]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/xstormy16-tdep.c
Include string.h in common-defs.h
[thirdparty/binutils-gdb.git] / gdb / xstormy16-tdep.c
1 /* Target-dependent code for the Sanyo Xstormy16a (LC590000) processor.
2
3 Copyright (C) 2001-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "frame-base.h"
23 #include "frame-unwind.h"
24 #include "dwarf2-frame.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcmd.h"
28 #include "gdbcore.h"
29 #include "value.h"
30 #include "dis-asm.h"
31 #include "inferior.h"
32 #include "arch-utils.h"
33 #include "floatformat.h"
34 #include "regcache.h"
35 #include "doublest.h"
36 #include "osabi.h"
37 #include "objfiles.h"
38
39 enum gdb_regnum
40 {
41 /* Xstormy16 has 16 general purpose registers (R0-R15) plus PC.
42 Functions will return their values in register R2-R7 as they fit.
43 Otherwise a hidden pointer to an big enough area is given as argument
44 to the function in r2. Further arguments are beginning in r3 then.
45 R13 is used as frame pointer when GCC compiles w/o optimization
46 R14 is used as "PSW", displaying the CPU status.
47 R15 is used implicitely as stack pointer. */
48 E_R0_REGNUM,
49 E_R1_REGNUM,
50 E_R2_REGNUM, E_1ST_ARG_REGNUM = E_R2_REGNUM, E_PTR_RET_REGNUM = E_R2_REGNUM,
51 E_R3_REGNUM,
52 E_R4_REGNUM,
53 E_R5_REGNUM,
54 E_R6_REGNUM,
55 E_R7_REGNUM, E_LST_ARG_REGNUM = E_R7_REGNUM,
56 E_R8_REGNUM,
57 E_R9_REGNUM,
58 E_R10_REGNUM,
59 E_R11_REGNUM,
60 E_R12_REGNUM,
61 E_R13_REGNUM, E_FP_REGNUM = E_R13_REGNUM,
62 E_R14_REGNUM, E_PSW_REGNUM = E_R14_REGNUM,
63 E_R15_REGNUM, E_SP_REGNUM = E_R15_REGNUM,
64 E_PC_REGNUM,
65 E_NUM_REGS
66 };
67
68 /* Use an invalid address value as 'not available' marker. */
69 enum { REG_UNAVAIL = (CORE_ADDR) -1 };
70
71 struct xstormy16_frame_cache
72 {
73 /* Base address. */
74 CORE_ADDR base;
75 CORE_ADDR pc;
76 LONGEST framesize;
77 int uses_fp;
78 CORE_ADDR saved_regs[E_NUM_REGS];
79 CORE_ADDR saved_sp;
80 };
81
82 /* Size of instructions, registers, etc. */
83 enum
84 {
85 xstormy16_inst_size = 2,
86 xstormy16_reg_size = 2,
87 xstormy16_pc_size = 4
88 };
89
90 /* Size of return datatype which fits into the remaining return registers. */
91 #define E_MAX_RETTYPE_SIZE(regnum) ((E_LST_ARG_REGNUM - (regnum) + 1) \
92 * xstormy16_reg_size)
93
94 /* Size of return datatype which fits into all return registers. */
95 enum
96 {
97 E_MAX_RETTYPE_SIZE_IN_REGS = E_MAX_RETTYPE_SIZE (E_R2_REGNUM)
98 };
99
100 /* Function: xstormy16_register_name
101 Returns the name of the standard Xstormy16 register N. */
102
103 static const char *
104 xstormy16_register_name (struct gdbarch *gdbarch, int regnum)
105 {
106 static char *register_names[] = {
107 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
108 "r8", "r9", "r10", "r11", "r12", "r13",
109 "psw", "sp", "pc"
110 };
111
112 if (regnum < 0 || regnum >= E_NUM_REGS)
113 internal_error (__FILE__, __LINE__,
114 _("xstormy16_register_name: illegal register number %d"),
115 regnum);
116 else
117 return register_names[regnum];
118
119 }
120
121 static struct type *
122 xstormy16_register_type (struct gdbarch *gdbarch, int regnum)
123 {
124 if (regnum == E_PC_REGNUM)
125 return builtin_type (gdbarch)->builtin_uint32;
126 else
127 return builtin_type (gdbarch)->builtin_uint16;
128 }
129
130 /* Function: xstormy16_type_is_scalar
131 Makes the decision if a given type is a scalar types. Scalar
132 types are returned in the registers r2-r7 as they fit. */
133
134 static int
135 xstormy16_type_is_scalar (struct type *t)
136 {
137 return (TYPE_CODE(t) != TYPE_CODE_STRUCT
138 && TYPE_CODE(t) != TYPE_CODE_UNION
139 && TYPE_CODE(t) != TYPE_CODE_ARRAY);
140 }
141
142 /* Function: xstormy16_use_struct_convention
143 Returns non-zero if the given struct type will be returned using
144 a special convention, rather than the normal function return method.
145 7sed in the contexts of the "return" command, and of
146 target function calls from the debugger. */
147
148 static int
149 xstormy16_use_struct_convention (struct type *type)
150 {
151 return !xstormy16_type_is_scalar (type)
152 || TYPE_LENGTH (type) > E_MAX_RETTYPE_SIZE_IN_REGS;
153 }
154
155 /* Function: xstormy16_extract_return_value
156 Find a function's return value in the appropriate registers (in
157 regbuf), and copy it into valbuf. */
158
159 static void
160 xstormy16_extract_return_value (struct type *type, struct regcache *regcache,
161 gdb_byte *valbuf)
162 {
163 int len = TYPE_LENGTH (type);
164 int i, regnum = E_1ST_ARG_REGNUM;
165
166 for (i = 0; i < len; i += xstormy16_reg_size)
167 regcache_raw_read (regcache, regnum++, valbuf + i);
168 }
169
170 /* Function: xstormy16_store_return_value
171 Copy the function return value from VALBUF into the
172 proper location for a function return.
173 Called only in the context of the "return" command. */
174
175 static void
176 xstormy16_store_return_value (struct type *type, struct regcache *regcache,
177 const gdb_byte *valbuf)
178 {
179 if (TYPE_LENGTH (type) == 1)
180 {
181 /* Add leading zeros to the value. */
182 gdb_byte buf[xstormy16_reg_size];
183 memset (buf, 0, xstormy16_reg_size);
184 memcpy (buf, valbuf, 1);
185 regcache_raw_write (regcache, E_1ST_ARG_REGNUM, buf);
186 }
187 else
188 {
189 int len = TYPE_LENGTH (type);
190 int i, regnum = E_1ST_ARG_REGNUM;
191
192 for (i = 0; i < len; i += xstormy16_reg_size)
193 regcache_raw_write (regcache, regnum++, valbuf + i);
194 }
195 }
196
197 static enum return_value_convention
198 xstormy16_return_value (struct gdbarch *gdbarch, struct value *function,
199 struct type *type, struct regcache *regcache,
200 gdb_byte *readbuf, const gdb_byte *writebuf)
201 {
202 if (xstormy16_use_struct_convention (type))
203 return RETURN_VALUE_STRUCT_CONVENTION;
204 if (writebuf)
205 xstormy16_store_return_value (type, regcache, writebuf);
206 else if (readbuf)
207 xstormy16_extract_return_value (type, regcache, readbuf);
208 return RETURN_VALUE_REGISTER_CONVENTION;
209 }
210
211 static CORE_ADDR
212 xstormy16_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
213 {
214 if (addr & 1)
215 ++addr;
216 return addr;
217 }
218
219 /* Function: xstormy16_push_dummy_call
220 Setup the function arguments for GDB to call a function in the inferior.
221 Called only in the context of a target function call from the debugger.
222 Returns the value of the SP register after the args are pushed. */
223
224 static CORE_ADDR
225 xstormy16_push_dummy_call (struct gdbarch *gdbarch,
226 struct value *function,
227 struct regcache *regcache,
228 CORE_ADDR bp_addr, int nargs,
229 struct value **args,
230 CORE_ADDR sp, int struct_return,
231 CORE_ADDR struct_addr)
232 {
233 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
234 CORE_ADDR stack_dest = sp;
235 int argreg = E_1ST_ARG_REGNUM;
236 int i, j;
237 int typelen, slacklen;
238 const gdb_byte *val;
239 gdb_byte buf[xstormy16_pc_size];
240
241 /* If struct_return is true, then the struct return address will
242 consume one argument-passing register. */
243 if (struct_return)
244 {
245 regcache_cooked_write_unsigned (regcache, E_PTR_RET_REGNUM, struct_addr);
246 argreg++;
247 }
248
249 /* Arguments are passed in R2-R7 as they fit. If an argument doesn't
250 fit in the remaining registers we're switching over to the stack.
251 No argument is put on stack partially and as soon as we switched
252 over to stack no further argument is put in a register even if it
253 would fit in the remaining unused registers. */
254 for (i = 0; i < nargs && argreg <= E_LST_ARG_REGNUM; i++)
255 {
256 typelen = TYPE_LENGTH (value_enclosing_type (args[i]));
257 if (typelen > E_MAX_RETTYPE_SIZE (argreg))
258 break;
259
260 /* Put argument into registers wordwise. */
261 val = value_contents (args[i]);
262 for (j = 0; j < typelen; j += xstormy16_reg_size)
263 {
264 ULONGEST regval;
265 int size = (typelen - j == 1) ? 1 : xstormy16_reg_size;
266
267 regval = extract_unsigned_integer (val + j, size, byte_order);
268 regcache_cooked_write_unsigned (regcache, argreg++, regval);
269 }
270 }
271
272 /* Align SP */
273 stack_dest = xstormy16_frame_align (gdbarch, stack_dest);
274
275 /* Loop backwards through remaining arguments and push them on the stack,
276 wordaligned. */
277 for (j = nargs - 1; j >= i; j--)
278 {
279 gdb_byte *val;
280 struct cleanup *back_to;
281 const gdb_byte *bytes = value_contents (args[j]);
282
283 typelen = TYPE_LENGTH (value_enclosing_type (args[j]));
284 slacklen = typelen & 1;
285 val = xmalloc (typelen + slacklen);
286 back_to = make_cleanup (xfree, val);
287 memcpy (val, bytes, typelen);
288 memset (val + typelen, 0, slacklen);
289
290 /* Now write this data to the stack. The stack grows upwards. */
291 write_memory (stack_dest, val, typelen + slacklen);
292 stack_dest += typelen + slacklen;
293 do_cleanups (back_to);
294 }
295
296 store_unsigned_integer (buf, xstormy16_pc_size, byte_order, bp_addr);
297 write_memory (stack_dest, buf, xstormy16_pc_size);
298 stack_dest += xstormy16_pc_size;
299
300 /* Update stack pointer. */
301 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, stack_dest);
302
303 /* Return the new stack pointer minus the return address slot since
304 that's what DWARF2/GCC uses as the frame's CFA. */
305 return stack_dest - xstormy16_pc_size;
306 }
307
308 /* Function: xstormy16_scan_prologue
309 Decode the instructions within the given address range.
310 Decide when we must have reached the end of the function prologue.
311 If a frame_info pointer is provided, fill in its saved_regs etc.
312
313 Returns the address of the first instruction after the prologue. */
314
315 static CORE_ADDR
316 xstormy16_analyze_prologue (struct gdbarch *gdbarch,
317 CORE_ADDR start_addr, CORE_ADDR end_addr,
318 struct xstormy16_frame_cache *cache,
319 struct frame_info *this_frame)
320 {
321 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
322 CORE_ADDR next_addr;
323 ULONGEST inst, inst2;
324 LONGEST offset;
325 int regnum;
326
327 /* Initialize framesize with size of PC put on stack by CALLF inst. */
328 cache->saved_regs[E_PC_REGNUM] = 0;
329 cache->framesize = xstormy16_pc_size;
330
331 if (start_addr >= end_addr)
332 return end_addr;
333
334 for (next_addr = start_addr;
335 next_addr < end_addr; next_addr += xstormy16_inst_size)
336 {
337 inst = read_memory_unsigned_integer (next_addr,
338 xstormy16_inst_size, byte_order);
339 inst2 = read_memory_unsigned_integer (next_addr + xstormy16_inst_size,
340 xstormy16_inst_size, byte_order);
341
342 if (inst >= 0x0082 && inst <= 0x008d) /* push r2 .. push r13 */
343 {
344 regnum = inst & 0x000f;
345 cache->saved_regs[regnum] = cache->framesize;
346 cache->framesize += xstormy16_reg_size;
347 }
348
349 /* Optional stack allocation for args and local vars <= 4 byte. */
350 else if (inst == 0x301f || inst == 0x303f) /* inc r15, #0x1/#0x3 */
351 {
352 cache->framesize += ((inst & 0x0030) >> 4) + 1;
353 }
354
355 /* optional stack allocation for args and local vars > 4 && < 16 byte */
356 else if ((inst & 0xff0f) == 0x510f) /* 51Hf add r15, #0xH */
357 {
358 cache->framesize += (inst & 0x00f0) >> 4;
359 }
360
361 /* Optional stack allocation for args and local vars >= 16 byte. */
362 else if (inst == 0x314f && inst2 >= 0x0010) /* 314f HHHH add r15, #0xH */
363 {
364 cache->framesize += inst2;
365 next_addr += xstormy16_inst_size;
366 }
367
368 else if (inst == 0x46fd) /* mov r13, r15 */
369 {
370 cache->uses_fp = 1;
371 }
372
373 /* optional copying of args in r2-r7 to r10-r13. */
374 /* Probably only in optimized case but legal action for prologue. */
375 else if ((inst & 0xff00) == 0x4600 /* 46SD mov rD, rS */
376 && (inst & 0x00f0) >= 0x0020 && (inst & 0x00f0) <= 0x0070
377 && (inst & 0x000f) >= 0x00a0 && (inst & 0x000f) <= 0x000d)
378 ;
379
380 /* Optional copying of args in r2-r7 to stack. */
381 /* 72DS HHHH mov.b (rD, 0xHHHH), r(S-8)
382 (bit3 always 1, bit2-0 = reg) */
383 /* 73DS HHHH mov.w (rD, 0xHHHH), r(S-8) */
384 else if ((inst & 0xfed8) == 0x72d8 && (inst & 0x0007) >= 2)
385 {
386 regnum = inst & 0x0007;
387 /* Only 12 of 16 bits of the argument are used for the
388 signed offset. */
389 offset = (LONGEST) (inst2 & 0x0fff);
390 if (offset & 0x0800)
391 offset -= 0x1000;
392
393 cache->saved_regs[regnum] = cache->framesize + offset;
394 next_addr += xstormy16_inst_size;
395 }
396
397 else /* Not a prologue instruction. */
398 break;
399 }
400
401 return next_addr;
402 }
403
404 /* Function: xstormy16_skip_prologue
405 If the input address is in a function prologue,
406 returns the address of the end of the prologue;
407 else returns the input address.
408
409 Note: the input address is likely to be the function start,
410 since this function is mainly used for advancing a breakpoint
411 to the first line, or stepping to the first line when we have
412 stepped into a function call. */
413
414 static CORE_ADDR
415 xstormy16_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
416 {
417 CORE_ADDR func_addr = 0, func_end = 0;
418 const char *func_name;
419
420 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
421 {
422 struct symtab_and_line sal;
423 struct symbol *sym;
424 struct xstormy16_frame_cache cache;
425 CORE_ADDR plg_end;
426
427 memset (&cache, 0, sizeof cache);
428
429 /* Don't trust line number debug info in frameless functions. */
430 plg_end = xstormy16_analyze_prologue (gdbarch, func_addr, func_end,
431 &cache, NULL);
432 if (!cache.uses_fp)
433 return plg_end;
434
435 /* Found a function. */
436 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL);
437 /* Don't use line number debug info for assembly source files. */
438 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
439 {
440 sal = find_pc_line (func_addr, 0);
441 if (sal.end && sal.end < func_end)
442 {
443 /* Found a line number, use it as end of prologue. */
444 return sal.end;
445 }
446 }
447 /* No useable line symbol. Use result of prologue parsing method. */
448 return plg_end;
449 }
450
451 /* No function symbol -- just return the PC. */
452
453 return (CORE_ADDR) pc;
454 }
455
456 /* The epilogue is defined here as the area at the end of a function,
457 either on the `ret' instruction itself or after an instruction which
458 destroys the function's stack frame. */
459 static int
460 xstormy16_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
461 {
462 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
463 CORE_ADDR func_addr = 0, func_end = 0;
464
465 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
466 {
467 ULONGEST inst, inst2;
468 CORE_ADDR addr = func_end - xstormy16_inst_size;
469
470 /* The Xstormy16 epilogue is max. 14 bytes long. */
471 if (pc < func_end - 7 * xstormy16_inst_size)
472 return 0;
473
474 /* Check if we're on a `ret' instruction. Otherwise it's
475 too dangerous to proceed. */
476 inst = read_memory_unsigned_integer (addr,
477 xstormy16_inst_size, byte_order);
478 if (inst != 0x0003)
479 return 0;
480
481 while ((addr -= xstormy16_inst_size) >= func_addr)
482 {
483 inst = read_memory_unsigned_integer (addr,
484 xstormy16_inst_size,
485 byte_order);
486 if (inst >= 0x009a && inst <= 0x009d) /* pop r10...r13 */
487 continue;
488 if (inst == 0x305f || inst == 0x307f) /* dec r15, #0x1/#0x3 */
489 break;
490 inst2 = read_memory_unsigned_integer (addr - xstormy16_inst_size,
491 xstormy16_inst_size,
492 byte_order);
493 if (inst2 == 0x314f && inst >= 0x8000) /* add r15, neg. value */
494 {
495 addr -= xstormy16_inst_size;
496 break;
497 }
498 return 0;
499 }
500 if (pc > addr)
501 return 1;
502 }
503 return 0;
504 }
505
506 static const unsigned char *
507 xstormy16_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
508 int *lenptr)
509 {
510 static unsigned char breakpoint[] = { 0x06, 0x0 };
511 *lenptr = sizeof (breakpoint);
512 return breakpoint;
513 }
514
515 /* Given a pointer to a jump table entry, return the address
516 of the function it jumps to. Return 0 if not found. */
517 static CORE_ADDR
518 xstormy16_resolve_jmp_table_entry (struct gdbarch *gdbarch, CORE_ADDR faddr)
519 {
520 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
521 struct obj_section *faddr_sect = find_pc_section (faddr);
522
523 if (faddr_sect)
524 {
525 LONGEST inst, inst2, addr;
526 gdb_byte buf[2 * xstormy16_inst_size];
527
528 /* Return faddr if it's not pointing into the jump table. */
529 if (strcmp (faddr_sect->the_bfd_section->name, ".plt"))
530 return faddr;
531
532 if (!target_read_memory (faddr, buf, sizeof buf))
533 {
534 inst = extract_unsigned_integer (buf,
535 xstormy16_inst_size, byte_order);
536 inst2 = extract_unsigned_integer (buf + xstormy16_inst_size,
537 xstormy16_inst_size, byte_order);
538 addr = inst2 << 8 | (inst & 0xff);
539 return addr;
540 }
541 }
542 return 0;
543 }
544
545 /* Given a function's address, attempt to find (and return) the
546 address of the corresponding jump table entry. Return 0 if
547 not found. */
548 static CORE_ADDR
549 xstormy16_find_jmp_table_entry (struct gdbarch *gdbarch, CORE_ADDR faddr)
550 {
551 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
552 struct obj_section *faddr_sect = find_pc_section (faddr);
553
554 if (faddr_sect)
555 {
556 struct obj_section *osect;
557
558 /* Return faddr if it's already a pointer to a jump table entry. */
559 if (!strcmp (faddr_sect->the_bfd_section->name, ".plt"))
560 return faddr;
561
562 ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect)
563 {
564 if (!strcmp (osect->the_bfd_section->name, ".plt"))
565 break;
566 }
567
568 if (osect < faddr_sect->objfile->sections_end)
569 {
570 CORE_ADDR addr, endaddr;
571
572 addr = obj_section_addr (osect);
573 endaddr = obj_section_endaddr (osect);
574
575 for (; addr < endaddr; addr += 2 * xstormy16_inst_size)
576 {
577 LONGEST inst, inst2, faddr2;
578 gdb_byte buf[2 * xstormy16_inst_size];
579
580 if (target_read_memory (addr, buf, sizeof buf))
581 return 0;
582 inst = extract_unsigned_integer (buf,
583 xstormy16_inst_size,
584 byte_order);
585 inst2 = extract_unsigned_integer (buf + xstormy16_inst_size,
586 xstormy16_inst_size,
587 byte_order);
588 faddr2 = inst2 << 8 | (inst & 0xff);
589 if (faddr == faddr2)
590 return addr;
591 }
592 }
593 }
594 return 0;
595 }
596
597 static CORE_ADDR
598 xstormy16_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
599 {
600 struct gdbarch *gdbarch = get_frame_arch (frame);
601 CORE_ADDR tmp = xstormy16_resolve_jmp_table_entry (gdbarch, pc);
602
603 if (tmp && tmp != pc)
604 return tmp;
605 return 0;
606 }
607
608 /* Function pointers are 16 bit. The address space is 24 bit, using
609 32 bit addresses. Pointers to functions on the XStormy16 are implemented
610 by using 16 bit pointers, which are either direct pointers in case the
611 function begins below 0x10000, or indirect pointers into a jump table.
612 The next two functions convert 16 bit pointers into 24 (32) bit addresses
613 and vice versa. */
614
615 static CORE_ADDR
616 xstormy16_pointer_to_address (struct gdbarch *gdbarch,
617 struct type *type, const gdb_byte *buf)
618 {
619 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
620 enum type_code target = TYPE_CODE (TYPE_TARGET_TYPE (type));
621 CORE_ADDR addr
622 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
623
624 if (target == TYPE_CODE_FUNC || target == TYPE_CODE_METHOD)
625 {
626 CORE_ADDR addr2 = xstormy16_resolve_jmp_table_entry (gdbarch, addr);
627 if (addr2)
628 addr = addr2;
629 }
630
631 return addr;
632 }
633
634 static void
635 xstormy16_address_to_pointer (struct gdbarch *gdbarch,
636 struct type *type, gdb_byte *buf, CORE_ADDR addr)
637 {
638 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
639 enum type_code target = TYPE_CODE (TYPE_TARGET_TYPE (type));
640
641 if (target == TYPE_CODE_FUNC || target == TYPE_CODE_METHOD)
642 {
643 CORE_ADDR addr2 = xstormy16_find_jmp_table_entry (gdbarch, addr);
644 if (addr2)
645 addr = addr2;
646 }
647 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
648 }
649
650 static struct xstormy16_frame_cache *
651 xstormy16_alloc_frame_cache (void)
652 {
653 struct xstormy16_frame_cache *cache;
654 int i;
655
656 cache = FRAME_OBSTACK_ZALLOC (struct xstormy16_frame_cache);
657
658 cache->base = 0;
659 cache->saved_sp = 0;
660 cache->pc = 0;
661 cache->uses_fp = 0;
662 cache->framesize = 0;
663 for (i = 0; i < E_NUM_REGS; ++i)
664 cache->saved_regs[i] = REG_UNAVAIL;
665
666 return cache;
667 }
668
669 static struct xstormy16_frame_cache *
670 xstormy16_frame_cache (struct frame_info *this_frame, void **this_cache)
671 {
672 struct gdbarch *gdbarch = get_frame_arch (this_frame);
673 struct xstormy16_frame_cache *cache;
674 CORE_ADDR current_pc;
675 int i;
676
677 if (*this_cache)
678 return *this_cache;
679
680 cache = xstormy16_alloc_frame_cache ();
681 *this_cache = cache;
682
683 cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM);
684 if (cache->base == 0)
685 return cache;
686
687 cache->pc = get_frame_func (this_frame);
688 current_pc = get_frame_pc (this_frame);
689 if (cache->pc)
690 xstormy16_analyze_prologue (gdbarch, cache->pc, current_pc,
691 cache, this_frame);
692
693 if (!cache->uses_fp)
694 cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
695
696 cache->saved_sp = cache->base - cache->framesize;
697
698 for (i = 0; i < E_NUM_REGS; ++i)
699 if (cache->saved_regs[i] != REG_UNAVAIL)
700 cache->saved_regs[i] += cache->saved_sp;
701
702 return cache;
703 }
704
705 static struct value *
706 xstormy16_frame_prev_register (struct frame_info *this_frame,
707 void **this_cache, int regnum)
708 {
709 struct xstormy16_frame_cache *cache = xstormy16_frame_cache (this_frame,
710 this_cache);
711 gdb_assert (regnum >= 0);
712
713 if (regnum == E_SP_REGNUM && cache->saved_sp)
714 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
715
716 if (regnum < E_NUM_REGS && cache->saved_regs[regnum] != REG_UNAVAIL)
717 return frame_unwind_got_memory (this_frame, regnum,
718 cache->saved_regs[regnum]);
719
720 return frame_unwind_got_register (this_frame, regnum, regnum);
721 }
722
723 static void
724 xstormy16_frame_this_id (struct frame_info *this_frame, void **this_cache,
725 struct frame_id *this_id)
726 {
727 struct xstormy16_frame_cache *cache = xstormy16_frame_cache (this_frame,
728 this_cache);
729
730 /* This marks the outermost frame. */
731 if (cache->base == 0)
732 return;
733
734 *this_id = frame_id_build (cache->saved_sp, cache->pc);
735 }
736
737 static CORE_ADDR
738 xstormy16_frame_base_address (struct frame_info *this_frame, void **this_cache)
739 {
740 struct xstormy16_frame_cache *cache = xstormy16_frame_cache (this_frame,
741 this_cache);
742 return cache->base;
743 }
744
745 static const struct frame_unwind xstormy16_frame_unwind = {
746 NORMAL_FRAME,
747 default_frame_unwind_stop_reason,
748 xstormy16_frame_this_id,
749 xstormy16_frame_prev_register,
750 NULL,
751 default_frame_sniffer
752 };
753
754 static const struct frame_base xstormy16_frame_base = {
755 &xstormy16_frame_unwind,
756 xstormy16_frame_base_address,
757 xstormy16_frame_base_address,
758 xstormy16_frame_base_address
759 };
760
761 static CORE_ADDR
762 xstormy16_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
763 {
764 return frame_unwind_register_unsigned (next_frame, E_SP_REGNUM);
765 }
766
767 static CORE_ADDR
768 xstormy16_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
769 {
770 return frame_unwind_register_unsigned (next_frame, E_PC_REGNUM);
771 }
772
773 static struct frame_id
774 xstormy16_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
775 {
776 CORE_ADDR sp = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
777 return frame_id_build (sp, get_frame_pc (this_frame));
778 }
779
780
781 /* Function: xstormy16_gdbarch_init
782 Initializer function for the xstormy16 gdbarch vector.
783 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
784
785 static struct gdbarch *
786 xstormy16_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
787 {
788 struct gdbarch *gdbarch;
789
790 /* find a candidate among the list of pre-declared architectures. */
791 arches = gdbarch_list_lookup_by_info (arches, &info);
792 if (arches != NULL)
793 return (arches->gdbarch);
794
795 gdbarch = gdbarch_alloc (&info, NULL);
796
797 /*
798 * Basic register fields and methods, datatype sizes and stuff.
799 */
800
801 set_gdbarch_num_regs (gdbarch, E_NUM_REGS);
802 set_gdbarch_num_pseudo_regs (gdbarch, 0);
803 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
804 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
805 set_gdbarch_register_name (gdbarch, xstormy16_register_name);
806 set_gdbarch_register_type (gdbarch, xstormy16_register_type);
807
808 set_gdbarch_char_signed (gdbarch, 0);
809 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
810 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
811 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
812 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
813
814 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
815 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
816 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
817
818 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
819 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
820 set_gdbarch_dwarf2_addr_size (gdbarch, 4);
821
822 set_gdbarch_address_to_pointer (gdbarch, xstormy16_address_to_pointer);
823 set_gdbarch_pointer_to_address (gdbarch, xstormy16_pointer_to_address);
824
825 /* Stack grows up. */
826 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
827
828 /*
829 * Frame Info
830 */
831 set_gdbarch_unwind_sp (gdbarch, xstormy16_unwind_sp);
832 set_gdbarch_unwind_pc (gdbarch, xstormy16_unwind_pc);
833 set_gdbarch_dummy_id (gdbarch, xstormy16_dummy_id);
834 set_gdbarch_frame_align (gdbarch, xstormy16_frame_align);
835 frame_base_set_default (gdbarch, &xstormy16_frame_base);
836
837 set_gdbarch_skip_prologue (gdbarch, xstormy16_skip_prologue);
838 set_gdbarch_in_function_epilogue_p (gdbarch,
839 xstormy16_in_function_epilogue_p);
840
841 /* These values and methods are used when gdb calls a target function. */
842 set_gdbarch_push_dummy_call (gdbarch, xstormy16_push_dummy_call);
843 set_gdbarch_breakpoint_from_pc (gdbarch, xstormy16_breakpoint_from_pc);
844 set_gdbarch_return_value (gdbarch, xstormy16_return_value);
845
846 set_gdbarch_skip_trampoline_code (gdbarch, xstormy16_skip_trampoline_code);
847
848 set_gdbarch_print_insn (gdbarch, print_insn_xstormy16);
849
850 gdbarch_init_osabi (info, gdbarch);
851
852 dwarf2_append_unwinders (gdbarch);
853 frame_unwind_append_unwinder (gdbarch, &xstormy16_frame_unwind);
854
855 return gdbarch;
856 }
857
858 /* Function: _initialize_xstormy16_tdep
859 Initializer function for the Sanyo Xstormy16a module.
860 Called by gdb at start-up. */
861
862 /* -Wmissing-prototypes */
863 extern initialize_file_ftype _initialize_xstormy16_tdep;
864
865 void
866 _initialize_xstormy16_tdep (void)
867 {
868 register_gdbarch_init (bfd_arch_xstormy16, xstormy16_gdbarch_init);
869 }