]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - sim/common/sim-fpu.h
Update years in copyright notice for the GDB files.
[thirdparty/binutils-gdb.git] / sim / common / sim-fpu.h
1 /* Simulator Floating-point support.
2
3 Copyright 1997-2013 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB, the GNU debugger.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22
23
24 #ifndef SIM_FPU_H
25 #define SIM_FPU_H
26
27
28
29 /* The FPU intermediate type - this object, passed by reference,
30 should be treated as opaque.
31
32
33 Pragmatics - pass struct by ref:
34
35 The alternatives for this object/interface that were considered
36 were: a packed 64 bit value; an unpacked structure passed by value;
37 and an unpacked structure passed by reference.
38
39 The packed 64 bit value was rejected because: it limited the
40 precision of intermediate values; reasonable performance would only
41 be achieved when the sim_fpu package was in-lined allowing repeated
42 unpacking operations to be eliminated.
43
44 For unpacked structures (passed by value and reference), the code
45 quality of GCC-2.7 (on x86) for each alternative was compared.
46 Needless to say the results, while better than for a packed 64 bit
47 object, were still poor (GCC had only limited support for the
48 optimization of references to structure members). Regardless, the
49 struct-by-ref alternative achieved better results when compiled
50 with (better speed) and without (better code density) in-lining.
51 Here's looking forward to an improved GCC optimizer.
52
53
54 Pragmatics - avoid host FP hardware:
55
56 FP operations can be implemented by either: the host's floating
57 point hardware; or by emulating the FP operations using integer
58 only routines. This is direct tradeoff between speed, portability
59 and correctness.
60
61 The two principal reasons for selecting portability and correctness
62 over speed are:
63
64 1 - Correctness. The assumption that FP correctness wasn't an
65 issue for code being run on simulators was wrong. Instead of
66 running FP tolerant (?) code, simulator users instead typically run
67 very aggressive FP code sequences. The sole purpose of those
68 sequences being to test the target ISA's FP implementation.
69
70 2 - Portability. The host FP implementation is not predictable. A
71 simulator modeling aggressive FP code sequences using the hosts FPU
72 relies heavily on the correctness of the hosts FP implementation.
73 It turns out that such trust can be misplaced. The behavior of
74 host FP implementations when handling edge conditions such as SNaNs
75 and exceptions varied widely.
76
77
78 */
79
80
81 typedef enum
82 {
83 sim_fpu_class_zero,
84 sim_fpu_class_snan,
85 sim_fpu_class_qnan,
86 sim_fpu_class_number,
87 sim_fpu_class_denorm,
88 sim_fpu_class_infinity,
89 } sim_fpu_class;
90
91 typedef struct _sim_fpu {
92 sim_fpu_class class;
93 int sign;
94 unsigned64 fraction;
95 int normal_exp;
96 } sim_fpu;
97
98
99
100 /* Rounding options.
101
102 The value zero (sim_fpu_round_default) for ALU operations indicates
103 that, when possible, rounding should be avoided. */
104
105 typedef enum
106 {
107 sim_fpu_round_default = 0,
108 sim_fpu_round_near = 1,
109 sim_fpu_round_zero = 2,
110 sim_fpu_round_up = 3,
111 sim_fpu_round_down = 4,
112 } sim_fpu_round;
113
114
115 /* Options when handling denormalized numbers. */
116
117 typedef enum
118 {
119 sim_fpu_denorm_default = 0,
120 sim_fpu_denorm_underflow_inexact = 1,
121 sim_fpu_denorm_zero = 2,
122 } sim_fpu_denorm;
123
124
125
126 /* Status values returned by FPU operators.
127
128 When checking the result of an FP sequence (ex 32to, add, single,
129 to32) the caller may either: check the return value of each FP
130 operator; or form the union (OR) of the returned values and examine
131 them once at the end.
132
133 FIXME: This facility is still being developed. The choice of
134 status values returned and their exact meaning may changed in the
135 future. */
136
137 typedef enum
138 {
139 sim_fpu_status_invalid_snan = 1,
140 sim_fpu_status_invalid_qnan = 2,
141 sim_fpu_status_invalid_isi = 4, /* (inf - inf) */
142 sim_fpu_status_invalid_idi = 8, /* (inf / inf) */
143 sim_fpu_status_invalid_zdz = 16, /* (0 / 0) */
144 sim_fpu_status_invalid_imz = 32, /* (inf * 0) */
145 sim_fpu_status_invalid_cvi = 64, /* convert to integer */
146 sim_fpu_status_invalid_div0 = 128, /* (X / 0) */
147 sim_fpu_status_invalid_cmp = 256, /* compare */
148 sim_fpu_status_invalid_sqrt = 512,
149 sim_fpu_status_rounded = 1024,
150 sim_fpu_status_inexact = 2048,
151 sim_fpu_status_overflow = 4096,
152 sim_fpu_status_underflow = 8192,
153 sim_fpu_status_denorm = 16384,
154 } sim_fpu_status;
155
156
157
158
159 /* Directly map between a 32/64 bit register and the sim_fpu internal
160 type.
161
162 When converting from the 32/64 bit packed format to the sim_fpu
163 internal type, the operation is exact.
164
165 When converting from the sim_fpu internal type to 32/64 bit packed
166 format, the operation may result in a loss of precision. The
167 configuration macro WITH_FPU_CONVERSION controls this. By default,
168 silent round to nearest is performed. Alternatively, round up,
169 round down and round to zero can be performed. In a simulator
170 emulating exact FPU behavior, sim_fpu_round_{32,64} should be
171 called before packing the sim_fpu value. */
172
173 INLINE_SIM_FPU (void) sim_fpu_32to (sim_fpu *f, unsigned32 s);
174 INLINE_SIM_FPU (void) sim_fpu_232to (sim_fpu *f, unsigned32 h, unsigned32 l);
175 INLINE_SIM_FPU (void) sim_fpu_64to (sim_fpu *f, unsigned64 d);
176
177 INLINE_SIM_FPU (void) sim_fpu_to32 (unsigned32 *s, const sim_fpu *f);
178 INLINE_SIM_FPU (void) sim_fpu_to232 (unsigned32 *h, unsigned32 *l, const sim_fpu *f);
179 INLINE_SIM_FPU (void) sim_fpu_to64 (unsigned64 *d, const sim_fpu *f);
180
181
182 /* Create a sim_fpu struct using raw information. (FRACTION & LSMASK
183 (PRECISION-1, 0)) is assumed to contain the fraction part of the
184 floating-point number. The leading bit LSBIT (PRECISION) is always
185 implied. The number created can be represented by:
186
187 (SIGN ? "-" : "+") "1." FRACTION{PRECISION-1,0} X 2 ^ NORMAL_EXP>
188
189 You can not specify zero using this function. */
190
191 INLINE_SIM_FPU (void) sim_fpu_fractionto (sim_fpu *f, int sign, int normal_exp, unsigned64 fraction, int precision);
192
193 /* Reverse operation. If S is a non-zero number, discards the implied
194 leading one and returns PRECISION fraction bits. No rounding is
195 performed. */
196 INLINE_SIM_FPU (unsigned64) sim_fpu_tofraction (const sim_fpu *s, int precision);
197
198
199
200 /* Rounding operators.
201
202 Force an intermediate result to an exact 32/64 bit
203 representation. */
204
205 INLINE_SIM_FPU (int) sim_fpu_round_32 (sim_fpu *f,
206 sim_fpu_round round,
207 sim_fpu_denorm denorm);
208 INLINE_SIM_FPU (int) sim_fpu_round_64 (sim_fpu *f,
209 sim_fpu_round round,
210 sim_fpu_denorm denorm);
211
212
213
214 /* Arithmetic operators.
215
216 FIXME: In the future, additional arguments ROUNDING and BITSIZE may
217 be added. */
218
219 typedef int (sim_fpu_op1) (sim_fpu *f,
220 const sim_fpu *l);
221 typedef int (sim_fpu_op2) (sim_fpu *f,
222 const sim_fpu *l,
223 const sim_fpu *r);
224
225 INLINE_SIM_FPU (int) sim_fpu_add (sim_fpu *f,
226 const sim_fpu *l, const sim_fpu *r);
227 INLINE_SIM_FPU (int) sim_fpu_sub (sim_fpu *f,
228 const sim_fpu *l, const sim_fpu *r);
229 INLINE_SIM_FPU (int) sim_fpu_mul (sim_fpu *f,
230 const sim_fpu *l, const sim_fpu *r);
231 INLINE_SIM_FPU (int) sim_fpu_div (sim_fpu *f,
232 const sim_fpu *l, const sim_fpu *r);
233 INLINE_SIM_FPU (int) sim_fpu_max (sim_fpu *f,
234 const sim_fpu *l, const sim_fpu *r);
235 INLINE_SIM_FPU (int) sim_fpu_min (sim_fpu *f,
236 const sim_fpu *l, const sim_fpu *r);
237 INLINE_SIM_FPU (int) sim_fpu_neg (sim_fpu *f,
238 const sim_fpu *a);
239 INLINE_SIM_FPU (int) sim_fpu_abs (sim_fpu *f,
240 const sim_fpu *a);
241 INLINE_SIM_FPU (int) sim_fpu_inv (sim_fpu *f,
242 const sim_fpu *a);
243 INLINE_SIM_FPU (int) sim_fpu_sqrt (sim_fpu *f,
244 const sim_fpu *sqr);
245
246
247
248 /* Conversion of integer <-> floating point. */
249
250 INLINE_SIM_FPU (int) sim_fpu_i32to (sim_fpu *f, signed32 i,
251 sim_fpu_round round);
252 INLINE_SIM_FPU (int) sim_fpu_u32to (sim_fpu *f, unsigned32 u,
253 sim_fpu_round round);
254 INLINE_SIM_FPU (int) sim_fpu_i64to (sim_fpu *f, signed64 i,
255 sim_fpu_round round);
256 INLINE_SIM_FPU (int) sim_fpu_u64to (sim_fpu *f, unsigned64 u,
257 sim_fpu_round round);
258 #if 0
259 INLINE_SIM_FPU (int) sim_fpu_i232to (sim_fpu *f, signed32 h, signed32 l,
260 sim_fpu_round round);
261 #endif
262 #if 0
263 INLINE_SIM_FPU (int) sim_fpu_u232to (sim_fpu *f, unsigned32 h, unsigned32 l,
264 sim_fpu_round round);
265 #endif
266
267 INLINE_SIM_FPU (int) sim_fpu_to32i (signed32 *i, const sim_fpu *f,
268 sim_fpu_round round);
269 INLINE_SIM_FPU (int) sim_fpu_to32u (unsigned32 *u, const sim_fpu *f,
270 sim_fpu_round round);
271 INLINE_SIM_FPU (int) sim_fpu_to64i (signed64 *i, const sim_fpu *f,
272 sim_fpu_round round);
273 INLINE_SIM_FPU (int) sim_fpu_to64u (unsigned64 *u, const sim_fpu *f,
274 sim_fpu_round round);
275 #if 0
276 INLINE_SIM_FPU (int) sim_fpu_to232i (signed64 *h, signed64 *l, const sim_fpu *f,
277 sim_fpu_round round);
278 #endif
279 #if 0
280 INLINE_SIM_FPU (int) sim_fpu_to232u (unsigned64 *h, unsigned64 *l, const sim_fpu *f,
281 sim_fpu_round round);
282 #endif
283
284
285 /* Conversion of internal sim_fpu type to host double format.
286
287 For debugging/tracing only. A SNaN is never returned. */
288
289 /* INLINE_SIM_FPU (float) sim_fpu_2f (const sim_fpu *f); */
290 INLINE_SIM_FPU (double) sim_fpu_2d (const sim_fpu *d);
291
292 /* INLINE_SIM_FPU (void) sim_fpu_f2 (sim_fpu *f, float s); */
293 INLINE_SIM_FPU (void) sim_fpu_d2 (sim_fpu *f, double d);
294
295
296
297 /* Specific number classes.
298
299 NB: When either, a 32/64 bit floating points is converted to
300 internal format, or an internal format number is rounded to 32/64
301 bit precision, a special marker is retained that indicates that the
302 value was normalized. For such numbers both is_number and
303 is_denorm return true. */
304
305 INLINE_SIM_FPU (int) sim_fpu_is_nan (const sim_fpu *s); /* 1 => SNaN or QNaN */
306 INLINE_SIM_FPU (int) sim_fpu_is_snan (const sim_fpu *s); /* 1 => SNaN */
307 INLINE_SIM_FPU (int) sim_fpu_is_qnan (const sim_fpu *s); /* 1 => QNaN */
308
309 INLINE_SIM_FPU (int) sim_fpu_is_zero (const sim_fpu *s);
310 INLINE_SIM_FPU (int) sim_fpu_is_infinity (const sim_fpu *s);
311 INLINE_SIM_FPU (int) sim_fpu_is_number (const sim_fpu *s); /* !zero */
312 INLINE_SIM_FPU (int) sim_fpu_is_denorm (const sim_fpu *s); /* !zero */
313
314
315
316 /* Floating point fields */
317
318 INLINE_SIM_FPU (int) sim_fpu_sign (const sim_fpu *s);
319 INLINE_SIM_FPU (int) sim_fpu_exp (const sim_fpu *s);
320 INLINE_SIM_FPU (unsigned64) sim_fpu_fraction (const sim_fpu *s);
321 INLINE_SIM_FPU (unsigned64) sim_fpu_guard (const sim_fpu *s, int is_double);
322
323
324
325 /* Specific comparison operators
326
327 For NaNs et al., the comparison operators will set IS to zero and
328 return a nonzero result. */
329
330 INLINE_SIM_FPU (int) sim_fpu_lt (int *is, const sim_fpu *l, const sim_fpu *r);
331 INLINE_SIM_FPU (int) sim_fpu_le (int *is, const sim_fpu *l, const sim_fpu *r);
332 INLINE_SIM_FPU (int) sim_fpu_eq (int *is, const sim_fpu *l, const sim_fpu *r);
333 INLINE_SIM_FPU (int) sim_fpu_ne (int *is, const sim_fpu *l, const sim_fpu *r);
334 INLINE_SIM_FPU (int) sim_fpu_ge (int *is, const sim_fpu *l, const sim_fpu *r);
335 INLINE_SIM_FPU (int) sim_fpu_gt (int *is, const sim_fpu *l, const sim_fpu *r);
336
337 INLINE_SIM_FPU (int) sim_fpu_is_lt (const sim_fpu *l, const sim_fpu *r);
338 INLINE_SIM_FPU (int) sim_fpu_is_le (const sim_fpu *l, const sim_fpu *r);
339 INLINE_SIM_FPU (int) sim_fpu_is_eq (const sim_fpu *l, const sim_fpu *r);
340 INLINE_SIM_FPU (int) sim_fpu_is_ne (const sim_fpu *l, const sim_fpu *r);
341 INLINE_SIM_FPU (int) sim_fpu_is_ge (const sim_fpu *l, const sim_fpu *r);
342 INLINE_SIM_FPU (int) sim_fpu_is_gt (const sim_fpu *l, const sim_fpu *r);
343
344
345
346 /* General number class and comparison operators.
347
348 The result of the comparison is indicated by returning one of the
349 values below. Efficient emulation of a target FP compare
350 instruction can be achieved by redefining the values below to match
351 corresponding target FP status bits.
352
353 For instance. SIM_FPU_QNAN may be redefined to be the bit
354 `INVALID' while SIM_FPU_NINF might be redefined as the bits
355 `NEGATIVE | INFINITY | VALID'. */
356
357 #ifndef SIM_FPU_IS_SNAN
358 enum {
359 SIM_FPU_IS_SNAN = 1, /* Noisy not-a-number */
360 SIM_FPU_IS_QNAN = 2, /* Quiet not-a-number */
361 SIM_FPU_IS_NINF = 3, /* -infinity */
362 SIM_FPU_IS_PINF = 4, /* +infinity */
363 SIM_FPU_IS_NNUMBER = 5, /* -number - [ -MAX .. -MIN ] */
364 SIM_FPU_IS_PNUMBER = 6, /* +number - [ +MIN .. +MAX ] */
365 SIM_FPU_IS_NDENORM = 7, /* -denorm - ( MIN .. 0 ) */
366 SIM_FPU_IS_PDENORM = 8, /* +denorm - ( 0 .. MIN ) */
367 SIM_FPU_IS_NZERO = 9, /* -0 */
368 SIM_FPU_IS_PZERO = 10, /* +0 */
369 };
370 #endif
371
372 INLINE_SIM_FPU (int) sim_fpu_is (const sim_fpu *l);
373 INLINE_SIM_FPU (int) sim_fpu_cmp (const sim_fpu *l, const sim_fpu *r);
374
375
376
377 /* A number of useful constants. */
378
379 extern const sim_fpu sim_fpu_zero;
380 extern const sim_fpu sim_fpu_one;
381 extern const sim_fpu sim_fpu_two;
382 extern const sim_fpu sim_fpu_qnan;
383 extern const sim_fpu sim_fpu_max32;
384 extern const sim_fpu sim_fpu_max64;
385
386
387 /* Select the applicable functions for the fp_word type */
388
389 #if WITH_TARGET_FLOATING_POINT_BITSIZE == 32
390 #define sim_fpu_tofp sim_fpu_to32
391 #define sim_fpu_fpto sim_fpu_32to
392 #define sim_fpu_round_fp sim_fpu_round_32
393 #define sim_fpu_maxfp sim_fpu_max32
394 #endif
395 #if WITH_TARGET_FLOATING_POINT_BITSIZE == 64
396 #define sim_fpu_tofp sim_fpu_to64
397 #define sim_fpu_fpto sim_fpu_64to
398 #define sim_fpu_round_fp sim_fpu_round_64
399 #define sim_fpu_maxfp sim_fpu_max64
400 #endif
401
402
403
404 /* For debugging */
405
406 typedef void sim_fpu_print_func (void *, const char *, ...);
407
408 /* Print a sim_fpu with full precision. */
409 INLINE_SIM_FPU (void) sim_fpu_print_fpu (const sim_fpu *f,
410 sim_fpu_print_func *print,
411 void *arg);
412
413 /* Print a sim_fpu with `n' trailing digits. */
414 INLINE_SIM_FPU (void) sim_fpu_printn_fpu (const sim_fpu *f,
415 sim_fpu_print_func *print,
416 int digits,
417 void *arg);
418
419 INLINE_SIM_FPU (void) sim_fpu_print_status (int status,
420 sim_fpu_print_func *print,
421 void *arg);
422
423 #if H_REVEALS_MODULE_P (SIM_FPU_INLINE)
424 #include "sim-fpu.c"
425 #endif
426
427 #endif