]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/xstormy16-tdep.c
Update Copyright year range in all files maintained by GDB.
[thirdparty/binutils-gdb.git] / gdb / xstormy16-tdep.c
1 /* Target-dependent code for the Sanyo Xstormy16a (LC590000) processor.
2
3 Copyright (C) 2001-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "frame-base.h"
23 #include "frame-unwind.h"
24 #include "dwarf2-frame.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcmd.h"
28 #include "gdbcore.h"
29 #include "value.h"
30 #include "dis-asm.h"
31 #include "inferior.h"
32 #include <string.h>
33 #include "gdb_assert.h"
34 #include "arch-utils.h"
35 #include "floatformat.h"
36 #include "regcache.h"
37 #include "doublest.h"
38 #include "osabi.h"
39 #include "objfiles.h"
40
41 enum gdb_regnum
42 {
43 /* Xstormy16 has 16 general purpose registers (R0-R15) plus PC.
44 Functions will return their values in register R2-R7 as they fit.
45 Otherwise a hidden pointer to an big enough area is given as argument
46 to the function in r2. Further arguments are beginning in r3 then.
47 R13 is used as frame pointer when GCC compiles w/o optimization
48 R14 is used as "PSW", displaying the CPU status.
49 R15 is used implicitely as stack pointer. */
50 E_R0_REGNUM,
51 E_R1_REGNUM,
52 E_R2_REGNUM, E_1ST_ARG_REGNUM = E_R2_REGNUM, E_PTR_RET_REGNUM = E_R2_REGNUM,
53 E_R3_REGNUM,
54 E_R4_REGNUM,
55 E_R5_REGNUM,
56 E_R6_REGNUM,
57 E_R7_REGNUM, E_LST_ARG_REGNUM = E_R7_REGNUM,
58 E_R8_REGNUM,
59 E_R9_REGNUM,
60 E_R10_REGNUM,
61 E_R11_REGNUM,
62 E_R12_REGNUM,
63 E_R13_REGNUM, E_FP_REGNUM = E_R13_REGNUM,
64 E_R14_REGNUM, E_PSW_REGNUM = E_R14_REGNUM,
65 E_R15_REGNUM, E_SP_REGNUM = E_R15_REGNUM,
66 E_PC_REGNUM,
67 E_NUM_REGS
68 };
69
70 /* Use an invalid address value as 'not available' marker. */
71 enum { REG_UNAVAIL = (CORE_ADDR) -1 };
72
73 struct xstormy16_frame_cache
74 {
75 /* Base address. */
76 CORE_ADDR base;
77 CORE_ADDR pc;
78 LONGEST framesize;
79 int uses_fp;
80 CORE_ADDR saved_regs[E_NUM_REGS];
81 CORE_ADDR saved_sp;
82 };
83
84 /* Size of instructions, registers, etc. */
85 enum
86 {
87 xstormy16_inst_size = 2,
88 xstormy16_reg_size = 2,
89 xstormy16_pc_size = 4
90 };
91
92 /* Size of return datatype which fits into the remaining return registers. */
93 #define E_MAX_RETTYPE_SIZE(regnum) ((E_LST_ARG_REGNUM - (regnum) + 1) \
94 * xstormy16_reg_size)
95
96 /* Size of return datatype which fits into all return registers. */
97 enum
98 {
99 E_MAX_RETTYPE_SIZE_IN_REGS = E_MAX_RETTYPE_SIZE (E_R2_REGNUM)
100 };
101
102 /* Function: xstormy16_register_name
103 Returns the name of the standard Xstormy16 register N. */
104
105 static const char *
106 xstormy16_register_name (struct gdbarch *gdbarch, int regnum)
107 {
108 static char *register_names[] = {
109 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
110 "r8", "r9", "r10", "r11", "r12", "r13",
111 "psw", "sp", "pc"
112 };
113
114 if (regnum < 0 || regnum >= E_NUM_REGS)
115 internal_error (__FILE__, __LINE__,
116 _("xstormy16_register_name: illegal register number %d"),
117 regnum);
118 else
119 return register_names[regnum];
120
121 }
122
123 static struct type *
124 xstormy16_register_type (struct gdbarch *gdbarch, int regnum)
125 {
126 if (regnum == E_PC_REGNUM)
127 return builtin_type (gdbarch)->builtin_uint32;
128 else
129 return builtin_type (gdbarch)->builtin_uint16;
130 }
131
132 /* Function: xstormy16_type_is_scalar
133 Makes the decision if a given type is a scalar types. Scalar
134 types are returned in the registers r2-r7 as they fit. */
135
136 static int
137 xstormy16_type_is_scalar (struct type *t)
138 {
139 return (TYPE_CODE(t) != TYPE_CODE_STRUCT
140 && TYPE_CODE(t) != TYPE_CODE_UNION
141 && TYPE_CODE(t) != TYPE_CODE_ARRAY);
142 }
143
144 /* Function: xstormy16_use_struct_convention
145 Returns non-zero if the given struct type will be returned using
146 a special convention, rather than the normal function return method.
147 7sed in the contexts of the "return" command, and of
148 target function calls from the debugger. */
149
150 static int
151 xstormy16_use_struct_convention (struct type *type)
152 {
153 return !xstormy16_type_is_scalar (type)
154 || TYPE_LENGTH (type) > E_MAX_RETTYPE_SIZE_IN_REGS;
155 }
156
157 /* Function: xstormy16_extract_return_value
158 Find a function's return value in the appropriate registers (in
159 regbuf), and copy it into valbuf. */
160
161 static void
162 xstormy16_extract_return_value (struct type *type, struct regcache *regcache,
163 gdb_byte *valbuf)
164 {
165 int len = TYPE_LENGTH (type);
166 int i, regnum = E_1ST_ARG_REGNUM;
167
168 for (i = 0; i < len; i += xstormy16_reg_size)
169 regcache_raw_read (regcache, regnum++, valbuf + i);
170 }
171
172 /* Function: xstormy16_store_return_value
173 Copy the function return value from VALBUF into the
174 proper location for a function return.
175 Called only in the context of the "return" command. */
176
177 static void
178 xstormy16_store_return_value (struct type *type, struct regcache *regcache,
179 const gdb_byte *valbuf)
180 {
181 if (TYPE_LENGTH (type) == 1)
182 {
183 /* Add leading zeros to the value. */
184 gdb_byte buf[xstormy16_reg_size];
185 memset (buf, 0, xstormy16_reg_size);
186 memcpy (buf, valbuf, 1);
187 regcache_raw_write (regcache, E_1ST_ARG_REGNUM, buf);
188 }
189 else
190 {
191 int len = TYPE_LENGTH (type);
192 int i, regnum = E_1ST_ARG_REGNUM;
193
194 for (i = 0; i < len; i += xstormy16_reg_size)
195 regcache_raw_write (regcache, regnum++, valbuf + i);
196 }
197 }
198
199 static enum return_value_convention
200 xstormy16_return_value (struct gdbarch *gdbarch, struct value *function,
201 struct type *type, struct regcache *regcache,
202 gdb_byte *readbuf, const gdb_byte *writebuf)
203 {
204 if (xstormy16_use_struct_convention (type))
205 return RETURN_VALUE_STRUCT_CONVENTION;
206 if (writebuf)
207 xstormy16_store_return_value (type, regcache, writebuf);
208 else if (readbuf)
209 xstormy16_extract_return_value (type, regcache, readbuf);
210 return RETURN_VALUE_REGISTER_CONVENTION;
211 }
212
213 static CORE_ADDR
214 xstormy16_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
215 {
216 if (addr & 1)
217 ++addr;
218 return addr;
219 }
220
221 /* Function: xstormy16_push_dummy_call
222 Setup the function arguments for GDB to call a function in the inferior.
223 Called only in the context of a target function call from the debugger.
224 Returns the value of the SP register after the args are pushed. */
225
226 static CORE_ADDR
227 xstormy16_push_dummy_call (struct gdbarch *gdbarch,
228 struct value *function,
229 struct regcache *regcache,
230 CORE_ADDR bp_addr, int nargs,
231 struct value **args,
232 CORE_ADDR sp, int struct_return,
233 CORE_ADDR struct_addr)
234 {
235 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
236 CORE_ADDR stack_dest = sp;
237 int argreg = E_1ST_ARG_REGNUM;
238 int i, j;
239 int typelen, slacklen;
240 const gdb_byte *val;
241 gdb_byte buf[xstormy16_pc_size];
242
243 /* If struct_return is true, then the struct return address will
244 consume one argument-passing register. */
245 if (struct_return)
246 {
247 regcache_cooked_write_unsigned (regcache, E_PTR_RET_REGNUM, struct_addr);
248 argreg++;
249 }
250
251 /* Arguments are passed in R2-R7 as they fit. If an argument doesn't
252 fit in the remaining registers we're switching over to the stack.
253 No argument is put on stack partially and as soon as we switched
254 over to stack no further argument is put in a register even if it
255 would fit in the remaining unused registers. */
256 for (i = 0; i < nargs && argreg <= E_LST_ARG_REGNUM; i++)
257 {
258 typelen = TYPE_LENGTH (value_enclosing_type (args[i]));
259 if (typelen > E_MAX_RETTYPE_SIZE (argreg))
260 break;
261
262 /* Put argument into registers wordwise. */
263 val = value_contents (args[i]);
264 for (j = 0; j < typelen; j += xstormy16_reg_size)
265 {
266 ULONGEST regval;
267 int size = (typelen - j == 1) ? 1 : xstormy16_reg_size;
268
269 regval = extract_unsigned_integer (val + j, size, byte_order);
270 regcache_cooked_write_unsigned (regcache, argreg++, regval);
271 }
272 }
273
274 /* Align SP */
275 stack_dest = xstormy16_frame_align (gdbarch, stack_dest);
276
277 /* Loop backwards through remaining arguments and push them on the stack,
278 wordaligned. */
279 for (j = nargs - 1; j >= i; j--)
280 {
281 gdb_byte *val;
282 struct cleanup *back_to;
283 const gdb_byte *bytes = value_contents (args[j]);
284
285 typelen = TYPE_LENGTH (value_enclosing_type (args[j]));
286 slacklen = typelen & 1;
287 val = xmalloc (typelen + slacklen);
288 back_to = make_cleanup (xfree, val);
289 memcpy (val, bytes, typelen);
290 memset (val + typelen, 0, slacklen);
291
292 /* Now write this data to the stack. The stack grows upwards. */
293 write_memory (stack_dest, val, typelen + slacklen);
294 stack_dest += typelen + slacklen;
295 do_cleanups (back_to);
296 }
297
298 store_unsigned_integer (buf, xstormy16_pc_size, byte_order, bp_addr);
299 write_memory (stack_dest, buf, xstormy16_pc_size);
300 stack_dest += xstormy16_pc_size;
301
302 /* Update stack pointer. */
303 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, stack_dest);
304
305 /* Return the new stack pointer minus the return address slot since
306 that's what DWARF2/GCC uses as the frame's CFA. */
307 return stack_dest - xstormy16_pc_size;
308 }
309
310 /* Function: xstormy16_scan_prologue
311 Decode the instructions within the given address range.
312 Decide when we must have reached the end of the function prologue.
313 If a frame_info pointer is provided, fill in its saved_regs etc.
314
315 Returns the address of the first instruction after the prologue. */
316
317 static CORE_ADDR
318 xstormy16_analyze_prologue (struct gdbarch *gdbarch,
319 CORE_ADDR start_addr, CORE_ADDR end_addr,
320 struct xstormy16_frame_cache *cache,
321 struct frame_info *this_frame)
322 {
323 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
324 CORE_ADDR next_addr;
325 ULONGEST inst, inst2;
326 LONGEST offset;
327 int regnum;
328
329 /* Initialize framesize with size of PC put on stack by CALLF inst. */
330 cache->saved_regs[E_PC_REGNUM] = 0;
331 cache->framesize = xstormy16_pc_size;
332
333 if (start_addr >= end_addr)
334 return end_addr;
335
336 for (next_addr = start_addr;
337 next_addr < end_addr; next_addr += xstormy16_inst_size)
338 {
339 inst = read_memory_unsigned_integer (next_addr,
340 xstormy16_inst_size, byte_order);
341 inst2 = read_memory_unsigned_integer (next_addr + xstormy16_inst_size,
342 xstormy16_inst_size, byte_order);
343
344 if (inst >= 0x0082 && inst <= 0x008d) /* push r2 .. push r13 */
345 {
346 regnum = inst & 0x000f;
347 cache->saved_regs[regnum] = cache->framesize;
348 cache->framesize += xstormy16_reg_size;
349 }
350
351 /* Optional stack allocation for args and local vars <= 4 byte. */
352 else if (inst == 0x301f || inst == 0x303f) /* inc r15, #0x1/#0x3 */
353 {
354 cache->framesize += ((inst & 0x0030) >> 4) + 1;
355 }
356
357 /* optional stack allocation for args and local vars > 4 && < 16 byte */
358 else if ((inst & 0xff0f) == 0x510f) /* 51Hf add r15, #0xH */
359 {
360 cache->framesize += (inst & 0x00f0) >> 4;
361 }
362
363 /* Optional stack allocation for args and local vars >= 16 byte. */
364 else if (inst == 0x314f && inst2 >= 0x0010) /* 314f HHHH add r15, #0xH */
365 {
366 cache->framesize += inst2;
367 next_addr += xstormy16_inst_size;
368 }
369
370 else if (inst == 0x46fd) /* mov r13, r15 */
371 {
372 cache->uses_fp = 1;
373 }
374
375 /* optional copying of args in r2-r7 to r10-r13. */
376 /* Probably only in optimized case but legal action for prologue. */
377 else if ((inst & 0xff00) == 0x4600 /* 46SD mov rD, rS */
378 && (inst & 0x00f0) >= 0x0020 && (inst & 0x00f0) <= 0x0070
379 && (inst & 0x000f) >= 0x00a0 && (inst & 0x000f) <= 0x000d)
380 ;
381
382 /* Optional copying of args in r2-r7 to stack. */
383 /* 72DS HHHH mov.b (rD, 0xHHHH), r(S-8)
384 (bit3 always 1, bit2-0 = reg) */
385 /* 73DS HHHH mov.w (rD, 0xHHHH), r(S-8) */
386 else if ((inst & 0xfed8) == 0x72d8 && (inst & 0x0007) >= 2)
387 {
388 regnum = inst & 0x0007;
389 /* Only 12 of 16 bits of the argument are used for the
390 signed offset. */
391 offset = (LONGEST) (inst2 & 0x0fff);
392 if (offset & 0x0800)
393 offset -= 0x1000;
394
395 cache->saved_regs[regnum] = cache->framesize + offset;
396 next_addr += xstormy16_inst_size;
397 }
398
399 else /* Not a prologue instruction. */
400 break;
401 }
402
403 return next_addr;
404 }
405
406 /* Function: xstormy16_skip_prologue
407 If the input address is in a function prologue,
408 returns the address of the end of the prologue;
409 else returns the input address.
410
411 Note: the input address is likely to be the function start,
412 since this function is mainly used for advancing a breakpoint
413 to the first line, or stepping to the first line when we have
414 stepped into a function call. */
415
416 static CORE_ADDR
417 xstormy16_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
418 {
419 CORE_ADDR func_addr = 0, func_end = 0;
420 const char *func_name;
421
422 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
423 {
424 struct symtab_and_line sal;
425 struct symbol *sym;
426 struct xstormy16_frame_cache cache;
427 CORE_ADDR plg_end;
428
429 memset (&cache, 0, sizeof cache);
430
431 /* Don't trust line number debug info in frameless functions. */
432 plg_end = xstormy16_analyze_prologue (gdbarch, func_addr, func_end,
433 &cache, NULL);
434 if (!cache.uses_fp)
435 return plg_end;
436
437 /* Found a function. */
438 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL);
439 /* Don't use line number debug info for assembly source files. */
440 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
441 {
442 sal = find_pc_line (func_addr, 0);
443 if (sal.end && sal.end < func_end)
444 {
445 /* Found a line number, use it as end of prologue. */
446 return sal.end;
447 }
448 }
449 /* No useable line symbol. Use result of prologue parsing method. */
450 return plg_end;
451 }
452
453 /* No function symbol -- just return the PC. */
454
455 return (CORE_ADDR) pc;
456 }
457
458 /* The epilogue is defined here as the area at the end of a function,
459 either on the `ret' instruction itself or after an instruction which
460 destroys the function's stack frame. */
461 static int
462 xstormy16_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
463 {
464 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
465 CORE_ADDR func_addr = 0, func_end = 0;
466
467 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
468 {
469 ULONGEST inst, inst2;
470 CORE_ADDR addr = func_end - xstormy16_inst_size;
471
472 /* The Xstormy16 epilogue is max. 14 bytes long. */
473 if (pc < func_end - 7 * xstormy16_inst_size)
474 return 0;
475
476 /* Check if we're on a `ret' instruction. Otherwise it's
477 too dangerous to proceed. */
478 inst = read_memory_unsigned_integer (addr,
479 xstormy16_inst_size, byte_order);
480 if (inst != 0x0003)
481 return 0;
482
483 while ((addr -= xstormy16_inst_size) >= func_addr)
484 {
485 inst = read_memory_unsigned_integer (addr,
486 xstormy16_inst_size,
487 byte_order);
488 if (inst >= 0x009a && inst <= 0x009d) /* pop r10...r13 */
489 continue;
490 if (inst == 0x305f || inst == 0x307f) /* dec r15, #0x1/#0x3 */
491 break;
492 inst2 = read_memory_unsigned_integer (addr - xstormy16_inst_size,
493 xstormy16_inst_size,
494 byte_order);
495 if (inst2 == 0x314f && inst >= 0x8000) /* add r15, neg. value */
496 {
497 addr -= xstormy16_inst_size;
498 break;
499 }
500 return 0;
501 }
502 if (pc > addr)
503 return 1;
504 }
505 return 0;
506 }
507
508 static const unsigned char *
509 xstormy16_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
510 int *lenptr)
511 {
512 static unsigned char breakpoint[] = { 0x06, 0x0 };
513 *lenptr = sizeof (breakpoint);
514 return breakpoint;
515 }
516
517 /* Given a pointer to a jump table entry, return the address
518 of the function it jumps to. Return 0 if not found. */
519 static CORE_ADDR
520 xstormy16_resolve_jmp_table_entry (struct gdbarch *gdbarch, CORE_ADDR faddr)
521 {
522 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
523 struct obj_section *faddr_sect = find_pc_section (faddr);
524
525 if (faddr_sect)
526 {
527 LONGEST inst, inst2, addr;
528 gdb_byte buf[2 * xstormy16_inst_size];
529
530 /* Return faddr if it's not pointing into the jump table. */
531 if (strcmp (faddr_sect->the_bfd_section->name, ".plt"))
532 return faddr;
533
534 if (!target_read_memory (faddr, buf, sizeof buf))
535 {
536 inst = extract_unsigned_integer (buf,
537 xstormy16_inst_size, byte_order);
538 inst2 = extract_unsigned_integer (buf + xstormy16_inst_size,
539 xstormy16_inst_size, byte_order);
540 addr = inst2 << 8 | (inst & 0xff);
541 return addr;
542 }
543 }
544 return 0;
545 }
546
547 /* Given a function's address, attempt to find (and return) the
548 address of the corresponding jump table entry. Return 0 if
549 not found. */
550 static CORE_ADDR
551 xstormy16_find_jmp_table_entry (struct gdbarch *gdbarch, CORE_ADDR faddr)
552 {
553 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
554 struct obj_section *faddr_sect = find_pc_section (faddr);
555
556 if (faddr_sect)
557 {
558 struct obj_section *osect;
559
560 /* Return faddr if it's already a pointer to a jump table entry. */
561 if (!strcmp (faddr_sect->the_bfd_section->name, ".plt"))
562 return faddr;
563
564 ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect)
565 {
566 if (!strcmp (osect->the_bfd_section->name, ".plt"))
567 break;
568 }
569
570 if (osect < faddr_sect->objfile->sections_end)
571 {
572 CORE_ADDR addr, endaddr;
573
574 addr = obj_section_addr (osect);
575 endaddr = obj_section_endaddr (osect);
576
577 for (; addr < endaddr; addr += 2 * xstormy16_inst_size)
578 {
579 LONGEST inst, inst2, faddr2;
580 gdb_byte buf[2 * xstormy16_inst_size];
581
582 if (target_read_memory (addr, buf, sizeof buf))
583 return 0;
584 inst = extract_unsigned_integer (buf,
585 xstormy16_inst_size,
586 byte_order);
587 inst2 = extract_unsigned_integer (buf + xstormy16_inst_size,
588 xstormy16_inst_size,
589 byte_order);
590 faddr2 = inst2 << 8 | (inst & 0xff);
591 if (faddr == faddr2)
592 return addr;
593 }
594 }
595 }
596 return 0;
597 }
598
599 static CORE_ADDR
600 xstormy16_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
601 {
602 struct gdbarch *gdbarch = get_frame_arch (frame);
603 CORE_ADDR tmp = xstormy16_resolve_jmp_table_entry (gdbarch, pc);
604
605 if (tmp && tmp != pc)
606 return tmp;
607 return 0;
608 }
609
610 /* Function pointers are 16 bit. The address space is 24 bit, using
611 32 bit addresses. Pointers to functions on the XStormy16 are implemented
612 by using 16 bit pointers, which are either direct pointers in case the
613 function begins below 0x10000, or indirect pointers into a jump table.
614 The next two functions convert 16 bit pointers into 24 (32) bit addresses
615 and vice versa. */
616
617 static CORE_ADDR
618 xstormy16_pointer_to_address (struct gdbarch *gdbarch,
619 struct type *type, const gdb_byte *buf)
620 {
621 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
622 enum type_code target = TYPE_CODE (TYPE_TARGET_TYPE (type));
623 CORE_ADDR addr
624 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
625
626 if (target == TYPE_CODE_FUNC || target == TYPE_CODE_METHOD)
627 {
628 CORE_ADDR addr2 = xstormy16_resolve_jmp_table_entry (gdbarch, addr);
629 if (addr2)
630 addr = addr2;
631 }
632
633 return addr;
634 }
635
636 static void
637 xstormy16_address_to_pointer (struct gdbarch *gdbarch,
638 struct type *type, gdb_byte *buf, CORE_ADDR addr)
639 {
640 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
641 enum type_code target = TYPE_CODE (TYPE_TARGET_TYPE (type));
642
643 if (target == TYPE_CODE_FUNC || target == TYPE_CODE_METHOD)
644 {
645 CORE_ADDR addr2 = xstormy16_find_jmp_table_entry (gdbarch, addr);
646 if (addr2)
647 addr = addr2;
648 }
649 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
650 }
651
652 static struct xstormy16_frame_cache *
653 xstormy16_alloc_frame_cache (void)
654 {
655 struct xstormy16_frame_cache *cache;
656 int i;
657
658 cache = FRAME_OBSTACK_ZALLOC (struct xstormy16_frame_cache);
659
660 cache->base = 0;
661 cache->saved_sp = 0;
662 cache->pc = 0;
663 cache->uses_fp = 0;
664 cache->framesize = 0;
665 for (i = 0; i < E_NUM_REGS; ++i)
666 cache->saved_regs[i] = REG_UNAVAIL;
667
668 return cache;
669 }
670
671 static struct xstormy16_frame_cache *
672 xstormy16_frame_cache (struct frame_info *this_frame, void **this_cache)
673 {
674 struct gdbarch *gdbarch = get_frame_arch (this_frame);
675 struct xstormy16_frame_cache *cache;
676 CORE_ADDR current_pc;
677 int i;
678
679 if (*this_cache)
680 return *this_cache;
681
682 cache = xstormy16_alloc_frame_cache ();
683 *this_cache = cache;
684
685 cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM);
686 if (cache->base == 0)
687 return cache;
688
689 cache->pc = get_frame_func (this_frame);
690 current_pc = get_frame_pc (this_frame);
691 if (cache->pc)
692 xstormy16_analyze_prologue (gdbarch, cache->pc, current_pc,
693 cache, this_frame);
694
695 if (!cache->uses_fp)
696 cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
697
698 cache->saved_sp = cache->base - cache->framesize;
699
700 for (i = 0; i < E_NUM_REGS; ++i)
701 if (cache->saved_regs[i] != REG_UNAVAIL)
702 cache->saved_regs[i] += cache->saved_sp;
703
704 return cache;
705 }
706
707 static struct value *
708 xstormy16_frame_prev_register (struct frame_info *this_frame,
709 void **this_cache, int regnum)
710 {
711 struct xstormy16_frame_cache *cache = xstormy16_frame_cache (this_frame,
712 this_cache);
713 gdb_assert (regnum >= 0);
714
715 if (regnum == E_SP_REGNUM && cache->saved_sp)
716 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
717
718 if (regnum < E_NUM_REGS && cache->saved_regs[regnum] != REG_UNAVAIL)
719 return frame_unwind_got_memory (this_frame, regnum,
720 cache->saved_regs[regnum]);
721
722 return frame_unwind_got_register (this_frame, regnum, regnum);
723 }
724
725 static void
726 xstormy16_frame_this_id (struct frame_info *this_frame, void **this_cache,
727 struct frame_id *this_id)
728 {
729 struct xstormy16_frame_cache *cache = xstormy16_frame_cache (this_frame,
730 this_cache);
731
732 /* This marks the outermost frame. */
733 if (cache->base == 0)
734 return;
735
736 *this_id = frame_id_build (cache->saved_sp, cache->pc);
737 }
738
739 static CORE_ADDR
740 xstormy16_frame_base_address (struct frame_info *this_frame, void **this_cache)
741 {
742 struct xstormy16_frame_cache *cache = xstormy16_frame_cache (this_frame,
743 this_cache);
744 return cache->base;
745 }
746
747 static const struct frame_unwind xstormy16_frame_unwind = {
748 NORMAL_FRAME,
749 default_frame_unwind_stop_reason,
750 xstormy16_frame_this_id,
751 xstormy16_frame_prev_register,
752 NULL,
753 default_frame_sniffer
754 };
755
756 static const struct frame_base xstormy16_frame_base = {
757 &xstormy16_frame_unwind,
758 xstormy16_frame_base_address,
759 xstormy16_frame_base_address,
760 xstormy16_frame_base_address
761 };
762
763 static CORE_ADDR
764 xstormy16_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
765 {
766 return frame_unwind_register_unsigned (next_frame, E_SP_REGNUM);
767 }
768
769 static CORE_ADDR
770 xstormy16_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
771 {
772 return frame_unwind_register_unsigned (next_frame, E_PC_REGNUM);
773 }
774
775 static struct frame_id
776 xstormy16_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
777 {
778 CORE_ADDR sp = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
779 return frame_id_build (sp, get_frame_pc (this_frame));
780 }
781
782
783 /* Function: xstormy16_gdbarch_init
784 Initializer function for the xstormy16 gdbarch vector.
785 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
786
787 static struct gdbarch *
788 xstormy16_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
789 {
790 struct gdbarch *gdbarch;
791
792 /* find a candidate among the list of pre-declared architectures. */
793 arches = gdbarch_list_lookup_by_info (arches, &info);
794 if (arches != NULL)
795 return (arches->gdbarch);
796
797 gdbarch = gdbarch_alloc (&info, NULL);
798
799 /*
800 * Basic register fields and methods, datatype sizes and stuff.
801 */
802
803 set_gdbarch_num_regs (gdbarch, E_NUM_REGS);
804 set_gdbarch_num_pseudo_regs (gdbarch, 0);
805 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
806 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
807 set_gdbarch_register_name (gdbarch, xstormy16_register_name);
808 set_gdbarch_register_type (gdbarch, xstormy16_register_type);
809
810 set_gdbarch_char_signed (gdbarch, 0);
811 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
812 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
813 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
814 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
815
816 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
817 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
818 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
819
820 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
821 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
822 set_gdbarch_dwarf2_addr_size (gdbarch, 4);
823
824 set_gdbarch_address_to_pointer (gdbarch, xstormy16_address_to_pointer);
825 set_gdbarch_pointer_to_address (gdbarch, xstormy16_pointer_to_address);
826
827 /* Stack grows up. */
828 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
829
830 /*
831 * Frame Info
832 */
833 set_gdbarch_unwind_sp (gdbarch, xstormy16_unwind_sp);
834 set_gdbarch_unwind_pc (gdbarch, xstormy16_unwind_pc);
835 set_gdbarch_dummy_id (gdbarch, xstormy16_dummy_id);
836 set_gdbarch_frame_align (gdbarch, xstormy16_frame_align);
837 frame_base_set_default (gdbarch, &xstormy16_frame_base);
838
839 set_gdbarch_skip_prologue (gdbarch, xstormy16_skip_prologue);
840 set_gdbarch_in_function_epilogue_p (gdbarch,
841 xstormy16_in_function_epilogue_p);
842
843 /* These values and methods are used when gdb calls a target function. */
844 set_gdbarch_push_dummy_call (gdbarch, xstormy16_push_dummy_call);
845 set_gdbarch_breakpoint_from_pc (gdbarch, xstormy16_breakpoint_from_pc);
846 set_gdbarch_return_value (gdbarch, xstormy16_return_value);
847
848 set_gdbarch_skip_trampoline_code (gdbarch, xstormy16_skip_trampoline_code);
849
850 set_gdbarch_print_insn (gdbarch, print_insn_xstormy16);
851
852 gdbarch_init_osabi (info, gdbarch);
853
854 dwarf2_append_unwinders (gdbarch);
855 frame_unwind_append_unwinder (gdbarch, &xstormy16_frame_unwind);
856
857 return gdbarch;
858 }
859
860 /* Function: _initialize_xstormy16_tdep
861 Initializer function for the Sanyo Xstormy16a module.
862 Called by gdb at start-up. */
863
864 /* -Wmissing-prototypes */
865 extern initialize_file_ftype _initialize_xstormy16_tdep;
866
867 void
868 _initialize_xstormy16_tdep (void)
869 {
870 register_gdbarch_init (bfd_arch_xstormy16, xstormy16_gdbarch_init);
871 }