]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gold/gold.cc
2891d16c7c95c3bc7a690e392041293673d8082c
[thirdparty/binutils-gdb.git] / gold / gold.cc
1 // gold.cc -- main linker functions
2
3 // Copyright (C) 2006-2022 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstdio>
27 #include <cstring>
28 #include <unistd.h>
29 #include <algorithm>
30 #include "libiberty.h"
31
32 #include "options.h"
33 #include "target-select.h"
34 #include "debug.h"
35 #include "workqueue.h"
36 #include "dirsearch.h"
37 #include "readsyms.h"
38 #include "symtab.h"
39 #include "common.h"
40 #include "object.h"
41 #include "layout.h"
42 #include "reloc.h"
43 #include "defstd.h"
44 #include "plugin.h"
45 #include "gc.h"
46 #include "icf.h"
47 #include "incremental.h"
48 #include "timer.h"
49
50 namespace gold
51 {
52
53 class Object;
54
55 const char* program_name;
56
57 static Task*
58 process_incremental_input(Incremental_binary*, unsigned int, Input_objects*,
59 Symbol_table*, Layout*, Dirsearch*, Mapfile*,
60 Task_token*, Task_token*);
61
62 void
63 gold_exit(Exit_status status)
64 {
65 if (parameters != NULL
66 && parameters->options_valid()
67 && parameters->options().has_plugins())
68 parameters->options().plugins()->cleanup();
69 if (status != GOLD_OK && parameters != NULL && parameters->options_valid())
70 unlink_if_ordinary(parameters->options().output_file_name());
71 exit(status);
72 }
73
74 void
75 gold_nomem()
76 {
77 // We are out of memory, so try hard to print a reasonable message.
78 // Note that we don't try to translate this message, since the
79 // translation process itself will require memory.
80
81 // LEN only exists to avoid a pointless warning when write is
82 // declared with warn_use_result, as when compiling with
83 // -D_USE_FORTIFY on GNU/Linux. Casting to void does not appear to
84 // work, at least not with gcc 4.3.0.
85
86 ssize_t len = write(2, program_name, strlen(program_name));
87 if (len >= 0)
88 {
89 const char* const s = ": out of memory\n";
90 len = write(2, s, strlen(s));
91 }
92 gold_exit(GOLD_ERR);
93 }
94
95 // Handle an unreachable case.
96
97 void
98 do_gold_unreachable(const char* filename, int lineno, const char* function)
99 {
100 fprintf(stderr, _("%s: internal error in %s, at %s:%d\n"),
101 program_name, function, filename, lineno);
102 gold_exit(GOLD_ERR);
103 }
104
105 // This class arranges to run the functions done in the middle of the
106 // link. It is just a closure.
107
108 class Middle_runner : public Task_function_runner
109 {
110 public:
111 Middle_runner(const General_options& options,
112 const Input_objects* input_objects,
113 Symbol_table* symtab,
114 Layout* layout, Mapfile* mapfile)
115 : options_(options), input_objects_(input_objects), symtab_(symtab),
116 layout_(layout), mapfile_(mapfile)
117 { }
118
119 void
120 run(Workqueue*, const Task*);
121
122 private:
123 const General_options& options_;
124 const Input_objects* input_objects_;
125 Symbol_table* symtab_;
126 Layout* layout_;
127 Mapfile* mapfile_;
128 };
129
130 void
131 Middle_runner::run(Workqueue* workqueue, const Task* task)
132 {
133 queue_middle_tasks(this->options_, task, this->input_objects_, this->symtab_,
134 this->layout_, workqueue, this->mapfile_);
135 }
136
137 // This class arranges the tasks to process the relocs for garbage collection.
138
139 class Gc_runner : public Task_function_runner
140 {
141 public:
142 Gc_runner(const General_options& options,
143 const Input_objects* input_objects,
144 Symbol_table* symtab,
145 Layout* layout, Mapfile* mapfile)
146 : options_(options), input_objects_(input_objects), symtab_(symtab),
147 layout_(layout), mapfile_(mapfile)
148 { }
149
150 void
151 run(Workqueue*, const Task*);
152
153 private:
154 const General_options& options_;
155 const Input_objects* input_objects_;
156 Symbol_table* symtab_;
157 Layout* layout_;
158 Mapfile* mapfile_;
159 };
160
161 void
162 Gc_runner::run(Workqueue* workqueue, const Task* task)
163 {
164 queue_middle_gc_tasks(this->options_, task, this->input_objects_,
165 this->symtab_, this->layout_, workqueue,
166 this->mapfile_);
167 }
168
169 // Queue up the initial set of tasks for this link job.
170
171 void
172 queue_initial_tasks(const General_options& options,
173 Dirsearch& search_path,
174 const Command_line& cmdline,
175 Workqueue* workqueue, Input_objects* input_objects,
176 Symbol_table* symtab, Layout* layout, Mapfile* mapfile)
177 {
178 if (cmdline.number_of_input_files() == 0)
179 {
180 bool is_ok = false;
181 if (options.printed_version())
182 is_ok = true;
183 if (options.print_output_format())
184 {
185 print_output_format();
186 is_ok = true;
187 }
188 if (is_ok)
189 gold_exit(GOLD_OK);
190 gold_fatal(_("no input files"));
191 }
192
193 int thread_count = options.thread_count_initial();
194 if (thread_count == 0)
195 thread_count = cmdline.number_of_input_files();
196 workqueue->set_thread_count(thread_count);
197
198 // For incremental links, the base output file.
199 Incremental_binary* ibase = NULL;
200
201 if (parameters->incremental_update())
202 {
203 Output_file* of = new Output_file(options.output_file_name());
204 if (of->open_base_file(options.incremental_base(), true))
205 {
206 ibase = open_incremental_binary(of);
207 if (ibase != NULL
208 && ibase->check_inputs(cmdline, layout->incremental_inputs()))
209 ibase->init_layout(layout);
210 else
211 {
212 delete ibase;
213 ibase = NULL;
214 of->close();
215 }
216 }
217 if (ibase == NULL)
218 {
219 if (set_parameters_incremental_full())
220 gold_info(_("linking with --incremental-full"));
221 else
222 gold_fallback(_("restart link with --incremental-full"));
223 }
224 }
225
226 // Read the input files. We have to add the symbols to the symbol
227 // table in order. We do this by creating a separate blocker for
228 // each input file. We associate the blocker with the following
229 // input file, to give us a convenient place to delete it.
230 Task_token* this_blocker = NULL;
231 if (ibase == NULL)
232 {
233 // Normal link. Queue a Read_symbols task for each input file
234 // on the command line.
235 for (Command_line::const_iterator p = cmdline.begin();
236 p != cmdline.end();
237 ++p)
238 {
239 Task_token* next_blocker = new Task_token(true);
240 next_blocker->add_blocker();
241 workqueue->queue(new Read_symbols(input_objects, symtab, layout,
242 &search_path, 0, mapfile, &*p, NULL,
243 NULL, this_blocker, next_blocker));
244 this_blocker = next_blocker;
245 }
246 }
247 else
248 {
249 // Incremental update link. Process the list of input files
250 // stored in the base file, and queue a task for each file:
251 // a Read_symbols task for a changed file, and an Add_symbols task
252 // for an unchanged file. We need to mark all the space used by
253 // unchanged files before we can start any tasks running.
254 unsigned int input_file_count = ibase->input_file_count();
255 std::vector<Task*> tasks;
256 tasks.reserve(input_file_count);
257 for (unsigned int i = 0; i < input_file_count; ++i)
258 {
259 Task_token* next_blocker = new Task_token(true);
260 next_blocker->add_blocker();
261 Task* t = process_incremental_input(ibase, i, input_objects, symtab,
262 layout, &search_path, mapfile,
263 this_blocker, next_blocker);
264 tasks.push_back(t);
265 this_blocker = next_blocker;
266 }
267 // Now we can queue the tasks.
268 for (unsigned int i = 0; i < tasks.size(); i++)
269 workqueue->queue(tasks[i]);
270 }
271
272 if (options.has_plugins())
273 {
274 Task_token* next_blocker = new Task_token(true);
275 next_blocker->add_blocker();
276 workqueue->queue(new Plugin_hook(options, input_objects, symtab, layout,
277 &search_path, mapfile, this_blocker,
278 next_blocker));
279 this_blocker = next_blocker;
280 }
281
282 if (options.relocatable()
283 && (options.gc_sections() || options.icf_enabled()))
284 gold_error(_("cannot mix -r with --gc-sections or --icf"));
285
286 if (options.gc_sections() || options.icf_enabled())
287 {
288 workqueue->queue(new Task_function(new Gc_runner(options,
289 input_objects,
290 symtab,
291 layout,
292 mapfile),
293 this_blocker,
294 "Task_function Gc_runner"));
295 }
296 else
297 {
298 workqueue->queue(new Task_function(new Middle_runner(options,
299 input_objects,
300 symtab,
301 layout,
302 mapfile),
303 this_blocker,
304 "Task_function Middle_runner"));
305 }
306 }
307
308 // Process an incremental input file: if it is unchanged from the previous
309 // link, return a task to add its symbols from the base file's incremental
310 // info; if it has changed, return a normal Read_symbols task. We create a
311 // task for every input file, if only to report the file for rebuilding the
312 // incremental info.
313
314 static Task*
315 process_incremental_input(Incremental_binary* ibase,
316 unsigned int input_file_index,
317 Input_objects* input_objects,
318 Symbol_table* symtab,
319 Layout* layout,
320 Dirsearch* search_path,
321 Mapfile* mapfile,
322 Task_token* this_blocker,
323 Task_token* next_blocker)
324 {
325 const Incremental_binary::Input_reader* input_reader =
326 ibase->get_input_reader(input_file_index);
327 Incremental_input_type input_type = input_reader->type();
328
329 // Get the input argument corresponding to this input file, matching on
330 // the argument serial number. If the input file cannot be matched
331 // to an existing input argument, synthesize a new one.
332 const Input_argument* input_argument =
333 ibase->get_input_argument(input_file_index);
334 if (input_argument == NULL)
335 {
336 Input_file_argument file(input_reader->filename(),
337 Input_file_argument::INPUT_FILE_TYPE_FILE,
338 "", false, parameters->options());
339 Input_argument* arg = new Input_argument(file);
340 arg->set_script_info(ibase->get_script_info(input_file_index));
341 input_argument = arg;
342 }
343
344 gold_debug(DEBUG_INCREMENTAL, "Incremental object: %s, type %d",
345 input_reader->filename(), input_type);
346
347 if (input_type == INCREMENTAL_INPUT_SCRIPT)
348 {
349 // Incremental_binary::check_inputs should have cancelled the
350 // incremental update if the script has changed.
351 gold_assert(!ibase->file_has_changed(input_file_index));
352 return new Check_script(layout, ibase, input_file_index, input_reader,
353 this_blocker, next_blocker);
354 }
355
356 if (input_type == INCREMENTAL_INPUT_ARCHIVE)
357 {
358 Incremental_library* lib = ibase->get_library(input_file_index);
359 gold_assert(lib != NULL);
360 if (lib->filename() == "/group/"
361 || !ibase->file_has_changed(input_file_index))
362 {
363 // Queue a task to check that no references have been added to any
364 // of the library's unused symbols.
365 return new Check_library(symtab, layout, ibase, input_file_index,
366 input_reader, this_blocker, next_blocker);
367 }
368 else
369 {
370 // Queue a Read_symbols task to process the archive normally.
371 return new Read_symbols(input_objects, symtab, layout, search_path,
372 0, mapfile, input_argument, NULL, NULL,
373 this_blocker, next_blocker);
374 }
375 }
376
377 if (input_type == INCREMENTAL_INPUT_ARCHIVE_MEMBER)
378 {
379 // For archive members, check the timestamp of the containing archive.
380 Incremental_library* lib = ibase->get_library(input_file_index);
381 gold_assert(lib != NULL);
382 // Process members of a --start-lib/--end-lib group as normal objects.
383 if (lib->filename() != "/group/")
384 {
385 if (ibase->file_has_changed(lib->input_file_index()))
386 {
387 return new Read_member(input_objects, symtab, layout, mapfile,
388 input_reader, this_blocker, next_blocker);
389 }
390 else
391 {
392 // The previous contributions from this file will be kept.
393 // Mark the pieces of output sections contributed by this
394 // object.
395 ibase->reserve_layout(input_file_index);
396 Object* obj = make_sized_incremental_object(ibase,
397 input_file_index,
398 input_type,
399 input_reader);
400 return new Add_symbols(input_objects, symtab, layout,
401 search_path, 0, mapfile, input_argument,
402 obj, lib, NULL, this_blocker,
403 next_blocker);
404 }
405 }
406 }
407
408 // Normal object file or shared library. Check if the file has changed
409 // since the last incremental link.
410 if (ibase->file_has_changed(input_file_index))
411 {
412 return new Read_symbols(input_objects, symtab, layout, search_path, 0,
413 mapfile, input_argument, NULL, NULL,
414 this_blocker, next_blocker);
415 }
416 else
417 {
418 // The previous contributions from this file will be kept.
419 // Mark the pieces of output sections contributed by this object.
420 ibase->reserve_layout(input_file_index);
421 Object* obj = make_sized_incremental_object(ibase,
422 input_file_index,
423 input_type,
424 input_reader);
425 return new Add_symbols(input_objects, symtab, layout, search_path, 0,
426 mapfile, input_argument, obj, NULL, NULL,
427 this_blocker, next_blocker);
428 }
429 }
430
431 // Queue up a set of tasks to be done before queueing the middle set
432 // of tasks. This is only necessary when garbage collection
433 // (--gc-sections) of unused sections is desired. The relocs are read
434 // and processed here early to determine the garbage sections before the
435 // relocs can be scanned in later tasks.
436
437 void
438 queue_middle_gc_tasks(const General_options& options,
439 const Task* ,
440 const Input_objects* input_objects,
441 Symbol_table* symtab,
442 Layout* layout,
443 Workqueue* workqueue,
444 Mapfile* mapfile)
445 {
446 // Read_relocs for all the objects must be done and processed to find
447 // unused sections before any scanning of the relocs can take place.
448 Task_token* this_blocker = NULL;
449 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
450 p != input_objects->relobj_end();
451 ++p)
452 {
453 Task_token* next_blocker = new Task_token(true);
454 next_blocker->add_blocker();
455 workqueue->queue(new Read_relocs(symtab, layout, *p, this_blocker,
456 next_blocker));
457 this_blocker = next_blocker;
458 }
459
460 // If we are given only archives in input, we have no regular
461 // objects and THIS_BLOCKER is NULL here. Create a dummy
462 // blocker here so that we can run the middle tasks immediately.
463 if (this_blocker == NULL)
464 {
465 gold_assert(input_objects->number_of_relobjs() == 0);
466 this_blocker = new Task_token(true);
467 }
468
469 workqueue->queue(new Task_function(new Middle_runner(options,
470 input_objects,
471 symtab,
472 layout,
473 mapfile),
474 this_blocker,
475 "Task_function Middle_runner"));
476 }
477
478 // Queue up the middle set of tasks. These are the tasks which run
479 // after all the input objects have been found and all the symbols
480 // have been read, but before we lay out the output file.
481
482 void
483 queue_middle_tasks(const General_options& options,
484 const Task* task,
485 const Input_objects* input_objects,
486 Symbol_table* symtab,
487 Layout* layout,
488 Workqueue* workqueue,
489 Mapfile* mapfile)
490 {
491 Timer* timer = parameters->timer();
492 if (timer != NULL)
493 timer->stamp(0);
494
495 // We have to support the case of not seeing any input objects, and
496 // generate an empty file. Existing builds depend on being able to
497 // pass an empty archive to the linker and get an empty object file
498 // out. In order to do this we need to use a default target.
499 if (input_objects->number_of_input_objects() == 0
500 && layout->incremental_base() == NULL)
501 parameters_force_valid_target();
502
503 // Add any symbols named with -u options to the symbol table.
504 symtab->add_undefined_symbols_from_command_line(layout);
505
506 // If garbage collection was chosen, relocs have been read and processed
507 // at this point by pre_middle_tasks. Layout can then be done for all
508 // objects.
509 if (parameters->options().gc_sections())
510 {
511 // Find the start symbol if any.
512 Symbol* sym = symtab->lookup(parameters->entry());
513 if (sym != NULL)
514 symtab->gc_mark_symbol(sym);
515 sym = symtab->lookup(parameters->options().init());
516 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
517 symtab->gc_mark_symbol(sym);
518 sym = symtab->lookup(parameters->options().fini());
519 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
520 symtab->gc_mark_symbol(sym);
521 // Symbols named with -u should not be considered garbage.
522 symtab->gc_mark_undef_symbols(layout);
523 gold_assert(symtab->gc() != NULL);
524 // Do a transitive closure on all references to determine the worklist.
525 symtab->gc()->do_transitive_closure();
526 }
527
528 // If identical code folding (--icf) is chosen it makes sense to do it
529 // only after garbage collection (--gc-sections) as we do not want to
530 // be folding sections that will be garbage.
531 if (parameters->options().icf_enabled())
532 {
533 symtab->icf()->find_identical_sections(input_objects, symtab);
534 }
535
536 // Call Object::layout for the second time to determine the
537 // output_sections for all referenced input sections. When
538 // --gc-sections or --icf is turned on, or when certain input
539 // sections have to be mapped to unique segments, Object::layout
540 // is called twice. It is called the first time when symbols
541 // are added.
542 if (parameters->options().gc_sections()
543 || parameters->options().icf_enabled()
544 || layout->is_unique_segment_for_sections_specified())
545 {
546 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
547 p != input_objects->relobj_end();
548 ++p)
549 {
550 Task_lock_obj<Object> tlo(task, *p);
551 (*p)->layout(symtab, layout, NULL);
552 }
553 }
554
555 // Layout deferred objects due to plugins.
556 if (parameters->options().has_plugins())
557 {
558 Plugin_manager* plugins = parameters->options().plugins();
559 gold_assert(plugins != NULL);
560 plugins->layout_deferred_objects();
561 }
562
563 // Finalize the .eh_frame section.
564 layout->finalize_eh_frame_section();
565
566 /* If plugins have specified a section order, re-arrange input sections
567 according to a specified section order. If --section-ordering-file is
568 also specified, do not do anything here. */
569 if (parameters->options().has_plugins()
570 && layout->is_section_ordering_specified()
571 && !parameters->options().section_ordering_file ())
572 {
573 for (Layout::Section_list::const_iterator p
574 = layout->section_list().begin();
575 p != layout->section_list().end();
576 ++p)
577 (*p)->update_section_layout(layout->get_section_order_map());
578 }
579
580 if (parameters->options().gc_sections()
581 || parameters->options().icf_enabled())
582 {
583 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
584 p != input_objects->relobj_end();
585 ++p)
586 {
587 // Update the value of output_section stored in rd.
588 Read_relocs_data* rd = (*p)->get_relocs_data();
589 for (Read_relocs_data::Relocs_list::iterator q = rd->relocs.begin();
590 q != rd->relocs.end();
591 ++q)
592 {
593 q->output_section = (*p)->output_section(q->data_shndx);
594 q->needs_special_offset_handling =
595 (*p)->is_output_section_offset_invalid(q->data_shndx);
596 }
597 }
598 }
599
600 int thread_count = options.thread_count_middle();
601 if (thread_count == 0)
602 thread_count = std::max(2, input_objects->number_of_input_objects());
603 workqueue->set_thread_count(thread_count);
604
605 // Now we have seen all the input files.
606 const bool doing_static_link =
607 (!input_objects->any_dynamic()
608 && !parameters->options().output_is_position_independent());
609 set_parameters_doing_static_link(doing_static_link);
610 if (!doing_static_link && options.is_static())
611 {
612 // We print out just the first .so we see; there may be others.
613 gold_assert(input_objects->dynobj_begin() != input_objects->dynobj_end());
614 gold_error(_("cannot mix -static with dynamic object %s"),
615 (*input_objects->dynobj_begin())->name().c_str());
616 }
617 if (!doing_static_link && parameters->options().relocatable())
618 gold_fatal(_("cannot mix -r with dynamic object %s"),
619 (*input_objects->dynobj_begin())->name().c_str());
620 if (!doing_static_link
621 && options.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
622 gold_fatal(_("cannot use non-ELF output format with dynamic object %s"),
623 (*input_objects->dynobj_begin())->name().c_str());
624
625 if (parameters->options().relocatable())
626 {
627 Input_objects::Relobj_iterator p = input_objects->relobj_begin();
628 if (p != input_objects->relobj_end())
629 {
630 bool uses_split_stack = (*p)->uses_split_stack();
631 for (++p; p != input_objects->relobj_end(); ++p)
632 {
633 if ((*p)->uses_split_stack() != uses_split_stack)
634 {
635 const char *name1
636 = (*input_objects->relobj_begin())->name().c_str();
637 const char *name2 = (*p)->name().c_str();
638 const char *name_split = uses_split_stack ? name1 : name2;
639 const char *name_nosplit = uses_split_stack ? name2 : name1;
640 gold_fatal(_("cannot mix split-stack '%s' and "
641 "non-split-stack '%s' when using -r"),
642 name_split, name_nosplit);
643 }
644 }
645 }
646 }
647
648 // For incremental updates, record the existing GOT and PLT entries,
649 // and the COPY relocations.
650 if (parameters->incremental_update())
651 {
652 Incremental_binary* ibase = layout->incremental_base();
653 ibase->process_got_plt(symtab, layout);
654 ibase->emit_copy_relocs(symtab);
655 }
656
657 if (is_debugging_enabled(DEBUG_SCRIPT))
658 layout->script_options()->print(stderr);
659
660 // For each dynamic object, record whether we've seen all the
661 // dynamic objects that it depends upon.
662 input_objects->check_dynamic_dependencies();
663
664 // Do the --no-undefined-version check.
665 if (!parameters->options().undefined_version())
666 {
667 Script_options* so = layout->script_options();
668 so->version_script_info()->check_unmatched_names(symtab);
669 }
670
671 // Create any automatic note sections.
672 layout->create_notes();
673
674 // Create any output sections required by any linker script.
675 layout->create_script_sections();
676
677 // Define some sections and symbols needed for a dynamic link. This
678 // handles some cases we want to see before we read the relocs.
679 layout->create_initial_dynamic_sections(symtab);
680
681 // Define symbols from any linker scripts.
682 layout->define_script_symbols(symtab);
683
684 // TODO(csilvers): figure out a more principled way to get the target
685 Target* target = const_cast<Target*>(&parameters->target());
686
687 // Attach sections to segments.
688 layout->attach_sections_to_segments(target);
689
690 if (!parameters->options().relocatable())
691 {
692 // Predefine standard symbols.
693 define_standard_symbols(symtab, layout);
694
695 // Define __start and __stop symbols for output sections where
696 // appropriate.
697 layout->define_section_symbols(symtab);
698
699 // Define target-specific symbols.
700 target->define_standard_symbols(symtab, layout);
701 }
702
703 // Make sure we have symbols for any required group signatures.
704 layout->define_group_signatures(symtab);
705
706 Task_token* this_blocker = NULL;
707
708 // Allocate common symbols. We use a blocker to run this before the
709 // Scan_relocs tasks, because it writes to the symbol table just as
710 // they do.
711 if (parameters->options().define_common())
712 {
713 this_blocker = new Task_token(true);
714 this_blocker->add_blocker();
715 workqueue->queue(new Allocate_commons_task(symtab, layout, mapfile,
716 this_blocker));
717 }
718
719 // If doing garbage collection, the relocations have already been read.
720 // Otherwise, read and scan the relocations.
721 if (parameters->options().gc_sections()
722 || parameters->options().icf_enabled())
723 {
724 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
725 p != input_objects->relobj_end();
726 ++p)
727 {
728 Task_token* next_blocker = new Task_token(true);
729 next_blocker->add_blocker();
730 workqueue->queue(new Scan_relocs(symtab, layout, *p,
731 (*p)->get_relocs_data(),
732 this_blocker, next_blocker));
733 this_blocker = next_blocker;
734 }
735 }
736 else
737 {
738 // Read the relocations of the input files. We do this to find
739 // which symbols are used by relocations which require a GOT and/or
740 // a PLT entry, or a COPY reloc. When we implement garbage
741 // collection we will do it here by reading the relocations in a
742 // breadth first search by references.
743 //
744 // We could also read the relocations during the first pass, and
745 // mark symbols at that time. That is how the old GNU linker works.
746 // Doing that is more complex, since we may later decide to discard
747 // some of the sections, and thus change our minds about the types
748 // of references made to the symbols.
749 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
750 p != input_objects->relobj_end();
751 ++p)
752 {
753 Task_token* next_blocker = new Task_token(true);
754 next_blocker->add_blocker();
755 workqueue->queue(new Read_relocs(symtab, layout, *p, this_blocker,
756 next_blocker));
757 this_blocker = next_blocker;
758 }
759 }
760
761 if (this_blocker == NULL)
762 {
763 if (input_objects->number_of_relobjs() == 0)
764 {
765 // If we are given only archives in input, we have no regular
766 // objects and THIS_BLOCKER is NULL here. Create a dummy
767 // blocker here so that we can run the layout task immediately.
768 this_blocker = new Task_token(true);
769 }
770 else
771 {
772 // If we failed to open any input files, it's possible for
773 // THIS_BLOCKER to be NULL here. There's no real point in
774 // continuing if that happens.
775 gold_assert(parameters->errors()->error_count() > 0);
776 gold_exit(GOLD_ERR);
777 }
778 }
779
780 // When all those tasks are complete, we can start laying out the
781 // output file.
782 workqueue->queue(new Task_function(new Layout_task_runner(options,
783 input_objects,
784 symtab,
785 target,
786 layout,
787 mapfile),
788 this_blocker,
789 "Task_function Layout_task_runner"));
790 }
791
792 // Queue up the final set of tasks. This is called at the end of
793 // Layout_task.
794
795 void
796 queue_final_tasks(const General_options& options,
797 const Input_objects* input_objects,
798 const Symbol_table* symtab,
799 Layout* layout,
800 Workqueue* workqueue,
801 Output_file* of)
802 {
803 Timer* timer = parameters->timer();
804 if (timer != NULL)
805 timer->stamp(1);
806
807 int thread_count = options.thread_count_final();
808 if (thread_count == 0)
809 thread_count = std::max(2, input_objects->number_of_input_objects());
810 workqueue->set_thread_count(thread_count);
811
812 bool any_postprocessing_sections = layout->any_postprocessing_sections();
813
814 // Use a blocker to wait until all the input sections have been
815 // written out.
816 Task_token* input_sections_blocker = NULL;
817 if (!any_postprocessing_sections)
818 {
819 input_sections_blocker = new Task_token(true);
820 // Write_symbols_task, Relocate_tasks.
821 input_sections_blocker->add_blocker();
822 input_sections_blocker->add_blockers(input_objects->number_of_relobjs());
823 }
824
825 // Use a blocker to block any objects which have to wait for the
826 // output sections to complete before they can apply relocations.
827 Task_token* output_sections_blocker = new Task_token(true);
828 output_sections_blocker->add_blocker();
829
830 // Use a blocker to block the final cleanup task.
831 Task_token* final_blocker = new Task_token(true);
832 // Write_symbols_task, Write_sections_task, Write_data_task,
833 // Relocate_tasks.
834 final_blocker->add_blockers(3);
835 final_blocker->add_blockers(input_objects->number_of_relobjs());
836 if (!any_postprocessing_sections)
837 final_blocker->add_blocker();
838
839 // Queue a task to write out the symbol table.
840 workqueue->queue(new Write_symbols_task(layout,
841 symtab,
842 input_objects,
843 layout->sympool(),
844 layout->dynpool(),
845 of,
846 final_blocker));
847
848 // Queue a task to write out the output sections.
849 workqueue->queue(new Write_sections_task(layout, of, output_sections_blocker,
850 input_sections_blocker,
851 final_blocker));
852
853 // Queue a task to write out everything else.
854 workqueue->queue(new Write_data_task(layout, symtab, of, final_blocker));
855
856 // Queue a task for each input object to relocate the sections and
857 // write out the local symbols.
858 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
859 p != input_objects->relobj_end();
860 ++p)
861 workqueue->queue(new Relocate_task(symtab, layout, *p, of,
862 input_sections_blocker,
863 output_sections_blocker,
864 final_blocker));
865
866 // Queue a task to write out the output sections which depend on
867 // input sections. If there are any sections which require
868 // postprocessing, then we need to do this last, since it may resize
869 // the output file.
870 if (!any_postprocessing_sections)
871 {
872 Task* t = new Write_after_input_sections_task(layout, of,
873 input_sections_blocker,
874 final_blocker);
875 workqueue->queue(t);
876 }
877 else
878 {
879 Task_token* new_final_blocker = new Task_token(true);
880 new_final_blocker->add_blocker();
881 Task* t = new Write_after_input_sections_task(layout, of,
882 final_blocker,
883 new_final_blocker);
884 workqueue->queue(t);
885 final_blocker = new_final_blocker;
886 }
887
888 // Create tasks for tree-style build ID computation, if necessary.
889 if (strcmp(options.build_id(), "tree") == 0)
890 {
891 // Queue a task to compute the build id. This will be blocked by
892 // FINAL_BLOCKER, and will in turn schedule the task to close
893 // the output file.
894 workqueue->queue(new Task_function(new Build_id_task_runner(&options,
895 layout,
896 of),
897 final_blocker,
898 "Task_function Build_id_task_runner"));
899 }
900 else
901 {
902 // Queue a task to close the output file. This will be blocked by
903 // FINAL_BLOCKER.
904 workqueue->queue(new Task_function(new Close_task_runner(&options, layout,
905 of, NULL, 0),
906 final_blocker,
907 "Task_function Close_task_runner"));
908 }
909
910 }
911
912 } // End namespace gold.