CORE_ADDR addr;
1448 int len; /* = TYPE_LENGTH (arg_type); */
1449 int aligned_len;
1450 arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
1451 len = TYPE_LENGTH (arg_type);
1452
1453 #ifdef STACK_ALIGN
1454 /* MVS 11/22/96: I think at least some of this stack_align code is
1455 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1456 a target-defined manner. */
1457 aligned_len = STACK_ALIGN (len);
1458 #else
1459 aligned_len = len;
1460 #endif
1461 if (INNER_THAN (1, 2))
1462 {
1463 /* stack grows downward */
1464 sp -= aligned_len;
1465 }
1466 else
1467 {
1468 /* The stack grows up, so the address of the thing we push
1469 is the stack pointer before we push it. */
1470 addr = sp;
1471 }
1472 /* Push the structure. */
1473 write_memory (sp, VALUE_CONTENTS_ALL (args[i]), len);
1474 if (INNER_THAN (1, 2))
1475 {
1476 /* The stack grows down, so the address of the thing we push
1477 is the stack pointer after we push it. */
1478 addr = sp;
1479 }
1480 else
1481 {
1482 /* stack grows upward */
1483 sp += aligned_len;
1484 }
1485 /* The value we're going to pass is the address of the thing
1486 we just pushed. */
1487 /*args[i] = value_from_longest (lookup_pointer_type (value_type),
1488 (LONGEST) addr);*/
1489 args[i] = value_from_longest (lookup_pointer_type (arg_type),
1490 (LONGEST) addr);
1491 }
1492 }
1493 }
1494 #endif /* REG_STRUCT_HAS_ADDR. */
1495
1496 /* Reserve space for the return structure to be written on the
1497 stack, if necessary */
1498
1499 if (struct_return)
1500 {
1501 int len = TYPE_LENGTH (value_type);
1502 #ifdef STACK_ALIGN
1503 /* MVS 11/22/96: I think at least some of this stack_align code is
1504 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1505 a target-defined manner. */
1506 len = STACK_ALIGN (len);
1507 #endif
1508 if (INNER_THAN (1, 2))
1509 {
1510 /* stack grows downward */
1511 sp -= len;
1512 struct_addr = sp;
1513 }
1514 else
1515 {
1516 /* stack grows upward */
1517 struct_addr = sp;
1518 sp += len;
1519 }
1520 }
1521
1522 /* elz: on HPPA no need for this extra alignment, maybe it is needed
1523 on other architectures. This is because all the alignment is taken care
1524 of in the above code (ifdef REG_STRUCT_HAS_ADDR) and in
1525 hppa_push_arguments*/
1526 #ifndef NO_EXTRA_ALIGNMENT_NEEDED
1527
1528 #if defined(STACK_ALIGN)
1529 /* MVS 11/22/96: I think at least some of this stack_align code is
1530 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1531 a target-defined manner. */
1532 if (INNER_THAN (1, 2))
1533 {
1534 /* If stack grows down, we must leave a hole at the top. */
1535 int len = 0;
1536
1537 for (i = nargs - 1; i >= 0; i--)
1538 len += TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1539 #ifdef CALL_DUMMY_STACK_ADJUST
1540 len += CALL_DUMMY_STACK_ADJUST;
1541 #endif
1542 sp -= STACK_ALIGN (len) - len;
1543 }
1544 #endif /* STACK_ALIGN */
1545 #endif /* NO_EXTRA_ALIGNMENT_NEEDED */
1546
1547 #ifdef PUSH_ARGUMENTS
1548 PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr);
1549 #else /* !PUSH_ARGUMENTS */
1550 for (i = nargs - 1; i >= 0; i--)
1551 sp = value_push (sp, args[i]);
1552 #endif /* !PUSH_ARGUMENTS */
1553
1554 #ifdef PUSH_RETURN_ADDRESS /* for targets that use no CALL_DUMMY */
1555 /* There are a number of targets now which actually don't write any
1556 CALL_DUMMY instructions into the target, but instead just save the
1557 machine state, push the arguments, and jump directly to the callee
1558 function. Since this doesn't actually involve executing a JSR/BSR
1559 instruction, the return address must be set up by hand, either by
1560 pushing onto the stack or copying into a return-address register
1561 as appropriate. Formerly this has been done in PUSH_ARGUMENTS,
1562 but that's overloading its functionality a bit, so I'm making it
1563 explicit to do it here. */
1564 sp = PUSH_RETURN_ADDRESS(real_pc, sp);
1565 #endif /* PUSH_RETURN_ADDRESS */
1566
1567 #if defined(STACK_ALIGN)
1568 if (! INNER_THAN (1, 2))
1569 {
1570 /* If stack grows up, we must leave a hole at the bottom, note
1571 that sp already has been advanced for the arguments! */
1572 #ifdef CALL_DUMMY_STACK_ADJUST
1573 sp += CALL_DUMMY_STACK_ADJUST;
1574 #endif
1575 sp = STACK_ALIGN (sp);
1576 }
1577 #endif /* STACK_ALIGN */
1578
1579 /* XXX This seems wrong. For stacks that grow down we shouldn't do
1580 anything here! */
1581 /* MVS 11/22/96: I think at least some of this stack_align code is
1582 really broken. Better to let PUSH_ARGUMENTS adjust the stack in
1583 a target-defined manner. */
1584 #ifdef CALL_DUMMY_STACK_ADJUST
1585 if (INNER_THAN (1, 2))
1586 {
1587 /* stack grows downward */
1588 sp -= CALL_DUMMY_STACK_ADJUST;
1589 }
1590 #endif /* CALL_DUMMY_STACK_ADJUST */
1591
1592 /* Store the address at which the structure is supposed to be
1593 written. Note that this (and the code which reserved the space
1594 above) assumes that gcc was used to compile this function. Since
1595 it doesn't cost us anything but space and if the function is pcc
1596 it will ignore this value, we will make that assumption.
1597
1598 Also note that on some machines (like the sparc) pcc uses a
1599 convention like gcc's. */
1600
1601 if (struct_return)
1602 STORE_STRUCT_RETURN (struct_addr, sp);
1603
1604 /* Write the stack pointer. This is here because the statements above
1605 might fool with it. On SPARC, this write also stores the register
1606 window into the right place in the new stack frame, which otherwise
1607 wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
1608 write_sp (sp);
1609
1610 {
1611 char retbuf[REGISTER_BYTES];
1612 char *name;
1613 struct symbol *symbol;
1614
1615 name = NULL;
1616 symbol = find_pc_function (funaddr);
1617 if (symbol)
1618 {
1619 name = SYMBOL_SOURCE_NAME (symbol);
1620 }
1621 else
1622 {
1623 /* Try the minimal symbols. */
1624 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
1625
1626 if (msymbol)
1627 {
1628 name = SYMBOL_SOURCE_NAME (msymbol);
1629 }
1630 }
1631 if (name == NULL)
1632 {
1633 char format[80];
1634 sprintf (format, "at %s", local_hex_format ());
1635 name = alloca (80);
1636 /* FIXME-32x64: assumes funaddr fits in a long. */
1637 sprintf (name, format, (unsigned long) funaddr);
1638 }
1639
1640 /* Execute the stack dummy routine, calling FUNCTION.
1641 When it is done, discard the empty frame
1642 after storing the contents of all regs into retbuf. */
1643 if (run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf))
1644 {
1645 /* We stopped somewhere besides the call dummy. */
1646
1647 /* If we did the cleanups, we would print a spurious error message
1648 (Unable to restore previously selected frame), would write the
1649 registers from the inf_status (which is wrong), and would do other
1650 wrong things (like set stop_bpstat to the wrong thing). */
1651 discard_cleanups (old_chain);
1652 /* Prevent memory leak. */
1653 bpstat_clear (&inf_status.stop_bpstat);
1654
1655 /* The following error message used to say "The expression
1656 which contained the function call has been discarded." It
1657 is a hard concept to explain in a few words. Ideally, GDB
1658 would be able to resume evaluation of the expression when
1659 the function finally is done executing. Perhaps someday
1660 this will be implemented (it would not be easy). */
1661
1662 /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
1663 a C++ name with arguments and stuff. */
1664 error ("\
1665 The program being debugged stopped while in a function called from GDB.\n\
1666 When the function (%s) is done executing, GDB will silently\n\
1667 stop (instead of continuing to evaluate the expression containing\n\
1668 the function call).", name);
1669 }
1670
1671 do_cleanups (old_chain);
1672
1673 /* Figure out the value returned by the function. */
1674 /* elz: I defined this new macro for the hppa architecture only.
1675 this gives us a way to get the value returned by the function from the stack,
1676 at the same address we told the function to put it.
1677 We cannot assume on the pa that r28 still contains the address of the returned
1678 structure. Usually this will be overwritten by the callee.
1679 I don't know about other architectures, so I defined this macro
1680 */
1681
1682 #ifdef VALUE_RETURNED_FROM_STACK
1683 if (struct_return)
1684 return (value_ptr) VALUE_RETURNED_FROM_STACK (value_type, struct_addr);
1685 #endif
1686
1687 return value_being_returned (value_type, retbuf, struct_return);
1688 }
1689 }
1690 #else /* no CALL_DUMMY. */
1691 value_ptr
1692 call_function_by_hand (function, nargs, args)
1693 value_ptr function;
1694 int nargs;
1695 value_ptr *args;
1696 {
1697 error ("Cannot invoke functions on this machine.");
1698 }
1699 #endif /* no CALL_DUMMY. */
1700
1701 \f
1702 /* Create a value for an array by allocating space in the inferior, copying
1703 the data into that space, and then setting up an array value.
1704
1705 The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
1706 populated from the values passed in ELEMVEC.
1707
1708 The element type of the array is inherited from the type of the
1709 first element, and all elements must have the same size (though we
1710 don't currently enforce any restriction on their types). */
1711
1712 value_ptr
1713 value_array (lowbound, highbound, elemvec)
1714 int lowbound;
1715 int highbound;
1716 value_ptr *elemvec;
1717 {
1718 int nelem;
1719 int idx;
1720 unsigned int typelength;
1721 value_ptr val;
1722 struct type *rangetype;
1723 struct type *arraytype;
1724 CORE_ADDR addr;
1725
1726 /* Validate that the bounds are reasonable and that each of the elements
1727 have the same size. */
1728
1729 nelem = highbound - lowbound + 1;
1730 if (nelem <= 0)
1731 {
1732 error ("bad array bounds (%d, %d)", lowbound, highbound);
1733 }
1734 typelength = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[0]));
1735 for (idx = 1; idx < nelem; idx++)
1736 {
1737 if (TYPE_LENGTH (VALUE_ENCLOSING_TYPE (elemvec[idx])) != typelength)
1738 {
1739 error ("array elements must all be the same size");
1740 }
1741 }
1742
1743 rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
1744 lowbound, highbound);
1745 arraytype = create_array_type ((struct type *) NULL,
1746 VALUE_ENCLOSING_TYPE (elemvec[0]), rangetype);
1747
1748 if (!current_language->c_style_arrays)
1749 {
1750 val = allocate_value (arraytype);
1751 for (idx = 0; idx < nelem; idx++)
1752 {
1753 memcpy (VALUE_CONTENTS_ALL_RAW (val) + (idx * typelength),
1754 VALUE_CONTENTS_ALL (elemvec[idx]),
1755 typelength);
1756 }
1757 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
1758 return val;
1759 }
1760
1761 /* Allocate space to store the array in the inferior, and then initialize
1762 it by copying in each element. FIXME: Is it worth it to create a
1763 local buffer in which to collect each value and then write all the
1764 bytes in one operation? */
1765
1766 addr = allocate_space_in_inferior (nelem * typelength);
1767 for (idx = 0; idx < nelem; idx++)
1768 {
1769 write_memory (addr + (idx * typelength), VALUE_CONTENTS_ALL (elemvec[idx]),
1770 typelength);
1771 }
1772
1773 /* Create the array type and set up an array value to be evaluated lazily. */
1774
1775 val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
1776 return (val);
1777 }
1778
1779 /* Create a value for a string constant by allocating space in the inferior,
1780 copying the data into that space, and returning the address with type
1781 TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
1782 of characters.
1783 Note that string types are like array of char types with a lower bound of
1784 zero and an upper bound of LEN - 1. Also note that the string may contain
1785 embedded null bytes. */
1786
1787 value_ptr
1788 value_string (ptr, len)
1789 char *ptr;
1790 int len;
1791 {
1792 value_ptr val;
1793 int lowbound = current_language->string_lower_bound;
1794 struct type *rangetype = create_range_type ((struct type *) NULL,
1795 builtin_type_int,
1796 lowbound, len + lowbound - 1);
1797 struct type *stringtype
1798 = create_string_type ((struct type *) NULL, rangetype);
1799 CORE_ADDR addr;
1800
1801 if (current_language->c_style_arrays == 0)
1802 {
1803 val = allocate_value (stringtype);
1804 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1805 return val;
1806 }
1807
1808
1809 /* Allocate space to store the string in the inferior, and then
1810 copy LEN bytes from PTR in gdb to that address in the inferior. */
1811
1812 addr = allocate_space_in_inferior (len);
1813 write_memory (addr, ptr, len);
1814
1815 val = value_at_lazy (stringtype, addr, NULL);
1816 return (val);
1817 }
1818
1819 value_ptr
1820 value_bitstring (ptr, len)
1821 char *ptr;
1822 int len;
1823 {
1824 value_ptr val;
1825 struct type *domain_type = create_range_type (NULL, builtin_type_int,
1826 0, len - 1);
1827 struct type *type = create_set_type ((struct type*) NULL, domain_type);
1828 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1829 val = allocate_value (type);
1830 memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
1831 return val;
1832 }
1833 \f
1834 /* See if we can pass arguments in T2 to a function which takes arguments
1835 of types T1. Both t1 and t2 are NULL-terminated vectors. If some
1836 arguments need coercion of some sort, then the coerced values are written
1837 into T2. Return value is 0 if the arguments could be matched, or the
1838 position at which they differ if not.
1839
1840 STATICP is nonzero if the T1 argument list came from a
1841 static member function.
1842
1843 For non-static member functions, we ignore the first argument,
1844 which is the type of the instance variable. This is because we want
1845 to handle calls with objects from derived classes. This is not
1846 entirely correct: we should actually check to make sure that a
1847 requested operation is type secure, shouldn't we? FIXME. */
1848
1849 static int
1850 typecmp (staticp, t1, t2)
1851 int staticp;
1852 struct type *t1[];
1853 value_ptr t2[];
1854 {
1855 int i;
1856
1857 if (t2 == 0)
1858 return 1;
1859 if (staticp && t1 == 0)
1860 return t2[1] != 0;
1861 if (t1 == 0)
1862 return 1;
1863 if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID) return 0;
1864 if (t1[!staticp] == 0) return 0;
1865 for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++)
1866 {
1867 struct type *tt1, *tt2;
1868 if (! t2[i])
1869 return i+1;
1870 tt1 = check_typedef (t1[i]);
1871 tt2 = check_typedef (VALUE_TYPE(t2[i]));
1872 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1873 /* We should be doing hairy argument matching, as below. */
1874 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
1875 {
1876 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1877 t2[i] = value_coerce_array (t2[i]);
1878 else
1879 t2[i] = value_addr (t2[i]);
1880 continue;
1881 }
1882
1883 while (TYPE_CODE (tt1) == TYPE_CODE_PTR
1884 && ( TYPE_CODE (tt2) == TYPE_CODE_ARRAY
1885 || TYPE_CODE (tt2) == TYPE_CODE_PTR))
1886 {
1887 tt1 = check_typedef (TYPE_TARGET_TYPE(tt1));
1888 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1889 }
1890 if (TYPE_CODE(tt1) == TYPE_CODE(tt2)) continue;
1891 /* Array to pointer is a `trivial conversion' according to the ARM. */
1892
1893 /* We should be doing much hairier argument matching (see section 13.2
1894 of the ARM), but as a quick kludge, just check for the same type
1895 code. */
1896 if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i])))
1897 return i+1;
1898 }
1899 if (!t1[i]) return 0;
1900 return t2[i] ? i+1 : 0;
1901 }
1902
1903 /* Helper function used by value_struct_elt to recurse through baseclasses.
1904 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
1905 and search in it assuming it has (class) type TYPE.
1906 If found, return value, else return NULL.
1907
1908 If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
1909 look for a baseclass named NAME. */
1910
1911 static value_ptr
1912 search_struct_field (name, arg1, offset, type, looking_for_baseclass)
1913 char *name;
1914 register value_ptr arg1;
1915 int offset;
1916 register struct type *type;
1917 int looking_for_baseclass;
1918 {
1919 int found = 0;
1920 char found_class[1024];
1921 value_ptr v;
1922 struct type *vbase = NULL;
1923
1924 found_class[0] = '\000';
1925
1926 v = search_struct_field_aux (name, arg1, offset, type, looking_for_baseclass, &found, found_class, &vbase);
1927 if (found > 1)
1928 warning ("%s ambiguous; using %s::%s. Use a cast to disambiguate.",
1929 name, found_class, name);
1930
1931 return v;
1932 }
1933
1934
1935 static value_ptr
1936 search_struct_field_aux (name, arg1, offset, type, looking_for_baseclass, found, found_class_name, vbase)
1937 char *name;
1938 register value_ptr arg1;
1939 int offset;
1940 register struct type *type;
1941 int looking_for_baseclass;
1942 int * found;
1943 char * found_class_name;
1944 struct type ** vbase;
1945 {
1946 int i;
1947 value_ptr retval = NULL;
1948 char tmp_class_name[1024];
1949 int tmp_found = 0;
1950 int assigned = 0;
1951 int nbases = TYPE_N_BASECLASSES (type);
1952
1953 tmp_class_name[0] = '\000';
1954
1955 CHECK_TYPEDEF (type);
1956
1957 if (! looking_for_baseclass)
1958 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1959 {
1960 char *t_field_name = TYPE_FIELD_NAME (type, i);
1961
1962 if (t_field_name && STREQ (t_field_name, name))
1963 {
1964 value_ptr v = NULL;
1965 if (TYPE_FIELD_STATIC (type, i))
1966 v = value_static_field (type, i);
1967 if (v != NULL)
1968 {
1969 if (!*found)
1970 {
1971 /* Record return value and class name, and continue
1972 looking for possible ambiguous members */
1973 char *class_name = TYPE_TAG_NAME (type);
1974 retval = v;
1975 if (class_name)
1976 strcpy (found_class_name, class_name);
1977 else
1978 found_class_name = NULL;
1979 }
1980 (*found)++;
1981 }
1982 else
1983 {
1984 v = value_primitive_field (arg1, offset, i, type);
1985 if (v != NULL)
1986 {
1987 if (!*found)
1988 {
1989 /* Record return value and class name, and continue
1990 looking for possible ambiguous members */
1991 char *class_name = TYPE_TAG_NAME (type);
1992 retval = v;
1993 if (class_name)
1994 strcpy (found_class_name, class_name);
1995 else
1996 found_class_name = NULL;
1997 }
1998 (*found)++;
1999 }
2000 }
2001
2002 if (v == 0)
2003 error("Couldn't retrieve field named %s", name);
2004 }
2005
2006 if (t_field_name
2007 && (t_field_name[0] == '\0'
2008 || (TYPE_CODE (type) == TYPE_CODE_UNION
2009 && STREQ (t_field_name, "else"))))
2010 {
2011 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2012 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2013 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2014 {
2015 /* Look for a match through the fields of an anonymous union,
2016 or anonymous struct. C++ provides anonymous unions.
2017
2018 In the GNU Chill implementation of variant record types,
2019 each <alternative field> has an (anonymous) union type,
2020 each member of the union represents a <variant alternative>.
2021 Each <variant alternative> is represented as a struct,
2022 with a member for each <variant field>. */
2023
2024 value_ptr v;
2025 int new_offset = offset;
2026
2027 /* This is pretty gross. In G++, the offset in an anonymous
2028 union is relative to the beginning of the enclosing struct.
2029 In the GNU Chill implementation of variant records,
2030 the bitpos is zero in an anonymous union field, so we
2031 have to add the offset of the union here. */
2032 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2033 || (TYPE_NFIELDS (field_type) > 0
2034 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2035 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2036
2037 v = search_struct_field_aux (name, arg1, new_offset, field_type,
2038 looking_for_baseclass, &tmp_found,
2039 tmp_class_name, vbase);
2040 if (!*found && v)
2041 {
2042 /* Record return value and class name, and continue
2043 looking for possible ambiguous members */
2044 retval = v;
2045 /* TYPE_TAG_NAME can be null in case of an anonymous union */
2046 if (TYPE_TAG_NAME (type))
2047 strcpy (found_class_name, TYPE_TAG_NAME (type));
2048 else
2049 strcpy (found_class_name, " ");
2050 strcat (found_class_name, "::");
2051 strcat (found_class_name, tmp_class_name);
2052 }
2053 *found += tmp_found;
2054 tmp_found = 0;
2055 }
2056 }
2057 }
2058
2059 for (i = 0; i < nbases; i++)
2060 {
2061 value_ptr v;
2062 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2063 /* If we are looking for baseclasses, this is what we get when we
2064 hit them. But it could happen that the base part's member name
2065 is not yet filled in. */
2066 int found_baseclass = (looking_for_baseclass
2067 && TYPE_BASECLASS_NAME (type, i) != NULL
2068 && STREQ (name, TYPE_BASECLASS_NAME (type, i)));
2069
2070 if (BASETYPE_VIA_VIRTUAL (type, i))
2071 {
2072 int boffset;
2073 value_ptr v2 = allocate_value (VALUE_ENCLOSING_TYPE (arg1));
2074
2075 if (TYPE_HAS_VTABLE (type))
2076 {
2077 /* HP aCC compiled type, use Taligent/HP runtime model */
2078 int skip;
2079 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2080 VALUE_CONTENTS_ALL (arg1),
2081 offset + VALUE_EMBEDDED_OFFSET (arg1),
2082 &boffset, &skip);
2083 if (skip >= 0)
2084 error ("Virtual base class offset not found from vtable");
2085 }
2086
2087 else
2088 {
2089
2090 boffset = baseclass_offset (type, i,
2091 VALUE_CONTENTS_ALL (arg1) + offset,
2092 VALUE_ADDRESS (arg1)
2093 + VALUE_OFFSET (arg1) + offset);
2094 if (boffset == -1)
2095 error ("virtual baseclass botch");
2096
2097 /* The virtual base class pointer might have been clobbered by the
2098 user program. Make sure that it still points to a valid memory
2099 location. */
2100
2101 if ((boffset + offset) < 0 ||
2102 (boffset + offset) >= TYPE_LENGTH (type))
2103 {
2104 CORE_ADDR base_addr;
2105
2106 base_addr = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1) +
2107 boffset + offset;
2108 if (target_read_memory (base_addr, VALUE_CONTENTS_RAW (v2),
2109 TYPE_LENGTH (basetype)) != 0)
2110 error ("virtual baseclass botch");
2111 VALUE_LVAL (v2) = lval_memory;
2112 VALUE_ADDRESS (v2) = base_addr;
2113 assigned = 1;
2114 }
2115 }
2116
2117 if (!assigned)
2118 {
2119 VALUE_LVAL (v2) = VALUE_LVAL (arg1);
2120 VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
2121 }
2122
2123 /* Earlier, this code used to allocate a value of type
2124 basetype and copy the contents of arg1 at the
2125 appropriate offset into the new value. This doesn't
2126 work because there is important stuff (virtual bases,
2127 for example) that could be anywhere in the contents
2128 of arg1, and not just within the length of a basetype
2129 object. In particular the boffset below could be
2130 negative, with the HP/Taligent C++ runtime system.
2131 So, the only way to ensure that required information
2132 is not lost is to always allocate a value of the same
2133 type as arg1 and to fill it with the _entire_
2134 contents of arg1. It sounds wasteful, but there is
2135 really no way around it if later member lookup,
2136 casts, etc. have to work correctly with the returned
2137 value. */
2138
2139
2140 VALUE_TYPE (v2) = basetype;
2141 VALUE_OFFSET (v2) = VALUE_OFFSET (arg1);
2142 VALUE_EMBEDDED_OFFSET(v2)
2143 = VALUE_EMBEDDED_OFFSET(arg1) + offset + boffset;
2144 if (VALUE_LAZY (arg1))
2145 VALUE_LAZY (v2) = 1;
2146 else
2147 memcpy ((char *) (v2)->aligner.contents,
2148 (char *) (arg1)->aligner.contents,
2149 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg1)));
2150
2151 if (found_baseclass)
2152 {
2153 /*return v2;*/
2154
2155 if (!*found) /* not yet found anything */
2156 {
2157 /* Record return value and class name, and continue
2158 looking for possible ambiguous members */
2159 retval = v2;
2160 strcpy (found_class_name, TYPE_TAG_NAME (type));
2161 }
2162 /* Don't count virtual bases twice when deciding ambiguity */
2163 if (*vbase != basetype) /* works for null *vbase */
2164 (*found)++;
2165 /* Is this the first virtual base where we "found" something? */
2166 if (!*vbase)
2167 *vbase = basetype;
2168 }
2169 else /* base not found, or looking for member */
2170 {
2171 v = search_struct_field_aux (name, arg1, offset + boffset,
2172 TYPE_BASECLASS (type, i),
2173 looking_for_baseclass, &tmp_found,
2174 tmp_class_name, vbase);
2175 if (!*found && v)
2176 {
2177 /* Record return value and class name, and continue
2178 looking for possible ambiguous members */
2179 retval = v;
2180 /* TYPE_TAG_NAME can be null in case of an anonymous union */
2181 if (TYPE_TAG_NAME (type))
2182 strcpy (found_class_name, TYPE_TAG_NAME (type));
2183 else
2184 strcpy (found_class_name, " ");
2185 strcat (found_class_name, "::");
2186 strcat (found_class_name, tmp_class_name);
2187 }
2188 /* Don't count virtual bases twice when deciding ambiguity */
2189 if (*vbase != basetype) /* works for null *vbase */
2190 *found += tmp_found;
2191 /* Is this the first virtual base where we "found" something? */
2192 if (!*vbase)
2193 *vbase = basetype;
2194 tmp_found = 0;
2195 }
2196 }
2197 else if (found_baseclass)
2198 {
2199 v = value_primitive_field (arg1, offset, i, type);
2200 if (!*found)
2201 {
2202 /* Record return value and class name, and continue
2203 looking for possible ambiguous members */
2204 retval = v;
2205 strcpy (found_class_name, TYPE_TAG_NAME (type));
2206 }
2207 (*found)++;
2208 }
2209 else
2210 {
2211 v = search_struct_field_aux (name, arg1,
2212 offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
2213 basetype, looking_for_baseclass, &tmp_found,
2214 tmp_class_name, vbase);
2215 if (!*found && v)
2216 {
2217 /* Record return value and class name, and continue
2218 looking for possible ambiguous members */
2219 retval = v;
2220 /* TYPE_TAG_NAME can be null in case of an anonymous union */
2221 if (TYPE_TAG_NAME (type))
2222 strcpy (found_class_name, TYPE_TAG_NAME (type));
2223 else
2224 strcpy (found_class_name, " ");
2225 strcat (found_class_name, "::");
2226 strcat (found_class_name, tmp_class_name);
2227 }
2228 *found += tmp_found;
2229 tmp_found = 0;
2230 }
2231 }
2232 return retval;
2233 }
2234
2235
2236 /* Return the offset (in bytes) of the virtual base of type BASETYPE
2237 * in an object pointed to by VALADDR (on the host), assumed to be of
2238 * type TYPE. OFFSET is number of bytes beyond start of ARG to start
2239 * looking (in case VALADDR is the contents of an enclosing object).
2240 *
2241 * This routine recurses on the primary base of the derived class because
2242 * the virtual base entries of the primary base appear before the other
2243 * virtual base entries.
2244 *
2245 * If the virtual base is not found, a negative integer is returned.
2246 * The magnitude of the negative integer is the number of entries in
2247 * the virtual table to skip over (entries corresponding to various
2248 * ancestral classes in the chain of primary bases).
2249 *
2250 * Important: This assumes the HP / Taligent C++ runtime
2251 * conventions. Use baseclass_offset() instead to deal with g++
2252 * conventions. */
2253
2254 void
2255 find_rt_vbase_offset(type, basetype, valaddr, offset, boffset_p, skip_p)
2256 struct type * type;
2257 struct type * basetype;
2258 char * valaddr;
2259 int offset;
2260 int * boffset_p;
2261 int * skip_p;
2262 {
2263 int boffset; /* offset of virtual base */
2264 int index; /* displacement to use in virtual table */
2265 int skip;
2266
2267 value_ptr vp;
2268 CORE_ADDR vtbl; /* the virtual table pointer */
2269 struct type * pbc; /* the primary base class */
2270
2271 /* Look for the virtual base recursively in the primary base, first.
2272 * This is because the derived class object and its primary base
2273 * subobject share the primary virtual table. */
2274
2275 boffset = 0;
2276 pbc = TYPE_PRIMARY_BASE(type);
2277 if (pbc)
2278 {
2279 find_rt_vbase_offset (pbc, basetype, valaddr, offset, &boffset, &skip);
2280 if (skip < 0)
2281 {
2282 *boffset_p = boffset;
2283 *skip_p = -1;
2284 return;
2285 }
2286 }
2287 else
2288 skip = 0;
2289
2290
2291 /* Find the index of the virtual base according to HP/Taligent
2292 runtime spec. (Depth-first, left-to-right.) */
2293 index = virtual_base_index_skip_primaries (basetype, type);
2294
2295 if (index < 0) {
2296 *skip_p = skip + virtual_base_list_length_skip_primaries (type);
2297 *boffset_p = 0;
2298 return;
2299 }
2300
2301 /* pai: FIXME -- 32x64 possible problem */
2302 /* First word (4 bytes) in object layout is the vtable pointer */
2303 vtbl = * (CORE_ADDR *) (valaddr + offset);
2304
2305 /* Before the constructor is invoked, things are usually zero'd out. */
2306 if (vtbl == 0)
2307 error ("Couldn't find virtual table -- object may not be constructed yet.");
2308
2309
2310 /* Find virtual base's offset -- jump over entries for primary base
2311 * ancestors, then use the index computed above. But also adjust by
2312 * HP_ACC_VBASE_START for the vtable slots before the start of the
2313 * virtual base entries. Offset is negative -- virtual base entries
2314 * appear _before_ the address point of the virtual table. */
2315
2316 /* pai: FIXME -- 32x64 problem, if word = 8 bytes, change multiplier
2317 & use long type */
2318
2319 /* epstein : FIXME -- added param for overlay section. May not be correct */
2320 vp = value_at (builtin_type_int, vtbl + 4 * (- skip - index - HP_ACC_VBASE_START), NULL);
2321 boffset = value_as_long (vp);
2322 *skip_p = -1;
2323 *boffset_p = boffset;
2324 return;
2325 }
2326
2327
2328 /* Helper function used by value_struct_elt to recurse through baseclasses.
2329 Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
2330 and search in it assuming it has (class) type TYPE.
2331 If found, return value, else if name matched and args not return (value)-1,
2332 else return NULL. */
2333
2334 static value_ptr
2335 search_struct_method (name, arg1p, args, offset, static_memfuncp, type)
2336 char *name;
2337 register value_ptr *arg1p, *args;
2338 int offset, *static_memfuncp;
2339 register struct type *type;
2340 {
2341 int i;
2342 value_ptr v;
2343 int name_matched = 0;
2344 char dem_opname[64];
2345
2346 CHECK_TYPEDEF (type);
2347 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2348 {
2349 char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2350 /* FIXME! May need to check for ARM demangling here */
2351 if (strncmp(t_field_name, "__", 2)==0 ||
2352 strncmp(t_field_name, "op", 2)==0 ||
2353 strncmp(t_field_name, "type", 4)==0 )
2354 {
2355 if (cplus_demangle_opname(t_field_name, dem_opname, DMGL_ANSI))
2356 t_field_name = dem_opname;
2357 else if (cplus_demangle_opname(t_field_name, dem_opname, 0))
2358 t_field_name = dem_opname;
2359 }
2360 if (t_field_name && STREQ (t_field_name, name))
2361 {
2362 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2363 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2364 name_matched = 1;
2365
2366 if (j > 0 && args == 0)
2367 error ("cannot resolve overloaded method `%s': no arguments supplied", name);
2368 while (j >= 0)
2369 {
2370 if (TYPE_FN_FIELD_STUB (f, j))
2371 check_stub_method (type, i, j);
2372 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2373 TYPE_FN_FIELD_ARGS (f, j), args))
2374 {
2375 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2376 return value_virtual_fn_field (arg1p, f, j, type, offset);
2377 if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
2378 *static_memfuncp = 1;
2379 v = value_fn_field (arg1p, f, j, type, offset);
2380 if (v != NULL) return v;
2381 }
2382 j--;
2383 }
2384 }
2385 }
2386
2387 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2388 {
2389 int base_offset;
2390
2391 if (BASETYPE_VIA_VIRTUAL (type, i))
2392 {
2393 if (TYPE_HAS_VTABLE (type))
2394 {
2395 /* HP aCC compiled type, search for virtual base offset
2396 according to HP/Taligent runtime spec. */
2397 int skip;
2398 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2399 VALUE_CONTENTS_ALL (*arg1p),
2400 offset + VALUE_EMBEDDED_OFFSET (*arg1p),
2401 &base_offset, &skip);
2402 if (skip >= 0)
2403 error ("Virtual base class offset not found in vtable");
2404 }
2405 else
2406 {
2407 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2408 char *base_valaddr;
2409
2410 /* The virtual base class pointer might have been clobbered by the
2411 user program. Make sure that it still points to a valid memory
2412 location. */
2413
2414 if (offset < 0 || offset >= TYPE_LENGTH (type))
2415 {
2416 base_valaddr = (char *) alloca (TYPE_LENGTH (baseclass));
2417 if (target_read_memory (VALUE_ADDRESS (*arg1p)
2418 + VALUE_OFFSET (*arg1p) + offset,
2419 base_valaddr,
2420 TYPE_LENGTH (baseclass)) != 0)
2421 error ("virtual baseclass botch");
2422 }
2423 else
2424 base_valaddr = VALUE_CONTENTS (*arg1p) + offset;
2425
2426 base_offset =
2427 baseclass_offset (type, i, base_valaddr,
2428 VALUE_ADDRESS (*arg1p)
2429 + VALUE_OFFSET (*arg1p) + offset);
2430 if (base_offset == -1)
2431 error ("virtual baseclass botch");
2432 }
2433 }
2434 else
2435 {
2436 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2437 }
2438 v = search_struct_method (name, arg1p, args, base_offset + offset,
2439 static_memfuncp, TYPE_BASECLASS (type, i));
2440 if (v == (value_ptr) -1)
2441 {
2442 name_matched = 1;
2443 }
2444 else if (v)
2445 {
2446 /* FIXME-bothner: Why is this commented out? Why is it here? */
2447 /* *arg1p = arg1_tmp;*/
2448 return v;
2449 }
2450 }
2451 if (name_matched) return (value_ptr) -1;
2452 else return NULL;
2453 }
2454
2455 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2456 extract the component named NAME from the ultimate target structure/union
2457 and return it as a value with its appropriate type.
2458 ERR is used in the error message if *ARGP's type is wrong.
2459
2460 C++: ARGS is a list of argument types to aid in the selection of
2461 an appropriate method. Also, handle derived types.
2462
2463 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2464 where the truthvalue of whether the function that was resolved was
2465 a static member function or not is stored.
2466
2467 ERR is an error message to be printed in case the field is not found. */
2468
2469 value_ptr
2470 value_struct_elt (argp, args, name, static_memfuncp, err)
2471 register value_ptr *argp, *args;
2472 char *name;
2473 int *static_memfuncp;
2474 char *err;
2475 {
2476 register struct type *t;
2477 value_ptr v;
2478
2479 COERCE_ARRAY (*argp);
2480
2481 t = check_typedef (VALUE_TYPE (*argp));
2482
2483 /* Follow pointers until we get to a non-pointer. */
2484
2485 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2486 {
2487 *argp = value_ind (*argp);
2488 /* Don't coerce fn pointer to fn and then back again! */
2489 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2490 COERCE_ARRAY (*argp);
2491 t = check_typedef (VALUE_TYPE (*argp));
2492 }
2493
2494 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2495 error ("not implemented: member type in value_struct_elt");
2496
2497 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
2498 && TYPE_CODE (t) != TYPE_CODE_UNION)
2499 error ("Attempt to extract a component of a value that is not a %s.", err);
2500
2501 /* Assume it's not, unless we see that it is. */
2502 if (static_memfuncp)
2503 *static_memfuncp =0;
2504
2505 if (!args)
2506 {
2507 /* if there are no arguments ...do this... */
2508
2509 /* Try as a field first, because if we succeed, there
2510 is less work to be done. */
2511 v = search_struct_field (name, *argp, 0, t, 0);
2512 if (v)
2513 return v;
2514
2515 /* C++: If it was not found as a data field, then try to
2516 return it as a pointer to a method. */
2517
2518 if (destructor_name_p (name, t))
2519 error ("Cannot get value of destructor");
2520
2521 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2522
2523 if (v == (value_ptr) -1)
2524 error ("Cannot take address of a method");
2525 else if (v == 0)
2526 {
2527 if (TYPE_NFN_FIELDS (t))
2528 error ("There is no member or method named %s.", name);
2529 else
2530 error ("There is no member named %s.", name);
2531 }
2532 return v;
2533 }
2534
2535 if (destructor_name_p (name, t))
2536 {
2537 if (!args[1])
2538 {
2539 /* Destructors are a special case. */
2540 int m_index, f_index;
2541
2542 v = NULL;
2543 if (get_destructor_fn_field (t, &m_index, &f_index))
2544 {
2545 v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
2546 f_index, NULL, 0);
2547 }
2548 if (v == NULL)
2549 error ("could not find destructor function named %s.", name);
2550 else
2551 return v;
2552 }
2553 else
2554 {
2555 error ("destructor should not have any argument");
2556 }
2557 }
2558 else
2559 v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
2560
2561 if (v == (value_ptr) -1)
2562 {
2563 error("Argument list of %s mismatch with component in the structure.", name);
2564 }
2565 else if (v == 0)
2566 {
2567 /* See if user tried to invoke data as function. If so,
2568 hand it back. If it's not callable (i.e., a pointer to function),
2569 gdb should give an error. */
2570 v = search_struct_field (name, *argp, 0, t, 0);
2571 }
2572
2573 if (!v)
2574 error ("Structure has no component named %s.", name);
2575 return v;
2576 }
2577
2578
2579 /* Search through the methods of an object (and its bases)
2580 * to find a specified method. Return the pointer to the
2581 * fn_field list of overloaded instances.
2582 * Helper function for value_find_oload_list.
2583 * ARGP is a pointer to a pointer to a value (the object)
2584 * METHOD is a string containing the method name
2585 * OFFSET is the offset within the value
2586 * STATIC_MEMFUNCP is set if the method is static
2587 * TYPE is the assumed type of the object
2588 * NUM_FNS is the number of overloaded instances
2589 * BASETYPE is set to the actual type of the subobject where the method is found
2590 * BOFFSET is the offset of the base subobject where the method is found */
2591
2592 struct fn_field *
2593 find_method_list (argp, method, offset, static_memfuncp, type, num_fns, basetype, boffset)
2594 value_ptr *argp;
2595 char * method;
2596 int offset;
2597 int * static_memfuncp;
2598 struct type * type;
2599 int * num_fns;
2600 struct type ** basetype;
2601 int * boffset;
2602 {
2603 int i;
2604 struct fn_field * f;
2605 CHECK_TYPEDEF (type);
2606
2607 *num_fns = 0;
2608
2609 /* First check in object itself */
2610 for (i = TYPE_NFN_FIELDS (type) -1; i >= 0; i--)
2611 {
2612 /* pai: FIXME What about operators and type conversions? */
2613 char * fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2614 if (fn_field_name && STREQ (fn_field_name, method))
2615 {
2616 *num_fns = TYPE_FN_FIELDLIST_LENGTH (type, i);
2617 *basetype = type;
2618 *boffset = offset;
2619 return TYPE_FN_FIELDLIST1 (type, i);
2620 }
2621 }
2622
2623 /* Not found in object, check in base subobjects */
2624 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2625 {
2626 int base_offset;
2627 if (BASETYPE_VIA_VIRTUAL (type, i))
2628 {
2629 if (TYPE_HAS_VTABLE (type))
2630 {
2631 /* HP aCC compiled type, search for virtual base offset
2632 * according to HP/Taligent runtime spec. */
2633 int skip;
2634 find_rt_vbase_offset (type, TYPE_BASECLASS (type, i),
2635 VALUE_CONTENTS_ALL (*argp),
2636 offset + VALUE_EMBEDDED_OFFSET (*argp),
2637 &base_offset, &skip);
2638 if (skip >= 0)
2639 error ("Virtual base class offset not found in vtable");
2640 }
2641 else
2642 {
2643 /* probably g++ runtime model */
2644 base_offset = VALUE_OFFSET (*argp) + offset;
2645 base_offset =
2646 baseclass_offset (type, i,
2647 VALUE_CONTENTS (*argp) + base_offset,
2648 VALUE_ADDRESS (*argp) + base_offset);
2649 if (base_offset == -1)
2650 error ("virtual baseclass botch");
2651 }
2652 }
2653 else /* non-virtual base, simply use bit position from debug info */
2654 {
2655 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2656 }
2657 f = find_method_list (argp, method, base_offset + offset,
2658 static_memfuncp, TYPE_BASECLASS (type, i), num_fns, basetype, boffset);
2659 if (f)
2660 return f;
2661 }
2662 return NULL;
2663 }
2664
2665 /* Return the list of overloaded methods of a specified name.
2666 * ARGP is a pointer to a pointer to a value (the object)
2667 * METHOD is the method name
2668 * OFFSET is the offset within the value contents
2669 * STATIC_MEMFUNCP is set if the method is static
2670 * NUM_FNS is the number of overloaded instances
2671 * BASETYPE is set to the type of the base subobject that defines the method
2672 * BOFFSET is the offset of the base subobject which defines the method */
2673
2674 struct fn_field *
2675 value_find_oload_method_list (argp, method, offset, static_memfuncp, num_fns, basetype, boffset)
2676 value_ptr *argp;
2677 char * method;
2678 int offset;
2679 int * static_memfuncp;
2680 int * num_fns;
2681 struct type ** basetype;
2682 int * boffset;
2683 {
2684 struct type * t;
2685 value_ptr v;
2686
2687 t = check_typedef (VALUE_TYPE (*argp));
2688
2689 /* code snarfed from value_struct_elt */
2690 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2691 {
2692 *argp = value_ind (*argp);
2693 /* Don't coerce fn pointer to fn and then back again! */
2694 if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
2695 COERCE_ARRAY (*argp);
2696 t = check_typedef (VALUE_TYPE (*argp));
2697 }
2698
2699 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2700 error ("Not implemented: member type in value_find_oload_lis");
2701
2702 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
2703 && TYPE_CODE (t) != TYPE_CODE_UNION)
2704 error ("Attempt to extract a component of a value that is not a struct or union");
2705
2706 /* Assume it's not static, unless we see that it is. */
2707 if (static_memfuncp)
2708 *static_memfuncp =0;
2709
2710 return find_method_list (argp, method, 0, static_memfuncp, t, num_fns, basetype, boffset);
2711
2712 }
2713
2714 /* C++: return 1 is NAME is a legitimate name for the destructor
2715 of type TYPE. If TYPE does not have a destructor, or
2716 if NAME is inappropriate for TYPE, an error is signaled. */
2717 int
2718 destructor_name_p (name, type)
2719 const char *name;
2720 const struct type *type;
2721 {
2722 /* destructors are a special case. */
2723
2724 if (name[0] == '~')
2725 {
2726 char *dname = type_name_no_tag (type);
2727 char *cp = strchr (dname, '<');
2728 unsigned int len;
2729
2730 /* Do not compare the template part for template classes. */
2731 if (cp == NULL)
2732 len = strlen (dname);
2733 else
2734 len = cp - dname;
2735 if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
2736 error ("name of destructor must equal name of class");
2737 else
2738 return 1;
2739 }
2740 return 0;
2741 }
2742
2743 /* Helper function for check_field: Given TYPE, a structure/union,
2744 return 1 if the component named NAME from the ultimate
2745 target structure/union is defined, otherwise, return 0. */
2746
2747 static int
2748 check_field_in (type, name)
2749 register struct type *type;
2750 const char *name;
2751 {
2752 register int i;
2753
2754 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2755 {
2756 char *t_field_name = TYPE_FIELD_NAME (type, i);
2757 if (t_field_name && STREQ (t_field_name, name))
2758 return 1;
2759 }
2760
2761 /* C++: If it was not found as a data field, then try to
2762 return it as a pointer to a method. */
2763
2764 /* Destructors are a special case. */
2765 if (destructor_name_p (name, type))
2766 {
2767 int m_index, f_index;
2768
2769 return get_destructor_fn_field (type, &m_index, &f_index);
2770 }
2771
2772 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2773 {
2774 if (STREQ (TYPE_FN_FIELDLIST_NAME (type, i), name))
2775 return 1;
2776 }
2777
2778 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2779 if (check_field_in (TYPE_BASECLASS (type, i), name))
2780 return 1;
2781
2782 return 0;
2783 }
2784
2785
2786 /* C++: Given ARG1, a value of type (pointer to a)* structure/union,
2787 return 1 if the component named NAME from the ultimate
2788 target structure/union is defined, otherwise, return 0. */
2789
2790 int
2791 check_field (arg1, name)
2792 register value_ptr arg1;
2793 const char *name;
2794 {
2795 register struct type *t;
2796
2797 COERCE_ARRAY (arg1);
2798
2799 t = VALUE_TYPE (arg1);
2800
2801 /* Follow pointers until we get to a non-pointer. */
2802
2803 for (;;)
2804 {
2805 CHECK_TYPEDEF (t);
2806 if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
2807 break;
2808 t = TYPE_TARGET_TYPE (t);
2809 }
2810
2811 if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
2812 error ("not implemented: member type in check_field");
2813
2814 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
2815 && TYPE_CODE (t) != TYPE_CODE_UNION)
2816 error ("Internal error: `this' is not an aggregate");
2817
2818 return check_field_in (t, name);
2819 }
2820
2821 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
2822 return the address of this member as a "pointer to member"
2823 type. If INTYPE is non-null, then it will be the type
2824 of the member we are looking for. This will help us resolve
2825 "pointers to member functions". This function is used
2826 to resolve user expressions of the form "DOMAIN::NAME". */
2827
2828 value_ptr
2829 value_struct_elt_for_reference (domain, offset, curtype, name, intype)
2830 struct type *domain, *curtype, *intype;
2831 int offset;
2832 char *name;
2833 {
2834 register struct type *t = curtype;
2835 register int i;
2836 value_ptr v;
2837
2838 if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
2839 && TYPE_CODE (t) != TYPE_CODE_UNION)
2840 error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
2841
2842 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
2843 {
2844 char *t_field_name = TYPE_FIELD_NAME (t, i);
2845
2846 if (t_field_name && STREQ (t_field_name, name))
2847 {
2848 if (TYPE_FIELD_STATIC (t, i))
2849 {
2850 v = value_static_field (t, i);
2851 if (v == NULL)
2852 error ("Internal error: could not find static variable %s",
2853 name);
2854 return v;
2855 }
2856 if (TYPE_FIELD_PACKED (t, i))
2857 error ("pointers to bitfield members not allowed");
2858
2859 return value_from_longest
2860 (lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
2861 domain)),
2862 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
2863 }
2864 }
2865
2866 /* C++: If it was not found as a data field, then try to
2867 return it as a pointer to a method. */
2868
2869 /* Destructors are a special case. */
2870 if (destructor_name_p (name, t))
2871 {
2872 error ("member pointers to destructors not implemented yet");
2873 }
2874
2875 /* Perform all necessary dereferencing. */
2876 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
2877 intype = TYPE_TARGET_TYPE (intype);
2878
2879 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
2880 {
2881 char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
2882 char dem_opname[64];
2883
2884 if (strncmp(t_field_name, "__", 2)==0 ||
2885 strncmp(t_field_name, "op", 2)==0 ||
2886 strncmp(t_field_name, "type", 4)==0 )
2887 {
2888 if (cplus_demangle_opname(t_field_name, dem_opname, DMGL_ANSI))
2889 t_field_name = dem_opname;
2890 else if (cplus_demangle_opname(t_field_name, dem_opname, 0))
2891 t_field_name = dem_opname;
2892 }
2893 if (t_field_name && STREQ (t_field_name, name))
2894 {
2895 int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
2896 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
2897
2898 if (intype == 0 && j > 1)
2899 error ("non-unique member `%s' requires type instantiation", name);
2900 if (intype)
2901 {
2902 while (j--)
2903 if (TYPE_FN_FIELD_TYPE (f, j) == intype)
2904 break;
2905 if (j < 0)
2906 error ("no member function matches that type instantiation");
2907 }
2908 else
2909 j = 0;
2910
2911 if (TYPE_FN_FIELD_STUB (f, j))
2912 check_stub_method (t, i, j);
2913 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2914 {
2915 return value_from_longest
2916 (lookup_reference_type
2917 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
2918 domain)),
2919 (LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
2920 }
2921 else
2922 {
2923 struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
2924 0, VAR_NAMESPACE, 0, NULL);
2925 if (s == NULL)
2926 {
2927 v = 0;
2928 }
2929 else
2930 {
2931 v = read_var_value (s, 0);
2932 #if 0
2933 VALUE_TYPE (v) = lookup_reference_type
2934 (lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
2935 domain));
2936 #endif
2937 }
2938 return v;
2939 }
2940 }
2941 }
2942 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
2943 {
2944 value_ptr v;
2945 int base_offset;
2946
2947 if (BASETYPE_VIA_VIRTUAL (t, i))
2948 base_offset = 0;
2949 else
2950 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
2951 v = value_struct_elt_for_reference (domain,
2952 offset + base_offset,
2953 TYPE_BASECLASS (t, i),
2954 name,
2955 intype);
2956 if (v)
2957 return v;
2958 }
2959 return 0;
2960 }
2961
2962
2963 /* Find the real run-time type of a value using RTTI.
2964 * V is a pointer to the value.
2965 * A pointer to the struct type entry of the run-time type
2966 * is returneed.
2967 * FULL is a flag that is set only if the value V includes
2968 * the entire contents of an object of the RTTI type.
2969 * TOP is the offset to the top of the enclosing object of
2970 * the real run-time type. This offset may be for the embedded
2971 * object, or for the enclosing object of V.
2972 * USING_ENC is the flag that distinguishes the two cases.
2973 * If it is 1, then the offset is for the enclosing object,
2974 * otherwise for the embedded object.
2975 *
2976 * This currently works only for RTTI information generated
2977 * by the HP ANSI C++ compiler (aCC). g++ today (1997-06-10)
2978 * does not appear to support RTTI. This function returns a
2979 * NULL value for objects in the g++ runtime model. */
2980
2981 struct type *
2982 value_rtti_type (v, full, top, using_enc)
2983 value_ptr v;
2984 int * full;
2985 int * top;
2986 int * using_enc;
2987 {
2988 struct type * known_type;
2989 struct type * rtti_type;
2990 CORE_ADDR coreptr;
2991 value_ptr vp;
2992 int using_enclosing = 0;
2993 long top_offset = 0;
2994 char rtti_type_name[256];
2995
2996 if (full)
2997 *full = 0;
2998 if (top)
2999 *top = -1;
3000 if (using_enc)
3001 *using_enc = 0;
3002
3003 /* Get declared type */
3004 known_type = VALUE_TYPE (v);
3005 CHECK_TYPEDEF (known_type);
3006 /* RTTI works only or class objects */
3007 if (TYPE_CODE (known_type) != TYPE_CODE_CLASS)
3008 return NULL;
3009
3010 /* If neither the declared type nor the enclosing type of the
3011 * value structure has a HP ANSI C++ style virtual table,
3012 * we can't do anything. */
3013 if (!TYPE_HAS_VTABLE (known_type))
3014 {
3015 known_type = VALUE_ENCLOSING_TYPE (v);
3016 CHECK_TYPEDEF (known_type);
3017 if ((TYPE_CODE (known_type) != TYPE_CODE_CLASS) ||
3018 !TYPE_HAS_VTABLE (known_type))
3019 return NULL; /* No RTTI, or not HP-compiled types */
3020 CHECK_TYPEDEF (known_type);
3021 using_enclosing = 1;
3022 }
3023
3024 if (using_enclosing && using_enc)
3025 *using_enc = 1;
3026
3027 /* First get the virtual table address */
3028 coreptr = * (CORE_ADDR *) ((VALUE_CONTENTS_ALL (v))
3029 + VALUE_OFFSET (v)
3030 + (using_enclosing ? 0 : VALUE_EMBEDDED_OFFSET (v)));
3031 if (coreptr == 0)
3032 return NULL; /* return silently -- maybe called on gdb-generated value */
3033
3034 /* Fetch the top offset of the object */
3035 /* FIXME possible 32x64 problem with pointer size & arithmetic */
3036 vp = value_at (builtin_type_int,
3037 coreptr + 4 * HP_ACC_TOP_OFFSET_OFFSET,
3038 VALUE_BFD_SECTION (v));
3039 top_offset = value_as_long (vp);
3040 if (top)
3041 *top = top_offset;
3042
3043 /* Fetch the typeinfo pointer */
3044 /* FIXME possible 32x64 problem with pointer size & arithmetic */
3045 vp = value_at (builtin_type_int, coreptr + 4 * HP_ACC_TYPEINFO_OFFSET, VALUE_BFD_SECTION (v));
3046 /* Indirect through the typeinfo pointer and retrieve the pointer
3047 * to the string name */
3048 coreptr = * (CORE_ADDR *) (VALUE_CONTENTS (vp));
3049 if (!coreptr)
3050 error ("Retrieved null typeinfo pointer in trying to determine run-time type");
3051 vp = value_at (builtin_type_int, coreptr + 4, VALUE_BFD_SECTION (v)); /* 4 -> offset of name field */
3052 /* FIXME possible 32x64 problem */
3053
3054 coreptr = * (CORE_ADDR *) (VALUE_CONTENTS (vp));
3055
3056 read_memory_string (coreptr, rtti_type_name, 256);
3057
3058 if (strlen (rtti_type_name) == 0)
3059 error ("Retrieved null type name from typeinfo");
3060
3061 /* search for type */
3062 rtti_type = lookup_typename (rtti_type_name, (struct block *) 0, 1);
3063
3064 if (!rtti_type)
3065 error ("Could not find run-time type: invalid type name %s in typeinfo??", rtti_type_name);
3066 CHECK_TYPEDEF (rtti_type);
3067
3068 #if 0 /* debugging*/
3069 printf("RTTI type name %s, tag %s, full? %d\n", TYPE_NAME (rtti_type), TYPE_TAG_NAME (rtti_type), full ? *full : -1);
3070 #endif
3071
3072 /* Check whether we have the entire object */
3073 if (full /* Non-null pointer passed */
3074
3075 &&
3076 /* Either we checked on the whole object in hand and found the
3077 top offset to be zero */
3078 (((top_offset == 0) &&
3079 using_enclosing &&
3080 TYPE_LENGTH (known_type) == TYPE_LENGTH (rtti_type))
3081 ||
3082 /* Or we checked on the embedded object and top offset was the
3083 same as the embedded offset */
3084 ((top_offset == VALUE_EMBEDDED_OFFSET (v)) &&
3085 !using_enclosing &&
3086 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (v)) == TYPE_LENGTH (rtti_type))))
3087
3088 *full = 1;
3089
3090 return rtti_type;
3091 }
3092
3093 /* Given a pointer value V, find the real (RTTI) type
3094 of the object it points to.
3095 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3096 and refer to the values computed for the object pointed to. */
3097
3098 struct type *
3099 value_rtti_target_type (v, full, top, using_enc)
3100 value_ptr v;
3101 int * full;
3102 int * top;
3103 int * using_enc;
3104 {
3105 value_ptr target;
3106
3107 target = value_ind (v);
3108
3109 return value_rtti_type (target, full, top, using_enc);
3110 }
3111
3112 /* Given a value pointed to by ARGP, check its real run-time type, and
3113 if that is different from the enclosing type, create a new value
3114 using the real run-time type as the enclosing type (and of the same
3115 type as ARGP) and return it, with the embedded offset adjusted to
3116 be the correct offset to the enclosed object
3117 RTYPE is the type, and XFULL, XTOP, and XUSING_ENC are the other
3118 parameters, computed by value_rtti_type(). If these are available,
3119 they can be supplied and a second call to value_rtti_type() is avoided.
3120 (Pass RTYPE == NULL if they're not available */
3121
3122 value_ptr
3123 value_full_object (argp, rtype, xfull, xtop, xusing_enc)
3124 value_ptr argp;
3125 struct type * rtype;
3126 int xfull;
3127 int xtop;
3128 int xusing_enc;
3129
3130 {
3131 struct type * real_type;
3132 int full = 0;
3133 int top = -1;
3134 int using_enc = 0;
3135 value_ptr new_val;
3136
3137 if (rtype)
3138 {
3139 real_type = rtype;
3140 full = xfull;
3141 top = xtop;
3142 using_enc = xusing_enc;
3143 }
3144 else
3145 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3146
3147 /* If no RTTI data, or if object is already complete, do nothing */
3148 if (!real_type || real_type == VALUE_ENCLOSING_TYPE (argp))
3149 return argp;
3150
3151 /* If we have the full object, but for some reason the enclosing
3152 type is wrong, set it */ /* pai: FIXME -- sounds iffy */
3153 if (full)
3154 {
3155 VALUE_ENCLOSING_TYPE (argp) = real_type;
3156 return argp;
3157 }
3158
3159 /* Check if object is in memory */
3160 if (VALUE_LVAL (argp) != lval_memory)
3161 {
3162 warning ("Couldn't retrieve complete object of RTTI type %s; object may be in register(s).", TYPE_NAME (real_type));
3163
3164 return argp;
3165 }
3166
3167 /* All other cases -- retrieve the complete object */
3168 /* Go back by the computed top_offset from the beginning of the object,
3169 adjusting for the embedded offset of argp if that's what value_rtti_type
3170 used for its computation. */
3171 new_val = value_at_lazy (real_type, VALUE_ADDRESS (argp) - top +
3172 (using_enc ? 0 : VALUE_EMBEDDED_OFFSET (argp)),
3173 VALUE_BFD_SECTION (argp));
3174 VALUE_TYPE (new_val) = VALUE_TYPE (argp);
3175 VALUE_EMBEDDED_OFFSET (new_val) = using_enc ? top + VALUE_EMBEDDED_OFFSET (argp) : top;
3176 return new_val;
3177 }
3178
3179
3180
3181
3182 /* C++: return the value of the class instance variable, if one exists.
3183 Flag COMPLAIN signals an error if the request is made in an
3184 inappropriate context. */
3185
3186 value_ptr
3187 value_of_this (complain)
3188 int complain;
3189 {
3190 struct symbol *func, *sym;
3191 struct block *b;
3192 int i;
3193 static const char funny_this[] = "this";
3194 value_ptr this;
3195
3196 if (selected_frame == 0)
3197 {
3198 if (complain)
3199 error ("no frame selected");
3200 else return 0;
3201 }
3202
3203 func = get_frame_function (selected_frame);
3204 if (!func)
3205 {
3206 if (complain)
3207 error ("no `this' in nameless context");
3208 else return 0;
3209 }
3210
3211 b = SYMBOL_BLOCK_VALUE (func);
3212 i = BLOCK_NSYMS (b);
3213 if (i <= 0)
3214 {
3215 if (complain)
3216 error ("no args, no `this'");
3217 else return 0;
3218 }
3219
3220 /* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
3221 symbol instead of the LOC_ARG one (if both exist). */
3222 sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE);
3223 if (sym == NULL)
3224 {
3225 if (complain)
3226 error ("current stack frame not in method");
3227 else
3228 return NULL;
3229 }
3230
3231 this = read_var_value (sym, selected_frame);
3232 if (this == 0 && complain)
3233 error ("`this' argument at unknown address");
3234 return this;
3235 }
3236
3237 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
3238 long, starting at LOWBOUND. The result has the same lower bound as
3239 the original ARRAY. */
3240
3241 value_ptr
3242 value_slice (array, lowbound, length)
3243 value_ptr array;
3244 int lowbound, length;
3245 {
3246 struct type *slice_range_type, *slice_type, *range_type;
3247 LONGEST lowerbound, upperbound, offset;
3248 value_ptr slice;
3249 struct type *array_type;
3250 array_type = check_typedef (VALUE_TYPE (array));
3251 COERCE_VARYING_ARRAY (array, array_type);
3252 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3253 && TYPE_CODE (array_type) != TYPE_CODE_STRING
3254 && TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
3255 error ("cannot take slice of non-array");
3256 range_type = TYPE_INDEX_TYPE (array_type);
3257 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3258 error ("slice from bad array or bitstring");
3259 if (lowbound < lowerbound || length < 0
3260 || lowbound + length - 1 > upperbound
3261 /* Chill allows zero-length strings but not arrays. */
3262 || (current_language->la_language == language_chill
3263 && length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY))
3264 error ("slice out of range");
3265 /* FIXME-type-allocation: need a way to free this type when we are
3266 done with it. */
3267 slice_range_type = create_range_type ((struct type*) NULL,
3268 TYPE_TARGET_TYPE (range_type),
3269 lowbound, lowbound + length - 1);
3270 if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
3271 {
3272 int i;
3273 slice_type = create_set_type ((struct type*) NULL, slice_range_type);
3274 TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
3275 slice = value_zero (slice_type, not_lval);
3276 for (i = 0; i < length; i++)
3277 {
3278 int element = value_bit_index (array_type,
3279 VALUE_CONTENTS (array),
3280 lowbound + i);
3281 if (element < 0)
3282 error ("internal error accessing bitstring");
3283 else if (element > 0)
3284 {
3285 int j = i % TARGET_CHAR_BIT;
3286 if (BITS_BIG_ENDIAN)
3287 j = TARGET_CHAR_BIT - 1 - j;
3288 VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
3289 }
3290 }
3291 /* We should set the address, bitssize, and bitspos, so the clice
3292 can be used on the LHS, but that may require extensions to
3293 value_assign. For now, just leave as a non_lval. FIXME. */
3294 }
3295 else
3296 {
3297 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3298 offset
3299 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3300 slice_type = create_array_type ((struct type*) NULL, element_type,
3301 slice_range_type);
3302 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3303 slice = allocate_value (slice_type);
3304 if (VALUE_LAZY (array))
3305 VALUE_LAZY (slice) = 1;
3306 else
3307 memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
3308 TYPE_LENGTH (slice_type));
3309 if (VALUE_LVAL (array) == lval_internalvar)
3310 VALUE_LVAL (slice) = lval_internalvar_component;
3311 else
3312 VALUE_LVAL (slice) = VALUE_LVAL (array);
3313 VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
3314 VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
3315 }
3316 return slice;
3317 }
3318
3319 /* Assuming chill_varying_type (VARRAY) is true, return an equivalent
3320 value as a fixed-length array. */
3321
3322 value_ptr
3323 varying_to_slice (varray)
3324 value_ptr varray;
3325 {
3326 struct type *vtype = check_typedef (VALUE_TYPE (varray));
3327 LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0),
3328 VALUE_CONTENTS (varray)
3329 + TYPE_FIELD_BITPOS (vtype, 0) / 8);
3330 return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length);
3331 }
3332
3333 /* Create a value for a FORTRAN complex number. Currently most of
3334 the time values are coerced to COMPLEX*16 (i.e. a complex number
3335 composed of 2 doubles. This really should be a smarter routine
3336 that figures out precision inteligently as opposed to assuming
3337 doubles. FIXME: fmb */
3338
3339 value_ptr
3340 value_literal_complex (arg1, arg2, type)
3341 value_ptr arg1;
3342 value_ptr arg2;
3343 struct type *type;
3344 {
3345 register value_ptr val;
3346 struct type *real_type = TYPE_TARGET_TYPE (type);
3347
3348 val = allocate_value (type);
3349 arg1 = value_cast (real_type, arg1);
3350 arg2 = value_cast (real_type, arg2);
3351
3352 memcpy (VALUE_CONTENTS_RAW (val),
3353 VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
3354 memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
3355 VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
3356 return val;
3357 }
3358
3359 /* Cast a value into the appropriate complex data type. */
3360
3361 static value_ptr
3362 cast_into_complex (type, val)
3363 struct type *type;
3364 register value_ptr val;
3365 {
3366 struct type *real_type = TYPE_TARGET_TYPE (type);
3367 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
3368 {
3369 struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
3370 value_ptr re_val = allocate_value (val_real_type);
3371 value_ptr im_val = allocate_value (val_real_type);
3372
3373 memcpy (VALUE_CONTENTS_RAW (re_val),
3374 VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
3375 memcpy (VALUE_CONTENTS_RAW (im_val),
3376 VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
3377 TYPE_LENGTH (val_real_type));
3378
3379 return value_literal_complex (re_val, im_val, type);
3380 }
3381 else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
3382 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
3383 return value_literal_complex (val, value_zero (real_type, not_lval), type);
3384 else
3385 error ("cannot cast non-number to complex");
3386 }
3387
3388 void
3389 _initialize_valops ()
3390 {
3391 #if 0
3392 add_show_from_set
3393 (add_set_cmd ("abandon", class_support, var_boolean, (char *)&auto_abandon,
3394 "Set automatic abandonment of expressions upon failure.",
3395 &setlist),
3396 &showlist);
3397 #endif
3398
3399 add_show_from_set
3400 (add_set_cmd ("overload-resolution", class_support, var_boolean, (char *)&overload_resolution,
3401 "Set overload resolution in evaluating C++ functions.",
3402 &setlist),
3403 &showlist);
3404 overload_resolution = 1;
3405
3406 }