]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/varobj.c
Update years in copyright notice for the GDB files.
[thirdparty/binutils-gdb.git] / gdb / varobj.c
1 /* Implementation of the GDB variable objects API.
2
3 Copyright (C) 1999-2013 Free Software Foundation, Inc.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17
18 #include "defs.h"
19 #include "exceptions.h"
20 #include "value.h"
21 #include "expression.h"
22 #include "frame.h"
23 #include "language.h"
24 #include "gdbcmd.h"
25 #include "block.h"
26 #include "valprint.h"
27
28 #include "gdb_assert.h"
29 #include "gdb_string.h"
30 #include "gdb_regex.h"
31
32 #include "varobj.h"
33 #include "vec.h"
34 #include "gdbthread.h"
35 #include "inferior.h"
36 #include "ada-varobj.h"
37 #include "ada-lang.h"
38
39 #if HAVE_PYTHON
40 #include "python/python.h"
41 #include "python/python-internal.h"
42 #else
43 typedef int PyObject;
44 #endif
45
46 /* The names of varobjs representing anonymous structs or unions. */
47 #define ANONYMOUS_STRUCT_NAME _("<anonymous struct>")
48 #define ANONYMOUS_UNION_NAME _("<anonymous union>")
49
50 /* Non-zero if we want to see trace of varobj level stuff. */
51
52 unsigned int varobjdebug = 0;
53 static void
54 show_varobjdebug (struct ui_file *file, int from_tty,
55 struct cmd_list_element *c, const char *value)
56 {
57 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
58 }
59
60 /* String representations of gdb's format codes. */
61 char *varobj_format_string[] =
62 { "natural", "binary", "decimal", "hexadecimal", "octal" };
63
64 /* String representations of gdb's known languages. */
65 char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
66
67 /* True if we want to allow Python-based pretty-printing. */
68 static int pretty_printing = 0;
69
70 void
71 varobj_enable_pretty_printing (void)
72 {
73 pretty_printing = 1;
74 }
75
76 /* Data structures */
77
78 /* Every root variable has one of these structures saved in its
79 varobj. Members which must be free'd are noted. */
80 struct varobj_root
81 {
82
83 /* Alloc'd expression for this parent. */
84 struct expression *exp;
85
86 /* Block for which this expression is valid. */
87 const struct block *valid_block;
88
89 /* The frame for this expression. This field is set iff valid_block is
90 not NULL. */
91 struct frame_id frame;
92
93 /* The thread ID that this varobj_root belong to. This field
94 is only valid if valid_block is not NULL.
95 When not 0, indicates which thread 'frame' belongs to.
96 When 0, indicates that the thread list was empty when the varobj_root
97 was created. */
98 int thread_id;
99
100 /* If 1, the -var-update always recomputes the value in the
101 current thread and frame. Otherwise, variable object is
102 always updated in the specific scope/thread/frame. */
103 int floating;
104
105 /* Flag that indicates validity: set to 0 when this varobj_root refers
106 to symbols that do not exist anymore. */
107 int is_valid;
108
109 /* Language info for this variable and its children. */
110 struct language_specific *lang;
111
112 /* The varobj for this root node. */
113 struct varobj *rootvar;
114
115 /* Next root variable */
116 struct varobj_root *next;
117 };
118
119 /* Every variable in the system has a structure of this type defined
120 for it. This structure holds all information necessary to manipulate
121 a particular object variable. Members which must be freed are noted. */
122 struct varobj
123 {
124
125 /* Alloc'd name of the variable for this object. If this variable is a
126 child, then this name will be the child's source name.
127 (bar, not foo.bar). */
128 /* NOTE: This is the "expression". */
129 char *name;
130
131 /* Alloc'd expression for this child. Can be used to create a
132 root variable corresponding to this child. */
133 char *path_expr;
134
135 /* The alloc'd name for this variable's object. This is here for
136 convenience when constructing this object's children. */
137 char *obj_name;
138
139 /* Index of this variable in its parent or -1. */
140 int index;
141
142 /* The type of this variable. This can be NULL
143 for artifial variable objects -- currently, the "accessibility"
144 variable objects in C++. */
145 struct type *type;
146
147 /* The value of this expression or subexpression. A NULL value
148 indicates there was an error getting this value.
149 Invariant: if varobj_value_is_changeable_p (this) is non-zero,
150 the value is either NULL, or not lazy. */
151 struct value *value;
152
153 /* The number of (immediate) children this variable has. */
154 int num_children;
155
156 /* If this object is a child, this points to its immediate parent. */
157 struct varobj *parent;
158
159 /* Children of this object. */
160 VEC (varobj_p) *children;
161
162 /* Whether the children of this varobj were requested. This field is
163 used to decide if dynamic varobj should recompute their children.
164 In the event that the frontend never asked for the children, we
165 can avoid that. */
166 int children_requested;
167
168 /* Description of the root variable. Points to root variable for
169 children. */
170 struct varobj_root *root;
171
172 /* The format of the output for this object. */
173 enum varobj_display_formats format;
174
175 /* Was this variable updated via a varobj_set_value operation. */
176 int updated;
177
178 /* Last print value. */
179 char *print_value;
180
181 /* Is this variable frozen. Frozen variables are never implicitly
182 updated by -var-update *
183 or -var-update <direct-or-indirect-parent>. */
184 int frozen;
185
186 /* Is the value of this variable intentionally not fetched? It is
187 not fetched if either the variable is frozen, or any parents is
188 frozen. */
189 int not_fetched;
190
191 /* Sub-range of children which the MI consumer has requested. If
192 FROM < 0 or TO < 0, means that all children have been
193 requested. */
194 int from;
195 int to;
196
197 /* The pretty-printer constructor. If NULL, then the default
198 pretty-printer will be looked up. If None, then no
199 pretty-printer will be installed. */
200 PyObject *constructor;
201
202 /* The pretty-printer that has been constructed. If NULL, then a
203 new printer object is needed, and one will be constructed. */
204 PyObject *pretty_printer;
205
206 /* The iterator returned by the printer's 'children' method, or NULL
207 if not available. */
208 PyObject *child_iter;
209
210 /* We request one extra item from the iterator, so that we can
211 report to the caller whether there are more items than we have
212 already reported. However, we don't want to install this value
213 when we read it, because that will mess up future updates. So,
214 we stash it here instead. */
215 PyObject *saved_item;
216 };
217
218 struct cpstack
219 {
220 char *name;
221 struct cpstack *next;
222 };
223
224 /* A list of varobjs */
225
226 struct vlist
227 {
228 struct varobj *var;
229 struct vlist *next;
230 };
231
232 /* Private function prototypes */
233
234 /* Helper functions for the above subcommands. */
235
236 static int delete_variable (struct cpstack **, struct varobj *, int);
237
238 static void delete_variable_1 (struct cpstack **, int *,
239 struct varobj *, int, int);
240
241 static int install_variable (struct varobj *);
242
243 static void uninstall_variable (struct varobj *);
244
245 static struct varobj *create_child (struct varobj *, int, char *);
246
247 static struct varobj *
248 create_child_with_value (struct varobj *parent, int index, const char *name,
249 struct value *value);
250
251 /* Utility routines */
252
253 static struct varobj *new_variable (void);
254
255 static struct varobj *new_root_variable (void);
256
257 static void free_variable (struct varobj *var);
258
259 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
260
261 static struct type *get_type (struct varobj *var);
262
263 static struct type *get_value_type (struct varobj *var);
264
265 static struct type *get_target_type (struct type *);
266
267 static enum varobj_display_formats variable_default_display (struct varobj *);
268
269 static void cppush (struct cpstack **pstack, char *name);
270
271 static char *cppop (struct cpstack **pstack);
272
273 static int update_type_if_necessary (struct varobj *var,
274 struct value *new_value);
275
276 static int install_new_value (struct varobj *var, struct value *value,
277 int initial);
278
279 /* Language-specific routines. */
280
281 static enum varobj_languages variable_language (struct varobj *var);
282
283 static int number_of_children (struct varobj *);
284
285 static char *name_of_variable (struct varobj *);
286
287 static char *name_of_child (struct varobj *, int);
288
289 static struct value *value_of_root (struct varobj **var_handle, int *);
290
291 static struct value *value_of_child (struct varobj *parent, int index);
292
293 static char *my_value_of_variable (struct varobj *var,
294 enum varobj_display_formats format);
295
296 static char *value_get_print_value (struct value *value,
297 enum varobj_display_formats format,
298 struct varobj *var);
299
300 static int varobj_value_is_changeable_p (struct varobj *var);
301
302 static int is_root_p (struct varobj *var);
303
304 #if HAVE_PYTHON
305
306 static struct varobj *varobj_add_child (struct varobj *var,
307 const char *name,
308 struct value *value);
309
310 #endif /* HAVE_PYTHON */
311
312 static int default_value_is_changeable_p (struct varobj *var);
313
314 /* C implementation */
315
316 static int c_number_of_children (struct varobj *var);
317
318 static char *c_name_of_variable (struct varobj *parent);
319
320 static char *c_name_of_child (struct varobj *parent, int index);
321
322 static char *c_path_expr_of_child (struct varobj *child);
323
324 static struct value *c_value_of_root (struct varobj **var_handle);
325
326 static struct value *c_value_of_child (struct varobj *parent, int index);
327
328 static struct type *c_type_of_child (struct varobj *parent, int index);
329
330 static char *c_value_of_variable (struct varobj *var,
331 enum varobj_display_formats format);
332
333 /* C++ implementation */
334
335 static int cplus_number_of_children (struct varobj *var);
336
337 static void cplus_class_num_children (struct type *type, int children[3]);
338
339 static char *cplus_name_of_variable (struct varobj *parent);
340
341 static char *cplus_name_of_child (struct varobj *parent, int index);
342
343 static char *cplus_path_expr_of_child (struct varobj *child);
344
345 static struct value *cplus_value_of_root (struct varobj **var_handle);
346
347 static struct value *cplus_value_of_child (struct varobj *parent, int index);
348
349 static struct type *cplus_type_of_child (struct varobj *parent, int index);
350
351 static char *cplus_value_of_variable (struct varobj *var,
352 enum varobj_display_formats format);
353
354 /* Java implementation */
355
356 static int java_number_of_children (struct varobj *var);
357
358 static char *java_name_of_variable (struct varobj *parent);
359
360 static char *java_name_of_child (struct varobj *parent, int index);
361
362 static char *java_path_expr_of_child (struct varobj *child);
363
364 static struct value *java_value_of_root (struct varobj **var_handle);
365
366 static struct value *java_value_of_child (struct varobj *parent, int index);
367
368 static struct type *java_type_of_child (struct varobj *parent, int index);
369
370 static char *java_value_of_variable (struct varobj *var,
371 enum varobj_display_formats format);
372
373 /* Ada implementation */
374
375 static int ada_number_of_children (struct varobj *var);
376
377 static char *ada_name_of_variable (struct varobj *parent);
378
379 static char *ada_name_of_child (struct varobj *parent, int index);
380
381 static char *ada_path_expr_of_child (struct varobj *child);
382
383 static struct value *ada_value_of_root (struct varobj **var_handle);
384
385 static struct value *ada_value_of_child (struct varobj *parent, int index);
386
387 static struct type *ada_type_of_child (struct varobj *parent, int index);
388
389 static char *ada_value_of_variable (struct varobj *var,
390 enum varobj_display_formats format);
391
392 static int ada_value_is_changeable_p (struct varobj *var);
393
394 static int ada_value_has_mutated (struct varobj *var, struct value *new_val,
395 struct type *new_type);
396
397 /* The language specific vector */
398
399 struct language_specific
400 {
401
402 /* The language of this variable. */
403 enum varobj_languages language;
404
405 /* The number of children of PARENT. */
406 int (*number_of_children) (struct varobj * parent);
407
408 /* The name (expression) of a root varobj. */
409 char *(*name_of_variable) (struct varobj * parent);
410
411 /* The name of the INDEX'th child of PARENT. */
412 char *(*name_of_child) (struct varobj * parent, int index);
413
414 /* Returns the rooted expression of CHILD, which is a variable
415 obtain that has some parent. */
416 char *(*path_expr_of_child) (struct varobj * child);
417
418 /* The ``struct value *'' of the root variable ROOT. */
419 struct value *(*value_of_root) (struct varobj ** root_handle);
420
421 /* The ``struct value *'' of the INDEX'th child of PARENT. */
422 struct value *(*value_of_child) (struct varobj * parent, int index);
423
424 /* The type of the INDEX'th child of PARENT. */
425 struct type *(*type_of_child) (struct varobj * parent, int index);
426
427 /* The current value of VAR. */
428 char *(*value_of_variable) (struct varobj * var,
429 enum varobj_display_formats format);
430
431 /* Return non-zero if changes in value of VAR must be detected and
432 reported by -var-update. Return zero if -var-update should never
433 report changes of such values. This makes sense for structures
434 (since the changes in children values will be reported separately),
435 or for artifical objects (like 'public' pseudo-field in C++).
436
437 Return value of 0 means that gdb need not call value_fetch_lazy
438 for the value of this variable object. */
439 int (*value_is_changeable_p) (struct varobj *var);
440
441 /* Return nonzero if the type of VAR has mutated.
442
443 VAR's value is still the varobj's previous value, while NEW_VALUE
444 is VAR's new value and NEW_TYPE is the var's new type. NEW_VALUE
445 may be NULL indicating that there is no value available (the varobj
446 may be out of scope, of may be the child of a null pointer, for
447 instance). NEW_TYPE, on the other hand, must never be NULL.
448
449 This function should also be able to assume that var's number of
450 children is set (not < 0).
451
452 Languages where types do not mutate can set this to NULL. */
453 int (*value_has_mutated) (struct varobj *var, struct value *new_value,
454 struct type *new_type);
455 };
456
457 /* Array of known source language routines. */
458 static struct language_specific languages[vlang_end] = {
459 /* Unknown (try treating as C). */
460 {
461 vlang_unknown,
462 c_number_of_children,
463 c_name_of_variable,
464 c_name_of_child,
465 c_path_expr_of_child,
466 c_value_of_root,
467 c_value_of_child,
468 c_type_of_child,
469 c_value_of_variable,
470 default_value_is_changeable_p,
471 NULL /* value_has_mutated */}
472 ,
473 /* C */
474 {
475 vlang_c,
476 c_number_of_children,
477 c_name_of_variable,
478 c_name_of_child,
479 c_path_expr_of_child,
480 c_value_of_root,
481 c_value_of_child,
482 c_type_of_child,
483 c_value_of_variable,
484 default_value_is_changeable_p,
485 NULL /* value_has_mutated */}
486 ,
487 /* C++ */
488 {
489 vlang_cplus,
490 cplus_number_of_children,
491 cplus_name_of_variable,
492 cplus_name_of_child,
493 cplus_path_expr_of_child,
494 cplus_value_of_root,
495 cplus_value_of_child,
496 cplus_type_of_child,
497 cplus_value_of_variable,
498 default_value_is_changeable_p,
499 NULL /* value_has_mutated */}
500 ,
501 /* Java */
502 {
503 vlang_java,
504 java_number_of_children,
505 java_name_of_variable,
506 java_name_of_child,
507 java_path_expr_of_child,
508 java_value_of_root,
509 java_value_of_child,
510 java_type_of_child,
511 java_value_of_variable,
512 default_value_is_changeable_p,
513 NULL /* value_has_mutated */},
514 /* Ada */
515 {
516 vlang_ada,
517 ada_number_of_children,
518 ada_name_of_variable,
519 ada_name_of_child,
520 ada_path_expr_of_child,
521 ada_value_of_root,
522 ada_value_of_child,
523 ada_type_of_child,
524 ada_value_of_variable,
525 ada_value_is_changeable_p,
526 ada_value_has_mutated}
527 };
528
529 /* A little convenience enum for dealing with C++/Java. */
530 enum vsections
531 {
532 v_public = 0, v_private, v_protected
533 };
534
535 /* Private data */
536
537 /* Mappings of varobj_display_formats enums to gdb's format codes. */
538 static int format_code[] = { 0, 't', 'd', 'x', 'o' };
539
540 /* Header of the list of root variable objects. */
541 static struct varobj_root *rootlist;
542
543 /* Prime number indicating the number of buckets in the hash table. */
544 /* A prime large enough to avoid too many colisions. */
545 #define VAROBJ_TABLE_SIZE 227
546
547 /* Pointer to the varobj hash table (built at run time). */
548 static struct vlist **varobj_table;
549
550 /* Is the variable X one of our "fake" children? */
551 #define CPLUS_FAKE_CHILD(x) \
552 ((x) != NULL && (x)->type == NULL && (x)->value == NULL)
553 \f
554
555 /* API Implementation */
556 static int
557 is_root_p (struct varobj *var)
558 {
559 return (var->root->rootvar == var);
560 }
561
562 #ifdef HAVE_PYTHON
563 /* Helper function to install a Python environment suitable for
564 use during operations on VAR. */
565 static struct cleanup *
566 varobj_ensure_python_env (struct varobj *var)
567 {
568 return ensure_python_env (var->root->exp->gdbarch,
569 var->root->exp->language_defn);
570 }
571 #endif
572
573 /* Creates a varobj (not its children). */
574
575 /* Return the full FRAME which corresponds to the given CORE_ADDR
576 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
577
578 static struct frame_info *
579 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
580 {
581 struct frame_info *frame = NULL;
582
583 if (frame_addr == (CORE_ADDR) 0)
584 return NULL;
585
586 for (frame = get_current_frame ();
587 frame != NULL;
588 frame = get_prev_frame (frame))
589 {
590 /* The CORE_ADDR we get as argument was parsed from a string GDB
591 output as $fp. This output got truncated to gdbarch_addr_bit.
592 Truncate the frame base address in the same manner before
593 comparing it against our argument. */
594 CORE_ADDR frame_base = get_frame_base_address (frame);
595 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
596
597 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
598 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
599
600 if (frame_base == frame_addr)
601 return frame;
602 }
603
604 return NULL;
605 }
606
607 struct varobj *
608 varobj_create (char *objname,
609 char *expression, CORE_ADDR frame, enum varobj_type type)
610 {
611 struct varobj *var;
612 struct cleanup *old_chain;
613
614 /* Fill out a varobj structure for the (root) variable being constructed. */
615 var = new_root_variable ();
616 old_chain = make_cleanup_free_variable (var);
617
618 if (expression != NULL)
619 {
620 struct frame_info *fi;
621 struct frame_id old_id = null_frame_id;
622 struct block *block;
623 char *p;
624 enum varobj_languages lang;
625 struct value *value = NULL;
626 volatile struct gdb_exception except;
627 CORE_ADDR pc;
628
629 /* Parse and evaluate the expression, filling in as much of the
630 variable's data as possible. */
631
632 if (has_stack_frames ())
633 {
634 /* Allow creator to specify context of variable. */
635 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
636 fi = get_selected_frame (NULL);
637 else
638 /* FIXME: cagney/2002-11-23: This code should be doing a
639 lookup using the frame ID and not just the frame's
640 ``address''. This, of course, means an interface
641 change. However, with out that interface change ISAs,
642 such as the ia64 with its two stacks, won't work.
643 Similar goes for the case where there is a frameless
644 function. */
645 fi = find_frame_addr_in_frame_chain (frame);
646 }
647 else
648 fi = NULL;
649
650 /* frame = -2 means always use selected frame. */
651 if (type == USE_SELECTED_FRAME)
652 var->root->floating = 1;
653
654 pc = 0;
655 block = NULL;
656 if (fi != NULL)
657 {
658 block = get_frame_block (fi, 0);
659 pc = get_frame_pc (fi);
660 }
661
662 p = expression;
663 innermost_block = NULL;
664 /* Wrap the call to parse expression, so we can
665 return a sensible error. */
666 TRY_CATCH (except, RETURN_MASK_ERROR)
667 {
668 var->root->exp = parse_exp_1 (&p, pc, block, 0);
669 }
670
671 if (except.reason < 0)
672 {
673 do_cleanups (old_chain);
674 return NULL;
675 }
676
677 /* Don't allow variables to be created for types. */
678 if (var->root->exp->elts[0].opcode == OP_TYPE
679 || var->root->exp->elts[0].opcode == OP_TYPEOF
680 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
681 {
682 do_cleanups (old_chain);
683 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
684 " as an expression.\n");
685 return NULL;
686 }
687
688 var->format = variable_default_display (var);
689 var->root->valid_block = innermost_block;
690 var->name = xstrdup (expression);
691 /* For a root var, the name and the expr are the same. */
692 var->path_expr = xstrdup (expression);
693
694 /* When the frame is different from the current frame,
695 we must select the appropriate frame before parsing
696 the expression, otherwise the value will not be current.
697 Since select_frame is so benign, just call it for all cases. */
698 if (innermost_block)
699 {
700 /* User could specify explicit FRAME-ADDR which was not found but
701 EXPRESSION is frame specific and we would not be able to evaluate
702 it correctly next time. With VALID_BLOCK set we must also set
703 FRAME and THREAD_ID. */
704 if (fi == NULL)
705 error (_("Failed to find the specified frame"));
706
707 var->root->frame = get_frame_id (fi);
708 var->root->thread_id = pid_to_thread_id (inferior_ptid);
709 old_id = get_frame_id (get_selected_frame (NULL));
710 select_frame (fi);
711 }
712
713 /* We definitely need to catch errors here.
714 If evaluate_expression succeeds we got the value we wanted.
715 But if it fails, we still go on with a call to evaluate_type(). */
716 TRY_CATCH (except, RETURN_MASK_ERROR)
717 {
718 value = evaluate_expression (var->root->exp);
719 }
720
721 if (except.reason < 0)
722 {
723 /* Error getting the value. Try to at least get the
724 right type. */
725 struct value *type_only_value = evaluate_type (var->root->exp);
726
727 var->type = value_type (type_only_value);
728 }
729 else
730 {
731 int real_type_found = 0;
732
733 var->type = value_actual_type (value, 0, &real_type_found);
734 if (real_type_found)
735 value = value_cast (var->type, value);
736 }
737
738 /* Set language info */
739 lang = variable_language (var);
740 var->root->lang = &languages[lang];
741
742 install_new_value (var, value, 1 /* Initial assignment */);
743
744 /* Set ourselves as our root. */
745 var->root->rootvar = var;
746
747 /* Reset the selected frame. */
748 if (frame_id_p (old_id))
749 select_frame (frame_find_by_id (old_id));
750 }
751
752 /* If the variable object name is null, that means this
753 is a temporary variable, so don't install it. */
754
755 if ((var != NULL) && (objname != NULL))
756 {
757 var->obj_name = xstrdup (objname);
758
759 /* If a varobj name is duplicated, the install will fail so
760 we must cleanup. */
761 if (!install_variable (var))
762 {
763 do_cleanups (old_chain);
764 return NULL;
765 }
766 }
767
768 discard_cleanups (old_chain);
769 return var;
770 }
771
772 /* Generates an unique name that can be used for a varobj. */
773
774 char *
775 varobj_gen_name (void)
776 {
777 static int id = 0;
778 char *obj_name;
779
780 /* Generate a name for this object. */
781 id++;
782 obj_name = xstrprintf ("var%d", id);
783
784 return obj_name;
785 }
786
787 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
788 error if OBJNAME cannot be found. */
789
790 struct varobj *
791 varobj_get_handle (char *objname)
792 {
793 struct vlist *cv;
794 const char *chp;
795 unsigned int index = 0;
796 unsigned int i = 1;
797
798 for (chp = objname; *chp; chp++)
799 {
800 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
801 }
802
803 cv = *(varobj_table + index);
804 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
805 cv = cv->next;
806
807 if (cv == NULL)
808 error (_("Variable object not found"));
809
810 return cv->var;
811 }
812
813 /* Given the handle, return the name of the object. */
814
815 char *
816 varobj_get_objname (struct varobj *var)
817 {
818 return var->obj_name;
819 }
820
821 /* Given the handle, return the expression represented by the object. */
822
823 char *
824 varobj_get_expression (struct varobj *var)
825 {
826 return name_of_variable (var);
827 }
828
829 /* Deletes a varobj and all its children if only_children == 0,
830 otherwise deletes only the children; returns a malloc'ed list of
831 all the (malloc'ed) names of the variables that have been deleted
832 (NULL terminated). */
833
834 int
835 varobj_delete (struct varobj *var, char ***dellist, int only_children)
836 {
837 int delcount;
838 int mycount;
839 struct cpstack *result = NULL;
840 char **cp;
841
842 /* Initialize a stack for temporary results. */
843 cppush (&result, NULL);
844
845 if (only_children)
846 /* Delete only the variable children. */
847 delcount = delete_variable (&result, var, 1 /* only the children */ );
848 else
849 /* Delete the variable and all its children. */
850 delcount = delete_variable (&result, var, 0 /* parent+children */ );
851
852 /* We may have been asked to return a list of what has been deleted. */
853 if (dellist != NULL)
854 {
855 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
856
857 cp = *dellist;
858 mycount = delcount;
859 *cp = cppop (&result);
860 while ((*cp != NULL) && (mycount > 0))
861 {
862 mycount--;
863 cp++;
864 *cp = cppop (&result);
865 }
866
867 if (mycount || (*cp != NULL))
868 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
869 mycount);
870 }
871
872 return delcount;
873 }
874
875 #if HAVE_PYTHON
876
877 /* Convenience function for varobj_set_visualizer. Instantiate a
878 pretty-printer for a given value. */
879 static PyObject *
880 instantiate_pretty_printer (PyObject *constructor, struct value *value)
881 {
882 PyObject *val_obj = NULL;
883 PyObject *printer;
884
885 val_obj = value_to_value_object (value);
886 if (! val_obj)
887 return NULL;
888
889 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
890 Py_DECREF (val_obj);
891 return printer;
892 }
893
894 #endif
895
896 /* Set/Get variable object display format. */
897
898 enum varobj_display_formats
899 varobj_set_display_format (struct varobj *var,
900 enum varobj_display_formats format)
901 {
902 switch (format)
903 {
904 case FORMAT_NATURAL:
905 case FORMAT_BINARY:
906 case FORMAT_DECIMAL:
907 case FORMAT_HEXADECIMAL:
908 case FORMAT_OCTAL:
909 var->format = format;
910 break;
911
912 default:
913 var->format = variable_default_display (var);
914 }
915
916 if (varobj_value_is_changeable_p (var)
917 && var->value && !value_lazy (var->value))
918 {
919 xfree (var->print_value);
920 var->print_value = value_get_print_value (var->value, var->format, var);
921 }
922
923 return var->format;
924 }
925
926 enum varobj_display_formats
927 varobj_get_display_format (struct varobj *var)
928 {
929 return var->format;
930 }
931
932 char *
933 varobj_get_display_hint (struct varobj *var)
934 {
935 char *result = NULL;
936
937 #if HAVE_PYTHON
938 struct cleanup *back_to = varobj_ensure_python_env (var);
939
940 if (var->pretty_printer)
941 result = gdbpy_get_display_hint (var->pretty_printer);
942
943 do_cleanups (back_to);
944 #endif
945
946 return result;
947 }
948
949 /* Return true if the varobj has items after TO, false otherwise. */
950
951 int
952 varobj_has_more (struct varobj *var, int to)
953 {
954 if (VEC_length (varobj_p, var->children) > to)
955 return 1;
956 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
957 && var->saved_item != NULL);
958 }
959
960 /* If the variable object is bound to a specific thread, that
961 is its evaluation can always be done in context of a frame
962 inside that thread, returns GDB id of the thread -- which
963 is always positive. Otherwise, returns -1. */
964 int
965 varobj_get_thread_id (struct varobj *var)
966 {
967 if (var->root->valid_block && var->root->thread_id > 0)
968 return var->root->thread_id;
969 else
970 return -1;
971 }
972
973 void
974 varobj_set_frozen (struct varobj *var, int frozen)
975 {
976 /* When a variable is unfrozen, we don't fetch its value.
977 The 'not_fetched' flag remains set, so next -var-update
978 won't complain.
979
980 We don't fetch the value, because for structures the client
981 should do -var-update anyway. It would be bad to have different
982 client-size logic for structure and other types. */
983 var->frozen = frozen;
984 }
985
986 int
987 varobj_get_frozen (struct varobj *var)
988 {
989 return var->frozen;
990 }
991
992 /* A helper function that restricts a range to what is actually
993 available in a VEC. This follows the usual rules for the meaning
994 of FROM and TO -- if either is negative, the entire range is
995 used. */
996
997 static void
998 restrict_range (VEC (varobj_p) *children, int *from, int *to)
999 {
1000 if (*from < 0 || *to < 0)
1001 {
1002 *from = 0;
1003 *to = VEC_length (varobj_p, children);
1004 }
1005 else
1006 {
1007 if (*from > VEC_length (varobj_p, children))
1008 *from = VEC_length (varobj_p, children);
1009 if (*to > VEC_length (varobj_p, children))
1010 *to = VEC_length (varobj_p, children);
1011 if (*from > *to)
1012 *from = *to;
1013 }
1014 }
1015
1016 #if HAVE_PYTHON
1017
1018 /* A helper for update_dynamic_varobj_children that installs a new
1019 child when needed. */
1020
1021 static void
1022 install_dynamic_child (struct varobj *var,
1023 VEC (varobj_p) **changed,
1024 VEC (varobj_p) **type_changed,
1025 VEC (varobj_p) **new,
1026 VEC (varobj_p) **unchanged,
1027 int *cchanged,
1028 int index,
1029 const char *name,
1030 struct value *value)
1031 {
1032 if (VEC_length (varobj_p, var->children) < index + 1)
1033 {
1034 /* There's no child yet. */
1035 struct varobj *child = varobj_add_child (var, name, value);
1036
1037 if (new)
1038 {
1039 VEC_safe_push (varobj_p, *new, child);
1040 *cchanged = 1;
1041 }
1042 }
1043 else
1044 {
1045 varobj_p existing = VEC_index (varobj_p, var->children, index);
1046
1047 int type_updated = update_type_if_necessary (existing, value);
1048 if (type_updated)
1049 {
1050 if (type_changed)
1051 VEC_safe_push (varobj_p, *type_changed, existing);
1052 }
1053 if (install_new_value (existing, value, 0))
1054 {
1055 if (!type_updated && changed)
1056 VEC_safe_push (varobj_p, *changed, existing);
1057 }
1058 else if (!type_updated && unchanged)
1059 VEC_safe_push (varobj_p, *unchanged, existing);
1060 }
1061 }
1062
1063 static int
1064 dynamic_varobj_has_child_method (struct varobj *var)
1065 {
1066 struct cleanup *back_to;
1067 PyObject *printer = var->pretty_printer;
1068 int result;
1069
1070 back_to = varobj_ensure_python_env (var);
1071 result = PyObject_HasAttr (printer, gdbpy_children_cst);
1072 do_cleanups (back_to);
1073 return result;
1074 }
1075
1076 #endif
1077
1078 static int
1079 update_dynamic_varobj_children (struct varobj *var,
1080 VEC (varobj_p) **changed,
1081 VEC (varobj_p) **type_changed,
1082 VEC (varobj_p) **new,
1083 VEC (varobj_p) **unchanged,
1084 int *cchanged,
1085 int update_children,
1086 int from,
1087 int to)
1088 {
1089 #if HAVE_PYTHON
1090 struct cleanup *back_to;
1091 PyObject *children;
1092 int i;
1093 PyObject *printer = var->pretty_printer;
1094
1095 back_to = varobj_ensure_python_env (var);
1096
1097 *cchanged = 0;
1098 if (!PyObject_HasAttr (printer, gdbpy_children_cst))
1099 {
1100 do_cleanups (back_to);
1101 return 0;
1102 }
1103
1104 if (update_children || !var->child_iter)
1105 {
1106 children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
1107 NULL);
1108
1109 if (!children)
1110 {
1111 gdbpy_print_stack ();
1112 error (_("Null value returned for children"));
1113 }
1114
1115 make_cleanup_py_decref (children);
1116
1117 Py_XDECREF (var->child_iter);
1118 var->child_iter = PyObject_GetIter (children);
1119 if (!var->child_iter)
1120 {
1121 gdbpy_print_stack ();
1122 error (_("Could not get children iterator"));
1123 }
1124
1125 Py_XDECREF (var->saved_item);
1126 var->saved_item = NULL;
1127
1128 i = 0;
1129 }
1130 else
1131 i = VEC_length (varobj_p, var->children);
1132
1133 /* We ask for one extra child, so that MI can report whether there
1134 are more children. */
1135 for (; to < 0 || i < to + 1; ++i)
1136 {
1137 PyObject *item;
1138 int force_done = 0;
1139
1140 /* See if there was a leftover from last time. */
1141 if (var->saved_item)
1142 {
1143 item = var->saved_item;
1144 var->saved_item = NULL;
1145 }
1146 else
1147 item = PyIter_Next (var->child_iter);
1148
1149 if (!item)
1150 {
1151 /* Normal end of iteration. */
1152 if (!PyErr_Occurred ())
1153 break;
1154
1155 /* If we got a memory error, just use the text as the
1156 item. */
1157 if (PyErr_ExceptionMatches (gdbpy_gdb_memory_error))
1158 {
1159 PyObject *type, *value, *trace;
1160 char *name_str, *value_str;
1161
1162 PyErr_Fetch (&type, &value, &trace);
1163 value_str = gdbpy_exception_to_string (type, value);
1164 Py_XDECREF (type);
1165 Py_XDECREF (value);
1166 Py_XDECREF (trace);
1167 if (!value_str)
1168 {
1169 gdbpy_print_stack ();
1170 break;
1171 }
1172
1173 name_str = xstrprintf ("<error at %d>", i);
1174 item = Py_BuildValue ("(ss)", name_str, value_str);
1175 xfree (name_str);
1176 xfree (value_str);
1177 if (!item)
1178 {
1179 gdbpy_print_stack ();
1180 break;
1181 }
1182
1183 force_done = 1;
1184 }
1185 else
1186 {
1187 /* Any other kind of error. */
1188 gdbpy_print_stack ();
1189 break;
1190 }
1191 }
1192
1193 /* We don't want to push the extra child on any report list. */
1194 if (to < 0 || i < to)
1195 {
1196 PyObject *py_v;
1197 const char *name;
1198 struct value *v;
1199 struct cleanup *inner;
1200 int can_mention = from < 0 || i >= from;
1201
1202 inner = make_cleanup_py_decref (item);
1203
1204 if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
1205 {
1206 gdbpy_print_stack ();
1207 error (_("Invalid item from the child list"));
1208 }
1209
1210 v = convert_value_from_python (py_v);
1211 if (v == NULL)
1212 gdbpy_print_stack ();
1213 install_dynamic_child (var, can_mention ? changed : NULL,
1214 can_mention ? type_changed : NULL,
1215 can_mention ? new : NULL,
1216 can_mention ? unchanged : NULL,
1217 can_mention ? cchanged : NULL, i, name, v);
1218 do_cleanups (inner);
1219 }
1220 else
1221 {
1222 Py_XDECREF (var->saved_item);
1223 var->saved_item = item;
1224
1225 /* We want to truncate the child list just before this
1226 element. */
1227 break;
1228 }
1229
1230 if (force_done)
1231 break;
1232 }
1233
1234 if (i < VEC_length (varobj_p, var->children))
1235 {
1236 int j;
1237
1238 *cchanged = 1;
1239 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
1240 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
1241 VEC_truncate (varobj_p, var->children, i);
1242 }
1243
1244 /* If there are fewer children than requested, note that the list of
1245 children changed. */
1246 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
1247 *cchanged = 1;
1248
1249 var->num_children = VEC_length (varobj_p, var->children);
1250
1251 do_cleanups (back_to);
1252
1253 return 1;
1254 #else
1255 gdb_assert (0 && "should never be called if Python is not enabled");
1256 #endif
1257 }
1258
1259 int
1260 varobj_get_num_children (struct varobj *var)
1261 {
1262 if (var->num_children == -1)
1263 {
1264 if (var->pretty_printer)
1265 {
1266 int dummy;
1267
1268 /* If we have a dynamic varobj, don't report -1 children.
1269 So, try to fetch some children first. */
1270 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
1271 0, 0, 0);
1272 }
1273 else
1274 var->num_children = number_of_children (var);
1275 }
1276
1277 return var->num_children >= 0 ? var->num_children : 0;
1278 }
1279
1280 /* Creates a list of the immediate children of a variable object;
1281 the return code is the number of such children or -1 on error. */
1282
1283 VEC (varobj_p)*
1284 varobj_list_children (struct varobj *var, int *from, int *to)
1285 {
1286 char *name;
1287 int i, children_changed;
1288
1289 var->children_requested = 1;
1290
1291 if (var->pretty_printer)
1292 {
1293 /* This, in theory, can result in the number of children changing without
1294 frontend noticing. But well, calling -var-list-children on the same
1295 varobj twice is not something a sane frontend would do. */
1296 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
1297 &children_changed, 0, 0, *to);
1298 restrict_range (var->children, from, to);
1299 return var->children;
1300 }
1301
1302 if (var->num_children == -1)
1303 var->num_children = number_of_children (var);
1304
1305 /* If that failed, give up. */
1306 if (var->num_children == -1)
1307 return var->children;
1308
1309 /* If we're called when the list of children is not yet initialized,
1310 allocate enough elements in it. */
1311 while (VEC_length (varobj_p, var->children) < var->num_children)
1312 VEC_safe_push (varobj_p, var->children, NULL);
1313
1314 for (i = 0; i < var->num_children; i++)
1315 {
1316 varobj_p existing = VEC_index (varobj_p, var->children, i);
1317
1318 if (existing == NULL)
1319 {
1320 /* Either it's the first call to varobj_list_children for
1321 this variable object, and the child was never created,
1322 or it was explicitly deleted by the client. */
1323 name = name_of_child (var, i);
1324 existing = create_child (var, i, name);
1325 VEC_replace (varobj_p, var->children, i, existing);
1326 }
1327 }
1328
1329 restrict_range (var->children, from, to);
1330 return var->children;
1331 }
1332
1333 #if HAVE_PYTHON
1334
1335 static struct varobj *
1336 varobj_add_child (struct varobj *var, const char *name, struct value *value)
1337 {
1338 varobj_p v = create_child_with_value (var,
1339 VEC_length (varobj_p, var->children),
1340 name, value);
1341
1342 VEC_safe_push (varobj_p, var->children, v);
1343 return v;
1344 }
1345
1346 #endif /* HAVE_PYTHON */
1347
1348 /* Obtain the type of an object Variable as a string similar to the one gdb
1349 prints on the console. */
1350
1351 char *
1352 varobj_get_type (struct varobj *var)
1353 {
1354 /* For the "fake" variables, do not return a type. (It's type is
1355 NULL, too.)
1356 Do not return a type for invalid variables as well. */
1357 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
1358 return NULL;
1359
1360 return type_to_string (var->type);
1361 }
1362
1363 /* Obtain the type of an object variable. */
1364
1365 struct type *
1366 varobj_get_gdb_type (struct varobj *var)
1367 {
1368 return var->type;
1369 }
1370
1371 /* Is VAR a path expression parent, i.e., can it be used to construct
1372 a valid path expression? */
1373
1374 static int
1375 is_path_expr_parent (struct varobj *var)
1376 {
1377 struct type *type;
1378
1379 /* "Fake" children are not path_expr parents. */
1380 if (CPLUS_FAKE_CHILD (var))
1381 return 0;
1382
1383 type = get_value_type (var);
1384
1385 /* Anonymous unions and structs are also not path_expr parents. */
1386 return !((TYPE_CODE (type) == TYPE_CODE_STRUCT
1387 || TYPE_CODE (type) == TYPE_CODE_UNION)
1388 && TYPE_NAME (type) == NULL);
1389 }
1390
1391 /* Return the path expression parent for VAR. */
1392
1393 static struct varobj *
1394 get_path_expr_parent (struct varobj *var)
1395 {
1396 struct varobj *parent = var;
1397
1398 while (!is_root_p (parent) && !is_path_expr_parent (parent))
1399 parent = parent->parent;
1400
1401 return parent;
1402 }
1403
1404 /* Return a pointer to the full rooted expression of varobj VAR.
1405 If it has not been computed yet, compute it. */
1406 char *
1407 varobj_get_path_expr (struct varobj *var)
1408 {
1409 if (var->path_expr != NULL)
1410 return var->path_expr;
1411 else
1412 {
1413 /* For root varobjs, we initialize path_expr
1414 when creating varobj, so here it should be
1415 child varobj. */
1416 gdb_assert (!is_root_p (var));
1417 return (*var->root->lang->path_expr_of_child) (var);
1418 }
1419 }
1420
1421 enum varobj_languages
1422 varobj_get_language (struct varobj *var)
1423 {
1424 return variable_language (var);
1425 }
1426
1427 int
1428 varobj_get_attributes (struct varobj *var)
1429 {
1430 int attributes = 0;
1431
1432 if (varobj_editable_p (var))
1433 /* FIXME: define masks for attributes. */
1434 attributes |= 0x00000001; /* Editable */
1435
1436 return attributes;
1437 }
1438
1439 int
1440 varobj_pretty_printed_p (struct varobj *var)
1441 {
1442 return var->pretty_printer != NULL;
1443 }
1444
1445 char *
1446 varobj_get_formatted_value (struct varobj *var,
1447 enum varobj_display_formats format)
1448 {
1449 return my_value_of_variable (var, format);
1450 }
1451
1452 char *
1453 varobj_get_value (struct varobj *var)
1454 {
1455 return my_value_of_variable (var, var->format);
1456 }
1457
1458 /* Set the value of an object variable (if it is editable) to the
1459 value of the given expression. */
1460 /* Note: Invokes functions that can call error(). */
1461
1462 int
1463 varobj_set_value (struct varobj *var, char *expression)
1464 {
1465 struct value *val = NULL; /* Initialize to keep gcc happy. */
1466 /* The argument "expression" contains the variable's new value.
1467 We need to first construct a legal expression for this -- ugh! */
1468 /* Does this cover all the bases? */
1469 struct expression *exp;
1470 struct value *value = NULL; /* Initialize to keep gcc happy. */
1471 int saved_input_radix = input_radix;
1472 char *s = expression;
1473 volatile struct gdb_exception except;
1474
1475 gdb_assert (varobj_editable_p (var));
1476
1477 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1478 exp = parse_exp_1 (&s, 0, 0, 0);
1479 TRY_CATCH (except, RETURN_MASK_ERROR)
1480 {
1481 value = evaluate_expression (exp);
1482 }
1483
1484 if (except.reason < 0)
1485 {
1486 /* We cannot proceed without a valid expression. */
1487 xfree (exp);
1488 return 0;
1489 }
1490
1491 /* All types that are editable must also be changeable. */
1492 gdb_assert (varobj_value_is_changeable_p (var));
1493
1494 /* The value of a changeable variable object must not be lazy. */
1495 gdb_assert (!value_lazy (var->value));
1496
1497 /* Need to coerce the input. We want to check if the
1498 value of the variable object will be different
1499 after assignment, and the first thing value_assign
1500 does is coerce the input.
1501 For example, if we are assigning an array to a pointer variable we
1502 should compare the pointer with the array's address, not with the
1503 array's content. */
1504 value = coerce_array (value);
1505
1506 /* The new value may be lazy. value_assign, or
1507 rather value_contents, will take care of this. */
1508 TRY_CATCH (except, RETURN_MASK_ERROR)
1509 {
1510 val = value_assign (var->value, value);
1511 }
1512
1513 if (except.reason < 0)
1514 return 0;
1515
1516 /* If the value has changed, record it, so that next -var-update can
1517 report this change. If a variable had a value of '1', we've set it
1518 to '333' and then set again to '1', when -var-update will report this
1519 variable as changed -- because the first assignment has set the
1520 'updated' flag. There's no need to optimize that, because return value
1521 of -var-update should be considered an approximation. */
1522 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1523 input_radix = saved_input_radix;
1524 return 1;
1525 }
1526
1527 #if HAVE_PYTHON
1528
1529 /* A helper function to install a constructor function and visualizer
1530 in a varobj. */
1531
1532 static void
1533 install_visualizer (struct varobj *var, PyObject *constructor,
1534 PyObject *visualizer)
1535 {
1536 Py_XDECREF (var->constructor);
1537 var->constructor = constructor;
1538
1539 Py_XDECREF (var->pretty_printer);
1540 var->pretty_printer = visualizer;
1541
1542 Py_XDECREF (var->child_iter);
1543 var->child_iter = NULL;
1544 }
1545
1546 /* Install the default visualizer for VAR. */
1547
1548 static void
1549 install_default_visualizer (struct varobj *var)
1550 {
1551 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1552 if (CPLUS_FAKE_CHILD (var))
1553 return;
1554
1555 if (pretty_printing)
1556 {
1557 PyObject *pretty_printer = NULL;
1558
1559 if (var->value)
1560 {
1561 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1562 if (! pretty_printer)
1563 {
1564 gdbpy_print_stack ();
1565 error (_("Cannot instantiate printer for default visualizer"));
1566 }
1567 }
1568
1569 if (pretty_printer == Py_None)
1570 {
1571 Py_DECREF (pretty_printer);
1572 pretty_printer = NULL;
1573 }
1574
1575 install_visualizer (var, NULL, pretty_printer);
1576 }
1577 }
1578
1579 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1580 make a new object. */
1581
1582 static void
1583 construct_visualizer (struct varobj *var, PyObject *constructor)
1584 {
1585 PyObject *pretty_printer;
1586
1587 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1588 if (CPLUS_FAKE_CHILD (var))
1589 return;
1590
1591 Py_INCREF (constructor);
1592 if (constructor == Py_None)
1593 pretty_printer = NULL;
1594 else
1595 {
1596 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1597 if (! pretty_printer)
1598 {
1599 gdbpy_print_stack ();
1600 Py_DECREF (constructor);
1601 constructor = Py_None;
1602 Py_INCREF (constructor);
1603 }
1604
1605 if (pretty_printer == Py_None)
1606 {
1607 Py_DECREF (pretty_printer);
1608 pretty_printer = NULL;
1609 }
1610 }
1611
1612 install_visualizer (var, constructor, pretty_printer);
1613 }
1614
1615 #endif /* HAVE_PYTHON */
1616
1617 /* A helper function for install_new_value. This creates and installs
1618 a visualizer for VAR, if appropriate. */
1619
1620 static void
1621 install_new_value_visualizer (struct varobj *var)
1622 {
1623 #if HAVE_PYTHON
1624 /* If the constructor is None, then we want the raw value. If VAR
1625 does not have a value, just skip this. */
1626 if (var->constructor != Py_None && var->value)
1627 {
1628 struct cleanup *cleanup;
1629
1630 cleanup = varobj_ensure_python_env (var);
1631
1632 if (!var->constructor)
1633 install_default_visualizer (var);
1634 else
1635 construct_visualizer (var, var->constructor);
1636
1637 do_cleanups (cleanup);
1638 }
1639 #else
1640 /* Do nothing. */
1641 #endif
1642 }
1643
1644 /* When using RTTI to determine variable type it may be changed in runtime when
1645 the variable value is changed. This function checks whether type of varobj
1646 VAR will change when a new value NEW_VALUE is assigned and if it is so
1647 updates the type of VAR. */
1648
1649 static int
1650 update_type_if_necessary (struct varobj *var, struct value *new_value)
1651 {
1652 if (new_value)
1653 {
1654 struct value_print_options opts;
1655
1656 get_user_print_options (&opts);
1657 if (opts.objectprint)
1658 {
1659 struct type *new_type;
1660 char *curr_type_str, *new_type_str;
1661
1662 new_type = value_actual_type (new_value, 0, 0);
1663 new_type_str = type_to_string (new_type);
1664 curr_type_str = varobj_get_type (var);
1665 if (strcmp (curr_type_str, new_type_str) != 0)
1666 {
1667 var->type = new_type;
1668
1669 /* This information may be not valid for a new type. */
1670 varobj_delete (var, NULL, 1);
1671 VEC_free (varobj_p, var->children);
1672 var->num_children = -1;
1673 return 1;
1674 }
1675 }
1676 }
1677
1678 return 0;
1679 }
1680
1681 /* Assign a new value to a variable object. If INITIAL is non-zero,
1682 this is the first assignement after the variable object was just
1683 created, or changed type. In that case, just assign the value
1684 and return 0.
1685 Otherwise, assign the new value, and return 1 if the value is
1686 different from the current one, 0 otherwise. The comparison is
1687 done on textual representation of value. Therefore, some types
1688 need not be compared. E.g. for structures the reported value is
1689 always "{...}", so no comparison is necessary here. If the old
1690 value was NULL and new one is not, or vice versa, we always return 1.
1691
1692 The VALUE parameter should not be released -- the function will
1693 take care of releasing it when needed. */
1694 static int
1695 install_new_value (struct varobj *var, struct value *value, int initial)
1696 {
1697 int changeable;
1698 int need_to_fetch;
1699 int changed = 0;
1700 int intentionally_not_fetched = 0;
1701 char *print_value = NULL;
1702
1703 /* We need to know the varobj's type to decide if the value should
1704 be fetched or not. C++ fake children (public/protected/private)
1705 don't have a type. */
1706 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1707 changeable = varobj_value_is_changeable_p (var);
1708
1709 /* If the type has custom visualizer, we consider it to be always
1710 changeable. FIXME: need to make sure this behaviour will not
1711 mess up read-sensitive values. */
1712 if (var->pretty_printer)
1713 changeable = 1;
1714
1715 need_to_fetch = changeable;
1716
1717 /* We are not interested in the address of references, and given
1718 that in C++ a reference is not rebindable, it cannot
1719 meaningfully change. So, get hold of the real value. */
1720 if (value)
1721 value = coerce_ref (value);
1722
1723 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1724 /* For unions, we need to fetch the value implicitly because
1725 of implementation of union member fetch. When gdb
1726 creates a value for a field and the value of the enclosing
1727 structure is not lazy, it immediately copies the necessary
1728 bytes from the enclosing values. If the enclosing value is
1729 lazy, the call to value_fetch_lazy on the field will read
1730 the data from memory. For unions, that means we'll read the
1731 same memory more than once, which is not desirable. So
1732 fetch now. */
1733 need_to_fetch = 1;
1734
1735 /* The new value might be lazy. If the type is changeable,
1736 that is we'll be comparing values of this type, fetch the
1737 value now. Otherwise, on the next update the old value
1738 will be lazy, which means we've lost that old value. */
1739 if (need_to_fetch && value && value_lazy (value))
1740 {
1741 struct varobj *parent = var->parent;
1742 int frozen = var->frozen;
1743
1744 for (; !frozen && parent; parent = parent->parent)
1745 frozen |= parent->frozen;
1746
1747 if (frozen && initial)
1748 {
1749 /* For variables that are frozen, or are children of frozen
1750 variables, we don't do fetch on initial assignment.
1751 For non-initial assignemnt we do the fetch, since it means we're
1752 explicitly asked to compare the new value with the old one. */
1753 intentionally_not_fetched = 1;
1754 }
1755 else
1756 {
1757 volatile struct gdb_exception except;
1758
1759 TRY_CATCH (except, RETURN_MASK_ERROR)
1760 {
1761 value_fetch_lazy (value);
1762 }
1763
1764 if (except.reason < 0)
1765 {
1766 /* Set the value to NULL, so that for the next -var-update,
1767 we don't try to compare the new value with this value,
1768 that we couldn't even read. */
1769 value = NULL;
1770 }
1771 }
1772 }
1773
1774 /* Get a reference now, before possibly passing it to any Python
1775 code that might release it. */
1776 if (value != NULL)
1777 value_incref (value);
1778
1779 /* Below, we'll be comparing string rendering of old and new
1780 values. Don't get string rendering if the value is
1781 lazy -- if it is, the code above has decided that the value
1782 should not be fetched. */
1783 if (value && !value_lazy (value) && !var->pretty_printer)
1784 print_value = value_get_print_value (value, var->format, var);
1785
1786 /* If the type is changeable, compare the old and the new values.
1787 If this is the initial assignment, we don't have any old value
1788 to compare with. */
1789 if (!initial && changeable)
1790 {
1791 /* If the value of the varobj was changed by -var-set-value,
1792 then the value in the varobj and in the target is the same.
1793 However, that value is different from the value that the
1794 varobj had after the previous -var-update. So need to the
1795 varobj as changed. */
1796 if (var->updated)
1797 {
1798 changed = 1;
1799 }
1800 else if (! var->pretty_printer)
1801 {
1802 /* Try to compare the values. That requires that both
1803 values are non-lazy. */
1804 if (var->not_fetched && value_lazy (var->value))
1805 {
1806 /* This is a frozen varobj and the value was never read.
1807 Presumably, UI shows some "never read" indicator.
1808 Now that we've fetched the real value, we need to report
1809 this varobj as changed so that UI can show the real
1810 value. */
1811 changed = 1;
1812 }
1813 else if (var->value == NULL && value == NULL)
1814 /* Equal. */
1815 ;
1816 else if (var->value == NULL || value == NULL)
1817 {
1818 changed = 1;
1819 }
1820 else
1821 {
1822 gdb_assert (!value_lazy (var->value));
1823 gdb_assert (!value_lazy (value));
1824
1825 gdb_assert (var->print_value != NULL && print_value != NULL);
1826 if (strcmp (var->print_value, print_value) != 0)
1827 changed = 1;
1828 }
1829 }
1830 }
1831
1832 if (!initial && !changeable)
1833 {
1834 /* For values that are not changeable, we don't compare the values.
1835 However, we want to notice if a value was not NULL and now is NULL,
1836 or vise versa, so that we report when top-level varobjs come in scope
1837 and leave the scope. */
1838 changed = (var->value != NULL) != (value != NULL);
1839 }
1840
1841 /* We must always keep the new value, since children depend on it. */
1842 if (var->value != NULL && var->value != value)
1843 value_free (var->value);
1844 var->value = value;
1845 if (value && value_lazy (value) && intentionally_not_fetched)
1846 var->not_fetched = 1;
1847 else
1848 var->not_fetched = 0;
1849 var->updated = 0;
1850
1851 install_new_value_visualizer (var);
1852
1853 /* If we installed a pretty-printer, re-compare the printed version
1854 to see if the variable changed. */
1855 if (var->pretty_printer)
1856 {
1857 xfree (print_value);
1858 print_value = value_get_print_value (var->value, var->format, var);
1859 if ((var->print_value == NULL && print_value != NULL)
1860 || (var->print_value != NULL && print_value == NULL)
1861 || (var->print_value != NULL && print_value != NULL
1862 && strcmp (var->print_value, print_value) != 0))
1863 changed = 1;
1864 }
1865 if (var->print_value)
1866 xfree (var->print_value);
1867 var->print_value = print_value;
1868
1869 gdb_assert (!var->value || value_type (var->value));
1870
1871 return changed;
1872 }
1873
1874 /* Return the requested range for a varobj. VAR is the varobj. FROM
1875 and TO are out parameters; *FROM and *TO will be set to the
1876 selected sub-range of VAR. If no range was selected using
1877 -var-set-update-range, then both will be -1. */
1878 void
1879 varobj_get_child_range (struct varobj *var, int *from, int *to)
1880 {
1881 *from = var->from;
1882 *to = var->to;
1883 }
1884
1885 /* Set the selected sub-range of children of VAR to start at index
1886 FROM and end at index TO. If either FROM or TO is less than zero,
1887 this is interpreted as a request for all children. */
1888 void
1889 varobj_set_child_range (struct varobj *var, int from, int to)
1890 {
1891 var->from = from;
1892 var->to = to;
1893 }
1894
1895 void
1896 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1897 {
1898 #if HAVE_PYTHON
1899 PyObject *mainmod, *globals, *constructor;
1900 struct cleanup *back_to;
1901
1902 back_to = varobj_ensure_python_env (var);
1903
1904 mainmod = PyImport_AddModule ("__main__");
1905 globals = PyModule_GetDict (mainmod);
1906 Py_INCREF (globals);
1907 make_cleanup_py_decref (globals);
1908
1909 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1910
1911 if (! constructor)
1912 {
1913 gdbpy_print_stack ();
1914 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1915 }
1916
1917 construct_visualizer (var, constructor);
1918 Py_XDECREF (constructor);
1919
1920 /* If there are any children now, wipe them. */
1921 varobj_delete (var, NULL, 1 /* children only */);
1922 var->num_children = -1;
1923
1924 do_cleanups (back_to);
1925 #else
1926 error (_("Python support required"));
1927 #endif
1928 }
1929
1930 /* If NEW_VALUE is the new value of the given varobj (var), return
1931 non-zero if var has mutated. In other words, if the type of
1932 the new value is different from the type of the varobj's old
1933 value.
1934
1935 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1936
1937 static int
1938 varobj_value_has_mutated (struct varobj *var, struct value *new_value,
1939 struct type *new_type)
1940 {
1941 /* If we haven't previously computed the number of children in var,
1942 it does not matter from the front-end's perspective whether
1943 the type has mutated or not. For all intents and purposes,
1944 it has not mutated. */
1945 if (var->num_children < 0)
1946 return 0;
1947
1948 if (var->root->lang->value_has_mutated)
1949 return var->root->lang->value_has_mutated (var, new_value, new_type);
1950 else
1951 return 0;
1952 }
1953
1954 /* Update the values for a variable and its children. This is a
1955 two-pronged attack. First, re-parse the value for the root's
1956 expression to see if it's changed. Then go all the way
1957 through its children, reconstructing them and noting if they've
1958 changed.
1959
1960 The EXPLICIT parameter specifies if this call is result
1961 of MI request to update this specific variable, or
1962 result of implicit -var-update *. For implicit request, we don't
1963 update frozen variables.
1964
1965 NOTE: This function may delete the caller's varobj. If it
1966 returns TYPE_CHANGED, then it has done this and VARP will be modified
1967 to point to the new varobj. */
1968
1969 VEC(varobj_update_result) *
1970 varobj_update (struct varobj **varp, int explicit)
1971 {
1972 int changed = 0;
1973 int type_changed = 0;
1974 int i;
1975 struct value *new;
1976 VEC (varobj_update_result) *stack = NULL;
1977 VEC (varobj_update_result) *result = NULL;
1978
1979 /* Frozen means frozen -- we don't check for any change in
1980 this varobj, including its going out of scope, or
1981 changing type. One use case for frozen varobjs is
1982 retaining previously evaluated expressions, and we don't
1983 want them to be reevaluated at all. */
1984 if (!explicit && (*varp)->frozen)
1985 return result;
1986
1987 if (!(*varp)->root->is_valid)
1988 {
1989 varobj_update_result r = {0};
1990
1991 r.varobj = *varp;
1992 r.status = VAROBJ_INVALID;
1993 VEC_safe_push (varobj_update_result, result, &r);
1994 return result;
1995 }
1996
1997 if ((*varp)->root->rootvar == *varp)
1998 {
1999 varobj_update_result r = {0};
2000
2001 r.varobj = *varp;
2002 r.status = VAROBJ_IN_SCOPE;
2003
2004 /* Update the root variable. value_of_root can return NULL
2005 if the variable is no longer around, i.e. we stepped out of
2006 the frame in which a local existed. We are letting the
2007 value_of_root variable dispose of the varobj if the type
2008 has changed. */
2009 new = value_of_root (varp, &type_changed);
2010 if (update_type_if_necessary(*varp, new))
2011 type_changed = 1;
2012 r.varobj = *varp;
2013 r.type_changed = type_changed;
2014 if (install_new_value ((*varp), new, type_changed))
2015 r.changed = 1;
2016
2017 if (new == NULL)
2018 r.status = VAROBJ_NOT_IN_SCOPE;
2019 r.value_installed = 1;
2020
2021 if (r.status == VAROBJ_NOT_IN_SCOPE)
2022 {
2023 if (r.type_changed || r.changed)
2024 VEC_safe_push (varobj_update_result, result, &r);
2025 return result;
2026 }
2027
2028 VEC_safe_push (varobj_update_result, stack, &r);
2029 }
2030 else
2031 {
2032 varobj_update_result r = {0};
2033
2034 r.varobj = *varp;
2035 VEC_safe_push (varobj_update_result, stack, &r);
2036 }
2037
2038 /* Walk through the children, reconstructing them all. */
2039 while (!VEC_empty (varobj_update_result, stack))
2040 {
2041 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
2042 struct varobj *v = r.varobj;
2043
2044 VEC_pop (varobj_update_result, stack);
2045
2046 /* Update this variable, unless it's a root, which is already
2047 updated. */
2048 if (!r.value_installed)
2049 {
2050 struct type *new_type;
2051
2052 new = value_of_child (v->parent, v->index);
2053 if (update_type_if_necessary(v, new))
2054 r.type_changed = 1;
2055 if (new)
2056 new_type = value_type (new);
2057 else
2058 new_type = v->root->lang->type_of_child (v->parent, v->index);
2059
2060 if (varobj_value_has_mutated (v, new, new_type))
2061 {
2062 /* The children are no longer valid; delete them now.
2063 Report the fact that its type changed as well. */
2064 varobj_delete (v, NULL, 1 /* only_children */);
2065 v->num_children = -1;
2066 v->to = -1;
2067 v->from = -1;
2068 v->type = new_type;
2069 r.type_changed = 1;
2070 }
2071
2072 if (install_new_value (v, new, r.type_changed))
2073 {
2074 r.changed = 1;
2075 v->updated = 0;
2076 }
2077 }
2078
2079 /* We probably should not get children of a varobj that has a
2080 pretty-printer, but for which -var-list-children was never
2081 invoked. */
2082 if (v->pretty_printer)
2083 {
2084 VEC (varobj_p) *changed = 0, *type_changed = 0, *unchanged = 0;
2085 VEC (varobj_p) *new = 0;
2086 int i, children_changed = 0;
2087
2088 if (v->frozen)
2089 continue;
2090
2091 if (!v->children_requested)
2092 {
2093 int dummy;
2094
2095 /* If we initially did not have potential children, but
2096 now we do, consider the varobj as changed.
2097 Otherwise, if children were never requested, consider
2098 it as unchanged -- presumably, such varobj is not yet
2099 expanded in the UI, so we need not bother getting
2100 it. */
2101 if (!varobj_has_more (v, 0))
2102 {
2103 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
2104 &dummy, 0, 0, 0);
2105 if (varobj_has_more (v, 0))
2106 r.changed = 1;
2107 }
2108
2109 if (r.changed)
2110 VEC_safe_push (varobj_update_result, result, &r);
2111
2112 continue;
2113 }
2114
2115 /* If update_dynamic_varobj_children returns 0, then we have
2116 a non-conforming pretty-printer, so we skip it. */
2117 if (update_dynamic_varobj_children (v, &changed, &type_changed, &new,
2118 &unchanged, &children_changed, 1,
2119 v->from, v->to))
2120 {
2121 if (children_changed || new)
2122 {
2123 r.children_changed = 1;
2124 r.new = new;
2125 }
2126 /* Push in reverse order so that the first child is
2127 popped from the work stack first, and so will be
2128 added to result first. This does not affect
2129 correctness, just "nicer". */
2130 for (i = VEC_length (varobj_p, type_changed) - 1; i >= 0; --i)
2131 {
2132 varobj_p tmp = VEC_index (varobj_p, type_changed, i);
2133 varobj_update_result r = {0};
2134
2135 /* Type may change only if value was changed. */
2136 r.varobj = tmp;
2137 r.changed = 1;
2138 r.type_changed = 1;
2139 r.value_installed = 1;
2140 VEC_safe_push (varobj_update_result, stack, &r);
2141 }
2142 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
2143 {
2144 varobj_p tmp = VEC_index (varobj_p, changed, i);
2145 varobj_update_result r = {0};
2146
2147 r.varobj = tmp;
2148 r.changed = 1;
2149 r.value_installed = 1;
2150 VEC_safe_push (varobj_update_result, stack, &r);
2151 }
2152 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
2153 {
2154 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
2155
2156 if (!tmp->frozen)
2157 {
2158 varobj_update_result r = {0};
2159
2160 r.varobj = tmp;
2161 r.value_installed = 1;
2162 VEC_safe_push (varobj_update_result, stack, &r);
2163 }
2164 }
2165 if (r.changed || r.children_changed)
2166 VEC_safe_push (varobj_update_result, result, &r);
2167
2168 /* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW,
2169 because NEW has been put into the result vector. */
2170 VEC_free (varobj_p, changed);
2171 VEC_free (varobj_p, type_changed);
2172 VEC_free (varobj_p, unchanged);
2173
2174 continue;
2175 }
2176 }
2177
2178 /* Push any children. Use reverse order so that the first
2179 child is popped from the work stack first, and so
2180 will be added to result first. This does not
2181 affect correctness, just "nicer". */
2182 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
2183 {
2184 varobj_p c = VEC_index (varobj_p, v->children, i);
2185
2186 /* Child may be NULL if explicitly deleted by -var-delete. */
2187 if (c != NULL && !c->frozen)
2188 {
2189 varobj_update_result r = {0};
2190
2191 r.varobj = c;
2192 VEC_safe_push (varobj_update_result, stack, &r);
2193 }
2194 }
2195
2196 if (r.changed || r.type_changed)
2197 VEC_safe_push (varobj_update_result, result, &r);
2198 }
2199
2200 VEC_free (varobj_update_result, stack);
2201
2202 return result;
2203 }
2204 \f
2205
2206 /* Helper functions */
2207
2208 /*
2209 * Variable object construction/destruction
2210 */
2211
2212 static int
2213 delete_variable (struct cpstack **resultp, struct varobj *var,
2214 int only_children_p)
2215 {
2216 int delcount = 0;
2217
2218 delete_variable_1 (resultp, &delcount, var,
2219 only_children_p, 1 /* remove_from_parent_p */ );
2220
2221 return delcount;
2222 }
2223
2224 /* Delete the variable object VAR and its children. */
2225 /* IMPORTANT NOTE: If we delete a variable which is a child
2226 and the parent is not removed we dump core. It must be always
2227 initially called with remove_from_parent_p set. */
2228 static void
2229 delete_variable_1 (struct cpstack **resultp, int *delcountp,
2230 struct varobj *var, int only_children_p,
2231 int remove_from_parent_p)
2232 {
2233 int i;
2234
2235 /* Delete any children of this variable, too. */
2236 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
2237 {
2238 varobj_p child = VEC_index (varobj_p, var->children, i);
2239
2240 if (!child)
2241 continue;
2242 if (!remove_from_parent_p)
2243 child->parent = NULL;
2244 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
2245 }
2246 VEC_free (varobj_p, var->children);
2247
2248 /* if we were called to delete only the children we are done here. */
2249 if (only_children_p)
2250 return;
2251
2252 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
2253 /* If the name is null, this is a temporary variable, that has not
2254 yet been installed, don't report it, it belongs to the caller... */
2255 if (var->obj_name != NULL)
2256 {
2257 cppush (resultp, xstrdup (var->obj_name));
2258 *delcountp = *delcountp + 1;
2259 }
2260
2261 /* If this variable has a parent, remove it from its parent's list. */
2262 /* OPTIMIZATION: if the parent of this variable is also being deleted,
2263 (as indicated by remove_from_parent_p) we don't bother doing an
2264 expensive list search to find the element to remove when we are
2265 discarding the list afterwards. */
2266 if ((remove_from_parent_p) && (var->parent != NULL))
2267 {
2268 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
2269 }
2270
2271 if (var->obj_name != NULL)
2272 uninstall_variable (var);
2273
2274 /* Free memory associated with this variable. */
2275 free_variable (var);
2276 }
2277
2278 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
2279 static int
2280 install_variable (struct varobj *var)
2281 {
2282 struct vlist *cv;
2283 struct vlist *newvl;
2284 const char *chp;
2285 unsigned int index = 0;
2286 unsigned int i = 1;
2287
2288 for (chp = var->obj_name; *chp; chp++)
2289 {
2290 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2291 }
2292
2293 cv = *(varobj_table + index);
2294 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2295 cv = cv->next;
2296
2297 if (cv != NULL)
2298 error (_("Duplicate variable object name"));
2299
2300 /* Add varobj to hash table. */
2301 newvl = xmalloc (sizeof (struct vlist));
2302 newvl->next = *(varobj_table + index);
2303 newvl->var = var;
2304 *(varobj_table + index) = newvl;
2305
2306 /* If root, add varobj to root list. */
2307 if (is_root_p (var))
2308 {
2309 /* Add to list of root variables. */
2310 if (rootlist == NULL)
2311 var->root->next = NULL;
2312 else
2313 var->root->next = rootlist;
2314 rootlist = var->root;
2315 }
2316
2317 return 1; /* OK */
2318 }
2319
2320 /* Unistall the object VAR. */
2321 static void
2322 uninstall_variable (struct varobj *var)
2323 {
2324 struct vlist *cv;
2325 struct vlist *prev;
2326 struct varobj_root *cr;
2327 struct varobj_root *prer;
2328 const char *chp;
2329 unsigned int index = 0;
2330 unsigned int i = 1;
2331
2332 /* Remove varobj from hash table. */
2333 for (chp = var->obj_name; *chp; chp++)
2334 {
2335 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2336 }
2337
2338 cv = *(varobj_table + index);
2339 prev = NULL;
2340 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2341 {
2342 prev = cv;
2343 cv = cv->next;
2344 }
2345
2346 if (varobjdebug)
2347 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2348
2349 if (cv == NULL)
2350 {
2351 warning
2352 ("Assertion failed: Could not find variable object \"%s\" to delete",
2353 var->obj_name);
2354 return;
2355 }
2356
2357 if (prev == NULL)
2358 *(varobj_table + index) = cv->next;
2359 else
2360 prev->next = cv->next;
2361
2362 xfree (cv);
2363
2364 /* If root, remove varobj from root list. */
2365 if (is_root_p (var))
2366 {
2367 /* Remove from list of root variables. */
2368 if (rootlist == var->root)
2369 rootlist = var->root->next;
2370 else
2371 {
2372 prer = NULL;
2373 cr = rootlist;
2374 while ((cr != NULL) && (cr->rootvar != var))
2375 {
2376 prer = cr;
2377 cr = cr->next;
2378 }
2379 if (cr == NULL)
2380 {
2381 warning (_("Assertion failed: Could not find "
2382 "varobj \"%s\" in root list"),
2383 var->obj_name);
2384 return;
2385 }
2386 if (prer == NULL)
2387 rootlist = NULL;
2388 else
2389 prer->next = cr->next;
2390 }
2391 }
2392
2393 }
2394
2395 /* Create and install a child of the parent of the given name. */
2396 static struct varobj *
2397 create_child (struct varobj *parent, int index, char *name)
2398 {
2399 return create_child_with_value (parent, index, name,
2400 value_of_child (parent, index));
2401 }
2402
2403 /* Does CHILD represent a child with no name? This happens when
2404 the child is an anonmous struct or union and it has no field name
2405 in its parent variable.
2406
2407 This has already been determined by *_describe_child. The easiest
2408 thing to do is to compare the child's name with ANONYMOUS_*_NAME. */
2409
2410 static int
2411 is_anonymous_child (struct varobj *child)
2412 {
2413 return (strcmp (child->name, ANONYMOUS_STRUCT_NAME) == 0
2414 || strcmp (child->name, ANONYMOUS_UNION_NAME) == 0);
2415 }
2416
2417 static struct varobj *
2418 create_child_with_value (struct varobj *parent, int index, const char *name,
2419 struct value *value)
2420 {
2421 struct varobj *child;
2422 char *childs_name;
2423
2424 child = new_variable ();
2425
2426 /* Name is allocated by name_of_child. */
2427 /* FIXME: xstrdup should not be here. */
2428 child->name = xstrdup (name);
2429 child->index = index;
2430 child->parent = parent;
2431 child->root = parent->root;
2432
2433 if (is_anonymous_child (child))
2434 childs_name = xstrprintf ("%s.%d_anonymous", parent->obj_name, index);
2435 else
2436 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
2437 child->obj_name = childs_name;
2438
2439 install_variable (child);
2440
2441 /* Compute the type of the child. Must do this before
2442 calling install_new_value. */
2443 if (value != NULL)
2444 /* If the child had no evaluation errors, var->value
2445 will be non-NULL and contain a valid type. */
2446 child->type = value_actual_type (value, 0, NULL);
2447 else
2448 /* Otherwise, we must compute the type. */
2449 child->type = (*child->root->lang->type_of_child) (child->parent,
2450 child->index);
2451 install_new_value (child, value, 1);
2452
2453 return child;
2454 }
2455 \f
2456
2457 /*
2458 * Miscellaneous utility functions.
2459 */
2460
2461 /* Allocate memory and initialize a new variable. */
2462 static struct varobj *
2463 new_variable (void)
2464 {
2465 struct varobj *var;
2466
2467 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2468 var->name = NULL;
2469 var->path_expr = NULL;
2470 var->obj_name = NULL;
2471 var->index = -1;
2472 var->type = NULL;
2473 var->value = NULL;
2474 var->num_children = -1;
2475 var->parent = NULL;
2476 var->children = NULL;
2477 var->format = 0;
2478 var->root = NULL;
2479 var->updated = 0;
2480 var->print_value = NULL;
2481 var->frozen = 0;
2482 var->not_fetched = 0;
2483 var->children_requested = 0;
2484 var->from = -1;
2485 var->to = -1;
2486 var->constructor = 0;
2487 var->pretty_printer = 0;
2488 var->child_iter = 0;
2489 var->saved_item = 0;
2490
2491 return var;
2492 }
2493
2494 /* Allocate memory and initialize a new root variable. */
2495 static struct varobj *
2496 new_root_variable (void)
2497 {
2498 struct varobj *var = new_variable ();
2499
2500 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));
2501 var->root->lang = NULL;
2502 var->root->exp = NULL;
2503 var->root->valid_block = NULL;
2504 var->root->frame = null_frame_id;
2505 var->root->floating = 0;
2506 var->root->rootvar = NULL;
2507 var->root->is_valid = 1;
2508
2509 return var;
2510 }
2511
2512 /* Free any allocated memory associated with VAR. */
2513 static void
2514 free_variable (struct varobj *var)
2515 {
2516 #if HAVE_PYTHON
2517 if (var->pretty_printer)
2518 {
2519 struct cleanup *cleanup = varobj_ensure_python_env (var);
2520 Py_XDECREF (var->constructor);
2521 Py_XDECREF (var->pretty_printer);
2522 Py_XDECREF (var->child_iter);
2523 Py_XDECREF (var->saved_item);
2524 do_cleanups (cleanup);
2525 }
2526 #endif
2527
2528 value_free (var->value);
2529
2530 /* Free the expression if this is a root variable. */
2531 if (is_root_p (var))
2532 {
2533 xfree (var->root->exp);
2534 xfree (var->root);
2535 }
2536
2537 xfree (var->name);
2538 xfree (var->obj_name);
2539 xfree (var->print_value);
2540 xfree (var->path_expr);
2541 xfree (var);
2542 }
2543
2544 static void
2545 do_free_variable_cleanup (void *var)
2546 {
2547 free_variable (var);
2548 }
2549
2550 static struct cleanup *
2551 make_cleanup_free_variable (struct varobj *var)
2552 {
2553 return make_cleanup (do_free_variable_cleanup, var);
2554 }
2555
2556 /* This returns the type of the variable. It also skips past typedefs
2557 to return the real type of the variable.
2558
2559 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2560 except within get_target_type and get_type. */
2561 static struct type *
2562 get_type (struct varobj *var)
2563 {
2564 struct type *type;
2565
2566 type = var->type;
2567 if (type != NULL)
2568 type = check_typedef (type);
2569
2570 return type;
2571 }
2572
2573 /* Return the type of the value that's stored in VAR,
2574 or that would have being stored there if the
2575 value were accessible.
2576
2577 This differs from VAR->type in that VAR->type is always
2578 the true type of the expession in the source language.
2579 The return value of this function is the type we're
2580 actually storing in varobj, and using for displaying
2581 the values and for comparing previous and new values.
2582
2583 For example, top-level references are always stripped. */
2584 static struct type *
2585 get_value_type (struct varobj *var)
2586 {
2587 struct type *type;
2588
2589 if (var->value)
2590 type = value_type (var->value);
2591 else
2592 type = var->type;
2593
2594 type = check_typedef (type);
2595
2596 if (TYPE_CODE (type) == TYPE_CODE_REF)
2597 type = get_target_type (type);
2598
2599 type = check_typedef (type);
2600
2601 return type;
2602 }
2603
2604 /* This returns the target type (or NULL) of TYPE, also skipping
2605 past typedefs, just like get_type ().
2606
2607 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2608 except within get_target_type and get_type. */
2609 static struct type *
2610 get_target_type (struct type *type)
2611 {
2612 if (type != NULL)
2613 {
2614 type = TYPE_TARGET_TYPE (type);
2615 if (type != NULL)
2616 type = check_typedef (type);
2617 }
2618
2619 return type;
2620 }
2621
2622 /* What is the default display for this variable? We assume that
2623 everything is "natural". Any exceptions? */
2624 static enum varobj_display_formats
2625 variable_default_display (struct varobj *var)
2626 {
2627 return FORMAT_NATURAL;
2628 }
2629
2630 /* FIXME: The following should be generic for any pointer. */
2631 static void
2632 cppush (struct cpstack **pstack, char *name)
2633 {
2634 struct cpstack *s;
2635
2636 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2637 s->name = name;
2638 s->next = *pstack;
2639 *pstack = s;
2640 }
2641
2642 /* FIXME: The following should be generic for any pointer. */
2643 static char *
2644 cppop (struct cpstack **pstack)
2645 {
2646 struct cpstack *s;
2647 char *v;
2648
2649 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2650 return NULL;
2651
2652 s = *pstack;
2653 v = s->name;
2654 *pstack = (*pstack)->next;
2655 xfree (s);
2656
2657 return v;
2658 }
2659 \f
2660 /*
2661 * Language-dependencies
2662 */
2663
2664 /* Common entry points */
2665
2666 /* Get the language of variable VAR. */
2667 static enum varobj_languages
2668 variable_language (struct varobj *var)
2669 {
2670 enum varobj_languages lang;
2671
2672 switch (var->root->exp->language_defn->la_language)
2673 {
2674 default:
2675 case language_c:
2676 lang = vlang_c;
2677 break;
2678 case language_cplus:
2679 lang = vlang_cplus;
2680 break;
2681 case language_java:
2682 lang = vlang_java;
2683 break;
2684 case language_ada:
2685 lang = vlang_ada;
2686 break;
2687 }
2688
2689 return lang;
2690 }
2691
2692 /* Return the number of children for a given variable.
2693 The result of this function is defined by the language
2694 implementation. The number of children returned by this function
2695 is the number of children that the user will see in the variable
2696 display. */
2697 static int
2698 number_of_children (struct varobj *var)
2699 {
2700 return (*var->root->lang->number_of_children) (var);
2701 }
2702
2703 /* What is the expression for the root varobj VAR? Returns a malloc'd
2704 string. */
2705 static char *
2706 name_of_variable (struct varobj *var)
2707 {
2708 return (*var->root->lang->name_of_variable) (var);
2709 }
2710
2711 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd
2712 string. */
2713 static char *
2714 name_of_child (struct varobj *var, int index)
2715 {
2716 return (*var->root->lang->name_of_child) (var, index);
2717 }
2718
2719 /* What is the ``struct value *'' of the root variable VAR?
2720 For floating variable object, evaluation can get us a value
2721 of different type from what is stored in varobj already. In
2722 that case:
2723 - *type_changed will be set to 1
2724 - old varobj will be freed, and new one will be
2725 created, with the same name.
2726 - *var_handle will be set to the new varobj
2727 Otherwise, *type_changed will be set to 0. */
2728 static struct value *
2729 value_of_root (struct varobj **var_handle, int *type_changed)
2730 {
2731 struct varobj *var;
2732
2733 if (var_handle == NULL)
2734 return NULL;
2735
2736 var = *var_handle;
2737
2738 /* This should really be an exception, since this should
2739 only get called with a root variable. */
2740
2741 if (!is_root_p (var))
2742 return NULL;
2743
2744 if (var->root->floating)
2745 {
2746 struct varobj *tmp_var;
2747 char *old_type, *new_type;
2748
2749 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2750 USE_SELECTED_FRAME);
2751 if (tmp_var == NULL)
2752 {
2753 return NULL;
2754 }
2755 old_type = varobj_get_type (var);
2756 new_type = varobj_get_type (tmp_var);
2757 if (strcmp (old_type, new_type) == 0)
2758 {
2759 /* The expression presently stored inside var->root->exp
2760 remembers the locations of local variables relatively to
2761 the frame where the expression was created (in DWARF location
2762 button, for example). Naturally, those locations are not
2763 correct in other frames, so update the expression. */
2764
2765 struct expression *tmp_exp = var->root->exp;
2766
2767 var->root->exp = tmp_var->root->exp;
2768 tmp_var->root->exp = tmp_exp;
2769
2770 varobj_delete (tmp_var, NULL, 0);
2771 *type_changed = 0;
2772 }
2773 else
2774 {
2775 tmp_var->obj_name = xstrdup (var->obj_name);
2776 tmp_var->from = var->from;
2777 tmp_var->to = var->to;
2778 varobj_delete (var, NULL, 0);
2779
2780 install_variable (tmp_var);
2781 *var_handle = tmp_var;
2782 var = *var_handle;
2783 *type_changed = 1;
2784 }
2785 xfree (old_type);
2786 xfree (new_type);
2787 }
2788 else
2789 {
2790 *type_changed = 0;
2791 }
2792
2793 {
2794 struct value *value;
2795
2796 value = (*var->root->lang->value_of_root) (var_handle);
2797 if (var->value == NULL || value == NULL)
2798 {
2799 /* For root varobj-s, a NULL value indicates a scoping issue.
2800 So, nothing to do in terms of checking for mutations. */
2801 }
2802 else if (varobj_value_has_mutated (var, value, value_type (value)))
2803 {
2804 /* The type has mutated, so the children are no longer valid.
2805 Just delete them, and tell our caller that the type has
2806 changed. */
2807 varobj_delete (var, NULL, 1 /* only_children */);
2808 var->num_children = -1;
2809 var->to = -1;
2810 var->from = -1;
2811 *type_changed = 1;
2812 }
2813 return value;
2814 }
2815 }
2816
2817 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2818 static struct value *
2819 value_of_child (struct varobj *parent, int index)
2820 {
2821 struct value *value;
2822
2823 value = (*parent->root->lang->value_of_child) (parent, index);
2824
2825 return value;
2826 }
2827
2828 /* GDB already has a command called "value_of_variable". Sigh. */
2829 static char *
2830 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2831 {
2832 if (var->root->is_valid)
2833 {
2834 if (var->pretty_printer)
2835 return value_get_print_value (var->value, var->format, var);
2836 return (*var->root->lang->value_of_variable) (var, format);
2837 }
2838 else
2839 return NULL;
2840 }
2841
2842 static char *
2843 value_get_print_value (struct value *value, enum varobj_display_formats format,
2844 struct varobj *var)
2845 {
2846 struct ui_file *stb;
2847 struct cleanup *old_chain;
2848 gdb_byte *thevalue = NULL;
2849 struct value_print_options opts;
2850 struct type *type = NULL;
2851 long len = 0;
2852 char *encoding = NULL;
2853 struct gdbarch *gdbarch = NULL;
2854 /* Initialize it just to avoid a GCC false warning. */
2855 CORE_ADDR str_addr = 0;
2856 int string_print = 0;
2857
2858 if (value == NULL)
2859 return NULL;
2860
2861 stb = mem_fileopen ();
2862 old_chain = make_cleanup_ui_file_delete (stb);
2863
2864 gdbarch = get_type_arch (value_type (value));
2865 #if HAVE_PYTHON
2866 {
2867 PyObject *value_formatter = var->pretty_printer;
2868
2869 varobj_ensure_python_env (var);
2870
2871 if (value_formatter)
2872 {
2873 /* First check to see if we have any children at all. If so,
2874 we simply return {...}. */
2875 if (dynamic_varobj_has_child_method (var))
2876 {
2877 do_cleanups (old_chain);
2878 return xstrdup ("{...}");
2879 }
2880
2881 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2882 {
2883 struct value *replacement;
2884 PyObject *output = NULL;
2885
2886 output = apply_varobj_pretty_printer (value_formatter,
2887 &replacement,
2888 stb);
2889
2890 /* If we have string like output ... */
2891 if (output)
2892 {
2893 make_cleanup_py_decref (output);
2894
2895 /* If this is a lazy string, extract it. For lazy
2896 strings we always print as a string, so set
2897 string_print. */
2898 if (gdbpy_is_lazy_string (output))
2899 {
2900 gdbpy_extract_lazy_string (output, &str_addr, &type,
2901 &len, &encoding);
2902 make_cleanup (free_current_contents, &encoding);
2903 string_print = 1;
2904 }
2905 else
2906 {
2907 /* If it is a regular (non-lazy) string, extract
2908 it and copy the contents into THEVALUE. If the
2909 hint says to print it as a string, set
2910 string_print. Otherwise just return the extracted
2911 string as a value. */
2912
2913 char *s = python_string_to_target_string (output);
2914
2915 if (s)
2916 {
2917 char *hint;
2918
2919 hint = gdbpy_get_display_hint (value_formatter);
2920 if (hint)
2921 {
2922 if (!strcmp (hint, "string"))
2923 string_print = 1;
2924 xfree (hint);
2925 }
2926
2927 len = strlen (s);
2928 thevalue = xmemdup (s, len + 1, len + 1);
2929 type = builtin_type (gdbarch)->builtin_char;
2930 xfree (s);
2931
2932 if (!string_print)
2933 {
2934 do_cleanups (old_chain);
2935 return thevalue;
2936 }
2937
2938 make_cleanup (xfree, thevalue);
2939 }
2940 else
2941 gdbpy_print_stack ();
2942 }
2943 }
2944 /* If the printer returned a replacement value, set VALUE
2945 to REPLACEMENT. If there is not a replacement value,
2946 just use the value passed to this function. */
2947 if (replacement)
2948 value = replacement;
2949 }
2950 }
2951 }
2952 #endif
2953
2954 get_formatted_print_options (&opts, format_code[(int) format]);
2955 opts.deref_ref = 0;
2956 opts.raw = 1;
2957
2958 /* If the THEVALUE has contents, it is a regular string. */
2959 if (thevalue)
2960 LA_PRINT_STRING (stb, type, thevalue, len, encoding, 0, &opts);
2961 else if (string_print)
2962 /* Otherwise, if string_print is set, and it is not a regular
2963 string, it is a lazy string. */
2964 val_print_string (type, encoding, str_addr, len, stb, &opts);
2965 else
2966 /* All other cases. */
2967 common_val_print (value, stb, 0, &opts, current_language);
2968
2969 thevalue = ui_file_xstrdup (stb, NULL);
2970
2971 do_cleanups (old_chain);
2972 return thevalue;
2973 }
2974
2975 int
2976 varobj_editable_p (struct varobj *var)
2977 {
2978 struct type *type;
2979
2980 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2981 return 0;
2982
2983 type = get_value_type (var);
2984
2985 switch (TYPE_CODE (type))
2986 {
2987 case TYPE_CODE_STRUCT:
2988 case TYPE_CODE_UNION:
2989 case TYPE_CODE_ARRAY:
2990 case TYPE_CODE_FUNC:
2991 case TYPE_CODE_METHOD:
2992 return 0;
2993 break;
2994
2995 default:
2996 return 1;
2997 break;
2998 }
2999 }
3000
3001 /* Call VAR's value_is_changeable_p language-specific callback. */
3002
3003 static int
3004 varobj_value_is_changeable_p (struct varobj *var)
3005 {
3006 return var->root->lang->value_is_changeable_p (var);
3007 }
3008
3009 /* Return 1 if that varobj is floating, that is is always evaluated in the
3010 selected frame, and not bound to thread/frame. Such variable objects
3011 are created using '@' as frame specifier to -var-create. */
3012 int
3013 varobj_floating_p (struct varobj *var)
3014 {
3015 return var->root->floating;
3016 }
3017
3018 /* Given the value and the type of a variable object,
3019 adjust the value and type to those necessary
3020 for getting children of the variable object.
3021 This includes dereferencing top-level references
3022 to all types and dereferencing pointers to
3023 structures.
3024
3025 If LOOKUP_ACTUAL_TYPE is set the enclosing type of the
3026 value will be fetched and if it differs from static type
3027 the value will be casted to it.
3028
3029 Both TYPE and *TYPE should be non-null. VALUE
3030 can be null if we want to only translate type.
3031 *VALUE can be null as well -- if the parent
3032 value is not known.
3033
3034 If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
3035 depending on whether pointer was dereferenced
3036 in this function. */
3037 static void
3038 adjust_value_for_child_access (struct value **value,
3039 struct type **type,
3040 int *was_ptr,
3041 int lookup_actual_type)
3042 {
3043 gdb_assert (type && *type);
3044
3045 if (was_ptr)
3046 *was_ptr = 0;
3047
3048 *type = check_typedef (*type);
3049
3050 /* The type of value stored in varobj, that is passed
3051 to us, is already supposed to be
3052 reference-stripped. */
3053
3054 gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
3055
3056 /* Pointers to structures are treated just like
3057 structures when accessing children. Don't
3058 dererences pointers to other types. */
3059 if (TYPE_CODE (*type) == TYPE_CODE_PTR)
3060 {
3061 struct type *target_type = get_target_type (*type);
3062 if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
3063 || TYPE_CODE (target_type) == TYPE_CODE_UNION)
3064 {
3065 if (value && *value)
3066 {
3067 volatile struct gdb_exception except;
3068
3069 TRY_CATCH (except, RETURN_MASK_ERROR)
3070 {
3071 *value = value_ind (*value);
3072 }
3073
3074 if (except.reason < 0)
3075 *value = NULL;
3076 }
3077 *type = target_type;
3078 if (was_ptr)
3079 *was_ptr = 1;
3080 }
3081 }
3082
3083 /* The 'get_target_type' function calls check_typedef on
3084 result, so we can immediately check type code. No
3085 need to call check_typedef here. */
3086
3087 /* Access a real type of the value (if necessary and possible). */
3088 if (value && *value && lookup_actual_type)
3089 {
3090 struct type *enclosing_type;
3091 int real_type_found = 0;
3092
3093 enclosing_type = value_actual_type (*value, 1, &real_type_found);
3094 if (real_type_found)
3095 {
3096 *type = enclosing_type;
3097 *value = value_cast (enclosing_type, *value);
3098 }
3099 }
3100 }
3101
3102 /* Implement the "value_is_changeable_p" varobj callback for most
3103 languages. */
3104
3105 static int
3106 default_value_is_changeable_p (struct varobj *var)
3107 {
3108 int r;
3109 struct type *type;
3110
3111 if (CPLUS_FAKE_CHILD (var))
3112 return 0;
3113
3114 type = get_value_type (var);
3115
3116 switch (TYPE_CODE (type))
3117 {
3118 case TYPE_CODE_STRUCT:
3119 case TYPE_CODE_UNION:
3120 case TYPE_CODE_ARRAY:
3121 r = 0;
3122 break;
3123
3124 default:
3125 r = 1;
3126 }
3127
3128 return r;
3129 }
3130
3131 /* C */
3132
3133 static int
3134 c_number_of_children (struct varobj *var)
3135 {
3136 struct type *type = get_value_type (var);
3137 int children = 0;
3138 struct type *target;
3139
3140 adjust_value_for_child_access (NULL, &type, NULL, 0);
3141 target = get_target_type (type);
3142
3143 switch (TYPE_CODE (type))
3144 {
3145 case TYPE_CODE_ARRAY:
3146 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
3147 && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
3148 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
3149 else
3150 /* If we don't know how many elements there are, don't display
3151 any. */
3152 children = 0;
3153 break;
3154
3155 case TYPE_CODE_STRUCT:
3156 case TYPE_CODE_UNION:
3157 children = TYPE_NFIELDS (type);
3158 break;
3159
3160 case TYPE_CODE_PTR:
3161 /* The type here is a pointer to non-struct. Typically, pointers
3162 have one child, except for function ptrs, which have no children,
3163 and except for void*, as we don't know what to show.
3164
3165 We can show char* so we allow it to be dereferenced. If you decide
3166 to test for it, please mind that a little magic is necessary to
3167 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
3168 TYPE_NAME == "char". */
3169 if (TYPE_CODE (target) == TYPE_CODE_FUNC
3170 || TYPE_CODE (target) == TYPE_CODE_VOID)
3171 children = 0;
3172 else
3173 children = 1;
3174 break;
3175
3176 default:
3177 /* Other types have no children. */
3178 break;
3179 }
3180
3181 return children;
3182 }
3183
3184 static char *
3185 c_name_of_variable (struct varobj *parent)
3186 {
3187 return xstrdup (parent->name);
3188 }
3189
3190 /* Return the value of element TYPE_INDEX of a structure
3191 value VALUE. VALUE's type should be a structure,
3192 or union, or a typedef to struct/union.
3193
3194 Returns NULL if getting the value fails. Never throws. */
3195 static struct value *
3196 value_struct_element_index (struct value *value, int type_index)
3197 {
3198 struct value *result = NULL;
3199 volatile struct gdb_exception e;
3200 struct type *type = value_type (value);
3201
3202 type = check_typedef (type);
3203
3204 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
3205 || TYPE_CODE (type) == TYPE_CODE_UNION);
3206
3207 TRY_CATCH (e, RETURN_MASK_ERROR)
3208 {
3209 if (field_is_static (&TYPE_FIELD (type, type_index)))
3210 result = value_static_field (type, type_index);
3211 else
3212 result = value_primitive_field (value, 0, type_index, type);
3213 }
3214 if (e.reason < 0)
3215 {
3216 return NULL;
3217 }
3218 else
3219 {
3220 return result;
3221 }
3222 }
3223
3224 /* Obtain the information about child INDEX of the variable
3225 object PARENT.
3226 If CNAME is not null, sets *CNAME to the name of the child relative
3227 to the parent.
3228 If CVALUE is not null, sets *CVALUE to the value of the child.
3229 If CTYPE is not null, sets *CTYPE to the type of the child.
3230
3231 If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
3232 information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
3233 to NULL. */
3234 static void
3235 c_describe_child (struct varobj *parent, int index,
3236 char **cname, struct value **cvalue, struct type **ctype,
3237 char **cfull_expression)
3238 {
3239 struct value *value = parent->value;
3240 struct type *type = get_value_type (parent);
3241 char *parent_expression = NULL;
3242 int was_ptr;
3243 volatile struct gdb_exception except;
3244
3245 if (cname)
3246 *cname = NULL;
3247 if (cvalue)
3248 *cvalue = NULL;
3249 if (ctype)
3250 *ctype = NULL;
3251 if (cfull_expression)
3252 {
3253 *cfull_expression = NULL;
3254 parent_expression = varobj_get_path_expr (get_path_expr_parent (parent));
3255 }
3256 adjust_value_for_child_access (&value, &type, &was_ptr, 0);
3257
3258 switch (TYPE_CODE (type))
3259 {
3260 case TYPE_CODE_ARRAY:
3261 if (cname)
3262 *cname
3263 = xstrdup (int_string (index
3264 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
3265 10, 1, 0, 0));
3266
3267 if (cvalue && value)
3268 {
3269 int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
3270
3271 TRY_CATCH (except, RETURN_MASK_ERROR)
3272 {
3273 *cvalue = value_subscript (value, real_index);
3274 }
3275 }
3276
3277 if (ctype)
3278 *ctype = get_target_type (type);
3279
3280 if (cfull_expression)
3281 *cfull_expression =
3282 xstrprintf ("(%s)[%s]", parent_expression,
3283 int_string (index
3284 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
3285 10, 1, 0, 0));
3286
3287
3288 break;
3289
3290 case TYPE_CODE_STRUCT:
3291 case TYPE_CODE_UNION:
3292 {
3293 const char *field_name;
3294
3295 /* If the type is anonymous and the field has no name,
3296 set an appropriate name. */
3297 field_name = TYPE_FIELD_NAME (type, index);
3298 if (field_name == NULL || *field_name == '\0')
3299 {
3300 if (cname)
3301 {
3302 if (TYPE_CODE (TYPE_FIELD_TYPE (type, index))
3303 == TYPE_CODE_STRUCT)
3304 *cname = xstrdup (ANONYMOUS_STRUCT_NAME);
3305 else
3306 *cname = xstrdup (ANONYMOUS_UNION_NAME);
3307 }
3308
3309 if (cfull_expression)
3310 *cfull_expression = xstrdup ("");
3311 }
3312 else
3313 {
3314 if (cname)
3315 *cname = xstrdup (field_name);
3316
3317 if (cfull_expression)
3318 {
3319 char *join = was_ptr ? "->" : ".";
3320
3321 *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression,
3322 join, field_name);
3323 }
3324 }
3325
3326 if (cvalue && value)
3327 {
3328 /* For C, varobj index is the same as type index. */
3329 *cvalue = value_struct_element_index (value, index);
3330 }
3331
3332 if (ctype)
3333 *ctype = TYPE_FIELD_TYPE (type, index);
3334 }
3335 break;
3336
3337 case TYPE_CODE_PTR:
3338 if (cname)
3339 *cname = xstrprintf ("*%s", parent->name);
3340
3341 if (cvalue && value)
3342 {
3343 TRY_CATCH (except, RETURN_MASK_ERROR)
3344 {
3345 *cvalue = value_ind (value);
3346 }
3347
3348 if (except.reason < 0)
3349 *cvalue = NULL;
3350 }
3351
3352 /* Don't use get_target_type because it calls
3353 check_typedef and here, we want to show the true
3354 declared type of the variable. */
3355 if (ctype)
3356 *ctype = TYPE_TARGET_TYPE (type);
3357
3358 if (cfull_expression)
3359 *cfull_expression = xstrprintf ("*(%s)", parent_expression);
3360
3361 break;
3362
3363 default:
3364 /* This should not happen. */
3365 if (cname)
3366 *cname = xstrdup ("???");
3367 if (cfull_expression)
3368 *cfull_expression = xstrdup ("???");
3369 /* Don't set value and type, we don't know then. */
3370 }
3371 }
3372
3373 static char *
3374 c_name_of_child (struct varobj *parent, int index)
3375 {
3376 char *name;
3377
3378 c_describe_child (parent, index, &name, NULL, NULL, NULL);
3379 return name;
3380 }
3381
3382 static char *
3383 c_path_expr_of_child (struct varobj *child)
3384 {
3385 c_describe_child (child->parent, child->index, NULL, NULL, NULL,
3386 &child->path_expr);
3387 return child->path_expr;
3388 }
3389
3390 /* If frame associated with VAR can be found, switch
3391 to it and return 1. Otherwise, return 0. */
3392 static int
3393 check_scope (struct varobj *var)
3394 {
3395 struct frame_info *fi;
3396 int scope;
3397
3398 fi = frame_find_by_id (var->root->frame);
3399 scope = fi != NULL;
3400
3401 if (fi)
3402 {
3403 CORE_ADDR pc = get_frame_pc (fi);
3404
3405 if (pc < BLOCK_START (var->root->valid_block) ||
3406 pc >= BLOCK_END (var->root->valid_block))
3407 scope = 0;
3408 else
3409 select_frame (fi);
3410 }
3411 return scope;
3412 }
3413
3414 static struct value *
3415 c_value_of_root (struct varobj **var_handle)
3416 {
3417 struct value *new_val = NULL;
3418 struct varobj *var = *var_handle;
3419 int within_scope = 0;
3420 struct cleanup *back_to;
3421
3422 /* Only root variables can be updated... */
3423 if (!is_root_p (var))
3424 /* Not a root var. */
3425 return NULL;
3426
3427 back_to = make_cleanup_restore_current_thread ();
3428
3429 /* Determine whether the variable is still around. */
3430 if (var->root->valid_block == NULL || var->root->floating)
3431 within_scope = 1;
3432 else if (var->root->thread_id == 0)
3433 {
3434 /* The program was single-threaded when the variable object was
3435 created. Technically, it's possible that the program became
3436 multi-threaded since then, but we don't support such
3437 scenario yet. */
3438 within_scope = check_scope (var);
3439 }
3440 else
3441 {
3442 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
3443 if (in_thread_list (ptid))
3444 {
3445 switch_to_thread (ptid);
3446 within_scope = check_scope (var);
3447 }
3448 }
3449
3450 if (within_scope)
3451 {
3452 volatile struct gdb_exception except;
3453
3454 /* We need to catch errors here, because if evaluate
3455 expression fails we want to just return NULL. */
3456 TRY_CATCH (except, RETURN_MASK_ERROR)
3457 {
3458 new_val = evaluate_expression (var->root->exp);
3459 }
3460
3461 return new_val;
3462 }
3463
3464 do_cleanups (back_to);
3465
3466 return NULL;
3467 }
3468
3469 static struct value *
3470 c_value_of_child (struct varobj *parent, int index)
3471 {
3472 struct value *value = NULL;
3473
3474 c_describe_child (parent, index, NULL, &value, NULL, NULL);
3475 return value;
3476 }
3477
3478 static struct type *
3479 c_type_of_child (struct varobj *parent, int index)
3480 {
3481 struct type *type = NULL;
3482
3483 c_describe_child (parent, index, NULL, NULL, &type, NULL);
3484 return type;
3485 }
3486
3487 static char *
3488 c_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3489 {
3490 /* BOGUS: if val_print sees a struct/class, or a reference to one,
3491 it will print out its children instead of "{...}". So we need to
3492 catch that case explicitly. */
3493 struct type *type = get_type (var);
3494
3495 /* Strip top-level references. */
3496 while (TYPE_CODE (type) == TYPE_CODE_REF)
3497 type = check_typedef (TYPE_TARGET_TYPE (type));
3498
3499 switch (TYPE_CODE (type))
3500 {
3501 case TYPE_CODE_STRUCT:
3502 case TYPE_CODE_UNION:
3503 return xstrdup ("{...}");
3504 /* break; */
3505
3506 case TYPE_CODE_ARRAY:
3507 {
3508 char *number;
3509
3510 number = xstrprintf ("[%d]", var->num_children);
3511 return (number);
3512 }
3513 /* break; */
3514
3515 default:
3516 {
3517 if (var->value == NULL)
3518 {
3519 /* This can happen if we attempt to get the value of a struct
3520 member when the parent is an invalid pointer. This is an
3521 error condition, so we should tell the caller. */
3522 return NULL;
3523 }
3524 else
3525 {
3526 if (var->not_fetched && value_lazy (var->value))
3527 /* Frozen variable and no value yet. We don't
3528 implicitly fetch the value. MI response will
3529 use empty string for the value, which is OK. */
3530 return NULL;
3531
3532 gdb_assert (varobj_value_is_changeable_p (var));
3533 gdb_assert (!value_lazy (var->value));
3534
3535 /* If the specified format is the current one,
3536 we can reuse print_value. */
3537 if (format == var->format)
3538 return xstrdup (var->print_value);
3539 else
3540 return value_get_print_value (var->value, format, var);
3541 }
3542 }
3543 }
3544 }
3545 \f
3546
3547 /* C++ */
3548
3549 static int
3550 cplus_number_of_children (struct varobj *var)
3551 {
3552 struct value *value = NULL;
3553 struct type *type;
3554 int children, dont_know;
3555 int lookup_actual_type = 0;
3556 struct value_print_options opts;
3557
3558 dont_know = 1;
3559 children = 0;
3560
3561 get_user_print_options (&opts);
3562
3563 if (!CPLUS_FAKE_CHILD (var))
3564 {
3565 type = get_value_type (var);
3566
3567 /* It is necessary to access a real type (via RTTI). */
3568 if (opts.objectprint)
3569 {
3570 value = var->value;
3571 lookup_actual_type = (TYPE_CODE (var->type) == TYPE_CODE_REF
3572 || TYPE_CODE (var->type) == TYPE_CODE_PTR);
3573 }
3574 adjust_value_for_child_access (&value, &type, NULL, lookup_actual_type);
3575
3576 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
3577 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
3578 {
3579 int kids[3];
3580
3581 cplus_class_num_children (type, kids);
3582 if (kids[v_public] != 0)
3583 children++;
3584 if (kids[v_private] != 0)
3585 children++;
3586 if (kids[v_protected] != 0)
3587 children++;
3588
3589 /* Add any baseclasses. */
3590 children += TYPE_N_BASECLASSES (type);
3591 dont_know = 0;
3592
3593 /* FIXME: save children in var. */
3594 }
3595 }
3596 else
3597 {
3598 int kids[3];
3599
3600 type = get_value_type (var->parent);
3601
3602 /* It is necessary to access a real type (via RTTI). */
3603 if (opts.objectprint)
3604 {
3605 struct varobj *parent = var->parent;
3606
3607 value = parent->value;
3608 lookup_actual_type = (TYPE_CODE (parent->type) == TYPE_CODE_REF
3609 || TYPE_CODE (parent->type) == TYPE_CODE_PTR);
3610 }
3611 adjust_value_for_child_access (&value, &type, NULL, lookup_actual_type);
3612
3613 cplus_class_num_children (type, kids);
3614 if (strcmp (var->name, "public") == 0)
3615 children = kids[v_public];
3616 else if (strcmp (var->name, "private") == 0)
3617 children = kids[v_private];
3618 else
3619 children = kids[v_protected];
3620 dont_know = 0;
3621 }
3622
3623 if (dont_know)
3624 children = c_number_of_children (var);
3625
3626 return children;
3627 }
3628
3629 /* Compute # of public, private, and protected variables in this class.
3630 That means we need to descend into all baseclasses and find out
3631 how many are there, too. */
3632 static void
3633 cplus_class_num_children (struct type *type, int children[3])
3634 {
3635 int i, vptr_fieldno;
3636 struct type *basetype = NULL;
3637
3638 children[v_public] = 0;
3639 children[v_private] = 0;
3640 children[v_protected] = 0;
3641
3642 vptr_fieldno = get_vptr_fieldno (type, &basetype);
3643 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
3644 {
3645 /* If we have a virtual table pointer, omit it. Even if virtual
3646 table pointers are not specifically marked in the debug info,
3647 they should be artificial. */
3648 if ((type == basetype && i == vptr_fieldno)
3649 || TYPE_FIELD_ARTIFICIAL (type, i))
3650 continue;
3651
3652 if (TYPE_FIELD_PROTECTED (type, i))
3653 children[v_protected]++;
3654 else if (TYPE_FIELD_PRIVATE (type, i))
3655 children[v_private]++;
3656 else
3657 children[v_public]++;
3658 }
3659 }
3660
3661 static char *
3662 cplus_name_of_variable (struct varobj *parent)
3663 {
3664 return c_name_of_variable (parent);
3665 }
3666
3667 enum accessibility { private_field, protected_field, public_field };
3668
3669 /* Check if field INDEX of TYPE has the specified accessibility.
3670 Return 0 if so and 1 otherwise. */
3671 static int
3672 match_accessibility (struct type *type, int index, enum accessibility acc)
3673 {
3674 if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
3675 return 1;
3676 else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
3677 return 1;
3678 else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
3679 && !TYPE_FIELD_PROTECTED (type, index))
3680 return 1;
3681 else
3682 return 0;
3683 }
3684
3685 static void
3686 cplus_describe_child (struct varobj *parent, int index,
3687 char **cname, struct value **cvalue, struct type **ctype,
3688 char **cfull_expression)
3689 {
3690 struct value *value;
3691 struct type *type;
3692 int was_ptr;
3693 int lookup_actual_type = 0;
3694 char *parent_expression = NULL;
3695 struct varobj *var;
3696 struct value_print_options opts;
3697
3698 if (cname)
3699 *cname = NULL;
3700 if (cvalue)
3701 *cvalue = NULL;
3702 if (ctype)
3703 *ctype = NULL;
3704 if (cfull_expression)
3705 *cfull_expression = NULL;
3706
3707 get_user_print_options (&opts);
3708
3709 var = (CPLUS_FAKE_CHILD (parent)) ? parent->parent : parent;
3710 if (opts.objectprint)
3711 lookup_actual_type = (TYPE_CODE (var->type) == TYPE_CODE_REF
3712 || TYPE_CODE (var->type) == TYPE_CODE_PTR);
3713 value = var->value;
3714 type = get_value_type (var);
3715 if (cfull_expression)
3716 parent_expression = varobj_get_path_expr (get_path_expr_parent (var));
3717
3718 adjust_value_for_child_access (&value, &type, &was_ptr, lookup_actual_type);
3719
3720 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3721 || TYPE_CODE (type) == TYPE_CODE_UNION)
3722 {
3723 char *join = was_ptr ? "->" : ".";
3724
3725 if (CPLUS_FAKE_CHILD (parent))
3726 {
3727 /* The fields of the class type are ordered as they
3728 appear in the class. We are given an index for a
3729 particular access control type ("public","protected",
3730 or "private"). We must skip over fields that don't
3731 have the access control we are looking for to properly
3732 find the indexed field. */
3733 int type_index = TYPE_N_BASECLASSES (type);
3734 enum accessibility acc = public_field;
3735 int vptr_fieldno;
3736 struct type *basetype = NULL;
3737 const char *field_name;
3738
3739 vptr_fieldno = get_vptr_fieldno (type, &basetype);
3740 if (strcmp (parent->name, "private") == 0)
3741 acc = private_field;
3742 else if (strcmp (parent->name, "protected") == 0)
3743 acc = protected_field;
3744
3745 while (index >= 0)
3746 {
3747 if ((type == basetype && type_index == vptr_fieldno)
3748 || TYPE_FIELD_ARTIFICIAL (type, type_index))
3749 ; /* ignore vptr */
3750 else if (match_accessibility (type, type_index, acc))
3751 --index;
3752 ++type_index;
3753 }
3754 --type_index;
3755
3756 /* If the type is anonymous and the field has no name,
3757 set an appopriate name. */
3758 field_name = TYPE_FIELD_NAME (type, type_index);
3759 if (field_name == NULL || *field_name == '\0')
3760 {
3761 if (cname)
3762 {
3763 if (TYPE_CODE (TYPE_FIELD_TYPE (type, type_index))
3764 == TYPE_CODE_STRUCT)
3765 *cname = xstrdup (ANONYMOUS_STRUCT_NAME);
3766 else if (TYPE_CODE (TYPE_FIELD_TYPE (type, type_index))
3767 == TYPE_CODE_UNION)
3768 *cname = xstrdup (ANONYMOUS_UNION_NAME);
3769 }
3770
3771 if (cfull_expression)
3772 *cfull_expression = xstrdup ("");
3773 }
3774 else
3775 {
3776 if (cname)
3777 *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
3778
3779 if (cfull_expression)
3780 *cfull_expression
3781 = xstrprintf ("((%s)%s%s)", parent_expression, join,
3782 field_name);
3783 }
3784
3785 if (cvalue && value)
3786 *cvalue = value_struct_element_index (value, type_index);
3787
3788 if (ctype)
3789 *ctype = TYPE_FIELD_TYPE (type, type_index);
3790 }
3791 else if (index < TYPE_N_BASECLASSES (type))
3792 {
3793 /* This is a baseclass. */
3794 if (cname)
3795 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
3796
3797 if (cvalue && value)
3798 *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
3799
3800 if (ctype)
3801 {
3802 *ctype = TYPE_FIELD_TYPE (type, index);
3803 }
3804
3805 if (cfull_expression)
3806 {
3807 char *ptr = was_ptr ? "*" : "";
3808
3809 /* Cast the parent to the base' type. Note that in gdb,
3810 expression like
3811 (Base1)d
3812 will create an lvalue, for all appearences, so we don't
3813 need to use more fancy:
3814 *(Base1*)(&d)
3815 construct.
3816
3817 When we are in the scope of the base class or of one
3818 of its children, the type field name will be interpreted
3819 as a constructor, if it exists. Therefore, we must
3820 indicate that the name is a class name by using the
3821 'class' keyword. See PR mi/11912 */
3822 *cfull_expression = xstrprintf ("(%s(class %s%s) %s)",
3823 ptr,
3824 TYPE_FIELD_NAME (type, index),
3825 ptr,
3826 parent_expression);
3827 }
3828 }
3829 else
3830 {
3831 char *access = NULL;
3832 int children[3];
3833
3834 cplus_class_num_children (type, children);
3835
3836 /* Everything beyond the baseclasses can
3837 only be "public", "private", or "protected"
3838
3839 The special "fake" children are always output by varobj in
3840 this order. So if INDEX == 2, it MUST be "protected". */
3841 index -= TYPE_N_BASECLASSES (type);
3842 switch (index)
3843 {
3844 case 0:
3845 if (children[v_public] > 0)
3846 access = "public";
3847 else if (children[v_private] > 0)
3848 access = "private";
3849 else
3850 access = "protected";
3851 break;
3852 case 1:
3853 if (children[v_public] > 0)
3854 {
3855 if (children[v_private] > 0)
3856 access = "private";
3857 else
3858 access = "protected";
3859 }
3860 else if (children[v_private] > 0)
3861 access = "protected";
3862 break;
3863 case 2:
3864 /* Must be protected. */
3865 access = "protected";
3866 break;
3867 default:
3868 /* error! */
3869 break;
3870 }
3871
3872 gdb_assert (access);
3873 if (cname)
3874 *cname = xstrdup (access);
3875
3876 /* Value and type and full expression are null here. */
3877 }
3878 }
3879 else
3880 {
3881 c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
3882 }
3883 }
3884
3885 static char *
3886 cplus_name_of_child (struct varobj *parent, int index)
3887 {
3888 char *name = NULL;
3889
3890 cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
3891 return name;
3892 }
3893
3894 static char *
3895 cplus_path_expr_of_child (struct varobj *child)
3896 {
3897 cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
3898 &child->path_expr);
3899 return child->path_expr;
3900 }
3901
3902 static struct value *
3903 cplus_value_of_root (struct varobj **var_handle)
3904 {
3905 return c_value_of_root (var_handle);
3906 }
3907
3908 static struct value *
3909 cplus_value_of_child (struct varobj *parent, int index)
3910 {
3911 struct value *value = NULL;
3912
3913 cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
3914 return value;
3915 }
3916
3917 static struct type *
3918 cplus_type_of_child (struct varobj *parent, int index)
3919 {
3920 struct type *type = NULL;
3921
3922 cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
3923 return type;
3924 }
3925
3926 static char *
3927 cplus_value_of_variable (struct varobj *var,
3928 enum varobj_display_formats format)
3929 {
3930
3931 /* If we have one of our special types, don't print out
3932 any value. */
3933 if (CPLUS_FAKE_CHILD (var))
3934 return xstrdup ("");
3935
3936 return c_value_of_variable (var, format);
3937 }
3938 \f
3939 /* Java */
3940
3941 static int
3942 java_number_of_children (struct varobj *var)
3943 {
3944 return cplus_number_of_children (var);
3945 }
3946
3947 static char *
3948 java_name_of_variable (struct varobj *parent)
3949 {
3950 char *p, *name;
3951
3952 name = cplus_name_of_variable (parent);
3953 /* If the name has "-" in it, it is because we
3954 needed to escape periods in the name... */
3955 p = name;
3956
3957 while (*p != '\000')
3958 {
3959 if (*p == '-')
3960 *p = '.';
3961 p++;
3962 }
3963
3964 return name;
3965 }
3966
3967 static char *
3968 java_name_of_child (struct varobj *parent, int index)
3969 {
3970 char *name, *p;
3971
3972 name = cplus_name_of_child (parent, index);
3973 /* Escape any periods in the name... */
3974 p = name;
3975
3976 while (*p != '\000')
3977 {
3978 if (*p == '.')
3979 *p = '-';
3980 p++;
3981 }
3982
3983 return name;
3984 }
3985
3986 static char *
3987 java_path_expr_of_child (struct varobj *child)
3988 {
3989 return NULL;
3990 }
3991
3992 static struct value *
3993 java_value_of_root (struct varobj **var_handle)
3994 {
3995 return cplus_value_of_root (var_handle);
3996 }
3997
3998 static struct value *
3999 java_value_of_child (struct varobj *parent, int index)
4000 {
4001 return cplus_value_of_child (parent, index);
4002 }
4003
4004 static struct type *
4005 java_type_of_child (struct varobj *parent, int index)
4006 {
4007 return cplus_type_of_child (parent, index);
4008 }
4009
4010 static char *
4011 java_value_of_variable (struct varobj *var, enum varobj_display_formats format)
4012 {
4013 return cplus_value_of_variable (var, format);
4014 }
4015
4016 /* Ada specific callbacks for VAROBJs. */
4017
4018 static int
4019 ada_number_of_children (struct varobj *var)
4020 {
4021 return ada_varobj_get_number_of_children (var->value, var->type);
4022 }
4023
4024 static char *
4025 ada_name_of_variable (struct varobj *parent)
4026 {
4027 return c_name_of_variable (parent);
4028 }
4029
4030 static char *
4031 ada_name_of_child (struct varobj *parent, int index)
4032 {
4033 return ada_varobj_get_name_of_child (parent->value, parent->type,
4034 parent->name, index);
4035 }
4036
4037 static char*
4038 ada_path_expr_of_child (struct varobj *child)
4039 {
4040 struct varobj *parent = child->parent;
4041 const char *parent_path_expr = varobj_get_path_expr (parent);
4042
4043 return ada_varobj_get_path_expr_of_child (parent->value,
4044 parent->type,
4045 parent->name,
4046 parent_path_expr,
4047 child->index);
4048 }
4049
4050 static struct value *
4051 ada_value_of_root (struct varobj **var_handle)
4052 {
4053 return c_value_of_root (var_handle);
4054 }
4055
4056 static struct value *
4057 ada_value_of_child (struct varobj *parent, int index)
4058 {
4059 return ada_varobj_get_value_of_child (parent->value, parent->type,
4060 parent->name, index);
4061 }
4062
4063 static struct type *
4064 ada_type_of_child (struct varobj *parent, int index)
4065 {
4066 return ada_varobj_get_type_of_child (parent->value, parent->type,
4067 index);
4068 }
4069
4070 static char *
4071 ada_value_of_variable (struct varobj *var, enum varobj_display_formats format)
4072 {
4073 struct value_print_options opts;
4074
4075 get_formatted_print_options (&opts, format_code[(int) format]);
4076 opts.deref_ref = 0;
4077 opts.raw = 1;
4078
4079 return ada_varobj_get_value_of_variable (var->value, var->type, &opts);
4080 }
4081
4082 /* Implement the "value_is_changeable_p" routine for Ada. */
4083
4084 static int
4085 ada_value_is_changeable_p (struct varobj *var)
4086 {
4087 struct type *type = var->value ? value_type (var->value) : var->type;
4088
4089 if (ada_is_array_descriptor_type (type)
4090 && TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
4091 {
4092 /* This is in reality a pointer to an unconstrained array.
4093 its value is changeable. */
4094 return 1;
4095 }
4096
4097 if (ada_is_string_type (type))
4098 {
4099 /* We display the contents of the string in the array's
4100 "value" field. The contents can change, so consider
4101 that the array is changeable. */
4102 return 1;
4103 }
4104
4105 return default_value_is_changeable_p (var);
4106 }
4107
4108 /* Implement the "value_has_mutated" routine for Ada. */
4109
4110 static int
4111 ada_value_has_mutated (struct varobj *var, struct value *new_val,
4112 struct type *new_type)
4113 {
4114 int i;
4115 int from = -1;
4116 int to = -1;
4117
4118 /* If the number of fields have changed, then for sure the type
4119 has mutated. */
4120 if (ada_varobj_get_number_of_children (new_val, new_type)
4121 != var->num_children)
4122 return 1;
4123
4124 /* If the number of fields have remained the same, then we need
4125 to check the name of each field. If they remain the same,
4126 then chances are the type hasn't mutated. This is technically
4127 an incomplete test, as the child's type might have changed
4128 despite the fact that the name remains the same. But we'll
4129 handle this situation by saying that the child has mutated,
4130 not this value.
4131
4132 If only part (or none!) of the children have been fetched,
4133 then only check the ones we fetched. It does not matter
4134 to the frontend whether a child that it has not fetched yet
4135 has mutated or not. So just assume it hasn't. */
4136
4137 restrict_range (var->children, &from, &to);
4138 for (i = from; i < to; i++)
4139 if (strcmp (ada_varobj_get_name_of_child (new_val, new_type,
4140 var->name, i),
4141 VEC_index (varobj_p, var->children, i)->name) != 0)
4142 return 1;
4143
4144 return 0;
4145 }
4146
4147 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
4148 with an arbitrary caller supplied DATA pointer. */
4149
4150 void
4151 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
4152 {
4153 struct varobj_root *var_root, *var_root_next;
4154
4155 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
4156
4157 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
4158 {
4159 var_root_next = var_root->next;
4160
4161 (*func) (var_root->rootvar, data);
4162 }
4163 }
4164 \f
4165 extern void _initialize_varobj (void);
4166 void
4167 _initialize_varobj (void)
4168 {
4169 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
4170
4171 varobj_table = xmalloc (sizeof_table);
4172 memset (varobj_table, 0, sizeof_table);
4173
4174 add_setshow_zuinteger_cmd ("debugvarobj", class_maintenance,
4175 &varobjdebug,
4176 _("Set varobj debugging."),
4177 _("Show varobj debugging."),
4178 _("When non-zero, varobj debugging is enabled."),
4179 NULL, show_varobjdebug,
4180 &setlist, &showlist);
4181 }
4182
4183 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
4184 defined on globals. It is a helper for varobj_invalidate.
4185
4186 This function is called after changing the symbol file, in this case the
4187 pointers to "struct type" stored by the varobj are no longer valid. All
4188 varobj must be either re-evaluated, or marked as invalid here. */
4189
4190 static void
4191 varobj_invalidate_iter (struct varobj *var, void *unused)
4192 {
4193 /* global and floating var must be re-evaluated. */
4194 if (var->root->floating || var->root->valid_block == NULL)
4195 {
4196 struct varobj *tmp_var;
4197
4198 /* Try to create a varobj with same expression. If we succeed
4199 replace the old varobj, otherwise invalidate it. */
4200 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
4201 USE_CURRENT_FRAME);
4202 if (tmp_var != NULL)
4203 {
4204 tmp_var->obj_name = xstrdup (var->obj_name);
4205 varobj_delete (var, NULL, 0);
4206 install_variable (tmp_var);
4207 }
4208 else
4209 var->root->is_valid = 0;
4210 }
4211 else /* locals must be invalidated. */
4212 var->root->is_valid = 0;
4213 }
4214
4215 /* Invalidate the varobjs that are tied to locals and re-create the ones that
4216 are defined on globals.
4217 Invalidated varobjs will be always printed in_scope="invalid". */
4218
4219 void
4220 varobj_invalidate (void)
4221 {
4222 all_root_varobjs (varobj_invalidate_iter, NULL);
4223 }