]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - sim/frv/mloop.in
e679fa7322fe8f02d0483c60693ef6db1539d55f
[thirdparty/binutils-gdb.git] / sim / frv / mloop.in
1 # Simulator main loop for frv. -*- C -*-
2 # Copyright (C) 1998, 1999, 2000, 2001, 2003, 2007, 2008
3 # Free Software Foundation, Inc.
4 # Contributed by Red Hat.
5 #
6 # This file is part of the GNU Simulators.
7 #
8 # This program is free software; you can redistribute it and/or modify
9 # it under the terms of the GNU General Public License as published by
10 # the Free Software Foundation; either version 3 of the License, or
11 # (at your option) any later version.
12 #
13 # This program is distributed in the hope that it will be useful,
14 # but WITHOUT ANY WARRANTY; without even the implied warranty of
15 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 # GNU General Public License for more details.
17 #
18 # You should have received a copy of the GNU General Public License
19 # along with this program. If not, see <http://www.gnu.org/licenses/>.
20
21 # Syntax:
22 # /bin/sh mainloop.in command
23 #
24 # Command is one of:
25 #
26 # init
27 # support
28 # extract-{simple,scache,pbb}
29 # {full,fast}-exec-{simple,scache,pbb}
30 #
31 # A target need only provide a "full" version of one of simple,scache,pbb.
32 # If the target wants it can also provide a fast version of same.
33 # It can't provide more than this.
34
35 # ??? After a few more ports are done, revisit.
36 # Will eventually need to machine generate a lot of this.
37
38 case "x$1" in
39
40 xsupport)
41
42 cat <<EOF
43
44 static INLINE const IDESC *
45 extract (SIM_CPU *current_cpu, PCADDR pc, CGEN_INSN_INT insn, ARGBUF *abuf,
46 int fast_p)
47 {
48 const IDESC *id = @cpu@_decode (current_cpu, pc, insn, insn, abuf);
49 @cpu@_fill_argbuf (current_cpu, abuf, id, pc, fast_p);
50 if (! fast_p)
51 {
52 int trace_p = PC_IN_TRACE_RANGE_P (current_cpu, pc);
53 int profile_p = PC_IN_PROFILE_RANGE_P (current_cpu, pc);
54 @cpu@_fill_argbuf_tp (current_cpu, abuf, trace_p, profile_p);
55 }
56 return id;
57 }
58
59 static INLINE SEM_PC
60 execute (SIM_CPU *current_cpu, SCACHE *sc, int fast_p)
61 {
62 SEM_PC vpc;
63
64 /* Force gr0 to zero before every insn. */
65 @cpu@_h_gr_set (current_cpu, 0, 0);
66
67 if (fast_p)
68 {
69 vpc = (*sc->argbuf.semantic.sem_fast) (current_cpu, sc);
70 }
71 else
72 {
73 ARGBUF *abuf = &sc->argbuf;
74 const IDESC *idesc = abuf->idesc;
75 #if WITH_SCACHE_PBB
76 int virtual_p = CGEN_ATTR_VALUE (NULL, idesc->attrs, CGEN_INSN_VIRTUAL);
77 #else
78 int virtual_p = 0;
79 #endif
80
81 if (! virtual_p)
82 {
83 /* FIXME: call x-before */
84 if (ARGBUF_PROFILE_P (abuf))
85 PROFILE_COUNT_INSN (current_cpu, abuf->addr, idesc->num);
86 /* FIXME: Later make cover macros: PROFILE_INSN_{INIT,FINI}. */
87 if (FRV_COUNT_CYCLES (current_cpu, ARGBUF_PROFILE_P (abuf)))
88 {
89 @cpu@_model_insn_before (current_cpu, sc->first_insn_p);
90 model_insn = FRV_INSN_MODEL_PASS_1;
91 if (idesc->timing->model_fn != NULL)
92 (*idesc->timing->model_fn) (current_cpu, sc);
93 }
94 else
95 model_insn = FRV_INSN_NO_MODELING;
96 TRACE_INSN_INIT (current_cpu, abuf, 1);
97 TRACE_INSN (current_cpu, idesc->idata,
98 (const struct argbuf *) abuf, abuf->addr);
99 }
100 #if WITH_SCACHE
101 vpc = (*sc->argbuf.semantic.sem_full) (current_cpu, sc);
102 #else
103 vpc = (*sc->argbuf.semantic.sem_full) (current_cpu, abuf);
104 #endif
105 if (! virtual_p)
106 {
107 /* FIXME: call x-after */
108 if (FRV_COUNT_CYCLES (current_cpu, ARGBUF_PROFILE_P (abuf)))
109 {
110 int cycles;
111 if (idesc->timing->model_fn != NULL)
112 {
113 model_insn = FRV_INSN_MODEL_PASS_2;
114 cycles = (*idesc->timing->model_fn) (current_cpu, sc);
115 }
116 else
117 cycles = 1;
118 @cpu@_model_insn_after (current_cpu, sc->last_insn_p, cycles);
119 }
120 TRACE_INSN_FINI (current_cpu, abuf, 1);
121 }
122 }
123
124 return vpc;
125 }
126
127 static void
128 @cpu@_parallel_write_init (SIM_CPU *current_cpu)
129 {
130 CGEN_WRITE_QUEUE *q = CPU_WRITE_QUEUE (current_cpu);
131 CGEN_WRITE_QUEUE_CLEAR (q);
132 previous_vliw_pc = CPU_PC_GET(current_cpu);
133 frv_interrupt_state.f_ne_flags[0] = 0;
134 frv_interrupt_state.f_ne_flags[1] = 0;
135 frv_interrupt_state.imprecise_interrupt = NULL;
136 }
137
138 static void
139 @cpu@_parallel_write_queued (SIM_CPU *current_cpu)
140 {
141 int i;
142
143 FRV_VLIW *vliw = CPU_VLIW (current_cpu);
144 CGEN_WRITE_QUEUE *q = CPU_WRITE_QUEUE (current_cpu);
145
146 /* Loop over the queued writes, executing them. Set the pc to the address
147 of the insn which queued each write for the proper context in case an
148 interrupt is caused. Restore the proper pc after the writes are
149 completed. */
150 IADDR save_pc = CPU_PC_GET (current_cpu);
151 IADDR new_pc = save_pc;
152 int branch_taken = 0;
153 int limit = CGEN_WRITE_QUEUE_INDEX (q);
154 frv_interrupt_state.data_written.length = 0;
155
156 for (i = 0; i < limit; ++i)
157 {
158 CGEN_WRITE_QUEUE_ELEMENT *item = CGEN_WRITE_QUEUE_ELEMENT (q, i);
159
160 /* If an imprecise interrupt was generated, then, check whether the
161 result should still be written. */
162 if (frv_interrupt_state.imprecise_interrupt != NULL)
163 {
164 /* Only check writes by the insn causing the exception. */
165 if (CGEN_WRITE_QUEUE_ELEMENT_IADDR (item)
166 == frv_interrupt_state.imprecise_interrupt->vpc)
167 {
168 /* Execute writes of floating point operations resulting in
169 overflow, underflow or inexact. */
170 if (frv_interrupt_state.imprecise_interrupt->kind
171 == FRV_FP_EXCEPTION)
172 {
173 if ((frv_interrupt_state.imprecise_interrupt
174 ->u.fp_info.fsr_mask
175 & ~(FSR_INEXACT | FSR_OVERFLOW | FSR_UNDERFLOW)))
176 continue; /* Don't execute */
177 }
178 /* Execute writes marked as 'forced'. */
179 else if (! (CGEN_WRITE_QUEUE_ELEMENT_FLAGS (item)
180 & FRV_WRITE_QUEUE_FORCE_WRITE))
181 continue; /* Don't execute */
182 }
183 }
184
185 /* Only execute the first branch on the queue. */
186 if (CGEN_WRITE_QUEUE_ELEMENT_KIND (item) == CGEN_PC_WRITE
187 || CGEN_WRITE_QUEUE_ELEMENT_KIND (item) == CGEN_FN_PC_WRITE)
188 {
189 if (branch_taken)
190 continue;
191 branch_taken = 1;
192 if (CGEN_WRITE_QUEUE_ELEMENT_KIND (item) == CGEN_PC_WRITE)
193 new_pc = item->kinds.pc_write.value;
194 else
195 new_pc = item->kinds.fn_pc_write.value;
196 }
197
198 CPU_PC_SET (current_cpu, CGEN_WRITE_QUEUE_ELEMENT_IADDR (item));
199 frv_save_data_written_for_interrupts (current_cpu, item);
200 cgen_write_queue_element_execute (current_cpu, item);
201 }
202
203 /* Update the LR with the address of the next insn if the flag is set.
204 This flag gets set in frvbf_set_write_next_vliw_to_LR by the JMPL,
205 JMPIL and CALL insns. */
206 if (frvbf_write_next_vliw_addr_to_LR)
207 {
208 frvbf_h_spr_set_handler (current_cpu, H_SPR_LR, save_pc);
209 frvbf_write_next_vliw_addr_to_LR = 0;
210 }
211
212 CPU_PC_SET (current_cpu, new_pc);
213 CGEN_WRITE_QUEUE_CLEAR (q);
214 }
215
216 void
217 @cpu@_perform_writeback (SIM_CPU *current_cpu)
218 {
219 @cpu@_parallel_write_queued (current_cpu);
220 }
221
222 static unsigned cache_reqno = 0x80000000; /* Start value is for debugging. */
223
224 #if 0 /* experimental */
225 /* FR400 has single prefetch. */
226 static void
227 fr400_simulate_insn_prefetch (SIM_CPU *current_cpu, IADDR vpc)
228 {
229 int cur_ix;
230 FRV_CACHE *cache;
231
232 /* The cpu receives 8 bytes worth of insn data for each fetch aligned
233 on 8 byte boundary. */
234 #define FR400_FETCH_SIZE 8
235
236 cur_ix = LS;
237 vpc &= ~(FR400_FETCH_SIZE - 1);
238 cache = CPU_INSN_CACHE (current_cpu);
239
240 /* Request a load of the current address buffer, if necessary. */
241 if (frv_insn_fetch_buffer[cur_ix].address != vpc)
242 {
243 frv_insn_fetch_buffer[cur_ix].address = vpc;
244 frv_insn_fetch_buffer[cur_ix].reqno = cache_reqno++;
245 if (FRV_COUNT_CYCLES (current_cpu, 1))
246 frv_cache_request_load (cache, frv_insn_fetch_buffer[cur_ix].reqno,
247 frv_insn_fetch_buffer[cur_ix].address,
248 UNIT_I0 + cur_ix);
249 }
250
251 /* Wait for the current address buffer to be loaded, if necessary. */
252 if (FRV_COUNT_CYCLES (current_cpu, 1))
253 {
254 FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (current_cpu);
255 int wait;
256
257 /* Account for any branch penalty. */
258 if (ps->branch_penalty > 0 && ! ps->past_first_p)
259 {
260 frv_model_advance_cycles (current_cpu, ps->branch_penalty);
261 frv_model_trace_wait_cycles (current_cpu, ps->branch_penalty,
262 "Branch penalty:");
263 ps->branch_penalty = 0;
264 }
265
266 /* Account for insn fetch latency. */
267 wait = 0;
268 while (frv_insn_fetch_buffer[cur_ix].reqno != NO_REQNO)
269 {
270 frv_model_advance_cycles (current_cpu, 1);
271 ++wait;
272 }
273 frv_model_trace_wait_cycles (current_cpu, wait, "Insn fetch:");
274 return;
275 }
276
277 /* Otherwise just load the insns directly from the cache.
278 */
279 if (frv_insn_fetch_buffer[cur_ix].reqno != NO_REQNO)
280 {
281 frv_cache_read (cache, cur_ix, vpc);
282 frv_insn_fetch_buffer[cur_ix].reqno = NO_REQNO;
283 }
284 }
285 #endif /* experimental */
286
287 /* FR500 has dual prefetch. */
288 static void
289 simulate_dual_insn_prefetch (SIM_CPU *current_cpu, IADDR vpc, int fetch_size)
290 {
291 int i;
292 int cur_ix, pre_ix;
293 SI pre_address;
294 FRV_CACHE *cache;
295
296 /* See if the pc is within the addresses specified by either of the
297 fetch buffers. If so, that will be the current buffer. Otherwise,
298 arbitrarily select the LD buffer as the current one since it gets
299 priority in the case of interfering load requests. */
300 cur_ix = LD;
301 vpc &= ~(fetch_size - 1);
302 for (i = LS; i < FRV_CACHE_PIPELINES; ++i)
303 {
304 if (frv_insn_fetch_buffer[i].address == vpc)
305 {
306 cur_ix = i;
307 break;
308 }
309 }
310 cache = CPU_INSN_CACHE (current_cpu);
311
312 /* Request a load of the current address buffer, if necessary. */
313 if (frv_insn_fetch_buffer[cur_ix].address != vpc)
314 {
315 frv_insn_fetch_buffer[cur_ix].address = vpc;
316 frv_insn_fetch_buffer[cur_ix].reqno = cache_reqno++;
317 if (FRV_COUNT_CYCLES (current_cpu, 1))
318 frv_cache_request_load (cache, frv_insn_fetch_buffer[cur_ix].reqno,
319 frv_insn_fetch_buffer[cur_ix].address,
320 UNIT_I0 + cur_ix);
321 }
322
323 /* If the prefetch buffer does not represent the next sequential address, then
324 request a load of the next sequential address. */
325 pre_ix = (cur_ix + 1) % FRV_CACHE_PIPELINES;
326 pre_address = vpc + fetch_size;
327 if (frv_insn_fetch_buffer[pre_ix].address != pre_address)
328 {
329 frv_insn_fetch_buffer[pre_ix].address = pre_address;
330 frv_insn_fetch_buffer[pre_ix].reqno = cache_reqno++;
331 if (FRV_COUNT_CYCLES (current_cpu, 1))
332 frv_cache_request_load (cache, frv_insn_fetch_buffer[pre_ix].reqno,
333 frv_insn_fetch_buffer[pre_ix].address,
334 UNIT_I0 + pre_ix);
335 }
336
337 /* If counting cycles, account for any branch penalty and/or insn fetch
338 latency here. */
339 if (FRV_COUNT_CYCLES (current_cpu, 1))
340 {
341 FRV_PROFILE_STATE *ps = CPU_PROFILE_STATE (current_cpu);
342 int wait;
343
344 /* Account for any branch penalty. */
345 if (ps->branch_penalty > 0 && ! ps->past_first_p)
346 {
347 frv_model_advance_cycles (current_cpu, ps->branch_penalty);
348 frv_model_trace_wait_cycles (current_cpu, ps->branch_penalty,
349 "Branch penalty:");
350 ps->branch_penalty = 0;
351 }
352
353 /* Account for insn fetch latency. */
354 wait = 0;
355 while (frv_insn_fetch_buffer[cur_ix].reqno != NO_REQNO)
356 {
357 frv_model_advance_cycles (current_cpu, 1);
358 ++wait;
359 }
360 frv_model_trace_wait_cycles (current_cpu, wait, "Insn fetch:");
361 return;
362 }
363
364 /* Otherwise just load the insns directly from the cache.
365 */
366 if (frv_insn_fetch_buffer[cur_ix].reqno != NO_REQNO)
367 {
368 frv_cache_read (cache, cur_ix, vpc);
369 frv_insn_fetch_buffer[cur_ix].reqno = NO_REQNO;
370 }
371 if (frv_insn_fetch_buffer[pre_ix].reqno != NO_REQNO)
372 {
373 frv_cache_read (cache, pre_ix, pre_address);
374 frv_insn_fetch_buffer[pre_ix].reqno = NO_REQNO;
375 }
376 }
377
378 static void
379 @cpu@_simulate_insn_prefetch (SIM_CPU *current_cpu, IADDR vpc)
380 {
381 SI hsr0;
382 SIM_DESC sd;
383
384 /* Nothing to do if not counting cycles and the cache is not enabled. */
385 hsr0 = GET_HSR0 ();
386 if (! GET_HSR0_ICE (hsr0) && ! FRV_COUNT_CYCLES (current_cpu, 1))
387 return;
388
389 /* Different machines handle prefetch defferently. */
390 sd = CPU_STATE (current_cpu);
391 switch (STATE_ARCHITECTURE (sd)->mach)
392 {
393 case bfd_mach_fr400:
394 case bfd_mach_fr450:
395 simulate_dual_insn_prefetch (current_cpu, vpc, 8);
396 break;
397 case bfd_mach_frvtomcat:
398 case bfd_mach_fr500:
399 case bfd_mach_fr550:
400 case bfd_mach_frv:
401 simulate_dual_insn_prefetch (current_cpu, vpc, 16);
402 break;
403 default:
404 break;
405 }
406 }
407
408 int frv_save_profile_model_p;
409 EOF
410
411 ;;
412
413 xinit)
414
415 cat <<EOF
416 /*xxxinit*/
417 /* If the timer is enabled, then we will enable model profiling during
418 execution. This is because the timer needs accurate cycles counts to
419 work properly. Save the original setting of model profiling. */
420 if (frv_interrupt_state.timer.enabled)
421 frv_save_profile_model_p = PROFILE_MODEL_P (current_cpu);
422 EOF
423
424 ;;
425
426 xextract-simple | xextract-scache)
427
428 # Inputs: current_cpu, vpc, sc, FAST_P
429 # Outputs: sc filled in
430 # SET_LAST_INSN_P(last_p) called to indicate whether insn is last one
431
432 cat <<EOF
433 {
434 CGEN_INSN_INT insn = frvbf_read_imem_USI (current_cpu, vpc);
435 extract (current_cpu, vpc, insn, SEM_ARGBUF (sc), FAST_P);
436 SET_LAST_INSN_P ((insn & 0x80000000) != 0);
437 }
438 EOF
439
440 ;;
441
442 xfull-exec-* | xfast-exec-*)
443
444 # Inputs: current_cpu, vpc, FAST_P
445 # Outputs:
446 # vpc contains the address of the next insn to execute
447 # pc of current_cpu must be up to date (=vpc) upon exit
448 # CPU_INSN_COUNT (current_cpu) must be updated by number of insns executed
449 #
450 # Unlike the non-parallel case, this version is responsible for doing the
451 # scache lookup.
452
453 cat <<EOF
454 {
455 FRV_VLIW *vliw;
456 int first_insn_p = 1;
457 int last_insn_p = 0;
458 int ninsns;
459 CGEN_ATTR_VALUE_ENUM_TYPE slot;
460
461 /* If the timer is enabled, then enable model profiling. This is because
462 the timer needs accurate cycles counts to work properly. */
463 if (frv_interrupt_state.timer.enabled && ! frv_save_profile_model_p)
464 sim_profile_set_option (current_state, "-model", PROFILE_MODEL_IDX, "1");
465
466 /* Init parallel-write queue and vliw. */
467 @cpu@_parallel_write_init (current_cpu);
468 vliw = CPU_VLIW (current_cpu);
469 frv_vliw_reset (vliw, STATE_ARCHITECTURE (CPU_STATE (current_cpu))->mach,
470 CPU_ELF_FLAGS (current_cpu));
471 frv_current_fm_slot = UNIT_NIL;
472
473 for (ninsns = 0; ! last_insn_p && ninsns < FRV_VLIW_SIZE; ++ninsns)
474 {
475 SCACHE *sc;
476 const CGEN_INSN *insn;
477 int error;
478 /* Go through the motions of finding the insns in the cache. */
479 @cpu@_simulate_insn_prefetch (current_cpu, vpc);
480
481 sc = @cpu@_scache_lookup (current_cpu, vpc, scache, hash_mask, FAST_P);
482 sc->first_insn_p = first_insn_p;
483 last_insn_p = sc->last_insn_p;
484
485 /* Add the insn to the vliw and set up the interrupt state. */
486 insn = sc->argbuf.idesc->idata;
487 error = frv_vliw_add_insn (vliw, insn);
488 if (! error)
489 frv_vliw_setup_insn (current_cpu, insn);
490 frv_detect_insn_access_interrupts (current_cpu, sc);
491 slot = (*vliw->current_vliw)[vliw->next_slot - 1];
492 if (slot >= UNIT_FM0 && slot <= UNIT_FM3)
493 frv_current_fm_slot = slot;
494
495 vpc = execute (current_cpu, sc, FAST_P);
496
497 SET_H_PC (vpc); /* needed for interrupt handling */
498 first_insn_p = 0;
499 }
500
501 /* If the timer is enabled, and model profiling was not originally enabled,
502 then turn it off again. This is the only place we can currently gain
503 control to do this. */
504 if (frv_interrupt_state.timer.enabled && ! frv_save_profile_model_p)
505 sim_profile_set_option (current_state, "-model", PROFILE_MODEL_IDX, "0");
506
507 /* Check for interrupts. Also handles writeback if necessary. */
508 frv_process_interrupts (current_cpu);
509
510 CPU_INSN_COUNT (current_cpu) += ninsns;
511 }
512 EOF
513
514 ;;
515
516 *)
517 echo "Invalid argument to mainloop.in: $1" >&2
518 exit 1
519 ;;
520
521 esac