]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gold/target.h
Update year range in copyright notice of binutils files
[thirdparty/binutils-gdb.git] / gold / target.h
1 // target.h -- target support for gold -*- C++ -*-
2
3 // Copyright (C) 2006-2021 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 // The abstract class Target is the interface for target specific
24 // support. It defines abstract methods which each target must
25 // implement. Typically there will be one target per processor, but
26 // in some cases it may be necessary to have subclasses.
27
28 // For speed and consistency we want to use inline functions to handle
29 // relocation processing. So besides implementations of the abstract
30 // methods, each target is expected to define a template
31 // specialization of the relocation functions.
32
33 #ifndef GOLD_TARGET_H
34 #define GOLD_TARGET_H
35
36 #include "elfcpp.h"
37 #include "options.h"
38 #include "parameters.h"
39 #include "stringpool.h"
40 #include "debug.h"
41
42 namespace gold
43 {
44
45 class Object;
46 class Relobj;
47 template<int size, bool big_endian>
48 class Sized_relobj;
49 template<int size, bool big_endian>
50 class Sized_relobj_file;
51 class Relocatable_relocs;
52 template<int size, bool big_endian>
53 struct Relocate_info;
54 class Reloc_symbol_changes;
55 class Symbol;
56 template<int size>
57 class Sized_symbol;
58 class Symbol_table;
59 class Output_data;
60 class Output_data_got_base;
61 class Output_section;
62 class Input_objects;
63 class Task;
64 struct Symbol_location;
65 class Versions;
66
67 // The abstract class for target specific handling.
68
69 class Target
70 {
71 public:
72 virtual ~Target()
73 { }
74
75 // Return the bit size that this target implements. This should
76 // return 32 or 64.
77 int
78 get_size() const
79 { return this->pti_->size; }
80
81 // Return whether this target is big-endian.
82 bool
83 is_big_endian() const
84 { return this->pti_->is_big_endian; }
85
86 // Machine code to store in e_machine field of ELF header.
87 elfcpp::EM
88 machine_code() const
89 { return this->pti_->machine_code; }
90
91 // Processor specific flags to store in e_flags field of ELF header.
92 elfcpp::Elf_Word
93 processor_specific_flags() const
94 { return this->processor_specific_flags_; }
95
96 // Whether processor specific flags are set at least once.
97 bool
98 are_processor_specific_flags_set() const
99 { return this->are_processor_specific_flags_set_; }
100
101 // Whether this target has a specific make_symbol function.
102 bool
103 has_make_symbol() const
104 { return this->pti_->has_make_symbol; }
105
106 // Whether this target has a specific resolve function.
107 bool
108 has_resolve() const
109 { return this->pti_->has_resolve; }
110
111 // Whether this target has a specific code fill function.
112 bool
113 has_code_fill() const
114 { return this->pti_->has_code_fill; }
115
116 // Return the default name of the dynamic linker.
117 const char*
118 dynamic_linker() const
119 { return this->pti_->dynamic_linker; }
120
121 // Return the default address to use for the text segment.
122 // If a -z max-page-size argument has set the ABI page size
123 // to a value larger than the default starting address,
124 // bump the starting address up to the page size, to avoid
125 // misaligning the text segment in the file.
126 uint64_t
127 default_text_segment_address() const
128 {
129 uint64_t addr = this->pti_->default_text_segment_address;
130 uint64_t pagesize = this->abi_pagesize();
131 if (addr < pagesize)
132 addr = pagesize;
133 return addr;
134 }
135
136 // Return the ABI specified page size.
137 uint64_t
138 abi_pagesize() const
139 {
140 if (parameters->options().max_page_size() > 0)
141 return parameters->options().max_page_size();
142 else
143 return this->pti_->abi_pagesize;
144 }
145
146 // Return the common page size used on actual systems.
147 uint64_t
148 common_pagesize() const
149 {
150 if (parameters->options().common_page_size() > 0)
151 return std::min(parameters->options().common_page_size(),
152 this->abi_pagesize());
153 else
154 return std::min(this->pti_->common_pagesize,
155 this->abi_pagesize());
156 }
157
158 // Return whether PF_X segments must contain nothing but the contents of
159 // SHF_EXECINSTR sections (no non-executable data, no headers).
160 bool
161 isolate_execinstr() const
162 { return this->pti_->isolate_execinstr; }
163
164 uint64_t
165 rosegment_gap() const
166 { return this->pti_->rosegment_gap; }
167
168 // If we see some object files with .note.GNU-stack sections, and
169 // some objects files without them, this returns whether we should
170 // consider the object files without them to imply that the stack
171 // should be executable.
172 bool
173 is_default_stack_executable() const
174 { return this->pti_->is_default_stack_executable; }
175
176 // Return a character which may appear as a prefix for a wrap
177 // symbol. If this character appears, we strip it when checking for
178 // wrapping and add it back when forming the final symbol name.
179 // This should be '\0' if not special prefix is required, which is
180 // the normal case.
181 char
182 wrap_char() const
183 { return this->pti_->wrap_char; }
184
185 // Return the special section index which indicates a small common
186 // symbol. This will return SHN_UNDEF if there are no small common
187 // symbols.
188 elfcpp::Elf_Half
189 small_common_shndx() const
190 { return this->pti_->small_common_shndx; }
191
192 // Return values to add to the section flags for the section holding
193 // small common symbols.
194 elfcpp::Elf_Xword
195 small_common_section_flags() const
196 {
197 gold_assert(this->pti_->small_common_shndx != elfcpp::SHN_UNDEF);
198 return this->pti_->small_common_section_flags;
199 }
200
201 // Return the special section index which indicates a large common
202 // symbol. This will return SHN_UNDEF if there are no large common
203 // symbols.
204 elfcpp::Elf_Half
205 large_common_shndx() const
206 { return this->pti_->large_common_shndx; }
207
208 // Return values to add to the section flags for the section holding
209 // large common symbols.
210 elfcpp::Elf_Xword
211 large_common_section_flags() const
212 {
213 gold_assert(this->pti_->large_common_shndx != elfcpp::SHN_UNDEF);
214 return this->pti_->large_common_section_flags;
215 }
216
217 // This hook is called when an output section is created.
218 void
219 new_output_section(Output_section* os) const
220 { this->do_new_output_section(os); }
221
222 // This is called to tell the target to complete any sections it is
223 // handling. After this all sections must have their final size.
224 void
225 finalize_sections(Layout* layout, const Input_objects* input_objects,
226 Symbol_table* symtab)
227 { return this->do_finalize_sections(layout, input_objects, symtab); }
228
229 // Return the value to use for a global symbol which needs a special
230 // value in the dynamic symbol table. This will only be called if
231 // the backend first calls symbol->set_needs_dynsym_value().
232 uint64_t
233 dynsym_value(const Symbol* sym) const
234 { return this->do_dynsym_value(sym); }
235
236 // Return a string to use to fill out a code section. This is
237 // basically one or more NOPS which must fill out the specified
238 // length in bytes.
239 std::string
240 code_fill(section_size_type length) const
241 { return this->do_code_fill(length); }
242
243 // Return whether SYM is known to be defined by the ABI. This is
244 // used to avoid inappropriate warnings about undefined symbols.
245 bool
246 is_defined_by_abi(const Symbol* sym) const
247 { return this->do_is_defined_by_abi(sym); }
248
249 // Adjust the output file header before it is written out. VIEW
250 // points to the header in external form. LEN is the length.
251 void
252 adjust_elf_header(unsigned char* view, int len)
253 { return this->do_adjust_elf_header(view, len); }
254
255 // Return address and size to plug into eh_frame FDEs associated with a PLT.
256 void
257 plt_fde_location(const Output_data* plt, unsigned char* oview,
258 uint64_t* address, off_t* len) const
259 { return this->do_plt_fde_location(plt, oview, address, len); }
260
261 // Return whether NAME is a local label name. This is used to implement the
262 // --discard-locals options.
263 bool
264 is_local_label_name(const char* name) const
265 { return this->do_is_local_label_name(name); }
266
267 // Get the symbol index to use for a target specific reloc.
268 unsigned int
269 reloc_symbol_index(void* arg, unsigned int type) const
270 { return this->do_reloc_symbol_index(arg, type); }
271
272 // Get the addend to use for a target specific reloc.
273 uint64_t
274 reloc_addend(void* arg, unsigned int type, uint64_t addend) const
275 { return this->do_reloc_addend(arg, type, addend); }
276
277 // Return the PLT address to use for a global symbol.
278 uint64_t
279 plt_address_for_global(const Symbol* sym) const
280 { return this->do_plt_address_for_global(sym); }
281
282 // Return the PLT address to use for a local symbol.
283 uint64_t
284 plt_address_for_local(const Relobj* object, unsigned int symndx) const
285 { return this->do_plt_address_for_local(object, symndx); }
286
287 // Return the offset to use for the GOT_INDX'th got entry which is
288 // for a local tls symbol specified by OBJECT, SYMNDX.
289 int64_t
290 tls_offset_for_local(const Relobj* object,
291 unsigned int symndx,
292 unsigned int got_indx) const
293 { return do_tls_offset_for_local(object, symndx, got_indx); }
294
295 // Return the offset to use for the GOT_INDX'th got entry which is
296 // for global tls symbol GSYM.
297 int64_t
298 tls_offset_for_global(Symbol* gsym, unsigned int got_indx) const
299 { return do_tls_offset_for_global(gsym, got_indx); }
300
301 // For targets that use function descriptors, if LOC is the location
302 // of a function, modify it to point at the function entry location.
303 void
304 function_location(Symbol_location* loc) const
305 { return do_function_location(loc); }
306
307 // Return whether this target can use relocation types to determine
308 // if a function's address is taken.
309 bool
310 can_check_for_function_pointers() const
311 { return this->do_can_check_for_function_pointers(); }
312
313 // Return whether a relocation to a merged section can be processed
314 // to retrieve the contents.
315 bool
316 can_icf_inline_merge_sections () const
317 { return this->pti_->can_icf_inline_merge_sections; }
318
319 // Whether a section called SECTION_NAME may have function pointers to
320 // sections not eligible for safe ICF folding.
321 virtual bool
322 section_may_have_icf_unsafe_pointers(const char* section_name) const
323 { return this->do_section_may_have_icf_unsafe_pointers(section_name); }
324
325 // Return the base to use for the PC value in an FDE when it is
326 // encoded using DW_EH_PE_datarel. This does not appear to be
327 // documented anywhere, but it is target specific. Any use of
328 // DW_EH_PE_datarel in gcc requires defining a special macro
329 // (ASM_MAYBE_OUTPUT_ENCODED_ADDR_RTX) to output the value.
330 uint64_t
331 ehframe_datarel_base() const
332 { return this->do_ehframe_datarel_base(); }
333
334 // Return true if a reference to SYM from a reloc at *PRELOC
335 // means that the current function may call an object compiled
336 // without -fsplit-stack. SYM is known to be defined in an object
337 // compiled without -fsplit-stack.
338 bool
339 is_call_to_non_split(const Symbol* sym, const unsigned char* preloc,
340 const unsigned char* view,
341 section_size_type view_size) const
342 { return this->do_is_call_to_non_split(sym, preloc, view, view_size); }
343
344 // A function starts at OFFSET in section SHNDX in OBJECT. That
345 // function was compiled with -fsplit-stack, but it refers to a
346 // function which was compiled without -fsplit-stack. VIEW is a
347 // modifiable view of the section; VIEW_SIZE is the size of the
348 // view. The target has to adjust the function so that it allocates
349 // enough stack.
350 void
351 calls_non_split(Relobj* object, unsigned int shndx,
352 section_offset_type fnoffset, section_size_type fnsize,
353 const unsigned char* prelocs, size_t reloc_count,
354 unsigned char* view, section_size_type view_size,
355 std::string* from, std::string* to) const
356 {
357 this->do_calls_non_split(object, shndx, fnoffset, fnsize,
358 prelocs, reloc_count, view, view_size,
359 from, to);
360 }
361
362 // Make an ELF object.
363 template<int size, bool big_endian>
364 Object*
365 make_elf_object(const std::string& name, Input_file* input_file,
366 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
367 { return this->do_make_elf_object(name, input_file, offset, ehdr); }
368
369 // Make an output section.
370 Output_section*
371 make_output_section(const char* name, elfcpp::Elf_Word type,
372 elfcpp::Elf_Xword flags)
373 { return this->do_make_output_section(name, type, flags); }
374
375 // Return true if target wants to perform relaxation.
376 bool
377 may_relax() const
378 {
379 // Run the dummy relaxation pass twice if relaxation debugging is enabled.
380 if (is_debugging_enabled(DEBUG_RELAXATION))
381 return true;
382
383 return this->do_may_relax();
384 }
385
386 // Perform a relaxation pass. Return true if layout may be changed.
387 bool
388 relax(int pass, const Input_objects* input_objects, Symbol_table* symtab,
389 Layout* layout, const Task* task)
390 {
391 // Run the dummy relaxation pass twice if relaxation debugging is enabled.
392 if (is_debugging_enabled(DEBUG_RELAXATION))
393 return pass < 2;
394
395 return this->do_relax(pass, input_objects, symtab, layout, task);
396 }
397
398 // Return the target-specific name of attributes section. This is
399 // NULL if a target does not use attributes section or if it uses
400 // the default section name ".gnu.attributes".
401 const char*
402 attributes_section() const
403 { return this->pti_->attributes_section; }
404
405 // Return the vendor name of vendor attributes.
406 const char*
407 attributes_vendor() const
408 { return this->pti_->attributes_vendor; }
409
410 // Whether a section called NAME is an attribute section.
411 bool
412 is_attributes_section(const char* name) const
413 {
414 return ((this->pti_->attributes_section != NULL
415 && strcmp(name, this->pti_->attributes_section) == 0)
416 || strcmp(name, ".gnu.attributes") == 0);
417 }
418
419 // Return a bit mask of argument types for attribute with TAG.
420 int
421 attribute_arg_type(int tag) const
422 { return this->do_attribute_arg_type(tag); }
423
424 // Return the attribute tag of the position NUM in the list of fixed
425 // attributes. Normally there is no reordering and
426 // attributes_order(NUM) == NUM.
427 int
428 attributes_order(int num) const
429 { return this->do_attributes_order(num); }
430
431 // When a target is selected as the default target, we call this method,
432 // which may be used for expensive, target-specific initialization.
433 void
434 select_as_default_target()
435 { this->do_select_as_default_target(); }
436
437 // Return the value to store in the EI_OSABI field in the ELF
438 // header.
439 elfcpp::ELFOSABI
440 osabi() const
441 { return this->osabi_; }
442
443 // Set the value to store in the EI_OSABI field in the ELF header.
444 void
445 set_osabi(elfcpp::ELFOSABI osabi)
446 { this->osabi_ = osabi; }
447
448 // Define target-specific standard symbols.
449 void
450 define_standard_symbols(Symbol_table* symtab, Layout* layout)
451 { this->do_define_standard_symbols(symtab, layout); }
452
453 // Return the output section name to use given an input section
454 // name, or NULL if no target specific name mapping is required.
455 // Set *PLEN to the length of the name if returning non-NULL.
456 const char*
457 output_section_name(const Relobj* relobj,
458 const char* name,
459 size_t* plen) const
460 { return this->do_output_section_name(relobj, name, plen); }
461
462 // Add any special sections for this symbol to the gc work list.
463 void
464 gc_mark_symbol(Symbol_table* symtab, Symbol* sym) const
465 { this->do_gc_mark_symbol(symtab, sym); }
466
467 // Return the name of the entry point symbol.
468 const char*
469 entry_symbol_name() const
470 { return this->pti_->entry_symbol_name; }
471
472 // Return the size in bits of SHT_HASH entry.
473 int
474 hash_entry_size() const
475 { return this->pti_->hash_entry_size; }
476
477 // Return the section type to use for unwind sections.
478 unsigned int
479 unwind_section_type() const
480 { return this->pti_->unwind_section_type; }
481
482 // Whether the target has a custom set_dynsym_indexes method.
483 bool
484 has_custom_set_dynsym_indexes() const
485 { return this->do_has_custom_set_dynsym_indexes(); }
486
487 // Custom set_dynsym_indexes method for a target.
488 unsigned int
489 set_dynsym_indexes(std::vector<Symbol*>* dyn_symbols, unsigned int index,
490 std::vector<Symbol*>* syms, Stringpool* dynpool,
491 Versions* versions, Symbol_table* symtab) const
492 {
493 return this->do_set_dynsym_indexes(dyn_symbols, index, syms, dynpool,
494 versions, symtab);
495 }
496
497 // Get the custom dynamic tag value.
498 unsigned int
499 dynamic_tag_custom_value(elfcpp::DT tag) const
500 { return this->do_dynamic_tag_custom_value(tag); }
501
502 // Adjust the value written to the dynamic symbol table.
503 void
504 adjust_dyn_symbol(const Symbol* sym, unsigned char* view) const
505 { this->do_adjust_dyn_symbol(sym, view); }
506
507 // Return whether to include the section in the link.
508 bool
509 should_include_section(elfcpp::Elf_Word sh_type) const
510 { return this->do_should_include_section(sh_type); }
511
512 // Finalize the target-specific properties in the .note.gnu.property section.
513 void
514 finalize_gnu_properties(Layout* layout) const
515 { this->do_finalize_gnu_properties(layout); }
516
517 protected:
518 // This struct holds the constant information for a child class. We
519 // use a struct to avoid the overhead of virtual function calls for
520 // simple information.
521 struct Target_info
522 {
523 // Address size (32 or 64).
524 int size;
525 // Whether the target is big endian.
526 bool is_big_endian;
527 // The code to store in the e_machine field of the ELF header.
528 elfcpp::EM machine_code;
529 // Whether this target has a specific make_symbol function.
530 bool has_make_symbol;
531 // Whether this target has a specific resolve function.
532 bool has_resolve;
533 // Whether this target has a specific code fill function.
534 bool has_code_fill;
535 // Whether an object file with no .note.GNU-stack sections implies
536 // that the stack should be executable.
537 bool is_default_stack_executable;
538 // Whether a relocation to a merged section can be processed to
539 // retrieve the contents.
540 bool can_icf_inline_merge_sections;
541 // Prefix character to strip when checking for wrapping.
542 char wrap_char;
543 // The default dynamic linker name.
544 const char* dynamic_linker;
545 // The default text segment address.
546 uint64_t default_text_segment_address;
547 // The ABI specified page size.
548 uint64_t abi_pagesize;
549 // The common page size used by actual implementations.
550 uint64_t common_pagesize;
551 // Whether PF_X segments must contain nothing but the contents of
552 // SHF_EXECINSTR sections (no non-executable data, no headers).
553 bool isolate_execinstr;
554 // If nonzero, distance from the text segment to the read-only segment.
555 uint64_t rosegment_gap;
556 // The special section index for small common symbols; SHN_UNDEF
557 // if none.
558 elfcpp::Elf_Half small_common_shndx;
559 // The special section index for large common symbols; SHN_UNDEF
560 // if none.
561 elfcpp::Elf_Half large_common_shndx;
562 // Section flags for small common section.
563 elfcpp::Elf_Xword small_common_section_flags;
564 // Section flags for large common section.
565 elfcpp::Elf_Xword large_common_section_flags;
566 // Name of attributes section if it is not ".gnu.attributes".
567 const char* attributes_section;
568 // Vendor name of vendor attributes.
569 const char* attributes_vendor;
570 // Name of the main entry point to the program.
571 const char* entry_symbol_name;
572 // Size (in bits) of SHT_HASH entry. Always equal to 32, except for
573 // 64-bit S/390.
574 const int hash_entry_size;
575 // Processor-specific section type for ".eh_frame" (unwind) sections.
576 // SHT_PROGBITS if there is no special section type.
577 const unsigned int unwind_section_type;
578 };
579
580 Target(const Target_info* pti)
581 : pti_(pti), processor_specific_flags_(0),
582 are_processor_specific_flags_set_(false), osabi_(elfcpp::ELFOSABI_NONE)
583 { }
584
585 // Virtual function which may be implemented by the child class.
586 virtual void
587 do_new_output_section(Output_section*) const
588 { }
589
590 // Virtual function which may be implemented by the child class.
591 virtual void
592 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*)
593 { }
594
595 // Virtual function which may be implemented by the child class.
596 virtual uint64_t
597 do_dynsym_value(const Symbol*) const
598 { gold_unreachable(); }
599
600 // Virtual function which must be implemented by the child class if
601 // needed.
602 virtual std::string
603 do_code_fill(section_size_type) const
604 { gold_unreachable(); }
605
606 // Virtual function which may be implemented by the child class.
607 virtual bool
608 do_is_defined_by_abi(const Symbol*) const
609 { return false; }
610
611 // Adjust the output file header before it is written out. VIEW
612 // points to the header in external form. LEN is the length, and
613 // will be one of the values of elfcpp::Elf_sizes<size>::ehdr_size.
614 // By default, we set the EI_OSABI field if requested (in
615 // Sized_target).
616 virtual void
617 do_adjust_elf_header(unsigned char*, int) = 0;
618
619 // Return address and size to plug into eh_frame FDEs associated with a PLT.
620 virtual void
621 do_plt_fde_location(const Output_data* plt, unsigned char* oview,
622 uint64_t* address, off_t* len) const;
623
624 // Virtual function which may be overridden by the child class.
625 virtual bool
626 do_is_local_label_name(const char*) const;
627
628 // Virtual function that must be overridden by a target which uses
629 // target specific relocations.
630 virtual unsigned int
631 do_reloc_symbol_index(void*, unsigned int) const
632 { gold_unreachable(); }
633
634 // Virtual function that must be overridden by a target which uses
635 // target specific relocations.
636 virtual uint64_t
637 do_reloc_addend(void*, unsigned int, uint64_t) const
638 { gold_unreachable(); }
639
640 // Virtual functions that must be overridden by a target that uses
641 // STT_GNU_IFUNC symbols.
642 virtual uint64_t
643 do_plt_address_for_global(const Symbol*) const
644 { gold_unreachable(); }
645
646 virtual uint64_t
647 do_plt_address_for_local(const Relobj*, unsigned int) const
648 { gold_unreachable(); }
649
650 virtual int64_t
651 do_tls_offset_for_local(const Relobj*, unsigned int, unsigned int) const
652 { gold_unreachable(); }
653
654 virtual int64_t
655 do_tls_offset_for_global(Symbol*, unsigned int) const
656 { gold_unreachable(); }
657
658 virtual void
659 do_function_location(Symbol_location*) const = 0;
660
661 // Virtual function which may be overriden by the child class.
662 virtual bool
663 do_can_check_for_function_pointers() const
664 { return false; }
665
666 // Virtual function which may be overridden by the child class. We
667 // recognize some default sections for which we don't care whether
668 // they have function pointers.
669 virtual bool
670 do_section_may_have_icf_unsafe_pointers(const char* section_name) const
671 {
672 // We recognize sections for normal vtables, construction vtables and
673 // EH frames.
674 return (!is_prefix_of(".rodata._ZTV", section_name)
675 && !is_prefix_of(".data.rel.ro._ZTV", section_name)
676 && !is_prefix_of(".rodata._ZTC", section_name)
677 && !is_prefix_of(".data.rel.ro._ZTC", section_name)
678 && !is_prefix_of(".eh_frame", section_name));
679 }
680
681 virtual uint64_t
682 do_ehframe_datarel_base() const
683 { gold_unreachable(); }
684
685 // Virtual function which may be overridden by the child class. The
686 // default implementation is that any function not defined by the
687 // ABI is a call to a non-split function.
688 virtual bool
689 do_is_call_to_non_split(const Symbol* sym, const unsigned char*,
690 const unsigned char*, section_size_type) const;
691
692 // Virtual function which may be overridden by the child class.
693 virtual void
694 do_calls_non_split(Relobj* object, unsigned int, section_offset_type,
695 section_size_type, const unsigned char*, size_t,
696 unsigned char*, section_size_type,
697 std::string*, std::string*) const;
698
699 // make_elf_object hooks. There are four versions of these for
700 // different address sizes and endianness.
701
702 // Set processor specific flags.
703 void
704 set_processor_specific_flags(elfcpp::Elf_Word flags)
705 {
706 this->processor_specific_flags_ = flags;
707 this->are_processor_specific_flags_set_ = true;
708 }
709
710 #ifdef HAVE_TARGET_32_LITTLE
711 // Virtual functions which may be overridden by the child class.
712 virtual Object*
713 do_make_elf_object(const std::string&, Input_file*, off_t,
714 const elfcpp::Ehdr<32, false>&);
715 #endif
716
717 #ifdef HAVE_TARGET_32_BIG
718 // Virtual functions which may be overridden by the child class.
719 virtual Object*
720 do_make_elf_object(const std::string&, Input_file*, off_t,
721 const elfcpp::Ehdr<32, true>&);
722 #endif
723
724 #ifdef HAVE_TARGET_64_LITTLE
725 // Virtual functions which may be overridden by the child class.
726 virtual Object*
727 do_make_elf_object(const std::string&, Input_file*, off_t,
728 const elfcpp::Ehdr<64, false>& ehdr);
729 #endif
730
731 #ifdef HAVE_TARGET_64_BIG
732 // Virtual functions which may be overridden by the child class.
733 virtual Object*
734 do_make_elf_object(const std::string& name, Input_file* input_file,
735 off_t offset, const elfcpp::Ehdr<64, true>& ehdr);
736 #endif
737
738 // Virtual functions which may be overridden by the child class.
739 virtual Output_section*
740 do_make_output_section(const char* name, elfcpp::Elf_Word type,
741 elfcpp::Elf_Xword flags);
742
743 // Virtual function which may be overridden by the child class.
744 virtual bool
745 do_may_relax() const
746 { return parameters->options().relax(); }
747
748 // Virtual function which may be overridden by the child class.
749 virtual bool
750 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*)
751 { return false; }
752
753 // A function for targets to call. Return whether BYTES/LEN matches
754 // VIEW/VIEW_SIZE at OFFSET.
755 bool
756 match_view(const unsigned char* view, section_size_type view_size,
757 section_offset_type offset, const char* bytes, size_t len) const;
758
759 // Set the contents of a VIEW/VIEW_SIZE to nops starting at OFFSET
760 // for LEN bytes.
761 void
762 set_view_to_nop(unsigned char* view, section_size_type view_size,
763 section_offset_type offset, size_t len) const;
764
765 // This must be overridden by the child class if it has target-specific
766 // attributes subsection in the attribute section.
767 virtual int
768 do_attribute_arg_type(int) const
769 { gold_unreachable(); }
770
771 // This may be overridden by the child class.
772 virtual int
773 do_attributes_order(int num) const
774 { return num; }
775
776 // This may be overridden by the child class.
777 virtual void
778 do_select_as_default_target()
779 { }
780
781 // This may be overridden by the child class.
782 virtual void
783 do_define_standard_symbols(Symbol_table*, Layout*)
784 { }
785
786 // This may be overridden by the child class.
787 virtual const char*
788 do_output_section_name(const Relobj*, const char*, size_t*) const
789 { return NULL; }
790
791 // This may be overridden by the child class.
792 virtual void
793 do_gc_mark_symbol(Symbol_table*, Symbol*) const
794 { }
795
796 // This may be overridden by the child class.
797 virtual bool
798 do_has_custom_set_dynsym_indexes() const
799 { return false; }
800
801 // This may be overridden by the child class.
802 virtual unsigned int
803 do_set_dynsym_indexes(std::vector<Symbol*>*, unsigned int,
804 std::vector<Symbol*>*, Stringpool*, Versions*,
805 Symbol_table*) const
806 { gold_unreachable(); }
807
808 // This may be overridden by the child class.
809 virtual unsigned int
810 do_dynamic_tag_custom_value(elfcpp::DT) const
811 { gold_unreachable(); }
812
813 // This may be overridden by the child class.
814 virtual void
815 do_adjust_dyn_symbol(const Symbol*, unsigned char*) const
816 { }
817
818 // This may be overridden by the child class.
819 virtual bool
820 do_should_include_section(elfcpp::Elf_Word) const
821 { return true; }
822
823 // Finalize the target-specific properties in the .note.gnu.property section.
824 virtual void
825 do_finalize_gnu_properties(Layout*) const
826 { }
827
828 private:
829 // The implementations of the four do_make_elf_object virtual functions are
830 // almost identical except for their sizes and endianness. We use a template.
831 // for their implementations.
832 template<int size, bool big_endian>
833 inline Object*
834 do_make_elf_object_implementation(const std::string&, Input_file*, off_t,
835 const elfcpp::Ehdr<size, big_endian>&);
836
837 Target(const Target&);
838 Target& operator=(const Target&);
839
840 // The target information.
841 const Target_info* pti_;
842 // Processor-specific flags.
843 elfcpp::Elf_Word processor_specific_flags_;
844 // Whether the processor-specific flags are set at least once.
845 bool are_processor_specific_flags_set_;
846 // If not ELFOSABI_NONE, the value to put in the EI_OSABI field of
847 // the ELF header. This is handled at this level because it is
848 // OS-specific rather than processor-specific.
849 elfcpp::ELFOSABI osabi_;
850 };
851
852 // The abstract class for a specific size and endianness of target.
853 // Each actual target implementation class should derive from an
854 // instantiation of Sized_target.
855
856 template<int size, bool big_endian>
857 class Sized_target : public Target
858 {
859 public:
860 // Make a new symbol table entry for the target. This should be
861 // overridden by a target which needs additional information in the
862 // symbol table. This will only be called if has_make_symbol()
863 // returns true.
864 virtual Sized_symbol<size>*
865 make_symbol(const char*, elfcpp::STT, Object*, unsigned int, uint64_t)
866 { gold_unreachable(); }
867
868 // Resolve a symbol for the target. This should be overridden by a
869 // target which needs to take special action. TO is the
870 // pre-existing symbol. SYM is the new symbol, seen in OBJECT.
871 // VERSION is the version of SYM. This will only be called if
872 // has_resolve() returns true.
873 virtual bool
874 resolve(Symbol*, const elfcpp::Sym<size, big_endian>&, Object*,
875 const char*)
876 { gold_unreachable(); }
877
878 // Process the relocs for a section, and record information of the
879 // mapping from source to destination sections. This mapping is later
880 // used to determine unreferenced garbage sections. This procedure is
881 // only called during garbage collection.
882 virtual void
883 gc_process_relocs(Symbol_table* symtab,
884 Layout* layout,
885 Sized_relobj_file<size, big_endian>* object,
886 unsigned int data_shndx,
887 unsigned int sh_type,
888 const unsigned char* prelocs,
889 size_t reloc_count,
890 Output_section* output_section,
891 bool needs_special_offset_handling,
892 size_t local_symbol_count,
893 const unsigned char* plocal_symbols) = 0;
894
895 // Scan the relocs for a section, and record any information
896 // required for the symbol. SYMTAB is the symbol table. OBJECT is
897 // the object in which the section appears. DATA_SHNDX is the
898 // section index that these relocs apply to. SH_TYPE is the type of
899 // the relocation section, SHT_REL or SHT_RELA. PRELOCS points to
900 // the relocation data. RELOC_COUNT is the number of relocs.
901 // LOCAL_SYMBOL_COUNT is the number of local symbols.
902 // OUTPUT_SECTION is the output section.
903 // NEEDS_SPECIAL_OFFSET_HANDLING is true if offsets to the output
904 // sections are not mapped as usual. PLOCAL_SYMBOLS points to the
905 // local symbol data from OBJECT. GLOBAL_SYMBOLS is the array of
906 // pointers to the global symbol table from OBJECT.
907 virtual void
908 scan_relocs(Symbol_table* symtab,
909 Layout* layout,
910 Sized_relobj_file<size, big_endian>* object,
911 unsigned int data_shndx,
912 unsigned int sh_type,
913 const unsigned char* prelocs,
914 size_t reloc_count,
915 Output_section* output_section,
916 bool needs_special_offset_handling,
917 size_t local_symbol_count,
918 const unsigned char* plocal_symbols) = 0;
919
920 // Relocate section data. SH_TYPE is the type of the relocation
921 // section, SHT_REL or SHT_RELA. PRELOCS points to the relocation
922 // information. RELOC_COUNT is the number of relocs.
923 // OUTPUT_SECTION is the output section.
924 // NEEDS_SPECIAL_OFFSET_HANDLING is true if offsets must be mapped
925 // to correspond to the output section. VIEW is a view into the
926 // output file holding the section contents, VIEW_ADDRESS is the
927 // virtual address of the view, and VIEW_SIZE is the size of the
928 // view. If NEEDS_SPECIAL_OFFSET_HANDLING is true, the VIEW_xx
929 // parameters refer to the complete output section data, not just
930 // the input section data.
931 virtual void
932 relocate_section(const Relocate_info<size, big_endian>*,
933 unsigned int sh_type,
934 const unsigned char* prelocs,
935 size_t reloc_count,
936 Output_section* output_section,
937 bool needs_special_offset_handling,
938 unsigned char* view,
939 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
940 section_size_type view_size,
941 const Reloc_symbol_changes*) = 0;
942
943 // Scan the relocs during a relocatable link. The parameters are
944 // like scan_relocs, with an additional Relocatable_relocs
945 // parameter, used to record the disposition of the relocs.
946 virtual void
947 scan_relocatable_relocs(Symbol_table* symtab,
948 Layout* layout,
949 Sized_relobj_file<size, big_endian>* object,
950 unsigned int data_shndx,
951 unsigned int sh_type,
952 const unsigned char* prelocs,
953 size_t reloc_count,
954 Output_section* output_section,
955 bool needs_special_offset_handling,
956 size_t local_symbol_count,
957 const unsigned char* plocal_symbols,
958 Relocatable_relocs*) = 0;
959
960 // Scan the relocs for --emit-relocs. The parameters are
961 // like scan_relocatable_relocs.
962 virtual void
963 emit_relocs_scan(Symbol_table* symtab,
964 Layout* layout,
965 Sized_relobj_file<size, big_endian>* object,
966 unsigned int data_shndx,
967 unsigned int sh_type,
968 const unsigned char* prelocs,
969 size_t reloc_count,
970 Output_section* output_section,
971 bool needs_special_offset_handling,
972 size_t local_symbol_count,
973 const unsigned char* plocal_syms,
974 Relocatable_relocs* rr) = 0;
975
976 // Emit relocations for a section during a relocatable link, and for
977 // --emit-relocs. The parameters are like relocate_section, with
978 // additional parameters for the view of the output reloc section.
979 virtual void
980 relocate_relocs(const Relocate_info<size, big_endian>*,
981 unsigned int sh_type,
982 const unsigned char* prelocs,
983 size_t reloc_count,
984 Output_section* output_section,
985 typename elfcpp::Elf_types<size>::Elf_Off
986 offset_in_output_section,
987 unsigned char* view,
988 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
989 section_size_type view_size,
990 unsigned char* reloc_view,
991 section_size_type reloc_view_size) = 0;
992
993 // Perform target-specific processing in a relocatable link. This is
994 // only used if we use the relocation strategy RELOC_SPECIAL.
995 // RELINFO points to a Relocation_info structure. SH_TYPE is the relocation
996 // section type. PRELOC_IN points to the original relocation. RELNUM is
997 // the index number of the relocation in the relocation section.
998 // OUTPUT_SECTION is the output section to which the relocation is applied.
999 // OFFSET_IN_OUTPUT_SECTION is the offset of the relocation input section
1000 // within the output section. VIEW points to the output view of the
1001 // output section. VIEW_ADDRESS is output address of the view. VIEW_SIZE
1002 // is the size of the output view and PRELOC_OUT points to the new
1003 // relocation in the output object.
1004 //
1005 // A target only needs to override this if the generic code in
1006 // target-reloc.h cannot handle some relocation types.
1007
1008 virtual void
1009 relocate_special_relocatable(const Relocate_info<size, big_endian>*
1010 /*relinfo */,
1011 unsigned int /* sh_type */,
1012 const unsigned char* /* preloc_in */,
1013 size_t /* relnum */,
1014 Output_section* /* output_section */,
1015 typename elfcpp::Elf_types<size>::Elf_Off
1016 /* offset_in_output_section */,
1017 unsigned char* /* view */,
1018 typename elfcpp::Elf_types<size>::Elf_Addr
1019 /* view_address */,
1020 section_size_type /* view_size */,
1021 unsigned char* /* preloc_out*/)
1022 { gold_unreachable(); }
1023
1024 // Return the number of entries in the GOT. This is only used for
1025 // laying out the incremental link info sections. A target needs
1026 // to implement this to support incremental linking.
1027
1028 virtual unsigned int
1029 got_entry_count() const
1030 { gold_unreachable(); }
1031
1032 // Return the number of entries in the PLT. This is only used for
1033 // laying out the incremental link info sections. A target needs
1034 // to implement this to support incremental linking.
1035
1036 virtual unsigned int
1037 plt_entry_count() const
1038 { gold_unreachable(); }
1039
1040 // Return the offset of the first non-reserved PLT entry. This is
1041 // only used for laying out the incremental link info sections.
1042 // A target needs to implement this to support incremental linking.
1043
1044 virtual unsigned int
1045 first_plt_entry_offset() const
1046 { gold_unreachable(); }
1047
1048 // Return the size of each PLT entry. This is only used for
1049 // laying out the incremental link info sections. A target needs
1050 // to implement this to support incremental linking.
1051
1052 virtual unsigned int
1053 plt_entry_size() const
1054 { gold_unreachable(); }
1055
1056 // Return the size of each GOT entry. This is only used for
1057 // laying out the incremental link info sections. A target needs
1058 // to implement this if its GOT size is different.
1059
1060 virtual unsigned int
1061 got_entry_size() const
1062 { return size / 8; }
1063
1064 // Create the GOT and PLT sections for an incremental update.
1065 // A target needs to implement this to support incremental linking.
1066
1067 virtual Output_data_got_base*
1068 init_got_plt_for_update(Symbol_table*,
1069 Layout*,
1070 unsigned int /* got_count */,
1071 unsigned int /* plt_count */)
1072 { gold_unreachable(); }
1073
1074 // Reserve a GOT entry for a local symbol, and regenerate any
1075 // necessary dynamic relocations.
1076 virtual void
1077 reserve_local_got_entry(unsigned int /* got_index */,
1078 Sized_relobj<size, big_endian>* /* obj */,
1079 unsigned int /* r_sym */,
1080 unsigned int /* got_type */)
1081 { gold_unreachable(); }
1082
1083 // Reserve a GOT entry for a global symbol, and regenerate any
1084 // necessary dynamic relocations.
1085 virtual void
1086 reserve_global_got_entry(unsigned int /* got_index */, Symbol* /* gsym */,
1087 unsigned int /* got_type */)
1088 { gold_unreachable(); }
1089
1090 // Register an existing PLT entry for a global symbol.
1091 // A target needs to implement this to support incremental linking.
1092
1093 virtual void
1094 register_global_plt_entry(Symbol_table*, Layout*,
1095 unsigned int /* plt_index */,
1096 Symbol*)
1097 { gold_unreachable(); }
1098
1099 // Force a COPY relocation for a given symbol.
1100 // A target needs to implement this to support incremental linking.
1101
1102 virtual void
1103 emit_copy_reloc(Symbol_table*, Symbol*, Output_section*, off_t)
1104 { gold_unreachable(); }
1105
1106 // Apply an incremental relocation.
1107
1108 virtual void
1109 apply_relocation(const Relocate_info<size, big_endian>* /* relinfo */,
1110 typename elfcpp::Elf_types<size>::Elf_Addr /* r_offset */,
1111 unsigned int /* r_type */,
1112 typename elfcpp::Elf_types<size>::Elf_Swxword /* r_addend */,
1113 const Symbol* /* gsym */,
1114 unsigned char* /* view */,
1115 typename elfcpp::Elf_types<size>::Elf_Addr /* address */,
1116 section_size_type /* view_size */)
1117 { gold_unreachable(); }
1118
1119 // Handle target specific gc actions when adding a gc reference from
1120 // SRC_OBJ, SRC_SHNDX to a location specified by DST_OBJ, DST_SHNDX
1121 // and DST_OFF.
1122 void
1123 gc_add_reference(Symbol_table* symtab,
1124 Relobj* src_obj,
1125 unsigned int src_shndx,
1126 Relobj* dst_obj,
1127 unsigned int dst_shndx,
1128 typename elfcpp::Elf_types<size>::Elf_Addr dst_off) const
1129 {
1130 this->do_gc_add_reference(symtab, src_obj, src_shndx,
1131 dst_obj, dst_shndx, dst_off);
1132 }
1133
1134 // Return the r_sym field from a relocation.
1135 // Most targets can use the default version of this routine,
1136 // but some targets have a non-standard r_info field, and will
1137 // need to provide a target-specific version.
1138 virtual unsigned int
1139 get_r_sym(const unsigned char* preloc) const
1140 {
1141 // Since REL and RELA relocs share the same structure through
1142 // the r_info field, we can just use REL here.
1143 elfcpp::Rel<size, big_endian> rel(preloc);
1144 return elfcpp::elf_r_sym<size>(rel.get_r_info());
1145 }
1146
1147 // Record a target-specific program property in the .note.gnu.property
1148 // section.
1149 virtual void
1150 record_gnu_property(unsigned int, unsigned int, size_t,
1151 const unsigned char*, const Object*)
1152 { }
1153
1154 // Merge the target-specific program properties from the current object.
1155 virtual void
1156 merge_gnu_properties(const Object*)
1157 { }
1158
1159 protected:
1160 Sized_target(const Target::Target_info* pti)
1161 : Target(pti)
1162 {
1163 gold_assert(pti->size == size);
1164 gold_assert(pti->is_big_endian ? big_endian : !big_endian);
1165 }
1166
1167 // Set the EI_OSABI field if requested.
1168 virtual void
1169 do_adjust_elf_header(unsigned char*, int);
1170
1171 // Handle target specific gc actions when adding a gc reference.
1172 virtual void
1173 do_gc_add_reference(Symbol_table*, Relobj*, unsigned int,
1174 Relobj*, unsigned int,
1175 typename elfcpp::Elf_types<size>::Elf_Addr) const
1176 { }
1177
1178 virtual void
1179 do_function_location(Symbol_location*) const
1180 { }
1181 };
1182
1183 } // End namespace gold.
1184
1185 #endif // !defined(GOLD_TARGET_H)