]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/xtensa-tdep.c
Update Copyright year range in all files maintained by GDB.
[thirdparty/binutils-gdb.git] / gdb / xtensa-tdep.c
1 /* Target-dependent code for the Xtensa port of GDB, the GNU debugger.
2
3 Copyright (C) 2003-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "solib-svr4.h"
23 #include "symtab.h"
24 #include "symfile.h"
25 #include "objfiles.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "value.h"
29 #include "dis-asm.h"
30 #include "inferior.h"
31 #include "floatformat.h"
32 #include "regcache.h"
33 #include "reggroups.h"
34 #include "regset.h"
35
36 #include "dummy-frame.h"
37 #include "dwarf2.h"
38 #include "dwarf2-frame.h"
39 #include "dwarf2loc.h"
40 #include "frame.h"
41 #include "frame-base.h"
42 #include "frame-unwind.h"
43
44 #include "arch-utils.h"
45 #include "gdbarch.h"
46 #include "remote.h"
47 #include "serial.h"
48
49 #include "command.h"
50 #include "gdbcmd.h"
51 #include "gdb_assert.h"
52
53 #include "xtensa-isa.h"
54 #include "xtensa-tdep.h"
55 #include "xtensa-config.h"
56
57
58 static unsigned int xtensa_debug_level = 0;
59
60 #define DEBUGWARN(args...) \
61 if (xtensa_debug_level > 0) \
62 fprintf_unfiltered (gdb_stdlog, "(warn ) " args)
63
64 #define DEBUGINFO(args...) \
65 if (xtensa_debug_level > 1) \
66 fprintf_unfiltered (gdb_stdlog, "(info ) " args)
67
68 #define DEBUGTRACE(args...) \
69 if (xtensa_debug_level > 2) \
70 fprintf_unfiltered (gdb_stdlog, "(trace) " args)
71
72 #define DEBUGVERB(args...) \
73 if (xtensa_debug_level > 3) \
74 fprintf_unfiltered (gdb_stdlog, "(verb ) " args)
75
76
77 /* According to the ABI, the SP must be aligned to 16-byte boundaries. */
78 #define SP_ALIGNMENT 16
79
80
81 /* On Windowed ABI, we use a6 through a11 for passing arguments
82 to a function called by GDB because CALL4 is used. */
83 #define ARGS_NUM_REGS 6
84 #define REGISTER_SIZE 4
85
86
87 /* Extract the call size from the return address or PS register. */
88 #define PS_CALLINC_SHIFT 16
89 #define PS_CALLINC_MASK 0x00030000
90 #define CALLINC(ps) (((ps) & PS_CALLINC_MASK) >> PS_CALLINC_SHIFT)
91 #define WINSIZE(ra) (4 * (( (ra) >> 30) & 0x3))
92
93 /* On TX, hardware can be configured without Exception Option.
94 There is no PS register in this case. Inside XT-GDB, let us treat
95 it as a virtual read-only register always holding the same value. */
96 #define TX_PS 0x20
97
98 /* ABI-independent macros. */
99 #define ARG_NOF(gdbarch) \
100 (gdbarch_tdep (gdbarch)->call_abi \
101 == CallAbiCall0Only ? C0_NARGS : (ARGS_NUM_REGS))
102 #define ARG_1ST(gdbarch) \
103 (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only \
104 ? (gdbarch_tdep (gdbarch)->a0_base + C0_ARGS) \
105 : (gdbarch_tdep (gdbarch)->a0_base + 6))
106
107 /* XTENSA_IS_ENTRY tests whether the first byte of an instruction
108 indicates that the instruction is an ENTRY instruction. */
109
110 #define XTENSA_IS_ENTRY(gdbarch, op1) \
111 ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) \
112 ? ((op1) == 0x6c) : ((op1) == 0x36))
113
114 #define XTENSA_ENTRY_LENGTH 3
115
116 /* windowing_enabled() returns true, if windowing is enabled.
117 WOE must be set to 1; EXCM to 0.
118 Note: We assume that EXCM is always 0 for XEA1. */
119
120 #define PS_WOE (1<<18)
121 #define PS_EXC (1<<4)
122
123 static int
124 windowing_enabled (struct gdbarch *gdbarch, unsigned int ps)
125 {
126 /* If we know CALL0 ABI is set explicitly, say it is Call0. */
127 if (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
128 return 0;
129
130 return ((ps & PS_EXC) == 0 && (ps & PS_WOE) != 0);
131 }
132
133 /* Convert a live A-register number to the corresponding AR-register
134 number. */
135 static int
136 arreg_number (struct gdbarch *gdbarch, int a_regnum, ULONGEST wb)
137 {
138 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
139 int arreg;
140
141 arreg = a_regnum - tdep->a0_base;
142 arreg += (wb & ((tdep->num_aregs - 1) >> 2)) << WB_SHIFT;
143 arreg &= tdep->num_aregs - 1;
144
145 return arreg + tdep->ar_base;
146 }
147
148 /* Convert a live AR-register number to the corresponding A-register order
149 number in a range [0..15]. Return -1, if AR_REGNUM is out of WB window. */
150 static int
151 areg_number (struct gdbarch *gdbarch, int ar_regnum, unsigned int wb)
152 {
153 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
154 int areg;
155
156 areg = ar_regnum - tdep->ar_base;
157 if (areg < 0 || areg >= tdep->num_aregs)
158 return -1;
159 areg = (areg - wb * 4) & (tdep->num_aregs - 1);
160 return (areg > 15) ? -1 : areg;
161 }
162
163 /* Read Xtensa register directly from the hardware. */
164 static unsigned long
165 xtensa_read_register (int regnum)
166 {
167 ULONGEST value;
168
169 regcache_raw_read_unsigned (get_current_regcache (), regnum, &value);
170 return (unsigned long) value;
171 }
172
173 /* Write Xtensa register directly to the hardware. */
174 static void
175 xtensa_write_register (int regnum, ULONGEST value)
176 {
177 regcache_raw_write_unsigned (get_current_regcache (), regnum, value);
178 }
179
180 /* Return the window size of the previous call to the function from which we
181 have just returned.
182
183 This function is used to extract the return value after a called function
184 has returned to the caller. On Xtensa, the register that holds the return
185 value (from the perspective of the caller) depends on what call
186 instruction was used. For now, we are assuming that the call instruction
187 precedes the current address, so we simply analyze the call instruction.
188 If we are in a dummy frame, we simply return 4 as we used a 'pseudo-call4'
189 method to call the inferior function. */
190
191 static int
192 extract_call_winsize (struct gdbarch *gdbarch, CORE_ADDR pc)
193 {
194 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
195 int winsize = 4;
196 int insn;
197 gdb_byte buf[4];
198
199 DEBUGTRACE ("extract_call_winsize (pc = 0x%08x)\n", (int) pc);
200
201 /* Read the previous instruction (should be a call[x]{4|8|12}. */
202 read_memory (pc-3, buf, 3);
203 insn = extract_unsigned_integer (buf, 3, byte_order);
204
205 /* Decode call instruction:
206 Little Endian
207 call{0,4,8,12} OFFSET || {00,01,10,11} || 0101
208 callx{0,4,8,12} OFFSET || 11 || {00,01,10,11} || 0000
209 Big Endian
210 call{0,4,8,12} 0101 || {00,01,10,11} || OFFSET
211 callx{0,4,8,12} 0000 || {00,01,10,11} || 11 || OFFSET. */
212
213 if (byte_order == BFD_ENDIAN_LITTLE)
214 {
215 if (((insn & 0xf) == 0x5) || ((insn & 0xcf) == 0xc0))
216 winsize = (insn & 0x30) >> 2; /* 0, 4, 8, 12. */
217 }
218 else
219 {
220 if (((insn >> 20) == 0x5) || (((insn >> 16) & 0xf3) == 0x03))
221 winsize = (insn >> 16) & 0xc; /* 0, 4, 8, 12. */
222 }
223 return winsize;
224 }
225
226
227 /* REGISTER INFORMATION */
228
229 /* Find register by name. */
230 static int
231 xtensa_find_register_by_name (struct gdbarch *gdbarch, char *name)
232 {
233 int i;
234
235 for (i = 0; i < gdbarch_num_regs (gdbarch)
236 + gdbarch_num_pseudo_regs (gdbarch);
237 i++)
238
239 if (strcasecmp (gdbarch_tdep (gdbarch)->regmap[i].name, name) == 0)
240 return i;
241
242 return -1;
243 }
244
245 /* Returns the name of a register. */
246 static const char *
247 xtensa_register_name (struct gdbarch *gdbarch, int regnum)
248 {
249 /* Return the name stored in the register map. */
250 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
251 + gdbarch_num_pseudo_regs (gdbarch))
252 return gdbarch_tdep (gdbarch)->regmap[regnum].name;
253
254 internal_error (__FILE__, __LINE__, _("invalid register %d"), regnum);
255 return 0;
256 }
257
258 /* Return the type of a register. Create a new type, if necessary. */
259
260 static struct type *
261 xtensa_register_type (struct gdbarch *gdbarch, int regnum)
262 {
263 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
264
265 /* Return signed integer for ARx and Ax registers. */
266 if ((regnum >= tdep->ar_base
267 && regnum < tdep->ar_base + tdep->num_aregs)
268 || (regnum >= tdep->a0_base
269 && regnum < tdep->a0_base + 16))
270 return builtin_type (gdbarch)->builtin_int;
271
272 if (regnum == gdbarch_pc_regnum (gdbarch)
273 || regnum == tdep->a0_base + 1)
274 return builtin_type (gdbarch)->builtin_data_ptr;
275
276 /* Return the stored type for all other registers. */
277 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
278 + gdbarch_num_pseudo_regs (gdbarch))
279 {
280 xtensa_register_t* reg = &tdep->regmap[regnum];
281
282 /* Set ctype for this register (only the first time). */
283
284 if (reg->ctype == 0)
285 {
286 struct ctype_cache *tp;
287 int size = reg->byte_size;
288
289 /* We always use the memory representation,
290 even if the register width is smaller. */
291 switch (size)
292 {
293 case 1:
294 reg->ctype = builtin_type (gdbarch)->builtin_uint8;
295 break;
296
297 case 2:
298 reg->ctype = builtin_type (gdbarch)->builtin_uint16;
299 break;
300
301 case 4:
302 reg->ctype = builtin_type (gdbarch)->builtin_uint32;
303 break;
304
305 case 8:
306 reg->ctype = builtin_type (gdbarch)->builtin_uint64;
307 break;
308
309 case 16:
310 reg->ctype = builtin_type (gdbarch)->builtin_uint128;
311 break;
312
313 default:
314 for (tp = tdep->type_entries; tp != NULL; tp = tp->next)
315 if (tp->size == size)
316 break;
317
318 if (tp == NULL)
319 {
320 char *name = xstrprintf ("int%d", size * 8);
321 tp = xmalloc (sizeof (struct ctype_cache));
322 tp->next = tdep->type_entries;
323 tdep->type_entries = tp;
324 tp->size = size;
325 tp->virtual_type
326 = arch_integer_type (gdbarch, size * 8, 1, name);
327 xfree (name);
328 }
329
330 reg->ctype = tp->virtual_type;
331 }
332 }
333 return reg->ctype;
334 }
335
336 internal_error (__FILE__, __LINE__, _("invalid register number %d"), regnum);
337 return 0;
338 }
339
340
341 /* Return the 'local' register number for stubs, dwarf2, etc.
342 The debugging information enumerates registers starting from 0 for A0
343 to n for An. So, we only have to add the base number for A0. */
344
345 static int
346 xtensa_reg_to_regnum (struct gdbarch *gdbarch, int regnum)
347 {
348 int i;
349
350 if (regnum >= 0 && regnum < 16)
351 return gdbarch_tdep (gdbarch)->a0_base + regnum;
352
353 for (i = 0;
354 i < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
355 i++)
356 if (regnum == gdbarch_tdep (gdbarch)->regmap[i].target_number)
357 return i;
358
359 internal_error (__FILE__, __LINE__,
360 _("invalid dwarf/stabs register number %d"), regnum);
361 return 0;
362 }
363
364
365 /* Write the bits of a masked register to the various registers.
366 Only the masked areas of these registers are modified; the other
367 fields are untouched. The size of masked registers is always less
368 than or equal to 32 bits. */
369
370 static void
371 xtensa_register_write_masked (struct regcache *regcache,
372 xtensa_register_t *reg, const gdb_byte *buffer)
373 {
374 unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
375 const xtensa_mask_t *mask = reg->mask;
376
377 int shift = 0; /* Shift for next mask (mod 32). */
378 int start, size; /* Start bit and size of current mask. */
379
380 unsigned int *ptr = value;
381 unsigned int regval, m, mem = 0;
382
383 int bytesize = reg->byte_size;
384 int bitsize = bytesize * 8;
385 int i, r;
386
387 DEBUGTRACE ("xtensa_register_write_masked ()\n");
388
389 /* Copy the masked register to host byte-order. */
390 if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
391 for (i = 0; i < bytesize; i++)
392 {
393 mem >>= 8;
394 mem |= (buffer[bytesize - i - 1] << 24);
395 if ((i & 3) == 3)
396 *ptr++ = mem;
397 }
398 else
399 for (i = 0; i < bytesize; i++)
400 {
401 mem >>= 8;
402 mem |= (buffer[i] << 24);
403 if ((i & 3) == 3)
404 *ptr++ = mem;
405 }
406
407 /* We might have to shift the final value:
408 bytesize & 3 == 0 -> nothing to do, we use the full 32 bits,
409 bytesize & 3 == x -> shift (4-x) * 8. */
410
411 *ptr = mem >> (((0 - bytesize) & 3) * 8);
412 ptr = value;
413 mem = *ptr;
414
415 /* Write the bits to the masked areas of the other registers. */
416 for (i = 0; i < mask->count; i++)
417 {
418 start = mask->mask[i].bit_start;
419 size = mask->mask[i].bit_size;
420 regval = mem >> shift;
421
422 if ((shift += size) > bitsize)
423 error (_("size of all masks is larger than the register"));
424
425 if (shift >= 32)
426 {
427 mem = *(++ptr);
428 shift -= 32;
429 bitsize -= 32;
430
431 if (shift > 0)
432 regval |= mem << (size - shift);
433 }
434
435 /* Make sure we have a valid register. */
436 r = mask->mask[i].reg_num;
437 if (r >= 0 && size > 0)
438 {
439 /* Don't overwrite the unmasked areas. */
440 ULONGEST old_val;
441 regcache_cooked_read_unsigned (regcache, r, &old_val);
442 m = 0xffffffff >> (32 - size) << start;
443 regval <<= start;
444 regval = (regval & m) | (old_val & ~m);
445 regcache_cooked_write_unsigned (regcache, r, regval);
446 }
447 }
448 }
449
450
451 /* Read a tie state or mapped registers. Read the masked areas
452 of the registers and assemble them into a single value. */
453
454 static enum register_status
455 xtensa_register_read_masked (struct regcache *regcache,
456 xtensa_register_t *reg, gdb_byte *buffer)
457 {
458 unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
459 const xtensa_mask_t *mask = reg->mask;
460
461 int shift = 0;
462 int start, size;
463
464 unsigned int *ptr = value;
465 unsigned int regval, mem = 0;
466
467 int bytesize = reg->byte_size;
468 int bitsize = bytesize * 8;
469 int i;
470
471 DEBUGTRACE ("xtensa_register_read_masked (reg \"%s\", ...)\n",
472 reg->name == 0 ? "" : reg->name);
473
474 /* Assemble the register from the masked areas of other registers. */
475 for (i = 0; i < mask->count; i++)
476 {
477 int r = mask->mask[i].reg_num;
478 if (r >= 0)
479 {
480 enum register_status status;
481 ULONGEST val;
482
483 status = regcache_cooked_read_unsigned (regcache, r, &val);
484 if (status != REG_VALID)
485 return status;
486 regval = (unsigned int) val;
487 }
488 else
489 regval = 0;
490
491 start = mask->mask[i].bit_start;
492 size = mask->mask[i].bit_size;
493
494 regval >>= start;
495
496 if (size < 32)
497 regval &= (0xffffffff >> (32 - size));
498
499 mem |= regval << shift;
500
501 if ((shift += size) > bitsize)
502 error (_("size of all masks is larger than the register"));
503
504 if (shift >= 32)
505 {
506 *ptr++ = mem;
507 bitsize -= 32;
508 shift -= 32;
509
510 if (shift == 0)
511 mem = 0;
512 else
513 mem = regval >> (size - shift);
514 }
515 }
516
517 if (shift > 0)
518 *ptr = mem;
519
520 /* Copy value to target byte order. */
521 ptr = value;
522 mem = *ptr;
523
524 if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
525 for (i = 0; i < bytesize; i++)
526 {
527 if ((i & 3) == 0)
528 mem = *ptr++;
529 buffer[bytesize - i - 1] = mem & 0xff;
530 mem >>= 8;
531 }
532 else
533 for (i = 0; i < bytesize; i++)
534 {
535 if ((i & 3) == 0)
536 mem = *ptr++;
537 buffer[i] = mem & 0xff;
538 mem >>= 8;
539 }
540
541 return REG_VALID;
542 }
543
544
545 /* Read pseudo registers. */
546
547 static enum register_status
548 xtensa_pseudo_register_read (struct gdbarch *gdbarch,
549 struct regcache *regcache,
550 int regnum,
551 gdb_byte *buffer)
552 {
553 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
554
555 DEBUGTRACE ("xtensa_pseudo_register_read (... regnum = %d (%s) ...)\n",
556 regnum, xtensa_register_name (gdbarch, regnum));
557
558 if (regnum == gdbarch_num_regs (gdbarch)
559 + gdbarch_num_pseudo_regs (gdbarch) - 1)
560 regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
561
562 /* Read aliases a0..a15, if this is a Windowed ABI. */
563 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
564 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
565 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
566 {
567 gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
568 enum register_status status;
569
570 status = regcache_raw_read (regcache,
571 gdbarch_tdep (gdbarch)->wb_regnum,
572 buf);
573 if (status != REG_VALID)
574 return status;
575 regnum = arreg_number (gdbarch, regnum,
576 extract_unsigned_integer (buf, 4, byte_order));
577 }
578
579 /* We can always read non-pseudo registers. */
580 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
581 return regcache_raw_read (regcache, regnum, buffer);
582
583 /* We have to find out how to deal with priveleged registers.
584 Let's treat them as pseudo-registers, but we cannot read/write them. */
585
586 else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
587 {
588 buffer[0] = (gdb_byte)0;
589 buffer[1] = (gdb_byte)0;
590 buffer[2] = (gdb_byte)0;
591 buffer[3] = (gdb_byte)0;
592 return REG_VALID;
593 }
594 /* Pseudo registers. */
595 else if (regnum >= 0
596 && regnum < gdbarch_num_regs (gdbarch)
597 + gdbarch_num_pseudo_regs (gdbarch))
598 {
599 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
600 xtensa_register_type_t type = reg->type;
601 int flags = gdbarch_tdep (gdbarch)->target_flags;
602
603 /* We cannot read Unknown or Unmapped registers. */
604 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
605 {
606 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
607 {
608 warning (_("cannot read register %s"),
609 xtensa_register_name (gdbarch, regnum));
610 return REG_VALID;
611 }
612 }
613
614 /* Some targets cannot read TIE register files. */
615 else if (type == xtRegisterTypeTieRegfile)
616 {
617 /* Use 'fetch' to get register? */
618 if (flags & xtTargetFlagsUseFetchStore)
619 {
620 warning (_("cannot read register"));
621 return REG_VALID;
622 }
623
624 /* On some targets (esp. simulators), we can always read the reg. */
625 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
626 {
627 warning (_("cannot read register"));
628 return REG_VALID;
629 }
630 }
631
632 /* We can always read mapped registers. */
633 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
634 return xtensa_register_read_masked (regcache, reg, buffer);
635
636 /* Assume that we can read the register. */
637 return regcache_raw_read (regcache, regnum, buffer);
638 }
639 else
640 internal_error (__FILE__, __LINE__,
641 _("invalid register number %d"), regnum);
642 }
643
644
645 /* Write pseudo registers. */
646
647 static void
648 xtensa_pseudo_register_write (struct gdbarch *gdbarch,
649 struct regcache *regcache,
650 int regnum,
651 const gdb_byte *buffer)
652 {
653 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
654
655 DEBUGTRACE ("xtensa_pseudo_register_write (... regnum = %d (%s) ...)\n",
656 regnum, xtensa_register_name (gdbarch, regnum));
657
658 if (regnum == gdbarch_num_regs (gdbarch)
659 + gdbarch_num_pseudo_regs (gdbarch) -1)
660 regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
661
662 /* Renumber register, if aliase a0..a15 on Windowed ABI. */
663 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
664 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
665 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
666 {
667 gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
668
669 regcache_raw_read (regcache,
670 gdbarch_tdep (gdbarch)->wb_regnum, buf);
671 regnum = arreg_number (gdbarch, regnum,
672 extract_unsigned_integer (buf, 4, byte_order));
673 }
674
675 /* We can always write 'core' registers.
676 Note: We might have converted Ax->ARy. */
677 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
678 regcache_raw_write (regcache, regnum, buffer);
679
680 /* We have to find out how to deal with priveleged registers.
681 Let's treat them as pseudo-registers, but we cannot read/write them. */
682
683 else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
684 {
685 return;
686 }
687 /* Pseudo registers. */
688 else if (regnum >= 0
689 && regnum < gdbarch_num_regs (gdbarch)
690 + gdbarch_num_pseudo_regs (gdbarch))
691 {
692 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
693 xtensa_register_type_t type = reg->type;
694 int flags = gdbarch_tdep (gdbarch)->target_flags;
695
696 /* On most targets, we cannot write registers
697 of type "Unknown" or "Unmapped". */
698 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
699 {
700 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
701 {
702 warning (_("cannot write register %s"),
703 xtensa_register_name (gdbarch, regnum));
704 return;
705 }
706 }
707
708 /* Some targets cannot read TIE register files. */
709 else if (type == xtRegisterTypeTieRegfile)
710 {
711 /* Use 'store' to get register? */
712 if (flags & xtTargetFlagsUseFetchStore)
713 {
714 warning (_("cannot write register"));
715 return;
716 }
717
718 /* On some targets (esp. simulators), we can always write
719 the register. */
720 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
721 {
722 warning (_("cannot write register"));
723 return;
724 }
725 }
726
727 /* We can always write mapped registers. */
728 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
729 {
730 xtensa_register_write_masked (regcache, reg, buffer);
731 return;
732 }
733
734 /* Assume that we can write the register. */
735 regcache_raw_write (regcache, regnum, buffer);
736 }
737 else
738 internal_error (__FILE__, __LINE__,
739 _("invalid register number %d"), regnum);
740 }
741
742 static struct reggroup *xtensa_ar_reggroup;
743 static struct reggroup *xtensa_user_reggroup;
744 static struct reggroup *xtensa_vectra_reggroup;
745 static struct reggroup *xtensa_cp[XTENSA_MAX_COPROCESSOR];
746
747 static void
748 xtensa_init_reggroups (void)
749 {
750 int i;
751 char cpname[] = "cp0";
752
753 xtensa_ar_reggroup = reggroup_new ("ar", USER_REGGROUP);
754 xtensa_user_reggroup = reggroup_new ("user", USER_REGGROUP);
755 xtensa_vectra_reggroup = reggroup_new ("vectra", USER_REGGROUP);
756
757 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
758 {
759 cpname[2] = '0' + i;
760 xtensa_cp[i] = reggroup_new (cpname, USER_REGGROUP);
761 }
762 }
763
764 static void
765 xtensa_add_reggroups (struct gdbarch *gdbarch)
766 {
767 int i;
768
769 /* Predefined groups. */
770 reggroup_add (gdbarch, all_reggroup);
771 reggroup_add (gdbarch, save_reggroup);
772 reggroup_add (gdbarch, restore_reggroup);
773 reggroup_add (gdbarch, system_reggroup);
774 reggroup_add (gdbarch, vector_reggroup);
775 reggroup_add (gdbarch, general_reggroup);
776 reggroup_add (gdbarch, float_reggroup);
777
778 /* Xtensa-specific groups. */
779 reggroup_add (gdbarch, xtensa_ar_reggroup);
780 reggroup_add (gdbarch, xtensa_user_reggroup);
781 reggroup_add (gdbarch, xtensa_vectra_reggroup);
782
783 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
784 reggroup_add (gdbarch, xtensa_cp[i]);
785 }
786
787 static int
788 xtensa_coprocessor_register_group (struct reggroup *group)
789 {
790 int i;
791
792 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
793 if (group == xtensa_cp[i])
794 return i;
795
796 return -1;
797 }
798
799 #define SAVE_REST_FLAGS (XTENSA_REGISTER_FLAGS_READABLE \
800 | XTENSA_REGISTER_FLAGS_WRITABLE \
801 | XTENSA_REGISTER_FLAGS_VOLATILE)
802
803 #define SAVE_REST_VALID (XTENSA_REGISTER_FLAGS_READABLE \
804 | XTENSA_REGISTER_FLAGS_WRITABLE)
805
806 static int
807 xtensa_register_reggroup_p (struct gdbarch *gdbarch,
808 int regnum,
809 struct reggroup *group)
810 {
811 xtensa_register_t* reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
812 xtensa_register_type_t type = reg->type;
813 xtensa_register_group_t rg = reg->group;
814 int cp_number;
815
816 if (group == save_reggroup)
817 /* Every single register should be included into the list of registers
818 to be watched for changes while using -data-list-changed-registers. */
819 return 1;
820
821 /* First, skip registers that are not visible to this target
822 (unknown and unmapped registers when not using ISS). */
823
824 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
825 return 0;
826 if (group == all_reggroup)
827 return 1;
828 if (group == xtensa_ar_reggroup)
829 return rg & xtRegisterGroupAddrReg;
830 if (group == xtensa_user_reggroup)
831 return rg & xtRegisterGroupUser;
832 if (group == float_reggroup)
833 return rg & xtRegisterGroupFloat;
834 if (group == general_reggroup)
835 return rg & xtRegisterGroupGeneral;
836 if (group == system_reggroup)
837 return rg & xtRegisterGroupState;
838 if (group == vector_reggroup || group == xtensa_vectra_reggroup)
839 return rg & xtRegisterGroupVectra;
840 if (group == restore_reggroup)
841 return (regnum < gdbarch_num_regs (gdbarch)
842 && (reg->flags & SAVE_REST_FLAGS) == SAVE_REST_VALID);
843 cp_number = xtensa_coprocessor_register_group (group);
844 if (cp_number >= 0)
845 return rg & (xtRegisterGroupCP0 << cp_number);
846 else
847 return 1;
848 }
849
850
851 /* Supply register REGNUM from the buffer specified by GREGS and LEN
852 in the general-purpose register set REGSET to register cache
853 REGCACHE. If REGNUM is -1 do this for all registers in REGSET. */
854
855 static void
856 xtensa_supply_gregset (const struct regset *regset,
857 struct regcache *rc,
858 int regnum,
859 const void *gregs,
860 size_t len)
861 {
862 const xtensa_elf_gregset_t *regs = gregs;
863 struct gdbarch *gdbarch = get_regcache_arch (rc);
864 int i;
865
866 DEBUGTRACE ("xtensa_supply_gregset (..., regnum==%d, ...)\n", regnum);
867
868 if (regnum == gdbarch_pc_regnum (gdbarch) || regnum == -1)
869 regcache_raw_supply (rc, gdbarch_pc_regnum (gdbarch), (char *) &regs->pc);
870 if (regnum == gdbarch_ps_regnum (gdbarch) || regnum == -1)
871 regcache_raw_supply (rc, gdbarch_ps_regnum (gdbarch), (char *) &regs->ps);
872 if (regnum == gdbarch_tdep (gdbarch)->wb_regnum || regnum == -1)
873 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->wb_regnum,
874 (char *) &regs->windowbase);
875 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum || regnum == -1)
876 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ws_regnum,
877 (char *) &regs->windowstart);
878 if (regnum == gdbarch_tdep (gdbarch)->lbeg_regnum || regnum == -1)
879 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lbeg_regnum,
880 (char *) &regs->lbeg);
881 if (regnum == gdbarch_tdep (gdbarch)->lend_regnum || regnum == -1)
882 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lend_regnum,
883 (char *) &regs->lend);
884 if (regnum == gdbarch_tdep (gdbarch)->lcount_regnum || regnum == -1)
885 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lcount_regnum,
886 (char *) &regs->lcount);
887 if (regnum == gdbarch_tdep (gdbarch)->sar_regnum || regnum == -1)
888 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->sar_regnum,
889 (char *) &regs->sar);
890 if (regnum >=gdbarch_tdep (gdbarch)->ar_base
891 && regnum < gdbarch_tdep (gdbarch)->ar_base
892 + gdbarch_tdep (gdbarch)->num_aregs)
893 regcache_raw_supply (rc, regnum,
894 (char *) &regs->ar[regnum - gdbarch_tdep
895 (gdbarch)->ar_base]);
896 else if (regnum == -1)
897 {
898 for (i = 0; i < gdbarch_tdep (gdbarch)->num_aregs; ++i)
899 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ar_base + i,
900 (char *) &regs->ar[i]);
901 }
902 }
903
904
905 /* Xtensa register set. */
906
907 static struct regset
908 xtensa_gregset =
909 {
910 NULL,
911 xtensa_supply_gregset
912 };
913
914
915 /* Return the appropriate register set for the core
916 section identified by SECT_NAME and SECT_SIZE. */
917
918 static const struct regset *
919 xtensa_regset_from_core_section (struct gdbarch *core_arch,
920 const char *sect_name,
921 size_t sect_size)
922 {
923 DEBUGTRACE ("xtensa_regset_from_core_section "
924 "(..., sect_name==\"%s\", sect_size==%x)\n",
925 sect_name, (unsigned int) sect_size);
926
927 if (strcmp (sect_name, ".reg") == 0
928 && sect_size >= sizeof(xtensa_elf_gregset_t))
929 return &xtensa_gregset;
930
931 return NULL;
932 }
933
934
935 /* Handling frames. */
936
937 /* Number of registers to save in case of Windowed ABI. */
938 #define XTENSA_NUM_SAVED_AREGS 12
939
940 /* Frame cache part for Windowed ABI. */
941 typedef struct xtensa_windowed_frame_cache
942 {
943 int wb; /* WINDOWBASE of the previous frame. */
944 int callsize; /* Call size of this frame. */
945 int ws; /* WINDOWSTART of the previous frame. It keeps track of
946 life windows only. If there is no bit set for the
947 window, that means it had been already spilled
948 because of window overflow. */
949
950 /* Addresses of spilled A-registers.
951 AREGS[i] == -1, if corresponding AR is alive. */
952 CORE_ADDR aregs[XTENSA_NUM_SAVED_AREGS];
953 } xtensa_windowed_frame_cache_t;
954
955 /* Call0 ABI Definitions. */
956
957 #define C0_MAXOPDS 3 /* Maximum number of operands for prologue
958 analysis. */
959 #define C0_NREGS 16 /* Number of A-registers to track. */
960 #define C0_CLESV 12 /* Callee-saved registers are here and up. */
961 #define C0_SP 1 /* Register used as SP. */
962 #define C0_FP 15 /* Register used as FP. */
963 #define C0_RA 0 /* Register used as return address. */
964 #define C0_ARGS 2 /* Register used as first arg/retval. */
965 #define C0_NARGS 6 /* Number of A-regs for args/retvals. */
966
967 /* Each element of xtensa_call0_frame_cache.c0_rt[] describes for each
968 A-register where the current content of the reg came from (in terms
969 of an original reg and a constant). Negative values of c0_rt[n].fp_reg
970 mean that the orignal content of the register was saved to the stack.
971 c0_rt[n].fr.ofs is NOT the offset from the frame base because we don't
972 know where SP will end up until the entire prologue has been analyzed. */
973
974 #define C0_CONST -1 /* fr_reg value if register contains a constant. */
975 #define C0_INEXP -2 /* fr_reg value if inexpressible as reg + offset. */
976 #define C0_NOSTK -1 /* to_stk value if register has not been stored. */
977
978 extern xtensa_isa xtensa_default_isa;
979
980 typedef struct xtensa_c0reg
981 {
982 int fr_reg; /* original register from which register content
983 is derived, or C0_CONST, or C0_INEXP. */
984 int fr_ofs; /* constant offset from reg, or immediate value. */
985 int to_stk; /* offset from original SP to register (4-byte aligned),
986 or C0_NOSTK if register has not been saved. */
987 } xtensa_c0reg_t;
988
989 /* Frame cache part for Call0 ABI. */
990 typedef struct xtensa_call0_frame_cache
991 {
992 int c0_frmsz; /* Stack frame size. */
993 int c0_hasfp; /* Current frame uses frame pointer. */
994 int fp_regnum; /* A-register used as FP. */
995 int c0_fp; /* Actual value of frame pointer. */
996 int c0_fpalign; /* Dinamic adjustment for the stack
997 pointer. It's an AND mask. Zero,
998 if alignment was not adjusted. */
999 int c0_old_sp; /* In case of dynamic adjustment, it is
1000 a register holding unaligned sp.
1001 C0_INEXP, when undefined. */
1002 int c0_sp_ofs; /* If "c0_old_sp" was spilled it's a
1003 stack offset. C0_NOSTK otherwise. */
1004
1005 xtensa_c0reg_t c0_rt[C0_NREGS]; /* Register tracking information. */
1006 } xtensa_call0_frame_cache_t;
1007
1008 typedef struct xtensa_frame_cache
1009 {
1010 CORE_ADDR base; /* Stack pointer of this frame. */
1011 CORE_ADDR pc; /* PC of this frame at the function entry point. */
1012 CORE_ADDR ra; /* The raw return address of this frame. */
1013 CORE_ADDR ps; /* The PS register of the previous (older) frame. */
1014 CORE_ADDR prev_sp; /* Stack Pointer of the previous (older) frame. */
1015 int call0; /* It's a call0 framework (else windowed). */
1016 union
1017 {
1018 xtensa_windowed_frame_cache_t wd; /* call0 == false. */
1019 xtensa_call0_frame_cache_t c0; /* call0 == true. */
1020 };
1021 } xtensa_frame_cache_t;
1022
1023
1024 static struct xtensa_frame_cache *
1025 xtensa_alloc_frame_cache (int windowed)
1026 {
1027 xtensa_frame_cache_t *cache;
1028 int i;
1029
1030 DEBUGTRACE ("xtensa_alloc_frame_cache ()\n");
1031
1032 cache = FRAME_OBSTACK_ZALLOC (xtensa_frame_cache_t);
1033
1034 cache->base = 0;
1035 cache->pc = 0;
1036 cache->ra = 0;
1037 cache->ps = 0;
1038 cache->prev_sp = 0;
1039 cache->call0 = !windowed;
1040 if (cache->call0)
1041 {
1042 cache->c0.c0_frmsz = -1;
1043 cache->c0.c0_hasfp = 0;
1044 cache->c0.fp_regnum = -1;
1045 cache->c0.c0_fp = -1;
1046 cache->c0.c0_fpalign = 0;
1047 cache->c0.c0_old_sp = C0_INEXP;
1048 cache->c0.c0_sp_ofs = C0_NOSTK;
1049
1050 for (i = 0; i < C0_NREGS; i++)
1051 {
1052 cache->c0.c0_rt[i].fr_reg = i;
1053 cache->c0.c0_rt[i].fr_ofs = 0;
1054 cache->c0.c0_rt[i].to_stk = C0_NOSTK;
1055 }
1056 }
1057 else
1058 {
1059 cache->wd.wb = 0;
1060 cache->wd.ws = 0;
1061 cache->wd.callsize = -1;
1062
1063 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
1064 cache->wd.aregs[i] = -1;
1065 }
1066 return cache;
1067 }
1068
1069
1070 static CORE_ADDR
1071 xtensa_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
1072 {
1073 return address & ~15;
1074 }
1075
1076
1077 static CORE_ADDR
1078 xtensa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1079 {
1080 gdb_byte buf[8];
1081 CORE_ADDR pc;
1082
1083 DEBUGTRACE ("xtensa_unwind_pc (next_frame = %s)\n",
1084 host_address_to_string (next_frame));
1085
1086 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1087 pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1088
1089 DEBUGINFO ("[xtensa_unwind_pc] pc = 0x%08x\n", (unsigned int) pc);
1090
1091 return pc;
1092 }
1093
1094
1095 static struct frame_id
1096 xtensa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1097 {
1098 CORE_ADDR pc, fp;
1099
1100 /* THIS-FRAME is a dummy frame. Return a frame ID of that frame. */
1101
1102 pc = get_frame_pc (this_frame);
1103 fp = get_frame_register_unsigned
1104 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1105
1106 /* Make dummy frame ID unique by adding a constant. */
1107 return frame_id_build (fp + SP_ALIGNMENT, pc);
1108 }
1109
1110 /* Returns true, if instruction to execute next is unique to Xtensa Window
1111 Interrupt Handlers. It can only be one of L32E, S32E, RFWO, or RFWU. */
1112
1113 static int
1114 xtensa_window_interrupt_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
1115 {
1116 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1117 unsigned int insn = read_memory_integer (pc, 4, byte_order);
1118 unsigned int code;
1119
1120 if (byte_order == BFD_ENDIAN_BIG)
1121 {
1122 /* Check, if this is L32E or S32E. */
1123 code = insn & 0xf000ff00;
1124 if ((code == 0x00009000) || (code == 0x00009400))
1125 return 1;
1126 /* Check, if this is RFWU or RFWO. */
1127 code = insn & 0xffffff00;
1128 return ((code == 0x00430000) || (code == 0x00530000));
1129 }
1130 else
1131 {
1132 /* Check, if this is L32E or S32E. */
1133 code = insn & 0x00ff000f;
1134 if ((code == 0x090000) || (code == 0x490000))
1135 return 1;
1136 /* Check, if this is RFWU or RFWO. */
1137 code = insn & 0x00ffffff;
1138 return ((code == 0x00003400) || (code == 0x00003500));
1139 }
1140 }
1141
1142 /* Returns the best guess about which register is a frame pointer
1143 for the function containing CURRENT_PC. */
1144
1145 #define XTENSA_ISA_BSZ 32 /* Instruction buffer size. */
1146 #define XTENSA_ISA_BADPC ((CORE_ADDR)0) /* Bad PC value. */
1147
1148 static unsigned int
1149 xtensa_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR current_pc)
1150 {
1151 #define RETURN_FP goto done
1152
1153 unsigned int fp_regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
1154 CORE_ADDR start_addr;
1155 xtensa_isa isa;
1156 xtensa_insnbuf ins, slot;
1157 gdb_byte ibuf[XTENSA_ISA_BSZ];
1158 CORE_ADDR ia, bt, ba;
1159 xtensa_format ifmt;
1160 int ilen, islots, is;
1161 xtensa_opcode opc;
1162 const char *opcname;
1163
1164 find_pc_partial_function (current_pc, NULL, &start_addr, NULL);
1165 if (start_addr == 0)
1166 return fp_regnum;
1167
1168 if (!xtensa_default_isa)
1169 xtensa_default_isa = xtensa_isa_init (0, 0);
1170 isa = xtensa_default_isa;
1171 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
1172 ins = xtensa_insnbuf_alloc (isa);
1173 slot = xtensa_insnbuf_alloc (isa);
1174 ba = 0;
1175
1176 for (ia = start_addr, bt = ia; ia < current_pc ; ia += ilen)
1177 {
1178 if (ia + xtensa_isa_maxlength (isa) > bt)
1179 {
1180 ba = ia;
1181 bt = (ba + XTENSA_ISA_BSZ) < current_pc
1182 ? ba + XTENSA_ISA_BSZ : current_pc;
1183 if (target_read_memory (ba, ibuf, bt - ba) != 0)
1184 RETURN_FP;
1185 }
1186
1187 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
1188 ifmt = xtensa_format_decode (isa, ins);
1189 if (ifmt == XTENSA_UNDEFINED)
1190 RETURN_FP;
1191 ilen = xtensa_format_length (isa, ifmt);
1192 if (ilen == XTENSA_UNDEFINED)
1193 RETURN_FP;
1194 islots = xtensa_format_num_slots (isa, ifmt);
1195 if (islots == XTENSA_UNDEFINED)
1196 RETURN_FP;
1197
1198 for (is = 0; is < islots; ++is)
1199 {
1200 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
1201 RETURN_FP;
1202
1203 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
1204 if (opc == XTENSA_UNDEFINED)
1205 RETURN_FP;
1206
1207 opcname = xtensa_opcode_name (isa, opc);
1208
1209 if (strcasecmp (opcname, "mov.n") == 0
1210 || strcasecmp (opcname, "or") == 0)
1211 {
1212 unsigned int register_operand;
1213
1214 /* Possible candidate for setting frame pointer
1215 from A1. This is what we are looking for. */
1216
1217 if (xtensa_operand_get_field (isa, opc, 1, ifmt,
1218 is, slot, &register_operand) != 0)
1219 RETURN_FP;
1220 if (xtensa_operand_decode (isa, opc, 1, &register_operand) != 0)
1221 RETURN_FP;
1222 if (register_operand == 1) /* Mov{.n} FP A1. */
1223 {
1224 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot,
1225 &register_operand) != 0)
1226 RETURN_FP;
1227 if (xtensa_operand_decode (isa, opc, 0,
1228 &register_operand) != 0)
1229 RETURN_FP;
1230
1231 fp_regnum
1232 = gdbarch_tdep (gdbarch)->a0_base + register_operand;
1233 RETURN_FP;
1234 }
1235 }
1236
1237 if (
1238 /* We have problems decoding the memory. */
1239 opcname == NULL
1240 || strcasecmp (opcname, "ill") == 0
1241 || strcasecmp (opcname, "ill.n") == 0
1242 /* Hit planted breakpoint. */
1243 || strcasecmp (opcname, "break") == 0
1244 || strcasecmp (opcname, "break.n") == 0
1245 /* Flow control instructions finish prologue. */
1246 || xtensa_opcode_is_branch (isa, opc) > 0
1247 || xtensa_opcode_is_jump (isa, opc) > 0
1248 || xtensa_opcode_is_loop (isa, opc) > 0
1249 || xtensa_opcode_is_call (isa, opc) > 0
1250 || strcasecmp (opcname, "simcall") == 0
1251 || strcasecmp (opcname, "syscall") == 0)
1252 /* Can not continue analysis. */
1253 RETURN_FP;
1254 }
1255 }
1256 done:
1257 xtensa_insnbuf_free(isa, slot);
1258 xtensa_insnbuf_free(isa, ins);
1259 return fp_regnum;
1260 }
1261
1262 /* The key values to identify the frame using "cache" are
1263
1264 cache->base = SP (or best guess about FP) of this frame;
1265 cache->pc = entry-PC (entry point of the frame function);
1266 cache->prev_sp = SP of the previous frame. */
1267
1268 static void
1269 call0_frame_cache (struct frame_info *this_frame,
1270 xtensa_frame_cache_t *cache, CORE_ADDR pc);
1271
1272 static void
1273 xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
1274 xtensa_frame_cache_t *cache,
1275 CORE_ADDR pc);
1276
1277 static struct xtensa_frame_cache *
1278 xtensa_frame_cache (struct frame_info *this_frame, void **this_cache)
1279 {
1280 xtensa_frame_cache_t *cache;
1281 CORE_ADDR ra, wb, ws, pc, sp, ps;
1282 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1283 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1284 unsigned int fp_regnum;
1285 int windowed, ps_regnum;
1286
1287 if (*this_cache)
1288 return *this_cache;
1289
1290 pc = get_frame_register_unsigned (this_frame, gdbarch_pc_regnum (gdbarch));
1291 ps_regnum = gdbarch_ps_regnum (gdbarch);
1292 ps = (ps_regnum >= 0
1293 ? get_frame_register_unsigned (this_frame, ps_regnum) : TX_PS);
1294
1295 windowed = windowing_enabled (gdbarch, ps);
1296
1297 /* Get pristine xtensa-frame. */
1298 cache = xtensa_alloc_frame_cache (windowed);
1299 *this_cache = cache;
1300
1301 if (windowed)
1302 {
1303 char op1;
1304
1305 /* Get WINDOWBASE, WINDOWSTART, and PS registers. */
1306 wb = get_frame_register_unsigned (this_frame,
1307 gdbarch_tdep (gdbarch)->wb_regnum);
1308 ws = get_frame_register_unsigned (this_frame,
1309 gdbarch_tdep (gdbarch)->ws_regnum);
1310
1311 op1 = read_memory_integer (pc, 1, byte_order);
1312 if (XTENSA_IS_ENTRY (gdbarch, op1))
1313 {
1314 int callinc = CALLINC (ps);
1315 ra = get_frame_register_unsigned
1316 (this_frame, gdbarch_tdep (gdbarch)->a0_base + callinc * 4);
1317
1318 /* ENTRY hasn't been executed yet, therefore callsize is still 0. */
1319 cache->wd.callsize = 0;
1320 cache->wd.wb = wb;
1321 cache->wd.ws = ws;
1322 cache->prev_sp = get_frame_register_unsigned
1323 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1324
1325 /* This only can be the outermost frame since we are
1326 just about to execute ENTRY. SP hasn't been set yet.
1327 We can assume any frame size, because it does not
1328 matter, and, let's fake frame base in cache. */
1329 cache->base = cache->prev_sp - 16;
1330
1331 cache->pc = pc;
1332 cache->ra = (cache->pc & 0xc0000000) | (ra & 0x3fffffff);
1333 cache->ps = (ps & ~PS_CALLINC_MASK)
1334 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1335
1336 return cache;
1337 }
1338 else
1339 {
1340 fp_regnum = xtensa_scan_prologue (gdbarch, pc);
1341 ra = get_frame_register_unsigned (this_frame,
1342 gdbarch_tdep (gdbarch)->a0_base);
1343 cache->wd.callsize = WINSIZE (ra);
1344 cache->wd.wb = (wb - cache->wd.callsize / 4)
1345 & (gdbarch_tdep (gdbarch)->num_aregs / 4 - 1);
1346 cache->wd.ws = ws & ~(1 << wb);
1347
1348 cache->pc = get_frame_func (this_frame);
1349 cache->ra = (pc & 0xc0000000) | (ra & 0x3fffffff);
1350 cache->ps = (ps & ~PS_CALLINC_MASK)
1351 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1352 }
1353
1354 if (cache->wd.ws == 0)
1355 {
1356 int i;
1357
1358 /* Set A0...A3. */
1359 sp = get_frame_register_unsigned
1360 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1) - 16;
1361
1362 for (i = 0; i < 4; i++, sp += 4)
1363 {
1364 cache->wd.aregs[i] = sp;
1365 }
1366
1367 if (cache->wd.callsize > 4)
1368 {
1369 /* Set A4...A7/A11. */
1370 /* Get the SP of the frame previous to the previous one.
1371 To achieve this, we have to dereference SP twice. */
1372 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1373 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1374 sp -= cache->wd.callsize * 4;
1375
1376 for ( i = 4; i < cache->wd.callsize; i++, sp += 4)
1377 {
1378 cache->wd.aregs[i] = sp;
1379 }
1380 }
1381 }
1382
1383 if ((cache->prev_sp == 0) && ( ra != 0 ))
1384 /* If RA is equal to 0 this frame is an outermost frame. Leave
1385 cache->prev_sp unchanged marking the boundary of the frame stack. */
1386 {
1387 if ((cache->wd.ws & (1 << cache->wd.wb)) == 0)
1388 {
1389 /* Register window overflow already happened.
1390 We can read caller's SP from the proper spill loction. */
1391 sp = get_frame_register_unsigned
1392 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1393 cache->prev_sp = read_memory_integer (sp - 12, 4, byte_order);
1394 }
1395 else
1396 {
1397 /* Read caller's frame SP directly from the previous window. */
1398 int regnum = arreg_number
1399 (gdbarch, gdbarch_tdep (gdbarch)->a0_base + 1,
1400 cache->wd.wb);
1401
1402 cache->prev_sp = xtensa_read_register (regnum);
1403 }
1404 }
1405 }
1406 else if (xtensa_window_interrupt_insn (gdbarch, pc))
1407 {
1408 /* Execution stopped inside Xtensa Window Interrupt Handler. */
1409
1410 xtensa_window_interrupt_frame_cache (this_frame, cache, pc);
1411 /* Everything was set already, including cache->base. */
1412 return cache;
1413 }
1414 else /* Call0 framework. */
1415 {
1416 call0_frame_cache (this_frame, cache, pc);
1417 fp_regnum = cache->c0.fp_regnum;
1418 }
1419
1420 cache->base = get_frame_register_unsigned (this_frame, fp_regnum);
1421
1422 return cache;
1423 }
1424
1425 static int xtensa_session_once_reported = 1;
1426
1427 /* Report a problem with prologue analysis while doing backtracing.
1428 But, do it only once to avoid annoyng repeated messages. */
1429
1430 static void
1431 warning_once (void)
1432 {
1433 if (xtensa_session_once_reported == 0)
1434 warning (_("\
1435 \nUnrecognised function prologue. Stack trace cannot be resolved. \
1436 This message will not be repeated in this session.\n"));
1437
1438 xtensa_session_once_reported = 1;
1439 }
1440
1441
1442 static void
1443 xtensa_frame_this_id (struct frame_info *this_frame,
1444 void **this_cache,
1445 struct frame_id *this_id)
1446 {
1447 struct xtensa_frame_cache *cache =
1448 xtensa_frame_cache (this_frame, this_cache);
1449
1450 if (cache->prev_sp == 0)
1451 return;
1452
1453 (*this_id) = frame_id_build (cache->prev_sp, cache->pc);
1454 }
1455
1456 static struct value *
1457 xtensa_frame_prev_register (struct frame_info *this_frame,
1458 void **this_cache,
1459 int regnum)
1460 {
1461 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1462 struct xtensa_frame_cache *cache;
1463 ULONGEST saved_reg = 0;
1464 int done = 1;
1465
1466 if (*this_cache == NULL)
1467 *this_cache = xtensa_frame_cache (this_frame, this_cache);
1468 cache = *this_cache;
1469
1470 if (regnum ==gdbarch_pc_regnum (gdbarch))
1471 saved_reg = cache->ra;
1472 else if (regnum == gdbarch_tdep (gdbarch)->a0_base + 1)
1473 saved_reg = cache->prev_sp;
1474 else if (!cache->call0)
1475 {
1476 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum)
1477 saved_reg = cache->wd.ws;
1478 else if (regnum == gdbarch_tdep (gdbarch)->wb_regnum)
1479 saved_reg = cache->wd.wb;
1480 else if (regnum == gdbarch_ps_regnum (gdbarch))
1481 saved_reg = cache->ps;
1482 else
1483 done = 0;
1484 }
1485 else
1486 done = 0;
1487
1488 if (done)
1489 return frame_unwind_got_constant (this_frame, regnum, saved_reg);
1490
1491 if (!cache->call0) /* Windowed ABI. */
1492 {
1493 /* Convert A-register numbers to AR-register numbers,
1494 if we deal with A-register. */
1495 if (regnum >= gdbarch_tdep (gdbarch)->a0_base
1496 && regnum <= gdbarch_tdep (gdbarch)->a0_base + 15)
1497 regnum = arreg_number (gdbarch, regnum, cache->wd.wb);
1498
1499 /* Check, if we deal with AR-register saved on stack. */
1500 if (regnum >= gdbarch_tdep (gdbarch)->ar_base
1501 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1502 + gdbarch_tdep (gdbarch)->num_aregs))
1503 {
1504 int areg = areg_number (gdbarch, regnum, cache->wd.wb);
1505
1506 if (areg >= 0
1507 && areg < XTENSA_NUM_SAVED_AREGS
1508 && cache->wd.aregs[areg] != -1)
1509 return frame_unwind_got_memory (this_frame, regnum,
1510 cache->wd.aregs[areg]);
1511 }
1512 }
1513 else /* Call0 ABI. */
1514 {
1515 int reg = (regnum >= gdbarch_tdep (gdbarch)->ar_base
1516 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1517 + C0_NREGS))
1518 ? regnum - gdbarch_tdep (gdbarch)->ar_base : regnum;
1519
1520 if (reg < C0_NREGS)
1521 {
1522 CORE_ADDR spe;
1523 int stkofs;
1524
1525 /* If register was saved in the prologue, retrieve it. */
1526 stkofs = cache->c0.c0_rt[reg].to_stk;
1527 if (stkofs != C0_NOSTK)
1528 {
1529 /* Determine SP on entry based on FP. */
1530 spe = cache->c0.c0_fp
1531 - cache->c0.c0_rt[cache->c0.fp_regnum].fr_ofs;
1532
1533 return frame_unwind_got_memory (this_frame, regnum,
1534 spe + stkofs);
1535 }
1536 }
1537 }
1538
1539 /* All other registers have been either saved to
1540 the stack or are still alive in the processor. */
1541
1542 return frame_unwind_got_register (this_frame, regnum, regnum);
1543 }
1544
1545
1546 static const struct frame_unwind
1547 xtensa_unwind =
1548 {
1549 NORMAL_FRAME,
1550 default_frame_unwind_stop_reason,
1551 xtensa_frame_this_id,
1552 xtensa_frame_prev_register,
1553 NULL,
1554 default_frame_sniffer
1555 };
1556
1557 static CORE_ADDR
1558 xtensa_frame_base_address (struct frame_info *this_frame, void **this_cache)
1559 {
1560 struct xtensa_frame_cache *cache =
1561 xtensa_frame_cache (this_frame, this_cache);
1562
1563 return cache->base;
1564 }
1565
1566 static const struct frame_base
1567 xtensa_frame_base =
1568 {
1569 &xtensa_unwind,
1570 xtensa_frame_base_address,
1571 xtensa_frame_base_address,
1572 xtensa_frame_base_address
1573 };
1574
1575
1576 static void
1577 xtensa_extract_return_value (struct type *type,
1578 struct regcache *regcache,
1579 void *dst)
1580 {
1581 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1582 bfd_byte *valbuf = dst;
1583 int len = TYPE_LENGTH (type);
1584 ULONGEST pc, wb;
1585 int callsize, areg;
1586 int offset = 0;
1587
1588 DEBUGTRACE ("xtensa_extract_return_value (...)\n");
1589
1590 gdb_assert(len > 0);
1591
1592 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1593 {
1594 /* First, we have to find the caller window in the register file. */
1595 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1596 callsize = extract_call_winsize (gdbarch, pc);
1597
1598 /* On Xtensa, we can return up to 4 words (or 2 for call12). */
1599 if (len > (callsize > 8 ? 8 : 16))
1600 internal_error (__FILE__, __LINE__,
1601 _("cannot extract return value of %d bytes long"),
1602 len);
1603
1604 /* Get the register offset of the return
1605 register (A2) in the caller window. */
1606 regcache_raw_read_unsigned
1607 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1608 areg = arreg_number (gdbarch,
1609 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1610 }
1611 else
1612 {
1613 /* No windowing hardware - Call0 ABI. */
1614 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1615 }
1616
1617 DEBUGINFO ("[xtensa_extract_return_value] areg %d len %d\n", areg, len);
1618
1619 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1620 offset = 4 - len;
1621
1622 for (; len > 0; len -= 4, areg++, valbuf += 4)
1623 {
1624 if (len < 4)
1625 regcache_raw_read_part (regcache, areg, offset, len, valbuf);
1626 else
1627 regcache_raw_read (regcache, areg, valbuf);
1628 }
1629 }
1630
1631
1632 static void
1633 xtensa_store_return_value (struct type *type,
1634 struct regcache *regcache,
1635 const void *dst)
1636 {
1637 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1638 const bfd_byte *valbuf = dst;
1639 unsigned int areg;
1640 ULONGEST pc, wb;
1641 int callsize;
1642 int len = TYPE_LENGTH (type);
1643 int offset = 0;
1644
1645 DEBUGTRACE ("xtensa_store_return_value (...)\n");
1646
1647 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1648 {
1649 regcache_raw_read_unsigned
1650 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1651 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1652 callsize = extract_call_winsize (gdbarch, pc);
1653
1654 if (len > (callsize > 8 ? 8 : 16))
1655 internal_error (__FILE__, __LINE__,
1656 _("unimplemented for this length: %d"),
1657 TYPE_LENGTH (type));
1658 areg = arreg_number (gdbarch,
1659 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1660
1661 DEBUGTRACE ("[xtensa_store_return_value] callsize %d wb %d\n",
1662 callsize, (int) wb);
1663 }
1664 else
1665 {
1666 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1667 }
1668
1669 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1670 offset = 4 - len;
1671
1672 for (; len > 0; len -= 4, areg++, valbuf += 4)
1673 {
1674 if (len < 4)
1675 regcache_raw_write_part (regcache, areg, offset, len, valbuf);
1676 else
1677 regcache_raw_write (regcache, areg, valbuf);
1678 }
1679 }
1680
1681
1682 static enum return_value_convention
1683 xtensa_return_value (struct gdbarch *gdbarch,
1684 struct value *function,
1685 struct type *valtype,
1686 struct regcache *regcache,
1687 gdb_byte *readbuf,
1688 const gdb_byte *writebuf)
1689 {
1690 /* Structures up to 16 bytes are returned in registers. */
1691
1692 int struct_return = ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1693 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1694 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1695 && TYPE_LENGTH (valtype) > 16);
1696
1697 if (struct_return)
1698 return RETURN_VALUE_STRUCT_CONVENTION;
1699
1700 DEBUGTRACE ("xtensa_return_value(...)\n");
1701
1702 if (writebuf != NULL)
1703 {
1704 xtensa_store_return_value (valtype, regcache, writebuf);
1705 }
1706
1707 if (readbuf != NULL)
1708 {
1709 gdb_assert (!struct_return);
1710 xtensa_extract_return_value (valtype, regcache, readbuf);
1711 }
1712 return RETURN_VALUE_REGISTER_CONVENTION;
1713 }
1714
1715
1716 /* DUMMY FRAME */
1717
1718 static CORE_ADDR
1719 xtensa_push_dummy_call (struct gdbarch *gdbarch,
1720 struct value *function,
1721 struct regcache *regcache,
1722 CORE_ADDR bp_addr,
1723 int nargs,
1724 struct value **args,
1725 CORE_ADDR sp,
1726 int struct_return,
1727 CORE_ADDR struct_addr)
1728 {
1729 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1730 int i;
1731 int size, onstack_size;
1732 gdb_byte *buf = (gdb_byte *) alloca (16);
1733 CORE_ADDR ra, ps;
1734 struct argument_info
1735 {
1736 const bfd_byte *contents;
1737 int length;
1738 int onstack; /* onstack == 0 => in reg */
1739 int align; /* alignment */
1740 union
1741 {
1742 int offset; /* stack offset if on stack. */
1743 int regno; /* regno if in register. */
1744 } u;
1745 };
1746
1747 struct argument_info *arg_info =
1748 (struct argument_info *) alloca (nargs * sizeof (struct argument_info));
1749
1750 CORE_ADDR osp = sp;
1751
1752 DEBUGTRACE ("xtensa_push_dummy_call (...)\n");
1753
1754 if (xtensa_debug_level > 3)
1755 {
1756 int i;
1757 DEBUGINFO ("[xtensa_push_dummy_call] nargs = %d\n", nargs);
1758 DEBUGINFO ("[xtensa_push_dummy_call] sp=0x%x, struct_return=%d, "
1759 "struct_addr=0x%x\n",
1760 (int) sp, (int) struct_return, (int) struct_addr);
1761
1762 for (i = 0; i < nargs; i++)
1763 {
1764 struct value *arg = args[i];
1765 struct type *arg_type = check_typedef (value_type (arg));
1766 fprintf_unfiltered (gdb_stdlog, "%2d: %s %3d ", i,
1767 host_address_to_string (arg),
1768 TYPE_LENGTH (arg_type));
1769 switch (TYPE_CODE (arg_type))
1770 {
1771 case TYPE_CODE_INT:
1772 fprintf_unfiltered (gdb_stdlog, "int");
1773 break;
1774 case TYPE_CODE_STRUCT:
1775 fprintf_unfiltered (gdb_stdlog, "struct");
1776 break;
1777 default:
1778 fprintf_unfiltered (gdb_stdlog, "%3d", TYPE_CODE (arg_type));
1779 break;
1780 }
1781 fprintf_unfiltered (gdb_stdlog, " %s\n",
1782 host_address_to_string (value_contents (arg)));
1783 }
1784 }
1785
1786 /* First loop: collect information.
1787 Cast into type_long. (This shouldn't happen often for C because
1788 GDB already does this earlier.) It's possible that GDB could
1789 do it all the time but it's harmless to leave this code here. */
1790
1791 size = 0;
1792 onstack_size = 0;
1793 i = 0;
1794
1795 if (struct_return)
1796 size = REGISTER_SIZE;
1797
1798 for (i = 0; i < nargs; i++)
1799 {
1800 struct argument_info *info = &arg_info[i];
1801 struct value *arg = args[i];
1802 struct type *arg_type = check_typedef (value_type (arg));
1803
1804 switch (TYPE_CODE (arg_type))
1805 {
1806 case TYPE_CODE_INT:
1807 case TYPE_CODE_BOOL:
1808 case TYPE_CODE_CHAR:
1809 case TYPE_CODE_RANGE:
1810 case TYPE_CODE_ENUM:
1811
1812 /* Cast argument to long if necessary as the mask does it too. */
1813 if (TYPE_LENGTH (arg_type)
1814 < TYPE_LENGTH (builtin_type (gdbarch)->builtin_long))
1815 {
1816 arg_type = builtin_type (gdbarch)->builtin_long;
1817 arg = value_cast (arg_type, arg);
1818 }
1819 /* Aligment is equal to the type length for the basic types. */
1820 info->align = TYPE_LENGTH (arg_type);
1821 break;
1822
1823 case TYPE_CODE_FLT:
1824
1825 /* Align doubles correctly. */
1826 if (TYPE_LENGTH (arg_type)
1827 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_double))
1828 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_double);
1829 else
1830 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1831 break;
1832
1833 case TYPE_CODE_STRUCT:
1834 default:
1835 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1836 break;
1837 }
1838 info->length = TYPE_LENGTH (arg_type);
1839 info->contents = value_contents (arg);
1840
1841 /* Align size and onstack_size. */
1842 size = (size + info->align - 1) & ~(info->align - 1);
1843 onstack_size = (onstack_size + info->align - 1) & ~(info->align - 1);
1844
1845 if (size + info->length > REGISTER_SIZE * ARG_NOF (gdbarch))
1846 {
1847 info->onstack = 1;
1848 info->u.offset = onstack_size;
1849 onstack_size += info->length;
1850 }
1851 else
1852 {
1853 info->onstack = 0;
1854 info->u.regno = ARG_1ST (gdbarch) + size / REGISTER_SIZE;
1855 }
1856 size += info->length;
1857 }
1858
1859 /* Adjust the stack pointer and align it. */
1860 sp = align_down (sp - onstack_size, SP_ALIGNMENT);
1861
1862 /* Simulate MOVSP, if Windowed ABI. */
1863 if ((gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1864 && (sp != osp))
1865 {
1866 read_memory (osp - 16, buf, 16);
1867 write_memory (sp - 16, buf, 16);
1868 }
1869
1870 /* Second Loop: Load arguments. */
1871
1872 if (struct_return)
1873 {
1874 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, struct_addr);
1875 regcache_cooked_write (regcache, ARG_1ST (gdbarch), buf);
1876 }
1877
1878 for (i = 0; i < nargs; i++)
1879 {
1880 struct argument_info *info = &arg_info[i];
1881
1882 if (info->onstack)
1883 {
1884 int n = info->length;
1885 CORE_ADDR offset = sp + info->u.offset;
1886
1887 /* Odd-sized structs are aligned to the lower side of a memory
1888 word in big-endian mode and require a shift. This only
1889 applies for structures smaller than one word. */
1890
1891 if (n < REGISTER_SIZE
1892 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1893 offset += (REGISTER_SIZE - n);
1894
1895 write_memory (offset, info->contents, info->length);
1896
1897 }
1898 else
1899 {
1900 int n = info->length;
1901 const bfd_byte *cp = info->contents;
1902 int r = info->u.regno;
1903
1904 /* Odd-sized structs are aligned to the lower side of registers in
1905 big-endian mode and require a shift. The odd-sized leftover will
1906 be at the end. Note that this is only true for structures smaller
1907 than REGISTER_SIZE; for larger odd-sized structures the excess
1908 will be left-aligned in the register on both endiannesses. */
1909
1910 if (n < REGISTER_SIZE && byte_order == BFD_ENDIAN_BIG)
1911 {
1912 ULONGEST v;
1913 v = extract_unsigned_integer (cp, REGISTER_SIZE, byte_order);
1914 v = v >> ((REGISTER_SIZE - n) * TARGET_CHAR_BIT);
1915
1916 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, v);
1917 regcache_cooked_write (regcache, r, buf);
1918
1919 cp += REGISTER_SIZE;
1920 n -= REGISTER_SIZE;
1921 r++;
1922 }
1923 else
1924 while (n > 0)
1925 {
1926 regcache_cooked_write (regcache, r, cp);
1927
1928 cp += REGISTER_SIZE;
1929 n -= REGISTER_SIZE;
1930 r++;
1931 }
1932 }
1933 }
1934
1935 /* Set the return address of dummy frame to the dummy address.
1936 The return address for the current function (in A0) is
1937 saved in the dummy frame, so we can savely overwrite A0 here. */
1938
1939 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1940 {
1941 ULONGEST val;
1942
1943 ra = (bp_addr & 0x3fffffff) | 0x40000000;
1944 regcache_raw_read_unsigned (regcache, gdbarch_ps_regnum (gdbarch), &val);
1945 ps = (unsigned long) val & ~0x00030000;
1946 regcache_cooked_write_unsigned
1947 (regcache, gdbarch_tdep (gdbarch)->a0_base + 4, ra);
1948 regcache_cooked_write_unsigned (regcache,
1949 gdbarch_ps_regnum (gdbarch),
1950 ps | 0x00010000);
1951
1952 /* All the registers have been saved. After executing
1953 dummy call, they all will be restored. So it's safe
1954 to modify WINDOWSTART register to make it look like there
1955 is only one register window corresponding to WINDOWEBASE. */
1956
1957 regcache_raw_read (regcache, gdbarch_tdep (gdbarch)->wb_regnum, buf);
1958 regcache_cooked_write_unsigned
1959 (regcache, gdbarch_tdep (gdbarch)->ws_regnum,
1960 1 << extract_unsigned_integer (buf, 4, byte_order));
1961 }
1962 else
1963 {
1964 /* Simulate CALL0: write RA into A0 register. */
1965 regcache_cooked_write_unsigned
1966 (regcache, gdbarch_tdep (gdbarch)->a0_base, bp_addr);
1967 }
1968
1969 /* Set new stack pointer and return it. */
1970 regcache_cooked_write_unsigned (regcache,
1971 gdbarch_tdep (gdbarch)->a0_base + 1, sp);
1972 /* Make dummy frame ID unique by adding a constant. */
1973 return sp + SP_ALIGNMENT;
1974 }
1975
1976
1977 /* Return a breakpoint for the current location of PC. We always use
1978 the density version if we have density instructions (regardless of the
1979 current instruction at PC), and use regular instructions otherwise. */
1980
1981 #define BIG_BREAKPOINT { 0x00, 0x04, 0x00 }
1982 #define LITTLE_BREAKPOINT { 0x00, 0x40, 0x00 }
1983 #define DENSITY_BIG_BREAKPOINT { 0xd2, 0x0f }
1984 #define DENSITY_LITTLE_BREAKPOINT { 0x2d, 0xf0 }
1985
1986 static const unsigned char *
1987 xtensa_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
1988 int *lenptr)
1989 {
1990 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
1991 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
1992 static unsigned char density_big_breakpoint[] = DENSITY_BIG_BREAKPOINT;
1993 static unsigned char density_little_breakpoint[] = DENSITY_LITTLE_BREAKPOINT;
1994
1995 DEBUGTRACE ("xtensa_breakpoint_from_pc (pc = 0x%08x)\n", (int) *pcptr);
1996
1997 if (gdbarch_tdep (gdbarch)->isa_use_density_instructions)
1998 {
1999 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2000 {
2001 *lenptr = sizeof (density_big_breakpoint);
2002 return density_big_breakpoint;
2003 }
2004 else
2005 {
2006 *lenptr = sizeof (density_little_breakpoint);
2007 return density_little_breakpoint;
2008 }
2009 }
2010 else
2011 {
2012 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2013 {
2014 *lenptr = sizeof (big_breakpoint);
2015 return big_breakpoint;
2016 }
2017 else
2018 {
2019 *lenptr = sizeof (little_breakpoint);
2020 return little_breakpoint;
2021 }
2022 }
2023 }
2024
2025 /* Call0 ABI support routines. */
2026
2027 /* Return true, if PC points to "ret" or "ret.n". */
2028
2029 static int
2030 call0_ret (CORE_ADDR start_pc, CORE_ADDR finish_pc)
2031 {
2032 #define RETURN_RET goto done
2033 xtensa_isa isa;
2034 xtensa_insnbuf ins, slot;
2035 gdb_byte ibuf[XTENSA_ISA_BSZ];
2036 CORE_ADDR ia, bt, ba;
2037 xtensa_format ifmt;
2038 int ilen, islots, is;
2039 xtensa_opcode opc;
2040 const char *opcname;
2041 int found_ret = 0;
2042
2043 isa = xtensa_default_isa;
2044 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2045 ins = xtensa_insnbuf_alloc (isa);
2046 slot = xtensa_insnbuf_alloc (isa);
2047 ba = 0;
2048
2049 for (ia = start_pc, bt = ia; ia < finish_pc ; ia += ilen)
2050 {
2051 if (ia + xtensa_isa_maxlength (isa) > bt)
2052 {
2053 ba = ia;
2054 bt = (ba + XTENSA_ISA_BSZ) < finish_pc
2055 ? ba + XTENSA_ISA_BSZ : finish_pc;
2056 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2057 RETURN_RET;
2058 }
2059
2060 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2061 ifmt = xtensa_format_decode (isa, ins);
2062 if (ifmt == XTENSA_UNDEFINED)
2063 RETURN_RET;
2064 ilen = xtensa_format_length (isa, ifmt);
2065 if (ilen == XTENSA_UNDEFINED)
2066 RETURN_RET;
2067 islots = xtensa_format_num_slots (isa, ifmt);
2068 if (islots == XTENSA_UNDEFINED)
2069 RETURN_RET;
2070
2071 for (is = 0; is < islots; ++is)
2072 {
2073 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2074 RETURN_RET;
2075
2076 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2077 if (opc == XTENSA_UNDEFINED)
2078 RETURN_RET;
2079
2080 opcname = xtensa_opcode_name (isa, opc);
2081
2082 if ((strcasecmp (opcname, "ret.n") == 0)
2083 || (strcasecmp (opcname, "ret") == 0))
2084 {
2085 found_ret = 1;
2086 RETURN_RET;
2087 }
2088 }
2089 }
2090 done:
2091 xtensa_insnbuf_free(isa, slot);
2092 xtensa_insnbuf_free(isa, ins);
2093 return found_ret;
2094 }
2095
2096 /* Call0 opcode class. Opcodes are preclassified according to what they
2097 mean for Call0 prologue analysis, and their number of significant operands.
2098 The purpose of this is to simplify prologue analysis by separating
2099 instruction decoding (libisa) from the semantics of prologue analysis. */
2100
2101 typedef enum
2102 {
2103 c0opc_illegal, /* Unknown to libisa (invalid) or 'ill' opcode. */
2104 c0opc_uninteresting, /* Not interesting for Call0 prologue analysis. */
2105 c0opc_flow, /* Flow control insn. */
2106 c0opc_entry, /* ENTRY indicates non-Call0 prologue. */
2107 c0opc_break, /* Debugger software breakpoints. */
2108 c0opc_add, /* Adding two registers. */
2109 c0opc_addi, /* Adding a register and an immediate. */
2110 c0opc_and, /* Bitwise "and"-ing two registers. */
2111 c0opc_sub, /* Subtracting a register from a register. */
2112 c0opc_mov, /* Moving a register to a register. */
2113 c0opc_movi, /* Moving an immediate to a register. */
2114 c0opc_l32r, /* Loading a literal. */
2115 c0opc_s32i, /* Storing word at fixed offset from a base register. */
2116 c0opc_rwxsr, /* RSR, WRS, or XSR instructions. */
2117 c0opc_l32e, /* L32E instruction. */
2118 c0opc_s32e, /* S32E instruction. */
2119 c0opc_rfwo, /* RFWO instruction. */
2120 c0opc_rfwu, /* RFWU instruction. */
2121 c0opc_NrOf /* Number of opcode classifications. */
2122 } xtensa_insn_kind;
2123
2124 /* Return true, if OPCNAME is RSR, WRS, or XSR instruction. */
2125
2126 static int
2127 rwx_special_register (const char *opcname)
2128 {
2129 char ch = *opcname++;
2130
2131 if ((ch != 'r') && (ch != 'w') && (ch != 'x'))
2132 return 0;
2133 if (*opcname++ != 's')
2134 return 0;
2135 if (*opcname++ != 'r')
2136 return 0;
2137 if (*opcname++ != '.')
2138 return 0;
2139
2140 return 1;
2141 }
2142
2143 /* Classify an opcode based on what it means for Call0 prologue analysis. */
2144
2145 static xtensa_insn_kind
2146 call0_classify_opcode (xtensa_isa isa, xtensa_opcode opc)
2147 {
2148 const char *opcname;
2149 xtensa_insn_kind opclass = c0opc_uninteresting;
2150
2151 DEBUGTRACE ("call0_classify_opcode (..., opc = %d)\n", opc);
2152
2153 /* Get opcode name and handle special classifications. */
2154
2155 opcname = xtensa_opcode_name (isa, opc);
2156
2157 if (opcname == NULL
2158 || strcasecmp (opcname, "ill") == 0
2159 || strcasecmp (opcname, "ill.n") == 0)
2160 opclass = c0opc_illegal;
2161 else if (strcasecmp (opcname, "break") == 0
2162 || strcasecmp (opcname, "break.n") == 0)
2163 opclass = c0opc_break;
2164 else if (strcasecmp (opcname, "entry") == 0)
2165 opclass = c0opc_entry;
2166 else if (strcasecmp (opcname, "rfwo") == 0)
2167 opclass = c0opc_rfwo;
2168 else if (strcasecmp (opcname, "rfwu") == 0)
2169 opclass = c0opc_rfwu;
2170 else if (xtensa_opcode_is_branch (isa, opc) > 0
2171 || xtensa_opcode_is_jump (isa, opc) > 0
2172 || xtensa_opcode_is_loop (isa, opc) > 0
2173 || xtensa_opcode_is_call (isa, opc) > 0
2174 || strcasecmp (opcname, "simcall") == 0
2175 || strcasecmp (opcname, "syscall") == 0)
2176 opclass = c0opc_flow;
2177
2178 /* Also, classify specific opcodes that need to be tracked. */
2179 else if (strcasecmp (opcname, "add") == 0
2180 || strcasecmp (opcname, "add.n") == 0)
2181 opclass = c0opc_add;
2182 else if (strcasecmp (opcname, "and") == 0)
2183 opclass = c0opc_and;
2184 else if (strcasecmp (opcname, "addi") == 0
2185 || strcasecmp (opcname, "addi.n") == 0
2186 || strcasecmp (opcname, "addmi") == 0)
2187 opclass = c0opc_addi;
2188 else if (strcasecmp (opcname, "sub") == 0)
2189 opclass = c0opc_sub;
2190 else if (strcasecmp (opcname, "mov.n") == 0
2191 || strcasecmp (opcname, "or") == 0) /* Could be 'mov' asm macro. */
2192 opclass = c0opc_mov;
2193 else if (strcasecmp (opcname, "movi") == 0
2194 || strcasecmp (opcname, "movi.n") == 0)
2195 opclass = c0opc_movi;
2196 else if (strcasecmp (opcname, "l32r") == 0)
2197 opclass = c0opc_l32r;
2198 else if (strcasecmp (opcname, "s32i") == 0
2199 || strcasecmp (opcname, "s32i.n") == 0)
2200 opclass = c0opc_s32i;
2201 else if (strcasecmp (opcname, "l32e") == 0)
2202 opclass = c0opc_l32e;
2203 else if (strcasecmp (opcname, "s32e") == 0)
2204 opclass = c0opc_s32e;
2205 else if (rwx_special_register (opcname))
2206 opclass = c0opc_rwxsr;
2207
2208 return opclass;
2209 }
2210
2211 /* Tracks register movement/mutation for a given operation, which may
2212 be within a bundle. Updates the destination register tracking info
2213 accordingly. The pc is needed only for pc-relative load instructions
2214 (eg. l32r). The SP register number is needed to identify stores to
2215 the stack frame. Returns 0, if analysis was succesfull, non-zero
2216 otherwise. */
2217
2218 static int
2219 call0_track_op (struct gdbarch *gdbarch, xtensa_c0reg_t dst[], xtensa_c0reg_t src[],
2220 xtensa_insn_kind opclass, int nods, unsigned odv[],
2221 CORE_ADDR pc, int spreg, xtensa_frame_cache_t *cache)
2222 {
2223 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2224 unsigned litbase, litaddr, litval;
2225
2226 switch (opclass)
2227 {
2228 case c0opc_addi:
2229 /* 3 operands: dst, src, imm. */
2230 gdb_assert (nods == 3);
2231 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2232 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + odv[2];
2233 break;
2234 case c0opc_add:
2235 /* 3 operands: dst, src1, src2. */
2236 gdb_assert (nods == 3);
2237 if (src[odv[1]].fr_reg == C0_CONST)
2238 {
2239 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2240 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs + src[odv[1]].fr_ofs;
2241 }
2242 else if (src[odv[2]].fr_reg == C0_CONST)
2243 {
2244 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2245 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + src[odv[2]].fr_ofs;
2246 }
2247 else dst[odv[0]].fr_reg = C0_INEXP;
2248 break;
2249 case c0opc_and:
2250 /* 3 operands: dst, src1, src2. */
2251 gdb_assert (nods == 3);
2252 if (cache->c0.c0_fpalign == 0)
2253 {
2254 /* Handle dynamic stack alignment. */
2255 if ((src[odv[0]].fr_reg == spreg) && (src[odv[1]].fr_reg == spreg))
2256 {
2257 if (src[odv[2]].fr_reg == C0_CONST)
2258 cache->c0.c0_fpalign = src[odv[2]].fr_ofs;
2259 break;
2260 }
2261 else if ((src[odv[0]].fr_reg == spreg)
2262 && (src[odv[2]].fr_reg == spreg))
2263 {
2264 if (src[odv[1]].fr_reg == C0_CONST)
2265 cache->c0.c0_fpalign = src[odv[1]].fr_ofs;
2266 break;
2267 }
2268 /* else fall through. */
2269 }
2270 if (src[odv[1]].fr_reg == C0_CONST)
2271 {
2272 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2273 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs & src[odv[1]].fr_ofs;
2274 }
2275 else if (src[odv[2]].fr_reg == C0_CONST)
2276 {
2277 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2278 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs & src[odv[2]].fr_ofs;
2279 }
2280 else dst[odv[0]].fr_reg = C0_INEXP;
2281 break;
2282 case c0opc_sub:
2283 /* 3 operands: dst, src1, src2. */
2284 gdb_assert (nods == 3);
2285 if (src[odv[2]].fr_reg == C0_CONST)
2286 {
2287 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2288 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs - src[odv[2]].fr_ofs;
2289 }
2290 else dst[odv[0]].fr_reg = C0_INEXP;
2291 break;
2292 case c0opc_mov:
2293 /* 2 operands: dst, src [, src]. */
2294 gdb_assert (nods == 2);
2295 /* First, check if it's a special case of saving unaligned SP
2296 to a spare register in case of dynamic stack adjustment.
2297 But, only do it one time. The second time could be initializing
2298 frame pointer. We don't want to overwrite the first one. */
2299 if ((odv[1] == spreg) && (cache->c0.c0_old_sp == C0_INEXP))
2300 cache->c0.c0_old_sp = odv[0];
2301
2302 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2303 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs;
2304 break;
2305 case c0opc_movi:
2306 /* 2 operands: dst, imm. */
2307 gdb_assert (nods == 2);
2308 dst[odv[0]].fr_reg = C0_CONST;
2309 dst[odv[0]].fr_ofs = odv[1];
2310 break;
2311 case c0opc_l32r:
2312 /* 2 operands: dst, literal offset. */
2313 gdb_assert (nods == 2);
2314 /* litbase = xtensa_get_litbase (pc); can be also used. */
2315 litbase = (gdbarch_tdep (gdbarch)->litbase_regnum == -1)
2316 ? 0 : xtensa_read_register
2317 (gdbarch_tdep (gdbarch)->litbase_regnum);
2318 litaddr = litbase & 1
2319 ? (litbase & ~1) + (signed)odv[1]
2320 : (pc + 3 + (signed)odv[1]) & ~3;
2321 litval = read_memory_integer (litaddr, 4, byte_order);
2322 dst[odv[0]].fr_reg = C0_CONST;
2323 dst[odv[0]].fr_ofs = litval;
2324 break;
2325 case c0opc_s32i:
2326 /* 3 operands: value, base, offset. */
2327 gdb_assert (nods == 3 && spreg >= 0 && spreg < C0_NREGS);
2328 /* First, check if it's a spill for saved unaligned SP,
2329 when dynamic stack adjustment was applied to this frame. */
2330 if ((cache->c0.c0_fpalign != 0) /* Dynamic stack adjustment. */
2331 && (odv[1] == spreg) /* SP usage indicates spill. */
2332 && (odv[0] == cache->c0.c0_old_sp)) /* Old SP register spilled. */
2333 cache->c0.c0_sp_ofs = odv[2];
2334
2335 if (src[odv[1]].fr_reg == spreg /* Store to stack frame. */
2336 && (src[odv[1]].fr_ofs & 3) == 0 /* Alignment preserved. */
2337 && src[odv[0]].fr_reg >= 0 /* Value is from a register. */
2338 && src[odv[0]].fr_ofs == 0 /* Value hasn't been modified. */
2339 && src[src[odv[0]].fr_reg].to_stk == C0_NOSTK) /* First time. */
2340 {
2341 /* ISA encoding guarantees alignment. But, check it anyway. */
2342 gdb_assert ((odv[2] & 3) == 0);
2343 dst[src[odv[0]].fr_reg].to_stk = src[odv[1]].fr_ofs + odv[2];
2344 }
2345 break;
2346 /* If we end up inside Window Overflow / Underflow interrupt handler
2347 report an error because these handlers should have been handled
2348 already in a different way. */
2349 case c0opc_l32e:
2350 case c0opc_s32e:
2351 case c0opc_rfwo:
2352 case c0opc_rfwu:
2353 return 1;
2354 default:
2355 return 1;
2356 }
2357 return 0;
2358 }
2359
2360 /* Analyze prologue of the function at start address to determine if it uses
2361 the Call0 ABI, and if so track register moves and linear modifications
2362 in the prologue up to the PC or just beyond the prologue, whichever is
2363 first. An 'entry' instruction indicates non-Call0 ABI and the end of the
2364 prologue. The prologue may overlap non-prologue instructions but is
2365 guaranteed to end by the first flow-control instruction (jump, branch,
2366 call or return). Since an optimized function may move information around
2367 and change the stack frame arbitrarily during the prologue, the information
2368 is guaranteed valid only at the point in the function indicated by the PC.
2369 May be used to skip the prologue or identify the ABI, w/o tracking.
2370
2371 Returns: Address of first instruction after prologue, or PC (whichever
2372 is first), or 0, if decoding failed (in libisa).
2373 Input args:
2374 start Start address of function/prologue.
2375 pc Program counter to stop at. Use 0 to continue to end of prologue.
2376 If 0, avoids infinite run-on in corrupt code memory by bounding
2377 the scan to the end of the function if that can be determined.
2378 nregs Number of general registers to track.
2379 InOut args:
2380 cache Xtensa frame cache.
2381
2382 Note that these may produce useful results even if decoding fails
2383 because they begin with default assumptions that analysis may change. */
2384
2385 static CORE_ADDR
2386 call0_analyze_prologue (struct gdbarch *gdbarch,
2387 CORE_ADDR start, CORE_ADDR pc,
2388 int nregs, xtensa_frame_cache_t *cache)
2389 {
2390 CORE_ADDR ia; /* Current insn address in prologue. */
2391 CORE_ADDR ba = 0; /* Current address at base of insn buffer. */
2392 CORE_ADDR bt; /* Current address at top+1 of insn buffer. */
2393 gdb_byte ibuf[XTENSA_ISA_BSZ];/* Instruction buffer for decoding prologue. */
2394 xtensa_isa isa; /* libisa ISA handle. */
2395 xtensa_insnbuf ins, slot; /* libisa handle to decoded insn, slot. */
2396 xtensa_format ifmt; /* libisa instruction format. */
2397 int ilen, islots, is; /* Instruction length, nbr slots, current slot. */
2398 xtensa_opcode opc; /* Opcode in current slot. */
2399 xtensa_insn_kind opclass; /* Opcode class for Call0 prologue analysis. */
2400 int nods; /* Opcode number of operands. */
2401 unsigned odv[C0_MAXOPDS]; /* Operand values in order provided by libisa. */
2402 xtensa_c0reg_t *rtmp; /* Register tracking info snapshot. */
2403 int j; /* General loop counter. */
2404 int fail = 0; /* Set non-zero and exit, if decoding fails. */
2405 CORE_ADDR body_pc; /* The PC for the first non-prologue insn. */
2406 CORE_ADDR end_pc; /* The PC for the lust function insn. */
2407
2408 struct symtab_and_line prologue_sal;
2409
2410 DEBUGTRACE ("call0_analyze_prologue (start = 0x%08x, pc = 0x%08x, ...)\n",
2411 (int)start, (int)pc);
2412
2413 /* Try to limit the scan to the end of the function if a non-zero pc
2414 arg was not supplied to avoid probing beyond the end of valid memory.
2415 If memory is full of garbage that classifies as c0opc_uninteresting.
2416 If this fails (eg. if no symbols) pc ends up 0 as it was.
2417 Intialize the Call0 frame and register tracking info.
2418 Assume it's Call0 until an 'entry' instruction is encountered.
2419 Assume we may be in the prologue until we hit a flow control instr. */
2420
2421 rtmp = NULL;
2422 body_pc = UINT_MAX;
2423 end_pc = 0;
2424
2425 /* Find out, if we have an information about the prologue from DWARF. */
2426 prologue_sal = find_pc_line (start, 0);
2427 if (prologue_sal.line != 0) /* Found debug info. */
2428 body_pc = prologue_sal.end;
2429
2430 /* If we are going to analyze the prologue in general without knowing about
2431 the current PC, make the best assumtion for the end of the prologue. */
2432 if (pc == 0)
2433 {
2434 find_pc_partial_function (start, 0, NULL, &end_pc);
2435 body_pc = min (end_pc, body_pc);
2436 }
2437 else
2438 body_pc = min (pc, body_pc);
2439
2440 cache->call0 = 1;
2441 rtmp = (xtensa_c0reg_t*) alloca(nregs * sizeof(xtensa_c0reg_t));
2442
2443 if (!xtensa_default_isa)
2444 xtensa_default_isa = xtensa_isa_init (0, 0);
2445 isa = xtensa_default_isa;
2446 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2447 ins = xtensa_insnbuf_alloc (isa);
2448 slot = xtensa_insnbuf_alloc (isa);
2449
2450 for (ia = start, bt = ia; ia < body_pc ; ia += ilen)
2451 {
2452 /* (Re)fill instruction buffer from memory if necessary, but do not
2453 read memory beyond PC to be sure we stay within text section
2454 (this protection only works if a non-zero pc is supplied). */
2455
2456 if (ia + xtensa_isa_maxlength (isa) > bt)
2457 {
2458 ba = ia;
2459 bt = (ba + XTENSA_ISA_BSZ) < body_pc ? ba + XTENSA_ISA_BSZ : body_pc;
2460 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2461 error (_("Unable to read target memory ..."));
2462 }
2463
2464 /* Decode format information. */
2465
2466 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2467 ifmt = xtensa_format_decode (isa, ins);
2468 if (ifmt == XTENSA_UNDEFINED)
2469 {
2470 fail = 1;
2471 goto done;
2472 }
2473 ilen = xtensa_format_length (isa, ifmt);
2474 if (ilen == XTENSA_UNDEFINED)
2475 {
2476 fail = 1;
2477 goto done;
2478 }
2479 islots = xtensa_format_num_slots (isa, ifmt);
2480 if (islots == XTENSA_UNDEFINED)
2481 {
2482 fail = 1;
2483 goto done;
2484 }
2485
2486 /* Analyze a bundle or a single instruction, using a snapshot of
2487 the register tracking info as input for the entire bundle so that
2488 register changes do not take effect within this bundle. */
2489
2490 for (j = 0; j < nregs; ++j)
2491 rtmp[j] = cache->c0.c0_rt[j];
2492
2493 for (is = 0; is < islots; ++is)
2494 {
2495 /* Decode a slot and classify the opcode. */
2496
2497 fail = xtensa_format_get_slot (isa, ifmt, is, ins, slot);
2498 if (fail)
2499 goto done;
2500
2501 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2502 DEBUGVERB ("[call0_analyze_prologue] instr addr = 0x%08x, opc = %d\n",
2503 (unsigned)ia, opc);
2504 if (opc == XTENSA_UNDEFINED)
2505 opclass = c0opc_illegal;
2506 else
2507 opclass = call0_classify_opcode (isa, opc);
2508
2509 /* Decide whether to track this opcode, ignore it, or bail out. */
2510
2511 switch (opclass)
2512 {
2513 case c0opc_illegal:
2514 case c0opc_break:
2515 fail = 1;
2516 goto done;
2517
2518 case c0opc_uninteresting:
2519 continue;
2520
2521 case c0opc_flow: /* Flow control instructions stop analysis. */
2522 case c0opc_rwxsr: /* RSR, WSR, XSR instructions stop analysis. */
2523 goto done;
2524
2525 case c0opc_entry:
2526 cache->call0 = 0;
2527 ia += ilen; /* Skip over 'entry' insn. */
2528 goto done;
2529
2530 default:
2531 cache->call0 = 1;
2532 }
2533
2534 /* Only expected opcodes should get this far. */
2535
2536 /* Extract and decode the operands. */
2537 nods = xtensa_opcode_num_operands (isa, opc);
2538 if (nods == XTENSA_UNDEFINED)
2539 {
2540 fail = 1;
2541 goto done;
2542 }
2543
2544 for (j = 0; j < nods && j < C0_MAXOPDS; ++j)
2545 {
2546 fail = xtensa_operand_get_field (isa, opc, j, ifmt,
2547 is, slot, &odv[j]);
2548 if (fail)
2549 goto done;
2550
2551 fail = xtensa_operand_decode (isa, opc, j, &odv[j]);
2552 if (fail)
2553 goto done;
2554 }
2555
2556 /* Check operands to verify use of 'mov' assembler macro. */
2557 if (opclass == c0opc_mov && nods == 3)
2558 {
2559 if (odv[2] == odv[1])
2560 {
2561 nods = 2;
2562 if ((odv[0] == 1) && (odv[1] != 1))
2563 /* OR A1, An, An , where n != 1.
2564 This means we are inside epilogue already. */
2565 goto done;
2566 }
2567 else
2568 {
2569 opclass = c0opc_uninteresting;
2570 continue;
2571 }
2572 }
2573
2574 /* Track register movement and modification for this operation. */
2575 fail = call0_track_op (gdbarch, cache->c0.c0_rt, rtmp,
2576 opclass, nods, odv, ia, 1, cache);
2577 if (fail)
2578 goto done;
2579 }
2580 }
2581 done:
2582 DEBUGVERB ("[call0_analyze_prologue] stopped at instr addr 0x%08x, %s\n",
2583 (unsigned)ia, fail ? "failed" : "succeeded");
2584 xtensa_insnbuf_free(isa, slot);
2585 xtensa_insnbuf_free(isa, ins);
2586 return fail ? XTENSA_ISA_BADPC : ia;
2587 }
2588
2589 /* Initialize frame cache for the current frame in CALL0 ABI. */
2590
2591 static void
2592 call0_frame_cache (struct frame_info *this_frame,
2593 xtensa_frame_cache_t *cache, CORE_ADDR pc)
2594 {
2595 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2596 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2597 CORE_ADDR start_pc; /* The beginning of the function. */
2598 CORE_ADDR body_pc=UINT_MAX; /* PC, where prologue analysis stopped. */
2599 CORE_ADDR sp, fp, ra;
2600 int fp_regnum = C0_SP, c0_hasfp = 0, c0_frmsz = 0, prev_sp = 0, to_stk;
2601
2602 sp = get_frame_register_unsigned
2603 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
2604 fp = sp; /* Assume FP == SP until proven otherwise. */
2605
2606 /* Find the beginning of the prologue of the function containing the PC
2607 and analyze it up to the PC or the end of the prologue. */
2608
2609 if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
2610 {
2611 body_pc = call0_analyze_prologue (gdbarch, start_pc, pc, C0_NREGS, cache);
2612
2613 if (body_pc == XTENSA_ISA_BADPC)
2614 {
2615 warning_once ();
2616 ra = 0;
2617 goto finish_frame_analysis;
2618 }
2619 }
2620
2621 /* Get the frame information and FP (if used) at the current PC.
2622 If PC is in the prologue, the prologue analysis is more reliable
2623 than DWARF info. We don't not know for sure, if PC is in the prologue,
2624 but we do know no calls have yet taken place, so we can almost
2625 certainly rely on the prologue analysis. */
2626
2627 if (body_pc <= pc)
2628 {
2629 /* Prologue analysis was successful up to the PC.
2630 It includes the cases when PC == START_PC. */
2631 c0_hasfp = cache->c0.c0_rt[C0_FP].fr_reg == C0_SP;
2632 /* c0_hasfp == true means there is a frame pointer because
2633 we analyzed the prologue and found that cache->c0.c0_rt[C0_FP]
2634 was derived from SP. Otherwise, it would be C0_FP. */
2635 fp_regnum = c0_hasfp ? C0_FP : C0_SP;
2636 c0_frmsz = - cache->c0.c0_rt[fp_regnum].fr_ofs;
2637 fp_regnum += gdbarch_tdep (gdbarch)->a0_base;
2638 }
2639 else /* No data from the prologue analysis. */
2640 {
2641 c0_hasfp = 0;
2642 fp_regnum = gdbarch_tdep (gdbarch)->a0_base + C0_SP;
2643 c0_frmsz = 0;
2644 start_pc = pc;
2645 }
2646
2647 if (cache->c0.c0_fpalign)
2648 {
2649 /* This frame has a special prologue with a dynamic stack adjustment
2650 to force an alignment, which is bigger than standard 16 bytes. */
2651
2652 CORE_ADDR unaligned_sp;
2653
2654 if (cache->c0.c0_old_sp == C0_INEXP)
2655 /* This can't be. Prologue code should be consistent.
2656 Unaligned stack pointer should be saved in a spare register. */
2657 {
2658 warning_once ();
2659 ra = 0;
2660 goto finish_frame_analysis;
2661 }
2662
2663 if (cache->c0.c0_sp_ofs == C0_NOSTK)
2664 /* Saved unaligned value of SP is kept in a register. */
2665 unaligned_sp = get_frame_register_unsigned
2666 (this_frame, gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_old_sp);
2667 else
2668 /* Get the value from stack. */
2669 unaligned_sp = (CORE_ADDR)
2670 read_memory_integer (fp + cache->c0.c0_sp_ofs, 4, byte_order);
2671
2672 prev_sp = unaligned_sp + c0_frmsz;
2673 }
2674 else
2675 prev_sp = fp + c0_frmsz;
2676
2677 /* Frame size from debug info or prologue tracking does not account for
2678 alloca() and other dynamic allocations. Adjust frame size by FP - SP. */
2679 if (c0_hasfp)
2680 {
2681 fp = get_frame_register_unsigned (this_frame, fp_regnum);
2682
2683 /* Update the stack frame size. */
2684 c0_frmsz += fp - sp;
2685 }
2686
2687 /* Get the return address (RA) from the stack if saved,
2688 or try to get it from a register. */
2689
2690 to_stk = cache->c0.c0_rt[C0_RA].to_stk;
2691 if (to_stk != C0_NOSTK)
2692 ra = (CORE_ADDR)
2693 read_memory_integer (sp + c0_frmsz + cache->c0.c0_rt[C0_RA].to_stk,
2694 4, byte_order);
2695
2696 else if (cache->c0.c0_rt[C0_RA].fr_reg == C0_CONST
2697 && cache->c0.c0_rt[C0_RA].fr_ofs == 0)
2698 {
2699 /* Special case for terminating backtrace at a function that wants to
2700 be seen as the outermost one. Such a function will clear it's RA (A0)
2701 register to 0 in the prologue instead of saving its original value. */
2702 ra = 0;
2703 }
2704 else
2705 {
2706 /* RA was copied to another register or (before any function call) may
2707 still be in the original RA register. This is not always reliable:
2708 even in a leaf function, register tracking stops after prologue, and
2709 even in prologue, non-prologue instructions (not tracked) may overwrite
2710 RA or any register it was copied to. If likely in prologue or before
2711 any call, use retracking info and hope for the best (compiler should
2712 have saved RA in stack if not in a leaf function). If not in prologue,
2713 too bad. */
2714
2715 int i;
2716 for (i = 0;
2717 (i < C0_NREGS)
2718 && (i == C0_RA || cache->c0.c0_rt[i].fr_reg != C0_RA);
2719 ++i);
2720 if (i >= C0_NREGS && cache->c0.c0_rt[C0_RA].fr_reg == C0_RA)
2721 i = C0_RA;
2722 if (i < C0_NREGS)
2723 {
2724 ra = get_frame_register_unsigned
2725 (this_frame,
2726 gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_rt[i].fr_reg);
2727 }
2728 else ra = 0;
2729 }
2730
2731 finish_frame_analysis:
2732 cache->pc = start_pc;
2733 cache->ra = ra;
2734 /* RA == 0 marks the outermost frame. Do not go past it. */
2735 cache->prev_sp = (ra != 0) ? prev_sp : 0;
2736 cache->c0.fp_regnum = fp_regnum;
2737 cache->c0.c0_frmsz = c0_frmsz;
2738 cache->c0.c0_hasfp = c0_hasfp;
2739 cache->c0.c0_fp = fp;
2740 }
2741
2742 static CORE_ADDR a0_saved;
2743 static CORE_ADDR a7_saved;
2744 static CORE_ADDR a11_saved;
2745 static int a0_was_saved;
2746 static int a7_was_saved;
2747 static int a11_was_saved;
2748
2749 /* Simulate L32E instruction: AT <-- ref (AS + offset). */
2750 static void
2751 execute_l32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2752 {
2753 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2754 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2755 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2756 unsigned int spilled_value
2757 = read_memory_unsigned_integer (addr, 4, gdbarch_byte_order (gdbarch));
2758
2759 if ((at == 0) && !a0_was_saved)
2760 {
2761 a0_saved = xtensa_read_register (atreg);
2762 a0_was_saved = 1;
2763 }
2764 else if ((at == 7) && !a7_was_saved)
2765 {
2766 a7_saved = xtensa_read_register (atreg);
2767 a7_was_saved = 1;
2768 }
2769 else if ((at == 11) && !a11_was_saved)
2770 {
2771 a11_saved = xtensa_read_register (atreg);
2772 a11_was_saved = 1;
2773 }
2774
2775 xtensa_write_register (atreg, spilled_value);
2776 }
2777
2778 /* Simulate S32E instruction: AT --> ref (AS + offset). */
2779 static void
2780 execute_s32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2781 {
2782 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2783 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2784 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2785 ULONGEST spilled_value = xtensa_read_register (atreg);
2786
2787 write_memory_unsigned_integer (addr, 4,
2788 gdbarch_byte_order (gdbarch),
2789 spilled_value);
2790 }
2791
2792 #define XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN 200
2793
2794 typedef enum
2795 {
2796 xtWindowOverflow,
2797 xtWindowUnderflow,
2798 xtNoExceptionHandler
2799 } xtensa_exception_handler_t;
2800
2801 /* Execute instruction stream from current PC until hitting RFWU or RFWO.
2802 Return type of Xtensa Window Interrupt Handler on success. */
2803 static xtensa_exception_handler_t
2804 execute_code (struct gdbarch *gdbarch, CORE_ADDR current_pc, CORE_ADDR wb)
2805 {
2806 xtensa_isa isa;
2807 xtensa_insnbuf ins, slot;
2808 gdb_byte ibuf[XTENSA_ISA_BSZ];
2809 CORE_ADDR ia, bt, ba;
2810 xtensa_format ifmt;
2811 int ilen, islots, is;
2812 xtensa_opcode opc;
2813 int insn_num = 0;
2814 int fail = 0;
2815 void (*func) (struct gdbarch *, int, int, int, CORE_ADDR);
2816
2817 uint32_t at, as, offset;
2818
2819 /* WindowUnderflow12 = true, when inside _WindowUnderflow12. */
2820 int WindowUnderflow12 = (current_pc & 0x1ff) >= 0x140;
2821
2822 isa = xtensa_default_isa;
2823 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2824 ins = xtensa_insnbuf_alloc (isa);
2825 slot = xtensa_insnbuf_alloc (isa);
2826 ba = 0;
2827 ia = current_pc;
2828 bt = ia;
2829
2830 a0_was_saved = 0;
2831 a7_was_saved = 0;
2832 a11_was_saved = 0;
2833
2834 while (insn_num++ < XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN)
2835 {
2836 if (ia + xtensa_isa_maxlength (isa) > bt)
2837 {
2838 ba = ia;
2839 bt = (ba + XTENSA_ISA_BSZ);
2840 if (target_read_memory (ba, ibuf, bt - ba) != 0)
2841 return xtNoExceptionHandler;
2842 }
2843 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2844 ifmt = xtensa_format_decode (isa, ins);
2845 if (ifmt == XTENSA_UNDEFINED)
2846 return xtNoExceptionHandler;
2847 ilen = xtensa_format_length (isa, ifmt);
2848 if (ilen == XTENSA_UNDEFINED)
2849 return xtNoExceptionHandler;
2850 islots = xtensa_format_num_slots (isa, ifmt);
2851 if (islots == XTENSA_UNDEFINED)
2852 return xtNoExceptionHandler;
2853 for (is = 0; is < islots; ++is)
2854 {
2855 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2856 return xtNoExceptionHandler;
2857 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2858 if (opc == XTENSA_UNDEFINED)
2859 return xtNoExceptionHandler;
2860 switch (call0_classify_opcode (isa, opc))
2861 {
2862 case c0opc_illegal:
2863 case c0opc_flow:
2864 case c0opc_entry:
2865 case c0opc_break:
2866 /* We expect none of them here. */
2867 return xtNoExceptionHandler;
2868 case c0opc_l32e:
2869 func = execute_l32e;
2870 break;
2871 case c0opc_s32e:
2872 func = execute_s32e;
2873 break;
2874 case c0opc_rfwo: /* RFWO. */
2875 /* Here, we return from WindowOverflow handler and,
2876 if we stopped at the very beginning, which means
2877 A0 was saved, we have to restore it now. */
2878 if (a0_was_saved)
2879 {
2880 int arreg = arreg_number (gdbarch,
2881 gdbarch_tdep (gdbarch)->a0_base,
2882 wb);
2883 xtensa_write_register (arreg, a0_saved);
2884 }
2885 return xtWindowOverflow;
2886 case c0opc_rfwu: /* RFWU. */
2887 /* Here, we return from WindowUnderflow handler.
2888 Let's see if either A7 or A11 has to be restored. */
2889 if (WindowUnderflow12)
2890 {
2891 if (a11_was_saved)
2892 {
2893 int arreg = arreg_number (gdbarch,
2894 gdbarch_tdep (gdbarch)->a0_base + 11,
2895 wb);
2896 xtensa_write_register (arreg, a11_saved);
2897 }
2898 }
2899 else if (a7_was_saved)
2900 {
2901 int arreg = arreg_number (gdbarch,
2902 gdbarch_tdep (gdbarch)->a0_base + 7,
2903 wb);
2904 xtensa_write_register (arreg, a7_saved);
2905 }
2906 return xtWindowUnderflow;
2907 default: /* Simply skip this insns. */
2908 continue;
2909 }
2910
2911 /* Decode arguments for L32E / S32E and simulate their execution. */
2912 if ( xtensa_opcode_num_operands (isa, opc) != 3 )
2913 return xtNoExceptionHandler;
2914 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot, &at))
2915 return xtNoExceptionHandler;
2916 if (xtensa_operand_decode (isa, opc, 0, &at))
2917 return xtNoExceptionHandler;
2918 if (xtensa_operand_get_field (isa, opc, 1, ifmt, is, slot, &as))
2919 return xtNoExceptionHandler;
2920 if (xtensa_operand_decode (isa, opc, 1, &as))
2921 return xtNoExceptionHandler;
2922 if (xtensa_operand_get_field (isa, opc, 2, ifmt, is, slot, &offset))
2923 return xtNoExceptionHandler;
2924 if (xtensa_operand_decode (isa, opc, 2, &offset))
2925 return xtNoExceptionHandler;
2926
2927 (*func) (gdbarch, at, as, offset, wb);
2928 }
2929
2930 ia += ilen;
2931 }
2932 return xtNoExceptionHandler;
2933 }
2934
2935 /* Handle Window Overflow / Underflow exception frames. */
2936
2937 static void
2938 xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
2939 xtensa_frame_cache_t *cache,
2940 CORE_ADDR pc)
2941 {
2942 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2943 CORE_ADDR ps, wb, ws, ra;
2944 int epc1_regnum, i, regnum;
2945 xtensa_exception_handler_t eh_type;
2946
2947 /* Read PS, WB, and WS from the hardware. Note that PS register
2948 must be present, if Windowed ABI is supported. */
2949 ps = xtensa_read_register (gdbarch_ps_regnum (gdbarch));
2950 wb = xtensa_read_register (gdbarch_tdep (gdbarch)->wb_regnum);
2951 ws = xtensa_read_register (gdbarch_tdep (gdbarch)->ws_regnum);
2952
2953 /* Execute all the remaining instructions from Window Interrupt Handler
2954 by simulating them on the remote protocol level. On return, set the
2955 type of Xtensa Window Interrupt Handler, or report an error. */
2956 eh_type = execute_code (gdbarch, pc, wb);
2957 if (eh_type == xtNoExceptionHandler)
2958 error (_("\
2959 Unable to decode Xtensa Window Interrupt Handler's code."));
2960
2961 cache->ps = ps ^ PS_EXC; /* Clear the exception bit in PS. */
2962 cache->call0 = 0; /* It's Windowed ABI. */
2963
2964 /* All registers for the cached frame will be alive. */
2965 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
2966 cache->wd.aregs[i] = -1;
2967
2968 if (eh_type == xtWindowOverflow)
2969 cache->wd.ws = ws ^ (1 << wb);
2970 else /* eh_type == xtWindowUnderflow. */
2971 cache->wd.ws = ws | (1 << wb);
2972
2973 cache->wd.wb = (ps & 0xf00) >> 8; /* Set WB to OWB. */
2974 regnum = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base,
2975 cache->wd.wb);
2976 ra = xtensa_read_register (regnum);
2977 cache->wd.callsize = WINSIZE (ra);
2978 cache->prev_sp = xtensa_read_register (regnum + 1);
2979 /* Set regnum to a frame pointer of the frame being cached. */
2980 regnum = xtensa_scan_prologue (gdbarch, pc);
2981 regnum = arreg_number (gdbarch,
2982 gdbarch_tdep (gdbarch)->a0_base + regnum,
2983 cache->wd.wb);
2984 cache->base = get_frame_register_unsigned (this_frame, regnum);
2985
2986 /* Read PC of interrupted function from EPC1 register. */
2987 epc1_regnum = xtensa_find_register_by_name (gdbarch,"epc1");
2988 if (epc1_regnum < 0)
2989 error(_("Unable to read Xtensa register EPC1"));
2990 cache->ra = xtensa_read_register (epc1_regnum);
2991 cache->pc = get_frame_func (this_frame);
2992 }
2993
2994
2995 /* Skip function prologue.
2996
2997 Return the pc of the first instruction after prologue. GDB calls this to
2998 find the address of the first line of the function or (if there is no line
2999 number information) to skip the prologue for planting breakpoints on
3000 function entries. Use debug info (if present) or prologue analysis to skip
3001 the prologue to achieve reliable debugging behavior. For windowed ABI,
3002 only the 'entry' instruction is skipped. It is not strictly necessary to
3003 skip the prologue (Call0) or 'entry' (Windowed) because xt-gdb knows how to
3004 backtrace at any point in the prologue, however certain potential hazards
3005 are avoided and a more "normal" debugging experience is ensured by
3006 skipping the prologue (can be disabled by defining DONT_SKIP_PROLOG).
3007 For example, if we don't skip the prologue:
3008 - Some args may not yet have been saved to the stack where the debug
3009 info expects to find them (true anyway when only 'entry' is skipped);
3010 - Software breakpoints ('break' instrs) may not have been unplanted
3011 when the prologue analysis is done on initializing the frame cache,
3012 and breaks in the prologue will throw off the analysis.
3013
3014 If we have debug info ( line-number info, in particular ) we simply skip
3015 the code associated with the first function line effectively skipping
3016 the prologue code. It works even in cases like
3017
3018 int main()
3019 { int local_var = 1;
3020 ....
3021 }
3022
3023 because, for this source code, both Xtensa compilers will generate two
3024 separate entries ( with the same line number ) in dwarf line-number
3025 section to make sure there is a boundary between the prologue code and
3026 the rest of the function.
3027
3028 If there is no debug info, we need to analyze the code. */
3029
3030 /* #define DONT_SKIP_PROLOGUE */
3031
3032 static CORE_ADDR
3033 xtensa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
3034 {
3035 struct symtab_and_line prologue_sal;
3036 CORE_ADDR body_pc;
3037
3038 DEBUGTRACE ("xtensa_skip_prologue (start_pc = 0x%08x)\n", (int) start_pc);
3039
3040 #if DONT_SKIP_PROLOGUE
3041 return start_pc;
3042 #endif
3043
3044 /* Try to find first body line from debug info. */
3045
3046 prologue_sal = find_pc_line (start_pc, 0);
3047 if (prologue_sal.line != 0) /* Found debug info. */
3048 {
3049 /* In Call0, it is possible to have a function with only one instruction
3050 ('ret') resulting from a one-line optimized function that does nothing.
3051 In that case, prologue_sal.end may actually point to the start of the
3052 next function in the text section, causing a breakpoint to be set at
3053 the wrong place. Check, if the end address is within a different
3054 function, and if so return the start PC. We know we have symbol
3055 information. */
3056
3057 CORE_ADDR end_func;
3058
3059 if ((gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
3060 && call0_ret (start_pc, prologue_sal.end))
3061 return start_pc;
3062
3063 find_pc_partial_function (prologue_sal.end, NULL, &end_func, NULL);
3064 if (end_func != start_pc)
3065 return start_pc;
3066
3067 return prologue_sal.end;
3068 }
3069
3070 /* No debug line info. Analyze prologue for Call0 or simply skip ENTRY. */
3071 body_pc = call0_analyze_prologue (gdbarch, start_pc, 0, 0,
3072 xtensa_alloc_frame_cache (0));
3073 return body_pc != 0 ? body_pc : start_pc;
3074 }
3075
3076 /* Verify the current configuration. */
3077 static void
3078 xtensa_verify_config (struct gdbarch *gdbarch)
3079 {
3080 struct ui_file *log;
3081 struct cleanup *cleanups;
3082 struct gdbarch_tdep *tdep;
3083 long length;
3084 char *buf;
3085
3086 tdep = gdbarch_tdep (gdbarch);
3087 log = mem_fileopen ();
3088 cleanups = make_cleanup_ui_file_delete (log);
3089
3090 /* Verify that we got a reasonable number of AREGS. */
3091 if ((tdep->num_aregs & -tdep->num_aregs) != tdep->num_aregs)
3092 fprintf_unfiltered (log, _("\
3093 \n\tnum_aregs: Number of AR registers (%d) is not a power of two!"),
3094 tdep->num_aregs);
3095
3096 /* Verify that certain registers exist. */
3097
3098 if (tdep->pc_regnum == -1)
3099 fprintf_unfiltered (log, _("\n\tpc_regnum: No PC register"));
3100 if (tdep->isa_use_exceptions && tdep->ps_regnum == -1)
3101 fprintf_unfiltered (log, _("\n\tps_regnum: No PS register"));
3102
3103 if (tdep->isa_use_windowed_registers)
3104 {
3105 if (tdep->wb_regnum == -1)
3106 fprintf_unfiltered (log, _("\n\twb_regnum: No WB register"));
3107 if (tdep->ws_regnum == -1)
3108 fprintf_unfiltered (log, _("\n\tws_regnum: No WS register"));
3109 if (tdep->ar_base == -1)
3110 fprintf_unfiltered (log, _("\n\tar_base: No AR registers"));
3111 }
3112
3113 if (tdep->a0_base == -1)
3114 fprintf_unfiltered (log, _("\n\ta0_base: No Ax registers"));
3115
3116 buf = ui_file_xstrdup (log, &length);
3117 make_cleanup (xfree, buf);
3118 if (length > 0)
3119 internal_error (__FILE__, __LINE__,
3120 _("the following are invalid: %s"), buf);
3121 do_cleanups (cleanups);
3122 }
3123
3124
3125 /* Derive specific register numbers from the array of registers. */
3126
3127 static void
3128 xtensa_derive_tdep (struct gdbarch_tdep *tdep)
3129 {
3130 xtensa_register_t* rmap;
3131 int n, max_size = 4;
3132
3133 tdep->num_regs = 0;
3134 tdep->num_nopriv_regs = 0;
3135
3136 /* Special registers 0..255 (core). */
3137 #define XTENSA_DBREGN_SREG(n) (0x0200+(n))
3138
3139 for (rmap = tdep->regmap, n = 0; rmap->target_number != -1; n++, rmap++)
3140 {
3141 if (rmap->target_number == 0x0020)
3142 tdep->pc_regnum = n;
3143 else if (rmap->target_number == 0x0100)
3144 tdep->ar_base = n;
3145 else if (rmap->target_number == 0x0000)
3146 tdep->a0_base = n;
3147 else if (rmap->target_number == XTENSA_DBREGN_SREG(72))
3148 tdep->wb_regnum = n;
3149 else if (rmap->target_number == XTENSA_DBREGN_SREG(73))
3150 tdep->ws_regnum = n;
3151 else if (rmap->target_number == XTENSA_DBREGN_SREG(233))
3152 tdep->debugcause_regnum = n;
3153 else if (rmap->target_number == XTENSA_DBREGN_SREG(232))
3154 tdep->exccause_regnum = n;
3155 else if (rmap->target_number == XTENSA_DBREGN_SREG(238))
3156 tdep->excvaddr_regnum = n;
3157 else if (rmap->target_number == XTENSA_DBREGN_SREG(0))
3158 tdep->lbeg_regnum = n;
3159 else if (rmap->target_number == XTENSA_DBREGN_SREG(1))
3160 tdep->lend_regnum = n;
3161 else if (rmap->target_number == XTENSA_DBREGN_SREG(2))
3162 tdep->lcount_regnum = n;
3163 else if (rmap->target_number == XTENSA_DBREGN_SREG(3))
3164 tdep->sar_regnum = n;
3165 else if (rmap->target_number == XTENSA_DBREGN_SREG(5))
3166 tdep->litbase_regnum = n;
3167 else if (rmap->target_number == XTENSA_DBREGN_SREG(230))
3168 tdep->ps_regnum = n;
3169 #if 0
3170 else if (rmap->target_number == XTENSA_DBREGN_SREG(226))
3171 tdep->interrupt_regnum = n;
3172 else if (rmap->target_number == XTENSA_DBREGN_SREG(227))
3173 tdep->interrupt2_regnum = n;
3174 else if (rmap->target_number == XTENSA_DBREGN_SREG(224))
3175 tdep->cpenable_regnum = n;
3176 #endif
3177
3178 if (rmap->byte_size > max_size)
3179 max_size = rmap->byte_size;
3180 if (rmap->mask != 0 && tdep->num_regs == 0)
3181 tdep->num_regs = n;
3182 /* Find out out how to deal with priveleged registers.
3183
3184 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
3185 && tdep->num_nopriv_regs == 0)
3186 tdep->num_nopriv_regs = n;
3187 */
3188 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
3189 && tdep->num_regs == 0)
3190 tdep->num_regs = n;
3191 }
3192
3193 /* Number of pseudo registers. */
3194 tdep->num_pseudo_regs = n - tdep->num_regs;
3195
3196 /* Empirically determined maximum sizes. */
3197 tdep->max_register_raw_size = max_size;
3198 tdep->max_register_virtual_size = max_size;
3199 }
3200
3201 /* Module "constructor" function. */
3202
3203 extern struct gdbarch_tdep xtensa_tdep;
3204
3205 static struct gdbarch *
3206 xtensa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3207 {
3208 struct gdbarch_tdep *tdep;
3209 struct gdbarch *gdbarch;
3210 struct xtensa_abi_handler *abi_handler;
3211
3212 DEBUGTRACE ("gdbarch_init()\n");
3213
3214 /* We have to set the byte order before we call gdbarch_alloc. */
3215 info.byte_order = XCHAL_HAVE_BE ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
3216
3217 tdep = &xtensa_tdep;
3218 gdbarch = gdbarch_alloc (&info, tdep);
3219 xtensa_derive_tdep (tdep);
3220
3221 /* Verify our configuration. */
3222 xtensa_verify_config (gdbarch);
3223 xtensa_session_once_reported = 0;
3224
3225 /* Pseudo-Register read/write. */
3226 set_gdbarch_pseudo_register_read (gdbarch, xtensa_pseudo_register_read);
3227 set_gdbarch_pseudo_register_write (gdbarch, xtensa_pseudo_register_write);
3228
3229 /* Set target information. */
3230 set_gdbarch_num_regs (gdbarch, tdep->num_regs);
3231 set_gdbarch_num_pseudo_regs (gdbarch, tdep->num_pseudo_regs);
3232 set_gdbarch_sp_regnum (gdbarch, tdep->a0_base + 1);
3233 set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
3234 set_gdbarch_ps_regnum (gdbarch, tdep->ps_regnum);
3235
3236 /* Renumber registers for known formats (stabs and dwarf2). */
3237 set_gdbarch_stab_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
3238 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
3239
3240 /* We provide our own function to get register information. */
3241 set_gdbarch_register_name (gdbarch, xtensa_register_name);
3242 set_gdbarch_register_type (gdbarch, xtensa_register_type);
3243
3244 /* To call functions from GDB using dummy frame. */
3245 set_gdbarch_push_dummy_call (gdbarch, xtensa_push_dummy_call);
3246
3247 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3248
3249 set_gdbarch_return_value (gdbarch, xtensa_return_value);
3250
3251 /* Advance PC across any prologue instructions to reach "real" code. */
3252 set_gdbarch_skip_prologue (gdbarch, xtensa_skip_prologue);
3253
3254 /* Stack grows downward. */
3255 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3256
3257 /* Set breakpoints. */
3258 set_gdbarch_breakpoint_from_pc (gdbarch, xtensa_breakpoint_from_pc);
3259
3260 /* After breakpoint instruction or illegal instruction, pc still
3261 points at break instruction, so don't decrement. */
3262 set_gdbarch_decr_pc_after_break (gdbarch, 0);
3263
3264 /* We don't skip args. */
3265 set_gdbarch_frame_args_skip (gdbarch, 0);
3266
3267 set_gdbarch_unwind_pc (gdbarch, xtensa_unwind_pc);
3268
3269 set_gdbarch_frame_align (gdbarch, xtensa_frame_align);
3270
3271 set_gdbarch_dummy_id (gdbarch, xtensa_dummy_id);
3272
3273 /* Frame handling. */
3274 frame_base_set_default (gdbarch, &xtensa_frame_base);
3275 frame_unwind_append_unwinder (gdbarch, &xtensa_unwind);
3276 dwarf2_append_unwinders (gdbarch);
3277
3278 set_gdbarch_print_insn (gdbarch, print_insn_xtensa);
3279
3280 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3281
3282 xtensa_add_reggroups (gdbarch);
3283 set_gdbarch_register_reggroup_p (gdbarch, xtensa_register_reggroup_p);
3284
3285 set_gdbarch_regset_from_core_section (gdbarch,
3286 xtensa_regset_from_core_section);
3287
3288 set_solib_svr4_fetch_link_map_offsets
3289 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
3290
3291 return gdbarch;
3292 }
3293
3294 static void
3295 xtensa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3296 {
3297 error (_("xtensa_dump_tdep(): not implemented"));
3298 }
3299
3300 /* Provide a prototype to silence -Wmissing-prototypes. */
3301 extern initialize_file_ftype _initialize_xtensa_tdep;
3302
3303 void
3304 _initialize_xtensa_tdep (void)
3305 {
3306 struct cmd_list_element *c;
3307
3308 gdbarch_register (bfd_arch_xtensa, xtensa_gdbarch_init, xtensa_dump_tdep);
3309 xtensa_init_reggroups ();
3310
3311 add_setshow_zuinteger_cmd ("xtensa",
3312 class_maintenance,
3313 &xtensa_debug_level,
3314 _("Set Xtensa debugging."),
3315 _("Show Xtensa debugging."), _("\
3316 When non-zero, Xtensa-specific debugging is enabled. \
3317 Can be 1, 2, 3, or 4 indicating the level of debugging."),
3318 NULL,
3319 NULL,
3320 &setdebuglist, &showdebuglist);
3321 }