]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/value.c
ade5ebd78b22b0f2d30e384b7da6d5efabd512ca
[thirdparty/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "command.h"
27 #include "gdbcmd.h"
28 #include "target.h"
29 #include "language.h"
30 #include "demangle.h"
31 #include "regcache.h"
32 #include "block.h"
33 #include "target-float.h"
34 #include "objfiles.h"
35 #include "valprint.h"
36 #include "cli/cli-decode.h"
37 #include "extension.h"
38 #include <ctype.h>
39 #include "tracepoint.h"
40 #include "cp-abi.h"
41 #include "user-regs.h"
42 #include <algorithm>
43 #include "completer.h"
44
45 /* Definition of a user function. */
46 struct internal_function
47 {
48 /* The name of the function. It is a bit odd to have this in the
49 function itself -- the user might use a differently-named
50 convenience variable to hold the function. */
51 char *name;
52
53 /* The handler. */
54 internal_function_fn handler;
55
56 /* User data for the handler. */
57 void *cookie;
58 };
59
60 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
61
62 struct range
63 {
64 /* Lowest offset in the range. */
65 LONGEST offset;
66
67 /* Length of the range. */
68 LONGEST length;
69 };
70
71 typedef struct range range_s;
72
73 DEF_VEC_O(range_s);
74
75 /* Returns true if the ranges defined by [offset1, offset1+len1) and
76 [offset2, offset2+len2) overlap. */
77
78 static int
79 ranges_overlap (LONGEST offset1, LONGEST len1,
80 LONGEST offset2, LONGEST len2)
81 {
82 ULONGEST h, l;
83
84 l = std::max (offset1, offset2);
85 h = std::min (offset1 + len1, offset2 + len2);
86 return (l < h);
87 }
88
89 /* Returns true if the first argument is strictly less than the
90 second, useful for VEC_lower_bound. We keep ranges sorted by
91 offset and coalesce overlapping and contiguous ranges, so this just
92 compares the starting offset. */
93
94 static int
95 range_lessthan (const range_s *r1, const range_s *r2)
96 {
97 return r1->offset < r2->offset;
98 }
99
100 /* Returns true if RANGES contains any range that overlaps [OFFSET,
101 OFFSET+LENGTH). */
102
103 static int
104 ranges_contain (VEC(range_s) *ranges, LONGEST offset, LONGEST length)
105 {
106 range_s what;
107 LONGEST i;
108
109 what.offset = offset;
110 what.length = length;
111
112 /* We keep ranges sorted by offset and coalesce overlapping and
113 contiguous ranges, so to check if a range list contains a given
114 range, we can do a binary search for the position the given range
115 would be inserted if we only considered the starting OFFSET of
116 ranges. We call that position I. Since we also have LENGTH to
117 care for (this is a range afterall), we need to check if the
118 _previous_ range overlaps the I range. E.g.,
119
120 R
121 |---|
122 |---| |---| |------| ... |--|
123 0 1 2 N
124
125 I=1
126
127 In the case above, the binary search would return `I=1', meaning,
128 this OFFSET should be inserted at position 1, and the current
129 position 1 should be pushed further (and before 2). But, `0'
130 overlaps with R.
131
132 Then we need to check if the I range overlaps the I range itself.
133 E.g.,
134
135 R
136 |---|
137 |---| |---| |-------| ... |--|
138 0 1 2 N
139
140 I=1
141 */
142
143 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
144
145 if (i > 0)
146 {
147 struct range *bef = VEC_index (range_s, ranges, i - 1);
148
149 if (ranges_overlap (bef->offset, bef->length, offset, length))
150 return 1;
151 }
152
153 if (i < VEC_length (range_s, ranges))
154 {
155 struct range *r = VEC_index (range_s, ranges, i);
156
157 if (ranges_overlap (r->offset, r->length, offset, length))
158 return 1;
159 }
160
161 return 0;
162 }
163
164 static struct cmd_list_element *functionlist;
165
166 /* Note that the fields in this structure are arranged to save a bit
167 of memory. */
168
169 struct value
170 {
171 /* Type of value; either not an lval, or one of the various
172 different possible kinds of lval. */
173 enum lval_type lval;
174
175 /* Is it modifiable? Only relevant if lval != not_lval. */
176 unsigned int modifiable : 1;
177
178 /* If zero, contents of this value are in the contents field. If
179 nonzero, contents are in inferior. If the lval field is lval_memory,
180 the contents are in inferior memory at location.address plus offset.
181 The lval field may also be lval_register.
182
183 WARNING: This field is used by the code which handles watchpoints
184 (see breakpoint.c) to decide whether a particular value can be
185 watched by hardware watchpoints. If the lazy flag is set for
186 some member of a value chain, it is assumed that this member of
187 the chain doesn't need to be watched as part of watching the
188 value itself. This is how GDB avoids watching the entire struct
189 or array when the user wants to watch a single struct member or
190 array element. If you ever change the way lazy flag is set and
191 reset, be sure to consider this use as well! */
192 unsigned int lazy : 1;
193
194 /* If value is a variable, is it initialized or not. */
195 unsigned int initialized : 1;
196
197 /* If value is from the stack. If this is set, read_stack will be
198 used instead of read_memory to enable extra caching. */
199 unsigned int stack : 1;
200
201 /* If the value has been released. */
202 unsigned int released : 1;
203
204 /* Location of value (if lval). */
205 union
206 {
207 /* If lval == lval_memory, this is the address in the inferior */
208 CORE_ADDR address;
209
210 /*If lval == lval_register, the value is from a register. */
211 struct
212 {
213 /* Register number. */
214 int regnum;
215 /* Frame ID of "next" frame to which a register value is relative.
216 If the register value is found relative to frame F, then the
217 frame id of F->next will be stored in next_frame_id. */
218 struct frame_id next_frame_id;
219 } reg;
220
221 /* Pointer to internal variable. */
222 struct internalvar *internalvar;
223
224 /* Pointer to xmethod worker. */
225 struct xmethod_worker *xm_worker;
226
227 /* If lval == lval_computed, this is a set of function pointers
228 to use to access and describe the value, and a closure pointer
229 for them to use. */
230 struct
231 {
232 /* Functions to call. */
233 const struct lval_funcs *funcs;
234
235 /* Closure for those functions to use. */
236 void *closure;
237 } computed;
238 } location;
239
240 /* Describes offset of a value within lval of a structure in target
241 addressable memory units. Note also the member embedded_offset
242 below. */
243 LONGEST offset;
244
245 /* Only used for bitfields; number of bits contained in them. */
246 LONGEST bitsize;
247
248 /* Only used for bitfields; position of start of field. For
249 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
250 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
251 LONGEST bitpos;
252
253 /* The number of references to this value. When a value is created,
254 the value chain holds a reference, so REFERENCE_COUNT is 1. If
255 release_value is called, this value is removed from the chain but
256 the caller of release_value now has a reference to this value.
257 The caller must arrange for a call to value_free later. */
258 int reference_count;
259
260 /* Only used for bitfields; the containing value. This allows a
261 single read from the target when displaying multiple
262 bitfields. */
263 struct value *parent;
264
265 /* Type of the value. */
266 struct type *type;
267
268 /* If a value represents a C++ object, then the `type' field gives
269 the object's compile-time type. If the object actually belongs
270 to some class derived from `type', perhaps with other base
271 classes and additional members, then `type' is just a subobject
272 of the real thing, and the full object is probably larger than
273 `type' would suggest.
274
275 If `type' is a dynamic class (i.e. one with a vtable), then GDB
276 can actually determine the object's run-time type by looking at
277 the run-time type information in the vtable. When this
278 information is available, we may elect to read in the entire
279 object, for several reasons:
280
281 - When printing the value, the user would probably rather see the
282 full object, not just the limited portion apparent from the
283 compile-time type.
284
285 - If `type' has virtual base classes, then even printing `type'
286 alone may require reaching outside the `type' portion of the
287 object to wherever the virtual base class has been stored.
288
289 When we store the entire object, `enclosing_type' is the run-time
290 type -- the complete object -- and `embedded_offset' is the
291 offset of `type' within that larger type, in target addressable memory
292 units. The value_contents() macro takes `embedded_offset' into account,
293 so most GDB code continues to see the `type' portion of the value, just
294 as the inferior would.
295
296 If `type' is a pointer to an object, then `enclosing_type' is a
297 pointer to the object's run-time type, and `pointed_to_offset' is
298 the offset in target addressable memory units from the full object
299 to the pointed-to object -- that is, the value `embedded_offset' would
300 have if we followed the pointer and fetched the complete object.
301 (I don't really see the point. Why not just determine the
302 run-time type when you indirect, and avoid the special case? The
303 contents don't matter until you indirect anyway.)
304
305 If we're not doing anything fancy, `enclosing_type' is equal to
306 `type', and `embedded_offset' is zero, so everything works
307 normally. */
308 struct type *enclosing_type;
309 LONGEST embedded_offset;
310 LONGEST pointed_to_offset;
311
312 /* Values are stored in a chain, so that they can be deleted easily
313 over calls to the inferior. Values assigned to internal
314 variables, put into the value history or exposed to Python are
315 taken off this list. */
316 struct value *next;
317
318 /* Actual contents of the value. Target byte-order. NULL or not
319 valid if lazy is nonzero. */
320 gdb_byte *contents;
321
322 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
323 rather than available, since the common and default case is for a
324 value to be available. This is filled in at value read time.
325 The unavailable ranges are tracked in bits. Note that a contents
326 bit that has been optimized out doesn't really exist in the
327 program, so it can't be marked unavailable either. */
328 VEC(range_s) *unavailable;
329
330 /* Likewise, but for optimized out contents (a chunk of the value of
331 a variable that does not actually exist in the program). If LVAL
332 is lval_register, this is a register ($pc, $sp, etc., never a
333 program variable) that has not been saved in the frame. Not
334 saved registers and optimized-out program variables values are
335 treated pretty much the same, except not-saved registers have a
336 different string representation and related error strings. */
337 VEC(range_s) *optimized_out;
338 };
339
340 /* See value.h. */
341
342 struct gdbarch *
343 get_value_arch (const struct value *value)
344 {
345 return get_type_arch (value_type (value));
346 }
347
348 int
349 value_bits_available (const struct value *value, LONGEST offset, LONGEST length)
350 {
351 gdb_assert (!value->lazy);
352
353 return !ranges_contain (value->unavailable, offset, length);
354 }
355
356 int
357 value_bytes_available (const struct value *value,
358 LONGEST offset, LONGEST length)
359 {
360 return value_bits_available (value,
361 offset * TARGET_CHAR_BIT,
362 length * TARGET_CHAR_BIT);
363 }
364
365 int
366 value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length)
367 {
368 gdb_assert (!value->lazy);
369
370 return ranges_contain (value->optimized_out, bit_offset, bit_length);
371 }
372
373 int
374 value_entirely_available (struct value *value)
375 {
376 /* We can only tell whether the whole value is available when we try
377 to read it. */
378 if (value->lazy)
379 value_fetch_lazy (value);
380
381 if (VEC_empty (range_s, value->unavailable))
382 return 1;
383 return 0;
384 }
385
386 /* Returns true if VALUE is entirely covered by RANGES. If the value
387 is lazy, it'll be read now. Note that RANGE is a pointer to
388 pointer because reading the value might change *RANGE. */
389
390 static int
391 value_entirely_covered_by_range_vector (struct value *value,
392 VEC(range_s) **ranges)
393 {
394 /* We can only tell whether the whole value is optimized out /
395 unavailable when we try to read it. */
396 if (value->lazy)
397 value_fetch_lazy (value);
398
399 if (VEC_length (range_s, *ranges) == 1)
400 {
401 struct range *t = VEC_index (range_s, *ranges, 0);
402
403 if (t->offset == 0
404 && t->length == (TARGET_CHAR_BIT
405 * TYPE_LENGTH (value_enclosing_type (value))))
406 return 1;
407 }
408
409 return 0;
410 }
411
412 int
413 value_entirely_unavailable (struct value *value)
414 {
415 return value_entirely_covered_by_range_vector (value, &value->unavailable);
416 }
417
418 int
419 value_entirely_optimized_out (struct value *value)
420 {
421 return value_entirely_covered_by_range_vector (value, &value->optimized_out);
422 }
423
424 /* Insert into the vector pointed to by VECTORP the bit range starting of
425 OFFSET bits, and extending for the next LENGTH bits. */
426
427 static void
428 insert_into_bit_range_vector (VEC(range_s) **vectorp,
429 LONGEST offset, LONGEST length)
430 {
431 range_s newr;
432 int i;
433
434 /* Insert the range sorted. If there's overlap or the new range
435 would be contiguous with an existing range, merge. */
436
437 newr.offset = offset;
438 newr.length = length;
439
440 /* Do a binary search for the position the given range would be
441 inserted if we only considered the starting OFFSET of ranges.
442 Call that position I. Since we also have LENGTH to care for
443 (this is a range afterall), we need to check if the _previous_
444 range overlaps the I range. E.g., calling R the new range:
445
446 #1 - overlaps with previous
447
448 R
449 |-...-|
450 |---| |---| |------| ... |--|
451 0 1 2 N
452
453 I=1
454
455 In the case #1 above, the binary search would return `I=1',
456 meaning, this OFFSET should be inserted at position 1, and the
457 current position 1 should be pushed further (and become 2). But,
458 note that `0' overlaps with R, so we want to merge them.
459
460 A similar consideration needs to be taken if the new range would
461 be contiguous with the previous range:
462
463 #2 - contiguous with previous
464
465 R
466 |-...-|
467 |--| |---| |------| ... |--|
468 0 1 2 N
469
470 I=1
471
472 If there's no overlap with the previous range, as in:
473
474 #3 - not overlapping and not contiguous
475
476 R
477 |-...-|
478 |--| |---| |------| ... |--|
479 0 1 2 N
480
481 I=1
482
483 or if I is 0:
484
485 #4 - R is the range with lowest offset
486
487 R
488 |-...-|
489 |--| |---| |------| ... |--|
490 0 1 2 N
491
492 I=0
493
494 ... we just push the new range to I.
495
496 All the 4 cases above need to consider that the new range may
497 also overlap several of the ranges that follow, or that R may be
498 contiguous with the following range, and merge. E.g.,
499
500 #5 - overlapping following ranges
501
502 R
503 |------------------------|
504 |--| |---| |------| ... |--|
505 0 1 2 N
506
507 I=0
508
509 or:
510
511 R
512 |-------|
513 |--| |---| |------| ... |--|
514 0 1 2 N
515
516 I=1
517
518 */
519
520 i = VEC_lower_bound (range_s, *vectorp, &newr, range_lessthan);
521 if (i > 0)
522 {
523 struct range *bef = VEC_index (range_s, *vectorp, i - 1);
524
525 if (ranges_overlap (bef->offset, bef->length, offset, length))
526 {
527 /* #1 */
528 ULONGEST l = std::min (bef->offset, offset);
529 ULONGEST h = std::max (bef->offset + bef->length, offset + length);
530
531 bef->offset = l;
532 bef->length = h - l;
533 i--;
534 }
535 else if (offset == bef->offset + bef->length)
536 {
537 /* #2 */
538 bef->length += length;
539 i--;
540 }
541 else
542 {
543 /* #3 */
544 VEC_safe_insert (range_s, *vectorp, i, &newr);
545 }
546 }
547 else
548 {
549 /* #4 */
550 VEC_safe_insert (range_s, *vectorp, i, &newr);
551 }
552
553 /* Check whether the ranges following the one we've just added or
554 touched can be folded in (#5 above). */
555 if (i + 1 < VEC_length (range_s, *vectorp))
556 {
557 struct range *t;
558 struct range *r;
559 int removed = 0;
560 int next = i + 1;
561
562 /* Get the range we just touched. */
563 t = VEC_index (range_s, *vectorp, i);
564 removed = 0;
565
566 i = next;
567 for (; VEC_iterate (range_s, *vectorp, i, r); i++)
568 if (r->offset <= t->offset + t->length)
569 {
570 ULONGEST l, h;
571
572 l = std::min (t->offset, r->offset);
573 h = std::max (t->offset + t->length, r->offset + r->length);
574
575 t->offset = l;
576 t->length = h - l;
577
578 removed++;
579 }
580 else
581 {
582 /* If we couldn't merge this one, we won't be able to
583 merge following ones either, since the ranges are
584 always sorted by OFFSET. */
585 break;
586 }
587
588 if (removed != 0)
589 VEC_block_remove (range_s, *vectorp, next, removed);
590 }
591 }
592
593 void
594 mark_value_bits_unavailable (struct value *value,
595 LONGEST offset, LONGEST length)
596 {
597 insert_into_bit_range_vector (&value->unavailable, offset, length);
598 }
599
600 void
601 mark_value_bytes_unavailable (struct value *value,
602 LONGEST offset, LONGEST length)
603 {
604 mark_value_bits_unavailable (value,
605 offset * TARGET_CHAR_BIT,
606 length * TARGET_CHAR_BIT);
607 }
608
609 /* Find the first range in RANGES that overlaps the range defined by
610 OFFSET and LENGTH, starting at element POS in the RANGES vector,
611 Returns the index into RANGES where such overlapping range was
612 found, or -1 if none was found. */
613
614 static int
615 find_first_range_overlap (VEC(range_s) *ranges, int pos,
616 LONGEST offset, LONGEST length)
617 {
618 range_s *r;
619 int i;
620
621 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
622 if (ranges_overlap (r->offset, r->length, offset, length))
623 return i;
624
625 return -1;
626 }
627
628 /* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
629 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
630 return non-zero.
631
632 It must always be the case that:
633 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
634
635 It is assumed that memory can be accessed from:
636 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
637 to:
638 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
639 / TARGET_CHAR_BIT) */
640 static int
641 memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
642 const gdb_byte *ptr2, size_t offset2_bits,
643 size_t length_bits)
644 {
645 gdb_assert (offset1_bits % TARGET_CHAR_BIT
646 == offset2_bits % TARGET_CHAR_BIT);
647
648 if (offset1_bits % TARGET_CHAR_BIT != 0)
649 {
650 size_t bits;
651 gdb_byte mask, b1, b2;
652
653 /* The offset from the base pointers PTR1 and PTR2 is not a complete
654 number of bytes. A number of bits up to either the next exact
655 byte boundary, or LENGTH_BITS (which ever is sooner) will be
656 compared. */
657 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
658 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
659 mask = (1 << bits) - 1;
660
661 if (length_bits < bits)
662 {
663 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
664 bits = length_bits;
665 }
666
667 /* Now load the two bytes and mask off the bits we care about. */
668 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
669 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
670
671 if (b1 != b2)
672 return 1;
673
674 /* Now update the length and offsets to take account of the bits
675 we've just compared. */
676 length_bits -= bits;
677 offset1_bits += bits;
678 offset2_bits += bits;
679 }
680
681 if (length_bits % TARGET_CHAR_BIT != 0)
682 {
683 size_t bits;
684 size_t o1, o2;
685 gdb_byte mask, b1, b2;
686
687 /* The length is not an exact number of bytes. After the previous
688 IF.. block then the offsets are byte aligned, or the
689 length is zero (in which case this code is not reached). Compare
690 a number of bits at the end of the region, starting from an exact
691 byte boundary. */
692 bits = length_bits % TARGET_CHAR_BIT;
693 o1 = offset1_bits + length_bits - bits;
694 o2 = offset2_bits + length_bits - bits;
695
696 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
697 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
698
699 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
700 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
701
702 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
703 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
704
705 if (b1 != b2)
706 return 1;
707
708 length_bits -= bits;
709 }
710
711 if (length_bits > 0)
712 {
713 /* We've now taken care of any stray "bits" at the start, or end of
714 the region to compare, the remainder can be covered with a simple
715 memcmp. */
716 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
717 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
718 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
719
720 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
721 ptr2 + offset2_bits / TARGET_CHAR_BIT,
722 length_bits / TARGET_CHAR_BIT);
723 }
724
725 /* Length is zero, regions match. */
726 return 0;
727 }
728
729 /* Helper struct for find_first_range_overlap_and_match and
730 value_contents_bits_eq. Keep track of which slot of a given ranges
731 vector have we last looked at. */
732
733 struct ranges_and_idx
734 {
735 /* The ranges. */
736 VEC(range_s) *ranges;
737
738 /* The range we've last found in RANGES. Given ranges are sorted,
739 we can start the next lookup here. */
740 int idx;
741 };
742
743 /* Helper function for value_contents_bits_eq. Compare LENGTH bits of
744 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's
745 ranges starting at OFFSET2 bits. Return true if the ranges match
746 and fill in *L and *H with the overlapping window relative to
747 (both) OFFSET1 or OFFSET2. */
748
749 static int
750 find_first_range_overlap_and_match (struct ranges_and_idx *rp1,
751 struct ranges_and_idx *rp2,
752 LONGEST offset1, LONGEST offset2,
753 LONGEST length, ULONGEST *l, ULONGEST *h)
754 {
755 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx,
756 offset1, length);
757 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx,
758 offset2, length);
759
760 if (rp1->idx == -1 && rp2->idx == -1)
761 {
762 *l = length;
763 *h = length;
764 return 1;
765 }
766 else if (rp1->idx == -1 || rp2->idx == -1)
767 return 0;
768 else
769 {
770 range_s *r1, *r2;
771 ULONGEST l1, h1;
772 ULONGEST l2, h2;
773
774 r1 = VEC_index (range_s, rp1->ranges, rp1->idx);
775 r2 = VEC_index (range_s, rp2->ranges, rp2->idx);
776
777 /* Get the unavailable windows intersected by the incoming
778 ranges. The first and last ranges that overlap the argument
779 range may be wider than said incoming arguments ranges. */
780 l1 = std::max (offset1, r1->offset);
781 h1 = std::min (offset1 + length, r1->offset + r1->length);
782
783 l2 = std::max (offset2, r2->offset);
784 h2 = std::min (offset2 + length, offset2 + r2->length);
785
786 /* Make them relative to the respective start offsets, so we can
787 compare them for equality. */
788 l1 -= offset1;
789 h1 -= offset1;
790
791 l2 -= offset2;
792 h2 -= offset2;
793
794 /* Different ranges, no match. */
795 if (l1 != l2 || h1 != h2)
796 return 0;
797
798 *h = h1;
799 *l = l1;
800 return 1;
801 }
802 }
803
804 /* Helper function for value_contents_eq. The only difference is that
805 this function is bit rather than byte based.
806
807 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits
808 with LENGTH bits of VAL2's contents starting at OFFSET2 bits.
809 Return true if the available bits match. */
810
811 static int
812 value_contents_bits_eq (const struct value *val1, int offset1,
813 const struct value *val2, int offset2,
814 int length)
815 {
816 /* Each array element corresponds to a ranges source (unavailable,
817 optimized out). '1' is for VAL1, '2' for VAL2. */
818 struct ranges_and_idx rp1[2], rp2[2];
819
820 /* See function description in value.h. */
821 gdb_assert (!val1->lazy && !val2->lazy);
822
823 /* We shouldn't be trying to compare past the end of the values. */
824 gdb_assert (offset1 + length
825 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT);
826 gdb_assert (offset2 + length
827 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT);
828
829 memset (&rp1, 0, sizeof (rp1));
830 memset (&rp2, 0, sizeof (rp2));
831 rp1[0].ranges = val1->unavailable;
832 rp2[0].ranges = val2->unavailable;
833 rp1[1].ranges = val1->optimized_out;
834 rp2[1].ranges = val2->optimized_out;
835
836 while (length > 0)
837 {
838 ULONGEST l = 0, h = 0; /* init for gcc -Wall */
839 int i;
840
841 for (i = 0; i < 2; i++)
842 {
843 ULONGEST l_tmp, h_tmp;
844
845 /* The contents only match equal if the invalid/unavailable
846 contents ranges match as well. */
847 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i],
848 offset1, offset2, length,
849 &l_tmp, &h_tmp))
850 return 0;
851
852 /* We're interested in the lowest/first range found. */
853 if (i == 0 || l_tmp < l)
854 {
855 l = l_tmp;
856 h = h_tmp;
857 }
858 }
859
860 /* Compare the available/valid contents. */
861 if (memcmp_with_bit_offsets (val1->contents, offset1,
862 val2->contents, offset2, l) != 0)
863 return 0;
864
865 length -= h;
866 offset1 += h;
867 offset2 += h;
868 }
869
870 return 1;
871 }
872
873 int
874 value_contents_eq (const struct value *val1, LONGEST offset1,
875 const struct value *val2, LONGEST offset2,
876 LONGEST length)
877 {
878 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
879 val2, offset2 * TARGET_CHAR_BIT,
880 length * TARGET_CHAR_BIT);
881 }
882
883 /* Prototypes for local functions. */
884
885 static void show_values (char *, int);
886
887
888 /* The value-history records all the values printed
889 by print commands during this session. Each chunk
890 records 60 consecutive values. The first chunk on
891 the chain records the most recent values.
892 The total number of values is in value_history_count. */
893
894 #define VALUE_HISTORY_CHUNK 60
895
896 struct value_history_chunk
897 {
898 struct value_history_chunk *next;
899 struct value *values[VALUE_HISTORY_CHUNK];
900 };
901
902 /* Chain of chunks now in use. */
903
904 static struct value_history_chunk *value_history_chain;
905
906 static int value_history_count; /* Abs number of last entry stored. */
907
908 \f
909 /* List of all value objects currently allocated
910 (except for those released by calls to release_value)
911 This is so they can be freed after each command. */
912
913 static struct value *all_values;
914
915 /* Allocate a lazy value for type TYPE. Its actual content is
916 "lazily" allocated too: the content field of the return value is
917 NULL; it will be allocated when it is fetched from the target. */
918
919 struct value *
920 allocate_value_lazy (struct type *type)
921 {
922 struct value *val;
923
924 /* Call check_typedef on our type to make sure that, if TYPE
925 is a TYPE_CODE_TYPEDEF, its length is set to the length
926 of the target type instead of zero. However, we do not
927 replace the typedef type by the target type, because we want
928 to keep the typedef in order to be able to set the VAL's type
929 description correctly. */
930 check_typedef (type);
931
932 val = XCNEW (struct value);
933 val->contents = NULL;
934 val->next = all_values;
935 all_values = val;
936 val->type = type;
937 val->enclosing_type = type;
938 VALUE_LVAL (val) = not_lval;
939 val->location.address = 0;
940 val->offset = 0;
941 val->bitpos = 0;
942 val->bitsize = 0;
943 val->lazy = 1;
944 val->embedded_offset = 0;
945 val->pointed_to_offset = 0;
946 val->modifiable = 1;
947 val->initialized = 1; /* Default to initialized. */
948
949 /* Values start out on the all_values chain. */
950 val->reference_count = 1;
951
952 return val;
953 }
954
955 /* The maximum size, in bytes, that GDB will try to allocate for a value.
956 The initial value of 64k was not selected for any specific reason, it is
957 just a reasonable starting point. */
958
959 static int max_value_size = 65536; /* 64k bytes */
960
961 /* It is critical that the MAX_VALUE_SIZE is at least as big as the size of
962 LONGEST, otherwise GDB will not be able to parse integer values from the
963 CLI; for example if the MAX_VALUE_SIZE could be set to 1 then GDB would
964 be unable to parse "set max-value-size 2".
965
966 As we want a consistent GDB experience across hosts with different sizes
967 of LONGEST, this arbitrary minimum value was selected, so long as this
968 is bigger than LONGEST on all GDB supported hosts we're fine. */
969
970 #define MIN_VALUE_FOR_MAX_VALUE_SIZE 16
971 gdb_static_assert (sizeof (LONGEST) <= MIN_VALUE_FOR_MAX_VALUE_SIZE);
972
973 /* Implement the "set max-value-size" command. */
974
975 static void
976 set_max_value_size (char *args, int from_tty,
977 struct cmd_list_element *c)
978 {
979 gdb_assert (max_value_size == -1 || max_value_size >= 0);
980
981 if (max_value_size > -1 && max_value_size < MIN_VALUE_FOR_MAX_VALUE_SIZE)
982 {
983 max_value_size = MIN_VALUE_FOR_MAX_VALUE_SIZE;
984 error (_("max-value-size set too low, increasing to %d bytes"),
985 max_value_size);
986 }
987 }
988
989 /* Implement the "show max-value-size" command. */
990
991 static void
992 show_max_value_size (struct ui_file *file, int from_tty,
993 struct cmd_list_element *c, const char *value)
994 {
995 if (max_value_size == -1)
996 fprintf_filtered (file, _("Maximum value size is unlimited.\n"));
997 else
998 fprintf_filtered (file, _("Maximum value size is %d bytes.\n"),
999 max_value_size);
1000 }
1001
1002 /* Called before we attempt to allocate or reallocate a buffer for the
1003 contents of a value. TYPE is the type of the value for which we are
1004 allocating the buffer. If the buffer is too large (based on the user
1005 controllable setting) then throw an error. If this function returns
1006 then we should attempt to allocate the buffer. */
1007
1008 static void
1009 check_type_length_before_alloc (const struct type *type)
1010 {
1011 unsigned int length = TYPE_LENGTH (type);
1012
1013 if (max_value_size > -1 && length > max_value_size)
1014 {
1015 if (TYPE_NAME (type) != NULL)
1016 error (_("value of type `%s' requires %u bytes, which is more "
1017 "than max-value-size"), TYPE_NAME (type), length);
1018 else
1019 error (_("value requires %u bytes, which is more than "
1020 "max-value-size"), length);
1021 }
1022 }
1023
1024 /* Allocate the contents of VAL if it has not been allocated yet. */
1025
1026 static void
1027 allocate_value_contents (struct value *val)
1028 {
1029 if (!val->contents)
1030 {
1031 check_type_length_before_alloc (val->enclosing_type);
1032 val->contents
1033 = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
1034 }
1035 }
1036
1037 /* Allocate a value and its contents for type TYPE. */
1038
1039 struct value *
1040 allocate_value (struct type *type)
1041 {
1042 struct value *val = allocate_value_lazy (type);
1043
1044 allocate_value_contents (val);
1045 val->lazy = 0;
1046 return val;
1047 }
1048
1049 /* Allocate a value that has the correct length
1050 for COUNT repetitions of type TYPE. */
1051
1052 struct value *
1053 allocate_repeat_value (struct type *type, int count)
1054 {
1055 int low_bound = current_language->string_lower_bound; /* ??? */
1056 /* FIXME-type-allocation: need a way to free this type when we are
1057 done with it. */
1058 struct type *array_type
1059 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
1060
1061 return allocate_value (array_type);
1062 }
1063
1064 struct value *
1065 allocate_computed_value (struct type *type,
1066 const struct lval_funcs *funcs,
1067 void *closure)
1068 {
1069 struct value *v = allocate_value_lazy (type);
1070
1071 VALUE_LVAL (v) = lval_computed;
1072 v->location.computed.funcs = funcs;
1073 v->location.computed.closure = closure;
1074
1075 return v;
1076 }
1077
1078 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
1079
1080 struct value *
1081 allocate_optimized_out_value (struct type *type)
1082 {
1083 struct value *retval = allocate_value_lazy (type);
1084
1085 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type));
1086 set_value_lazy (retval, 0);
1087 return retval;
1088 }
1089
1090 /* Accessor methods. */
1091
1092 struct value *
1093 value_next (const struct value *value)
1094 {
1095 return value->next;
1096 }
1097
1098 struct type *
1099 value_type (const struct value *value)
1100 {
1101 return value->type;
1102 }
1103 void
1104 deprecated_set_value_type (struct value *value, struct type *type)
1105 {
1106 value->type = type;
1107 }
1108
1109 LONGEST
1110 value_offset (const struct value *value)
1111 {
1112 return value->offset;
1113 }
1114 void
1115 set_value_offset (struct value *value, LONGEST offset)
1116 {
1117 value->offset = offset;
1118 }
1119
1120 LONGEST
1121 value_bitpos (const struct value *value)
1122 {
1123 return value->bitpos;
1124 }
1125 void
1126 set_value_bitpos (struct value *value, LONGEST bit)
1127 {
1128 value->bitpos = bit;
1129 }
1130
1131 LONGEST
1132 value_bitsize (const struct value *value)
1133 {
1134 return value->bitsize;
1135 }
1136 void
1137 set_value_bitsize (struct value *value, LONGEST bit)
1138 {
1139 value->bitsize = bit;
1140 }
1141
1142 struct value *
1143 value_parent (const struct value *value)
1144 {
1145 return value->parent;
1146 }
1147
1148 /* See value.h. */
1149
1150 void
1151 set_value_parent (struct value *value, struct value *parent)
1152 {
1153 struct value *old = value->parent;
1154
1155 value->parent = parent;
1156 if (parent != NULL)
1157 value_incref (parent);
1158 value_free (old);
1159 }
1160
1161 gdb_byte *
1162 value_contents_raw (struct value *value)
1163 {
1164 struct gdbarch *arch = get_value_arch (value);
1165 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1166
1167 allocate_value_contents (value);
1168 return value->contents + value->embedded_offset * unit_size;
1169 }
1170
1171 gdb_byte *
1172 value_contents_all_raw (struct value *value)
1173 {
1174 allocate_value_contents (value);
1175 return value->contents;
1176 }
1177
1178 struct type *
1179 value_enclosing_type (const struct value *value)
1180 {
1181 return value->enclosing_type;
1182 }
1183
1184 /* Look at value.h for description. */
1185
1186 struct type *
1187 value_actual_type (struct value *value, int resolve_simple_types,
1188 int *real_type_found)
1189 {
1190 struct value_print_options opts;
1191 struct type *result;
1192
1193 get_user_print_options (&opts);
1194
1195 if (real_type_found)
1196 *real_type_found = 0;
1197 result = value_type (value);
1198 if (opts.objectprint)
1199 {
1200 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1201 fetch its rtti type. */
1202 if ((TYPE_CODE (result) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (result))
1203 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
1204 == TYPE_CODE_STRUCT
1205 && !value_optimized_out (value))
1206 {
1207 struct type *real_type;
1208
1209 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1210 if (real_type)
1211 {
1212 if (real_type_found)
1213 *real_type_found = 1;
1214 result = real_type;
1215 }
1216 }
1217 else if (resolve_simple_types)
1218 {
1219 if (real_type_found)
1220 *real_type_found = 1;
1221 result = value_enclosing_type (value);
1222 }
1223 }
1224
1225 return result;
1226 }
1227
1228 void
1229 error_value_optimized_out (void)
1230 {
1231 error (_("value has been optimized out"));
1232 }
1233
1234 static void
1235 require_not_optimized_out (const struct value *value)
1236 {
1237 if (!VEC_empty (range_s, value->optimized_out))
1238 {
1239 if (value->lval == lval_register)
1240 error (_("register has not been saved in frame"));
1241 else
1242 error_value_optimized_out ();
1243 }
1244 }
1245
1246 static void
1247 require_available (const struct value *value)
1248 {
1249 if (!VEC_empty (range_s, value->unavailable))
1250 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
1251 }
1252
1253 const gdb_byte *
1254 value_contents_for_printing (struct value *value)
1255 {
1256 if (value->lazy)
1257 value_fetch_lazy (value);
1258 return value->contents;
1259 }
1260
1261 const gdb_byte *
1262 value_contents_for_printing_const (const struct value *value)
1263 {
1264 gdb_assert (!value->lazy);
1265 return value->contents;
1266 }
1267
1268 const gdb_byte *
1269 value_contents_all (struct value *value)
1270 {
1271 const gdb_byte *result = value_contents_for_printing (value);
1272 require_not_optimized_out (value);
1273 require_available (value);
1274 return result;
1275 }
1276
1277 /* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET,
1278 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */
1279
1280 static void
1281 ranges_copy_adjusted (VEC (range_s) **dst_range, int dst_bit_offset,
1282 VEC (range_s) *src_range, int src_bit_offset,
1283 int bit_length)
1284 {
1285 range_s *r;
1286 int i;
1287
1288 for (i = 0; VEC_iterate (range_s, src_range, i, r); i++)
1289 {
1290 ULONGEST h, l;
1291
1292 l = std::max (r->offset, (LONGEST) src_bit_offset);
1293 h = std::min (r->offset + r->length,
1294 (LONGEST) src_bit_offset + bit_length);
1295
1296 if (l < h)
1297 insert_into_bit_range_vector (dst_range,
1298 dst_bit_offset + (l - src_bit_offset),
1299 h - l);
1300 }
1301 }
1302
1303 /* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET,
1304 SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */
1305
1306 static void
1307 value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset,
1308 const struct value *src, int src_bit_offset,
1309 int bit_length)
1310 {
1311 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset,
1312 src->unavailable, src_bit_offset,
1313 bit_length);
1314 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset,
1315 src->optimized_out, src_bit_offset,
1316 bit_length);
1317 }
1318
1319 /* Copy LENGTH target addressable memory units of SRC value's (all) contents
1320 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1321 contents, starting at DST_OFFSET. If unavailable contents are
1322 being copied from SRC, the corresponding DST contents are marked
1323 unavailable accordingly. Neither DST nor SRC may be lazy
1324 values.
1325
1326 It is assumed the contents of DST in the [DST_OFFSET,
1327 DST_OFFSET+LENGTH) range are wholly available. */
1328
1329 void
1330 value_contents_copy_raw (struct value *dst, LONGEST dst_offset,
1331 struct value *src, LONGEST src_offset, LONGEST length)
1332 {
1333 LONGEST src_bit_offset, dst_bit_offset, bit_length;
1334 struct gdbarch *arch = get_value_arch (src);
1335 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1336
1337 /* A lazy DST would make that this copy operation useless, since as
1338 soon as DST's contents were un-lazied (by a later value_contents
1339 call, say), the contents would be overwritten. A lazy SRC would
1340 mean we'd be copying garbage. */
1341 gdb_assert (!dst->lazy && !src->lazy);
1342
1343 /* The overwritten DST range gets unavailability ORed in, not
1344 replaced. Make sure to remember to implement replacing if it
1345 turns out actually necessary. */
1346 gdb_assert (value_bytes_available (dst, dst_offset, length));
1347 gdb_assert (!value_bits_any_optimized_out (dst,
1348 TARGET_CHAR_BIT * dst_offset,
1349 TARGET_CHAR_BIT * length));
1350
1351 /* Copy the data. */
1352 memcpy (value_contents_all_raw (dst) + dst_offset * unit_size,
1353 value_contents_all_raw (src) + src_offset * unit_size,
1354 length * unit_size);
1355
1356 /* Copy the meta-data, adjusted. */
1357 src_bit_offset = src_offset * unit_size * HOST_CHAR_BIT;
1358 dst_bit_offset = dst_offset * unit_size * HOST_CHAR_BIT;
1359 bit_length = length * unit_size * HOST_CHAR_BIT;
1360
1361 value_ranges_copy_adjusted (dst, dst_bit_offset,
1362 src, src_bit_offset,
1363 bit_length);
1364 }
1365
1366 /* Copy LENGTH bytes of SRC value's (all) contents
1367 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1368 (all) contents, starting at DST_OFFSET. If unavailable contents
1369 are being copied from SRC, the corresponding DST contents are
1370 marked unavailable accordingly. DST must not be lazy. If SRC is
1371 lazy, it will be fetched now.
1372
1373 It is assumed the contents of DST in the [DST_OFFSET,
1374 DST_OFFSET+LENGTH) range are wholly available. */
1375
1376 void
1377 value_contents_copy (struct value *dst, LONGEST dst_offset,
1378 struct value *src, LONGEST src_offset, LONGEST length)
1379 {
1380 if (src->lazy)
1381 value_fetch_lazy (src);
1382
1383 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1384 }
1385
1386 int
1387 value_lazy (const struct value *value)
1388 {
1389 return value->lazy;
1390 }
1391
1392 void
1393 set_value_lazy (struct value *value, int val)
1394 {
1395 value->lazy = val;
1396 }
1397
1398 int
1399 value_stack (const struct value *value)
1400 {
1401 return value->stack;
1402 }
1403
1404 void
1405 set_value_stack (struct value *value, int val)
1406 {
1407 value->stack = val;
1408 }
1409
1410 const gdb_byte *
1411 value_contents (struct value *value)
1412 {
1413 const gdb_byte *result = value_contents_writeable (value);
1414 require_not_optimized_out (value);
1415 require_available (value);
1416 return result;
1417 }
1418
1419 gdb_byte *
1420 value_contents_writeable (struct value *value)
1421 {
1422 if (value->lazy)
1423 value_fetch_lazy (value);
1424 return value_contents_raw (value);
1425 }
1426
1427 int
1428 value_optimized_out (struct value *value)
1429 {
1430 /* We can only know if a value is optimized out once we have tried to
1431 fetch it. */
1432 if (VEC_empty (range_s, value->optimized_out) && value->lazy)
1433 {
1434 TRY
1435 {
1436 value_fetch_lazy (value);
1437 }
1438 CATCH (ex, RETURN_MASK_ERROR)
1439 {
1440 /* Fall back to checking value->optimized_out. */
1441 }
1442 END_CATCH
1443 }
1444
1445 return !VEC_empty (range_s, value->optimized_out);
1446 }
1447
1448 /* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and
1449 the following LENGTH bytes. */
1450
1451 void
1452 mark_value_bytes_optimized_out (struct value *value, int offset, int length)
1453 {
1454 mark_value_bits_optimized_out (value,
1455 offset * TARGET_CHAR_BIT,
1456 length * TARGET_CHAR_BIT);
1457 }
1458
1459 /* See value.h. */
1460
1461 void
1462 mark_value_bits_optimized_out (struct value *value,
1463 LONGEST offset, LONGEST length)
1464 {
1465 insert_into_bit_range_vector (&value->optimized_out, offset, length);
1466 }
1467
1468 int
1469 value_bits_synthetic_pointer (const struct value *value,
1470 LONGEST offset, LONGEST length)
1471 {
1472 if (value->lval != lval_computed
1473 || !value->location.computed.funcs->check_synthetic_pointer)
1474 return 0;
1475 return value->location.computed.funcs->check_synthetic_pointer (value,
1476 offset,
1477 length);
1478 }
1479
1480 LONGEST
1481 value_embedded_offset (const struct value *value)
1482 {
1483 return value->embedded_offset;
1484 }
1485
1486 void
1487 set_value_embedded_offset (struct value *value, LONGEST val)
1488 {
1489 value->embedded_offset = val;
1490 }
1491
1492 LONGEST
1493 value_pointed_to_offset (const struct value *value)
1494 {
1495 return value->pointed_to_offset;
1496 }
1497
1498 void
1499 set_value_pointed_to_offset (struct value *value, LONGEST val)
1500 {
1501 value->pointed_to_offset = val;
1502 }
1503
1504 const struct lval_funcs *
1505 value_computed_funcs (const struct value *v)
1506 {
1507 gdb_assert (value_lval_const (v) == lval_computed);
1508
1509 return v->location.computed.funcs;
1510 }
1511
1512 void *
1513 value_computed_closure (const struct value *v)
1514 {
1515 gdb_assert (v->lval == lval_computed);
1516
1517 return v->location.computed.closure;
1518 }
1519
1520 enum lval_type *
1521 deprecated_value_lval_hack (struct value *value)
1522 {
1523 return &value->lval;
1524 }
1525
1526 enum lval_type
1527 value_lval_const (const struct value *value)
1528 {
1529 return value->lval;
1530 }
1531
1532 CORE_ADDR
1533 value_address (const struct value *value)
1534 {
1535 if (value->lval != lval_memory)
1536 return 0;
1537 if (value->parent != NULL)
1538 return value_address (value->parent) + value->offset;
1539 if (NULL != TYPE_DATA_LOCATION (value_type (value)))
1540 {
1541 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (value_type (value)));
1542 return TYPE_DATA_LOCATION_ADDR (value_type (value));
1543 }
1544
1545 return value->location.address + value->offset;
1546 }
1547
1548 CORE_ADDR
1549 value_raw_address (const struct value *value)
1550 {
1551 if (value->lval != lval_memory)
1552 return 0;
1553 return value->location.address;
1554 }
1555
1556 void
1557 set_value_address (struct value *value, CORE_ADDR addr)
1558 {
1559 gdb_assert (value->lval == lval_memory);
1560 value->location.address = addr;
1561 }
1562
1563 struct internalvar **
1564 deprecated_value_internalvar_hack (struct value *value)
1565 {
1566 return &value->location.internalvar;
1567 }
1568
1569 struct frame_id *
1570 deprecated_value_next_frame_id_hack (struct value *value)
1571 {
1572 gdb_assert (value->lval == lval_register);
1573 return &value->location.reg.next_frame_id;
1574 }
1575
1576 int *
1577 deprecated_value_regnum_hack (struct value *value)
1578 {
1579 gdb_assert (value->lval == lval_register);
1580 return &value->location.reg.regnum;
1581 }
1582
1583 int
1584 deprecated_value_modifiable (const struct value *value)
1585 {
1586 return value->modifiable;
1587 }
1588 \f
1589 /* Return a mark in the value chain. All values allocated after the
1590 mark is obtained (except for those released) are subject to being freed
1591 if a subsequent value_free_to_mark is passed the mark. */
1592 struct value *
1593 value_mark (void)
1594 {
1595 return all_values;
1596 }
1597
1598 /* Take a reference to VAL. VAL will not be deallocated until all
1599 references are released. */
1600
1601 void
1602 value_incref (struct value *val)
1603 {
1604 val->reference_count++;
1605 }
1606
1607 /* Release a reference to VAL, which was acquired with value_incref.
1608 This function is also called to deallocate values from the value
1609 chain. */
1610
1611 void
1612 value_free (struct value *val)
1613 {
1614 if (val)
1615 {
1616 gdb_assert (val->reference_count > 0);
1617 val->reference_count--;
1618 if (val->reference_count > 0)
1619 return;
1620
1621 /* If there's an associated parent value, drop our reference to
1622 it. */
1623 if (val->parent != NULL)
1624 value_free (val->parent);
1625
1626 if (VALUE_LVAL (val) == lval_computed)
1627 {
1628 const struct lval_funcs *funcs = val->location.computed.funcs;
1629
1630 if (funcs->free_closure)
1631 funcs->free_closure (val);
1632 }
1633 else if (VALUE_LVAL (val) == lval_xcallable)
1634 free_xmethod_worker (val->location.xm_worker);
1635
1636 xfree (val->contents);
1637 VEC_free (range_s, val->unavailable);
1638 }
1639 xfree (val);
1640 }
1641
1642 /* Free all values allocated since MARK was obtained by value_mark
1643 (except for those released). */
1644 void
1645 value_free_to_mark (const struct value *mark)
1646 {
1647 struct value *val;
1648 struct value *next;
1649
1650 for (val = all_values; val && val != mark; val = next)
1651 {
1652 next = val->next;
1653 val->released = 1;
1654 value_free (val);
1655 }
1656 all_values = val;
1657 }
1658
1659 /* Free all the values that have been allocated (except for those released).
1660 Call after each command, successful or not.
1661 In practice this is called before each command, which is sufficient. */
1662
1663 void
1664 free_all_values (void)
1665 {
1666 struct value *val;
1667 struct value *next;
1668
1669 for (val = all_values; val; val = next)
1670 {
1671 next = val->next;
1672 val->released = 1;
1673 value_free (val);
1674 }
1675
1676 all_values = 0;
1677 }
1678
1679 /* Frees all the elements in a chain of values. */
1680
1681 void
1682 free_value_chain (struct value *v)
1683 {
1684 struct value *next;
1685
1686 for (; v; v = next)
1687 {
1688 next = value_next (v);
1689 value_free (v);
1690 }
1691 }
1692
1693 /* Remove VAL from the chain all_values
1694 so it will not be freed automatically. */
1695
1696 void
1697 release_value (struct value *val)
1698 {
1699 struct value *v;
1700
1701 if (all_values == val)
1702 {
1703 all_values = val->next;
1704 val->next = NULL;
1705 val->released = 1;
1706 return;
1707 }
1708
1709 for (v = all_values; v; v = v->next)
1710 {
1711 if (v->next == val)
1712 {
1713 v->next = val->next;
1714 val->next = NULL;
1715 val->released = 1;
1716 break;
1717 }
1718 }
1719 }
1720
1721 /* If the value is not already released, release it.
1722 If the value is already released, increment its reference count.
1723 That is, this function ensures that the value is released from the
1724 value chain and that the caller owns a reference to it. */
1725
1726 void
1727 release_value_or_incref (struct value *val)
1728 {
1729 if (val->released)
1730 value_incref (val);
1731 else
1732 release_value (val);
1733 }
1734
1735 /* Release all values up to mark */
1736 struct value *
1737 value_release_to_mark (const struct value *mark)
1738 {
1739 struct value *val;
1740 struct value *next;
1741
1742 for (val = next = all_values; next; next = next->next)
1743 {
1744 if (next->next == mark)
1745 {
1746 all_values = next->next;
1747 next->next = NULL;
1748 return val;
1749 }
1750 next->released = 1;
1751 }
1752 all_values = 0;
1753 return val;
1754 }
1755
1756 /* Return a copy of the value ARG.
1757 It contains the same contents, for same memory address,
1758 but it's a different block of storage. */
1759
1760 struct value *
1761 value_copy (struct value *arg)
1762 {
1763 struct type *encl_type = value_enclosing_type (arg);
1764 struct value *val;
1765
1766 if (value_lazy (arg))
1767 val = allocate_value_lazy (encl_type);
1768 else
1769 val = allocate_value (encl_type);
1770 val->type = arg->type;
1771 VALUE_LVAL (val) = VALUE_LVAL (arg);
1772 val->location = arg->location;
1773 val->offset = arg->offset;
1774 val->bitpos = arg->bitpos;
1775 val->bitsize = arg->bitsize;
1776 val->lazy = arg->lazy;
1777 val->embedded_offset = value_embedded_offset (arg);
1778 val->pointed_to_offset = arg->pointed_to_offset;
1779 val->modifiable = arg->modifiable;
1780 if (!value_lazy (val))
1781 {
1782 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
1783 TYPE_LENGTH (value_enclosing_type (arg)));
1784
1785 }
1786 val->unavailable = VEC_copy (range_s, arg->unavailable);
1787 val->optimized_out = VEC_copy (range_s, arg->optimized_out);
1788 set_value_parent (val, arg->parent);
1789 if (VALUE_LVAL (val) == lval_computed)
1790 {
1791 const struct lval_funcs *funcs = val->location.computed.funcs;
1792
1793 if (funcs->copy_closure)
1794 val->location.computed.closure = funcs->copy_closure (val);
1795 }
1796 return val;
1797 }
1798
1799 /* Return a "const" and/or "volatile" qualified version of the value V.
1800 If CNST is true, then the returned value will be qualified with
1801 "const".
1802 if VOLTL is true, then the returned value will be qualified with
1803 "volatile". */
1804
1805 struct value *
1806 make_cv_value (int cnst, int voltl, struct value *v)
1807 {
1808 struct type *val_type = value_type (v);
1809 struct type *enclosing_type = value_enclosing_type (v);
1810 struct value *cv_val = value_copy (v);
1811
1812 deprecated_set_value_type (cv_val,
1813 make_cv_type (cnst, voltl, val_type, NULL));
1814 set_value_enclosing_type (cv_val,
1815 make_cv_type (cnst, voltl, enclosing_type, NULL));
1816
1817 return cv_val;
1818 }
1819
1820 /* Return a version of ARG that is non-lvalue. */
1821
1822 struct value *
1823 value_non_lval (struct value *arg)
1824 {
1825 if (VALUE_LVAL (arg) != not_lval)
1826 {
1827 struct type *enc_type = value_enclosing_type (arg);
1828 struct value *val = allocate_value (enc_type);
1829
1830 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1831 TYPE_LENGTH (enc_type));
1832 val->type = arg->type;
1833 set_value_embedded_offset (val, value_embedded_offset (arg));
1834 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1835 return val;
1836 }
1837 return arg;
1838 }
1839
1840 /* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */
1841
1842 void
1843 value_force_lval (struct value *v, CORE_ADDR addr)
1844 {
1845 gdb_assert (VALUE_LVAL (v) == not_lval);
1846
1847 write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v)));
1848 v->lval = lval_memory;
1849 v->location.address = addr;
1850 }
1851
1852 void
1853 set_value_component_location (struct value *component,
1854 const struct value *whole)
1855 {
1856 struct type *type;
1857
1858 gdb_assert (whole->lval != lval_xcallable);
1859
1860 if (whole->lval == lval_internalvar)
1861 VALUE_LVAL (component) = lval_internalvar_component;
1862 else
1863 VALUE_LVAL (component) = whole->lval;
1864
1865 component->location = whole->location;
1866 if (whole->lval == lval_computed)
1867 {
1868 const struct lval_funcs *funcs = whole->location.computed.funcs;
1869
1870 if (funcs->copy_closure)
1871 component->location.computed.closure = funcs->copy_closure (whole);
1872 }
1873
1874 /* If type has a dynamic resolved location property
1875 update it's value address. */
1876 type = value_type (whole);
1877 if (NULL != TYPE_DATA_LOCATION (type)
1878 && TYPE_DATA_LOCATION_KIND (type) == PROP_CONST)
1879 set_value_address (component, TYPE_DATA_LOCATION_ADDR (type));
1880 }
1881
1882 /* Access to the value history. */
1883
1884 /* Record a new value in the value history.
1885 Returns the absolute history index of the entry. */
1886
1887 int
1888 record_latest_value (struct value *val)
1889 {
1890 int i;
1891
1892 /* We don't want this value to have anything to do with the inferior anymore.
1893 In particular, "set $1 = 50" should not affect the variable from which
1894 the value was taken, and fast watchpoints should be able to assume that
1895 a value on the value history never changes. */
1896 if (value_lazy (val))
1897 value_fetch_lazy (val);
1898 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1899 from. This is a bit dubious, because then *&$1 does not just return $1
1900 but the current contents of that location. c'est la vie... */
1901 val->modifiable = 0;
1902
1903 /* The value may have already been released, in which case we're adding a
1904 new reference for its entry in the history. That is why we call
1905 release_value_or_incref here instead of release_value. */
1906 release_value_or_incref (val);
1907
1908 /* Here we treat value_history_count as origin-zero
1909 and applying to the value being stored now. */
1910
1911 i = value_history_count % VALUE_HISTORY_CHUNK;
1912 if (i == 0)
1913 {
1914 struct value_history_chunk *newobj = XCNEW (struct value_history_chunk);
1915
1916 newobj->next = value_history_chain;
1917 value_history_chain = newobj;
1918 }
1919
1920 value_history_chain->values[i] = val;
1921
1922 /* Now we regard value_history_count as origin-one
1923 and applying to the value just stored. */
1924
1925 return ++value_history_count;
1926 }
1927
1928 /* Return a copy of the value in the history with sequence number NUM. */
1929
1930 struct value *
1931 access_value_history (int num)
1932 {
1933 struct value_history_chunk *chunk;
1934 int i;
1935 int absnum = num;
1936
1937 if (absnum <= 0)
1938 absnum += value_history_count;
1939
1940 if (absnum <= 0)
1941 {
1942 if (num == 0)
1943 error (_("The history is empty."));
1944 else if (num == 1)
1945 error (_("There is only one value in the history."));
1946 else
1947 error (_("History does not go back to $$%d."), -num);
1948 }
1949 if (absnum > value_history_count)
1950 error (_("History has not yet reached $%d."), absnum);
1951
1952 absnum--;
1953
1954 /* Now absnum is always absolute and origin zero. */
1955
1956 chunk = value_history_chain;
1957 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1958 - absnum / VALUE_HISTORY_CHUNK;
1959 i > 0; i--)
1960 chunk = chunk->next;
1961
1962 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1963 }
1964
1965 static void
1966 show_values (char *num_exp, int from_tty)
1967 {
1968 int i;
1969 struct value *val;
1970 static int num = 1;
1971
1972 if (num_exp)
1973 {
1974 /* "show values +" should print from the stored position.
1975 "show values <exp>" should print around value number <exp>. */
1976 if (num_exp[0] != '+' || num_exp[1] != '\0')
1977 num = parse_and_eval_long (num_exp) - 5;
1978 }
1979 else
1980 {
1981 /* "show values" means print the last 10 values. */
1982 num = value_history_count - 9;
1983 }
1984
1985 if (num <= 0)
1986 num = 1;
1987
1988 for (i = num; i < num + 10 && i <= value_history_count; i++)
1989 {
1990 struct value_print_options opts;
1991
1992 val = access_value_history (i);
1993 printf_filtered (("$%d = "), i);
1994 get_user_print_options (&opts);
1995 value_print (val, gdb_stdout, &opts);
1996 printf_filtered (("\n"));
1997 }
1998
1999 /* The next "show values +" should start after what we just printed. */
2000 num += 10;
2001
2002 /* Hitting just return after this command should do the same thing as
2003 "show values +". If num_exp is null, this is unnecessary, since
2004 "show values +" is not useful after "show values". */
2005 if (from_tty && num_exp)
2006 set_repeat_arguments ("+");
2007 }
2008 \f
2009 enum internalvar_kind
2010 {
2011 /* The internal variable is empty. */
2012 INTERNALVAR_VOID,
2013
2014 /* The value of the internal variable is provided directly as
2015 a GDB value object. */
2016 INTERNALVAR_VALUE,
2017
2018 /* A fresh value is computed via a call-back routine on every
2019 access to the internal variable. */
2020 INTERNALVAR_MAKE_VALUE,
2021
2022 /* The internal variable holds a GDB internal convenience function. */
2023 INTERNALVAR_FUNCTION,
2024
2025 /* The variable holds an integer value. */
2026 INTERNALVAR_INTEGER,
2027
2028 /* The variable holds a GDB-provided string. */
2029 INTERNALVAR_STRING,
2030 };
2031
2032 union internalvar_data
2033 {
2034 /* A value object used with INTERNALVAR_VALUE. */
2035 struct value *value;
2036
2037 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
2038 struct
2039 {
2040 /* The functions to call. */
2041 const struct internalvar_funcs *functions;
2042
2043 /* The function's user-data. */
2044 void *data;
2045 } make_value;
2046
2047 /* The internal function used with INTERNALVAR_FUNCTION. */
2048 struct
2049 {
2050 struct internal_function *function;
2051 /* True if this is the canonical name for the function. */
2052 int canonical;
2053 } fn;
2054
2055 /* An integer value used with INTERNALVAR_INTEGER. */
2056 struct
2057 {
2058 /* If type is non-NULL, it will be used as the type to generate
2059 a value for this internal variable. If type is NULL, a default
2060 integer type for the architecture is used. */
2061 struct type *type;
2062 LONGEST val;
2063 } integer;
2064
2065 /* A string value used with INTERNALVAR_STRING. */
2066 char *string;
2067 };
2068
2069 /* Internal variables. These are variables within the debugger
2070 that hold values assigned by debugger commands.
2071 The user refers to them with a '$' prefix
2072 that does not appear in the variable names stored internally. */
2073
2074 struct internalvar
2075 {
2076 struct internalvar *next;
2077 char *name;
2078
2079 /* We support various different kinds of content of an internal variable.
2080 enum internalvar_kind specifies the kind, and union internalvar_data
2081 provides the data associated with this particular kind. */
2082
2083 enum internalvar_kind kind;
2084
2085 union internalvar_data u;
2086 };
2087
2088 static struct internalvar *internalvars;
2089
2090 /* If the variable does not already exist create it and give it the
2091 value given. If no value is given then the default is zero. */
2092 static void
2093 init_if_undefined_command (char* args, int from_tty)
2094 {
2095 struct internalvar* intvar;
2096
2097 /* Parse the expression - this is taken from set_command(). */
2098 expression_up expr = parse_expression (args);
2099
2100 /* Validate the expression.
2101 Was the expression an assignment?
2102 Or even an expression at all? */
2103 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
2104 error (_("Init-if-undefined requires an assignment expression."));
2105
2106 /* Extract the variable from the parsed expression.
2107 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
2108 if (expr->elts[1].opcode != OP_INTERNALVAR)
2109 error (_("The first parameter to init-if-undefined "
2110 "should be a GDB variable."));
2111 intvar = expr->elts[2].internalvar;
2112
2113 /* Only evaluate the expression if the lvalue is void.
2114 This may still fail if the expresssion is invalid. */
2115 if (intvar->kind == INTERNALVAR_VOID)
2116 evaluate_expression (expr.get ());
2117 }
2118
2119
2120 /* Look up an internal variable with name NAME. NAME should not
2121 normally include a dollar sign.
2122
2123 If the specified internal variable does not exist,
2124 the return value is NULL. */
2125
2126 struct internalvar *
2127 lookup_only_internalvar (const char *name)
2128 {
2129 struct internalvar *var;
2130
2131 for (var = internalvars; var; var = var->next)
2132 if (strcmp (var->name, name) == 0)
2133 return var;
2134
2135 return NULL;
2136 }
2137
2138 /* Complete NAME by comparing it to the names of internal
2139 variables. */
2140
2141 void
2142 complete_internalvar (completion_tracker &tracker, const char *name)
2143 {
2144 struct internalvar *var;
2145 int len;
2146
2147 len = strlen (name);
2148
2149 for (var = internalvars; var; var = var->next)
2150 if (strncmp (var->name, name, len) == 0)
2151 {
2152 gdb::unique_xmalloc_ptr<char> copy (xstrdup (var->name));
2153
2154 tracker.add_completion (std::move (copy));
2155 }
2156 }
2157
2158 /* Create an internal variable with name NAME and with a void value.
2159 NAME should not normally include a dollar sign. */
2160
2161 struct internalvar *
2162 create_internalvar (const char *name)
2163 {
2164 struct internalvar *var = XNEW (struct internalvar);
2165
2166 var->name = concat (name, (char *)NULL);
2167 var->kind = INTERNALVAR_VOID;
2168 var->next = internalvars;
2169 internalvars = var;
2170 return var;
2171 }
2172
2173 /* Create an internal variable with name NAME and register FUN as the
2174 function that value_of_internalvar uses to create a value whenever
2175 this variable is referenced. NAME should not normally include a
2176 dollar sign. DATA is passed uninterpreted to FUN when it is
2177 called. CLEANUP, if not NULL, is called when the internal variable
2178 is destroyed. It is passed DATA as its only argument. */
2179
2180 struct internalvar *
2181 create_internalvar_type_lazy (const char *name,
2182 const struct internalvar_funcs *funcs,
2183 void *data)
2184 {
2185 struct internalvar *var = create_internalvar (name);
2186
2187 var->kind = INTERNALVAR_MAKE_VALUE;
2188 var->u.make_value.functions = funcs;
2189 var->u.make_value.data = data;
2190 return var;
2191 }
2192
2193 /* See documentation in value.h. */
2194
2195 int
2196 compile_internalvar_to_ax (struct internalvar *var,
2197 struct agent_expr *expr,
2198 struct axs_value *value)
2199 {
2200 if (var->kind != INTERNALVAR_MAKE_VALUE
2201 || var->u.make_value.functions->compile_to_ax == NULL)
2202 return 0;
2203
2204 var->u.make_value.functions->compile_to_ax (var, expr, value,
2205 var->u.make_value.data);
2206 return 1;
2207 }
2208
2209 /* Look up an internal variable with name NAME. NAME should not
2210 normally include a dollar sign.
2211
2212 If the specified internal variable does not exist,
2213 one is created, with a void value. */
2214
2215 struct internalvar *
2216 lookup_internalvar (const char *name)
2217 {
2218 struct internalvar *var;
2219
2220 var = lookup_only_internalvar (name);
2221 if (var)
2222 return var;
2223
2224 return create_internalvar (name);
2225 }
2226
2227 /* Return current value of internal variable VAR. For variables that
2228 are not inherently typed, use a value type appropriate for GDBARCH. */
2229
2230 struct value *
2231 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
2232 {
2233 struct value *val;
2234 struct trace_state_variable *tsv;
2235
2236 /* If there is a trace state variable of the same name, assume that
2237 is what we really want to see. */
2238 tsv = find_trace_state_variable (var->name);
2239 if (tsv)
2240 {
2241 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2242 &(tsv->value));
2243 if (tsv->value_known)
2244 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2245 tsv->value);
2246 else
2247 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2248 return val;
2249 }
2250
2251 switch (var->kind)
2252 {
2253 case INTERNALVAR_VOID:
2254 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2255 break;
2256
2257 case INTERNALVAR_FUNCTION:
2258 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2259 break;
2260
2261 case INTERNALVAR_INTEGER:
2262 if (!var->u.integer.type)
2263 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
2264 var->u.integer.val);
2265 else
2266 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2267 break;
2268
2269 case INTERNALVAR_STRING:
2270 val = value_cstring (var->u.string, strlen (var->u.string),
2271 builtin_type (gdbarch)->builtin_char);
2272 break;
2273
2274 case INTERNALVAR_VALUE:
2275 val = value_copy (var->u.value);
2276 if (value_lazy (val))
2277 value_fetch_lazy (val);
2278 break;
2279
2280 case INTERNALVAR_MAKE_VALUE:
2281 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2282 var->u.make_value.data);
2283 break;
2284
2285 default:
2286 internal_error (__FILE__, __LINE__, _("bad kind"));
2287 }
2288
2289 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2290 on this value go back to affect the original internal variable.
2291
2292 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2293 no underlying modifyable state in the internal variable.
2294
2295 Likewise, if the variable's value is a computed lvalue, we want
2296 references to it to produce another computed lvalue, where
2297 references and assignments actually operate through the
2298 computed value's functions.
2299
2300 This means that internal variables with computed values
2301 behave a little differently from other internal variables:
2302 assignments to them don't just replace the previous value
2303 altogether. At the moment, this seems like the behavior we
2304 want. */
2305
2306 if (var->kind != INTERNALVAR_MAKE_VALUE
2307 && val->lval != lval_computed)
2308 {
2309 VALUE_LVAL (val) = lval_internalvar;
2310 VALUE_INTERNALVAR (val) = var;
2311 }
2312
2313 return val;
2314 }
2315
2316 int
2317 get_internalvar_integer (struct internalvar *var, LONGEST *result)
2318 {
2319 if (var->kind == INTERNALVAR_INTEGER)
2320 {
2321 *result = var->u.integer.val;
2322 return 1;
2323 }
2324
2325 if (var->kind == INTERNALVAR_VALUE)
2326 {
2327 struct type *type = check_typedef (value_type (var->u.value));
2328
2329 if (TYPE_CODE (type) == TYPE_CODE_INT)
2330 {
2331 *result = value_as_long (var->u.value);
2332 return 1;
2333 }
2334 }
2335
2336 return 0;
2337 }
2338
2339 static int
2340 get_internalvar_function (struct internalvar *var,
2341 struct internal_function **result)
2342 {
2343 switch (var->kind)
2344 {
2345 case INTERNALVAR_FUNCTION:
2346 *result = var->u.fn.function;
2347 return 1;
2348
2349 default:
2350 return 0;
2351 }
2352 }
2353
2354 void
2355 set_internalvar_component (struct internalvar *var,
2356 LONGEST offset, LONGEST bitpos,
2357 LONGEST bitsize, struct value *newval)
2358 {
2359 gdb_byte *addr;
2360 struct gdbarch *arch;
2361 int unit_size;
2362
2363 switch (var->kind)
2364 {
2365 case INTERNALVAR_VALUE:
2366 addr = value_contents_writeable (var->u.value);
2367 arch = get_value_arch (var->u.value);
2368 unit_size = gdbarch_addressable_memory_unit_size (arch);
2369
2370 if (bitsize)
2371 modify_field (value_type (var->u.value), addr + offset,
2372 value_as_long (newval), bitpos, bitsize);
2373 else
2374 memcpy (addr + offset * unit_size, value_contents (newval),
2375 TYPE_LENGTH (value_type (newval)));
2376 break;
2377
2378 default:
2379 /* We can never get a component of any other kind. */
2380 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
2381 }
2382 }
2383
2384 void
2385 set_internalvar (struct internalvar *var, struct value *val)
2386 {
2387 enum internalvar_kind new_kind;
2388 union internalvar_data new_data = { 0 };
2389
2390 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
2391 error (_("Cannot overwrite convenience function %s"), var->name);
2392
2393 /* Prepare new contents. */
2394 switch (TYPE_CODE (check_typedef (value_type (val))))
2395 {
2396 case TYPE_CODE_VOID:
2397 new_kind = INTERNALVAR_VOID;
2398 break;
2399
2400 case TYPE_CODE_INTERNAL_FUNCTION:
2401 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2402 new_kind = INTERNALVAR_FUNCTION;
2403 get_internalvar_function (VALUE_INTERNALVAR (val),
2404 &new_data.fn.function);
2405 /* Copies created here are never canonical. */
2406 break;
2407
2408 default:
2409 new_kind = INTERNALVAR_VALUE;
2410 new_data.value = value_copy (val);
2411 new_data.value->modifiable = 1;
2412
2413 /* Force the value to be fetched from the target now, to avoid problems
2414 later when this internalvar is referenced and the target is gone or
2415 has changed. */
2416 if (value_lazy (new_data.value))
2417 value_fetch_lazy (new_data.value);
2418
2419 /* Release the value from the value chain to prevent it from being
2420 deleted by free_all_values. From here on this function should not
2421 call error () until new_data is installed into the var->u to avoid
2422 leaking memory. */
2423 release_value (new_data.value);
2424
2425 /* Internal variables which are created from values with a dynamic
2426 location don't need the location property of the origin anymore.
2427 The resolved dynamic location is used prior then any other address
2428 when accessing the value.
2429 If we keep it, we would still refer to the origin value.
2430 Remove the location property in case it exist. */
2431 remove_dyn_prop (DYN_PROP_DATA_LOCATION, value_type (new_data.value));
2432
2433 break;
2434 }
2435
2436 /* Clean up old contents. */
2437 clear_internalvar (var);
2438
2439 /* Switch over. */
2440 var->kind = new_kind;
2441 var->u = new_data;
2442 /* End code which must not call error(). */
2443 }
2444
2445 void
2446 set_internalvar_integer (struct internalvar *var, LONGEST l)
2447 {
2448 /* Clean up old contents. */
2449 clear_internalvar (var);
2450
2451 var->kind = INTERNALVAR_INTEGER;
2452 var->u.integer.type = NULL;
2453 var->u.integer.val = l;
2454 }
2455
2456 void
2457 set_internalvar_string (struct internalvar *var, const char *string)
2458 {
2459 /* Clean up old contents. */
2460 clear_internalvar (var);
2461
2462 var->kind = INTERNALVAR_STRING;
2463 var->u.string = xstrdup (string);
2464 }
2465
2466 static void
2467 set_internalvar_function (struct internalvar *var, struct internal_function *f)
2468 {
2469 /* Clean up old contents. */
2470 clear_internalvar (var);
2471
2472 var->kind = INTERNALVAR_FUNCTION;
2473 var->u.fn.function = f;
2474 var->u.fn.canonical = 1;
2475 /* Variables installed here are always the canonical version. */
2476 }
2477
2478 void
2479 clear_internalvar (struct internalvar *var)
2480 {
2481 /* Clean up old contents. */
2482 switch (var->kind)
2483 {
2484 case INTERNALVAR_VALUE:
2485 value_free (var->u.value);
2486 break;
2487
2488 case INTERNALVAR_STRING:
2489 xfree (var->u.string);
2490 break;
2491
2492 case INTERNALVAR_MAKE_VALUE:
2493 if (var->u.make_value.functions->destroy != NULL)
2494 var->u.make_value.functions->destroy (var->u.make_value.data);
2495 break;
2496
2497 default:
2498 break;
2499 }
2500
2501 /* Reset to void kind. */
2502 var->kind = INTERNALVAR_VOID;
2503 }
2504
2505 char *
2506 internalvar_name (const struct internalvar *var)
2507 {
2508 return var->name;
2509 }
2510
2511 static struct internal_function *
2512 create_internal_function (const char *name,
2513 internal_function_fn handler, void *cookie)
2514 {
2515 struct internal_function *ifn = XNEW (struct internal_function);
2516
2517 ifn->name = xstrdup (name);
2518 ifn->handler = handler;
2519 ifn->cookie = cookie;
2520 return ifn;
2521 }
2522
2523 char *
2524 value_internal_function_name (struct value *val)
2525 {
2526 struct internal_function *ifn;
2527 int result;
2528
2529 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2530 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2531 gdb_assert (result);
2532
2533 return ifn->name;
2534 }
2535
2536 struct value *
2537 call_internal_function (struct gdbarch *gdbarch,
2538 const struct language_defn *language,
2539 struct value *func, int argc, struct value **argv)
2540 {
2541 struct internal_function *ifn;
2542 int result;
2543
2544 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2545 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2546 gdb_assert (result);
2547
2548 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
2549 }
2550
2551 /* The 'function' command. This does nothing -- it is just a
2552 placeholder to let "help function NAME" work. This is also used as
2553 the implementation of the sub-command that is created when
2554 registering an internal function. */
2555 static void
2556 function_command (const char *command, int from_tty)
2557 {
2558 /* Do nothing. */
2559 }
2560
2561 /* Clean up if an internal function's command is destroyed. */
2562 static void
2563 function_destroyer (struct cmd_list_element *self, void *ignore)
2564 {
2565 xfree ((char *) self->name);
2566 xfree ((char *) self->doc);
2567 }
2568
2569 /* Add a new internal function. NAME is the name of the function; DOC
2570 is a documentation string describing the function. HANDLER is
2571 called when the function is invoked. COOKIE is an arbitrary
2572 pointer which is passed to HANDLER and is intended for "user
2573 data". */
2574 void
2575 add_internal_function (const char *name, const char *doc,
2576 internal_function_fn handler, void *cookie)
2577 {
2578 struct cmd_list_element *cmd;
2579 struct internal_function *ifn;
2580 struct internalvar *var = lookup_internalvar (name);
2581
2582 ifn = create_internal_function (name, handler, cookie);
2583 set_internalvar_function (var, ifn);
2584
2585 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2586 &functionlist);
2587 cmd->destroyer = function_destroyer;
2588 }
2589
2590 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2591 prevent cycles / duplicates. */
2592
2593 void
2594 preserve_one_value (struct value *value, struct objfile *objfile,
2595 htab_t copied_types)
2596 {
2597 if (TYPE_OBJFILE (value->type) == objfile)
2598 value->type = copy_type_recursive (objfile, value->type, copied_types);
2599
2600 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2601 value->enclosing_type = copy_type_recursive (objfile,
2602 value->enclosing_type,
2603 copied_types);
2604 }
2605
2606 /* Likewise for internal variable VAR. */
2607
2608 static void
2609 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2610 htab_t copied_types)
2611 {
2612 switch (var->kind)
2613 {
2614 case INTERNALVAR_INTEGER:
2615 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2616 var->u.integer.type
2617 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2618 break;
2619
2620 case INTERNALVAR_VALUE:
2621 preserve_one_value (var->u.value, objfile, copied_types);
2622 break;
2623 }
2624 }
2625
2626 /* Update the internal variables and value history when OBJFILE is
2627 discarded; we must copy the types out of the objfile. New global types
2628 will be created for every convenience variable which currently points to
2629 this objfile's types, and the convenience variables will be adjusted to
2630 use the new global types. */
2631
2632 void
2633 preserve_values (struct objfile *objfile)
2634 {
2635 htab_t copied_types;
2636 struct value_history_chunk *cur;
2637 struct internalvar *var;
2638 int i;
2639
2640 /* Create the hash table. We allocate on the objfile's obstack, since
2641 it is soon to be deleted. */
2642 copied_types = create_copied_types_hash (objfile);
2643
2644 for (cur = value_history_chain; cur; cur = cur->next)
2645 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2646 if (cur->values[i])
2647 preserve_one_value (cur->values[i], objfile, copied_types);
2648
2649 for (var = internalvars; var; var = var->next)
2650 preserve_one_internalvar (var, objfile, copied_types);
2651
2652 preserve_ext_lang_values (objfile, copied_types);
2653
2654 htab_delete (copied_types);
2655 }
2656
2657 static void
2658 show_convenience (const char *ignore, int from_tty)
2659 {
2660 struct gdbarch *gdbarch = get_current_arch ();
2661 struct internalvar *var;
2662 int varseen = 0;
2663 struct value_print_options opts;
2664
2665 get_user_print_options (&opts);
2666 for (var = internalvars; var; var = var->next)
2667 {
2668
2669 if (!varseen)
2670 {
2671 varseen = 1;
2672 }
2673 printf_filtered (("$%s = "), var->name);
2674
2675 TRY
2676 {
2677 struct value *val;
2678
2679 val = value_of_internalvar (gdbarch, var);
2680 value_print (val, gdb_stdout, &opts);
2681 }
2682 CATCH (ex, RETURN_MASK_ERROR)
2683 {
2684 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2685 }
2686 END_CATCH
2687
2688 printf_filtered (("\n"));
2689 }
2690 if (!varseen)
2691 {
2692 /* This text does not mention convenience functions on purpose.
2693 The user can't create them except via Python, and if Python support
2694 is installed this message will never be printed ($_streq will
2695 exist). */
2696 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2697 "Convenience variables have "
2698 "names starting with \"$\";\n"
2699 "use \"set\" as in \"set "
2700 "$foo = 5\" to define them.\n"));
2701 }
2702 }
2703 \f
2704 /* Return the TYPE_CODE_XMETHOD value corresponding to WORKER. */
2705
2706 struct value *
2707 value_of_xmethod (struct xmethod_worker *worker)
2708 {
2709 if (worker->value == NULL)
2710 {
2711 struct value *v;
2712
2713 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2714 v->lval = lval_xcallable;
2715 v->location.xm_worker = worker;
2716 v->modifiable = 0;
2717 worker->value = v;
2718 }
2719
2720 return worker->value;
2721 }
2722
2723 /* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */
2724
2725 struct type *
2726 result_type_of_xmethod (struct value *method, int argc, struct value **argv)
2727 {
2728 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2729 && method->lval == lval_xcallable && argc > 0);
2730
2731 return get_xmethod_result_type (method->location.xm_worker,
2732 argv[0], argv + 1, argc - 1);
2733 }
2734
2735 /* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2736
2737 struct value *
2738 call_xmethod (struct value *method, int argc, struct value **argv)
2739 {
2740 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2741 && method->lval == lval_xcallable && argc > 0);
2742
2743 return invoke_xmethod (method->location.xm_worker,
2744 argv[0], argv + 1, argc - 1);
2745 }
2746 \f
2747 /* Extract a value as a C number (either long or double).
2748 Knows how to convert fixed values to double, or
2749 floating values to long.
2750 Does not deallocate the value. */
2751
2752 LONGEST
2753 value_as_long (struct value *val)
2754 {
2755 /* This coerces arrays and functions, which is necessary (e.g.
2756 in disassemble_command). It also dereferences references, which
2757 I suspect is the most logical thing to do. */
2758 val = coerce_array (val);
2759 return unpack_long (value_type (val), value_contents (val));
2760 }
2761
2762 /* Extract a value as a C pointer. Does not deallocate the value.
2763 Note that val's type may not actually be a pointer; value_as_long
2764 handles all the cases. */
2765 CORE_ADDR
2766 value_as_address (struct value *val)
2767 {
2768 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2769
2770 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2771 whether we want this to be true eventually. */
2772 #if 0
2773 /* gdbarch_addr_bits_remove is wrong if we are being called for a
2774 non-address (e.g. argument to "signal", "info break", etc.), or
2775 for pointers to char, in which the low bits *are* significant. */
2776 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
2777 #else
2778
2779 /* There are several targets (IA-64, PowerPC, and others) which
2780 don't represent pointers to functions as simply the address of
2781 the function's entry point. For example, on the IA-64, a
2782 function pointer points to a two-word descriptor, generated by
2783 the linker, which contains the function's entry point, and the
2784 value the IA-64 "global pointer" register should have --- to
2785 support position-independent code. The linker generates
2786 descriptors only for those functions whose addresses are taken.
2787
2788 On such targets, it's difficult for GDB to convert an arbitrary
2789 function address into a function pointer; it has to either find
2790 an existing descriptor for that function, or call malloc and
2791 build its own. On some targets, it is impossible for GDB to
2792 build a descriptor at all: the descriptor must contain a jump
2793 instruction; data memory cannot be executed; and code memory
2794 cannot be modified.
2795
2796 Upon entry to this function, if VAL is a value of type `function'
2797 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
2798 value_address (val) is the address of the function. This is what
2799 you'll get if you evaluate an expression like `main'. The call
2800 to COERCE_ARRAY below actually does all the usual unary
2801 conversions, which includes converting values of type `function'
2802 to `pointer to function'. This is the challenging conversion
2803 discussed above. Then, `unpack_long' will convert that pointer
2804 back into an address.
2805
2806 So, suppose the user types `disassemble foo' on an architecture
2807 with a strange function pointer representation, on which GDB
2808 cannot build its own descriptors, and suppose further that `foo'
2809 has no linker-built descriptor. The address->pointer conversion
2810 will signal an error and prevent the command from running, even
2811 though the next step would have been to convert the pointer
2812 directly back into the same address.
2813
2814 The following shortcut avoids this whole mess. If VAL is a
2815 function, just return its address directly. */
2816 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2817 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
2818 return value_address (val);
2819
2820 val = coerce_array (val);
2821
2822 /* Some architectures (e.g. Harvard), map instruction and data
2823 addresses onto a single large unified address space. For
2824 instance: An architecture may consider a large integer in the
2825 range 0x10000000 .. 0x1000ffff to already represent a data
2826 addresses (hence not need a pointer to address conversion) while
2827 a small integer would still need to be converted integer to
2828 pointer to address. Just assume such architectures handle all
2829 integer conversions in a single function. */
2830
2831 /* JimB writes:
2832
2833 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2834 must admonish GDB hackers to make sure its behavior matches the
2835 compiler's, whenever possible.
2836
2837 In general, I think GDB should evaluate expressions the same way
2838 the compiler does. When the user copies an expression out of
2839 their source code and hands it to a `print' command, they should
2840 get the same value the compiler would have computed. Any
2841 deviation from this rule can cause major confusion and annoyance,
2842 and needs to be justified carefully. In other words, GDB doesn't
2843 really have the freedom to do these conversions in clever and
2844 useful ways.
2845
2846 AndrewC pointed out that users aren't complaining about how GDB
2847 casts integers to pointers; they are complaining that they can't
2848 take an address from a disassembly listing and give it to `x/i'.
2849 This is certainly important.
2850
2851 Adding an architecture method like integer_to_address() certainly
2852 makes it possible for GDB to "get it right" in all circumstances
2853 --- the target has complete control over how things get done, so
2854 people can Do The Right Thing for their target without breaking
2855 anyone else. The standard doesn't specify how integers get
2856 converted to pointers; usually, the ABI doesn't either, but
2857 ABI-specific code is a more reasonable place to handle it. */
2858
2859 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2860 && !TYPE_IS_REFERENCE (value_type (val))
2861 && gdbarch_integer_to_address_p (gdbarch))
2862 return gdbarch_integer_to_address (gdbarch, value_type (val),
2863 value_contents (val));
2864
2865 return unpack_long (value_type (val), value_contents (val));
2866 #endif
2867 }
2868 \f
2869 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2870 as a long, or as a double, assuming the raw data is described
2871 by type TYPE. Knows how to convert different sizes of values
2872 and can convert between fixed and floating point. We don't assume
2873 any alignment for the raw data. Return value is in host byte order.
2874
2875 If you want functions and arrays to be coerced to pointers, and
2876 references to be dereferenced, call value_as_long() instead.
2877
2878 C++: It is assumed that the front-end has taken care of
2879 all matters concerning pointers to members. A pointer
2880 to member which reaches here is considered to be equivalent
2881 to an INT (or some size). After all, it is only an offset. */
2882
2883 LONGEST
2884 unpack_long (struct type *type, const gdb_byte *valaddr)
2885 {
2886 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2887 enum type_code code = TYPE_CODE (type);
2888 int len = TYPE_LENGTH (type);
2889 int nosign = TYPE_UNSIGNED (type);
2890
2891 switch (code)
2892 {
2893 case TYPE_CODE_TYPEDEF:
2894 return unpack_long (check_typedef (type), valaddr);
2895 case TYPE_CODE_ENUM:
2896 case TYPE_CODE_FLAGS:
2897 case TYPE_CODE_BOOL:
2898 case TYPE_CODE_INT:
2899 case TYPE_CODE_CHAR:
2900 case TYPE_CODE_RANGE:
2901 case TYPE_CODE_MEMBERPTR:
2902 if (nosign)
2903 return extract_unsigned_integer (valaddr, len, byte_order);
2904 else
2905 return extract_signed_integer (valaddr, len, byte_order);
2906
2907 case TYPE_CODE_FLT:
2908 case TYPE_CODE_DECFLOAT:
2909 return target_float_to_longest (valaddr, type);
2910
2911 case TYPE_CODE_PTR:
2912 case TYPE_CODE_REF:
2913 case TYPE_CODE_RVALUE_REF:
2914 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2915 whether we want this to be true eventually. */
2916 return extract_typed_address (valaddr, type);
2917
2918 default:
2919 error (_("Value can't be converted to integer."));
2920 }
2921 return 0; /* Placate lint. */
2922 }
2923
2924 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2925 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2926 We don't assume any alignment for the raw data. Return value is in
2927 host byte order.
2928
2929 If you want functions and arrays to be coerced to pointers, and
2930 references to be dereferenced, call value_as_address() instead.
2931
2932 C++: It is assumed that the front-end has taken care of
2933 all matters concerning pointers to members. A pointer
2934 to member which reaches here is considered to be equivalent
2935 to an INT (or some size). After all, it is only an offset. */
2936
2937 CORE_ADDR
2938 unpack_pointer (struct type *type, const gdb_byte *valaddr)
2939 {
2940 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2941 whether we want this to be true eventually. */
2942 return unpack_long (type, valaddr);
2943 }
2944
2945 bool
2946 is_floating_value (struct value *val)
2947 {
2948 struct type *type = check_typedef (value_type (val));
2949
2950 if (is_floating_type (type))
2951 {
2952 if (!target_float_is_valid (value_contents (val), type))
2953 error (_("Invalid floating value found in program."));
2954 return true;
2955 }
2956
2957 return false;
2958 }
2959
2960 \f
2961 /* Get the value of the FIELDNO'th field (which must be static) of
2962 TYPE. */
2963
2964 struct value *
2965 value_static_field (struct type *type, int fieldno)
2966 {
2967 struct value *retval;
2968
2969 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
2970 {
2971 case FIELD_LOC_KIND_PHYSADDR:
2972 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2973 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
2974 break;
2975 case FIELD_LOC_KIND_PHYSNAME:
2976 {
2977 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2978 /* TYPE_FIELD_NAME (type, fieldno); */
2979 struct block_symbol sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
2980
2981 if (sym.symbol == NULL)
2982 {
2983 /* With some compilers, e.g. HP aCC, static data members are
2984 reported as non-debuggable symbols. */
2985 struct bound_minimal_symbol msym
2986 = lookup_minimal_symbol (phys_name, NULL, NULL);
2987
2988 if (!msym.minsym)
2989 return allocate_optimized_out_value (type);
2990 else
2991 {
2992 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2993 BMSYMBOL_VALUE_ADDRESS (msym));
2994 }
2995 }
2996 else
2997 retval = value_of_variable (sym.symbol, sym.block);
2998 break;
2999 }
3000 default:
3001 gdb_assert_not_reached ("unexpected field location kind");
3002 }
3003
3004 return retval;
3005 }
3006
3007 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
3008 You have to be careful here, since the size of the data area for the value
3009 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
3010 than the old enclosing type, you have to allocate more space for the
3011 data. */
3012
3013 void
3014 set_value_enclosing_type (struct value *val, struct type *new_encl_type)
3015 {
3016 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
3017 {
3018 check_type_length_before_alloc (new_encl_type);
3019 val->contents
3020 = (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
3021 }
3022
3023 val->enclosing_type = new_encl_type;
3024 }
3025
3026 /* Given a value ARG1 (offset by OFFSET bytes)
3027 of a struct or union type ARG_TYPE,
3028 extract and return the value of one of its (non-static) fields.
3029 FIELDNO says which field. */
3030
3031 struct value *
3032 value_primitive_field (struct value *arg1, LONGEST offset,
3033 int fieldno, struct type *arg_type)
3034 {
3035 struct value *v;
3036 struct type *type;
3037 struct gdbarch *arch = get_value_arch (arg1);
3038 int unit_size = gdbarch_addressable_memory_unit_size (arch);
3039
3040 arg_type = check_typedef (arg_type);
3041 type = TYPE_FIELD_TYPE (arg_type, fieldno);
3042
3043 /* Call check_typedef on our type to make sure that, if TYPE
3044 is a TYPE_CODE_TYPEDEF, its length is set to the length
3045 of the target type instead of zero. However, we do not
3046 replace the typedef type by the target type, because we want
3047 to keep the typedef in order to be able to print the type
3048 description correctly. */
3049 check_typedef (type);
3050
3051 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
3052 {
3053 /* Handle packed fields.
3054
3055 Create a new value for the bitfield, with bitpos and bitsize
3056 set. If possible, arrange offset and bitpos so that we can
3057 do a single aligned read of the size of the containing type.
3058 Otherwise, adjust offset to the byte containing the first
3059 bit. Assume that the address, offset, and embedded offset
3060 are sufficiently aligned. */
3061
3062 LONGEST bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
3063 LONGEST container_bitsize = TYPE_LENGTH (type) * 8;
3064
3065 v = allocate_value_lazy (type);
3066 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
3067 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
3068 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
3069 v->bitpos = bitpos % container_bitsize;
3070 else
3071 v->bitpos = bitpos % 8;
3072 v->offset = (value_embedded_offset (arg1)
3073 + offset
3074 + (bitpos - v->bitpos) / 8);
3075 set_value_parent (v, arg1);
3076 if (!value_lazy (arg1))
3077 value_fetch_lazy (v);
3078 }
3079 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
3080 {
3081 /* This field is actually a base subobject, so preserve the
3082 entire object's contents for later references to virtual
3083 bases, etc. */
3084 LONGEST boffset;
3085
3086 /* Lazy register values with offsets are not supported. */
3087 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3088 value_fetch_lazy (arg1);
3089
3090 /* We special case virtual inheritance here because this
3091 requires access to the contents, which we would rather avoid
3092 for references to ordinary fields of unavailable values. */
3093 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
3094 boffset = baseclass_offset (arg_type, fieldno,
3095 value_contents (arg1),
3096 value_embedded_offset (arg1),
3097 value_address (arg1),
3098 arg1);
3099 else
3100 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
3101
3102 if (value_lazy (arg1))
3103 v = allocate_value_lazy (value_enclosing_type (arg1));
3104 else
3105 {
3106 v = allocate_value (value_enclosing_type (arg1));
3107 value_contents_copy_raw (v, 0, arg1, 0,
3108 TYPE_LENGTH (value_enclosing_type (arg1)));
3109 }
3110 v->type = type;
3111 v->offset = value_offset (arg1);
3112 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
3113 }
3114 else if (NULL != TYPE_DATA_LOCATION (type))
3115 {
3116 /* Field is a dynamic data member. */
3117
3118 gdb_assert (0 == offset);
3119 /* We expect an already resolved data location. */
3120 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (type));
3121 /* For dynamic data types defer memory allocation
3122 until we actual access the value. */
3123 v = allocate_value_lazy (type);
3124 }
3125 else
3126 {
3127 /* Plain old data member */
3128 offset += (TYPE_FIELD_BITPOS (arg_type, fieldno)
3129 / (HOST_CHAR_BIT * unit_size));
3130
3131 /* Lazy register values with offsets are not supported. */
3132 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3133 value_fetch_lazy (arg1);
3134
3135 if (value_lazy (arg1))
3136 v = allocate_value_lazy (type);
3137 else
3138 {
3139 v = allocate_value (type);
3140 value_contents_copy_raw (v, value_embedded_offset (v),
3141 arg1, value_embedded_offset (arg1) + offset,
3142 type_length_units (type));
3143 }
3144 v->offset = (value_offset (arg1) + offset
3145 + value_embedded_offset (arg1));
3146 }
3147 set_value_component_location (v, arg1);
3148 return v;
3149 }
3150
3151 /* Given a value ARG1 of a struct or union type,
3152 extract and return the value of one of its (non-static) fields.
3153 FIELDNO says which field. */
3154
3155 struct value *
3156 value_field (struct value *arg1, int fieldno)
3157 {
3158 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
3159 }
3160
3161 /* Return a non-virtual function as a value.
3162 F is the list of member functions which contains the desired method.
3163 J is an index into F which provides the desired method.
3164
3165 We only use the symbol for its address, so be happy with either a
3166 full symbol or a minimal symbol. */
3167
3168 struct value *
3169 value_fn_field (struct value **arg1p, struct fn_field *f,
3170 int j, struct type *type,
3171 LONGEST offset)
3172 {
3173 struct value *v;
3174 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
3175 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
3176 struct symbol *sym;
3177 struct bound_minimal_symbol msym;
3178
3179 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0).symbol;
3180 if (sym != NULL)
3181 {
3182 memset (&msym, 0, sizeof (msym));
3183 }
3184 else
3185 {
3186 gdb_assert (sym == NULL);
3187 msym = lookup_bound_minimal_symbol (physname);
3188 if (msym.minsym == NULL)
3189 return NULL;
3190 }
3191
3192 v = allocate_value (ftype);
3193 VALUE_LVAL (v) = lval_memory;
3194 if (sym)
3195 {
3196 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
3197 }
3198 else
3199 {
3200 /* The minimal symbol might point to a function descriptor;
3201 resolve it to the actual code address instead. */
3202 struct objfile *objfile = msym.objfile;
3203 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3204
3205 set_value_address (v,
3206 gdbarch_convert_from_func_ptr_addr
3207 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), &current_target));
3208 }
3209
3210 if (arg1p)
3211 {
3212 if (type != value_type (*arg1p))
3213 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3214 value_addr (*arg1p)));
3215
3216 /* Move the `this' pointer according to the offset.
3217 VALUE_OFFSET (*arg1p) += offset; */
3218 }
3219
3220 return v;
3221 }
3222
3223 \f
3224
3225 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
3226 VALADDR, and store the result in *RESULT.
3227 The bitfield starts at BITPOS bits and contains BITSIZE bits.
3228
3229 Extracting bits depends on endianness of the machine. Compute the
3230 number of least significant bits to discard. For big endian machines,
3231 we compute the total number of bits in the anonymous object, subtract
3232 off the bit count from the MSB of the object to the MSB of the
3233 bitfield, then the size of the bitfield, which leaves the LSB discard
3234 count. For little endian machines, the discard count is simply the
3235 number of bits from the LSB of the anonymous object to the LSB of the
3236 bitfield.
3237
3238 If the field is signed, we also do sign extension. */
3239
3240 static LONGEST
3241 unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
3242 LONGEST bitpos, LONGEST bitsize)
3243 {
3244 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
3245 ULONGEST val;
3246 ULONGEST valmask;
3247 int lsbcount;
3248 LONGEST bytes_read;
3249 LONGEST read_offset;
3250
3251 /* Read the minimum number of bytes required; there may not be
3252 enough bytes to read an entire ULONGEST. */
3253 field_type = check_typedef (field_type);
3254 if (bitsize)
3255 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3256 else
3257 bytes_read = TYPE_LENGTH (field_type);
3258
3259 read_offset = bitpos / 8;
3260
3261 val = extract_unsigned_integer (valaddr + read_offset,
3262 bytes_read, byte_order);
3263
3264 /* Extract bits. See comment above. */
3265
3266 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
3267 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
3268 else
3269 lsbcount = (bitpos % 8);
3270 val >>= lsbcount;
3271
3272 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
3273 If the field is signed, and is negative, then sign extend. */
3274
3275 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
3276 {
3277 valmask = (((ULONGEST) 1) << bitsize) - 1;
3278 val &= valmask;
3279 if (!TYPE_UNSIGNED (field_type))
3280 {
3281 if (val & (valmask ^ (valmask >> 1)))
3282 {
3283 val |= ~valmask;
3284 }
3285 }
3286 }
3287
3288 return val;
3289 }
3290
3291 /* Unpack a field FIELDNO of the specified TYPE, from the object at
3292 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3293 ORIGINAL_VALUE, which must not be NULL. See
3294 unpack_value_bits_as_long for more details. */
3295
3296 int
3297 unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
3298 LONGEST embedded_offset, int fieldno,
3299 const struct value *val, LONGEST *result)
3300 {
3301 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3302 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3303 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3304 int bit_offset;
3305
3306 gdb_assert (val != NULL);
3307
3308 bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3309 if (value_bits_any_optimized_out (val, bit_offset, bitsize)
3310 || !value_bits_available (val, bit_offset, bitsize))
3311 return 0;
3312
3313 *result = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3314 bitpos, bitsize);
3315 return 1;
3316 }
3317
3318 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous
3319 object at VALADDR. See unpack_bits_as_long for more details. */
3320
3321 LONGEST
3322 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3323 {
3324 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3325 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3326 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3327
3328 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
3329 }
3330
3331 /* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at
3332 VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store
3333 the contents in DEST_VAL, zero or sign extending if the type of
3334 DEST_VAL is wider than BITSIZE. VALADDR points to the contents of
3335 VAL. If the VAL's contents required to extract the bitfield from
3336 are unavailable/optimized out, DEST_VAL is correspondingly
3337 marked unavailable/optimized out. */
3338
3339 void
3340 unpack_value_bitfield (struct value *dest_val,
3341 LONGEST bitpos, LONGEST bitsize,
3342 const gdb_byte *valaddr, LONGEST embedded_offset,
3343 const struct value *val)
3344 {
3345 enum bfd_endian byte_order;
3346 int src_bit_offset;
3347 int dst_bit_offset;
3348 struct type *field_type = value_type (dest_val);
3349
3350 byte_order = gdbarch_byte_order (get_type_arch (field_type));
3351
3352 /* First, unpack and sign extend the bitfield as if it was wholly
3353 valid. Optimized out/unavailable bits are read as zero, but
3354 that's OK, as they'll end up marked below. If the VAL is
3355 wholly-invalid we may have skipped allocating its contents,
3356 though. See allocate_optimized_out_value. */
3357 if (valaddr != NULL)
3358 {
3359 LONGEST num;
3360
3361 num = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3362 bitpos, bitsize);
3363 store_signed_integer (value_contents_raw (dest_val),
3364 TYPE_LENGTH (field_type), byte_order, num);
3365 }
3366
3367 /* Now copy the optimized out / unavailability ranges to the right
3368 bits. */
3369 src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3370 if (byte_order == BFD_ENDIAN_BIG)
3371 dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize;
3372 else
3373 dst_bit_offset = 0;
3374 value_ranges_copy_adjusted (dest_val, dst_bit_offset,
3375 val, src_bit_offset, bitsize);
3376 }
3377
3378 /* Return a new value with type TYPE, which is FIELDNO field of the
3379 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3380 of VAL. If the VAL's contents required to extract the bitfield
3381 from are unavailable/optimized out, the new value is
3382 correspondingly marked unavailable/optimized out. */
3383
3384 struct value *
3385 value_field_bitfield (struct type *type, int fieldno,
3386 const gdb_byte *valaddr,
3387 LONGEST embedded_offset, const struct value *val)
3388 {
3389 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3390 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3391 struct value *res_val = allocate_value (TYPE_FIELD_TYPE (type, fieldno));
3392
3393 unpack_value_bitfield (res_val, bitpos, bitsize,
3394 valaddr, embedded_offset, val);
3395
3396 return res_val;
3397 }
3398
3399 /* Modify the value of a bitfield. ADDR points to a block of memory in
3400 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3401 is the desired value of the field, in host byte order. BITPOS and BITSIZE
3402 indicate which bits (in target bit order) comprise the bitfield.
3403 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
3404 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
3405
3406 void
3407 modify_field (struct type *type, gdb_byte *addr,
3408 LONGEST fieldval, LONGEST bitpos, LONGEST bitsize)
3409 {
3410 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3411 ULONGEST oword;
3412 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
3413 LONGEST bytesize;
3414
3415 /* Normalize BITPOS. */
3416 addr += bitpos / 8;
3417 bitpos %= 8;
3418
3419 /* If a negative fieldval fits in the field in question, chop
3420 off the sign extension bits. */
3421 if ((~fieldval & ~(mask >> 1)) == 0)
3422 fieldval &= mask;
3423
3424 /* Warn if value is too big to fit in the field in question. */
3425 if (0 != (fieldval & ~mask))
3426 {
3427 /* FIXME: would like to include fieldval in the message, but
3428 we don't have a sprintf_longest. */
3429 warning (_("Value does not fit in %s bits."), plongest (bitsize));
3430
3431 /* Truncate it, otherwise adjoining fields may be corrupted. */
3432 fieldval &= mask;
3433 }
3434
3435 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3436 false valgrind reports. */
3437
3438 bytesize = (bitpos + bitsize + 7) / 8;
3439 oword = extract_unsigned_integer (addr, bytesize, byte_order);
3440
3441 /* Shifting for bit field depends on endianness of the target machine. */
3442 if (gdbarch_bits_big_endian (get_type_arch (type)))
3443 bitpos = bytesize * 8 - bitpos - bitsize;
3444
3445 oword &= ~(mask << bitpos);
3446 oword |= fieldval << bitpos;
3447
3448 store_unsigned_integer (addr, bytesize, byte_order, oword);
3449 }
3450 \f
3451 /* Pack NUM into BUF using a target format of TYPE. */
3452
3453 void
3454 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
3455 {
3456 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3457 LONGEST len;
3458
3459 type = check_typedef (type);
3460 len = TYPE_LENGTH (type);
3461
3462 switch (TYPE_CODE (type))
3463 {
3464 case TYPE_CODE_INT:
3465 case TYPE_CODE_CHAR:
3466 case TYPE_CODE_ENUM:
3467 case TYPE_CODE_FLAGS:
3468 case TYPE_CODE_BOOL:
3469 case TYPE_CODE_RANGE:
3470 case TYPE_CODE_MEMBERPTR:
3471 store_signed_integer (buf, len, byte_order, num);
3472 break;
3473
3474 case TYPE_CODE_REF:
3475 case TYPE_CODE_RVALUE_REF:
3476 case TYPE_CODE_PTR:
3477 store_typed_address (buf, type, (CORE_ADDR) num);
3478 break;
3479
3480 case TYPE_CODE_FLT:
3481 case TYPE_CODE_DECFLOAT:
3482 target_float_from_longest (buf, type, num);
3483 break;
3484
3485 default:
3486 error (_("Unexpected type (%d) encountered for integer constant."),
3487 TYPE_CODE (type));
3488 }
3489 }
3490
3491
3492 /* Pack NUM into BUF using a target format of TYPE. */
3493
3494 static void
3495 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3496 {
3497 LONGEST len;
3498 enum bfd_endian byte_order;
3499
3500 type = check_typedef (type);
3501 len = TYPE_LENGTH (type);
3502 byte_order = gdbarch_byte_order (get_type_arch (type));
3503
3504 switch (TYPE_CODE (type))
3505 {
3506 case TYPE_CODE_INT:
3507 case TYPE_CODE_CHAR:
3508 case TYPE_CODE_ENUM:
3509 case TYPE_CODE_FLAGS:
3510 case TYPE_CODE_BOOL:
3511 case TYPE_CODE_RANGE:
3512 case TYPE_CODE_MEMBERPTR:
3513 store_unsigned_integer (buf, len, byte_order, num);
3514 break;
3515
3516 case TYPE_CODE_REF:
3517 case TYPE_CODE_RVALUE_REF:
3518 case TYPE_CODE_PTR:
3519 store_typed_address (buf, type, (CORE_ADDR) num);
3520 break;
3521
3522 case TYPE_CODE_FLT:
3523 case TYPE_CODE_DECFLOAT:
3524 target_float_from_ulongest (buf, type, num);
3525 break;
3526
3527 default:
3528 error (_("Unexpected type (%d) encountered "
3529 "for unsigned integer constant."),
3530 TYPE_CODE (type));
3531 }
3532 }
3533
3534
3535 /* Convert C numbers into newly allocated values. */
3536
3537 struct value *
3538 value_from_longest (struct type *type, LONGEST num)
3539 {
3540 struct value *val = allocate_value (type);
3541
3542 pack_long (value_contents_raw (val), type, num);
3543 return val;
3544 }
3545
3546
3547 /* Convert C unsigned numbers into newly allocated values. */
3548
3549 struct value *
3550 value_from_ulongest (struct type *type, ULONGEST num)
3551 {
3552 struct value *val = allocate_value (type);
3553
3554 pack_unsigned_long (value_contents_raw (val), type, num);
3555
3556 return val;
3557 }
3558
3559
3560 /* Create a value representing a pointer of type TYPE to the address
3561 ADDR. */
3562
3563 struct value *
3564 value_from_pointer (struct type *type, CORE_ADDR addr)
3565 {
3566 struct value *val = allocate_value (type);
3567
3568 store_typed_address (value_contents_raw (val),
3569 check_typedef (type), addr);
3570 return val;
3571 }
3572
3573
3574 /* Create a value of type TYPE whose contents come from VALADDR, if it
3575 is non-null, and whose memory address (in the inferior) is
3576 ADDRESS. The type of the created value may differ from the passed
3577 type TYPE. Make sure to retrieve values new type after this call.
3578 Note that TYPE is not passed through resolve_dynamic_type; this is
3579 a special API intended for use only by Ada. */
3580
3581 struct value *
3582 value_from_contents_and_address_unresolved (struct type *type,
3583 const gdb_byte *valaddr,
3584 CORE_ADDR address)
3585 {
3586 struct value *v;
3587
3588 if (valaddr == NULL)
3589 v = allocate_value_lazy (type);
3590 else
3591 v = value_from_contents (type, valaddr);
3592 VALUE_LVAL (v) = lval_memory;
3593 set_value_address (v, address);
3594 return v;
3595 }
3596
3597 /* Create a value of type TYPE whose contents come from VALADDR, if it
3598 is non-null, and whose memory address (in the inferior) is
3599 ADDRESS. The type of the created value may differ from the passed
3600 type TYPE. Make sure to retrieve values new type after this call. */
3601
3602 struct value *
3603 value_from_contents_and_address (struct type *type,
3604 const gdb_byte *valaddr,
3605 CORE_ADDR address)
3606 {
3607 struct type *resolved_type = resolve_dynamic_type (type, valaddr, address);
3608 struct type *resolved_type_no_typedef = check_typedef (resolved_type);
3609 struct value *v;
3610
3611 if (valaddr == NULL)
3612 v = allocate_value_lazy (resolved_type);
3613 else
3614 v = value_from_contents (resolved_type, valaddr);
3615 if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL
3616 && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST)
3617 address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef);
3618 VALUE_LVAL (v) = lval_memory;
3619 set_value_address (v, address);
3620 return v;
3621 }
3622
3623 /* Create a value of type TYPE holding the contents CONTENTS.
3624 The new value is `not_lval'. */
3625
3626 struct value *
3627 value_from_contents (struct type *type, const gdb_byte *contents)
3628 {
3629 struct value *result;
3630
3631 result = allocate_value (type);
3632 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3633 return result;
3634 }
3635
3636 /* Extract a value from the history file. Input will be of the form
3637 $digits or $$digits. See block comment above 'write_dollar_variable'
3638 for details. */
3639
3640 struct value *
3641 value_from_history_ref (const char *h, const char **endp)
3642 {
3643 int index, len;
3644
3645 if (h[0] == '$')
3646 len = 1;
3647 else
3648 return NULL;
3649
3650 if (h[1] == '$')
3651 len = 2;
3652
3653 /* Find length of numeral string. */
3654 for (; isdigit (h[len]); len++)
3655 ;
3656
3657 /* Make sure numeral string is not part of an identifier. */
3658 if (h[len] == '_' || isalpha (h[len]))
3659 return NULL;
3660
3661 /* Now collect the index value. */
3662 if (h[1] == '$')
3663 {
3664 if (len == 2)
3665 {
3666 /* For some bizarre reason, "$$" is equivalent to "$$1",
3667 rather than to "$$0" as it ought to be! */
3668 index = -1;
3669 *endp += len;
3670 }
3671 else
3672 {
3673 char *local_end;
3674
3675 index = -strtol (&h[2], &local_end, 10);
3676 *endp = local_end;
3677 }
3678 }
3679 else
3680 {
3681 if (len == 1)
3682 {
3683 /* "$" is equivalent to "$0". */
3684 index = 0;
3685 *endp += len;
3686 }
3687 else
3688 {
3689 char *local_end;
3690
3691 index = strtol (&h[1], &local_end, 10);
3692 *endp = local_end;
3693 }
3694 }
3695
3696 return access_value_history (index);
3697 }
3698
3699 /* Get the component value (offset by OFFSET bytes) of a struct or
3700 union WHOLE. Component's type is TYPE. */
3701
3702 struct value *
3703 value_from_component (struct value *whole, struct type *type, LONGEST offset)
3704 {
3705 struct value *v;
3706
3707 if (VALUE_LVAL (whole) == lval_memory && value_lazy (whole))
3708 v = allocate_value_lazy (type);
3709 else
3710 {
3711 v = allocate_value (type);
3712 value_contents_copy (v, value_embedded_offset (v),
3713 whole, value_embedded_offset (whole) + offset,
3714 type_length_units (type));
3715 }
3716 v->offset = value_offset (whole) + offset + value_embedded_offset (whole);
3717 set_value_component_location (v, whole);
3718
3719 return v;
3720 }
3721
3722 struct value *
3723 coerce_ref_if_computed (const struct value *arg)
3724 {
3725 const struct lval_funcs *funcs;
3726
3727 if (!TYPE_IS_REFERENCE (check_typedef (value_type (arg))))
3728 return NULL;
3729
3730 if (value_lval_const (arg) != lval_computed)
3731 return NULL;
3732
3733 funcs = value_computed_funcs (arg);
3734 if (funcs->coerce_ref == NULL)
3735 return NULL;
3736
3737 return funcs->coerce_ref (arg);
3738 }
3739
3740 /* Look at value.h for description. */
3741
3742 struct value *
3743 readjust_indirect_value_type (struct value *value, struct type *enc_type,
3744 const struct type *original_type,
3745 const struct value *original_value)
3746 {
3747 /* Re-adjust type. */
3748 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3749
3750 /* Add embedding info. */
3751 set_value_enclosing_type (value, enc_type);
3752 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3753
3754 /* We may be pointing to an object of some derived type. */
3755 return value_full_object (value, NULL, 0, 0, 0);
3756 }
3757
3758 struct value *
3759 coerce_ref (struct value *arg)
3760 {
3761 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
3762 struct value *retval;
3763 struct type *enc_type;
3764
3765 retval = coerce_ref_if_computed (arg);
3766 if (retval)
3767 return retval;
3768
3769 if (!TYPE_IS_REFERENCE (value_type_arg_tmp))
3770 return arg;
3771
3772 enc_type = check_typedef (value_enclosing_type (arg));
3773 enc_type = TYPE_TARGET_TYPE (enc_type);
3774
3775 retval = value_at_lazy (enc_type,
3776 unpack_pointer (value_type (arg),
3777 value_contents (arg)));
3778 enc_type = value_type (retval);
3779 return readjust_indirect_value_type (retval, enc_type,
3780 value_type_arg_tmp, arg);
3781 }
3782
3783 struct value *
3784 coerce_array (struct value *arg)
3785 {
3786 struct type *type;
3787
3788 arg = coerce_ref (arg);
3789 type = check_typedef (value_type (arg));
3790
3791 switch (TYPE_CODE (type))
3792 {
3793 case TYPE_CODE_ARRAY:
3794 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
3795 arg = value_coerce_array (arg);
3796 break;
3797 case TYPE_CODE_FUNC:
3798 arg = value_coerce_function (arg);
3799 break;
3800 }
3801 return arg;
3802 }
3803 \f
3804
3805 /* Return the return value convention that will be used for the
3806 specified type. */
3807
3808 enum return_value_convention
3809 struct_return_convention (struct gdbarch *gdbarch,
3810 struct value *function, struct type *value_type)
3811 {
3812 enum type_code code = TYPE_CODE (value_type);
3813
3814 if (code == TYPE_CODE_ERROR)
3815 error (_("Function return type unknown."));
3816
3817 /* Probe the architecture for the return-value convention. */
3818 return gdbarch_return_value (gdbarch, function, value_type,
3819 NULL, NULL, NULL);
3820 }
3821
3822 /* Return true if the function returning the specified type is using
3823 the convention of returning structures in memory (passing in the
3824 address as a hidden first parameter). */
3825
3826 int
3827 using_struct_return (struct gdbarch *gdbarch,
3828 struct value *function, struct type *value_type)
3829 {
3830 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
3831 /* A void return value is never in memory. See also corresponding
3832 code in "print_return_value". */
3833 return 0;
3834
3835 return (struct_return_convention (gdbarch, function, value_type)
3836 != RETURN_VALUE_REGISTER_CONVENTION);
3837 }
3838
3839 /* Set the initialized field in a value struct. */
3840
3841 void
3842 set_value_initialized (struct value *val, int status)
3843 {
3844 val->initialized = status;
3845 }
3846
3847 /* Return the initialized field in a value struct. */
3848
3849 int
3850 value_initialized (const struct value *val)
3851 {
3852 return val->initialized;
3853 }
3854
3855 /* Load the actual content of a lazy value. Fetch the data from the
3856 user's process and clear the lazy flag to indicate that the data in
3857 the buffer is valid.
3858
3859 If the value is zero-length, we avoid calling read_memory, which
3860 would abort. We mark the value as fetched anyway -- all 0 bytes of
3861 it. */
3862
3863 void
3864 value_fetch_lazy (struct value *val)
3865 {
3866 gdb_assert (value_lazy (val));
3867 allocate_value_contents (val);
3868 /* A value is either lazy, or fully fetched. The
3869 availability/validity is only established as we try to fetch a
3870 value. */
3871 gdb_assert (VEC_empty (range_s, val->optimized_out));
3872 gdb_assert (VEC_empty (range_s, val->unavailable));
3873 if (value_bitsize (val))
3874 {
3875 /* To read a lazy bitfield, read the entire enclosing value. This
3876 prevents reading the same block of (possibly volatile) memory once
3877 per bitfield. It would be even better to read only the containing
3878 word, but we have no way to record that just specific bits of a
3879 value have been fetched. */
3880 struct type *type = check_typedef (value_type (val));
3881 struct value *parent = value_parent (val);
3882
3883 if (value_lazy (parent))
3884 value_fetch_lazy (parent);
3885
3886 unpack_value_bitfield (val,
3887 value_bitpos (val), value_bitsize (val),
3888 value_contents_for_printing (parent),
3889 value_offset (val), parent);
3890 }
3891 else if (VALUE_LVAL (val) == lval_memory)
3892 {
3893 CORE_ADDR addr = value_address (val);
3894 struct type *type = check_typedef (value_enclosing_type (val));
3895
3896 if (TYPE_LENGTH (type))
3897 read_value_memory (val, 0, value_stack (val),
3898 addr, value_contents_all_raw (val),
3899 type_length_units (type));
3900 }
3901 else if (VALUE_LVAL (val) == lval_register)
3902 {
3903 struct frame_info *next_frame;
3904 int regnum;
3905 struct type *type = check_typedef (value_type (val));
3906 struct value *new_val = val, *mark = value_mark ();
3907
3908 /* Offsets are not supported here; lazy register values must
3909 refer to the entire register. */
3910 gdb_assert (value_offset (val) == 0);
3911
3912 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3913 {
3914 struct frame_id next_frame_id = VALUE_NEXT_FRAME_ID (new_val);
3915
3916 next_frame = frame_find_by_id (next_frame_id);
3917 regnum = VALUE_REGNUM (new_val);
3918
3919 gdb_assert (next_frame != NULL);
3920
3921 /* Convertible register routines are used for multi-register
3922 values and for interpretation in different types
3923 (e.g. float or int from a double register). Lazy
3924 register values should have the register's natural type,
3925 so they do not apply. */
3926 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (next_frame),
3927 regnum, type));
3928
3929 /* FRAME was obtained, above, via VALUE_NEXT_FRAME_ID.
3930 Since a "->next" operation was performed when setting
3931 this field, we do not need to perform a "next" operation
3932 again when unwinding the register. That's why
3933 frame_unwind_register_value() is called here instead of
3934 get_frame_register_value(). */
3935 new_val = frame_unwind_register_value (next_frame, regnum);
3936
3937 /* If we get another lazy lval_register value, it means the
3938 register is found by reading it from NEXT_FRAME's next frame.
3939 frame_unwind_register_value should never return a value with
3940 the frame id pointing to NEXT_FRAME. If it does, it means we
3941 either have two consecutive frames with the same frame id
3942 in the frame chain, or some code is trying to unwind
3943 behind get_prev_frame's back (e.g., a frame unwind
3944 sniffer trying to unwind), bypassing its validations. In
3945 any case, it should always be an internal error to end up
3946 in this situation. */
3947 if (VALUE_LVAL (new_val) == lval_register
3948 && value_lazy (new_val)
3949 && frame_id_eq (VALUE_NEXT_FRAME_ID (new_val), next_frame_id))
3950 internal_error (__FILE__, __LINE__,
3951 _("infinite loop while fetching a register"));
3952 }
3953
3954 /* If it's still lazy (for instance, a saved register on the
3955 stack), fetch it. */
3956 if (value_lazy (new_val))
3957 value_fetch_lazy (new_val);
3958
3959 /* Copy the contents and the unavailability/optimized-out
3960 meta-data from NEW_VAL to VAL. */
3961 set_value_lazy (val, 0);
3962 value_contents_copy (val, value_embedded_offset (val),
3963 new_val, value_embedded_offset (new_val),
3964 type_length_units (type));
3965
3966 if (frame_debug)
3967 {
3968 struct gdbarch *gdbarch;
3969 struct frame_info *frame;
3970 /* VALUE_FRAME_ID is used here, instead of VALUE_NEXT_FRAME_ID,
3971 so that the frame level will be shown correctly. */
3972 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3973 regnum = VALUE_REGNUM (val);
3974 gdbarch = get_frame_arch (frame);
3975
3976 fprintf_unfiltered (gdb_stdlog,
3977 "{ value_fetch_lazy "
3978 "(frame=%d,regnum=%d(%s),...) ",
3979 frame_relative_level (frame), regnum,
3980 user_reg_map_regnum_to_name (gdbarch, regnum));
3981
3982 fprintf_unfiltered (gdb_stdlog, "->");
3983 if (value_optimized_out (new_val))
3984 {
3985 fprintf_unfiltered (gdb_stdlog, " ");
3986 val_print_optimized_out (new_val, gdb_stdlog);
3987 }
3988 else
3989 {
3990 int i;
3991 const gdb_byte *buf = value_contents (new_val);
3992
3993 if (VALUE_LVAL (new_val) == lval_register)
3994 fprintf_unfiltered (gdb_stdlog, " register=%d",
3995 VALUE_REGNUM (new_val));
3996 else if (VALUE_LVAL (new_val) == lval_memory)
3997 fprintf_unfiltered (gdb_stdlog, " address=%s",
3998 paddress (gdbarch,
3999 value_address (new_val)));
4000 else
4001 fprintf_unfiltered (gdb_stdlog, " computed");
4002
4003 fprintf_unfiltered (gdb_stdlog, " bytes=");
4004 fprintf_unfiltered (gdb_stdlog, "[");
4005 for (i = 0; i < register_size (gdbarch, regnum); i++)
4006 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
4007 fprintf_unfiltered (gdb_stdlog, "]");
4008 }
4009
4010 fprintf_unfiltered (gdb_stdlog, " }\n");
4011 }
4012
4013 /* Dispose of the intermediate values. This prevents
4014 watchpoints from trying to watch the saved frame pointer. */
4015 value_free_to_mark (mark);
4016 }
4017 else if (VALUE_LVAL (val) == lval_computed
4018 && value_computed_funcs (val)->read != NULL)
4019 value_computed_funcs (val)->read (val);
4020 else
4021 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
4022
4023 set_value_lazy (val, 0);
4024 }
4025
4026 /* Implementation of the convenience function $_isvoid. */
4027
4028 static struct value *
4029 isvoid_internal_fn (struct gdbarch *gdbarch,
4030 const struct language_defn *language,
4031 void *cookie, int argc, struct value **argv)
4032 {
4033 int ret;
4034
4035 if (argc != 1)
4036 error (_("You must provide one argument for $_isvoid."));
4037
4038 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
4039
4040 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
4041 }
4042
4043 void
4044 _initialize_values (void)
4045 {
4046 add_cmd ("convenience", no_class, show_convenience, _("\
4047 Debugger convenience (\"$foo\") variables and functions.\n\
4048 Convenience variables are created when you assign them values;\n\
4049 thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
4050 \n\
4051 A few convenience variables are given values automatically:\n\
4052 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
4053 \"$__\" holds the contents of the last address examined with \"x\"."
4054 #ifdef HAVE_PYTHON
4055 "\n\n\
4056 Convenience functions are defined via the Python API."
4057 #endif
4058 ), &showlist);
4059 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
4060
4061 add_cmd ("values", no_set_class, show_values, _("\
4062 Elements of value history around item number IDX (or last ten)."),
4063 &showlist);
4064
4065 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
4066 Initialize a convenience variable if necessary.\n\
4067 init-if-undefined VARIABLE = EXPRESSION\n\
4068 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
4069 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
4070 VARIABLE is already initialized."));
4071
4072 add_prefix_cmd ("function", no_class, function_command, _("\
4073 Placeholder command for showing help on convenience functions."),
4074 &functionlist, "function ", 0, &cmdlist);
4075
4076 add_internal_function ("_isvoid", _("\
4077 Check whether an expression is void.\n\
4078 Usage: $_isvoid (expression)\n\
4079 Return 1 if the expression is void, zero otherwise."),
4080 isvoid_internal_fn, NULL);
4081
4082 add_setshow_zuinteger_unlimited_cmd ("max-value-size",
4083 class_support, &max_value_size, _("\
4084 Set maximum sized value gdb will load from the inferior."), _("\
4085 Show maximum sized value gdb will load from the inferior."), _("\
4086 Use this to control the maximum size, in bytes, of a value that gdb\n\
4087 will load from the inferior. Setting this value to 'unlimited'\n\
4088 disables checking.\n\
4089 Setting this does not invalidate already allocated values, it only\n\
4090 prevents future values, larger than this size, from being allocated."),
4091 set_max_value_size,
4092 show_max_value_size,
4093 &setlist, &showlist);
4094 }