]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/valprint.c
Replace calls to abort() with calls to internal_error().
[thirdparty/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2 Copyright 1986, 1988, 1989, 1991-1994, 1998, 2000
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "gdbcore.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "obstack.h"
31 #include "language.h"
32 #include "demangle.h"
33 #include "annotate.h"
34 #include "valprint.h"
35
36 #include <errno.h>
37
38 /* Prototypes for local functions */
39
40 static int partial_memory_read (CORE_ADDR memaddr, char *myaddr,
41 int len, int *errnoptr);
42
43 static void print_hex_chars (struct ui_file *, unsigned char *,
44 unsigned int);
45
46 static void show_print (char *, int);
47
48 static void set_print (char *, int);
49
50 static void set_radix (char *, int);
51
52 static void show_radix (char *, int);
53
54 static void set_input_radix (char *, int, struct cmd_list_element *);
55
56 static void set_input_radix_1 (int, unsigned);
57
58 static void set_output_radix (char *, int, struct cmd_list_element *);
59
60 static void set_output_radix_1 (int, unsigned);
61
62 void _initialize_valprint (void);
63
64 /* Maximum number of chars to print for a string pointer value or vector
65 contents, or UINT_MAX for no limit. Note that "set print elements 0"
66 stores UINT_MAX in print_max, which displays in a show command as
67 "unlimited". */
68
69 unsigned int print_max;
70 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
71
72 /* Default input and output radixes, and output format letter. */
73
74 unsigned input_radix = 10;
75 unsigned output_radix = 10;
76 int output_format = 0;
77
78 /* Print repeat counts if there are more than this many repetitions of an
79 element in an array. Referenced by the low level language dependent
80 print routines. */
81
82 unsigned int repeat_count_threshold = 10;
83
84 /* If nonzero, stops printing of char arrays at first null. */
85
86 int stop_print_at_null;
87
88 /* Controls pretty printing of structures. */
89
90 int prettyprint_structs;
91
92 /* Controls pretty printing of arrays. */
93
94 int prettyprint_arrays;
95
96 /* If nonzero, causes unions inside structures or other unions to be
97 printed. */
98
99 int unionprint; /* Controls printing of nested unions. */
100
101 /* If nonzero, causes machine addresses to be printed in certain contexts. */
102
103 int addressprint; /* Controls printing of machine addresses */
104 \f
105
106 /* Print data of type TYPE located at VALADDR (within GDB), which came from
107 the inferior at address ADDRESS, onto stdio stream STREAM according to
108 FORMAT (a letter, or 0 for natural format using TYPE).
109
110 If DEREF_REF is nonzero, then dereference references, otherwise just print
111 them like pointers.
112
113 The PRETTY parameter controls prettyprinting.
114
115 If the data are a string pointer, returns the number of string characters
116 printed.
117
118 FIXME: The data at VALADDR is in target byte order. If gdb is ever
119 enhanced to be able to debug more than the single target it was compiled
120 for (specific CPU type and thus specific target byte ordering), then
121 either the print routines are going to have to take this into account,
122 or the data is going to have to be passed into here already converted
123 to the host byte ordering, whichever is more convenient. */
124
125
126 int
127 val_print (struct type *type, char *valaddr, int embedded_offset,
128 CORE_ADDR address, struct ui_file *stream, int format, int deref_ref,
129 int recurse, enum val_prettyprint pretty)
130 {
131 struct type *real_type = check_typedef (type);
132 if (pretty == Val_pretty_default)
133 {
134 pretty = prettyprint_structs ? Val_prettyprint : Val_no_prettyprint;
135 }
136
137 QUIT;
138
139 /* Ensure that the type is complete and not just a stub. If the type is
140 only a stub and we can't find and substitute its complete type, then
141 print appropriate string and return. */
142
143 if (TYPE_FLAGS (real_type) & TYPE_FLAG_STUB)
144 {
145 fprintf_filtered (stream, "<incomplete type>");
146 gdb_flush (stream);
147 return (0);
148 }
149
150 return (LA_VAL_PRINT (type, valaddr, embedded_offset, address,
151 stream, format, deref_ref, recurse, pretty));
152 }
153
154 /* Print the value VAL in C-ish syntax on stream STREAM.
155 FORMAT is a format-letter, or 0 for print in natural format of data type.
156 If the object printed is a string pointer, returns
157 the number of string bytes printed. */
158
159 int
160 value_print (value_ptr val, struct ui_file *stream, int format,
161 enum val_prettyprint pretty)
162 {
163 if (val == 0)
164 {
165 printf_filtered ("<address of value unknown>");
166 return 0;
167 }
168 if (VALUE_OPTIMIZED_OUT (val))
169 {
170 printf_filtered ("<value optimized out>");
171 return 0;
172 }
173 return LA_VALUE_PRINT (val, stream, format, pretty);
174 }
175
176 /* Called by various <lang>_val_print routines to print
177 TYPE_CODE_INT's. TYPE is the type. VALADDR is the address of the
178 value. STREAM is where to print the value. */
179
180 void
181 val_print_type_code_int (struct type *type, char *valaddr,
182 struct ui_file *stream)
183 {
184 if (TYPE_LENGTH (type) > sizeof (LONGEST))
185 {
186 LONGEST val;
187
188 if (TYPE_UNSIGNED (type)
189 && extract_long_unsigned_integer (valaddr, TYPE_LENGTH (type),
190 &val))
191 {
192 print_longest (stream, 'u', 0, val);
193 }
194 else
195 {
196 /* Signed, or we couldn't turn an unsigned value into a
197 LONGEST. For signed values, one could assume two's
198 complement (a reasonable assumption, I think) and do
199 better than this. */
200 print_hex_chars (stream, (unsigned char *) valaddr,
201 TYPE_LENGTH (type));
202 }
203 }
204 else
205 {
206 #ifdef PRINT_TYPELESS_INTEGER
207 PRINT_TYPELESS_INTEGER (stream, type, unpack_long (type, valaddr));
208 #else
209 print_longest (stream, TYPE_UNSIGNED (type) ? 'u' : 'd', 0,
210 unpack_long (type, valaddr));
211 #endif
212 }
213 }
214
215 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
216 The raison d'etre of this function is to consolidate printing of
217 LONG_LONG's into this one function. Some platforms have long longs but
218 don't have a printf() that supports "ll" in the format string. We handle
219 these by seeing if the number is representable as either a signed or
220 unsigned long, depending upon what format is desired, and if not we just
221 bail out and print the number in hex.
222
223 The format chars b,h,w,g are from print_scalar_formatted(). If USE_LOCAL,
224 format it according to the current language (this should be used for most
225 integers which GDB prints, the exception is things like protocols where
226 the format of the integer is a protocol thing, not a user-visible thing).
227 */
228
229 #if defined (CC_HAS_LONG_LONG) && !defined (PRINTF_HAS_LONG_LONG)
230 static void print_decimal (struct ui_file * stream, char *sign,
231 int use_local, ULONGEST val_ulong);
232 static void
233 print_decimal (struct ui_file *stream, char *sign, int use_local,
234 ULONGEST val_ulong)
235 {
236 unsigned long temp[3];
237 int i = 0;
238 do
239 {
240 temp[i] = val_ulong % (1000 * 1000 * 1000);
241 val_ulong /= (1000 * 1000 * 1000);
242 i++;
243 }
244 while (val_ulong != 0 && i < (sizeof (temp) / sizeof (temp[0])));
245 switch (i)
246 {
247 case 1:
248 fprintf_filtered (stream, "%s%lu",
249 sign, temp[0]);
250 break;
251 case 2:
252 fprintf_filtered (stream, "%s%lu%09lu",
253 sign, temp[1], temp[0]);
254 break;
255 case 3:
256 fprintf_filtered (stream, "%s%lu%09lu%09lu",
257 sign, temp[2], temp[1], temp[0]);
258 break;
259 default:
260 internal_error (__FILE__, __LINE__, "failed internal consistency check");
261 }
262 return;
263 }
264 #endif
265
266 void
267 print_longest (struct ui_file *stream, int format, int use_local,
268 LONGEST val_long)
269 {
270 #if defined (CC_HAS_LONG_LONG) && !defined (PRINTF_HAS_LONG_LONG)
271 if (sizeof (long) < sizeof (LONGEST))
272 {
273 switch (format)
274 {
275 case 'd':
276 {
277 /* Print a signed value, that doesn't fit in a long */
278 if ((long) val_long != val_long)
279 {
280 if (val_long < 0)
281 print_decimal (stream, "-", use_local, -val_long);
282 else
283 print_decimal (stream, "", use_local, val_long);
284 return;
285 }
286 break;
287 }
288 case 'u':
289 {
290 /* Print an unsigned value, that doesn't fit in a long */
291 if ((unsigned long) val_long != (ULONGEST) val_long)
292 {
293 print_decimal (stream, "", use_local, val_long);
294 return;
295 }
296 break;
297 }
298 case 'x':
299 case 'o':
300 case 'b':
301 case 'h':
302 case 'w':
303 case 'g':
304 /* Print as unsigned value, must fit completely in unsigned long */
305 {
306 unsigned long temp = val_long;
307 if (temp != val_long)
308 {
309 /* Urk, can't represent value in long so print in hex.
310 Do shift in two operations so that if sizeof (long)
311 == sizeof (LONGEST) we can avoid warnings from
312 picky compilers about shifts >= the size of the
313 shiftee in bits */
314 unsigned long vbot = (unsigned long) val_long;
315 LONGEST temp = (val_long >> (sizeof (long) * HOST_CHAR_BIT - 1));
316 unsigned long vtop = temp >> 1;
317 fprintf_filtered (stream, "0x%lx%08lx", vtop, vbot);
318 return;
319 }
320 break;
321 }
322 }
323 }
324 #endif
325
326 #if defined (CC_HAS_LONG_LONG) && defined (PRINTF_HAS_LONG_LONG)
327 switch (format)
328 {
329 case 'd':
330 fprintf_filtered (stream,
331 use_local ? local_decimal_format_custom ("ll")
332 : "%lld",
333 val_long);
334 break;
335 case 'u':
336 fprintf_filtered (stream, "%llu", val_long);
337 break;
338 case 'x':
339 fprintf_filtered (stream,
340 use_local ? local_hex_format_custom ("ll")
341 : "%llx",
342 val_long);
343 break;
344 case 'o':
345 fprintf_filtered (stream,
346 use_local ? local_octal_format_custom ("ll")
347 : "%llo",
348 val_long);
349 break;
350 case 'b':
351 fprintf_filtered (stream, local_hex_format_custom ("02ll"), val_long);
352 break;
353 case 'h':
354 fprintf_filtered (stream, local_hex_format_custom ("04ll"), val_long);
355 break;
356 case 'w':
357 fprintf_filtered (stream, local_hex_format_custom ("08ll"), val_long);
358 break;
359 case 'g':
360 fprintf_filtered (stream, local_hex_format_custom ("016ll"), val_long);
361 break;
362 default:
363 internal_error (__FILE__, __LINE__, "failed internal consistency check");
364 }
365 #else /* !CC_HAS_LONG_LONG || !PRINTF_HAS_LONG_LONG */
366 /* In the following it is important to coerce (val_long) to a long. It does
367 nothing if !LONG_LONG, but it will chop off the top half (which we know
368 we can ignore) if the host supports long longs. */
369
370 switch (format)
371 {
372 case 'd':
373 fprintf_filtered (stream,
374 use_local ? local_decimal_format_custom ("l")
375 : "%ld",
376 (long) val_long);
377 break;
378 case 'u':
379 fprintf_filtered (stream, "%lu", (unsigned long) val_long);
380 break;
381 case 'x':
382 fprintf_filtered (stream,
383 use_local ? local_hex_format_custom ("l")
384 : "%lx",
385 (unsigned long) val_long);
386 break;
387 case 'o':
388 fprintf_filtered (stream,
389 use_local ? local_octal_format_custom ("l")
390 : "%lo",
391 (unsigned long) val_long);
392 break;
393 case 'b':
394 fprintf_filtered (stream, local_hex_format_custom ("02l"),
395 (unsigned long) val_long);
396 break;
397 case 'h':
398 fprintf_filtered (stream, local_hex_format_custom ("04l"),
399 (unsigned long) val_long);
400 break;
401 case 'w':
402 fprintf_filtered (stream, local_hex_format_custom ("08l"),
403 (unsigned long) val_long);
404 break;
405 case 'g':
406 fprintf_filtered (stream, local_hex_format_custom ("016l"),
407 (unsigned long) val_long);
408 break;
409 default:
410 internal_error (__FILE__, __LINE__, "failed internal consistency check");
411 }
412 #endif /* CC_HAS_LONG_LONG || PRINTF_HAS_LONG_LONG */
413 }
414
415 #if 0
416 void
417 strcat_longest (int format, int use_local, LONGEST val_long, char *buf,
418 int buflen)
419 {
420 /* FIXME: Use buflen to avoid buffer overflow. */
421 #if defined (CC_HAS_LONG_LONG) && !defined (PRINTF_HAS_LONG_LONG)
422 long vtop, vbot;
423
424 vtop = val_long >> (sizeof (long) * HOST_CHAR_BIT);
425 vbot = (long) val_long;
426
427 if ((format == 'd' && (val_long < INT_MIN || val_long > INT_MAX))
428 || ((format == 'u' || format == 'x') && (unsigned long long) val_long > UINT_MAX))
429 {
430 sprintf (buf, "0x%lx%08lx", vtop, vbot);
431 return;
432 }
433 #endif
434
435 #ifdef PRINTF_HAS_LONG_LONG
436 switch (format)
437 {
438 case 'd':
439 sprintf (buf,
440 (use_local ? local_decimal_format_custom ("ll") : "%lld"),
441 val_long);
442 break;
443 case 'u':
444 sprintf (buf, "%llu", val_long);
445 break;
446 case 'x':
447 sprintf (buf,
448 (use_local ? local_hex_format_custom ("ll") : "%llx"),
449
450 val_long);
451 break;
452 case 'o':
453 sprintf (buf,
454 (use_local ? local_octal_format_custom ("ll") : "%llo"),
455 val_long);
456 break;
457 case 'b':
458 sprintf (buf, local_hex_format_custom ("02ll"), val_long);
459 break;
460 case 'h':
461 sprintf (buf, local_hex_format_custom ("04ll"), val_long);
462 break;
463 case 'w':
464 sprintf (buf, local_hex_format_custom ("08ll"), val_long);
465 break;
466 case 'g':
467 sprintf (buf, local_hex_format_custom ("016ll"), val_long);
468 break;
469 default:
470 internal_error (__FILE__, __LINE__, "failed internal consistency check");
471 }
472 #else /* !PRINTF_HAS_LONG_LONG */
473 /* In the following it is important to coerce (val_long) to a long. It does
474 nothing if !LONG_LONG, but it will chop off the top half (which we know
475 we can ignore) if the host supports long longs. */
476
477 switch (format)
478 {
479 case 'd':
480 sprintf (buf, (use_local ? local_decimal_format_custom ("l") : "%ld"),
481 ((long) val_long));
482 break;
483 case 'u':
484 sprintf (buf, "%lu", ((unsigned long) val_long));
485 break;
486 case 'x':
487 sprintf (buf, (use_local ? local_hex_format_custom ("l") : "%lx"),
488 ((long) val_long));
489 break;
490 case 'o':
491 sprintf (buf, (use_local ? local_octal_format_custom ("l") : "%lo"),
492 ((long) val_long));
493 break;
494 case 'b':
495 sprintf (buf, local_hex_format_custom ("02l"),
496 ((long) val_long));
497 break;
498 case 'h':
499 sprintf (buf, local_hex_format_custom ("04l"),
500 ((long) val_long));
501 break;
502 case 'w':
503 sprintf (buf, local_hex_format_custom ("08l"),
504 ((long) val_long));
505 break;
506 case 'g':
507 sprintf (buf, local_hex_format_custom ("016l"),
508 ((long) val_long));
509 break;
510 default:
511 internal_error (__FILE__, __LINE__, "failed internal consistency check");
512 }
513
514 #endif /* !PRINTF_HAS_LONG_LONG */
515 }
516 #endif
517
518 /* This used to be a macro, but I don't think it is called often enough
519 to merit such treatment. */
520 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
521 arguments to a function, number in a value history, register number, etc.)
522 where the value must not be larger than can fit in an int. */
523
524 int
525 longest_to_int (LONGEST arg)
526 {
527 /* Let the compiler do the work */
528 int rtnval = (int) arg;
529
530 /* Check for overflows or underflows */
531 if (sizeof (LONGEST) > sizeof (int))
532 {
533 if (rtnval != arg)
534 {
535 error ("Value out of range.");
536 }
537 }
538 return (rtnval);
539 }
540
541
542 /* Print a floating point value of type TYPE, pointed to in GDB by VALADDR,
543 on STREAM. */
544
545 void
546 print_floating (char *valaddr, struct type *type, struct ui_file *stream)
547 {
548 DOUBLEST doub;
549 int inv;
550 unsigned len = TYPE_LENGTH (type);
551
552 /* Check for NaN's. Note that this code does not depend on us being
553 on an IEEE conforming system. It only depends on the target
554 machine using IEEE representation. This means (a)
555 cross-debugging works right, and (2) IEEE_FLOAT can (and should)
556 be non-zero for systems like the 68881, which uses IEEE
557 representation, but is not IEEE conforming. */
558 if (IEEE_FLOAT)
559 {
560 unsigned long low, high;
561 /* Is the sign bit 0? */
562 int nonnegative;
563 /* Is it is a NaN (i.e. the exponent is all ones and
564 the fraction is nonzero)? */
565 int is_nan;
566
567 /* For lint, initialize these two variables to suppress warning: */
568 low = high = nonnegative = 0;
569 if (len == 4)
570 {
571 /* It's single precision. */
572 /* Assume that floating point byte order is the same as
573 integer byte order. */
574 low = extract_unsigned_integer (valaddr, 4);
575 nonnegative = ((low & 0x80000000) == 0);
576 is_nan = ((((low >> 23) & 0xFF) == 0xFF)
577 && 0 != (low & 0x7FFFFF));
578 low &= 0x7fffff;
579 high = 0;
580 }
581 else if (len == 8)
582 {
583 /* It's double precision. Get the high and low words. */
584
585 /* Assume that floating point byte order is the same as
586 integer byte order. */
587 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
588 {
589 low = extract_unsigned_integer (valaddr + 4, 4);
590 high = extract_unsigned_integer (valaddr, 4);
591 }
592 else
593 {
594 low = extract_unsigned_integer (valaddr, 4);
595 high = extract_unsigned_integer (valaddr + 4, 4);
596 }
597 nonnegative = ((high & 0x80000000) == 0);
598 is_nan = (((high >> 20) & 0x7ff) == 0x7ff
599 && !((((high & 0xfffff) == 0)) && (low == 0)));
600 high &= 0xfffff;
601 }
602 else
603 {
604 #ifdef TARGET_ANALYZE_FLOATING
605 TARGET_ANALYZE_FLOATING;
606 #else
607 /* Extended. We can't detect extended NaNs for this target.
608 Also note that currently extendeds get nuked to double in
609 REGISTER_CONVERTIBLE. */
610 is_nan = 0;
611 #endif
612 }
613
614 if (is_nan)
615 {
616 /* The meaning of the sign and fraction is not defined by IEEE.
617 But the user might know what they mean. For example, they
618 (in an implementation-defined manner) distinguish between
619 signaling and quiet NaN's. */
620 if (high)
621 fprintf_filtered (stream, "-NaN(0x%lx%.8lx)" + !!nonnegative,
622 high, low);
623 else
624 fprintf_filtered (stream, "-NaN(0x%lx)" + nonnegative, low);
625 return;
626 }
627 }
628
629 doub = unpack_double (type, valaddr, &inv);
630 if (inv)
631 {
632 fprintf_filtered (stream, "<invalid float value>");
633 return;
634 }
635
636 if (len < sizeof (double))
637 fprintf_filtered (stream, "%.9g", (double) doub);
638 else if (len == sizeof (double))
639 fprintf_filtered (stream, "%.17g", (double) doub);
640 else
641 #ifdef PRINTF_HAS_LONG_DOUBLE
642 fprintf_filtered (stream, "%.35Lg", doub);
643 #else
644 /* This at least wins with values that are representable as doubles */
645 fprintf_filtered (stream, "%.17g", (double) doub);
646 #endif
647 }
648
649 void
650 print_binary_chars (struct ui_file *stream, unsigned char *valaddr,
651 unsigned len)
652 {
653
654 #define BITS_IN_BYTES 8
655
656 unsigned char *p;
657 unsigned int i;
658 int b;
659
660 /* Declared "int" so it will be signed.
661 * This ensures that right shift will shift in zeros.
662 */
663 const int mask = 0x080;
664
665 /* FIXME: We should be not printing leading zeroes in most cases. */
666
667 fprintf_filtered (stream, local_binary_format_prefix ());
668 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
669 {
670 for (p = valaddr;
671 p < valaddr + len;
672 p++)
673 {
674 /* Every byte has 8 binary characters; peel off
675 * and print from the MSB end.
676 */
677 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
678 {
679 if (*p & (mask >> i))
680 b = 1;
681 else
682 b = 0;
683
684 fprintf_filtered (stream, "%1d", b);
685 }
686 }
687 }
688 else
689 {
690 for (p = valaddr + len - 1;
691 p >= valaddr;
692 p--)
693 {
694 for (i = 0; i < (BITS_IN_BYTES * sizeof (*p)); i++)
695 {
696 if (*p & (mask >> i))
697 b = 1;
698 else
699 b = 0;
700
701 fprintf_filtered (stream, "%1d", b);
702 }
703 }
704 }
705 fprintf_filtered (stream, local_binary_format_suffix ());
706 }
707
708 /* VALADDR points to an integer of LEN bytes.
709 * Print it in octal on stream or format it in buf.
710 */
711 void
712 print_octal_chars (struct ui_file *stream, unsigned char *valaddr, unsigned len)
713 {
714 unsigned char *p;
715 unsigned char octa1, octa2, octa3, carry;
716 int cycle;
717
718 /* FIXME: We should be not printing leading zeroes in most cases. */
719
720
721 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
722 * the extra bits, which cycle every three bytes:
723 *
724 * Byte side: 0 1 2 3
725 * | | | |
726 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
727 *
728 * Octal side: 0 1 carry 3 4 carry ...
729 *
730 * Cycle number: 0 1 2
731 *
732 * But of course we are printing from the high side, so we have to
733 * figure out where in the cycle we are so that we end up with no
734 * left over bits at the end.
735 */
736 #define BITS_IN_OCTAL 3
737 #define HIGH_ZERO 0340
738 #define LOW_ZERO 0016
739 #define CARRY_ZERO 0003
740 #define HIGH_ONE 0200
741 #define MID_ONE 0160
742 #define LOW_ONE 0016
743 #define CARRY_ONE 0001
744 #define HIGH_TWO 0300
745 #define MID_TWO 0070
746 #define LOW_TWO 0007
747
748 /* For 32 we start in cycle 2, with two bits and one bit carry;
749 * for 64 in cycle in cycle 1, with one bit and a two bit carry.
750 */
751 cycle = (len * BITS_IN_BYTES) % BITS_IN_OCTAL;
752 carry = 0;
753
754 fprintf_filtered (stream, local_octal_format_prefix ());
755 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
756 {
757 for (p = valaddr;
758 p < valaddr + len;
759 p++)
760 {
761 switch (cycle)
762 {
763 case 0:
764 /* No carry in, carry out two bits.
765 */
766 octa1 = (HIGH_ZERO & *p) >> 5;
767 octa2 = (LOW_ZERO & *p) >> 2;
768 carry = (CARRY_ZERO & *p);
769 fprintf_filtered (stream, "%o", octa1);
770 fprintf_filtered (stream, "%o", octa2);
771 break;
772
773 case 1:
774 /* Carry in two bits, carry out one bit.
775 */
776 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
777 octa2 = (MID_ONE & *p) >> 4;
778 octa3 = (LOW_ONE & *p) >> 1;
779 carry = (CARRY_ONE & *p);
780 fprintf_filtered (stream, "%o", octa1);
781 fprintf_filtered (stream, "%o", octa2);
782 fprintf_filtered (stream, "%o", octa3);
783 break;
784
785 case 2:
786 /* Carry in one bit, no carry out.
787 */
788 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
789 octa2 = (MID_TWO & *p) >> 3;
790 octa3 = (LOW_TWO & *p);
791 carry = 0;
792 fprintf_filtered (stream, "%o", octa1);
793 fprintf_filtered (stream, "%o", octa2);
794 fprintf_filtered (stream, "%o", octa3);
795 break;
796
797 default:
798 error ("Internal error in octal conversion;");
799 }
800
801 cycle++;
802 cycle = cycle % BITS_IN_OCTAL;
803 }
804 }
805 else
806 {
807 for (p = valaddr + len - 1;
808 p >= valaddr;
809 p--)
810 {
811 switch (cycle)
812 {
813 case 0:
814 /* Carry out, no carry in */
815 octa1 = (HIGH_ZERO & *p) >> 5;
816 octa2 = (LOW_ZERO & *p) >> 2;
817 carry = (CARRY_ZERO & *p);
818 fprintf_filtered (stream, "%o", octa1);
819 fprintf_filtered (stream, "%o", octa2);
820 break;
821
822 case 1:
823 /* Carry in, carry out */
824 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
825 octa2 = (MID_ONE & *p) >> 4;
826 octa3 = (LOW_ONE & *p) >> 1;
827 carry = (CARRY_ONE & *p);
828 fprintf_filtered (stream, "%o", octa1);
829 fprintf_filtered (stream, "%o", octa2);
830 fprintf_filtered (stream, "%o", octa3);
831 break;
832
833 case 2:
834 /* Carry in, no carry out */
835 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
836 octa2 = (MID_TWO & *p) >> 3;
837 octa3 = (LOW_TWO & *p);
838 carry = 0;
839 fprintf_filtered (stream, "%o", octa1);
840 fprintf_filtered (stream, "%o", octa2);
841 fprintf_filtered (stream, "%o", octa3);
842 break;
843
844 default:
845 error ("Internal error in octal conversion;");
846 }
847
848 cycle++;
849 cycle = cycle % BITS_IN_OCTAL;
850 }
851 }
852
853 fprintf_filtered (stream, local_octal_format_suffix ());
854 }
855
856 /* VALADDR points to an integer of LEN bytes.
857 * Print it in decimal on stream or format it in buf.
858 */
859 void
860 print_decimal_chars (struct ui_file *stream, unsigned char *valaddr,
861 unsigned len)
862 {
863 #define TEN 10
864 #define TWO_TO_FOURTH 16
865 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
866 #define CARRY_LEFT( x ) ((x) % TEN)
867 #define SHIFT( x ) ((x) << 4)
868 #define START_P \
869 ((TARGET_BYTE_ORDER == BIG_ENDIAN) ? valaddr : valaddr + len - 1)
870 #define NOT_END_P \
871 ((TARGET_BYTE_ORDER == BIG_ENDIAN) ? (p < valaddr + len) : (p >= valaddr))
872 #define NEXT_P \
873 ((TARGET_BYTE_ORDER == BIG_ENDIAN) ? p++ : p-- )
874 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
875 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
876
877 unsigned char *p;
878 unsigned char *digits;
879 int carry;
880 int decimal_len;
881 int i, j, decimal_digits;
882 int dummy;
883 int flip;
884
885 /* Base-ten number is less than twice as many digits
886 * as the base 16 number, which is 2 digits per byte.
887 */
888 decimal_len = len * 2 * 2;
889 digits = (unsigned char *) malloc (decimal_len);
890 if (digits == NULL)
891 error ("Can't allocate memory for conversion to decimal.");
892
893 for (i = 0; i < decimal_len; i++)
894 {
895 digits[i] = 0;
896 }
897
898 fprintf_filtered (stream, local_decimal_format_prefix ());
899
900 /* Ok, we have an unknown number of bytes of data to be printed in
901 * decimal.
902 *
903 * Given a hex number (in nibbles) as XYZ, we start by taking X and
904 * decemalizing it as "x1 x2" in two decimal nibbles. Then we multiply
905 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
906 *
907 * The trick is that "digits" holds a base-10 number, but sometimes
908 * the individual digits are > 10.
909 *
910 * Outer loop is per nibble (hex digit) of input, from MSD end to
911 * LSD end.
912 */
913 decimal_digits = 0; /* Number of decimal digits so far */
914 p = START_P;
915 flip = 0;
916 while (NOT_END_P)
917 {
918 /*
919 * Multiply current base-ten number by 16 in place.
920 * Each digit was between 0 and 9, now is between
921 * 0 and 144.
922 */
923 for (j = 0; j < decimal_digits; j++)
924 {
925 digits[j] = SHIFT (digits[j]);
926 }
927
928 /* Take the next nibble off the input and add it to what
929 * we've got in the LSB position. Bottom 'digit' is now
930 * between 0 and 159.
931 *
932 * "flip" is used to run this loop twice for each byte.
933 */
934 if (flip == 0)
935 {
936 /* Take top nibble.
937 */
938 digits[0] += HIGH_NIBBLE (*p);
939 flip = 1;
940 }
941 else
942 {
943 /* Take low nibble and bump our pointer "p".
944 */
945 digits[0] += LOW_NIBBLE (*p);
946 NEXT_P;
947 flip = 0;
948 }
949
950 /* Re-decimalize. We have to do this often enough
951 * that we don't overflow, but once per nibble is
952 * overkill. Easier this way, though. Note that the
953 * carry is often larger than 10 (e.g. max initial
954 * carry out of lowest nibble is 15, could bubble all
955 * the way up greater than 10). So we have to do
956 * the carrying beyond the last current digit.
957 */
958 carry = 0;
959 for (j = 0; j < decimal_len - 1; j++)
960 {
961 digits[j] += carry;
962
963 /* "/" won't handle an unsigned char with
964 * a value that if signed would be negative.
965 * So extend to longword int via "dummy".
966 */
967 dummy = digits[j];
968 carry = CARRY_OUT (dummy);
969 digits[j] = CARRY_LEFT (dummy);
970
971 if (j >= decimal_digits && carry == 0)
972 {
973 /*
974 * All higher digits are 0 and we
975 * no longer have a carry.
976 *
977 * Note: "j" is 0-based, "decimal_digits" is
978 * 1-based.
979 */
980 decimal_digits = j + 1;
981 break;
982 }
983 }
984 }
985
986 /* Ok, now "digits" is the decimal representation, with
987 * the "decimal_digits" actual digits. Print!
988 */
989 for (i = decimal_digits - 1; i >= 0; i--)
990 {
991 fprintf_filtered (stream, "%1d", digits[i]);
992 }
993 xfree (digits);
994
995 fprintf_filtered (stream, local_decimal_format_suffix ());
996 }
997
998 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
999
1000 static void
1001 print_hex_chars (struct ui_file *stream, unsigned char *valaddr, unsigned len)
1002 {
1003 unsigned char *p;
1004
1005 /* FIXME: We should be not printing leading zeroes in most cases. */
1006
1007 fprintf_filtered (stream, local_hex_format_prefix ());
1008 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
1009 {
1010 for (p = valaddr;
1011 p < valaddr + len;
1012 p++)
1013 {
1014 fprintf_filtered (stream, "%02x", *p);
1015 }
1016 }
1017 else
1018 {
1019 for (p = valaddr + len - 1;
1020 p >= valaddr;
1021 p--)
1022 {
1023 fprintf_filtered (stream, "%02x", *p);
1024 }
1025 }
1026 fprintf_filtered (stream, local_hex_format_suffix ());
1027 }
1028
1029 /* Called by various <lang>_val_print routines to print elements of an
1030 array in the form "<elem1>, <elem2>, <elem3>, ...".
1031
1032 (FIXME?) Assumes array element separator is a comma, which is correct
1033 for all languages currently handled.
1034 (FIXME?) Some languages have a notation for repeated array elements,
1035 perhaps we should try to use that notation when appropriate.
1036 */
1037
1038 void
1039 val_print_array_elements (struct type *type, char *valaddr, CORE_ADDR address,
1040 struct ui_file *stream, int format, int deref_ref,
1041 int recurse, enum val_prettyprint pretty,
1042 unsigned int i)
1043 {
1044 unsigned int things_printed = 0;
1045 unsigned len;
1046 struct type *elttype;
1047 unsigned eltlen;
1048 /* Position of the array element we are examining to see
1049 whether it is repeated. */
1050 unsigned int rep1;
1051 /* Number of repetitions we have detected so far. */
1052 unsigned int reps;
1053
1054 elttype = TYPE_TARGET_TYPE (type);
1055 eltlen = TYPE_LENGTH (check_typedef (elttype));
1056 len = TYPE_LENGTH (type) / eltlen;
1057
1058 annotate_array_section_begin (i, elttype);
1059
1060 for (; i < len && things_printed < print_max; i++)
1061 {
1062 if (i != 0)
1063 {
1064 if (prettyprint_arrays)
1065 {
1066 fprintf_filtered (stream, ",\n");
1067 print_spaces_filtered (2 + 2 * recurse, stream);
1068 }
1069 else
1070 {
1071 fprintf_filtered (stream, ", ");
1072 }
1073 }
1074 wrap_here (n_spaces (2 + 2 * recurse));
1075
1076 rep1 = i + 1;
1077 reps = 1;
1078 while ((rep1 < len) &&
1079 !memcmp (valaddr + i * eltlen, valaddr + rep1 * eltlen, eltlen))
1080 {
1081 ++reps;
1082 ++rep1;
1083 }
1084
1085 if (reps > repeat_count_threshold)
1086 {
1087 val_print (elttype, valaddr + i * eltlen, 0, 0, stream, format,
1088 deref_ref, recurse + 1, pretty);
1089 annotate_elt_rep (reps);
1090 fprintf_filtered (stream, " <repeats %u times>", reps);
1091 annotate_elt_rep_end ();
1092
1093 i = rep1 - 1;
1094 things_printed += repeat_count_threshold;
1095 }
1096 else
1097 {
1098 val_print (elttype, valaddr + i * eltlen, 0, 0, stream, format,
1099 deref_ref, recurse + 1, pretty);
1100 annotate_elt ();
1101 things_printed++;
1102 }
1103 }
1104 annotate_array_section_end ();
1105 if (i < len)
1106 {
1107 fprintf_filtered (stream, "...");
1108 }
1109 }
1110
1111 /* Read LEN bytes of target memory at address MEMADDR, placing the
1112 results in GDB's memory at MYADDR. Returns a count of the bytes
1113 actually read, and optionally an errno value in the location
1114 pointed to by ERRNOPTR if ERRNOPTR is non-null. */
1115
1116 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1117 function be eliminated. */
1118
1119 static int
1120 partial_memory_read (CORE_ADDR memaddr, char *myaddr, int len, int *errnoptr)
1121 {
1122 int nread; /* Number of bytes actually read. */
1123 int errcode; /* Error from last read. */
1124
1125 /* First try a complete read. */
1126 errcode = target_read_memory (memaddr, myaddr, len);
1127 if (errcode == 0)
1128 {
1129 /* Got it all. */
1130 nread = len;
1131 }
1132 else
1133 {
1134 /* Loop, reading one byte at a time until we get as much as we can. */
1135 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
1136 {
1137 errcode = target_read_memory (memaddr++, myaddr++, 1);
1138 }
1139 /* If an error, the last read was unsuccessful, so adjust count. */
1140 if (errcode != 0)
1141 {
1142 nread--;
1143 }
1144 }
1145 if (errnoptr != NULL)
1146 {
1147 *errnoptr = errcode;
1148 }
1149 return (nread);
1150 }
1151
1152 /* Print a string from the inferior, starting at ADDR and printing up to LEN
1153 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
1154 stops at the first null byte, otherwise printing proceeds (including null
1155 bytes) until either print_max or LEN characters have been printed,
1156 whichever is smaller. */
1157
1158 /* FIXME: Use target_read_string. */
1159
1160 int
1161 val_print_string (CORE_ADDR addr, int len, int width, struct ui_file *stream)
1162 {
1163 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
1164 int errcode; /* Errno returned from bad reads. */
1165 unsigned int fetchlimit; /* Maximum number of chars to print. */
1166 unsigned int nfetch; /* Chars to fetch / chars fetched. */
1167 unsigned int chunksize; /* Size of each fetch, in chars. */
1168 char *buffer = NULL; /* Dynamically growable fetch buffer. */
1169 char *bufptr; /* Pointer to next available byte in buffer. */
1170 char *limit; /* First location past end of fetch buffer. */
1171 struct cleanup *old_chain = NULL; /* Top of the old cleanup chain. */
1172 int found_nul; /* Non-zero if we found the nul char */
1173
1174 /* First we need to figure out the limit on the number of characters we are
1175 going to attempt to fetch and print. This is actually pretty simple. If
1176 LEN >= zero, then the limit is the minimum of LEN and print_max. If
1177 LEN is -1, then the limit is print_max. This is true regardless of
1178 whether print_max is zero, UINT_MAX (unlimited), or something in between,
1179 because finding the null byte (or available memory) is what actually
1180 limits the fetch. */
1181
1182 fetchlimit = (len == -1 ? print_max : min (len, print_max));
1183
1184 /* Now decide how large of chunks to try to read in one operation. This
1185 is also pretty simple. If LEN >= zero, then we want fetchlimit chars,
1186 so we might as well read them all in one operation. If LEN is -1, we
1187 are looking for a null terminator to end the fetching, so we might as
1188 well read in blocks that are large enough to be efficient, but not so
1189 large as to be slow if fetchlimit happens to be large. So we choose the
1190 minimum of 8 and fetchlimit. We used to use 200 instead of 8 but
1191 200 is way too big for remote debugging over a serial line. */
1192
1193 chunksize = (len == -1 ? min (8, fetchlimit) : fetchlimit);
1194
1195 /* Loop until we either have all the characters to print, or we encounter
1196 some error, such as bumping into the end of the address space. */
1197
1198 found_nul = 0;
1199 old_chain = make_cleanup (null_cleanup, 0);
1200
1201 if (len > 0)
1202 {
1203 buffer = (char *) xmalloc (len * width);
1204 bufptr = buffer;
1205 old_chain = make_cleanup (xfree, buffer);
1206
1207 nfetch = partial_memory_read (addr, bufptr, len * width, &errcode)
1208 / width;
1209 addr += nfetch * width;
1210 bufptr += nfetch * width;
1211 }
1212 else if (len == -1)
1213 {
1214 unsigned long bufsize = 0;
1215 do
1216 {
1217 QUIT;
1218 nfetch = min (chunksize, fetchlimit - bufsize);
1219
1220 if (buffer == NULL)
1221 buffer = (char *) xmalloc (nfetch * width);
1222 else
1223 {
1224 discard_cleanups (old_chain);
1225 buffer = (char *) xrealloc (buffer, (nfetch + bufsize) * width);
1226 }
1227
1228 old_chain = make_cleanup (xfree, buffer);
1229 bufptr = buffer + bufsize * width;
1230 bufsize += nfetch;
1231
1232 /* Read as much as we can. */
1233 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
1234 / width;
1235
1236 /* Scan this chunk for the null byte that terminates the string
1237 to print. If found, we don't need to fetch any more. Note
1238 that bufptr is explicitly left pointing at the next character
1239 after the null byte, or at the next character after the end of
1240 the buffer. */
1241
1242 limit = bufptr + nfetch * width;
1243 while (bufptr < limit)
1244 {
1245 unsigned long c;
1246
1247 c = extract_unsigned_integer (bufptr, width);
1248 addr += width;
1249 bufptr += width;
1250 if (c == 0)
1251 {
1252 /* We don't care about any error which happened after
1253 the NULL terminator. */
1254 errcode = 0;
1255 found_nul = 1;
1256 break;
1257 }
1258 }
1259 }
1260 while (errcode == 0 /* no error */
1261 && bufptr - buffer < fetchlimit * width /* no overrun */
1262 && !found_nul); /* haven't found nul yet */
1263 }
1264 else
1265 { /* length of string is really 0! */
1266 buffer = bufptr = NULL;
1267 errcode = 0;
1268 }
1269
1270 /* bufptr and addr now point immediately beyond the last byte which we
1271 consider part of the string (including a '\0' which ends the string). */
1272
1273 /* We now have either successfully filled the buffer to fetchlimit, or
1274 terminated early due to an error or finding a null char when LEN is -1. */
1275
1276 if (len == -1 && !found_nul)
1277 {
1278 char *peekbuf;
1279
1280 /* We didn't find a null terminator we were looking for. Attempt
1281 to peek at the next character. If not successful, or it is not
1282 a null byte, then force ellipsis to be printed. */
1283
1284 peekbuf = (char *) alloca (width);
1285
1286 if (target_read_memory (addr, peekbuf, width) == 0
1287 && extract_unsigned_integer (peekbuf, width) != 0)
1288 force_ellipsis = 1;
1289 }
1290 else if ((len >= 0 && errcode != 0) || (len > (bufptr - buffer) / width))
1291 {
1292 /* Getting an error when we have a requested length, or fetching less
1293 than the number of characters actually requested, always make us
1294 print ellipsis. */
1295 force_ellipsis = 1;
1296 }
1297
1298 QUIT;
1299
1300 /* If we get an error before fetching anything, don't print a string.
1301 But if we fetch something and then get an error, print the string
1302 and then the error message. */
1303 if (errcode == 0 || bufptr > buffer)
1304 {
1305 if (addressprint)
1306 {
1307 fputs_filtered (" ", stream);
1308 }
1309 LA_PRINT_STRING (stream, buffer, (bufptr - buffer) / width, width, force_ellipsis);
1310 }
1311
1312 if (errcode != 0)
1313 {
1314 if (errcode == EIO)
1315 {
1316 fprintf_filtered (stream, " <Address ");
1317 print_address_numeric (addr, 1, stream);
1318 fprintf_filtered (stream, " out of bounds>");
1319 }
1320 else
1321 {
1322 fprintf_filtered (stream, " <Error reading address ");
1323 print_address_numeric (addr, 1, stream);
1324 fprintf_filtered (stream, ": %s>", safe_strerror (errcode));
1325 }
1326 }
1327 gdb_flush (stream);
1328 do_cleanups (old_chain);
1329 return ((bufptr - buffer) / width);
1330 }
1331 \f
1332
1333 /* Validate an input or output radix setting, and make sure the user
1334 knows what they really did here. Radix setting is confusing, e.g.
1335 setting the input radix to "10" never changes it! */
1336
1337 /* ARGSUSED */
1338 static void
1339 set_input_radix (char *args, int from_tty, struct cmd_list_element *c)
1340 {
1341 set_input_radix_1 (from_tty, *(unsigned *) c->var);
1342 }
1343
1344 /* ARGSUSED */
1345 static void
1346 set_input_radix_1 (int from_tty, unsigned radix)
1347 {
1348 /* We don't currently disallow any input radix except 0 or 1, which don't
1349 make any mathematical sense. In theory, we can deal with any input
1350 radix greater than 1, even if we don't have unique digits for every
1351 value from 0 to radix-1, but in practice we lose on large radix values.
1352 We should either fix the lossage or restrict the radix range more.
1353 (FIXME). */
1354
1355 if (radix < 2)
1356 {
1357 error ("Nonsense input radix ``decimal %u''; input radix unchanged.",
1358 radix);
1359 }
1360 input_radix = radix;
1361 if (from_tty)
1362 {
1363 printf_filtered ("Input radix now set to decimal %u, hex %x, octal %o.\n",
1364 radix, radix, radix);
1365 }
1366 }
1367
1368 /* ARGSUSED */
1369 static void
1370 set_output_radix (char *args, int from_tty, struct cmd_list_element *c)
1371 {
1372 set_output_radix_1 (from_tty, *(unsigned *) c->var);
1373 }
1374
1375 static void
1376 set_output_radix_1 (int from_tty, unsigned radix)
1377 {
1378 /* Validate the radix and disallow ones that we aren't prepared to
1379 handle correctly, leaving the radix unchanged. */
1380 switch (radix)
1381 {
1382 case 16:
1383 output_format = 'x'; /* hex */
1384 break;
1385 case 10:
1386 output_format = 0; /* decimal */
1387 break;
1388 case 8:
1389 output_format = 'o'; /* octal */
1390 break;
1391 default:
1392 error ("Unsupported output radix ``decimal %u''; output radix unchanged.",
1393 radix);
1394 }
1395 output_radix = radix;
1396 if (from_tty)
1397 {
1398 printf_filtered ("Output radix now set to decimal %u, hex %x, octal %o.\n",
1399 radix, radix, radix);
1400 }
1401 }
1402
1403 /* Set both the input and output radix at once. Try to set the output radix
1404 first, since it has the most restrictive range. An radix that is valid as
1405 an output radix is also valid as an input radix.
1406
1407 It may be useful to have an unusual input radix. If the user wishes to
1408 set an input radix that is not valid as an output radix, he needs to use
1409 the 'set input-radix' command. */
1410
1411 static void
1412 set_radix (char *arg, int from_tty)
1413 {
1414 unsigned radix;
1415
1416 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
1417 set_output_radix_1 (0, radix);
1418 set_input_radix_1 (0, radix);
1419 if (from_tty)
1420 {
1421 printf_filtered ("Input and output radices now set to decimal %u, hex %x, octal %o.\n",
1422 radix, radix, radix);
1423 }
1424 }
1425
1426 /* Show both the input and output radices. */
1427
1428 /*ARGSUSED */
1429 static void
1430 show_radix (char *arg, int from_tty)
1431 {
1432 if (from_tty)
1433 {
1434 if (input_radix == output_radix)
1435 {
1436 printf_filtered ("Input and output radices set to decimal %u, hex %x, octal %o.\n",
1437 input_radix, input_radix, input_radix);
1438 }
1439 else
1440 {
1441 printf_filtered ("Input radix set to decimal %u, hex %x, octal %o.\n",
1442 input_radix, input_radix, input_radix);
1443 printf_filtered ("Output radix set to decimal %u, hex %x, octal %o.\n",
1444 output_radix, output_radix, output_radix);
1445 }
1446 }
1447 }
1448 \f
1449
1450 /*ARGSUSED */
1451 static void
1452 set_print (char *arg, int from_tty)
1453 {
1454 printf_unfiltered (
1455 "\"set print\" must be followed by the name of a print subcommand.\n");
1456 help_list (setprintlist, "set print ", -1, gdb_stdout);
1457 }
1458
1459 /*ARGSUSED */
1460 static void
1461 show_print (char *args, int from_tty)
1462 {
1463 cmd_show_list (showprintlist, from_tty, "");
1464 }
1465 \f
1466 void
1467 _initialize_valprint (void)
1468 {
1469 struct cmd_list_element *c;
1470
1471 add_prefix_cmd ("print", no_class, set_print,
1472 "Generic command for setting how things print.",
1473 &setprintlist, "set print ", 0, &setlist);
1474 add_alias_cmd ("p", "print", no_class, 1, &setlist);
1475 /* prefer set print to set prompt */
1476 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
1477
1478 add_prefix_cmd ("print", no_class, show_print,
1479 "Generic command for showing print settings.",
1480 &showprintlist, "show print ", 0, &showlist);
1481 add_alias_cmd ("p", "print", no_class, 1, &showlist);
1482 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
1483
1484 add_show_from_set
1485 (add_set_cmd ("elements", no_class, var_uinteger, (char *) &print_max,
1486 "Set limit on string chars or array elements to print.\n\
1487 \"set print elements 0\" causes there to be no limit.",
1488 &setprintlist),
1489 &showprintlist);
1490
1491 add_show_from_set
1492 (add_set_cmd ("null-stop", no_class, var_boolean,
1493 (char *) &stop_print_at_null,
1494 "Set printing of char arrays to stop at first null char.",
1495 &setprintlist),
1496 &showprintlist);
1497
1498 add_show_from_set
1499 (add_set_cmd ("repeats", no_class, var_uinteger,
1500 (char *) &repeat_count_threshold,
1501 "Set threshold for repeated print elements.\n\
1502 \"set print repeats 0\" causes all elements to be individually printed.",
1503 &setprintlist),
1504 &showprintlist);
1505
1506 add_show_from_set
1507 (add_set_cmd ("pretty", class_support, var_boolean,
1508 (char *) &prettyprint_structs,
1509 "Set prettyprinting of structures.",
1510 &setprintlist),
1511 &showprintlist);
1512
1513 add_show_from_set
1514 (add_set_cmd ("union", class_support, var_boolean, (char *) &unionprint,
1515 "Set printing of unions interior to structures.",
1516 &setprintlist),
1517 &showprintlist);
1518
1519 add_show_from_set
1520 (add_set_cmd ("array", class_support, var_boolean,
1521 (char *) &prettyprint_arrays,
1522 "Set prettyprinting of arrays.",
1523 &setprintlist),
1524 &showprintlist);
1525
1526 add_show_from_set
1527 (add_set_cmd ("address", class_support, var_boolean, (char *) &addressprint,
1528 "Set printing of addresses.",
1529 &setprintlist),
1530 &showprintlist);
1531
1532 c = add_set_cmd ("input-radix", class_support, var_uinteger,
1533 (char *) &input_radix,
1534 "Set default input radix for entering numbers.",
1535 &setlist);
1536 add_show_from_set (c, &showlist);
1537 c->function.sfunc = set_input_radix;
1538
1539 c = add_set_cmd ("output-radix", class_support, var_uinteger,
1540 (char *) &output_radix,
1541 "Set default output radix for printing of values.",
1542 &setlist);
1543 add_show_from_set (c, &showlist);
1544 c->function.sfunc = set_output_radix;
1545
1546 /* The "set radix" and "show radix" commands are special in that they are
1547 like normal set and show commands but allow two normally independent
1548 variables to be either set or shown with a single command. So the
1549 usual add_set_cmd() and add_show_from_set() commands aren't really
1550 appropriate. */
1551 add_cmd ("radix", class_support, set_radix,
1552 "Set default input and output number radices.\n\
1553 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
1554 Without an argument, sets both radices back to the default value of 10.",
1555 &setlist);
1556 add_cmd ("radix", class_support, show_radix,
1557 "Show the default input and output number radices.\n\
1558 Use 'show input-radix' or 'show output-radix' to independently show each.",
1559 &showlist);
1560
1561 /* Give people the defaults which they are used to. */
1562 prettyprint_structs = 0;
1563 prettyprint_arrays = 0;
1564 unionprint = 1;
1565 addressprint = 1;
1566 print_max = PRINT_MAX_DEFAULT;
1567 }