]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - sim/common/sim-fpu.h
This commit was generated by cvs2svn to track changes on a CVS vendor
[thirdparty/binutils-gdb.git] / sim / common / sim-fpu.h
1 /* Simulator Floating-point support.
2 Copyright (C) 1997-1998 Free Software Foundation, Inc.
3 Contributed by Cygnus Support.
4
5 This file is part of GDB, the GNU debugger.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License along
18 with this program; if not, write to the Free Software Foundation, Inc.,
19 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21
22
23 #ifndef SIM_FPU_H
24 #define SIM_FPU_H
25
26
27
28 /* The FPU intermediate type - this object, passed by reference,
29 should be treated as opaque.
30
31
32 Pragmatics - pass struct by ref:
33
34 The alternatives for this object/interface that were considered
35 were: a packed 64 bit value; an unpacked structure passed by value;
36 and an unpacked structure passed by reference.
37
38 The packed 64 bit value was rejected because: it limited the
39 precision of intermediate values; reasonable performance would only
40 be achieved when the sim_fpu package was in-lined allowing repeated
41 unpacking operations to be eliminated.
42
43 For unpacked structures (passed by value and reference), the code
44 quality of GCC-2.7 (on x86) for each alternative was compared.
45 Needless to say the results, while better then for a packed 64 bit
46 object, were still poor (GCC had only limited support for the
47 optimization of references to structure members). Regardless, the
48 struct-by-ref alternative achieved better results when compiled
49 with (better speed) and without (better code density) in-lining.
50 Here's looking forward to an improved GCC optimizer.
51
52
53 Pragmatics - avoid host FP hardware:
54
55 FP operations can be implemented by either: the host's floating
56 point hardware; or by emulating the FP operations using integer
57 only routines. This is direct tradeoff between speed, portability
58 and correctness.
59
60 The two principal reasons for selecting portability and correctness
61 over speed are:
62
63 1 - Correctness. The assumption that FP correctness wasn't an
64 issue for code being run on simulators was wrong. Instead of
65 running FP tolerant (?) code, simulator users instead typically run
66 very aggressive FP code sequences. The sole purpose of those
67 sequences being to test the target ISA's FP implementation.
68
69 2 - Portability. The host FP implementation is not predictable. A
70 simulator modeling aggressive FP code sequences using the hosts FPU
71 relies heavily on the correctness of the hosts FP implementation.
72 It turns out that such trust can be misplaced. The behavior of
73 host FP implementations when handling edge conditions such as SNaNs
74 and exceptions varied widely.
75
76
77 */
78
79
80 typedef enum
81 {
82 sim_fpu_class_zero,
83 sim_fpu_class_snan,
84 sim_fpu_class_qnan,
85 sim_fpu_class_number,
86 sim_fpu_class_denorm,
87 sim_fpu_class_infinity,
88 } sim_fpu_class;
89
90 typedef struct _sim_fpu {
91 sim_fpu_class class;
92 int sign;
93 unsigned64 fraction;
94 int normal_exp;
95 } sim_fpu;
96
97
98
99 /* Rounding options.
100
101 The value zero (sim_fpu_round_default) for ALU operations indicates
102 that, when possible, rounding should be avoided. */
103
104 typedef enum
105 {
106 sim_fpu_round_default = 0,
107 sim_fpu_round_near = 1,
108 sim_fpu_round_zero = 2,
109 sim_fpu_round_up = 3,
110 sim_fpu_round_down = 4,
111 } sim_fpu_round;
112
113
114 /* Options when handling denormalized numbers. */
115
116 typedef enum
117 {
118 sim_fpu_denorm_default = 0,
119 sim_fpu_denorm_underflow_inexact = 1,
120 sim_fpu_denorm_zero = 2,
121 } sim_fpu_denorm;
122
123
124
125 /* Status values returned by FPU operators.
126
127 When checking the result of an FP sequence (ex 32to, add, single,
128 to32) the caller may either: check the return value of each FP
129 operator; or form the union (OR) of the returned values and examine
130 them once at the end.
131
132 FIXME: This facility is still being developed. The choice of
133 status values returned and their exact meaning may changed in the
134 future. */
135
136 typedef enum
137 {
138 sim_fpu_status_invalid_snan = 1,
139 sim_fpu_status_invalid_qnan = 2,
140 sim_fpu_status_invalid_isi = 4, /* (inf - inf) */
141 sim_fpu_status_invalid_idi = 8, /* (inf / inf) */
142 sim_fpu_status_invalid_zdz = 16, /* (0 / 0) */
143 sim_fpu_status_invalid_imz = 32, /* (inf * 0) */
144 sim_fpu_status_invalid_cvi = 64, /* convert to integer */
145 sim_fpu_status_invalid_div0 = 128, /* (X / 0) */
146 sim_fpu_status_invalid_cmp = 256, /* compare */
147 sim_fpu_status_invalid_sqrt = 512,
148 sim_fpu_status_rounded = 1024,
149 sim_fpu_status_inexact = 2048,
150 sim_fpu_status_overflow = 4096,
151 sim_fpu_status_underflow = 8192,
152 sim_fpu_status_denorm = 16384,
153 } sim_fpu_status;
154
155
156
157
158 /* Directly map between a 32/64 bit register and the sim_fpu internal
159 type.
160
161 When converting from the 32/64 bit packed format to the sim_fpu
162 internal type, the operation is exact.
163
164 When converting from the sim_fpu internal type to 32/64 bit packed
165 format, the operation may result in a loss of precision. The
166 configuration macro WITH_FPU_CONVERSION controls this. By default,
167 silent round to nearest is performed. Alternativly, round up,
168 round down and round to zero can be performed. In a simulator
169 emulating exact FPU behavour, sim_fpu_round_{32,64} should be
170 called before packing the sim_fpu value. */
171
172 INLINE_SIM_FPU (void) sim_fpu_32to (sim_fpu *f, unsigned32 s);
173 INLINE_SIM_FPU (void) sim_fpu_232to (sim_fpu *f, unsigned32 h, unsigned32 l);
174 INLINE_SIM_FPU (void) sim_fpu_64to (sim_fpu *f, unsigned64 d);
175
176 INLINE_SIM_FPU (void) sim_fpu_to32 (unsigned32 *s, const sim_fpu *f);
177 INLINE_SIM_FPU (void) sim_fpu_to232 (unsigned32 *h, unsigned32 *l, const sim_fpu *f);
178 INLINE_SIM_FPU (void) sim_fpu_to64 (unsigned64 *d, const sim_fpu *f);
179
180
181 /* Create a sim_fpu struct using raw information. (FRACTION & LSMASK
182 (PRECISION-1, 0)) is assumed to contain the fraction part of the
183 floating-point number. The leading bit LSBIT (PRECISION) is always
184 implied. The number created can be represented by:
185
186 (SIGN ? "-" : "+") "1." FRACTION{PRECISION-1,0} X 2 ^ NORMAL_EXP>
187
188 You can not specify zero using this function. */
189
190 INLINE_SIM_FPU (void) sim_fpu_fractionto (sim_fpu *f, int sign, int normal_exp, unsigned64 fraction, int precision);
191
192 /* Reverse operaton. If S is a non-zero number, discards the implied
193 leading one and returns PRECISION fraction bits. No rounding is
194 performed. */
195 INLINE_SIM_FPU (unsigned64) sim_fpu_tofraction (const sim_fpu *s, int precision);
196
197
198
199 /* Rounding operators.
200
201 Force an intermediate result to an exact 32/64 bit
202 representation. */
203
204 INLINE_SIM_FPU (int) sim_fpu_round_32 (sim_fpu *f,
205 sim_fpu_round round,
206 sim_fpu_denorm denorm);
207 INLINE_SIM_FPU (int) sim_fpu_round_64 (sim_fpu *f,
208 sim_fpu_round round,
209 sim_fpu_denorm denorm);
210
211
212
213 /* Arrithmetic operators.
214
215 FIXME: In the future, additional arguments ROUNDING and BITSIZE may
216 be added. */
217
218 typedef int (sim_fpu_op1) (sim_fpu *f,
219 const sim_fpu *l);
220 typedef int (sim_fpu_op2) (sim_fpu *f,
221 const sim_fpu *l,
222 const sim_fpu *r);
223
224 INLINE_SIM_FPU (int) sim_fpu_add (sim_fpu *f,
225 const sim_fpu *l, const sim_fpu *r);
226 INLINE_SIM_FPU (int) sim_fpu_sub (sim_fpu *f,
227 const sim_fpu *l, const sim_fpu *r);
228 INLINE_SIM_FPU (int) sim_fpu_mul (sim_fpu *f,
229 const sim_fpu *l, const sim_fpu *r);
230 INLINE_SIM_FPU (int) sim_fpu_div (sim_fpu *f,
231 const sim_fpu *l, const sim_fpu *r);
232 INLINE_SIM_FPU (int) sim_fpu_max (sim_fpu *f,
233 const sim_fpu *l, const sim_fpu *r);
234 INLINE_SIM_FPU (int) sim_fpu_min (sim_fpu *f,
235 const sim_fpu *l, const sim_fpu *r);
236 INLINE_SIM_FPU (int) sim_fpu_neg (sim_fpu *f,
237 const sim_fpu *a);
238 INLINE_SIM_FPU (int) sim_fpu_abs (sim_fpu *f,
239 const sim_fpu *a);
240 INLINE_SIM_FPU (int) sim_fpu_inv (sim_fpu *f,
241 const sim_fpu *a);
242 INLINE_SIM_FPU (int) sim_fpu_sqrt (sim_fpu *f,
243 const sim_fpu *sqr);
244
245
246
247 /* Conversion of integer <-> floating point. */
248
249 INLINE_SIM_FPU (int) sim_fpu_i32to (sim_fpu *f, signed32 i,
250 sim_fpu_round round);
251 INLINE_SIM_FPU (int) sim_fpu_u32to (sim_fpu *f, unsigned32 u,
252 sim_fpu_round round);
253 INLINE_SIM_FPU (int) sim_fpu_i64to (sim_fpu *f, signed64 i,
254 sim_fpu_round round);
255 INLINE_SIM_FPU (int) sim_fpu_u64to (sim_fpu *f, unsigned64 u,
256 sim_fpu_round round);
257 #if 0
258 INLINE_SIM_FPU (int) sim_fpu_i232to (sim_fpu *f, signed32 h, signed32 l,
259 sim_fpu_round round);
260 #endif
261 #if 0
262 INLINE_SIM_FPU (int) sim_fpu_u232to (sim_fpu *f, unsigned32 h, unsigned32 l,
263 sim_fpu_round round);
264 #endif
265
266 INLINE_SIM_FPU (int) sim_fpu_to32i (signed32 *i, const sim_fpu *f,
267 sim_fpu_round round);
268 INLINE_SIM_FPU (int) sim_fpu_to32u (unsigned32 *u, const sim_fpu *f,
269 sim_fpu_round round);
270 INLINE_SIM_FPU (int) sim_fpu_to64i (signed64 *i, const sim_fpu *f,
271 sim_fpu_round round);
272 INLINE_SIM_FPU (int) sim_fpu_to64u (unsigned64 *u, const sim_fpu *f,
273 sim_fpu_round round);
274 #if 0
275 INLINE_SIM_FPU (int) sim_fpu_to232i (signed64 *h, signed64 *l, const sim_fpu *f,
276 sim_fpu_round round);
277 #endif
278 #if 0
279 INLINE_SIM_FPU (int) sim_fpu_to232u (unsigned64 *h, unsigned64 *l, const sim_fpu *f,
280 sim_fpu_round round);
281 #endif
282
283
284 /* Conversion of internal sim_fpu type to host double format.
285
286 For debuging/tracing only. A SNaN is never returned. */
287
288 /* INLINE_SIM_FPU (float) sim_fpu_2f (const sim_fpu *f); */
289 INLINE_SIM_FPU (double) sim_fpu_2d (const sim_fpu *d);
290
291 /* INLINE_SIM_FPU (void) sim_fpu_f2 (sim_fpu *f, float s); */
292 INLINE_SIM_FPU (void) sim_fpu_d2 (sim_fpu *f, double d);
293
294
295
296 /* Specific number classes.
297
298 NB: When either, a 32/64 bit floating points is converted to
299 internal format, or an internal format number is rounded to 32/64
300 bit precision, a special marker is retained that indicates that the
301 value was normalized. For such numbers both is_number and
302 is_denorm return true. */
303
304 INLINE_SIM_FPU (int) sim_fpu_is_nan (const sim_fpu *s); /* 1 => SNaN or QNaN */
305 INLINE_SIM_FPU (int) sim_fpu_is_snan (const sim_fpu *s); /* 1 => SNaN */
306 INLINE_SIM_FPU (int) sim_fpu_is_qnan (const sim_fpu *s); /* 1 => QNaN */
307
308 INLINE_SIM_FPU (int) sim_fpu_is_zero (const sim_fpu *s);
309 INLINE_SIM_FPU (int) sim_fpu_is_infinity (const sim_fpu *s);
310 INLINE_SIM_FPU (int) sim_fpu_is_number (const sim_fpu *s); /* !zero */
311 INLINE_SIM_FPU (int) sim_fpu_is_denorm (const sim_fpu *s); /* !zero */
312
313
314
315 /* Floating point fields */
316
317 INLINE_SIM_FPU (int) sim_fpu_sign (const sim_fpu *s);
318 INLINE_SIM_FPU (int) sim_fpu_exp (const sim_fpu *s);
319
320
321
322 /* Specific comparison operators
323
324 For NaNs et.al., the comparison operators will set IS to zero and
325 return a nonzero result. */
326
327 INLINE_SIM_FPU (int) sim_fpu_lt (int *is, const sim_fpu *l, const sim_fpu *r);
328 INLINE_SIM_FPU (int) sim_fpu_le (int *is, const sim_fpu *l, const sim_fpu *r);
329 INLINE_SIM_FPU (int) sim_fpu_eq (int *is, const sim_fpu *l, const sim_fpu *r);
330 INLINE_SIM_FPU (int) sim_fpu_ne (int *is, const sim_fpu *l, const sim_fpu *r);
331 INLINE_SIM_FPU (int) sim_fpu_ge (int *is, const sim_fpu *l, const sim_fpu *r);
332 INLINE_SIM_FPU (int) sim_fpu_gt (int *is, const sim_fpu *l, const sim_fpu *r);
333
334 INLINE_SIM_FPU (int) sim_fpu_is_lt (const sim_fpu *l, const sim_fpu *r);
335 INLINE_SIM_FPU (int) sim_fpu_is_le (const sim_fpu *l, const sim_fpu *r);
336 INLINE_SIM_FPU (int) sim_fpu_is_eq (const sim_fpu *l, const sim_fpu *r);
337 INLINE_SIM_FPU (int) sim_fpu_is_ne (const sim_fpu *l, const sim_fpu *r);
338 INLINE_SIM_FPU (int) sim_fpu_is_ge (const sim_fpu *l, const sim_fpu *r);
339 INLINE_SIM_FPU (int) sim_fpu_is_gt (const sim_fpu *l, const sim_fpu *r);
340
341
342
343 /* General number class and comparison operators.
344
345 The result of the comparison is indicated by returning one of the
346 values below. Efficient emulation of a target FP compare
347 instruction can be achieved by redefining the values below to match
348 corresponding target FP status bits.
349
350 For instance. SIM_FPU_QNAN may be redefined to be the bit
351 `INVALID' while SIM_FPU_NINF might be redefined as the bits
352 `NEGATIVE | INFINITY | VALID'. */
353
354 #ifndef SIM_FPU_IS_SNAN
355 enum {
356 SIM_FPU_IS_SNAN = 1, /* Noisy not-a-number */
357 SIM_FPU_IS_QNAN = 2, /* Quite not-a-number */
358 SIM_FPU_IS_NINF = 3, /* -infinity */
359 SIM_FPU_IS_PINF = 4, /* +infinity */
360 SIM_FPU_IS_NNUMBER = 5, /* -number - [ -MAX .. -MIN ] */
361 SIM_FPU_IS_PNUMBER = 6, /* +number - [ +MIN .. +MAX ] */
362 SIM_FPU_IS_NDENORM = 7, /* -denorm - ( MIN .. 0 ) */
363 SIM_FPU_IS_PDENORM = 8, /* +denorm - ( 0 .. MIN ) */
364 SIM_FPU_IS_NZERO = 9, /* -0 */
365 SIM_FPU_IS_PZERO = 10, /* +0 */
366 };
367 #endif
368
369 INLINE_SIM_FPU (int) sim_fpu_is (const sim_fpu *l);
370 INLINE_SIM_FPU (int) sim_fpu_cmp (const sim_fpu *l, const sim_fpu *r);
371
372
373
374 /* A constant of useful numbers */
375
376 extern const sim_fpu sim_fpu_zero;
377 extern const sim_fpu sim_fpu_one;
378 extern const sim_fpu sim_fpu_two;
379 extern const sim_fpu sim_fpu_qnan;
380 extern const sim_fpu sim_fpu_max32;
381 extern const sim_fpu sim_fpu_max64;
382
383
384 /* Select the applicable functions for the fp_word type */
385
386 #if WITH_TARGET_FLOATING_POINT_BITSIZE == 32
387 #define sim_fpu_tofp sim_fpu_to32
388 #define sim_fpu_fpto sim_fpu_32to
389 #define sim_fpu_round_fp sim_fpu_round_32
390 #define sim_fpu_maxfp sim_fpu_max32
391 #endif
392 #if WITH_TARGET_FLOATING_POINT_BITSIZE == 64
393 #define sim_fpu_tofp sim_fpu_to64
394 #define sim_fpu_fpto sim_fpu_64to
395 #define sim_fpu_round_fp sim_fpu_round_64
396 #define sim_fpu_maxfp sim_fpu_max64
397 #endif
398
399
400
401 /* For debugging */
402
403 typedef void sim_fpu_print_func (void *, char *, ...);
404
405 INLINE_SIM_FPU (void) sim_fpu_print_fpu (const sim_fpu *f,
406 sim_fpu_print_func *print,
407 void *arg);
408
409 INLINE_SIM_FPU (void) sim_fpu_print_status (int status,
410 sim_fpu_print_func *print,
411 void *arg);
412
413 #if H_REVEALS_MODULE_P (SIM_FPU_INLINE)
414 #include "sim-fpu.c"
415 #endif
416
417 #endif