]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gold/dwarf_reader.cc
elfcpp/
[thirdparty/binutils-gdb.git] / gold / dwarf_reader.cc
1 // dwarf_reader.cc -- parse dwarf2/3 debug information
2
3 // Copyright 2007, 2008, 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <algorithm>
26 #include <vector>
27
28 #include "elfcpp_swap.h"
29 #include "dwarf.h"
30 #include "object.h"
31 #include "parameters.h"
32 #include "reloc.h"
33 #include "dwarf_reader.h"
34 #include "int_encoding.h"
35 #include "compressed_output.h"
36
37 namespace gold {
38
39 // Class Sized_elf_reloc_mapper
40
41 // Initialize the relocation tracker for section RELOC_SHNDX.
42
43 template<int size, bool big_endian>
44 bool
45 Sized_elf_reloc_mapper<size, big_endian>::do_initialize(
46 unsigned int reloc_shndx, unsigned int reloc_type)
47 {
48 this->reloc_type_ = reloc_type;
49 return this->track_relocs_.initialize(this->object_, reloc_shndx,
50 reloc_type);
51 }
52
53 // Looks in the symtab to see what section a symbol is in.
54
55 template<int size, bool big_endian>
56 unsigned int
57 Sized_elf_reloc_mapper<size, big_endian>::symbol_section(
58 unsigned int symndx, Address* value, bool* is_ordinary)
59 {
60 const int symsize = elfcpp::Elf_sizes<size>::sym_size;
61 gold_assert((symndx + 1) * symsize <= this->symtab_size_);
62 elfcpp::Sym<size, big_endian> elfsym(this->symtab_ + symndx * symsize);
63 *value = elfsym.get_st_value();
64 return this->object_->adjust_sym_shndx(symndx, elfsym.get_st_shndx(),
65 is_ordinary);
66 }
67
68 // Return the section index and offset within the section of
69 // the target of the relocation for RELOC_OFFSET.
70
71 template<int size, bool big_endian>
72 unsigned int
73 Sized_elf_reloc_mapper<size, big_endian>::do_get_reloc_target(
74 off_t reloc_offset, off_t* target_offset)
75 {
76 this->track_relocs_.advance(reloc_offset);
77 if (reloc_offset != this->track_relocs_.next_offset())
78 return 0;
79 unsigned int symndx = this->track_relocs_.next_symndx();
80 typename elfcpp::Elf_types<size>::Elf_Addr value;
81 bool is_ordinary;
82 unsigned int target_shndx = this->symbol_section(symndx, &value,
83 &is_ordinary);
84 if (!is_ordinary)
85 return 0;
86 if (this->reloc_type_ == elfcpp::SHT_RELA)
87 value += this->track_relocs_.next_addend();
88 *target_offset = value;
89 return target_shndx;
90 }
91
92 static inline Elf_reloc_mapper*
93 make_elf_reloc_mapper(Object* object, const unsigned char* symtab,
94 off_t symtab_size)
95 {
96 switch (parameters->size_and_endianness())
97 {
98 #ifdef HAVE_TARGET_32_LITTLE
99 case Parameters::TARGET_32_LITTLE:
100 return new Sized_elf_reloc_mapper<32, false>(object, symtab,
101 symtab_size);
102 #endif
103 #ifdef HAVE_TARGET_32_BIG
104 case Parameters::TARGET_32_BIG:
105 return new Sized_elf_reloc_mapper<32, true>(object, symtab,
106 symtab_size);
107 #endif
108 #ifdef HAVE_TARGET_64_LITTLE
109 case Parameters::TARGET_64_LITTLE:
110 return new Sized_elf_reloc_mapper<64, false>(object, symtab,
111 symtab_size);
112 #endif
113 #ifdef HAVE_TARGET_64_BIG
114 case Parameters::TARGET_64_BIG:
115 return new Sized_elf_reloc_mapper<64, true>(object, symtab,
116 symtab_size);
117 #endif
118 default:
119 gold_unreachable();
120 }
121 }
122
123 // class Dwarf_abbrev_table
124
125 void
126 Dwarf_abbrev_table::clear_abbrev_codes()
127 {
128 for (unsigned int code = 0; code < this->low_abbrev_code_max_; ++code)
129 {
130 if (this->low_abbrev_codes_[code] != NULL)
131 {
132 delete this->low_abbrev_codes_[code];
133 this->low_abbrev_codes_[code] = NULL;
134 }
135 }
136 for (Abbrev_code_table::iterator it = this->high_abbrev_codes_.begin();
137 it != this->high_abbrev_codes_.end();
138 ++it)
139 {
140 if (it->second != NULL)
141 delete it->second;
142 }
143 this->high_abbrev_codes_.clear();
144 }
145
146 // Read the abbrev table from an object file.
147
148 bool
149 Dwarf_abbrev_table::do_read_abbrevs(
150 Relobj* object,
151 unsigned int abbrev_shndx,
152 off_t abbrev_offset)
153 {
154 this->clear_abbrev_codes();
155
156 // If we don't have relocations, abbrev_shndx will be 0, and
157 // we'll have to hunt for the .debug_abbrev section.
158 if (abbrev_shndx == 0 && this->abbrev_shndx_ > 0)
159 abbrev_shndx = this->abbrev_shndx_;
160 else if (abbrev_shndx == 0)
161 {
162 for (unsigned int i = 1; i < object->shnum(); ++i)
163 {
164 std::string name = object->section_name(i);
165 if (name == ".debug_abbrev")
166 {
167 abbrev_shndx = i;
168 // Correct the offset. For incremental update links, we have a
169 // relocated offset that is relative to the output section, but
170 // here we need an offset relative to the input section.
171 abbrev_offset -= object->output_section_offset(i);
172 break;
173 }
174 }
175 if (abbrev_shndx == 0)
176 return false;
177 }
178
179 // Get the section contents and decompress if necessary.
180 if (abbrev_shndx != this->abbrev_shndx_)
181 {
182 if (this->owns_buffer_ && this->buffer_ != NULL)
183 {
184 delete[] this->buffer_;
185 this->owns_buffer_ = false;
186 }
187
188 section_size_type buffer_size;
189 this->buffer_ =
190 object->decompressed_section_contents(abbrev_shndx,
191 &buffer_size,
192 &this->owns_buffer_);
193 this->buffer_end_ = this->buffer_ + buffer_size;
194 this->abbrev_shndx_ = abbrev_shndx;
195 }
196
197 this->buffer_pos_ = this->buffer_ + abbrev_offset;
198 return true;
199 }
200
201 // Lookup the abbrev code entry for CODE. This function is called
202 // only when the abbrev code is not in the direct lookup table.
203 // It may be in the hash table, it may not have been read yet,
204 // or it may not exist in the abbrev table.
205
206 const Dwarf_abbrev_table::Abbrev_code*
207 Dwarf_abbrev_table::do_get_abbrev(unsigned int code)
208 {
209 // See if the abbrev code is already in the hash table.
210 Abbrev_code_table::const_iterator it = this->high_abbrev_codes_.find(code);
211 if (it != this->high_abbrev_codes_.end())
212 return it->second;
213
214 // Read and store abbrev code definitions until we find the
215 // one we're looking for.
216 for (;;)
217 {
218 // Read the abbrev code. A zero here indicates the end of the
219 // abbrev table.
220 size_t len;
221 if (this->buffer_pos_ >= this->buffer_end_)
222 return NULL;
223 uint64_t nextcode = read_unsigned_LEB_128(this->buffer_pos_, &len);
224 if (nextcode == 0)
225 {
226 this->buffer_pos_ = this->buffer_end_;
227 return NULL;
228 }
229 this->buffer_pos_ += len;
230
231 // Read the tag.
232 if (this->buffer_pos_ >= this->buffer_end_)
233 return NULL;
234 uint64_t tag = read_unsigned_LEB_128(this->buffer_pos_, &len);
235 this->buffer_pos_ += len;
236
237 // Read the has_children flag.
238 if (this->buffer_pos_ >= this->buffer_end_)
239 return NULL;
240 bool has_children = *this->buffer_pos_ == elfcpp::DW_CHILDREN_yes;
241 this->buffer_pos_ += 1;
242
243 // Read the list of (attribute, form) pairs.
244 Abbrev_code* entry = new Abbrev_code(tag, has_children);
245 for (;;)
246 {
247 // Read the attribute.
248 if (this->buffer_pos_ >= this->buffer_end_)
249 return NULL;
250 uint64_t attr = read_unsigned_LEB_128(this->buffer_pos_, &len);
251 this->buffer_pos_ += len;
252
253 // Read the form.
254 if (this->buffer_pos_ >= this->buffer_end_)
255 return NULL;
256 uint64_t form = read_unsigned_LEB_128(this->buffer_pos_, &len);
257 this->buffer_pos_ += len;
258
259 // A (0,0) pair terminates the list.
260 if (attr == 0 && form == 0)
261 break;
262
263 if (attr == elfcpp::DW_AT_sibling)
264 entry->has_sibling_attribute = true;
265
266 entry->add_attribute(attr, form);
267 }
268
269 this->store_abbrev(nextcode, entry);
270 if (nextcode == code)
271 return entry;
272 }
273
274 return NULL;
275 }
276
277 // class Dwarf_ranges_table
278
279 // Read the ranges table from an object file.
280
281 bool
282 Dwarf_ranges_table::read_ranges_table(
283 Relobj* object,
284 const unsigned char* symtab,
285 off_t symtab_size,
286 unsigned int ranges_shndx)
287 {
288 // If we've already read this abbrev table, return immediately.
289 if (this->ranges_shndx_ > 0
290 && this->ranges_shndx_ == ranges_shndx)
291 return true;
292
293 // If we don't have relocations, ranges_shndx will be 0, and
294 // we'll have to hunt for the .debug_ranges section.
295 if (ranges_shndx == 0 && this->ranges_shndx_ > 0)
296 ranges_shndx = this->ranges_shndx_;
297 else if (ranges_shndx == 0)
298 {
299 for (unsigned int i = 1; i < object->shnum(); ++i)
300 {
301 std::string name = object->section_name(i);
302 if (name == ".debug_ranges")
303 {
304 ranges_shndx = i;
305 this->output_section_offset_ = object->output_section_offset(i);
306 break;
307 }
308 }
309 if (ranges_shndx == 0)
310 return false;
311 }
312
313 // Get the section contents and decompress if necessary.
314 if (ranges_shndx != this->ranges_shndx_)
315 {
316 if (this->owns_ranges_buffer_ && this->ranges_buffer_ != NULL)
317 {
318 delete[] this->ranges_buffer_;
319 this->owns_ranges_buffer_ = false;
320 }
321
322 section_size_type buffer_size;
323 this->ranges_buffer_ =
324 object->decompressed_section_contents(ranges_shndx,
325 &buffer_size,
326 &this->owns_ranges_buffer_);
327 this->ranges_buffer_end_ = this->ranges_buffer_ + buffer_size;
328 this->ranges_shndx_ = ranges_shndx;
329 }
330
331 if (this->ranges_reloc_mapper_ != NULL)
332 {
333 delete this->ranges_reloc_mapper_;
334 this->ranges_reloc_mapper_ = NULL;
335 }
336
337 // For incremental objects, we have no relocations.
338 if (object->is_incremental())
339 return true;
340
341 // Find the relocation section for ".debug_ranges".
342 unsigned int reloc_shndx = 0;
343 unsigned int reloc_type = 0;
344 for (unsigned int i = 0; i < object->shnum(); ++i)
345 {
346 reloc_type = object->section_type(i);
347 if ((reloc_type == elfcpp::SHT_REL
348 || reloc_type == elfcpp::SHT_RELA)
349 && object->section_info(i) == ranges_shndx)
350 {
351 reloc_shndx = i;
352 break;
353 }
354 }
355
356 this->ranges_reloc_mapper_ = make_elf_reloc_mapper(object, symtab,
357 symtab_size);
358 this->ranges_reloc_mapper_->initialize(reloc_shndx, reloc_type);
359
360 return true;
361 }
362
363 // Read a range list from section RANGES_SHNDX at offset RANGES_OFFSET.
364
365 Dwarf_range_list*
366 Dwarf_ranges_table::read_range_list(
367 Relobj* object,
368 const unsigned char* symtab,
369 off_t symtab_size,
370 unsigned int addr_size,
371 unsigned int ranges_shndx,
372 off_t offset)
373 {
374 Dwarf_range_list* ranges;
375
376 if (!this->read_ranges_table(object, symtab, symtab_size, ranges_shndx))
377 return NULL;
378
379 // Correct the offset. For incremental update links, we have a
380 // relocated offset that is relative to the output section, but
381 // here we need an offset relative to the input section.
382 offset -= this->output_section_offset_;
383
384 // Read the range list at OFFSET.
385 ranges = new Dwarf_range_list();
386 off_t base = 0;
387 for (;
388 this->ranges_buffer_ + offset < this->ranges_buffer_end_;
389 offset += 2 * addr_size)
390 {
391 off_t start;
392 off_t end;
393
394 // Read the raw contents of the section.
395 if (addr_size == 4)
396 {
397 start = read_from_pointer<32>(this->ranges_buffer_ + offset);
398 end = read_from_pointer<32>(this->ranges_buffer_ + offset + 4);
399 }
400 else
401 {
402 start = read_from_pointer<64>(this->ranges_buffer_ + offset);
403 end = read_from_pointer<64>(this->ranges_buffer_ + offset + 8);
404 }
405
406 // Check for relocations and adjust the values.
407 unsigned int shndx1 = 0;
408 unsigned int shndx2 = 0;
409 if (this->ranges_reloc_mapper_ != NULL)
410 {
411 shndx1 =
412 this->ranges_reloc_mapper_->get_reloc_target(offset, &start);
413 shndx2 =
414 this->ranges_reloc_mapper_->get_reloc_target(offset + addr_size,
415 &end);
416 }
417
418 // End of list is marked by a pair of zeroes.
419 if (shndx1 == 0 && start == 0 && end == 0)
420 break;
421
422 // A "base address selection entry" is identified by
423 // 0xffffffff for the first value of the pair. The second
424 // value is used as a base for subsequent range list entries.
425 if (shndx1 == 0 && start == -1)
426 base = end;
427 else if (shndx1 == shndx2)
428 {
429 if (shndx1 == 0 || object->is_section_included(shndx1))
430 ranges->add(shndx1, base + start, base + end);
431 }
432 else
433 gold_warning(_("%s: DWARF info may be corrupt; offsets in a "
434 "range list entry are in different sections"),
435 object->name().c_str());
436 }
437
438 return ranges;
439 }
440
441 // class Dwarf_pubnames_table
442
443 // Read the pubnames section SHNDX from the object file.
444
445 bool
446 Dwarf_pubnames_table::read_section(Relobj* object, unsigned int shndx)
447 {
448 section_size_type buffer_size;
449
450 // If we don't have relocations, shndx will be 0, and
451 // we'll have to hunt for the .debug_pubnames/pubtypes section.
452 if (shndx == 0)
453 {
454 const char* name = (this->is_pubtypes_
455 ? ".debug_pubtypes"
456 : ".debug_pubnames");
457 for (unsigned int i = 1; i < object->shnum(); ++i)
458 {
459 if (object->section_name(i) == name)
460 {
461 shndx = i;
462 this->output_section_offset_ = object->output_section_offset(i);
463 break;
464 }
465 }
466 if (shndx == 0)
467 return false;
468 }
469
470 this->buffer_ = object->decompressed_section_contents(shndx,
471 &buffer_size,
472 &this->owns_buffer_);
473 if (this->buffer_ == NULL)
474 return false;
475 this->buffer_end_ = this->buffer_ + buffer_size;
476 return true;
477 }
478
479 // Read the header for the set at OFFSET.
480
481 bool
482 Dwarf_pubnames_table::read_header(off_t offset)
483 {
484 // Correct the offset. For incremental update links, we have a
485 // relocated offset that is relative to the output section, but
486 // here we need an offset relative to the input section.
487 offset -= this->output_section_offset_;
488
489 if (offset < 0 || offset + 14 >= this->buffer_end_ - this->buffer_)
490 return false;
491
492 const unsigned char* pinfo = this->buffer_ + offset;
493
494 // Read the unit_length field.
495 uint32_t unit_length = read_from_pointer<32>(pinfo);
496 pinfo += 4;
497 if (unit_length == 0xffffffff)
498 {
499 unit_length = read_from_pointer<64>(pinfo);
500 pinfo += 8;
501 this->offset_size_ = 8;
502 }
503 else
504 this->offset_size_ = 4;
505
506 // Check the version.
507 unsigned int version = read_from_pointer<16>(pinfo);
508 pinfo += 2;
509 if (version != 2)
510 return false;
511
512 // Skip the debug_info_offset and debug_info_size fields.
513 pinfo += 2 * this->offset_size_;
514
515 if (pinfo >= this->buffer_end_)
516 return false;
517
518 this->pinfo_ = pinfo;
519 return true;
520 }
521
522 // Read the next name from the set.
523
524 const char*
525 Dwarf_pubnames_table::next_name()
526 {
527 const unsigned char* pinfo = this->pinfo_;
528
529 // Read the offset within the CU. If this is zero, we have reached
530 // the end of the list.
531 uint32_t offset;
532 if (this->offset_size_ == 4)
533 offset = read_from_pointer<32>(&pinfo);
534 else
535 offset = read_from_pointer<64>(&pinfo);
536 if (offset == 0)
537 return NULL;
538
539 // Return a pointer to the string at the current location,
540 // and advance the pointer to the next entry.
541 const char* ret = reinterpret_cast<const char*>(pinfo);
542 while (pinfo < this->buffer_end_ && *pinfo != '\0')
543 ++pinfo;
544 if (pinfo < this->buffer_end_)
545 ++pinfo;
546
547 this->pinfo_ = pinfo;
548 return ret;
549 }
550
551 // class Dwarf_die
552
553 Dwarf_die::Dwarf_die(
554 Dwarf_info_reader* dwinfo,
555 off_t die_offset,
556 Dwarf_die* parent)
557 : dwinfo_(dwinfo), parent_(parent), die_offset_(die_offset),
558 child_offset_(0), sibling_offset_(0), abbrev_code_(NULL), attributes_(),
559 attributes_read_(false), name_(NULL), name_off_(-1), linkage_name_(NULL),
560 linkage_name_off_(-1), string_shndx_(0), specification_(0),
561 abstract_origin_(0)
562 {
563 size_t len;
564 const unsigned char* pdie = dwinfo->buffer_at_offset(die_offset);
565 if (pdie == NULL)
566 return;
567 unsigned int code = read_unsigned_LEB_128(pdie, &len);
568 if (code == 0)
569 {
570 if (parent != NULL)
571 parent->set_sibling_offset(die_offset + len);
572 return;
573 }
574 this->attr_offset_ = len;
575
576 // Lookup the abbrev code in the abbrev table.
577 this->abbrev_code_ = dwinfo->get_abbrev(code);
578 }
579
580 // Read all the attributes of the DIE.
581
582 bool
583 Dwarf_die::read_attributes()
584 {
585 if (this->attributes_read_)
586 return true;
587
588 gold_assert(this->abbrev_code_ != NULL);
589
590 const unsigned char* pdie =
591 this->dwinfo_->buffer_at_offset(this->die_offset_);
592 if (pdie == NULL)
593 return false;
594 const unsigned char* pattr = pdie + this->attr_offset_;
595
596 unsigned int nattr = this->abbrev_code_->attributes.size();
597 this->attributes_.reserve(nattr);
598 for (unsigned int i = 0; i < nattr; ++i)
599 {
600 size_t len;
601 unsigned int attr = this->abbrev_code_->attributes[i].attr;
602 unsigned int form = this->abbrev_code_->attributes[i].form;
603 if (form == elfcpp::DW_FORM_indirect)
604 {
605 form = read_unsigned_LEB_128(pattr, &len);
606 pattr += len;
607 }
608 off_t attr_off = this->die_offset_ + (pattr - pdie);
609 bool ref_form = false;
610 Attribute_value attr_value;
611 attr_value.attr = attr;
612 attr_value.form = form;
613 attr_value.aux.shndx = 0;
614 switch(form)
615 {
616 case elfcpp::DW_FORM_flag_present:
617 attr_value.val.intval = 1;
618 break;
619 case elfcpp::DW_FORM_strp:
620 {
621 off_t str_off;
622 if (this->dwinfo_->offset_size() == 4)
623 str_off = read_from_pointer<32>(&pattr);
624 else
625 str_off = read_from_pointer<64>(&pattr);
626 unsigned int shndx =
627 this->dwinfo_->lookup_reloc(attr_off, &str_off);
628 attr_value.aux.shndx = shndx;
629 attr_value.val.refval = str_off;
630 break;
631 }
632 case elfcpp::DW_FORM_sec_offset:
633 {
634 off_t sec_off;
635 if (this->dwinfo_->offset_size() == 4)
636 sec_off = read_from_pointer<32>(&pattr);
637 else
638 sec_off = read_from_pointer<64>(&pattr);
639 unsigned int shndx =
640 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
641 attr_value.aux.shndx = shndx;
642 attr_value.val.refval = sec_off;
643 ref_form = true;
644 break;
645 }
646 case elfcpp::DW_FORM_addr:
647 case elfcpp::DW_FORM_ref_addr:
648 {
649 off_t sec_off;
650 if (this->dwinfo_->address_size() == 4)
651 sec_off = read_from_pointer<32>(&pattr);
652 else
653 sec_off = read_from_pointer<64>(&pattr);
654 unsigned int shndx =
655 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
656 attr_value.aux.shndx = shndx;
657 attr_value.val.refval = sec_off;
658 ref_form = true;
659 break;
660 }
661 case elfcpp::DW_FORM_block1:
662 attr_value.aux.blocklen = *pattr++;
663 attr_value.val.blockval = pattr;
664 pattr += attr_value.aux.blocklen;
665 break;
666 case elfcpp::DW_FORM_block2:
667 attr_value.aux.blocklen = read_from_pointer<16>(&pattr);
668 attr_value.val.blockval = pattr;
669 pattr += attr_value.aux.blocklen;
670 break;
671 case elfcpp::DW_FORM_block4:
672 attr_value.aux.blocklen = read_from_pointer<32>(&pattr);
673 attr_value.val.blockval = pattr;
674 pattr += attr_value.aux.blocklen;
675 break;
676 case elfcpp::DW_FORM_block:
677 case elfcpp::DW_FORM_exprloc:
678 attr_value.aux.blocklen = read_unsigned_LEB_128(pattr, &len);
679 attr_value.val.blockval = pattr + len;
680 pattr += len + attr_value.aux.blocklen;
681 break;
682 case elfcpp::DW_FORM_data1:
683 case elfcpp::DW_FORM_flag:
684 attr_value.val.intval = *pattr++;
685 break;
686 case elfcpp::DW_FORM_ref1:
687 attr_value.val.refval = *pattr++;
688 ref_form = true;
689 break;
690 case elfcpp::DW_FORM_data2:
691 attr_value.val.intval = read_from_pointer<16>(&pattr);
692 break;
693 case elfcpp::DW_FORM_ref2:
694 attr_value.val.refval = read_from_pointer<16>(&pattr);
695 ref_form = true;
696 break;
697 case elfcpp::DW_FORM_data4:
698 {
699 off_t sec_off;
700 sec_off = read_from_pointer<32>(&pattr);
701 unsigned int shndx =
702 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
703 attr_value.aux.shndx = shndx;
704 attr_value.val.intval = sec_off;
705 break;
706 }
707 case elfcpp::DW_FORM_ref4:
708 {
709 off_t sec_off;
710 sec_off = read_from_pointer<32>(&pattr);
711 unsigned int shndx =
712 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
713 attr_value.aux.shndx = shndx;
714 attr_value.val.refval = sec_off;
715 ref_form = true;
716 break;
717 }
718 case elfcpp::DW_FORM_data8:
719 {
720 off_t sec_off;
721 sec_off = read_from_pointer<64>(&pattr);
722 unsigned int shndx =
723 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
724 attr_value.aux.shndx = shndx;
725 attr_value.val.intval = sec_off;
726 break;
727 }
728 case elfcpp::DW_FORM_ref_sig8:
729 attr_value.val.uintval = read_from_pointer<64>(&pattr);
730 break;
731 case elfcpp::DW_FORM_ref8:
732 {
733 off_t sec_off;
734 sec_off = read_from_pointer<64>(&pattr);
735 unsigned int shndx =
736 this->dwinfo_->lookup_reloc(attr_off, &sec_off);
737 attr_value.aux.shndx = shndx;
738 attr_value.val.refval = sec_off;
739 ref_form = true;
740 break;
741 }
742 case elfcpp::DW_FORM_ref_udata:
743 attr_value.val.refval = read_unsigned_LEB_128(pattr, &len);
744 ref_form = true;
745 pattr += len;
746 break;
747 case elfcpp::DW_FORM_udata:
748 attr_value.val.uintval = read_unsigned_LEB_128(pattr, &len);
749 pattr += len;
750 break;
751 case elfcpp::DW_FORM_sdata:
752 attr_value.val.intval = read_signed_LEB_128(pattr, &len);
753 pattr += len;
754 break;
755 case elfcpp::DW_FORM_string:
756 attr_value.val.stringval = reinterpret_cast<const char*>(pattr);
757 len = strlen(attr_value.val.stringval);
758 pattr += len + 1;
759 break;
760 default:
761 return false;
762 }
763
764 // Cache the most frequently-requested attributes.
765 switch (attr)
766 {
767 case elfcpp::DW_AT_name:
768 if (form == elfcpp::DW_FORM_string)
769 this->name_ = attr_value.val.stringval;
770 else if (form == elfcpp::DW_FORM_strp)
771 {
772 // All indirect strings should refer to the same
773 // string section, so we just save the last one seen.
774 this->string_shndx_ = attr_value.aux.shndx;
775 this->name_off_ = attr_value.val.refval;
776 }
777 break;
778 case elfcpp::DW_AT_linkage_name:
779 case elfcpp::DW_AT_MIPS_linkage_name:
780 if (form == elfcpp::DW_FORM_string)
781 this->linkage_name_ = attr_value.val.stringval;
782 else if (form == elfcpp::DW_FORM_strp)
783 {
784 // All indirect strings should refer to the same
785 // string section, so we just save the last one seen.
786 this->string_shndx_ = attr_value.aux.shndx;
787 this->linkage_name_off_ = attr_value.val.refval;
788 }
789 break;
790 case elfcpp::DW_AT_specification:
791 if (ref_form)
792 this->specification_ = attr_value.val.refval;
793 break;
794 case elfcpp::DW_AT_abstract_origin:
795 if (ref_form)
796 this->abstract_origin_ = attr_value.val.refval;
797 break;
798 case elfcpp::DW_AT_sibling:
799 if (ref_form && attr_value.aux.shndx == 0)
800 this->sibling_offset_ = attr_value.val.refval;
801 default:
802 break;
803 }
804
805 this->attributes_.push_back(attr_value);
806 }
807
808 // Now that we know where the next DIE begins, record the offset
809 // to avoid later recalculation.
810 if (this->has_children())
811 this->child_offset_ = this->die_offset_ + (pattr - pdie);
812 else
813 this->sibling_offset_ = this->die_offset_ + (pattr - pdie);
814
815 this->attributes_read_ = true;
816 return true;
817 }
818
819 // Skip all the attributes of the DIE and return the offset of the next DIE.
820
821 off_t
822 Dwarf_die::skip_attributes()
823 {
824 typedef Dwarf_abbrev_table::Attribute Attribute;
825
826 gold_assert(this->abbrev_code_ != NULL);
827
828 const unsigned char* pdie =
829 this->dwinfo_->buffer_at_offset(this->die_offset_);
830 if (pdie == NULL)
831 return 0;
832 const unsigned char* pattr = pdie + this->attr_offset_;
833
834 for (unsigned int i = 0; i < this->abbrev_code_->attributes.size(); ++i)
835 {
836 size_t len;
837 unsigned int form = this->abbrev_code_->attributes[i].form;
838 if (form == elfcpp::DW_FORM_indirect)
839 {
840 form = read_unsigned_LEB_128(pattr, &len);
841 pattr += len;
842 }
843 switch(form)
844 {
845 case elfcpp::DW_FORM_flag_present:
846 break;
847 case elfcpp::DW_FORM_strp:
848 case elfcpp::DW_FORM_sec_offset:
849 pattr += this->dwinfo_->offset_size();
850 break;
851 case elfcpp::DW_FORM_addr:
852 case elfcpp::DW_FORM_ref_addr:
853 pattr += this->dwinfo_->address_size();
854 break;
855 case elfcpp::DW_FORM_block1:
856 pattr += 1 + *pattr;
857 break;
858 case elfcpp::DW_FORM_block2:
859 {
860 uint16_t block_size;
861 block_size = read_from_pointer<16>(&pattr);
862 pattr += block_size;
863 break;
864 }
865 case elfcpp::DW_FORM_block4:
866 {
867 uint32_t block_size;
868 block_size = read_from_pointer<32>(&pattr);
869 pattr += block_size;
870 break;
871 }
872 case elfcpp::DW_FORM_block:
873 case elfcpp::DW_FORM_exprloc:
874 {
875 uint64_t block_size;
876 block_size = read_unsigned_LEB_128(pattr, &len);
877 pattr += len + block_size;
878 break;
879 }
880 case elfcpp::DW_FORM_data1:
881 case elfcpp::DW_FORM_ref1:
882 case elfcpp::DW_FORM_flag:
883 pattr += 1;
884 break;
885 case elfcpp::DW_FORM_data2:
886 case elfcpp::DW_FORM_ref2:
887 pattr += 2;
888 break;
889 case elfcpp::DW_FORM_data4:
890 case elfcpp::DW_FORM_ref4:
891 pattr += 4;
892 break;
893 case elfcpp::DW_FORM_data8:
894 case elfcpp::DW_FORM_ref8:
895 case elfcpp::DW_FORM_ref_sig8:
896 pattr += 8;
897 break;
898 case elfcpp::DW_FORM_ref_udata:
899 case elfcpp::DW_FORM_udata:
900 read_unsigned_LEB_128(pattr, &len);
901 pattr += len;
902 break;
903 case elfcpp::DW_FORM_sdata:
904 read_signed_LEB_128(pattr, &len);
905 pattr += len;
906 break;
907 case elfcpp::DW_FORM_string:
908 len = strlen(reinterpret_cast<const char*>(pattr));
909 pattr += len + 1;
910 break;
911 default:
912 return 0;
913 }
914 }
915
916 return this->die_offset_ + (pattr - pdie);
917 }
918
919 // Get the name of the DIE and cache it.
920
921 void
922 Dwarf_die::set_name()
923 {
924 if (this->name_ != NULL || !this->read_attributes())
925 return;
926 if (this->name_off_ != -1)
927 this->name_ = this->dwinfo_->get_string(this->name_off_,
928 this->string_shndx_);
929 }
930
931 // Get the linkage name of the DIE and cache it.
932
933 void
934 Dwarf_die::set_linkage_name()
935 {
936 if (this->linkage_name_ != NULL || !this->read_attributes())
937 return;
938 if (this->linkage_name_off_ != -1)
939 this->linkage_name_ = this->dwinfo_->get_string(this->linkage_name_off_,
940 this->string_shndx_);
941 }
942
943 // Return the value of attribute ATTR.
944
945 const Dwarf_die::Attribute_value*
946 Dwarf_die::attribute(unsigned int attr)
947 {
948 if (!this->read_attributes())
949 return NULL;
950 for (unsigned int i = 0; i < this->attributes_.size(); ++i)
951 {
952 if (this->attributes_[i].attr == attr)
953 return &this->attributes_[i];
954 }
955 return NULL;
956 }
957
958 const char*
959 Dwarf_die::string_attribute(unsigned int attr)
960 {
961 const Attribute_value* attr_val = this->attribute(attr);
962 if (attr_val == NULL)
963 return NULL;
964 switch (attr_val->form)
965 {
966 case elfcpp::DW_FORM_string:
967 return attr_val->val.stringval;
968 case elfcpp::DW_FORM_strp:
969 return this->dwinfo_->get_string(attr_val->val.refval,
970 attr_val->aux.shndx);
971 default:
972 return NULL;
973 }
974 }
975
976 int64_t
977 Dwarf_die::int_attribute(unsigned int attr)
978 {
979 const Attribute_value* attr_val = this->attribute(attr);
980 if (attr_val == NULL)
981 return 0;
982 switch (attr_val->form)
983 {
984 case elfcpp::DW_FORM_flag_present:
985 case elfcpp::DW_FORM_data1:
986 case elfcpp::DW_FORM_flag:
987 case elfcpp::DW_FORM_data2:
988 case elfcpp::DW_FORM_data4:
989 case elfcpp::DW_FORM_data8:
990 case elfcpp::DW_FORM_sdata:
991 return attr_val->val.intval;
992 default:
993 return 0;
994 }
995 }
996
997 uint64_t
998 Dwarf_die::uint_attribute(unsigned int attr)
999 {
1000 const Attribute_value* attr_val = this->attribute(attr);
1001 if (attr_val == NULL)
1002 return 0;
1003 switch (attr_val->form)
1004 {
1005 case elfcpp::DW_FORM_flag_present:
1006 case elfcpp::DW_FORM_data1:
1007 case elfcpp::DW_FORM_flag:
1008 case elfcpp::DW_FORM_data4:
1009 case elfcpp::DW_FORM_data8:
1010 case elfcpp::DW_FORM_ref_sig8:
1011 case elfcpp::DW_FORM_udata:
1012 return attr_val->val.uintval;
1013 default:
1014 return 0;
1015 }
1016 }
1017
1018 off_t
1019 Dwarf_die::ref_attribute(unsigned int attr, unsigned int* shndx)
1020 {
1021 const Attribute_value* attr_val = this->attribute(attr);
1022 if (attr_val == NULL)
1023 return -1;
1024 switch (attr_val->form)
1025 {
1026 case elfcpp::DW_FORM_sec_offset:
1027 case elfcpp::DW_FORM_addr:
1028 case elfcpp::DW_FORM_ref_addr:
1029 case elfcpp::DW_FORM_ref1:
1030 case elfcpp::DW_FORM_ref2:
1031 case elfcpp::DW_FORM_ref4:
1032 case elfcpp::DW_FORM_ref8:
1033 case elfcpp::DW_FORM_ref_udata:
1034 *shndx = attr_val->aux.shndx;
1035 return attr_val->val.refval;
1036 case elfcpp::DW_FORM_ref_sig8:
1037 *shndx = attr_val->aux.shndx;
1038 return attr_val->val.uintval;
1039 case elfcpp::DW_FORM_data4:
1040 case elfcpp::DW_FORM_data8:
1041 *shndx = attr_val->aux.shndx;
1042 return attr_val->val.intval;
1043 default:
1044 return -1;
1045 }
1046 }
1047
1048 off_t
1049 Dwarf_die::address_attribute(unsigned int attr, unsigned int* shndx)
1050 {
1051 const Attribute_value* attr_val = this->attribute(attr);
1052 if (attr_val == NULL || attr_val->form != elfcpp::DW_FORM_addr)
1053 return -1;
1054
1055 *shndx = attr_val->aux.shndx;
1056 return attr_val->val.refval;
1057 }
1058
1059 // Return the offset of this DIE's first child.
1060
1061 off_t
1062 Dwarf_die::child_offset()
1063 {
1064 gold_assert(this->abbrev_code_ != NULL);
1065 if (!this->has_children())
1066 return 0;
1067 if (this->child_offset_ == 0)
1068 this->child_offset_ = this->skip_attributes();
1069 return this->child_offset_;
1070 }
1071
1072 // Return the offset of this DIE's next sibling.
1073
1074 off_t
1075 Dwarf_die::sibling_offset()
1076 {
1077 gold_assert(this->abbrev_code_ != NULL);
1078
1079 if (this->sibling_offset_ != 0)
1080 return this->sibling_offset_;
1081
1082 if (!this->has_children())
1083 {
1084 this->sibling_offset_ = this->skip_attributes();
1085 return this->sibling_offset_;
1086 }
1087
1088 if (this->has_sibling_attribute())
1089 {
1090 if (!this->read_attributes())
1091 return 0;
1092 if (this->sibling_offset_ != 0)
1093 return this->sibling_offset_;
1094 }
1095
1096 // Skip over the children.
1097 off_t child_offset = this->child_offset();
1098 while (child_offset > 0)
1099 {
1100 Dwarf_die die(this->dwinfo_, child_offset, this);
1101 // The Dwarf_die ctor will set this DIE's sibling offset
1102 // when it reads a zero abbrev code.
1103 if (die.tag() == 0)
1104 break;
1105 child_offset = die.sibling_offset();
1106 }
1107
1108 // This should be set by now. If not, there was a problem reading
1109 // the DWARF info, and we return 0.
1110 return this->sibling_offset_;
1111 }
1112
1113 // class Dwarf_info_reader
1114
1115 // Check that the pointer P is within the current compilation unit.
1116
1117 inline bool
1118 Dwarf_info_reader::check_buffer(const unsigned char* p) const
1119 {
1120 if (p > this->buffer_ + this->cu_offset_ + this->cu_length_)
1121 {
1122 gold_warning(_("%s: corrupt debug info in %s"),
1123 this->object_->name().c_str(),
1124 this->object_->section_name(this->shndx_).c_str());
1125 return false;
1126 }
1127 return true;
1128 }
1129
1130 // Begin parsing the debug info. This calls visit_compilation_unit()
1131 // or visit_type_unit() for each compilation or type unit found in the
1132 // section, and visit_die() for each top-level DIE.
1133
1134 void
1135 Dwarf_info_reader::parse()
1136 {
1137 switch (parameters->size_and_endianness())
1138 {
1139 #ifdef HAVE_TARGET_32_LITTLE
1140 case Parameters::TARGET_32_LITTLE:
1141 this->do_parse<false>();
1142 break;
1143 #endif
1144 #ifdef HAVE_TARGET_32_BIG
1145 case Parameters::TARGET_32_BIG:
1146 this->do_parse<true>();
1147 break;
1148 #endif
1149 #ifdef HAVE_TARGET_64_LITTLE
1150 case Parameters::TARGET_64_LITTLE:
1151 this->do_parse<false>();
1152 break;
1153 #endif
1154 #ifdef HAVE_TARGET_64_BIG
1155 case Parameters::TARGET_64_BIG:
1156 this->do_parse<true>();
1157 break;
1158 #endif
1159 default:
1160 gold_unreachable();
1161 }
1162 }
1163
1164 template<bool big_endian>
1165 void
1166 Dwarf_info_reader::do_parse()
1167 {
1168 // Get the section contents and decompress if necessary.
1169 section_size_type buffer_size;
1170 bool buffer_is_new;
1171 this->buffer_ = this->object_->decompressed_section_contents(this->shndx_,
1172 &buffer_size,
1173 &buffer_is_new);
1174 if (this->buffer_ == NULL || buffer_size == 0)
1175 return;
1176 this->buffer_end_ = this->buffer_ + buffer_size;
1177
1178 // The offset of this input section in the output section.
1179 off_t section_offset = this->object_->output_section_offset(this->shndx_);
1180
1181 // Start tracking relocations for this section.
1182 this->reloc_mapper_ = make_elf_reloc_mapper(this->object_, this->symtab_,
1183 this->symtab_size_);
1184 this->reloc_mapper_->initialize(this->reloc_shndx_, this->reloc_type_);
1185
1186 // Loop over compilation units (or type units).
1187 unsigned int abbrev_shndx = 0;
1188 off_t abbrev_offset = 0;
1189 const unsigned char* pinfo = this->buffer_;
1190 while (pinfo < this->buffer_end_)
1191 {
1192 // Read the compilation (or type) unit header.
1193 const unsigned char* cu_start = pinfo;
1194 this->cu_offset_ = cu_start - this->buffer_;
1195 this->cu_length_ = this->buffer_end_ - cu_start;
1196
1197 // Read unit_length (4 or 12 bytes).
1198 if (!this->check_buffer(pinfo + 4))
1199 break;
1200 uint32_t unit_length =
1201 elfcpp::Swap_unaligned<32, big_endian>::readval(pinfo);
1202 pinfo += 4;
1203 if (unit_length == 0xffffffff)
1204 {
1205 if (!this->check_buffer(pinfo + 8))
1206 break;
1207 unit_length = elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo);
1208 pinfo += 8;
1209 this->offset_size_ = 8;
1210 }
1211 else
1212 this->offset_size_ = 4;
1213 if (!this->check_buffer(pinfo + unit_length))
1214 break;
1215 const unsigned char* cu_end = pinfo + unit_length;
1216 this->cu_length_ = cu_end - cu_start;
1217 if (!this->check_buffer(pinfo + 2 + this->offset_size_ + 1))
1218 break;
1219
1220 // Read version (2 bytes).
1221 this->cu_version_ =
1222 elfcpp::Swap_unaligned<16, big_endian>::readval(pinfo);
1223 pinfo += 2;
1224
1225 // Read debug_abbrev_offset (4 or 8 bytes).
1226 if (this->offset_size_ == 4)
1227 abbrev_offset = elfcpp::Swap_unaligned<32, big_endian>::readval(pinfo);
1228 else
1229 abbrev_offset = elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo);
1230 if (this->reloc_shndx_ > 0)
1231 {
1232 off_t reloc_offset = pinfo - this->buffer_;
1233 off_t value;
1234 abbrev_shndx =
1235 this->reloc_mapper_->get_reloc_target(reloc_offset, &value);
1236 if (abbrev_shndx == 0)
1237 return;
1238 if (this->reloc_type_ == elfcpp::SHT_REL)
1239 abbrev_offset += value;
1240 else
1241 abbrev_offset = value;
1242 }
1243 pinfo += this->offset_size_;
1244
1245 // Read address_size (1 byte).
1246 this->address_size_ = *pinfo++;
1247
1248 // For type units, read the two extra fields.
1249 uint64_t signature = 0;
1250 off_t type_offset = 0;
1251 if (this->is_type_unit_)
1252 {
1253 if (!this->check_buffer(pinfo + 8 + this->offset_size_))
1254 break;
1255
1256 // Read type_signature (8 bytes).
1257 signature = elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo);
1258 pinfo += 8;
1259
1260 // Read type_offset (4 or 8 bytes).
1261 if (this->offset_size_ == 4)
1262 type_offset =
1263 elfcpp::Swap_unaligned<32, big_endian>::readval(pinfo);
1264 else
1265 type_offset =
1266 elfcpp::Swap_unaligned<64, big_endian>::readval(pinfo);
1267 pinfo += this->offset_size_;
1268 }
1269
1270 // Read the .debug_abbrev table.
1271 this->abbrev_table_.read_abbrevs(this->object_, abbrev_shndx,
1272 abbrev_offset);
1273
1274 // Visit the root DIE.
1275 Dwarf_die root_die(this,
1276 pinfo - (this->buffer_ + this->cu_offset_),
1277 NULL);
1278 if (root_die.tag() != 0)
1279 {
1280 // Visit the CU or TU.
1281 if (this->is_type_unit_)
1282 this->visit_type_unit(section_offset + this->cu_offset_,
1283 type_offset, signature, &root_die);
1284 else
1285 this->visit_compilation_unit(section_offset + this->cu_offset_,
1286 cu_end - cu_start, &root_die);
1287 }
1288
1289 // Advance to the next CU.
1290 pinfo = cu_end;
1291 }
1292
1293 if (buffer_is_new)
1294 {
1295 delete[] this->buffer_;
1296 this->buffer_ = NULL;
1297 }
1298 }
1299
1300 // Read the DWARF string table.
1301
1302 bool
1303 Dwarf_info_reader::do_read_string_table(unsigned int string_shndx)
1304 {
1305 Relobj* object = this->object_;
1306
1307 // If we don't have relocations, string_shndx will be 0, and
1308 // we'll have to hunt for the .debug_str section.
1309 if (string_shndx == 0)
1310 {
1311 for (unsigned int i = 1; i < this->object_->shnum(); ++i)
1312 {
1313 std::string name = object->section_name(i);
1314 if (name == ".debug_str")
1315 {
1316 string_shndx = i;
1317 this->string_output_section_offset_ =
1318 object->output_section_offset(i);
1319 break;
1320 }
1321 }
1322 if (string_shndx == 0)
1323 return false;
1324 }
1325
1326 if (this->owns_string_buffer_ && this->string_buffer_ != NULL)
1327 {
1328 delete[] this->string_buffer_;
1329 this->owns_string_buffer_ = false;
1330 }
1331
1332 // Get the secton contents and decompress if necessary.
1333 section_size_type buffer_size;
1334 const unsigned char* buffer =
1335 object->decompressed_section_contents(string_shndx,
1336 &buffer_size,
1337 &this->owns_string_buffer_);
1338 this->string_buffer_ = reinterpret_cast<const char*>(buffer);
1339 this->string_buffer_end_ = this->string_buffer_ + buffer_size;
1340 this->string_shndx_ = string_shndx;
1341 return true;
1342 }
1343
1344 // Look for a relocation at offset ATTR_OFF in the dwarf info,
1345 // and return the section index and offset of the target.
1346
1347 unsigned int
1348 Dwarf_info_reader::lookup_reloc(off_t attr_off, off_t* target_off)
1349 {
1350 off_t value;
1351 attr_off += this->cu_offset_;
1352 unsigned int shndx = this->reloc_mapper_->get_reloc_target(attr_off, &value);
1353 if (shndx == 0)
1354 return 0;
1355 if (this->reloc_type_ == elfcpp::SHT_REL)
1356 *target_off += value;
1357 else
1358 *target_off = value;
1359 return shndx;
1360 }
1361
1362 // Return a string from the DWARF string table.
1363
1364 const char*
1365 Dwarf_info_reader::get_string(off_t str_off, unsigned int string_shndx)
1366 {
1367 if (!this->read_string_table(string_shndx))
1368 return NULL;
1369
1370 // Correct the offset. For incremental update links, we have a
1371 // relocated offset that is relative to the output section, but
1372 // here we need an offset relative to the input section.
1373 str_off -= this->string_output_section_offset_;
1374
1375 const char* p = this->string_buffer_ + str_off;
1376
1377 if (p < this->string_buffer_ || p >= this->string_buffer_end_)
1378 return NULL;
1379
1380 return p;
1381 }
1382
1383 // The following are default, do-nothing, implementations of the
1384 // hook methods normally provided by a derived class. We provide
1385 // default implementations rather than no implementation so that
1386 // a derived class needs to implement only the hooks that it needs
1387 // to use.
1388
1389 // Process a compilation unit and parse its child DIE.
1390
1391 void
1392 Dwarf_info_reader::visit_compilation_unit(off_t, off_t, Dwarf_die*)
1393 {
1394 }
1395
1396 // Process a type unit and parse its child DIE.
1397
1398 void
1399 Dwarf_info_reader::visit_type_unit(off_t, off_t, uint64_t, Dwarf_die*)
1400 {
1401 }
1402
1403 // class Sized_dwarf_line_info
1404
1405 struct LineStateMachine
1406 {
1407 int file_num;
1408 uint64_t address;
1409 int line_num;
1410 int column_num;
1411 unsigned int shndx; // the section address refers to
1412 bool is_stmt; // stmt means statement.
1413 bool basic_block;
1414 bool end_sequence;
1415 };
1416
1417 static void
1418 ResetLineStateMachine(struct LineStateMachine* lsm, bool default_is_stmt)
1419 {
1420 lsm->file_num = 1;
1421 lsm->address = 0;
1422 lsm->line_num = 1;
1423 lsm->column_num = 0;
1424 lsm->shndx = -1U;
1425 lsm->is_stmt = default_is_stmt;
1426 lsm->basic_block = false;
1427 lsm->end_sequence = false;
1428 }
1429
1430 template<int size, bool big_endian>
1431 Sized_dwarf_line_info<size, big_endian>::Sized_dwarf_line_info(
1432 Object* object,
1433 unsigned int read_shndx)
1434 : data_valid_(false), buffer_(NULL), buffer_start_(NULL),
1435 reloc_mapper_(NULL), symtab_buffer_(NULL), directories_(), files_(),
1436 current_header_index_(-1)
1437 {
1438 unsigned int debug_shndx;
1439
1440 for (debug_shndx = 1; debug_shndx < object->shnum(); ++debug_shndx)
1441 {
1442 // FIXME: do this more efficiently: section_name() isn't super-fast
1443 std::string name = object->section_name(debug_shndx);
1444 if (name == ".debug_line" || name == ".zdebug_line")
1445 {
1446 section_size_type buffer_size;
1447 bool is_new = false;
1448 this->buffer_ = object->decompressed_section_contents(debug_shndx,
1449 &buffer_size,
1450 &is_new);
1451 if (is_new)
1452 this->buffer_start_ = this->buffer_;
1453 this->buffer_end_ = this->buffer_ + buffer_size;
1454 break;
1455 }
1456 }
1457 if (this->buffer_ == NULL)
1458 return;
1459
1460 // Find the relocation section for ".debug_line".
1461 // We expect these for relobjs (.o's) but not dynobjs (.so's).
1462 unsigned int reloc_shndx = 0;
1463 for (unsigned int i = 0; i < object->shnum(); ++i)
1464 {
1465 unsigned int reloc_sh_type = object->section_type(i);
1466 if ((reloc_sh_type == elfcpp::SHT_REL
1467 || reloc_sh_type == elfcpp::SHT_RELA)
1468 && object->section_info(i) == debug_shndx)
1469 {
1470 reloc_shndx = i;
1471 this->track_relocs_type_ = reloc_sh_type;
1472 break;
1473 }
1474 }
1475
1476 // Finally, we need the symtab section to interpret the relocs.
1477 if (reloc_shndx != 0)
1478 {
1479 unsigned int symtab_shndx;
1480 for (symtab_shndx = 0; symtab_shndx < object->shnum(); ++symtab_shndx)
1481 if (object->section_type(symtab_shndx) == elfcpp::SHT_SYMTAB)
1482 {
1483 this->symtab_buffer_ = object->section_contents(
1484 symtab_shndx, &this->symtab_buffer_size_, false);
1485 break;
1486 }
1487 if (this->symtab_buffer_ == NULL)
1488 return;
1489 }
1490
1491 this->reloc_mapper_ =
1492 new Sized_elf_reloc_mapper<size, big_endian>(object,
1493 this->symtab_buffer_,
1494 this->symtab_buffer_size_);
1495 if (!this->reloc_mapper_->initialize(reloc_shndx, this->track_relocs_type_))
1496 return;
1497
1498 // Now that we have successfully read all the data, parse the debug
1499 // info.
1500 this->data_valid_ = true;
1501 this->read_line_mappings(read_shndx);
1502 }
1503
1504 // Read the DWARF header.
1505
1506 template<int size, bool big_endian>
1507 const unsigned char*
1508 Sized_dwarf_line_info<size, big_endian>::read_header_prolog(
1509 const unsigned char* lineptr)
1510 {
1511 uint32_t initial_length = elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr);
1512 lineptr += 4;
1513
1514 // In DWARF2/3, if the initial length is all 1 bits, then the offset
1515 // size is 8 and we need to read the next 8 bytes for the real length.
1516 if (initial_length == 0xffffffff)
1517 {
1518 header_.offset_size = 8;
1519 initial_length = elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr);
1520 lineptr += 8;
1521 }
1522 else
1523 header_.offset_size = 4;
1524
1525 header_.total_length = initial_length;
1526
1527 gold_assert(lineptr + header_.total_length <= buffer_end_);
1528
1529 header_.version = elfcpp::Swap_unaligned<16, big_endian>::readval(lineptr);
1530 lineptr += 2;
1531
1532 if (header_.offset_size == 4)
1533 header_.prologue_length = elfcpp::Swap_unaligned<32, big_endian>::readval(lineptr);
1534 else
1535 header_.prologue_length = elfcpp::Swap_unaligned<64, big_endian>::readval(lineptr);
1536 lineptr += header_.offset_size;
1537
1538 header_.min_insn_length = *lineptr;
1539 lineptr += 1;
1540
1541 header_.default_is_stmt = *lineptr;
1542 lineptr += 1;
1543
1544 header_.line_base = *reinterpret_cast<const signed char*>(lineptr);
1545 lineptr += 1;
1546
1547 header_.line_range = *lineptr;
1548 lineptr += 1;
1549
1550 header_.opcode_base = *lineptr;
1551 lineptr += 1;
1552
1553 header_.std_opcode_lengths.resize(header_.opcode_base + 1);
1554 header_.std_opcode_lengths[0] = 0;
1555 for (int i = 1; i < header_.opcode_base; i++)
1556 {
1557 header_.std_opcode_lengths[i] = *lineptr;
1558 lineptr += 1;
1559 }
1560
1561 return lineptr;
1562 }
1563
1564 // The header for a debug_line section is mildly complicated, because
1565 // the line info is very tightly encoded.
1566
1567 template<int size, bool big_endian>
1568 const unsigned char*
1569 Sized_dwarf_line_info<size, big_endian>::read_header_tables(
1570 const unsigned char* lineptr)
1571 {
1572 ++this->current_header_index_;
1573
1574 // Create a new directories_ entry and a new files_ entry for our new
1575 // header. We initialize each with a single empty element, because
1576 // dwarf indexes directory and filenames starting at 1.
1577 gold_assert(static_cast<int>(this->directories_.size())
1578 == this->current_header_index_);
1579 gold_assert(static_cast<int>(this->files_.size())
1580 == this->current_header_index_);
1581 this->directories_.push_back(std::vector<std::string>(1));
1582 this->files_.push_back(std::vector<std::pair<int, std::string> >(1));
1583
1584 // It is legal for the directory entry table to be empty.
1585 if (*lineptr)
1586 {
1587 int dirindex = 1;
1588 while (*lineptr)
1589 {
1590 const char* dirname = reinterpret_cast<const char*>(lineptr);
1591 gold_assert(dirindex
1592 == static_cast<int>(this->directories_.back().size()));
1593 this->directories_.back().push_back(dirname);
1594 lineptr += this->directories_.back().back().size() + 1;
1595 dirindex++;
1596 }
1597 }
1598 lineptr++;
1599
1600 // It is also legal for the file entry table to be empty.
1601 if (*lineptr)
1602 {
1603 int fileindex = 1;
1604 size_t len;
1605 while (*lineptr)
1606 {
1607 const char* filename = reinterpret_cast<const char*>(lineptr);
1608 lineptr += strlen(filename) + 1;
1609
1610 uint64_t dirindex = read_unsigned_LEB_128(lineptr, &len);
1611 lineptr += len;
1612
1613 if (dirindex >= this->directories_.back().size())
1614 dirindex = 0;
1615 int dirindexi = static_cast<int>(dirindex);
1616
1617 read_unsigned_LEB_128(lineptr, &len); // mod_time
1618 lineptr += len;
1619
1620 read_unsigned_LEB_128(lineptr, &len); // filelength
1621 lineptr += len;
1622
1623 gold_assert(fileindex
1624 == static_cast<int>(this->files_.back().size()));
1625 this->files_.back().push_back(std::make_pair(dirindexi, filename));
1626 fileindex++;
1627 }
1628 }
1629 lineptr++;
1630
1631 return lineptr;
1632 }
1633
1634 // Process a single opcode in the .debug.line structure.
1635
1636 template<int size, bool big_endian>
1637 bool
1638 Sized_dwarf_line_info<size, big_endian>::process_one_opcode(
1639 const unsigned char* start, struct LineStateMachine* lsm, size_t* len)
1640 {
1641 size_t oplen = 0;
1642 size_t templen;
1643 unsigned char opcode = *start;
1644 oplen++;
1645 start++;
1646
1647 // If the opcode is great than the opcode_base, it is a special
1648 // opcode. Most line programs consist mainly of special opcodes.
1649 if (opcode >= header_.opcode_base)
1650 {
1651 opcode -= header_.opcode_base;
1652 const int advance_address = ((opcode / header_.line_range)
1653 * header_.min_insn_length);
1654 lsm->address += advance_address;
1655
1656 const int advance_line = ((opcode % header_.line_range)
1657 + header_.line_base);
1658 lsm->line_num += advance_line;
1659 lsm->basic_block = true;
1660 *len = oplen;
1661 return true;
1662 }
1663
1664 // Otherwise, we have the regular opcodes
1665 switch (opcode)
1666 {
1667 case elfcpp::DW_LNS_copy:
1668 lsm->basic_block = false;
1669 *len = oplen;
1670 return true;
1671
1672 case elfcpp::DW_LNS_advance_pc:
1673 {
1674 const uint64_t advance_address
1675 = read_unsigned_LEB_128(start, &templen);
1676 oplen += templen;
1677 lsm->address += header_.min_insn_length * advance_address;
1678 }
1679 break;
1680
1681 case elfcpp::DW_LNS_advance_line:
1682 {
1683 const uint64_t advance_line = read_signed_LEB_128(start, &templen);
1684 oplen += templen;
1685 lsm->line_num += advance_line;
1686 }
1687 break;
1688
1689 case elfcpp::DW_LNS_set_file:
1690 {
1691 const uint64_t fileno = read_unsigned_LEB_128(start, &templen);
1692 oplen += templen;
1693 lsm->file_num = fileno;
1694 }
1695 break;
1696
1697 case elfcpp::DW_LNS_set_column:
1698 {
1699 const uint64_t colno = read_unsigned_LEB_128(start, &templen);
1700 oplen += templen;
1701 lsm->column_num = colno;
1702 }
1703 break;
1704
1705 case elfcpp::DW_LNS_negate_stmt:
1706 lsm->is_stmt = !lsm->is_stmt;
1707 break;
1708
1709 case elfcpp::DW_LNS_set_basic_block:
1710 lsm->basic_block = true;
1711 break;
1712
1713 case elfcpp::DW_LNS_fixed_advance_pc:
1714 {
1715 int advance_address;
1716 advance_address = elfcpp::Swap_unaligned<16, big_endian>::readval(start);
1717 oplen += 2;
1718 lsm->address += advance_address;
1719 }
1720 break;
1721
1722 case elfcpp::DW_LNS_const_add_pc:
1723 {
1724 const int advance_address = (header_.min_insn_length
1725 * ((255 - header_.opcode_base)
1726 / header_.line_range));
1727 lsm->address += advance_address;
1728 }
1729 break;
1730
1731 case elfcpp::DW_LNS_extended_op:
1732 {
1733 const uint64_t extended_op_len
1734 = read_unsigned_LEB_128(start, &templen);
1735 start += templen;
1736 oplen += templen + extended_op_len;
1737
1738 const unsigned char extended_op = *start;
1739 start++;
1740
1741 switch (extended_op)
1742 {
1743 case elfcpp::DW_LNE_end_sequence:
1744 // This means that the current byte is the one immediately
1745 // after a set of instructions. Record the current line
1746 // for up to one less than the current address.
1747 lsm->line_num = -1;
1748 lsm->end_sequence = true;
1749 *len = oplen;
1750 return true;
1751
1752 case elfcpp::DW_LNE_set_address:
1753 {
1754 lsm->address =
1755 elfcpp::Swap_unaligned<size, big_endian>::readval(start);
1756 typename Reloc_map::const_iterator it
1757 = this->reloc_map_.find(start - this->buffer_);
1758 if (it != reloc_map_.end())
1759 {
1760 // If this is a SHT_RELA section, then ignore the
1761 // section contents. This assumes that this is a
1762 // straight reloc which just uses the reloc addend.
1763 // The reloc addend has already been included in the
1764 // symbol value.
1765 if (this->track_relocs_type_ == elfcpp::SHT_RELA)
1766 lsm->address = 0;
1767 // Add in the symbol value.
1768 lsm->address += it->second.second;
1769 lsm->shndx = it->second.first;
1770 }
1771 else
1772 {
1773 // If we're a normal .o file, with relocs, every
1774 // set_address should have an associated relocation.
1775 if (this->input_is_relobj())
1776 this->data_valid_ = false;
1777 }
1778 break;
1779 }
1780 case elfcpp::DW_LNE_define_file:
1781 {
1782 const char* filename = reinterpret_cast<const char*>(start);
1783 templen = strlen(filename) + 1;
1784 start += templen;
1785
1786 uint64_t dirindex = read_unsigned_LEB_128(start, &templen);
1787
1788 if (dirindex >= this->directories_.back().size())
1789 dirindex = 0;
1790 int dirindexi = static_cast<int>(dirindex);
1791
1792 // This opcode takes two additional ULEB128 parameters
1793 // (mod_time and filelength), but we don't use those
1794 // values. Because OPLEN already tells us how far to
1795 // skip to the next opcode, we don't need to read
1796 // them at all.
1797
1798 this->files_.back().push_back(std::make_pair(dirindexi,
1799 filename));
1800 }
1801 break;
1802 }
1803 }
1804 break;
1805
1806 default:
1807 {
1808 // Ignore unknown opcode silently
1809 for (int i = 0; i < header_.std_opcode_lengths[opcode]; i++)
1810 {
1811 size_t templen;
1812 read_unsigned_LEB_128(start, &templen);
1813 start += templen;
1814 oplen += templen;
1815 }
1816 }
1817 break;
1818 }
1819 *len = oplen;
1820 return false;
1821 }
1822
1823 // Read the debug information at LINEPTR and store it in the line
1824 // number map.
1825
1826 template<int size, bool big_endian>
1827 unsigned const char*
1828 Sized_dwarf_line_info<size, big_endian>::read_lines(unsigned const char* lineptr,
1829 unsigned int shndx)
1830 {
1831 struct LineStateMachine lsm;
1832
1833 // LENGTHSTART is the place the length field is based on. It is the
1834 // point in the header after the initial length field.
1835 const unsigned char* lengthstart = buffer_;
1836
1837 // In 64 bit dwarf, the initial length is 12 bytes, because of the
1838 // 0xffffffff at the start.
1839 if (header_.offset_size == 8)
1840 lengthstart += 12;
1841 else
1842 lengthstart += 4;
1843
1844 while (lineptr < lengthstart + header_.total_length)
1845 {
1846 ResetLineStateMachine(&lsm, header_.default_is_stmt);
1847 while (!lsm.end_sequence)
1848 {
1849 size_t oplength;
1850 bool add_line = this->process_one_opcode(lineptr, &lsm, &oplength);
1851 if (add_line
1852 && (shndx == -1U || lsm.shndx == -1U || shndx == lsm.shndx))
1853 {
1854 Offset_to_lineno_entry entry
1855 = { static_cast<off_t>(lsm.address),
1856 this->current_header_index_,
1857 static_cast<unsigned int>(lsm.file_num),
1858 true, lsm.line_num };
1859 std::vector<Offset_to_lineno_entry>&
1860 map(this->line_number_map_[lsm.shndx]);
1861 // If we see two consecutive entries with the same
1862 // offset and a real line number, then mark the first
1863 // one as non-canonical.
1864 if (!map.empty()
1865 && (map.back().offset == static_cast<off_t>(lsm.address))
1866 && lsm.line_num != -1
1867 && map.back().line_num != -1)
1868 map.back().last_line_for_offset = false;
1869 map.push_back(entry);
1870 }
1871 lineptr += oplength;
1872 }
1873 }
1874
1875 return lengthstart + header_.total_length;
1876 }
1877
1878 // Read the relocations into a Reloc_map.
1879
1880 template<int size, bool big_endian>
1881 void
1882 Sized_dwarf_line_info<size, big_endian>::read_relocs()
1883 {
1884 if (this->symtab_buffer_ == NULL)
1885 return;
1886
1887 off_t value;
1888 off_t reloc_offset;
1889 while ((reloc_offset = this->reloc_mapper_->next_offset()) != -1)
1890 {
1891 const unsigned int shndx =
1892 this->reloc_mapper_->get_reloc_target(reloc_offset, &value);
1893
1894 // There is no reason to record non-ordinary section indexes, or
1895 // SHN_UNDEF, because they will never match the real section.
1896 if (shndx != 0)
1897 this->reloc_map_[reloc_offset] = std::make_pair(shndx, value);
1898
1899 this->reloc_mapper_->advance(reloc_offset + 1);
1900 }
1901 }
1902
1903 // Read the line number info.
1904
1905 template<int size, bool big_endian>
1906 void
1907 Sized_dwarf_line_info<size, big_endian>::read_line_mappings(unsigned int shndx)
1908 {
1909 gold_assert(this->data_valid_ == true);
1910
1911 this->read_relocs();
1912 while (this->buffer_ < this->buffer_end_)
1913 {
1914 const unsigned char* lineptr = this->buffer_;
1915 lineptr = this->read_header_prolog(lineptr);
1916 lineptr = this->read_header_tables(lineptr);
1917 lineptr = this->read_lines(lineptr, shndx);
1918 this->buffer_ = lineptr;
1919 }
1920
1921 // Sort the lines numbers, so addr2line can use binary search.
1922 for (typename Lineno_map::iterator it = line_number_map_.begin();
1923 it != line_number_map_.end();
1924 ++it)
1925 // Each vector needs to be sorted by offset.
1926 std::sort(it->second.begin(), it->second.end());
1927 }
1928
1929 // Some processing depends on whether the input is a .o file or not.
1930 // For instance, .o files have relocs, and have .debug_lines
1931 // information on a per section basis. .so files, on the other hand,
1932 // lack relocs, and offsets are unique, so we can ignore the section
1933 // information.
1934
1935 template<int size, bool big_endian>
1936 bool
1937 Sized_dwarf_line_info<size, big_endian>::input_is_relobj()
1938 {
1939 // Only .o files have relocs and the symtab buffer that goes with them.
1940 return this->symtab_buffer_ != NULL;
1941 }
1942
1943 // Given an Offset_to_lineno_entry vector, and an offset, figure out
1944 // if the offset points into a function according to the vector (see
1945 // comments below for the algorithm). If it does, return an iterator
1946 // into the vector that points to the line-number that contains that
1947 // offset. If not, it returns vector::end().
1948
1949 static std::vector<Offset_to_lineno_entry>::const_iterator
1950 offset_to_iterator(const std::vector<Offset_to_lineno_entry>* offsets,
1951 off_t offset)
1952 {
1953 const Offset_to_lineno_entry lookup_key = { offset, 0, 0, true, 0 };
1954
1955 // lower_bound() returns the smallest offset which is >= lookup_key.
1956 // If no offset in offsets is >= lookup_key, returns end().
1957 std::vector<Offset_to_lineno_entry>::const_iterator it
1958 = std::lower_bound(offsets->begin(), offsets->end(), lookup_key);
1959
1960 // This code is easiest to understand with a concrete example.
1961 // Here's a possible offsets array:
1962 // {{offset = 3211, header_num = 0, file_num = 1, last, line_num = 16}, // 0
1963 // {offset = 3224, header_num = 0, file_num = 1, last, line_num = 20}, // 1
1964 // {offset = 3226, header_num = 0, file_num = 1, last, line_num = 22}, // 2
1965 // {offset = 3231, header_num = 0, file_num = 1, last, line_num = 25}, // 3
1966 // {offset = 3232, header_num = 0, file_num = 1, last, line_num = -1}, // 4
1967 // {offset = 3232, header_num = 0, file_num = 1, last, line_num = 65}, // 5
1968 // {offset = 3235, header_num = 0, file_num = 1, last, line_num = 66}, // 6
1969 // {offset = 3236, header_num = 0, file_num = 1, last, line_num = -1}, // 7
1970 // {offset = 5764, header_num = 0, file_num = 1, last, line_num = 48}, // 8
1971 // {offset = 5764, header_num = 0, file_num = 1,!last, line_num = 47}, // 9
1972 // {offset = 5765, header_num = 0, file_num = 1, last, line_num = 49}, // 10
1973 // {offset = 5767, header_num = 0, file_num = 1, last, line_num = 50}, // 11
1974 // {offset = 5768, header_num = 0, file_num = 1, last, line_num = 51}, // 12
1975 // {offset = 5773, header_num = 0, file_num = 1, last, line_num = -1}, // 13
1976 // {offset = 5787, header_num = 1, file_num = 1, last, line_num = 19}, // 14
1977 // {offset = 5790, header_num = 1, file_num = 1, last, line_num = 20}, // 15
1978 // {offset = 5793, header_num = 1, file_num = 1, last, line_num = 67}, // 16
1979 // {offset = 5793, header_num = 1, file_num = 1, last, line_num = -1}, // 17
1980 // {offset = 5793, header_num = 1, file_num = 1,!last, line_num = 66}, // 18
1981 // {offset = 5795, header_num = 1, file_num = 1, last, line_num = 68}, // 19
1982 // {offset = 5798, header_num = 1, file_num = 1, last, line_num = -1}, // 20
1983 // The entries with line_num == -1 mark the end of a function: the
1984 // associated offset is one past the last instruction in the
1985 // function. This can correspond to the beginning of the next
1986 // function (as is true for offset 3232); alternately, there can be
1987 // a gap between the end of one function and the start of the next
1988 // (as is true for some others, most obviously from 3236->5764).
1989 //
1990 // Case 1: lookup_key has offset == 10. lower_bound returns
1991 // offsets[0]. Since it's not an exact match and we're
1992 // at the beginning of offsets, we return end() (invalid).
1993 // Case 2: lookup_key has offset 10000. lower_bound returns
1994 // offset[21] (end()). We return end() (invalid).
1995 // Case 3: lookup_key has offset == 3211. lower_bound matches
1996 // offsets[0] exactly, and that's the entry we return.
1997 // Case 4: lookup_key has offset == 3232. lower_bound returns
1998 // offsets[4]. That's an exact match, but indicates
1999 // end-of-function. We check if offsets[5] is also an
2000 // exact match but not end-of-function. It is, so we
2001 // return offsets[5].
2002 // Case 5: lookup_key has offset == 3214. lower_bound returns
2003 // offsets[1]. Since it's not an exact match, we back
2004 // up to the offset that's < lookup_key, offsets[0].
2005 // We note offsets[0] is a valid entry (not end-of-function),
2006 // so that's the entry we return.
2007 // Case 6: lookup_key has offset == 4000. lower_bound returns
2008 // offsets[8]. Since it's not an exact match, we back
2009 // up to offsets[7]. Since offsets[7] indicates
2010 // end-of-function, we know lookup_key is between
2011 // functions, so we return end() (not a valid offset).
2012 // Case 7: lookup_key has offset == 5794. lower_bound returns
2013 // offsets[19]. Since it's not an exact match, we back
2014 // up to offsets[16]. Note we back up to the *first*
2015 // entry with offset 5793, not just offsets[19-1].
2016 // We note offsets[16] is a valid entry, so we return it.
2017 // If offsets[16] had had line_num == -1, we would have
2018 // checked offsets[17]. The reason for this is that
2019 // 16 and 17 can be in an arbitrary order, since we sort
2020 // only by offset and last_line_for_offset. (Note it
2021 // doesn't help to use line_number as a tertiary sort key,
2022 // since sometimes we want the -1 to be first and sometimes
2023 // we want it to be last.)
2024
2025 // This deals with cases (1) and (2).
2026 if ((it == offsets->begin() && offset < it->offset)
2027 || it == offsets->end())
2028 return offsets->end();
2029
2030 // This deals with cases (3) and (4).
2031 if (offset == it->offset)
2032 {
2033 while (it != offsets->end()
2034 && it->offset == offset
2035 && it->line_num == -1)
2036 ++it;
2037 if (it == offsets->end() || it->offset != offset)
2038 return offsets->end();
2039 else
2040 return it;
2041 }
2042
2043 // This handles the first part of case (7) -- we back up to the
2044 // *first* entry that has the offset that's behind us.
2045 gold_assert(it != offsets->begin());
2046 std::vector<Offset_to_lineno_entry>::const_iterator range_end = it;
2047 --it;
2048 const off_t range_value = it->offset;
2049 while (it != offsets->begin() && (it-1)->offset == range_value)
2050 --it;
2051
2052 // This handles cases (5), (6), and (7): if any entry in the
2053 // equal_range [it, range_end) has a line_num != -1, it's a valid
2054 // match. If not, we're not in a function. The line number we saw
2055 // last for an offset will be sorted first, so it'll get returned if
2056 // it's present.
2057 for (; it != range_end; ++it)
2058 if (it->line_num != -1)
2059 return it;
2060 return offsets->end();
2061 }
2062
2063 // Returns the canonical filename:lineno for the address passed in.
2064 // If other_lines is not NULL, appends the non-canonical lines
2065 // assigned to the same address.
2066
2067 template<int size, bool big_endian>
2068 std::string
2069 Sized_dwarf_line_info<size, big_endian>::do_addr2line(
2070 unsigned int shndx,
2071 off_t offset,
2072 std::vector<std::string>* other_lines)
2073 {
2074 if (this->data_valid_ == false)
2075 return "";
2076
2077 const std::vector<Offset_to_lineno_entry>* offsets;
2078 // If we do not have reloc information, then our input is a .so or
2079 // some similar data structure where all the information is held in
2080 // the offset. In that case, we ignore the input shndx.
2081 if (this->input_is_relobj())
2082 offsets = &this->line_number_map_[shndx];
2083 else
2084 offsets = &this->line_number_map_[-1U];
2085 if (offsets->empty())
2086 return "";
2087
2088 typename std::vector<Offset_to_lineno_entry>::const_iterator it
2089 = offset_to_iterator(offsets, offset);
2090 if (it == offsets->end())
2091 return "";
2092
2093 std::string result = this->format_file_lineno(*it);
2094 if (other_lines != NULL)
2095 for (++it; it != offsets->end() && it->offset == offset; ++it)
2096 {
2097 if (it->line_num == -1)
2098 continue; // The end of a previous function.
2099 other_lines->push_back(this->format_file_lineno(*it));
2100 }
2101 return result;
2102 }
2103
2104 // Convert the file_num + line_num into a string.
2105
2106 template<int size, bool big_endian>
2107 std::string
2108 Sized_dwarf_line_info<size, big_endian>::format_file_lineno(
2109 const Offset_to_lineno_entry& loc) const
2110 {
2111 std::string ret;
2112
2113 gold_assert(loc.header_num < static_cast<int>(this->files_.size()));
2114 gold_assert(loc.file_num
2115 < static_cast<unsigned int>(this->files_[loc.header_num].size()));
2116 const std::pair<int, std::string>& filename_pair
2117 = this->files_[loc.header_num][loc.file_num];
2118 const std::string& filename = filename_pair.second;
2119
2120 gold_assert(loc.header_num < static_cast<int>(this->directories_.size()));
2121 gold_assert(filename_pair.first
2122 < static_cast<int>(this->directories_[loc.header_num].size()));
2123 const std::string& dirname
2124 = this->directories_[loc.header_num][filename_pair.first];
2125
2126 if (!dirname.empty())
2127 {
2128 ret += dirname;
2129 ret += "/";
2130 }
2131 ret += filename;
2132 if (ret.empty())
2133 ret = "(unknown)";
2134
2135 char buffer[64]; // enough to hold a line number
2136 snprintf(buffer, sizeof(buffer), "%d", loc.line_num);
2137 ret += ":";
2138 ret += buffer;
2139
2140 return ret;
2141 }
2142
2143 // Dwarf_line_info routines.
2144
2145 static unsigned int next_generation_count = 0;
2146
2147 struct Addr2line_cache_entry
2148 {
2149 Object* object;
2150 unsigned int shndx;
2151 Dwarf_line_info* dwarf_line_info;
2152 unsigned int generation_count;
2153 unsigned int access_count;
2154
2155 Addr2line_cache_entry(Object* o, unsigned int s, Dwarf_line_info* d)
2156 : object(o), shndx(s), dwarf_line_info(d),
2157 generation_count(next_generation_count), access_count(0)
2158 {
2159 if (next_generation_count < (1U << 31))
2160 ++next_generation_count;
2161 }
2162 };
2163 // We expect this cache to be small, so don't bother with a hashtable
2164 // or priority queue or anything: just use a simple vector.
2165 static std::vector<Addr2line_cache_entry> addr2line_cache;
2166
2167 std::string
2168 Dwarf_line_info::one_addr2line(Object* object,
2169 unsigned int shndx, off_t offset,
2170 size_t cache_size,
2171 std::vector<std::string>* other_lines)
2172 {
2173 Dwarf_line_info* lineinfo = NULL;
2174 std::vector<Addr2line_cache_entry>::iterator it;
2175
2176 // First, check the cache. If we hit, update the counts.
2177 for (it = addr2line_cache.begin(); it != addr2line_cache.end(); ++it)
2178 {
2179 if (it->object == object && it->shndx == shndx)
2180 {
2181 lineinfo = it->dwarf_line_info;
2182 it->generation_count = next_generation_count;
2183 // We cap generation_count at 2^31 -1 to avoid overflow.
2184 if (next_generation_count < (1U << 31))
2185 ++next_generation_count;
2186 // We cap access_count at 31 so 2^access_count doesn't overflow
2187 if (it->access_count < 31)
2188 ++it->access_count;
2189 break;
2190 }
2191 }
2192
2193 // If we don't hit the cache, create a new object and insert into the
2194 // cache.
2195 if (lineinfo == NULL)
2196 {
2197 switch (parameters->size_and_endianness())
2198 {
2199 #ifdef HAVE_TARGET_32_LITTLE
2200 case Parameters::TARGET_32_LITTLE:
2201 lineinfo = new Sized_dwarf_line_info<32, false>(object, shndx); break;
2202 #endif
2203 #ifdef HAVE_TARGET_32_BIG
2204 case Parameters::TARGET_32_BIG:
2205 lineinfo = new Sized_dwarf_line_info<32, true>(object, shndx); break;
2206 #endif
2207 #ifdef HAVE_TARGET_64_LITTLE
2208 case Parameters::TARGET_64_LITTLE:
2209 lineinfo = new Sized_dwarf_line_info<64, false>(object, shndx); break;
2210 #endif
2211 #ifdef HAVE_TARGET_64_BIG
2212 case Parameters::TARGET_64_BIG:
2213 lineinfo = new Sized_dwarf_line_info<64, true>(object, shndx); break;
2214 #endif
2215 default:
2216 gold_unreachable();
2217 }
2218 addr2line_cache.push_back(Addr2line_cache_entry(object, shndx, lineinfo));
2219 }
2220
2221 // Now that we have our object, figure out the answer
2222 std::string retval = lineinfo->addr2line(shndx, offset, other_lines);
2223
2224 // Finally, if our cache has grown too big, delete old objects. We
2225 // assume the common (probably only) case is deleting only one object.
2226 // We use a pretty simple scheme to evict: function of LRU and MFU.
2227 while (addr2line_cache.size() > cache_size)
2228 {
2229 unsigned int lowest_score = ~0U;
2230 std::vector<Addr2line_cache_entry>::iterator lowest
2231 = addr2line_cache.end();
2232 for (it = addr2line_cache.begin(); it != addr2line_cache.end(); ++it)
2233 {
2234 const unsigned int score = (it->generation_count
2235 + (1U << it->access_count));
2236 if (score < lowest_score)
2237 {
2238 lowest_score = score;
2239 lowest = it;
2240 }
2241 }
2242 if (lowest != addr2line_cache.end())
2243 {
2244 delete lowest->dwarf_line_info;
2245 addr2line_cache.erase(lowest);
2246 }
2247 }
2248
2249 return retval;
2250 }
2251
2252 void
2253 Dwarf_line_info::clear_addr2line_cache()
2254 {
2255 for (std::vector<Addr2line_cache_entry>::iterator it = addr2line_cache.begin();
2256 it != addr2line_cache.end();
2257 ++it)
2258 delete it->dwarf_line_info;
2259 addr2line_cache.clear();
2260 }
2261
2262 #ifdef HAVE_TARGET_32_LITTLE
2263 template
2264 class Sized_dwarf_line_info<32, false>;
2265 #endif
2266
2267 #ifdef HAVE_TARGET_32_BIG
2268 template
2269 class Sized_dwarf_line_info<32, true>;
2270 #endif
2271
2272 #ifdef HAVE_TARGET_64_LITTLE
2273 template
2274 class Sized_dwarf_line_info<64, false>;
2275 #endif
2276
2277 #ifdef HAVE_TARGET_64_BIG
2278 template
2279 class Sized_dwarf_line_info<64, true>;
2280 #endif
2281
2282 } // End namespace gold.