]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gold/dwarf_reader.cc
Update year range in copyright notice of binutils files
[thirdparty/binutils-gdb.git] / gold / dwarf_reader.cc
1 // dwarf_reader.cc -- parse dwarf2/3 debug information
2
3 // Copyright (C) 2007-2021 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <algorithm>
26 #include <utility>
27 #include <vector>
28
29 #include "elfcpp_swap.h"
30 #include "dwarf.h"
31 #include "object.h"
32 #include "reloc.h"
33 #include "dwarf_reader.h"
34 #include "int_encoding.h"
35 #include "compressed_output.h"
36
37 namespace gold {
38
39 // Class Sized_elf_reloc_mapper
40
41 // Initialize the relocation tracker for section RELOC_SHNDX.
42
43 template<int size, bool big_endian>
44 bool
45 Sized_elf_reloc_mapper<size, big_endian>::do_initialize(
46 unsigned int reloc_shndx, unsigned int reloc_type)
47 {
48 this->reloc_type_ = reloc_type;
49 return this->track_relocs_.initialize(this->object_, reloc_shndx,
50 reloc_type);
51 }
52
53 // Looks in the symtab to see what section a symbol is in.
54
55 template<int size, bool big_endian>
56 unsigned int
57 Sized_elf_reloc_mapper<size, big_endian>::symbol_section(
58 unsigned int symndx, Address* value, bool* is_ordinary)
59 {
60 const int symsize = elfcpp::Elf_sizes<size>::sym_size;
61 gold_assert(static_cast<off_t>((symndx + 1) * symsize) <= this->symtab_size_);
62 elfcpp::Sym<size, big_endian> elfsym(this->symtab_ + symndx * symsize);
63 *value = elfsym.get_st_value();
64 return this->object_->adjust_sym_shndx(symndx, elfsym.get_st_shndx(),
65 is_ordinary);
66 }
67
68 // Return the section index and offset within the section of
69 // the target of the relocation for RELOC_OFFSET.
70
71 template<int size, bool big_endian>
72 unsigned int
73 Sized_elf_reloc_mapper<size, big_endian>::do_get_reloc_target(
74 off_t reloc_offset, off_t* target_offset)
75 {
76 this->track_relocs_.advance(reloc_offset);
77 if (reloc_offset != this->track_relocs_.next_offset())
78 return 0;
79 unsigned int symndx = this->track_relocs_.next_symndx();
80 typename elfcpp::Elf_types<size>::Elf_Addr value;
81 bool is_ordinary;
82 unsigned int target_shndx = this->symbol_section(symndx, &value,
83 &is_ordinary);
84 if (!is_ordinary)
85 return 0;
86 if (this->reloc_type_ == elfcpp::SHT_RELA)
87 value += this->track_relocs_.next_addend();
88 *target_offset = value;
89 return target_shndx;
90 }
91
92 static inline Elf_reloc_mapper*
93 make_elf_reloc_mapper(Relobj* object, const unsigned char* symtab,
94 off_t symtab_size)
95 {
96 if (object->elfsize() == 32)
97 {
98 if (object->is_big_endian())
99 {
100 #ifdef HAVE_TARGET_32_BIG
101 return new Sized_elf_reloc_mapper<32, true>(object, symtab,
102 symtab_size);
103 #else
104 gold_unreachable();
105 #endif
106 }
107 else
108 {
109 #ifdef HAVE_TARGET_32_LITTLE
110 return new Sized_elf_reloc_mapper<32, false>(object, symtab,
111 symtab_size);
112 #else
113 gold_unreachable();
114 #endif
115 }
116 }
117 else if (object->elfsize() == 64)
118 {
119 if (object->is_big_endian())
120 {
121 #ifdef HAVE_TARGET_64_BIG
122 return new Sized_elf_reloc_mapper<64, true>(object, symtab,
123 symtab_size);
124 #else
125 gold_unreachable();
126 #endif
127 }
128 else
129 {
130 #ifdef HAVE_TARGET_64_LITTLE
131 return new Sized_elf_reloc_mapper<64, false>(object, symtab,
132 symtab_size);
133 #else
134 gold_unreachable();
135 #endif
136 }
137 }
138 else
139 gold_unreachable();
140 }
141
142 // class Dwarf_abbrev_table
143
144 void
145 Dwarf_abbrev_table::clear_abbrev_codes()
146 {
147 for (unsigned int code = 0; code < this->low_abbrev_code_max_; ++code)
148 {
149 if (this->low_abbrev_codes_[code] != NULL)
150 {
151 delete this->low_abbrev_codes_[code];
152 this->low_abbrev_codes_[code] = NULL;
153 }
154 }
155 for (Abbrev_code_table::iterator it = this->high_abbrev_codes_.begin();
156 it != this->high_abbrev_codes_.end();
157 ++it)
158 {
159 if (it->second != NULL)
160 delete it->second;
161 }
162 this->high_abbrev_codes_.clear();
163 }
164
165 // Read the abbrev table from an object file.
166
167 bool
168 Dwarf_abbrev_table::do_read_abbrevs(
169 Relobj* object,
170 unsigned int abbrev_shndx,
171 off_t abbrev_offset)
172 {
173 this->clear_abbrev_codes();
174
175 // If we don't have relocations, abbrev_shndx will be 0, and
176 // we'll have to hunt for the .debug_abbrev section.
177 if (abbrev_shndx == 0 && this->abbrev_shndx_ > 0)
178 abbrev_shndx = this->abbrev_shndx_;
179 else if (abbrev_shndx == 0)
180 {
181 for (unsigned int i = 1; i < object->shnum(); ++i)
182 {
183 std::string name = object->section_name(i);
184 if (name == ".debug_abbrev" || name == ".zdebug_abbrev")
185 {
186 abbrev_shndx = i;
187 // Correct the offset. For incremental update links, we have a
188 // relocated offset that is relative to the output section, but
189 // here we need an offset relative to the input section.
190 abbrev_offset -= object->output_section_offset(i);
191 break;
192 }
193 }
194 if (abbrev_shndx == 0)
195 return false;
196 }
197
198 // Get the section contents and decompress if necessary.
199 if (abbrev_shndx != this->abbrev_shndx_)
200 {
201 if (this->owns_buffer_ && this->buffer_ != NULL)
202 {
203 delete[] this->buffer_;
204 this->owns_buffer_ = false;
205 }
206
207 section_size_type buffer_size;
208 this->buffer_ =
209 object->decompressed_section_contents(abbrev_shndx,
210 &buffer_size,
211 &this->owns_buffer_);
212 this->buffer_end_ = this->buffer_ + buffer_size;
213 this->abbrev_shndx_ = abbrev_shndx;
214 }
215
216 this->buffer_pos_ = this->buffer_ + abbrev_offset;
217 return true;
218 }
219
220 // Lookup the abbrev code entry for CODE. This function is called
221 // only when the abbrev code is not in the direct lookup table.
222 // It may be in the hash table, it may not have been read yet,
223 // or it may not exist in the abbrev table.
224
225 const Dwarf_abbrev_table::Abbrev_code*
226 Dwarf_abbrev_table::do_get_abbrev(unsigned int code)
227 {
228 // See if the abbrev code is already in the hash table.
229 Abbrev_code_table::const_iterator it = this->high_abbrev_codes_.find(code);
230 if (it != this->high_abbrev_codes_.end())
231 return it->second;
232
233 // Read and store abbrev code definitions until we find the
234 // one we're looking for.
235 for (;;)
236 {
237 // Read the abbrev code. A zero here indicates the end of the
238 // abbrev table.
239 size_t len;
240 if (this->buffer_pos_ >= this->buffer_end_)
241 return NULL;
242 uint64_t nextcode = read_unsigned_LEB_128(this->buffer_pos_, &len);
243 if (nextcode == 0)
244 {
245 this->buffer_pos_ = this->buffer_end_;
246 return NULL;
247 }
248 this->buffer_pos_ += len;
249
250 // Read the tag.
251 if (this->buffer_pos_ >= this->buffer_end_)
252 return NULL;
253 uint64_t tag = read_unsigned_LEB_128(this->buffer_pos_, &len);
254 this->buffer_pos_ += len;
255
256 // Read the has_children flag.
257 if (this->buffer_pos_ >= this->buffer_end_)
258 return NULL;
259 bool has_children = *this->buffer_pos_ == elfcpp::DW_CHILDREN_yes;
260 this->buffer_pos_ += 1;
261
262 // Read the list of (attribute, form) pairs.
263 Abbrev_code* entry = new Abbrev_code(tag, has_children);
264 for (;;)
265 {
266 // Read the attribute.
267 if (this->buffer_pos_ >= this->buffer_end_)
268 return NULL;
269 uint64_t attr = read_unsigned_LEB_128(this->buffer_pos_, &len);
270 this->buffer_pos_ += len;
271
272 // Read the form.
273 if (this->buffer_pos_ >= this->buffer_end_)
274 return NULL;
275 uint64_t form = read_unsigned_LEB_128(this->buffer_pos_, &len);
276 this->buffer_pos_ += len;
277
278 // A (0,0) pair terminates the list.
279 if (attr == 0 && form == 0)
280 break;
281
282 if (attr == elfcpp::DW_AT_sibling)
283 entry->has_sibling_attribute = true;
284
285 entry->add_attribute(attr, form);
286 }
287
288 this->store_abbrev(nextcode, entry);
289 if (nextcode == code)
290 return entry;
291 }
292
293 return NULL;
294 }
295
296 // class Dwarf_ranges_table
297
298 // Read the ranges table from an object file.
299
300 bool
301 Dwarf_ranges_table::read_ranges_table(
302 Relobj* object,
303 const unsigned char* symtab,
304 off_t symtab_size,
305 unsigned int ranges_shndx)
306 {
307 // If we've already read this abbrev table, return immediately.
308 if (this->ranges_shndx_ > 0
309 && this->ranges_shndx_ == ranges_shndx)
310 return true;
311
312 // If we don't have relocations, ranges_shndx will be 0, and
313 // we'll have to hunt for the .debug_ranges section.
314 if (ranges_shndx == 0 && this->ranges_shndx_ > 0)
315 ranges_shndx = this->ranges_shndx_;
316 else if (ranges_shndx == 0)
317 {
318 for (unsigned int i = 1; i < object->shnum(); ++i)
319 {
320 std::string name = object->section_name(i);
321 if (name == ".debug_ranges" || name == ".zdebug_ranges")
322 {
323 ranges_shndx = i;
324 this->output_section_offset_ = object->output_section_offset(i);
325 break;
326 }
327 }
328 if (ranges_shndx == 0)
329 return false;
330 }
331
332 // Get the section contents and decompress if necessary.
333 if (ranges_shndx != this->ranges_shndx_)
334 {
335 if (this->owns_ranges_buffer_ && this->ranges_buffer_ != NULL)
336 {
337 delete[] this->ranges_buffer_;
338 this->owns_ranges_buffer_ = false;
339 }
340
341 section_size_type buffer_size;
342 this->ranges_buffer_ =
343 object->decompressed_section_contents(ranges_shndx,
344 &buffer_size,
345 &this->owns_ranges_buffer_);
346 this->ranges_buffer_end_ = this->ranges_buffer_ + buffer_size;
347 this->ranges_shndx_ = ranges_shndx;
348 }
349
350 if (this->ranges_reloc_mapper_ != NULL)
351 {
352 delete this->ranges_reloc_mapper_;
353 this->ranges_reloc_mapper_ = NULL;
354 }
355
356 // For incremental objects, we have no relocations.
357 if (object->is_incremental())
358 return true;
359
360 // Find the relocation section for ".debug_ranges".
361 unsigned int reloc_shndx = 0;
362 unsigned int reloc_type = 0;
363 for (unsigned int i = 0; i < object->shnum(); ++i)
364 {
365 reloc_type = object->section_type(i);
366 if ((reloc_type == elfcpp::SHT_REL
367 || reloc_type == elfcpp::SHT_RELA)
368 && object->section_info(i) == ranges_shndx)
369 {
370 reloc_shndx = i;
371 break;
372 }
373 }
374
375 this->ranges_reloc_mapper_ = make_elf_reloc_mapper(object, symtab,
376 symtab_size);
377 this->ranges_reloc_mapper_->initialize(reloc_shndx, reloc_type);
378 this->reloc_type_ = reloc_type;
379
380 return true;
381 }
382
383 // Read a range list from section RANGES_SHNDX at offset RANGES_OFFSET.
384
385 Dwarf_range_list*
386 Dwarf_ranges_table::read_range_list(
387 Relobj* object,
388 const unsigned char* symtab,
389 off_t symtab_size,
390 unsigned int addr_size,
391 unsigned int ranges_shndx,
392 off_t offset)
393 {
394 Dwarf_range_list* ranges;
395
396 if (!this->read_ranges_table(object, symtab, symtab_size, ranges_shndx))
397 return NULL;
398
399 // Correct the offset. For incremental update links, we have a
400 // relocated offset that is relative to the output section, but
401 // here we need an offset relative to the input section.
402 offset -= this->output_section_offset_;
403
404 // Read the range list at OFFSET.
405 ranges = new Dwarf_range_list();
406 off_t base = 0;
407 for (;
408 this->ranges_buffer_ + offset < this->ranges_buffer_end_;
409 offset += 2 * addr_size)
410 {
411 off_t start;
412 off_t end;
413
414 // Read the raw contents of the section.
415 if (addr_size == 4)
416 {
417 start = this->dwinfo_->read_from_pointer<32>(this->ranges_buffer_
418 + offset);
419 end = this->dwinfo_->read_from_pointer<32>(this->ranges_buffer_
420 + offset + 4);
421 }
422 else
423 {
424 start = this->dwinfo_->read_from_pointer<64>(this->ranges_buffer_
425 + offset);
426 end = this->dwinfo_->read_from_pointer<64>(this->ranges_buffer_
427 + offset + 8);
428 }
429
430 // Check for relocations and adjust the values.
431 unsigned int shndx1 = 0;
432 unsigned int shndx2 = 0;
433 if (this->ranges_reloc_mapper_ != NULL)
434 {
435 shndx1 = this->lookup_reloc(offset, &start);
436 shndx2 = this->lookup_reloc(offset + addr_size, &end);
437 }
438
439 // End of list is marked by a pair of zeroes.
440 if (shndx1 == 0 && start == 0 && end == 0)
441 break;
442
443 // A "base address selection entry" is identified by
444 // 0xffffffff for the first value of the pair. The second
445 // value is used as a base for subsequent range list entries.
446 if (shndx1 == 0 && start == -1)
447 base = end;
448 else if (shndx1 == shndx2)
449 {
450 if (shndx1 == 0 || object->is_section_included(shndx1))
451 ranges->add(shndx1, base + start, base + end);
452 }
453 else
454 gold_warning(_("%s: DWARF info may be corrupt; offsets in a "
455 "range list entry are in different sections"),
456 object->name().c_str());
457 }
458
459 return ranges;
460 }
461
462 // Look for a relocation at offset OFF in the range table,
463 // and return the section index and offset of the target.
464
465 unsigned int
466 Dwarf_ranges_table::lookup_reloc(off_t off, off_t* target_off)
467 {
468 off_t value;
469 unsigned int shndx =
470 this->ranges_reloc_mapper_->get_reloc_target(off, &value);
471 if (shndx == 0)
472 return 0;
473 if (this->reloc_type_ == elfcpp::SHT_REL)
474 *target_off += value;
475 else
476 *target_off = value;
477 return shndx;
478 }
479
480 // class Dwarf_pubnames_table
481
482 // Read the pubnames section from the object file.
483
484 bool
485 Dwarf_pubnames_table::read_section(Relobj* object, const unsigned char* symtab,
486 off_t symtab_size)
487 {
488 section_size_type buffer_size;
489 unsigned int shndx = 0;
490 const char* name = this->is_pubtypes_ ? "pubtypes" : "pubnames";
491 const char* gnu_name = (this->is_pubtypes_
492 ? "gnu_pubtypes"
493 : "gnu_pubnames");
494
495 for (unsigned int i = 1; i < object->shnum(); ++i)
496 {
497 std::string section_name = object->section_name(i);
498 const char* section_name_suffix = section_name.c_str();
499 if (is_prefix_of(".debug_", section_name_suffix))
500 section_name_suffix += 7;
501 else if (is_prefix_of(".zdebug_", section_name_suffix))
502 section_name_suffix += 8;
503 else
504 continue;
505 if (strcmp(section_name_suffix, name) == 0)
506 {
507 shndx = i;
508 break;
509 }
510 else if (strcmp(section_name_suffix, gnu_name) == 0)
511 {
512 shndx = i;
513 this->is_gnu_style_ = true;
514 break;
515 }
516 }
517 if (shndx == 0)
518 return false;
519
520 this->buffer_ = object->decompressed_section_contents(shndx,
521 &buffer_size,
522 &this->owns_buffer_);
523 if (this->buffer_ == NULL)
524 return false;
525 this->buffer_end_ = this->buffer_ + buffer_size;
526
527 // For incremental objects, we have no relocations.
528 if (object->is_incremental())
529 return true;
530
531 // Find the relocation section
532 unsigned int reloc_shndx = 0;
533 unsigned int reloc_type = 0;
534 for (unsigned int i = 0; i < object->shnum(); ++i)
535 {
536 reloc_type = object->section_type(i);
537 if ((reloc_type == elfcpp::SHT_REL
538 || reloc_type == elfcpp::SHT_RELA)
539 && object->section_info(i) == shndx)
540 {
541 reloc_shndx = i;
542 break;
543 }
544 }
545
546 this->reloc_mapper_ = make_elf_reloc_mapper(object, symtab, symtab_size);
547 this->reloc_mapper_->initialize(reloc_shndx, reloc_type);
548 this->reloc_type_ = reloc_type;
549
550 return true;
551 }
552
553 // Read the header for the set at OFFSET.
554
555 bool
556 Dwarf_pubnames_table::read_header(off_t offset)
557 {
558 // Make sure we have actually read the section.
559 gold_assert(this->buffer_ != NULL);
560
561 if (offset < 0 || offset + 14 >= this->buffer_end_ - this->buffer_)
562 return false;
563
564 const unsigned char* pinfo = this->buffer_ + offset;
565
566 // Read the unit_length field.
567 uint64_t unit_length = this->dwinfo_->read_from_pointer<32>(pinfo);
568 pinfo += 4;
569 if (unit_length == 0xffffffff)
570 {
571 unit_length = this->dwinfo_->read_from_pointer<64>(pinfo);
572 this->unit_length_ = unit_length + 12;
573 pinfo += 8;
574 this->offset_size_ = 8;
575 }
576 else
577 {
578 this->unit_length_ = unit_length + 4;
579 this->offset_size_ = 4;
580 }
581 this->end_of_table_ = pinfo + unit_length;
582
583 // If unit_length is too big, maybe we should reject the whole table,
584 // but in cases we know about, it seems OK to assume that the table
585 // is valid through the actual end of the section.
586 if (this->end_of_table_ > this->buffer_end_)
587 this->end_of_table_ = this->buffer_end_;
588
589 // Check the version.
590 unsigned int version = this->dwinfo_->read_from_pointer<16>(pinfo);
591 pinfo += 2;
592 if (version != 2)
593 return false;
594
595 this->reloc_mapper_->get_reloc_target(pinfo - this->buffer_,
596 &this->cu_offset_);
597
598 // Skip the debug_info_offset and debug_info_size fields.
599 pinfo += 2 * this->offset_size_;
600
601 if (pinfo >= this->buffer_end_)
602 return false;
603
604 this->pinfo_ = pinfo;
605 return true;
606 }
607
608 // Read the next name from the set.
609
610 const char*
611 Dwarf_pubnames_table::next_name(uint8_t* flag_byte)
612 {
613 const unsigned char* pinfo = this->pinfo_;
614
615 // Check for end of list. The table should be terminated by an
616 // entry containing nothing but a DIE offset of 0.
617 if (pinfo + this->offset_size_ >= this->end_of_table_)
618 return NULL;
619
620 // Skip the offset within the CU. If this is zero, but we're not
621 // at the end of the table, then we have a real pubnames entry
622 // whose DIE offset is 0 (likely to be a GCC bug). Since we
623 // don't actually use the DIE offset in building .gdb_index,
624 // it's harmless.
625 pinfo += this->offset_size_;
626
627 if (this->is_gnu_style_)
628 *flag_byte = *pinfo++;
629 else
630 *flag_byte = 0;
631
632 // Return a pointer to the string at the current location,
633 // and advance the pointer to the next entry.
634 const char* ret = reinterpret_cast<const char*>(pinfo);
635 while (pinfo < this->buffer_end_ && *pinfo != '\0')
636 ++pinfo;
637 if (pinfo < this->buffer_end_)
638 ++pinfo;
639
640 this->pinfo_ = pinfo;
641 return ret;
642 }
643
644 // class Dwarf_die
645
646 Dwarf_die::Dwarf_die(
647 Dwarf_info_reader* dwinfo,
648 off_t die_offset,
649 Dwarf_die* parent)
650 : dwinfo_(dwinfo), parent_(parent), die_offset_(die_offset),
651 child_offset_(0), sibling_offset_(0), abbrev_code_(NULL), attributes_(),
652 attributes_read_(false), name_(NULL), name_off_(-1), linkage_name_(NULL),
653 linkage_name_off_(-1), string_shndx_(0), specification_(0),
654 abstract_origin_(0)
655 {
656 size_t len;
657 const unsigned char* pdie = dwinfo->buffer_at_offset(die_offset);
658 if (pdie == NULL)
659 return;
660 unsigned int code = read_unsigned_LEB_128(pdie, &len);
661 if (code == 0)
662 {
663 if (parent != NULL)
664 parent->set_sibling_offset(die_offset + len);
665 return;
666 }
667 this->attr_offset_ = len;
668
669 // Lookup the abbrev code in the abbrev table.
670 this->abbrev_code_ = dwinfo->get_abbrev(code);
671 }
672
673 // Read all the attributes of the DIE.
674
675 bool
676 Dwarf_die::read_attributes()
677 {
678 if (this->attributes_read_)
679 return true;
680
681 gold_assert(this->abbrev_code_ != NULL);
682
683 const unsigned char* pdie =
684 this->dwinfo_->buffer_at_offset(this->die_offset_);
685 if (pdie == NULL)
686 return false;
687 const unsigned char* pattr = pdie + this->attr_offset_;
688
689 unsigned int nattr = this->abbrev_code_->attributes.size();
690 this->attributes_.reserve(nattr);
691 for (unsigned int i = 0; i < nattr; ++i)
692 {
693 size_t len;
694 unsigned int attr = this->abbrev_code_->attributes[i].attr;
695 unsigned int form = this->abbrev_code_->attributes[i].form;
696 if (form == elfcpp::DW_FORM_indirect)
697 {
698 form = read_unsigned_LEB_128(pattr, &len);
699 pattr += len;
700 }
701 off_t attr_off = this->die_offset_ + (pattr - pdie);
702 bool ref_form = false;
703 Attribute_value attr_value;
704 attr_value.attr = attr;
705 attr_value.form = form;
706 attr_value.aux.shndx = 0;
707 switch(form)
708 {
709 case elfcpp::DW_FORM_flag_present:
710 attr_value.val.intval = 1;
711 break;
712 case elfcpp::DW_FORM_strp:
713 {
714 off_t str_off;
715 if (this->dwinfo_->offset_size() == 4)
716 str_off = this->dwinfo_->read_from_pointer<32>(&pattr);
717 else
718 str_off = this->dwinfo_->read_from_pointer<64>(&pattr);
719 unsigned int shndx =
720 this->dwinfo_->lookup_reloc(attr_off, &str_off);
721 attr_value.aux.shndx = shndx;
722 attr_value.val.refval = str_off;
723 break;
724 }
725 case elfcpp::DW_FORM_sec_offset:
726 {
727 off_t sec_off;
728 if (this->dwinfo_->offset_size() == 4)
729 sec_off = this->dwinfo_->read_from_pointer<32>(&pattr);
730 else
731 sec_off = this->dwinfo_->read_from_pointer<64>(&pattr);
732 unsigned int shndx =
733 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
734 attr_value.aux.shndx = shndx;
735 attr_value.val.refval = sec_off;
736 ref_form = true;
737 break;
738 }
739 case elfcpp::DW_FORM_addr:
740 {
741 off_t sec_off;
742 if (this->dwinfo_->address_size() == 4)
743 sec_off = this->dwinfo_->read_from_pointer<32>(&pattr);
744 else
745 sec_off = this->dwinfo_->read_from_pointer<64>(&pattr);
746 unsigned int shndx =
747 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
748 attr_value.aux.shndx = shndx;
749 attr_value.val.refval = sec_off;
750 ref_form = true;
751 break;
752 }
753 case elfcpp::DW_FORM_ref_addr:
754 {
755 off_t sec_off;
756 if (this->dwinfo_->ref_addr_size() == 4)
757 sec_off = this->dwinfo_->read_from_pointer<32>(&pattr);
758 else
759 sec_off = this->dwinfo_->read_from_pointer<64>(&pattr);
760 unsigned int shndx =
761 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
762 attr_value.aux.shndx = shndx;
763 attr_value.val.refval = sec_off;
764 ref_form = true;
765 break;
766 }
767 case elfcpp::DW_FORM_block1:
768 attr_value.aux.blocklen = *pattr++;
769 attr_value.val.blockval = pattr;
770 pattr += attr_value.aux.blocklen;
771 break;
772 case elfcpp::DW_FORM_block2:
773 attr_value.aux.blocklen =
774 this->dwinfo_->read_from_pointer<16>(&pattr);
775 attr_value.val.blockval = pattr;
776 pattr += attr_value.aux.blocklen;
777 break;
778 case elfcpp::DW_FORM_block4:
779 attr_value.aux.blocklen =
780 this->dwinfo_->read_from_pointer<32>(&pattr);
781 attr_value.val.blockval = pattr;
782 pattr += attr_value.aux.blocklen;
783 break;
784 case elfcpp::DW_FORM_block:
785 case elfcpp::DW_FORM_exprloc:
786 attr_value.aux.blocklen = read_unsigned_LEB_128(pattr, &len);
787 attr_value.val.blockval = pattr + len;
788 pattr += len + attr_value.aux.blocklen;
789 break;
790 case elfcpp::DW_FORM_data1:
791 case elfcpp::DW_FORM_flag:
792 attr_value.val.intval = *pattr++;
793 break;
794 case elfcpp::DW_FORM_ref1:
795 attr_value.val.refval = *pattr++;
796 ref_form = true;
797 break;
798 case elfcpp::DW_FORM_data2:
799 attr_value.val.intval =
800 this->dwinfo_->read_from_pointer<16>(&pattr);
801 break;
802 case elfcpp::DW_FORM_ref2:
803 attr_value.val.refval =
804 this->dwinfo_->read_from_pointer<16>(&pattr);
805 ref_form = true;
806 break;
807 case elfcpp::DW_FORM_data4:
808 {
809 off_t sec_off;
810 sec_off = this->dwinfo_->read_from_pointer<32>(&pattr);
811 unsigned int shndx =
812 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
813 attr_value.aux.shndx = shndx;
814 attr_value.val.intval = sec_off;
815 break;
816 }
817 case elfcpp::DW_FORM_ref4:
818 {
819 off_t sec_off;
820 sec_off = this->dwinfo_->read_from_pointer<32>(&pattr);
821 unsigned int shndx =
822 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
823 attr_value.aux.shndx = shndx;
824 attr_value.val.refval = sec_off;
825 ref_form = true;
826 break;
827 }
828 case elfcpp::DW_FORM_data8:
829 {
830 off_t sec_off;
831 sec_off = this->dwinfo_->read_from_pointer<64>(&pattr);
832 unsigned int shndx =
833 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
834 attr_value.aux.shndx = shndx;
835 attr_value.val.intval = sec_off;
836 break;
837 }
838 case elfcpp::DW_FORM_ref_sig8:
839 attr_value.val.uintval =
840 this->dwinfo_->read_from_pointer<64>(&pattr);
841 break;
842 case elfcpp::DW_FORM_ref8:
843 {
844 off_t sec_off;
845 sec_off = this->dwinfo_->read_from_pointer<64>(&pattr);
846 unsigned int shndx =
847 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
848 attr_value.aux.shndx = shndx;
849 attr_value.val.refval = sec_off;
850 ref_form = true;
851 break;
852 }
853 case elfcpp::DW_FORM_ref_udata:
854 attr_value.val.refval = read_unsigned_LEB_128(pattr, &len);
855 ref_form = true;
856 pattr += len;
857 break;
858 case elfcpp::DW_FORM_udata:
859 case elfcpp::DW_FORM_GNU_addr_index:
860 case elfcpp::DW_FORM_GNU_str_index:
861 attr_value.val.uintval = read_unsigned_LEB_128(pattr, &len);
862 pattr += len;
863 break;
864 case elfcpp::DW_FORM_sdata:
865 attr_value.val.intval = read_signed_LEB_128(pattr, &len);
866 pattr += len;
867 break;
868 case elfcpp::DW_FORM_string:
869 attr_value.val.stringval = reinterpret_cast<const char*>(pattr);
870 len = strlen(attr_value.val.stringval);
871 pattr += len + 1;
872 break;
873 default:
874 return false;
875 }
876
877 // Cache the most frequently-requested attributes.
878 switch (attr)
879 {
880 case elfcpp::DW_AT_name:
881 if (form == elfcpp::DW_FORM_string)
882 this->name_ = attr_value.val.stringval;
883 else if (form == elfcpp::DW_FORM_strp)
884 {
885 // All indirect strings should refer to the same
886 // string section, so we just save the last one seen.
887 this->string_shndx_ = attr_value.aux.shndx;
888 this->name_off_ = attr_value.val.refval;
889 }
890 break;
891 case elfcpp::DW_AT_linkage_name:
892 case elfcpp::DW_AT_MIPS_linkage_name:
893 if (form == elfcpp::DW_FORM_string)
894 this->linkage_name_ = attr_value.val.stringval;
895 else if (form == elfcpp::DW_FORM_strp)
896 {
897 // All indirect strings should refer to the same
898 // string section, so we just save the last one seen.
899 this->string_shndx_ = attr_value.aux.shndx;
900 this->linkage_name_off_ = attr_value.val.refval;
901 }
902 break;
903 case elfcpp::DW_AT_specification:
904 if (ref_form)
905 this->specification_ = attr_value.val.refval;
906 break;
907 case elfcpp::DW_AT_abstract_origin:
908 if (ref_form)
909 this->abstract_origin_ = attr_value.val.refval;
910 break;
911 case elfcpp::DW_AT_sibling:
912 if (ref_form && attr_value.aux.shndx == 0)
913 this->sibling_offset_ = attr_value.val.refval;
914 default:
915 break;
916 }
917
918 this->attributes_.push_back(attr_value);
919 }
920
921 // Now that we know where the next DIE begins, record the offset
922 // to avoid later recalculation.
923 if (this->has_children())
924 this->child_offset_ = this->die_offset_ + (pattr - pdie);
925 else
926 this->sibling_offset_ = this->die_offset_ + (pattr - pdie);
927
928 this->attributes_read_ = true;
929 return true;
930 }
931
932 // Skip all the attributes of the DIE and return the offset of the next DIE.
933
934 off_t
935 Dwarf_die::skip_attributes()
936 {
937 gold_assert(this->abbrev_code_ != NULL);
938
939 const unsigned char* pdie =
940 this->dwinfo_->buffer_at_offset(this->die_offset_);
941 if (pdie == NULL)
942 return 0;
943 const unsigned char* pattr = pdie + this->attr_offset_;
944
945 for (unsigned int i = 0; i < this->abbrev_code_->attributes.size(); ++i)
946 {
947 size_t len;
948 unsigned int form = this->abbrev_code_->attributes[i].form;
949 if (form == elfcpp::DW_FORM_indirect)
950 {
951 form = read_unsigned_LEB_128(pattr, &len);
952 pattr += len;
953 }
954 switch(form)
955 {
956 case elfcpp::DW_FORM_flag_present:
957 break;
958 case elfcpp::DW_FORM_strp:
959 case elfcpp::DW_FORM_sec_offset:
960 pattr += this->dwinfo_->offset_size();
961 break;
962 case elfcpp::DW_FORM_addr:
963 pattr += this->dwinfo_->address_size();
964 break;
965 case elfcpp::DW_FORM_ref_addr:
966 pattr += this->dwinfo_->ref_addr_size();
967 break;
968 case elfcpp::DW_FORM_block1:
969 pattr += 1 + *pattr;
970 break;
971 case elfcpp::DW_FORM_block2:
972 {
973 uint16_t block_size;
974 block_size = this->dwinfo_->read_from_pointer<16>(&pattr);
975 pattr += block_size;
976 break;
977 }
978 case elfcpp::DW_FORM_block4:
979 {
980 uint32_t block_size;
981 block_size = this->dwinfo_->read_from_pointer<32>(&pattr);
982 pattr += block_size;
983 break;
984 }
985 case elfcpp::DW_FORM_block:
986 case elfcpp::DW_FORM_exprloc:
987 {
988 uint64_t block_size;
989 block_size = read_unsigned_LEB_128(pattr, &len);
990 pattr += len + block_size;
991 break;
992 }
993 case elfcpp::DW_FORM_data1:
994 case elfcpp::DW_FORM_ref1:
995 case elfcpp::DW_FORM_flag:
996 pattr += 1;
997 break;
998 case elfcpp::DW_FORM_data2:
999 case elfcpp::DW_FORM_ref2:
1000 pattr += 2;
1001 break;
1002 case elfcpp::DW_FORM_data4:
1003 case elfcpp::DW_FORM_ref4:
1004 pattr += 4;
1005 break;
1006 case elfcpp::DW_FORM_data8:
1007 case elfcpp::DW_FORM_ref8:
1008 case elfcpp::DW_FORM_ref_sig8:
1009 pattr += 8;
1010 break;
1011 case elfcpp::DW_FORM_ref_udata:
1012 case elfcpp::DW_FORM_udata:
1013 case elfcpp::DW_FORM_GNU_addr_index:
1014 case elfcpp::DW_FORM_GNU_str_index:
1015 read_unsigned_LEB_128(pattr, &len);
1016 pattr += len;
1017 break;
1018 case elfcpp::DW_FORM_sdata:
1019 read_signed_LEB_128(pattr, &len);
1020 pattr += len;
1021 break;
1022 case elfcpp::DW_FORM_string:
1023 len = strlen(reinterpret_cast<const char*>(pattr));
1024 pattr += len + 1;
1025 break;
1026 default:
1027 return 0;
1028 }
1029 }
1030
1031 return this->die_offset_ + (pattr - pdie);
1032 }
1033
1034 // Get the name of the DIE and cache it.
1035
1036 void
1037 Dwarf_die::set_name()
1038 {
1039 if (this->name_ != NULL || !this->read_attributes())
1040 return;
1041 if (this->name_off_ != -1)
1042 this->name_ = this->dwinfo_->get_string(this->name_off_,
1043 this->string_shndx_);
1044 }
1045
1046 // Get the linkage name of the DIE and cache it.
1047
1048 void
1049 Dwarf_die::set_linkage_name()
1050 {
1051 if (this->linkage_name_ != NULL || !this->read_attributes())
1052 return;
1053 if (this->linkage_name_off_ != -1)
1054 this->linkage_name_ = this->dwinfo_->get_string(this->linkage_name_off_,
1055 this->string_shndx_);
1056 }
1057
1058 // Return the value of attribute ATTR.
1059
1060 const Dwarf_die::Attribute_value*
1061 Dwarf_die::attribute(unsigned int attr)
1062 {
1063 if (!this->read_attributes())
1064 return NULL;
1065 for (unsigned int i = 0; i < this->attributes_.size(); ++i)
1066 {
1067 if (this->attributes_[i].attr == attr)
1068 return &this->attributes_[i];
1069 }
1070 return NULL;
1071 }
1072
1073 const char*
1074 Dwarf_die::string_attribute(unsigned int attr)
1075 {
1076 const Attribute_value* attr_val = this->attribute(attr);
1077 if (attr_val == NULL)
1078 return NULL;
1079 switch (attr_val->form)
1080 {
1081 case elfcpp::DW_FORM_string:
1082 return attr_val->val.stringval;
1083 case elfcpp::DW_FORM_strp:
1084 return this->dwinfo_->get_string(attr_val->val.refval,
1085 attr_val->aux.shndx);
1086 default:
1087 return NULL;
1088 }
1089 }
1090
1091 int64_t
1092 Dwarf_die::int_attribute(unsigned int attr)
1093 {
1094 const Attribute_value* attr_val = this->attribute(attr);
1095 if (attr_val == NULL)
1096 return 0;
1097 switch (attr_val->form)
1098 {
1099 case elfcpp::DW_FORM_flag_present:
1100 case elfcpp::DW_FORM_data1:
1101 case elfcpp::DW_FORM_flag:
1102 case elfcpp::DW_FORM_data2:
1103 case elfcpp::DW_FORM_data4:
1104 case elfcpp::DW_FORM_data8:
1105 case elfcpp::DW_FORM_sdata:
1106 return attr_val->val.intval;
1107 default:
1108 return 0;
1109 }
1110 }
1111
1112 uint64_t
1113 Dwarf_die::uint_attribute(unsigned int attr)
1114 {
1115 const Attribute_value* attr_val = this->attribute(attr);
1116 if (attr_val == NULL)
1117 return 0;
1118 switch (attr_val->form)
1119 {
1120 case elfcpp::DW_FORM_flag_present:
1121 case elfcpp::DW_FORM_data1:
1122 case elfcpp::DW_FORM_flag:
1123 case elfcpp::DW_FORM_data4:
1124 case elfcpp::DW_FORM_data8:
1125 case elfcpp::DW_FORM_ref_sig8:
1126 case elfcpp::DW_FORM_udata:
1127 return attr_val->val.uintval;
1128 default:
1129 return 0;
1130 }
1131 }
1132
1133 off_t
1134 Dwarf_die::ref_attribute(unsigned int attr, unsigned int* shndx)
1135 {
1136 const Attribute_value* attr_val = this->attribute(attr);
1137 if (attr_val == NULL)
1138 return -1;
1139 switch (attr_val->form)
1140 {
1141 case elfcpp::DW_FORM_sec_offset:
1142 case elfcpp::DW_FORM_addr:
1143 case elfcpp::DW_FORM_ref_addr:
1144 case elfcpp::DW_FORM_ref1:
1145 case elfcpp::DW_FORM_ref2:
1146 case elfcpp::DW_FORM_ref4:
1147 case elfcpp::DW_FORM_ref8:
1148 case elfcpp::DW_FORM_ref_udata:
1149 *shndx = attr_val->aux.shndx;
1150 return attr_val->val.refval;
1151 case elfcpp::DW_FORM_ref_sig8:
1152 *shndx = attr_val->aux.shndx;
1153 return attr_val->val.uintval;
1154 case elfcpp::DW_FORM_data4:
1155 case elfcpp::DW_FORM_data8:
1156 *shndx = attr_val->aux.shndx;
1157 return attr_val->val.intval;
1158 default:
1159 return -1;
1160 }
1161 }
1162
1163 off_t
1164 Dwarf_die::address_attribute(unsigned int attr, unsigned int* shndx)
1165 {
1166 const Attribute_value* attr_val = this->attribute(attr);
1167 if (attr_val == NULL || attr_val->form != elfcpp::DW_FORM_addr)
1168 return -1;
1169
1170 *shndx = attr_val->aux.shndx;
1171 return attr_val->val.refval;
1172 }
1173
1174 // Return the offset of this DIE's first child.
1175
1176 off_t
1177 Dwarf_die::child_offset()
1178 {
1179 gold_assert(this->abbrev_code_ != NULL);
1180 if (!this->has_children())
1181 return 0;
1182 if (this->child_offset_ == 0)
1183 this->child_offset_ = this->skip_attributes();
1184 return this->child_offset_;
1185 }
1186
1187 // Return the offset of this DIE's next sibling.
1188
1189 off_t
1190 Dwarf_die::sibling_offset()
1191 {
1192 gold_assert(this->abbrev_code_ != NULL);
1193
1194 if (this->sibling_offset_ != 0)
1195 return this->sibling_offset_;
1196
1197 if (!this->has_children())
1198 {
1199 this->sibling_offset_ = this->skip_attributes();
1200 return this->sibling_offset_;
1201 }
1202
1203 if (this->has_sibling_attribute())
1204 {
1205 if (!this->read_attributes())
1206 return 0;
1207 if (this->sibling_offset_ != 0)
1208 return this->sibling_offset_;
1209 }
1210
1211 // Skip over the children.
1212 off_t child_offset = this->child_offset();
1213 while (child_offset > 0)
1214 {
1215 Dwarf_die die(this->dwinfo_, child_offset, this);
1216 // The Dwarf_die ctor will set this DIE's sibling offset
1217 // when it reads a zero abbrev code.
1218 if (die.tag() == 0)
1219 break;
1220 child_offset = die.sibling_offset();
1221 }
1222
1223 // This should be set by now. If not, there was a problem reading
1224 // the DWARF info, and we return 0.
1225 return this->sibling_offset_;
1226 }
1227
1228 // class Dwarf_info_reader
1229
1230 // Begin parsing the debug info. This calls visit_compilation_unit()
1231 // or visit_type_unit() for each compilation or type unit found in the
1232 // section, and visit_die() for each top-level DIE.
1233
1234 void
1235 Dwarf_info_reader::parse()
1236 {
1237 if (this->object_->is_big_endian())
1238 {
1239 #if defined(HAVE_TARGET_32_BIG) || defined(HAVE_TARGET_64_BIG)
1240 this->do_parse<true>();
1241 #else
1242 gold_unreachable();
1243 #endif
1244 }
1245 else
1246 {
1247 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_64_LITTLE)
1248 this->do_parse<false>();
1249 #else
1250 gold_unreachable();
1251 #endif
1252 }
1253 }
1254
1255 template<bool big_endian>
1256 void
1257 Dwarf_info_reader::do_parse()
1258 {
1259 // Get the section contents and decompress if necessary.
1260 section_size_type buffer_size;
1261 bool buffer_is_new;
1262 this->buffer_ = this->object_->decompressed_section_contents(this->shndx_,
1263 &buffer_size,
1264 &buffer_is_new);
1265 if (this->buffer_ == NULL || buffer_size == 0)
1266 return;
1267 this->buffer_end_ = this->buffer_ + buffer_size;
1268
1269 // The offset of this input section in the output section.
1270 off_t section_offset = this->object_->output_section_offset(this->shndx_);
1271
1272 // Start tracking relocations for this section.
1273 this->reloc_mapper_ = make_elf_reloc_mapper(this->object_, this->symtab_,
1274 this->symtab_size_);
1275 this->reloc_mapper_->initialize(this->reloc_shndx_, this->reloc_type_);
1276
1277 // Loop over compilation units (or type units).
1278 unsigned int abbrev_shndx = this->abbrev_shndx_;
1279 off_t abbrev_offset = 0;
1280 const unsigned char* pinfo = this->buffer_;
1281 while (pinfo < this->buffer_end_)
1282 {
1283 // Read the compilation (or type) unit header.
1284 const unsigned char* cu_start = pinfo;
1285 this->cu_offset_ = cu_start - this->buffer_;
1286 this->cu_length_ = this->buffer_end_ - cu_start;
1287
1288 // Read unit_length (4 or 12 bytes).
1289 if (!this->check_buffer(pinfo + 4))
1290 break;
1291 uint32_t unit_length =
1292 elfcpp::Swap_unaligned<32, big_endian>::readval(pinfo);
1293 pinfo += 4;
1294 if (unit_length == 0xffffffff)
1295 {
1296 if (!this->check_buffer(pinfo + 8))
1297 break;
1298 unit_length = elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo);
1299 pinfo += 8;
1300 this->offset_size_ = 8;
1301 }
1302 else
1303 this->offset_size_ = 4;
1304 if (!this->check_buffer(pinfo + unit_length))
1305 break;
1306 const unsigned char* cu_end = pinfo + unit_length;
1307 this->cu_length_ = cu_end - cu_start;
1308 if (!this->check_buffer(pinfo + 2 + this->offset_size_ + 1))
1309 break;
1310
1311 // Read version (2 bytes).
1312 this->cu_version_ =
1313 elfcpp::Swap_unaligned<16, big_endian>::readval(pinfo);
1314 pinfo += 2;
1315
1316 // Read debug_abbrev_offset (4 or 8 bytes).
1317 if (this->offset_size_ == 4)
1318 abbrev_offset = elfcpp::Swap_unaligned<32, big_endian>::readval(pinfo);
1319 else
1320 abbrev_offset = elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo);
1321 if (this->reloc_shndx_ > 0)
1322 {
1323 off_t reloc_offset = pinfo - this->buffer_;
1324 off_t value;
1325 abbrev_shndx =
1326 this->reloc_mapper_->get_reloc_target(reloc_offset, &value);
1327 if (abbrev_shndx == 0)
1328 return;
1329 if (this->reloc_type_ == elfcpp::SHT_REL)
1330 abbrev_offset += value;
1331 else
1332 abbrev_offset = value;
1333 }
1334 pinfo += this->offset_size_;
1335
1336 // Read address_size (1 byte).
1337 this->address_size_ = *pinfo++;
1338
1339 // For type units, read the two extra fields.
1340 uint64_t signature = 0;
1341 off_t type_offset = 0;
1342 if (this->is_type_unit_)
1343 {
1344 if (!this->check_buffer(pinfo + 8 + this->offset_size_))
1345 break;
1346
1347 // Read type_signature (8 bytes).
1348 signature = elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo);
1349 pinfo += 8;
1350
1351 // Read type_offset (4 or 8 bytes).
1352 if (this->offset_size_ == 4)
1353 type_offset =
1354 elfcpp::Swap_unaligned<32, big_endian>::readval(pinfo);
1355 else
1356 type_offset =
1357 elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo);
1358 pinfo += this->offset_size_;
1359 }
1360
1361 // Read the .debug_abbrev table.
1362 this->abbrev_table_.read_abbrevs(this->object_, abbrev_shndx,
1363 abbrev_offset);
1364
1365 // Visit the root DIE.
1366 Dwarf_die root_die(this,
1367 pinfo - (this->buffer_ + this->cu_offset_),
1368 NULL);
1369 if (root_die.tag() != 0)
1370 {
1371 // Visit the CU or TU.
1372 if (this->is_type_unit_)
1373 this->visit_type_unit(section_offset + this->cu_offset_,
1374 cu_end - cu_start, type_offset, signature,
1375 &root_die);
1376 else
1377 this->visit_compilation_unit(section_offset + this->cu_offset_,
1378 cu_end - cu_start, &root_die);
1379 }
1380
1381 // Advance to the next CU.
1382 pinfo = cu_end;
1383 }
1384
1385 if (buffer_is_new)
1386 {
1387 delete[] this->buffer_;
1388 this->buffer_ = NULL;
1389 }
1390 }
1391
1392 // Read the DWARF string table.
1393
1394 bool
1395 Dwarf_info_reader::do_read_string_table(unsigned int string_shndx)
1396 {
1397 Relobj* object = this->object_;
1398
1399 // If we don't have relocations, string_shndx will be 0, and
1400 // we'll have to hunt for the .debug_str section.
1401 if (string_shndx == 0)
1402 {
1403 for (unsigned int i = 1; i < this->object_->shnum(); ++i)
1404 {
1405 std::string name = object->section_name(i);
1406 if (name == ".debug_str" || name == ".zdebug_str")
1407 {
1408 string_shndx = i;
1409 this->string_output_section_offset_ =
1410 object->output_section_offset(i);
1411 break;
1412 }
1413 }
1414 if (string_shndx == 0)
1415 return false;
1416 }
1417
1418 if (this->owns_string_buffer_ && this->string_buffer_ != NULL)
1419 {
1420 delete[] this->string_buffer_;
1421 this->owns_string_buffer_ = false;
1422 }
1423
1424 // Get the secton contents and decompress if necessary.
1425 section_size_type buffer_size;
1426 const unsigned char* buffer =
1427 object->decompressed_section_contents(string_shndx,
1428 &buffer_size,
1429 &this->owns_string_buffer_);
1430 this->string_buffer_ = reinterpret_cast<const char*>(buffer);
1431 this->string_buffer_end_ = this->string_buffer_ + buffer_size;
1432 this->string_shndx_ = string_shndx;
1433 return true;
1434 }
1435
1436 // Read a possibly unaligned integer of SIZE.
1437 template <int valsize>
1438 inline typename elfcpp::Valtype_base<valsize>::Valtype
1439 Dwarf_info_reader::read_from_pointer(const unsigned char* source)
1440 {
1441 typename elfcpp::Valtype_base<valsize>::Valtype return_value;
1442 if (this->object_->is_big_endian())
1443 return_value = elfcpp::Swap_unaligned<valsize, true>::readval(source);
1444 else
1445 return_value = elfcpp::Swap_unaligned<valsize, false>::readval(source);
1446 return return_value;
1447 }
1448
1449 // Read a possibly unaligned integer of SIZE. Update SOURCE after read.
1450 template <int valsize>
1451 inline typename elfcpp::Valtype_base<valsize>::Valtype
1452 Dwarf_info_reader::read_from_pointer(const unsigned char** source)
1453 {
1454 typename elfcpp::Valtype_base<valsize>::Valtype return_value;
1455 if (this->object_->is_big_endian())
1456 return_value = elfcpp::Swap_unaligned<valsize, true>::readval(*source);
1457 else
1458 return_value = elfcpp::Swap_unaligned<valsize, false>::readval(*source);
1459 *source += valsize / 8;
1460 return return_value;
1461 }
1462
1463 // Look for a relocation at offset ATTR_OFF in the dwarf info,
1464 // and return the section index and offset of the target.
1465
1466 unsigned int
1467 Dwarf_info_reader::lookup_reloc(off_t attr_off, off_t* target_off)
1468 {
1469 off_t value;
1470 attr_off += this->cu_offset_;
1471 unsigned int shndx = this->reloc_mapper_->get_reloc_target(attr_off, &value);
1472 if (shndx == 0)
1473 return 0;
1474 if (this->reloc_type_ == elfcpp::SHT_REL)
1475 *target_off += value;
1476 else
1477 *target_off = value;
1478 return shndx;
1479 }
1480
1481 // Return a string from the DWARF string table.
1482
1483 const char*
1484 Dwarf_info_reader::get_string(off_t str_off, unsigned int string_shndx)
1485 {
1486 if (!this->read_string_table(string_shndx))
1487 return NULL;
1488
1489 // Correct the offset. For incremental update links, we have a
1490 // relocated offset that is relative to the output section, but
1491 // here we need an offset relative to the input section.
1492 str_off -= this->string_output_section_offset_;
1493
1494 const char* p = this->string_buffer_ + str_off;
1495
1496 if (p < this->string_buffer_ || p >= this->string_buffer_end_)
1497 return NULL;
1498
1499 return p;
1500 }
1501
1502 // The following are default, do-nothing, implementations of the
1503 // hook methods normally provided by a derived class. We provide
1504 // default implementations rather than no implementation so that
1505 // a derived class needs to implement only the hooks that it needs
1506 // to use.
1507
1508 // Process a compilation unit and parse its child DIE.
1509
1510 void
1511 Dwarf_info_reader::visit_compilation_unit(off_t, off_t, Dwarf_die*)
1512 {
1513 }
1514
1515 // Process a type unit and parse its child DIE.
1516
1517 void
1518 Dwarf_info_reader::visit_type_unit(off_t, off_t, off_t, uint64_t, Dwarf_die*)
1519 {
1520 }
1521
1522 // Print a warning about a corrupt debug section.
1523
1524 void
1525 Dwarf_info_reader::warn_corrupt_debug_section() const
1526 {
1527 gold_warning(_("%s: corrupt debug info in %s"),
1528 this->object_->name().c_str(),
1529 this->object_->section_name(this->shndx_).c_str());
1530 }
1531
1532 // class Sized_dwarf_line_info
1533
1534 struct LineStateMachine
1535 {
1536 int file_num;
1537 uint64_t address;
1538 int line_num;
1539 int column_num;
1540 unsigned int shndx; // the section address refers to
1541 bool is_stmt; // stmt means statement.
1542 bool basic_block;
1543 bool end_sequence;
1544 };
1545
1546 static void
1547 ResetLineStateMachine(struct LineStateMachine* lsm, bool default_is_stmt)
1548 {
1549 lsm->file_num = 1;
1550 lsm->address = 0;
1551 lsm->line_num = 1;
1552 lsm->column_num = 0;
1553 lsm->shndx = -1U;
1554 lsm->is_stmt = default_is_stmt;
1555 lsm->basic_block = false;
1556 lsm->end_sequence = false;
1557 }
1558
1559 template<int size, bool big_endian>
1560 Sized_dwarf_line_info<size, big_endian>::Sized_dwarf_line_info(
1561 Object* object,
1562 unsigned int read_shndx)
1563 : data_valid_(false), buffer_(NULL), buffer_start_(NULL),
1564 reloc_mapper_(NULL), symtab_buffer_(NULL), directories_(), files_(),
1565 current_header_index_(-1)
1566 {
1567 unsigned int debug_shndx;
1568
1569 for (debug_shndx = 1; debug_shndx < object->shnum(); ++debug_shndx)
1570 {
1571 // FIXME: do this more efficiently: section_name() isn't super-fast
1572 std::string name = object->section_name(debug_shndx);
1573 if (name == ".debug_line" || name == ".zdebug_line")
1574 {
1575 section_size_type buffer_size;
1576 bool is_new = false;
1577 this->buffer_ = object->decompressed_section_contents(debug_shndx,
1578 &buffer_size,
1579 &is_new);
1580 if (is_new)
1581 this->buffer_start_ = this->buffer_;
1582 this->buffer_end_ = this->buffer_ + buffer_size;
1583 break;
1584 }
1585 }
1586 if (this->buffer_ == NULL)
1587 return;
1588
1589 // Find the relocation section for ".debug_line".
1590 // We expect these for relobjs (.o's) but not dynobjs (.so's).
1591 unsigned int reloc_shndx = 0;
1592 for (unsigned int i = 0; i < object->shnum(); ++i)
1593 {
1594 unsigned int reloc_sh_type = object->section_type(i);
1595 if ((reloc_sh_type == elfcpp::SHT_REL
1596 || reloc_sh_type == elfcpp::SHT_RELA)
1597 && object->section_info(i) == debug_shndx)
1598 {
1599 reloc_shndx = i;
1600 this->track_relocs_type_ = reloc_sh_type;
1601 break;
1602 }
1603 }
1604
1605 // Finally, we need the symtab section to interpret the relocs.
1606 if (reloc_shndx != 0)
1607 {
1608 unsigned int symtab_shndx;
1609 for (symtab_shndx = 0; symtab_shndx < object->shnum(); ++symtab_shndx)
1610 if (object->section_type(symtab_shndx) == elfcpp::SHT_SYMTAB)
1611 {
1612 this->symtab_buffer_ = object->section_contents(
1613 symtab_shndx, &this->symtab_buffer_size_, false);
1614 break;
1615 }
1616 if (this->symtab_buffer_ == NULL)
1617 return;
1618 }
1619
1620 this->reloc_mapper_ =
1621 new Sized_elf_reloc_mapper<size, big_endian>(object,
1622 this->symtab_buffer_,
1623 this->symtab_buffer_size_);
1624 if (!this->reloc_mapper_->initialize(reloc_shndx, this->track_relocs_type_))
1625 return;
1626
1627 // Now that we have successfully read all the data, parse the debug
1628 // info.
1629 this->data_valid_ = true;
1630 this->read_line_mappings(read_shndx);
1631 }
1632
1633 // Read the DWARF header.
1634
1635 template<int size, bool big_endian>
1636 const unsigned char*
1637 Sized_dwarf_line_info<size, big_endian>::read_header_prolog(
1638 const unsigned char* lineptr)
1639 {
1640 uint32_t initial_length = elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr);
1641 lineptr += 4;
1642
1643 // In DWARF2/3, if the initial length is all 1 bits, then the offset
1644 // size is 8 and we need to read the next 8 bytes for the real length.
1645 if (initial_length == 0xffffffff)
1646 {
1647 header_.offset_size = 8;
1648 initial_length = elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr);
1649 lineptr += 8;
1650 }
1651 else
1652 header_.offset_size = 4;
1653
1654 header_.total_length = initial_length;
1655
1656 gold_assert(lineptr + header_.total_length <= buffer_end_);
1657
1658 header_.version = elfcpp::Swap_unaligned<16, big_endian>::readval(lineptr);
1659 lineptr += 2;
1660
1661 if (header_.offset_size == 4)
1662 header_.prologue_length = elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr);
1663 else
1664 header_.prologue_length = elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr);
1665 lineptr += header_.offset_size;
1666
1667 header_.min_insn_length = *lineptr;
1668 lineptr += 1;
1669
1670 if (header_.version < 4)
1671 header_.max_ops_per_insn = 1;
1672 else
1673 {
1674 // DWARF 4 added the maximum_operations_per_instruction field.
1675 header_.max_ops_per_insn = *lineptr;
1676 lineptr += 1;
1677 // TODO: Add support for values other than 1.
1678 gold_assert(header_.max_ops_per_insn == 1);
1679 }
1680
1681 header_.default_is_stmt = *lineptr;
1682 lineptr += 1;
1683
1684 header_.line_base = *reinterpret_cast<const signed char*>(lineptr);
1685 lineptr += 1;
1686
1687 header_.line_range = *lineptr;
1688 lineptr += 1;
1689
1690 header_.opcode_base = *lineptr;
1691 lineptr += 1;
1692
1693 header_.std_opcode_lengths.resize(header_.opcode_base + 1);
1694 header_.std_opcode_lengths[0] = 0;
1695 for (int i = 1; i < header_.opcode_base; i++)
1696 {
1697 header_.std_opcode_lengths[i] = *lineptr;
1698 lineptr += 1;
1699 }
1700
1701 return lineptr;
1702 }
1703
1704 // The header for a debug_line section is mildly complicated, because
1705 // the line info is very tightly encoded.
1706
1707 template<int size, bool big_endian>
1708 const unsigned char*
1709 Sized_dwarf_line_info<size, big_endian>::read_header_tables(
1710 const unsigned char* lineptr)
1711 {
1712 ++this->current_header_index_;
1713
1714 // Create a new directories_ entry and a new files_ entry for our new
1715 // header. We initialize each with a single empty element, because
1716 // dwarf indexes directory and filenames starting at 1.
1717 gold_assert(static_cast<int>(this->directories_.size())
1718 == this->current_header_index_);
1719 gold_assert(static_cast<int>(this->files_.size())
1720 == this->current_header_index_);
1721 this->directories_.push_back(std::vector<std::string>(1));
1722 this->files_.push_back(std::vector<std::pair<int, std::string> >(1));
1723
1724 // It is legal for the directory entry table to be empty.
1725 if (*lineptr)
1726 {
1727 int dirindex = 1;
1728 while (*lineptr)
1729 {
1730 const char* dirname = reinterpret_cast<const char*>(lineptr);
1731 gold_assert(dirindex
1732 == static_cast<int>(this->directories_.back().size()));
1733 this->directories_.back().push_back(dirname);
1734 lineptr += this->directories_.back().back().size() + 1;
1735 dirindex++;
1736 }
1737 }
1738 lineptr++;
1739
1740 // It is also legal for the file entry table to be empty.
1741 if (*lineptr)
1742 {
1743 int fileindex = 1;
1744 size_t len;
1745 while (*lineptr)
1746 {
1747 const char* filename = reinterpret_cast<const char*>(lineptr);
1748 lineptr += strlen(filename) + 1;
1749
1750 uint64_t dirindex = read_unsigned_LEB_128(lineptr, &len);
1751 lineptr += len;
1752
1753 if (dirindex >= this->directories_.back().size())
1754 dirindex = 0;
1755 int dirindexi = static_cast<int>(dirindex);
1756
1757 read_unsigned_LEB_128(lineptr, &len); // mod_time
1758 lineptr += len;
1759
1760 read_unsigned_LEB_128(lineptr, &len); // filelength
1761 lineptr += len;
1762
1763 gold_assert(fileindex
1764 == static_cast<int>(this->files_.back().size()));
1765 this->files_.back().push_back(std::make_pair(dirindexi, filename));
1766 fileindex++;
1767 }
1768 }
1769 lineptr++;
1770
1771 return lineptr;
1772 }
1773
1774 // Process a single opcode in the .debug.line structure.
1775
1776 template<int size, bool big_endian>
1777 bool
1778 Sized_dwarf_line_info<size, big_endian>::process_one_opcode(
1779 const unsigned char* start, struct LineStateMachine* lsm, size_t* len)
1780 {
1781 size_t oplen = 0;
1782 size_t templen;
1783 unsigned char opcode = *start;
1784 oplen++;
1785 start++;
1786
1787 // If the opcode is great than the opcode_base, it is a special
1788 // opcode. Most line programs consist mainly of special opcodes.
1789 if (opcode >= header_.opcode_base)
1790 {
1791 opcode -= header_.opcode_base;
1792 const int advance_address = ((opcode / header_.line_range)
1793 * header_.min_insn_length);
1794 lsm->address += advance_address;
1795
1796 const int advance_line = ((opcode % header_.line_range)
1797 + header_.line_base);
1798 lsm->line_num += advance_line;
1799 lsm->basic_block = true;
1800 *len = oplen;
1801 return true;
1802 }
1803
1804 // Otherwise, we have the regular opcodes
1805 switch (opcode)
1806 {
1807 case elfcpp::DW_LNS_copy:
1808 lsm->basic_block = false;
1809 *len = oplen;
1810 return true;
1811
1812 case elfcpp::DW_LNS_advance_pc:
1813 {
1814 const uint64_t advance_address
1815 = read_unsigned_LEB_128(start, &templen);
1816 oplen += templen;
1817 lsm->address += header_.min_insn_length * advance_address;
1818 }
1819 break;
1820
1821 case elfcpp::DW_LNS_advance_line:
1822 {
1823 const uint64_t advance_line = read_signed_LEB_128(start, &templen);
1824 oplen += templen;
1825 lsm->line_num += advance_line;
1826 }
1827 break;
1828
1829 case elfcpp::DW_LNS_set_file:
1830 {
1831 const uint64_t fileno = read_unsigned_LEB_128(start, &templen);
1832 oplen += templen;
1833 lsm->file_num = fileno;
1834 }
1835 break;
1836
1837 case elfcpp::DW_LNS_set_column:
1838 {
1839 const uint64_t colno = read_unsigned_LEB_128(start, &templen);
1840 oplen += templen;
1841 lsm->column_num = colno;
1842 }
1843 break;
1844
1845 case elfcpp::DW_LNS_negate_stmt:
1846 lsm->is_stmt = !lsm->is_stmt;
1847 break;
1848
1849 case elfcpp::DW_LNS_set_basic_block:
1850 lsm->basic_block = true;
1851 break;
1852
1853 case elfcpp::DW_LNS_fixed_advance_pc:
1854 {
1855 int advance_address;
1856 advance_address = elfcpp::Swap_unaligned<16, big_endian>::readval(start);
1857 oplen += 2;
1858 lsm->address += advance_address;
1859 }
1860 break;
1861
1862 case elfcpp::DW_LNS_const_add_pc:
1863 {
1864 const int advance_address = (header_.min_insn_length
1865 * ((255 - header_.opcode_base)
1866 / header_.line_range));
1867 lsm->address += advance_address;
1868 }
1869 break;
1870
1871 case elfcpp::DW_LNS_extended_op:
1872 {
1873 const uint64_t extended_op_len
1874 = read_unsigned_LEB_128(start, &templen);
1875 start += templen;
1876 oplen += templen + extended_op_len;
1877
1878 const unsigned char extended_op = *start;
1879 start++;
1880
1881 switch (extended_op)
1882 {
1883 case elfcpp::DW_LNE_end_sequence:
1884 // This means that the current byte is the one immediately
1885 // after a set of instructions. Record the current line
1886 // for up to one less than the current address.
1887 lsm->line_num = -1;
1888 lsm->end_sequence = true;
1889 *len = oplen;
1890 return true;
1891
1892 case elfcpp::DW_LNE_set_address:
1893 {
1894 lsm->address =
1895 elfcpp::Swap_unaligned<size, big_endian>::readval(start);
1896 typename Reloc_map::const_iterator it
1897 = this->reloc_map_.find(start - this->buffer_);
1898 if (it != reloc_map_.end())
1899 {
1900 // If this is a SHT_RELA section, then ignore the
1901 // section contents. This assumes that this is a
1902 // straight reloc which just uses the reloc addend.
1903 // The reloc addend has already been included in the
1904 // symbol value.
1905 if (this->track_relocs_type_ == elfcpp::SHT_RELA)
1906 lsm->address = 0;
1907 // Add in the symbol value.
1908 lsm->address += it->second.second;
1909 lsm->shndx = it->second.first;
1910 }
1911 else
1912 {
1913 // If we're a normal .o file, with relocs, every
1914 // set_address should have an associated relocation.
1915 if (this->input_is_relobj())
1916 this->data_valid_ = false;
1917 }
1918 break;
1919 }
1920 case elfcpp::DW_LNE_define_file:
1921 {
1922 const char* filename = reinterpret_cast<const char*>(start);
1923 templen = strlen(filename) + 1;
1924 start += templen;
1925
1926 uint64_t dirindex = read_unsigned_LEB_128(start, &templen);
1927
1928 if (dirindex >= this->directories_.back().size())
1929 dirindex = 0;
1930 int dirindexi = static_cast<int>(dirindex);
1931
1932 // This opcode takes two additional ULEB128 parameters
1933 // (mod_time and filelength), but we don't use those
1934 // values. Because OPLEN already tells us how far to
1935 // skip to the next opcode, we don't need to read
1936 // them at all.
1937
1938 this->files_.back().push_back(std::make_pair(dirindexi,
1939 filename));
1940 }
1941 break;
1942 }
1943 }
1944 break;
1945
1946 default:
1947 {
1948 // Ignore unknown opcode silently
1949 for (int i = 0; i < header_.std_opcode_lengths[opcode]; i++)
1950 {
1951 size_t templen;
1952 read_unsigned_LEB_128(start, &templen);
1953 start += templen;
1954 oplen += templen;
1955 }
1956 }
1957 break;
1958 }
1959 *len = oplen;
1960 return false;
1961 }
1962
1963 // Read the debug information at LINEPTR and store it in the line
1964 // number map.
1965
1966 template<int size, bool big_endian>
1967 unsigned const char*
1968 Sized_dwarf_line_info<size, big_endian>::read_lines(unsigned const char* lineptr,
1969 unsigned int shndx)
1970 {
1971 struct LineStateMachine lsm;
1972
1973 // LENGTHSTART is the place the length field is based on. It is the
1974 // point in the header after the initial length field.
1975 const unsigned char* lengthstart = buffer_;
1976
1977 // In 64 bit dwarf, the initial length is 12 bytes, because of the
1978 // 0xffffffff at the start.
1979 if (header_.offset_size == 8)
1980 lengthstart += 12;
1981 else
1982 lengthstart += 4;
1983
1984 while (lineptr < lengthstart + header_.total_length)
1985 {
1986 ResetLineStateMachine(&lsm, header_.default_is_stmt);
1987 while (!lsm.end_sequence)
1988 {
1989 size_t oplength;
1990 bool add_line = this->process_one_opcode(lineptr, &lsm, &oplength);
1991 if (add_line
1992 && (shndx == -1U || lsm.shndx == -1U || shndx == lsm.shndx))
1993 {
1994 Offset_to_lineno_entry entry
1995 = { static_cast<off_t>(lsm.address),
1996 this->current_header_index_,
1997 static_cast<unsigned int>(lsm.file_num),
1998 true, lsm.line_num };
1999 std::vector<Offset_to_lineno_entry>&
2000 map(this->line_number_map_[lsm.shndx]);
2001 // If we see two consecutive entries with the same
2002 // offset and a real line number, then mark the first
2003 // one as non-canonical.
2004 if (!map.empty()
2005 && (map.back().offset == static_cast<off_t>(lsm.address))
2006 && lsm.line_num != -1
2007 && map.back().line_num != -1)
2008 map.back().last_line_for_offset = false;
2009 map.push_back(entry);
2010 }
2011 lineptr += oplength;
2012 }
2013 }
2014
2015 return lengthstart + header_.total_length;
2016 }
2017
2018 // Read the relocations into a Reloc_map.
2019
2020 template<int size, bool big_endian>
2021 void
2022 Sized_dwarf_line_info<size, big_endian>::read_relocs()
2023 {
2024 if (this->symtab_buffer_ == NULL)
2025 return;
2026
2027 off_t value;
2028 off_t reloc_offset;
2029 while ((reloc_offset = this->reloc_mapper_->next_offset()) != -1)
2030 {
2031 const unsigned int shndx =
2032 this->reloc_mapper_->get_reloc_target(reloc_offset, &value);
2033
2034 // There is no reason to record non-ordinary section indexes, or
2035 // SHN_UNDEF, because they will never match the real section.
2036 if (shndx != 0)
2037 this->reloc_map_[reloc_offset] = std::make_pair(shndx, value);
2038
2039 this->reloc_mapper_->advance(reloc_offset + 1);
2040 }
2041 }
2042
2043 // Read the line number info.
2044
2045 template<int size, bool big_endian>
2046 void
2047 Sized_dwarf_line_info<size, big_endian>::read_line_mappings(unsigned int shndx)
2048 {
2049 gold_assert(this->data_valid_ == true);
2050
2051 this->read_relocs();
2052 while (this->buffer_ < this->buffer_end_)
2053 {
2054 const unsigned char* lineptr = this->buffer_;
2055 lineptr = this->read_header_prolog(lineptr);
2056 lineptr = this->read_header_tables(lineptr);
2057 lineptr = this->read_lines(lineptr, shndx);
2058 this->buffer_ = lineptr;
2059 }
2060
2061 // Sort the lines numbers, so addr2line can use binary search.
2062 for (typename Lineno_map::iterator it = line_number_map_.begin();
2063 it != line_number_map_.end();
2064 ++it)
2065 // Each vector needs to be sorted by offset.
2066 std::sort(it->second.begin(), it->second.end());
2067 }
2068
2069 // Some processing depends on whether the input is a .o file or not.
2070 // For instance, .o files have relocs, and have .debug_lines
2071 // information on a per section basis. .so files, on the other hand,
2072 // lack relocs, and offsets are unique, so we can ignore the section
2073 // information.
2074
2075 template<int size, bool big_endian>
2076 bool
2077 Sized_dwarf_line_info<size, big_endian>::input_is_relobj()
2078 {
2079 // Only .o files have relocs and the symtab buffer that goes with them.
2080 return this->symtab_buffer_ != NULL;
2081 }
2082
2083 // Given an Offset_to_lineno_entry vector, and an offset, figure out
2084 // if the offset points into a function according to the vector (see
2085 // comments below for the algorithm). If it does, return an iterator
2086 // into the vector that points to the line-number that contains that
2087 // offset. If not, it returns vector::end().
2088
2089 static std::vector<Offset_to_lineno_entry>::const_iterator
2090 offset_to_iterator(const std::vector<Offset_to_lineno_entry>* offsets,
2091 off_t offset)
2092 {
2093 const Offset_to_lineno_entry lookup_key = { offset, 0, 0, true, 0 };
2094
2095 // lower_bound() returns the smallest offset which is >= lookup_key.
2096 // If no offset in offsets is >= lookup_key, returns end().
2097 std::vector<Offset_to_lineno_entry>::const_iterator it
2098 = std::lower_bound(offsets->begin(), offsets->end(), lookup_key);
2099
2100 // This code is easiest to understand with a concrete example.
2101 // Here's a possible offsets array:
2102 // {{offset = 3211, header_num = 0, file_num = 1, last, line_num = 16}, // 0
2103 // {offset = 3224, header_num = 0, file_num = 1, last, line_num = 20}, // 1
2104 // {offset = 3226, header_num = 0, file_num = 1, last, line_num = 22}, // 2
2105 // {offset = 3231, header_num = 0, file_num = 1, last, line_num = 25}, // 3
2106 // {offset = 3232, header_num = 0, file_num = 1, last, line_num = -1}, // 4
2107 // {offset = 3232, header_num = 0, file_num = 1, last, line_num = 65}, // 5
2108 // {offset = 3235, header_num = 0, file_num = 1, last, line_num = 66}, // 6
2109 // {offset = 3236, header_num = 0, file_num = 1, last, line_num = -1}, // 7
2110 // {offset = 5764, header_num = 0, file_num = 1, last, line_num = 48}, // 8
2111 // {offset = 5764, header_num = 0, file_num = 1,!last, line_num = 47}, // 9
2112 // {offset = 5765, header_num = 0, file_num = 1, last, line_num = 49}, // 10
2113 // {offset = 5767, header_num = 0, file_num = 1, last, line_num = 50}, // 11
2114 // {offset = 5768, header_num = 0, file_num = 1, last, line_num = 51}, // 12
2115 // {offset = 5773, header_num = 0, file_num = 1, last, line_num = -1}, // 13
2116 // {offset = 5787, header_num = 1, file_num = 1, last, line_num = 19}, // 14
2117 // {offset = 5790, header_num = 1, file_num = 1, last, line_num = 20}, // 15
2118 // {offset = 5793, header_num = 1, file_num = 1, last, line_num = 67}, // 16
2119 // {offset = 5793, header_num = 1, file_num = 1, last, line_num = -1}, // 17
2120 // {offset = 5793, header_num = 1, file_num = 1,!last, line_num = 66}, // 18
2121 // {offset = 5795, header_num = 1, file_num = 1, last, line_num = 68}, // 19
2122 // {offset = 5798, header_num = 1, file_num = 1, last, line_num = -1}, // 20
2123 // The entries with line_num == -1 mark the end of a function: the
2124 // associated offset is one past the last instruction in the
2125 // function. This can correspond to the beginning of the next
2126 // function (as is true for offset 3232); alternately, there can be
2127 // a gap between the end of one function and the start of the next
2128 // (as is true for some others, most obviously from 3236->5764).
2129 //
2130 // Case 1: lookup_key has offset == 10. lower_bound returns
2131 // offsets[0]. Since it's not an exact match and we're
2132 // at the beginning of offsets, we return end() (invalid).
2133 // Case 2: lookup_key has offset 10000. lower_bound returns
2134 // offset[21] (end()). We return end() (invalid).
2135 // Case 3: lookup_key has offset == 3211. lower_bound matches
2136 // offsets[0] exactly, and that's the entry we return.
2137 // Case 4: lookup_key has offset == 3232. lower_bound returns
2138 // offsets[4]. That's an exact match, but indicates
2139 // end-of-function. We check if offsets[5] is also an
2140 // exact match but not end-of-function. It is, so we
2141 // return offsets[5].
2142 // Case 5: lookup_key has offset == 3214. lower_bound returns
2143 // offsets[1]. Since it's not an exact match, we back
2144 // up to the offset that's < lookup_key, offsets[0].
2145 // We note offsets[0] is a valid entry (not end-of-function),
2146 // so that's the entry we return.
2147 // Case 6: lookup_key has offset == 4000. lower_bound returns
2148 // offsets[8]. Since it's not an exact match, we back
2149 // up to offsets[7]. Since offsets[7] indicates
2150 // end-of-function, we know lookup_key is between
2151 // functions, so we return end() (not a valid offset).
2152 // Case 7: lookup_key has offset == 5794. lower_bound returns
2153 // offsets[19]. Since it's not an exact match, we back
2154 // up to offsets[16]. Note we back up to the *first*
2155 // entry with offset 5793, not just offsets[19-1].
2156 // We note offsets[16] is a valid entry, so we return it.
2157 // If offsets[16] had had line_num == -1, we would have
2158 // checked offsets[17]. The reason for this is that
2159 // 16 and 17 can be in an arbitrary order, since we sort
2160 // only by offset and last_line_for_offset. (Note it
2161 // doesn't help to use line_number as a tertiary sort key,
2162 // since sometimes we want the -1 to be first and sometimes
2163 // we want it to be last.)
2164
2165 // This deals with cases (1) and (2).
2166 if ((it == offsets->begin() && offset < it->offset)
2167 || it == offsets->end())
2168 return offsets->end();
2169
2170 // This deals with cases (3) and (4).
2171 if (offset == it->offset)
2172 {
2173 while (it != offsets->end()
2174 && it->offset == offset
2175 && it->line_num == -1)
2176 ++it;
2177 if (it == offsets->end() || it->offset != offset)
2178 return offsets->end();
2179 else
2180 return it;
2181 }
2182
2183 // This handles the first part of case (7) -- we back up to the
2184 // *first* entry that has the offset that's behind us.
2185 gold_assert(it != offsets->begin());
2186 std::vector<Offset_to_lineno_entry>::const_iterator range_end = it;
2187 --it;
2188 const off_t range_value = it->offset;
2189 while (it != offsets->begin() && (it-1)->offset == range_value)
2190 --it;
2191
2192 // This handles cases (5), (6), and (7): if any entry in the
2193 // equal_range [it, range_end) has a line_num != -1, it's a valid
2194 // match. If not, we're not in a function. The line number we saw
2195 // last for an offset will be sorted first, so it'll get returned if
2196 // it's present.
2197 for (; it != range_end; ++it)
2198 if (it->line_num != -1)
2199 return it;
2200 return offsets->end();
2201 }
2202
2203 // Returns the canonical filename:lineno for the address passed in.
2204 // If other_lines is not NULL, appends the non-canonical lines
2205 // assigned to the same address.
2206
2207 template<int size, bool big_endian>
2208 std::string
2209 Sized_dwarf_line_info<size, big_endian>::do_addr2line(
2210 unsigned int shndx,
2211 off_t offset,
2212 std::vector<std::string>* other_lines)
2213 {
2214 if (this->data_valid_ == false)
2215 return "";
2216
2217 const std::vector<Offset_to_lineno_entry>* offsets;
2218 // If we do not have reloc information, then our input is a .so or
2219 // some similar data structure where all the information is held in
2220 // the offset. In that case, we ignore the input shndx.
2221 if (this->input_is_relobj())
2222 offsets = &this->line_number_map_[shndx];
2223 else
2224 offsets = &this->line_number_map_[-1U];
2225 if (offsets->empty())
2226 return "";
2227
2228 typename std::vector<Offset_to_lineno_entry>::const_iterator it
2229 = offset_to_iterator(offsets, offset);
2230 if (it == offsets->end())
2231 return "";
2232
2233 std::string result = this->format_file_lineno(*it);
2234 gold_debug(DEBUG_LOCATION, "do_addr2line: canonical result: %s",
2235 result.c_str());
2236 if (other_lines != NULL)
2237 {
2238 unsigned int last_file_num = it->file_num;
2239 int last_line_num = it->line_num;
2240 // Return up to 4 more locations from the beginning of the function
2241 // for fuzzy matching.
2242 for (++it; it != offsets->end(); ++it)
2243 {
2244 if (it->offset == offset && it->line_num == -1)
2245 continue; // The end of a previous function.
2246 if (it->line_num == -1)
2247 break; // The end of the current function.
2248 if (it->file_num != last_file_num || it->line_num != last_line_num)
2249 {
2250 other_lines->push_back(this->format_file_lineno(*it));
2251 gold_debug(DEBUG_LOCATION, "do_addr2line: other: %s",
2252 other_lines->back().c_str());
2253 last_file_num = it->file_num;
2254 last_line_num = it->line_num;
2255 }
2256 if (it->offset > offset && other_lines->size() >= 4)
2257 break;
2258 }
2259 }
2260
2261 return result;
2262 }
2263
2264 // Convert the file_num + line_num into a string.
2265
2266 template<int size, bool big_endian>
2267 std::string
2268 Sized_dwarf_line_info<size, big_endian>::format_file_lineno(
2269 const Offset_to_lineno_entry& loc) const
2270 {
2271 std::string ret;
2272
2273 gold_assert(loc.header_num < static_cast<int>(this->files_.size()));
2274 gold_assert(loc.file_num
2275 < static_cast<unsigned int>(this->files_[loc.header_num].size()));
2276 const std::pair<int, std::string>& filename_pair
2277 = this->files_[loc.header_num][loc.file_num];
2278 const std::string& filename = filename_pair.second;
2279
2280 gold_assert(loc.header_num < static_cast<int>(this->directories_.size()));
2281 gold_assert(filename_pair.first
2282 < static_cast<int>(this->directories_[loc.header_num].size()));
2283 const std::string& dirname
2284 = this->directories_[loc.header_num][filename_pair.first];
2285
2286 if (!dirname.empty())
2287 {
2288 ret += dirname;
2289 ret += "/";
2290 }
2291 ret += filename;
2292 if (ret.empty())
2293 ret = "(unknown)";
2294
2295 char buffer[64]; // enough to hold a line number
2296 snprintf(buffer, sizeof(buffer), "%d", loc.line_num);
2297 ret += ":";
2298 ret += buffer;
2299
2300 return ret;
2301 }
2302
2303 // Dwarf_line_info routines.
2304
2305 static unsigned int next_generation_count = 0;
2306
2307 struct Addr2line_cache_entry
2308 {
2309 Object* object;
2310 unsigned int shndx;
2311 Dwarf_line_info* dwarf_line_info;
2312 unsigned int generation_count;
2313 unsigned int access_count;
2314
2315 Addr2line_cache_entry(Object* o, unsigned int s, Dwarf_line_info* d)
2316 : object(o), shndx(s), dwarf_line_info(d),
2317 generation_count(next_generation_count), access_count(0)
2318 {
2319 if (next_generation_count < (1U << 31))
2320 ++next_generation_count;
2321 }
2322 };
2323 // We expect this cache to be small, so don't bother with a hashtable
2324 // or priority queue or anything: just use a simple vector.
2325 static std::vector<Addr2line_cache_entry> addr2line_cache;
2326
2327 std::string
2328 Dwarf_line_info::one_addr2line(Object* object,
2329 unsigned int shndx, off_t offset,
2330 size_t cache_size,
2331 std::vector<std::string>* other_lines)
2332 {
2333 Dwarf_line_info* lineinfo = NULL;
2334 std::vector<Addr2line_cache_entry>::iterator it;
2335
2336 // First, check the cache. If we hit, update the counts.
2337 for (it = addr2line_cache.begin(); it != addr2line_cache.end(); ++it)
2338 {
2339 if (it->object == object && it->shndx == shndx)
2340 {
2341 lineinfo = it->dwarf_line_info;
2342 it->generation_count = next_generation_count;
2343 // We cap generation_count at 2^31 -1 to avoid overflow.
2344 if (next_generation_count < (1U << 31))
2345 ++next_generation_count;
2346 // We cap access_count at 31 so 2^access_count doesn't overflow
2347 if (it->access_count < 31)
2348 ++it->access_count;
2349 break;
2350 }
2351 }
2352
2353 // If we don't hit the cache, create a new object and insert into the
2354 // cache.
2355 if (lineinfo == NULL)
2356 {
2357 switch (parameters->size_and_endianness())
2358 {
2359 #ifdef HAVE_TARGET_32_LITTLE
2360 case Parameters::TARGET_32_LITTLE:
2361 lineinfo = new Sized_dwarf_line_info<32, false>(object, shndx); break;
2362 #endif
2363 #ifdef HAVE_TARGET_32_BIG
2364 case Parameters::TARGET_32_BIG:
2365 lineinfo = new Sized_dwarf_line_info<32, true>(object, shndx); break;
2366 #endif
2367 #ifdef HAVE_TARGET_64_LITTLE
2368 case Parameters::TARGET_64_LITTLE:
2369 lineinfo = new Sized_dwarf_line_info<64, false>(object, shndx); break;
2370 #endif
2371 #ifdef HAVE_TARGET_64_BIG
2372 case Parameters::TARGET_64_BIG:
2373 lineinfo = new Sized_dwarf_line_info<64, true>(object, shndx); break;
2374 #endif
2375 default:
2376 gold_unreachable();
2377 }
2378 addr2line_cache.push_back(Addr2line_cache_entry(object, shndx, lineinfo));
2379 }
2380
2381 // Now that we have our object, figure out the answer
2382 std::string retval = lineinfo->addr2line(shndx, offset, other_lines);
2383
2384 // Finally, if our cache has grown too big, delete old objects. We
2385 // assume the common (probably only) case is deleting only one object.
2386 // We use a pretty simple scheme to evict: function of LRU and MFU.
2387 while (addr2line_cache.size() > cache_size)
2388 {
2389 unsigned int lowest_score = ~0U;
2390 std::vector<Addr2line_cache_entry>::iterator lowest
2391 = addr2line_cache.end();
2392 for (it = addr2line_cache.begin(); it != addr2line_cache.end(); ++it)
2393 {
2394 const unsigned int score = (it->generation_count
2395 + (1U << it->access_count));
2396 if (score < lowest_score)
2397 {
2398 lowest_score = score;
2399 lowest = it;
2400 }
2401 }
2402 if (lowest != addr2line_cache.end())
2403 {
2404 delete lowest->dwarf_line_info;
2405 addr2line_cache.erase(lowest);
2406 }
2407 }
2408
2409 return retval;
2410 }
2411
2412 void
2413 Dwarf_line_info::clear_addr2line_cache()
2414 {
2415 for (std::vector<Addr2line_cache_entry>::iterator it = addr2line_cache.begin();
2416 it != addr2line_cache.end();
2417 ++it)
2418 delete it->dwarf_line_info;
2419 addr2line_cache.clear();
2420 }
2421
2422 #ifdef HAVE_TARGET_32_LITTLE
2423 template
2424 class Sized_dwarf_line_info<32, false>;
2425 #endif
2426
2427 #ifdef HAVE_TARGET_32_BIG
2428 template
2429 class Sized_dwarf_line_info<32, true>;
2430 #endif
2431
2432 #ifdef HAVE_TARGET_64_LITTLE
2433 template
2434 class Sized_dwarf_line_info<64, false>;
2435 #endif
2436
2437 #ifdef HAVE_TARGET_64_BIG
2438 template
2439 class Sized_dwarf_line_info<64, true>;
2440 #endif
2441
2442 } // End namespace gold.