]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - sim/d10v/interp.c
sim: d10v: convert to nrun
[thirdparty/binutils-gdb.git] / sim / d10v / interp.c
1 #include "config.h"
2 #include <inttypes.h>
3 #include <signal.h>
4 #include "bfd.h"
5 #include "gdb/callback.h"
6 #include "gdb/remote-sim.h"
7
8 #include "sim-main.h"
9 #include "sim-options.h"
10
11 #include "gdb/sim-d10v.h"
12 #include "gdb/signals.h"
13
14 #ifdef HAVE_STRING_H
15 #include <string.h>
16 #else
17 #ifdef HAVE_STRINGS_H
18 #include <strings.h>
19 #endif /* HAVE_STRING_H */
20 #endif /* HAVE_STRINGS_H */
21
22 #ifdef HAVE_STDLIB_H
23 #include <stdlib.h>
24 #endif
25
26 enum _leftright { LEFT_FIRST, RIGHT_FIRST };
27
28 int d10v_debug;
29
30 /* Set this to true to get the previous segment layout. */
31
32 int old_segment_mapping;
33
34 host_callback *d10v_callback;
35 unsigned long ins_type_counters[ (int)INS_MAX ];
36
37 uint16 OP[4];
38
39 static long hash (long insn, int format);
40 static struct hash_entry *lookup_hash (uint32 ins, int size);
41 static void get_operands (struct simops *s, uint32 ins);
42 static void do_long (uint32 ins);
43 static void do_2_short (uint16 ins1, uint16 ins2, enum _leftright leftright);
44 static void do_parallel (uint16 ins1, uint16 ins2);
45 static char *add_commas (char *buf, int sizeof_buf, unsigned long value);
46 extern void sim_set_profile (int n);
47 extern void sim_set_profile_size (int n);
48 static INLINE uint8 *map_memory (unsigned phys_addr);
49
50 #define MAX_HASH 63
51 struct hash_entry
52 {
53 struct hash_entry *next;
54 uint32 opcode;
55 uint32 mask;
56 int size;
57 struct simops *ops;
58 };
59
60 struct hash_entry hash_table[MAX_HASH+1];
61
62 INLINE static long
63 hash (long insn, int format)
64 {
65 if (format & LONG_OPCODE)
66 return ((insn & 0x3F000000) >> 24);
67 else
68 return((insn & 0x7E00) >> 9);
69 }
70
71 INLINE static struct hash_entry *
72 lookup_hash (uint32 ins, int size)
73 {
74 struct hash_entry *h;
75
76 if (size)
77 h = &hash_table[(ins & 0x3F000000) >> 24];
78 else
79 h = &hash_table[(ins & 0x7E00) >> 9];
80
81 while ((ins & h->mask) != h->opcode || h->size != size)
82 {
83 if (h->next == NULL)
84 {
85 State.exception = SIGILL;
86 State.pc_changed = 1; /* Don't increment the PC. */
87 return NULL;
88 }
89 h = h->next;
90 }
91 return (h);
92 }
93
94 INLINE static void
95 get_operands (struct simops *s, uint32 ins)
96 {
97 int i, shift, bits, flags;
98 uint32 mask;
99 for (i=0; i < s->numops; i++)
100 {
101 shift = s->operands[3*i];
102 bits = s->operands[3*i+1];
103 flags = s->operands[3*i+2];
104 mask = 0x7FFFFFFF >> (31 - bits);
105 OP[i] = (ins >> shift) & mask;
106 }
107 /* FIXME: for tracing, update values that need to be updated each
108 instruction decode cycle */
109 State.trace.psw = PSW;
110 }
111
112 static void
113 do_long (uint32 ins)
114 {
115 struct hash_entry *h;
116 #ifdef DEBUG
117 if ((d10v_debug & DEBUG_INSTRUCTION) != 0)
118 (*d10v_callback->printf_filtered) (d10v_callback, "do_long 0x%x\n", ins);
119 #endif
120 h = lookup_hash (ins, 1);
121 if (h == NULL)
122 return;
123 get_operands (h->ops, ins);
124 State.ins_type = INS_LONG;
125 ins_type_counters[ (int)State.ins_type ]++;
126 (h->ops->func)();
127 }
128
129 static void
130 do_2_short (uint16 ins1, uint16 ins2, enum _leftright leftright)
131 {
132 struct hash_entry *h;
133 enum _ins_type first, second;
134
135 #ifdef DEBUG
136 if ((d10v_debug & DEBUG_INSTRUCTION) != 0)
137 (*d10v_callback->printf_filtered) (d10v_callback, "do_2_short 0x%x (%s) -> 0x%x\n",
138 ins1, (leftright) ? "left" : "right", ins2);
139 #endif
140
141 if (leftright == LEFT_FIRST)
142 {
143 first = INS_LEFT;
144 second = INS_RIGHT;
145 ins_type_counters[ (int)INS_LEFTRIGHT ]++;
146 }
147 else
148 {
149 first = INS_RIGHT;
150 second = INS_LEFT;
151 ins_type_counters[ (int)INS_RIGHTLEFT ]++;
152 }
153
154 /* Issue the first instruction */
155 h = lookup_hash (ins1, 0);
156 if (h == NULL)
157 return;
158 get_operands (h->ops, ins1);
159 State.ins_type = first;
160 ins_type_counters[ (int)State.ins_type ]++;
161 (h->ops->func)();
162
163 /* Issue the second instruction (if the PC hasn't changed) */
164 if (!State.pc_changed && !State.exception)
165 {
166 /* finish any existing instructions */
167 SLOT_FLUSH ();
168 h = lookup_hash (ins2, 0);
169 if (h == NULL)
170 return;
171 get_operands (h->ops, ins2);
172 State.ins_type = second;
173 ins_type_counters[ (int)State.ins_type ]++;
174 ins_type_counters[ (int)INS_CYCLES ]++;
175 (h->ops->func)();
176 }
177 else if (!State.exception)
178 ins_type_counters[ (int)INS_COND_JUMP ]++;
179 }
180
181 static void
182 do_parallel (uint16 ins1, uint16 ins2)
183 {
184 struct hash_entry *h1, *h2;
185 #ifdef DEBUG
186 if ((d10v_debug & DEBUG_INSTRUCTION) != 0)
187 (*d10v_callback->printf_filtered) (d10v_callback, "do_parallel 0x%x || 0x%x\n", ins1, ins2);
188 #endif
189 ins_type_counters[ (int)INS_PARALLEL ]++;
190 h1 = lookup_hash (ins1, 0);
191 if (h1 == NULL)
192 return;
193 h2 = lookup_hash (ins2, 0);
194 if (h2 == NULL)
195 return;
196
197 if (h1->ops->exec_type == PARONLY)
198 {
199 get_operands (h1->ops, ins1);
200 State.ins_type = INS_LEFT_COND_TEST;
201 ins_type_counters[ (int)State.ins_type ]++;
202 (h1->ops->func)();
203 if (State.exe)
204 {
205 ins_type_counters[ (int)INS_COND_TRUE ]++;
206 get_operands (h2->ops, ins2);
207 State.ins_type = INS_RIGHT_COND_EXE;
208 ins_type_counters[ (int)State.ins_type ]++;
209 (h2->ops->func)();
210 }
211 else
212 ins_type_counters[ (int)INS_COND_FALSE ]++;
213 }
214 else if (h2->ops->exec_type == PARONLY)
215 {
216 get_operands (h2->ops, ins2);
217 State.ins_type = INS_RIGHT_COND_TEST;
218 ins_type_counters[ (int)State.ins_type ]++;
219 (h2->ops->func)();
220 if (State.exe)
221 {
222 ins_type_counters[ (int)INS_COND_TRUE ]++;
223 get_operands (h1->ops, ins1);
224 State.ins_type = INS_LEFT_COND_EXE;
225 ins_type_counters[ (int)State.ins_type ]++;
226 (h1->ops->func)();
227 }
228 else
229 ins_type_counters[ (int)INS_COND_FALSE ]++;
230 }
231 else
232 {
233 get_operands (h1->ops, ins1);
234 State.ins_type = INS_LEFT_PARALLEL;
235 ins_type_counters[ (int)State.ins_type ]++;
236 (h1->ops->func)();
237 if (!State.exception)
238 {
239 get_operands (h2->ops, ins2);
240 State.ins_type = INS_RIGHT_PARALLEL;
241 ins_type_counters[ (int)State.ins_type ]++;
242 (h2->ops->func)();
243 }
244 }
245 }
246
247 static char *
248 add_commas (char *buf, int sizeof_buf, unsigned long value)
249 {
250 int comma = 3;
251 char *endbuf = buf + sizeof_buf - 1;
252
253 *--endbuf = '\0';
254 do {
255 if (comma-- == 0)
256 {
257 *--endbuf = ',';
258 comma = 2;
259 }
260
261 *--endbuf = (value % 10) + '0';
262 } while ((value /= 10) != 0);
263
264 return endbuf;
265 }
266
267 void
268 sim_size (int power)
269 {
270 int i;
271 for (i = 0; i < IMEM_SEGMENTS; i++)
272 {
273 if (State.mem.insn[i])
274 free (State.mem.insn[i]);
275 }
276 for (i = 0; i < DMEM_SEGMENTS; i++)
277 {
278 if (State.mem.data[i])
279 free (State.mem.data[i]);
280 }
281 for (i = 0; i < UMEM_SEGMENTS; i++)
282 {
283 if (State.mem.unif[i])
284 free (State.mem.unif[i]);
285 }
286 /* Always allocate dmem segment 0. This contains the IMAP and DMAP
287 registers. */
288 State.mem.data[0] = calloc (1, SEGMENT_SIZE);
289 }
290
291 /* For tracing - leave info on last access around. */
292 static char *last_segname = "invalid";
293 static char *last_from = "invalid";
294 static char *last_to = "invalid";
295
296 enum
297 {
298 IMAP0_OFFSET = 0xff00,
299 DMAP0_OFFSET = 0xff08,
300 DMAP2_SHADDOW = 0xff04,
301 DMAP2_OFFSET = 0xff0c
302 };
303
304 static void
305 set_dmap_register (int reg_nr, unsigned long value)
306 {
307 uint8 *raw = map_memory (SIM_D10V_MEMORY_DATA
308 + DMAP0_OFFSET + 2 * reg_nr);
309 WRITE_16 (raw, value);
310 #ifdef DEBUG
311 if ((d10v_debug & DEBUG_MEMORY))
312 {
313 (*d10v_callback->printf_filtered)
314 (d10v_callback, "mem: dmap%d=0x%04lx\n", reg_nr, value);
315 }
316 #endif
317 }
318
319 static unsigned long
320 dmap_register (void *regcache, int reg_nr)
321 {
322 uint8 *raw = map_memory (SIM_D10V_MEMORY_DATA
323 + DMAP0_OFFSET + 2 * reg_nr);
324 return READ_16 (raw);
325 }
326
327 static void
328 set_imap_register (int reg_nr, unsigned long value)
329 {
330 uint8 *raw = map_memory (SIM_D10V_MEMORY_DATA
331 + IMAP0_OFFSET + 2 * reg_nr);
332 WRITE_16 (raw, value);
333 #ifdef DEBUG
334 if ((d10v_debug & DEBUG_MEMORY))
335 {
336 (*d10v_callback->printf_filtered)
337 (d10v_callback, "mem: imap%d=0x%04lx\n", reg_nr, value);
338 }
339 #endif
340 }
341
342 static unsigned long
343 imap_register (void *regcache, int reg_nr)
344 {
345 uint8 *raw = map_memory (SIM_D10V_MEMORY_DATA
346 + IMAP0_OFFSET + 2 * reg_nr);
347 return READ_16 (raw);
348 }
349
350 enum
351 {
352 HELD_SPI_IDX = 0,
353 HELD_SPU_IDX = 1
354 };
355
356 static unsigned long
357 spu_register (void)
358 {
359 if (PSW_SM)
360 return GPR (SP_IDX);
361 else
362 return HELD_SP (HELD_SPU_IDX);
363 }
364
365 static unsigned long
366 spi_register (void)
367 {
368 if (!PSW_SM)
369 return GPR (SP_IDX);
370 else
371 return HELD_SP (HELD_SPI_IDX);
372 }
373
374 static void
375 set_spi_register (unsigned long value)
376 {
377 if (!PSW_SM)
378 SET_GPR (SP_IDX, value);
379 SET_HELD_SP (HELD_SPI_IDX, value);
380 }
381
382 static void
383 set_spu_register (unsigned long value)
384 {
385 if (PSW_SM)
386 SET_GPR (SP_IDX, value);
387 SET_HELD_SP (HELD_SPU_IDX, value);
388 }
389
390 /* Given a virtual address in the DMAP address space, translate it
391 into a physical address. */
392
393 unsigned long
394 sim_d10v_translate_dmap_addr (unsigned long offset,
395 int nr_bytes,
396 unsigned long *phys,
397 void *regcache,
398 unsigned long (*dmap_register) (void *regcache,
399 int reg_nr))
400 {
401 short map;
402 int regno;
403 last_from = "logical-data";
404 if (offset >= DMAP_BLOCK_SIZE * SIM_D10V_NR_DMAP_REGS)
405 {
406 /* Logical address out side of data segments, not supported */
407 return 0;
408 }
409 regno = (offset / DMAP_BLOCK_SIZE);
410 offset = (offset % DMAP_BLOCK_SIZE);
411 if ((offset % DMAP_BLOCK_SIZE) + nr_bytes > DMAP_BLOCK_SIZE)
412 {
413 /* Don't cross a BLOCK boundary */
414 nr_bytes = DMAP_BLOCK_SIZE - (offset % DMAP_BLOCK_SIZE);
415 }
416 map = dmap_register (regcache, regno);
417 if (regno == 3)
418 {
419 /* Always maps to data memory */
420 int iospi = (offset / 0x1000) % 4;
421 int iosp = (map >> (4 * (3 - iospi))) % 0x10;
422 last_to = "io-space";
423 *phys = (SIM_D10V_MEMORY_DATA + (iosp * 0x10000) + 0xc000 + offset);
424 }
425 else
426 {
427 int sp = ((map & 0x3000) >> 12);
428 int segno = (map & 0x3ff);
429 switch (sp)
430 {
431 case 0: /* 00: Unified memory */
432 *phys = SIM_D10V_MEMORY_UNIFIED + (segno * DMAP_BLOCK_SIZE) + offset;
433 last_to = "unified";
434 break;
435 case 1: /* 01: Instruction Memory */
436 *phys = SIM_D10V_MEMORY_INSN + (segno * DMAP_BLOCK_SIZE) + offset;
437 last_to = "chip-insn";
438 break;
439 case 2: /* 10: Internal data memory */
440 *phys = SIM_D10V_MEMORY_DATA + (segno << 16) + (regno * DMAP_BLOCK_SIZE) + offset;
441 last_to = "chip-data";
442 break;
443 case 3: /* 11: Reserved */
444 return 0;
445 }
446 }
447 return nr_bytes;
448 }
449
450 /* Given a virtual address in the IMAP address space, translate it
451 into a physical address. */
452
453 unsigned long
454 sim_d10v_translate_imap_addr (unsigned long offset,
455 int nr_bytes,
456 unsigned long *phys,
457 void *regcache,
458 unsigned long (*imap_register) (void *regcache,
459 int reg_nr))
460 {
461 short map;
462 int regno;
463 int sp;
464 int segno;
465 last_from = "logical-insn";
466 if (offset >= (IMAP_BLOCK_SIZE * SIM_D10V_NR_IMAP_REGS))
467 {
468 /* Logical address outside of IMAP segments, not supported */
469 return 0;
470 }
471 regno = (offset / IMAP_BLOCK_SIZE);
472 offset = (offset % IMAP_BLOCK_SIZE);
473 if (offset + nr_bytes > IMAP_BLOCK_SIZE)
474 {
475 /* Don't cross a BLOCK boundary */
476 nr_bytes = IMAP_BLOCK_SIZE - offset;
477 }
478 map = imap_register (regcache, regno);
479 sp = (map & 0x3000) >> 12;
480 segno = (map & 0x007f);
481 switch (sp)
482 {
483 case 0: /* 00: unified memory */
484 *phys = SIM_D10V_MEMORY_UNIFIED + (segno << 17) + offset;
485 last_to = "unified";
486 break;
487 case 1: /* 01: instruction memory */
488 *phys = SIM_D10V_MEMORY_INSN + (IMAP_BLOCK_SIZE * regno) + offset;
489 last_to = "chip-insn";
490 break;
491 case 2: /*10*/
492 /* Reserved. */
493 return 0;
494 case 3: /* 11: for testing - instruction memory */
495 offset = (offset % 0x800);
496 *phys = SIM_D10V_MEMORY_INSN + offset;
497 if (offset + nr_bytes > 0x800)
498 /* don't cross VM boundary */
499 nr_bytes = 0x800 - offset;
500 last_to = "test-insn";
501 break;
502 }
503 return nr_bytes;
504 }
505
506 unsigned long
507 sim_d10v_translate_addr (unsigned long memaddr,
508 int nr_bytes,
509 unsigned long *targ_addr,
510 void *regcache,
511 unsigned long (*dmap_register) (void *regcache,
512 int reg_nr),
513 unsigned long (*imap_register) (void *regcache,
514 int reg_nr))
515 {
516 unsigned long phys;
517 unsigned long seg;
518 unsigned long off;
519
520 last_from = "unknown";
521 last_to = "unknown";
522
523 seg = (memaddr >> 24);
524 off = (memaddr & 0xffffffL);
525
526 /* However, if we've asked to use the previous generation of segment
527 mapping, rearrange the segments as follows. */
528
529 if (old_segment_mapping)
530 {
531 switch (seg)
532 {
533 case 0x00: /* DMAP translated memory */
534 seg = 0x10;
535 break;
536 case 0x01: /* IMAP translated memory */
537 seg = 0x11;
538 break;
539 case 0x10: /* On-chip data memory */
540 seg = 0x02;
541 break;
542 case 0x11: /* On-chip insn memory */
543 seg = 0x01;
544 break;
545 case 0x12: /* Unified memory */
546 seg = 0x00;
547 break;
548 }
549 }
550
551 switch (seg)
552 {
553 case 0x00: /* Physical unified memory */
554 last_from = "phys-unified";
555 last_to = "unified";
556 phys = SIM_D10V_MEMORY_UNIFIED + off;
557 if ((off % SEGMENT_SIZE) + nr_bytes > SEGMENT_SIZE)
558 nr_bytes = SEGMENT_SIZE - (off % SEGMENT_SIZE);
559 break;
560
561 case 0x01: /* Physical instruction memory */
562 last_from = "phys-insn";
563 last_to = "chip-insn";
564 phys = SIM_D10V_MEMORY_INSN + off;
565 if ((off % SEGMENT_SIZE) + nr_bytes > SEGMENT_SIZE)
566 nr_bytes = SEGMENT_SIZE - (off % SEGMENT_SIZE);
567 break;
568
569 case 0x02: /* Physical data memory segment */
570 last_from = "phys-data";
571 last_to = "chip-data";
572 phys = SIM_D10V_MEMORY_DATA + off;
573 if ((off % SEGMENT_SIZE) + nr_bytes > SEGMENT_SIZE)
574 nr_bytes = SEGMENT_SIZE - (off % SEGMENT_SIZE);
575 break;
576
577 case 0x10: /* in logical data address segment */
578 nr_bytes = sim_d10v_translate_dmap_addr (off, nr_bytes, &phys, regcache,
579 dmap_register);
580 break;
581
582 case 0x11: /* in logical instruction address segment */
583 nr_bytes = sim_d10v_translate_imap_addr (off, nr_bytes, &phys, regcache,
584 imap_register);
585 break;
586
587 default:
588 return 0;
589 }
590
591 *targ_addr = phys;
592 return nr_bytes;
593 }
594
595 /* Return a pointer into the raw buffer designated by phys_addr. It
596 is assumed that the client has already ensured that the access
597 isn't going to cross a segment boundary. */
598
599 uint8 *
600 map_memory (unsigned phys_addr)
601 {
602 uint8 **memory;
603 uint8 *raw;
604 unsigned offset;
605 int segment = ((phys_addr >> 24) & 0xff);
606
607 switch (segment)
608 {
609
610 case 0x00: /* Unified memory */
611 {
612 memory = &State.mem.unif[(phys_addr / SEGMENT_SIZE) % UMEM_SEGMENTS];
613 last_segname = "umem";
614 break;
615 }
616
617 case 0x01: /* On-chip insn memory */
618 {
619 memory = &State.mem.insn[(phys_addr / SEGMENT_SIZE) % IMEM_SEGMENTS];
620 last_segname = "imem";
621 break;
622 }
623
624 case 0x02: /* On-chip data memory */
625 {
626 if ((phys_addr & 0xff00) == 0xff00)
627 {
628 phys_addr = (phys_addr & 0xffff);
629 if (phys_addr == DMAP2_SHADDOW)
630 {
631 phys_addr = DMAP2_OFFSET;
632 last_segname = "dmap";
633 }
634 else
635 last_segname = "reg";
636 }
637 else
638 last_segname = "dmem";
639 memory = &State.mem.data[(phys_addr / SEGMENT_SIZE) % DMEM_SEGMENTS];
640 break;
641 }
642
643 default:
644 /* OOPS! */
645 last_segname = "scrap";
646 return State.mem.fault;
647 }
648
649 if (*memory == NULL)
650 {
651 *memory = calloc (1, SEGMENT_SIZE);
652 if (*memory == NULL)
653 {
654 (*d10v_callback->printf_filtered) (d10v_callback, "Malloc failed.\n");
655 return State.mem.fault;
656 }
657 }
658
659 offset = (phys_addr % SEGMENT_SIZE);
660 raw = *memory + offset;
661 return raw;
662 }
663
664 /* Transfer data to/from simulated memory. Since a bug in either the
665 simulated program or in gdb or the simulator itself may cause a
666 bogus address to be passed in, we need to do some sanity checking
667 on addresses to make sure they are within bounds. When an address
668 fails the bounds check, treat it as a zero length read/write rather
669 than aborting the entire run. */
670
671 static int
672 xfer_mem (SIM_ADDR virt,
673 unsigned char *buffer,
674 int size,
675 int write_p)
676 {
677 uint8 *memory;
678 unsigned long phys;
679 int phys_size;
680 phys_size = sim_d10v_translate_addr (virt, size, &phys, NULL,
681 dmap_register, imap_register);
682 if (phys_size == 0)
683 return 0;
684
685 memory = map_memory (phys);
686
687 #ifdef DEBUG
688 if ((d10v_debug & DEBUG_INSTRUCTION) != 0)
689 {
690 (*d10v_callback->printf_filtered)
691 (d10v_callback,
692 "sim_%s %d bytes: 0x%08lx (%s) -> 0x%08lx (%s) -> 0x%08lx (%s)\n",
693 (write_p ? "write" : "read"),
694 phys_size, virt, last_from,
695 phys, last_to,
696 (long) memory, last_segname);
697 }
698 #endif
699
700 if (write_p)
701 {
702 memcpy (memory, buffer, phys_size);
703 }
704 else
705 {
706 memcpy (buffer, memory, phys_size);
707 }
708
709 return phys_size;
710 }
711
712
713 int
714 sim_write (SIM_DESC sd, SIM_ADDR addr, const unsigned char *buffer, int size)
715 {
716 /* FIXME: this should be performing a virtual transfer */
717 return xfer_mem( addr, buffer, size, 1);
718 }
719
720 int
721 sim_read (SIM_DESC sd, SIM_ADDR addr, unsigned char *buffer, int size)
722 {
723 /* FIXME: this should be performing a virtual transfer */
724 return xfer_mem( addr, buffer, size, 0);
725 }
726
727 static void
728 free_state (SIM_DESC sd)
729 {
730 if (STATE_MODULES (sd) != NULL)
731 sim_module_uninstall (sd);
732 sim_cpu_free_all (sd);
733 sim_state_free (sd);
734 }
735
736 SIM_DESC trace_sd = NULL;
737
738 SIM_DESC
739 sim_open (SIM_OPEN_KIND kind, host_callback *cb, struct bfd *abfd, char **argv)
740 {
741 struct simops *s;
742 struct hash_entry *h;
743 static int init_p = 0;
744 char **p;
745 SIM_DESC sd = sim_state_alloc (kind, cb);
746 SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
747
748 /* The cpu data is kept in a separately allocated chunk of memory. */
749 if (sim_cpu_alloc_all (sd, 1, /*cgen_cpu_max_extra_bytes ()*/0) != SIM_RC_OK)
750 {
751 free_state (sd);
752 return 0;
753 }
754
755 if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK)
756 {
757 free_state (sd);
758 return 0;
759 }
760
761 /* getopt will print the error message so we just have to exit if this fails.
762 FIXME: Hmmm... in the case of gdb we need getopt to call
763 print_filtered. */
764 if (sim_parse_args (sd, argv) != SIM_RC_OK)
765 {
766 free_state (sd);
767 return 0;
768 }
769
770 /* Check for/establish the a reference program image. */
771 if (sim_analyze_program (sd,
772 (STATE_PROG_ARGV (sd) != NULL
773 ? *STATE_PROG_ARGV (sd)
774 : NULL), abfd) != SIM_RC_OK)
775 {
776 free_state (sd);
777 return 0;
778 }
779
780 /* Configure/verify the target byte order and other runtime
781 configuration options. */
782 if (sim_config (sd) != SIM_RC_OK)
783 {
784 sim_module_uninstall (sd);
785 return 0;
786 }
787
788 if (sim_post_argv_init (sd) != SIM_RC_OK)
789 {
790 /* Uninstall the modules to avoid memory leaks,
791 file descriptor leaks, etc. */
792 sim_module_uninstall (sd);
793 return 0;
794 }
795
796 trace_sd = sd;
797 d10v_callback = cb;
798 old_segment_mapping = 0;
799
800 /* NOTE: This argument parsing is only effective when this function
801 is called by GDB. Standalone argument parsing is handled by
802 sim/common/run.c. */
803 for (p = argv + 1; *p; ++p)
804 {
805 if (strcmp (*p, "-oldseg") == 0)
806 old_segment_mapping = 1;
807 #ifdef DEBUG
808 else if (strcmp (*p, "-t") == 0)
809 d10v_debug = DEBUG;
810 else if (strncmp (*p, "-t", 2) == 0)
811 d10v_debug = atoi (*p + 2);
812 #endif
813 }
814
815 /* put all the opcodes in the hash table */
816 if (!init_p++)
817 {
818 for (s = Simops; s->func; s++)
819 {
820 h = &hash_table[hash(s->opcode,s->format)];
821
822 /* go to the last entry in the chain */
823 while (h->next)
824 h = h->next;
825
826 if (h->ops)
827 {
828 h->next = (struct hash_entry *) calloc(1,sizeof(struct hash_entry));
829 if (!h->next)
830 perror ("malloc failure");
831
832 h = h->next;
833 }
834 h->ops = s;
835 h->mask = s->mask;
836 h->opcode = s->opcode;
837 h->size = s->is_long;
838 }
839 }
840
841 /* reset the processor state */
842 if (!State.mem.data[0])
843 sim_size (1);
844 sim_create_inferior ((SIM_DESC) 1, NULL, NULL, NULL);
845
846 return sd;
847 }
848
849
850 void
851 sim_close (SIM_DESC sd, int quitting)
852 {
853 /* Nothing to do. */
854 }
855
856 uint8 *
857 dmem_addr (uint16 offset)
858 {
859 unsigned long phys;
860 uint8 *mem;
861 int phys_size;
862
863 /* Note: DMEM address range is 0..0x10000. Calling code can compute
864 things like ``0xfffe + 0x0e60 == 0x10e5d''. Since offset's type
865 is uint16 this is modulo'ed onto 0x0e5d. */
866
867 phys_size = sim_d10v_translate_dmap_addr (offset, 1, &phys, NULL,
868 dmap_register);
869 if (phys_size == 0)
870 {
871 mem = State.mem.fault;
872 }
873 else
874 mem = map_memory (phys);
875 #ifdef DEBUG
876 if ((d10v_debug & DEBUG_MEMORY))
877 {
878 (*d10v_callback->printf_filtered)
879 (d10v_callback,
880 "mem: 0x%08x (%s) -> 0x%08lx %d (%s) -> 0x%08lx (%s)\n",
881 offset, last_from,
882 phys, phys_size, last_to,
883 (long) mem, last_segname);
884 }
885 #endif
886 return mem;
887 }
888
889 uint8 *
890 imem_addr (uint32 offset)
891 {
892 unsigned long phys;
893 uint8 *mem;
894 int phys_size = sim_d10v_translate_imap_addr (offset, 1, &phys, NULL,
895 imap_register);
896 if (phys_size == 0)
897 {
898 return State.mem.fault;
899 }
900 mem = map_memory (phys);
901 #ifdef DEBUG
902 if ((d10v_debug & DEBUG_MEMORY))
903 {
904 (*d10v_callback->printf_filtered)
905 (d10v_callback,
906 "mem: 0x%08x (%s) -> 0x%08lx %d (%s) -> 0x%08lx (%s)\n",
907 offset, last_from,
908 phys, phys_size, last_to,
909 (long) mem, last_segname);
910 }
911 #endif
912 return mem;
913 }
914
915 static int stop_simulator = 0;
916
917 int
918 sim_stop (SIM_DESC sd)
919 {
920 stop_simulator = 1;
921 return 1;
922 }
923
924
925 /* Run (or resume) the program. */
926 void
927 sim_resume (SIM_DESC sd, int step, int siggnal)
928 {
929 uint32 inst;
930 uint8 *iaddr;
931
932 /* (*d10v_callback->printf_filtered) (d10v_callback, "sim_resume (%d,%d) PC=0x%x\n",step,siggnal,PC); */
933 State.exception = 0;
934 if (step)
935 sim_stop (sd);
936
937 switch (siggnal)
938 {
939 case 0:
940 break;
941 #ifdef SIGBUS
942 case SIGBUS:
943 #endif
944 case SIGSEGV:
945 SET_BPC (PC);
946 SET_BPSW (PSW);
947 SET_HW_PSW ((PSW & (PSW_F0_BIT | PSW_F1_BIT | PSW_C_BIT)));
948 JMP (AE_VECTOR_START);
949 SLOT_FLUSH ();
950 break;
951 case SIGILL:
952 SET_BPC (PC);
953 SET_BPSW (PSW);
954 SET_HW_PSW ((PSW & (PSW_F0_BIT | PSW_F1_BIT | PSW_C_BIT)));
955 JMP (RIE_VECTOR_START);
956 SLOT_FLUSH ();
957 break;
958 default:
959 /* just ignore it */
960 break;
961 }
962
963 do
964 {
965 iaddr = imem_addr ((uint32)PC << 2);
966 if (iaddr == State.mem.fault)
967 {
968 State.exception = SIGBUS;
969 break;
970 }
971
972 inst = get_longword( iaddr );
973
974 State.pc_changed = 0;
975 ins_type_counters[ (int)INS_CYCLES ]++;
976
977 switch (inst & 0xC0000000)
978 {
979 case 0xC0000000:
980 /* long instruction */
981 do_long (inst & 0x3FFFFFFF);
982 break;
983 case 0x80000000:
984 /* R -> L */
985 do_2_short ( inst & 0x7FFF, (inst & 0x3FFF8000) >> 15, RIGHT_FIRST);
986 break;
987 case 0x40000000:
988 /* L -> R */
989 do_2_short ((inst & 0x3FFF8000) >> 15, inst & 0x7FFF, LEFT_FIRST);
990 break;
991 case 0:
992 do_parallel ((inst & 0x3FFF8000) >> 15, inst & 0x7FFF);
993 break;
994 }
995
996 /* If the PC of the current instruction matches RPT_E then
997 schedule a branch to the loop start. If one of those
998 instructions happens to be a branch, than that instruction
999 will be ignored */
1000 if (!State.pc_changed)
1001 {
1002 if (PSW_RP && PC == RPT_E)
1003 {
1004 /* Note: The behavour of a branch instruction at RPT_E
1005 is implementation dependant, this simulator takes the
1006 branch. Branching to RPT_E is valid, the instruction
1007 must be executed before the loop is taken. */
1008 if (RPT_C == 1)
1009 {
1010 SET_PSW_RP (0);
1011 SET_RPT_C (0);
1012 SET_PC (PC + 1);
1013 }
1014 else
1015 {
1016 SET_RPT_C (RPT_C - 1);
1017 SET_PC (RPT_S);
1018 }
1019 }
1020 else
1021 SET_PC (PC + 1);
1022 }
1023
1024 /* Check for a breakpoint trap on this instruction. This
1025 overrides any pending branches or loops */
1026 if (PSW_DB && PC == IBA)
1027 {
1028 SET_BPC (PC);
1029 SET_BPSW (PSW);
1030 SET_PSW (PSW & PSW_SM_BIT);
1031 SET_PC (SDBT_VECTOR_START);
1032 }
1033
1034 /* Writeback all the DATA / PC changes */
1035 SLOT_FLUSH ();
1036 }
1037 while ( !State.exception && !stop_simulator);
1038
1039 if (step && !State.exception)
1040 State.exception = SIGTRAP;
1041 }
1042
1043 void
1044 sim_info (SIM_DESC sd, int verbose)
1045 {
1046 char buf1[40];
1047 char buf2[40];
1048 char buf3[40];
1049 char buf4[40];
1050 char buf5[40];
1051 unsigned long left = ins_type_counters[ (int)INS_LEFT ] + ins_type_counters[ (int)INS_LEFT_COND_EXE ];
1052 unsigned long left_nops = ins_type_counters[ (int)INS_LEFT_NOPS ];
1053 unsigned long left_parallel = ins_type_counters[ (int)INS_LEFT_PARALLEL ];
1054 unsigned long left_cond = ins_type_counters[ (int)INS_LEFT_COND_TEST ];
1055 unsigned long left_total = left + left_parallel + left_cond + left_nops;
1056
1057 unsigned long right = ins_type_counters[ (int)INS_RIGHT ] + ins_type_counters[ (int)INS_RIGHT_COND_EXE ];
1058 unsigned long right_nops = ins_type_counters[ (int)INS_RIGHT_NOPS ];
1059 unsigned long right_parallel = ins_type_counters[ (int)INS_RIGHT_PARALLEL ];
1060 unsigned long right_cond = ins_type_counters[ (int)INS_RIGHT_COND_TEST ];
1061 unsigned long right_total = right + right_parallel + right_cond + right_nops;
1062
1063 unsigned long unknown = ins_type_counters[ (int)INS_UNKNOWN ];
1064 unsigned long ins_long = ins_type_counters[ (int)INS_LONG ];
1065 unsigned long parallel = ins_type_counters[ (int)INS_PARALLEL ];
1066 unsigned long leftright = ins_type_counters[ (int)INS_LEFTRIGHT ];
1067 unsigned long rightleft = ins_type_counters[ (int)INS_RIGHTLEFT ];
1068 unsigned long cond_true = ins_type_counters[ (int)INS_COND_TRUE ];
1069 unsigned long cond_false = ins_type_counters[ (int)INS_COND_FALSE ];
1070 unsigned long cond_jump = ins_type_counters[ (int)INS_COND_JUMP ];
1071 unsigned long cycles = ins_type_counters[ (int)INS_CYCLES ];
1072 unsigned long total = (unknown + left_total + right_total + ins_long);
1073
1074 int size = strlen (add_commas (buf1, sizeof (buf1), total));
1075 int parallel_size = strlen (add_commas (buf1, sizeof (buf1),
1076 (left_parallel > right_parallel) ? left_parallel : right_parallel));
1077 int cond_size = strlen (add_commas (buf1, sizeof (buf1), (left_cond > right_cond) ? left_cond : right_cond));
1078 int nop_size = strlen (add_commas (buf1, sizeof (buf1), (left_nops > right_nops) ? left_nops : right_nops));
1079 int normal_size = strlen (add_commas (buf1, sizeof (buf1), (left > right) ? left : right));
1080
1081 (*d10v_callback->printf_filtered) (d10v_callback,
1082 "executed %*s left instruction(s), %*s normal, %*s parallel, %*s EXExxx, %*s nops\n",
1083 size, add_commas (buf1, sizeof (buf1), left_total),
1084 normal_size, add_commas (buf2, sizeof (buf2), left),
1085 parallel_size, add_commas (buf3, sizeof (buf3), left_parallel),
1086 cond_size, add_commas (buf4, sizeof (buf4), left_cond),
1087 nop_size, add_commas (buf5, sizeof (buf5), left_nops));
1088
1089 (*d10v_callback->printf_filtered) (d10v_callback,
1090 "executed %*s right instruction(s), %*s normal, %*s parallel, %*s EXExxx, %*s nops\n",
1091 size, add_commas (buf1, sizeof (buf1), right_total),
1092 normal_size, add_commas (buf2, sizeof (buf2), right),
1093 parallel_size, add_commas (buf3, sizeof (buf3), right_parallel),
1094 cond_size, add_commas (buf4, sizeof (buf4), right_cond),
1095 nop_size, add_commas (buf5, sizeof (buf5), right_nops));
1096
1097 if (ins_long)
1098 (*d10v_callback->printf_filtered) (d10v_callback,
1099 "executed %*s long instruction(s)\n",
1100 size, add_commas (buf1, sizeof (buf1), ins_long));
1101
1102 if (parallel)
1103 (*d10v_callback->printf_filtered) (d10v_callback,
1104 "executed %*s parallel instruction(s)\n",
1105 size, add_commas (buf1, sizeof (buf1), parallel));
1106
1107 if (leftright)
1108 (*d10v_callback->printf_filtered) (d10v_callback,
1109 "executed %*s instruction(s) encoded L->R\n",
1110 size, add_commas (buf1, sizeof (buf1), leftright));
1111
1112 if (rightleft)
1113 (*d10v_callback->printf_filtered) (d10v_callback,
1114 "executed %*s instruction(s) encoded R->L\n",
1115 size, add_commas (buf1, sizeof (buf1), rightleft));
1116
1117 if (unknown)
1118 (*d10v_callback->printf_filtered) (d10v_callback,
1119 "executed %*s unknown instruction(s)\n",
1120 size, add_commas (buf1, sizeof (buf1), unknown));
1121
1122 if (cond_true)
1123 (*d10v_callback->printf_filtered) (d10v_callback,
1124 "executed %*s instruction(s) due to EXExxx condition being true\n",
1125 size, add_commas (buf1, sizeof (buf1), cond_true));
1126
1127 if (cond_false)
1128 (*d10v_callback->printf_filtered) (d10v_callback,
1129 "skipped %*s instruction(s) due to EXExxx condition being false\n",
1130 size, add_commas (buf1, sizeof (buf1), cond_false));
1131
1132 if (cond_jump)
1133 (*d10v_callback->printf_filtered) (d10v_callback,
1134 "skipped %*s instruction(s) due to conditional branch succeeding\n",
1135 size, add_commas (buf1, sizeof (buf1), cond_jump));
1136
1137 (*d10v_callback->printf_filtered) (d10v_callback,
1138 "executed %*s cycle(s)\n",
1139 size, add_commas (buf1, sizeof (buf1), cycles));
1140
1141 (*d10v_callback->printf_filtered) (d10v_callback,
1142 "executed %*s total instructions\n",
1143 size, add_commas (buf1, sizeof (buf1), total));
1144 }
1145
1146 SIM_RC
1147 sim_create_inferior (SIM_DESC sd, struct bfd *abfd, char **argv, char **env)
1148 {
1149 bfd_vma start_address;
1150
1151 /* reset all state information */
1152 memset (&State.regs, 0, (uintptr_t)&State.mem - (uintptr_t)&State.regs);
1153
1154 /* There was a hack here to copy the values of argc and argv into r0
1155 and r1. The values were also saved into some high memory that
1156 won't be overwritten by the stack (0x7C00). The reason for doing
1157 this was to allow the 'run' program to accept arguments. Without
1158 the hack, this is not possible anymore. If the simulator is run
1159 from the debugger, arguments cannot be passed in, so this makes
1160 no difference. */
1161
1162 /* set PC */
1163 if (abfd != NULL)
1164 start_address = bfd_get_start_address (abfd);
1165 else
1166 start_address = 0xffc0 << 2;
1167 #ifdef DEBUG
1168 if (d10v_debug)
1169 (*d10v_callback->printf_filtered) (d10v_callback, "sim_create_inferior: PC=0x%lx\n", (long) start_address);
1170 #endif
1171 SET_CREG (PC_CR, start_address >> 2);
1172
1173 /* cpu resets imap0 to 0 and imap1 to 0x7f, but D10V-EVA board
1174 initializes imap0 and imap1 to 0x1000 as part of its ROM
1175 initialization. */
1176 if (old_segment_mapping)
1177 {
1178 /* External memory startup. This is the HARD reset state. */
1179 set_imap_register (0, 0x0000);
1180 set_imap_register (1, 0x007f);
1181 set_dmap_register (0, 0x2000);
1182 set_dmap_register (1, 0x2000);
1183 set_dmap_register (2, 0x0000); /* Old DMAP */
1184 set_dmap_register (3, 0x0000);
1185 }
1186 else
1187 {
1188 /* Internal memory startup. This is the ROM intialized state. */
1189 set_imap_register (0, 0x1000);
1190 set_imap_register (1, 0x1000);
1191 set_dmap_register (0, 0x2000);
1192 set_dmap_register (1, 0x2000);
1193 set_dmap_register (2, 0x2000); /* DMAP2 initial internal value is
1194 0x2000 on the new board. */
1195 set_dmap_register (3, 0x0000);
1196 }
1197
1198 SLOT_FLUSH ();
1199 return SIM_RC_OK;
1200 }
1201
1202 void
1203 sim_stop_reason (SIM_DESC sd, enum sim_stop *reason, int *sigrc)
1204 {
1205 /* (*d10v_callback->printf_filtered) (d10v_callback, "sim_stop_reason: PC=0x%x\n",PC<<2); */
1206
1207 switch (State.exception)
1208 {
1209 case SIG_D10V_STOP: /* stop instruction */
1210 *reason = sim_exited;
1211 *sigrc = 0;
1212 break;
1213
1214 case SIG_D10V_EXIT: /* exit trap */
1215 *reason = sim_exited;
1216 *sigrc = GPR (0);
1217 break;
1218
1219 case SIG_D10V_BUS:
1220 *reason = sim_stopped;
1221 *sigrc = GDB_SIGNAL_BUS;
1222 break;
1223
1224 default: /* some signal */
1225 *reason = sim_stopped;
1226 if (stop_simulator && !State.exception)
1227 *sigrc = GDB_SIGNAL_INT;
1228 else
1229 *sigrc = State.exception;
1230 break;
1231 }
1232
1233 stop_simulator = 0;
1234 }
1235
1236 int
1237 sim_fetch_register (SIM_DESC sd, int rn, unsigned char *memory, int length)
1238 {
1239 int size;
1240 switch ((enum sim_d10v_regs) rn)
1241 {
1242 case SIM_D10V_R0_REGNUM:
1243 case SIM_D10V_R1_REGNUM:
1244 case SIM_D10V_R2_REGNUM:
1245 case SIM_D10V_R3_REGNUM:
1246 case SIM_D10V_R4_REGNUM:
1247 case SIM_D10V_R5_REGNUM:
1248 case SIM_D10V_R6_REGNUM:
1249 case SIM_D10V_R7_REGNUM:
1250 case SIM_D10V_R8_REGNUM:
1251 case SIM_D10V_R9_REGNUM:
1252 case SIM_D10V_R10_REGNUM:
1253 case SIM_D10V_R11_REGNUM:
1254 case SIM_D10V_R12_REGNUM:
1255 case SIM_D10V_R13_REGNUM:
1256 case SIM_D10V_R14_REGNUM:
1257 case SIM_D10V_R15_REGNUM:
1258 WRITE_16 (memory, GPR (rn - SIM_D10V_R0_REGNUM));
1259 size = 2;
1260 break;
1261 case SIM_D10V_CR0_REGNUM:
1262 case SIM_D10V_CR1_REGNUM:
1263 case SIM_D10V_CR2_REGNUM:
1264 case SIM_D10V_CR3_REGNUM:
1265 case SIM_D10V_CR4_REGNUM:
1266 case SIM_D10V_CR5_REGNUM:
1267 case SIM_D10V_CR6_REGNUM:
1268 case SIM_D10V_CR7_REGNUM:
1269 case SIM_D10V_CR8_REGNUM:
1270 case SIM_D10V_CR9_REGNUM:
1271 case SIM_D10V_CR10_REGNUM:
1272 case SIM_D10V_CR11_REGNUM:
1273 case SIM_D10V_CR12_REGNUM:
1274 case SIM_D10V_CR13_REGNUM:
1275 case SIM_D10V_CR14_REGNUM:
1276 case SIM_D10V_CR15_REGNUM:
1277 WRITE_16 (memory, CREG (rn - SIM_D10V_CR0_REGNUM));
1278 size = 2;
1279 break;
1280 case SIM_D10V_A0_REGNUM:
1281 case SIM_D10V_A1_REGNUM:
1282 WRITE_64 (memory, ACC (rn - SIM_D10V_A0_REGNUM));
1283 size = 8;
1284 break;
1285 case SIM_D10V_SPI_REGNUM:
1286 /* PSW_SM indicates that the current SP is the USER
1287 stack-pointer. */
1288 WRITE_16 (memory, spi_register ());
1289 size = 2;
1290 break;
1291 case SIM_D10V_SPU_REGNUM:
1292 /* PSW_SM indicates that the current SP is the USER
1293 stack-pointer. */
1294 WRITE_16 (memory, spu_register ());
1295 size = 2;
1296 break;
1297 case SIM_D10V_IMAP0_REGNUM:
1298 case SIM_D10V_IMAP1_REGNUM:
1299 WRITE_16 (memory, imap_register (NULL, rn - SIM_D10V_IMAP0_REGNUM));
1300 size = 2;
1301 break;
1302 case SIM_D10V_DMAP0_REGNUM:
1303 case SIM_D10V_DMAP1_REGNUM:
1304 case SIM_D10V_DMAP2_REGNUM:
1305 case SIM_D10V_DMAP3_REGNUM:
1306 WRITE_16 (memory, dmap_register (NULL, rn - SIM_D10V_DMAP0_REGNUM));
1307 size = 2;
1308 break;
1309 case SIM_D10V_TS2_DMAP_REGNUM:
1310 size = 0;
1311 break;
1312 default:
1313 size = 0;
1314 break;
1315 }
1316 return size;
1317 }
1318
1319 int
1320 sim_store_register (SIM_DESC sd, int rn, unsigned char *memory, int length)
1321 {
1322 int size;
1323 switch ((enum sim_d10v_regs) rn)
1324 {
1325 case SIM_D10V_R0_REGNUM:
1326 case SIM_D10V_R1_REGNUM:
1327 case SIM_D10V_R2_REGNUM:
1328 case SIM_D10V_R3_REGNUM:
1329 case SIM_D10V_R4_REGNUM:
1330 case SIM_D10V_R5_REGNUM:
1331 case SIM_D10V_R6_REGNUM:
1332 case SIM_D10V_R7_REGNUM:
1333 case SIM_D10V_R8_REGNUM:
1334 case SIM_D10V_R9_REGNUM:
1335 case SIM_D10V_R10_REGNUM:
1336 case SIM_D10V_R11_REGNUM:
1337 case SIM_D10V_R12_REGNUM:
1338 case SIM_D10V_R13_REGNUM:
1339 case SIM_D10V_R14_REGNUM:
1340 case SIM_D10V_R15_REGNUM:
1341 SET_GPR (rn - SIM_D10V_R0_REGNUM, READ_16 (memory));
1342 size = 2;
1343 break;
1344 case SIM_D10V_CR0_REGNUM:
1345 case SIM_D10V_CR1_REGNUM:
1346 case SIM_D10V_CR2_REGNUM:
1347 case SIM_D10V_CR3_REGNUM:
1348 case SIM_D10V_CR4_REGNUM:
1349 case SIM_D10V_CR5_REGNUM:
1350 case SIM_D10V_CR6_REGNUM:
1351 case SIM_D10V_CR7_REGNUM:
1352 case SIM_D10V_CR8_REGNUM:
1353 case SIM_D10V_CR9_REGNUM:
1354 case SIM_D10V_CR10_REGNUM:
1355 case SIM_D10V_CR11_REGNUM:
1356 case SIM_D10V_CR12_REGNUM:
1357 case SIM_D10V_CR13_REGNUM:
1358 case SIM_D10V_CR14_REGNUM:
1359 case SIM_D10V_CR15_REGNUM:
1360 SET_CREG (rn - SIM_D10V_CR0_REGNUM, READ_16 (memory));
1361 size = 2;
1362 break;
1363 case SIM_D10V_A0_REGNUM:
1364 case SIM_D10V_A1_REGNUM:
1365 SET_ACC (rn - SIM_D10V_A0_REGNUM, READ_64 (memory) & MASK40);
1366 size = 8;
1367 break;
1368 case SIM_D10V_SPI_REGNUM:
1369 /* PSW_SM indicates that the current SP is the USER
1370 stack-pointer. */
1371 set_spi_register (READ_16 (memory));
1372 size = 2;
1373 break;
1374 case SIM_D10V_SPU_REGNUM:
1375 set_spu_register (READ_16 (memory));
1376 size = 2;
1377 break;
1378 case SIM_D10V_IMAP0_REGNUM:
1379 case SIM_D10V_IMAP1_REGNUM:
1380 set_imap_register (rn - SIM_D10V_IMAP0_REGNUM, READ_16(memory));
1381 size = 2;
1382 break;
1383 case SIM_D10V_DMAP0_REGNUM:
1384 case SIM_D10V_DMAP1_REGNUM:
1385 case SIM_D10V_DMAP2_REGNUM:
1386 case SIM_D10V_DMAP3_REGNUM:
1387 set_dmap_register (rn - SIM_D10V_DMAP0_REGNUM, READ_16(memory));
1388 size = 2;
1389 break;
1390 case SIM_D10V_TS2_DMAP_REGNUM:
1391 size = 0;
1392 break;
1393 default:
1394 size = 0;
1395 break;
1396 }
1397 SLOT_FLUSH ();
1398 return size;
1399 }