]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - sim/frv/traps.c
Update years in copyright notice for the GDB files.
[thirdparty/binutils-gdb.git] / sim / frv / traps.c
1 /* frv trap support
2 Copyright (C) 1999-2013 Free Software Foundation, Inc.
3 Contributed by Red Hat.
4
5 This file is part of the GNU simulators.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #define WANT_CPU frvbf
21 #define WANT_CPU_FRVBF
22
23 #include "sim-main.h"
24 #include "targ-vals.h"
25 #include "cgen-engine.h"
26 #include "cgen-par.h"
27 #include "sim-fpu.h"
28
29 #include "bfd.h"
30 #include "libiberty.h"
31
32 CGEN_ATTR_VALUE_ENUM_TYPE frv_current_fm_slot;
33
34 /* The semantic code invokes this for invalid (unrecognized) instructions. */
35
36 SEM_PC
37 sim_engine_invalid_insn (SIM_CPU *current_cpu, IADDR cia, SEM_PC vpc)
38 {
39 frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
40 return vpc;
41 }
42
43 /* Process an address exception. */
44
45 void
46 frv_core_signal (SIM_DESC sd, SIM_CPU *current_cpu, sim_cia cia,
47 unsigned int map, int nr_bytes, address_word addr,
48 transfer_type transfer, sim_core_signals sig)
49 {
50 if (sig == sim_core_unaligned_signal)
51 {
52 if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr400
53 || STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr450)
54 frv_queue_data_access_error_interrupt (current_cpu, addr);
55 else
56 frv_queue_mem_address_not_aligned_interrupt (current_cpu, addr);
57 }
58
59 frv_term (sd);
60 sim_core_signal (sd, current_cpu, cia, map, nr_bytes, addr, transfer, sig);
61 }
62
63 void
64 frv_sim_engine_halt_hook (SIM_DESC sd, SIM_CPU *current_cpu, sim_cia cia)
65 {
66 int i;
67 if (current_cpu != NULL)
68 CIA_SET (current_cpu, cia);
69
70 /* Invalidate the insn and data caches of all cpus. */
71 for (i = 0; i < MAX_NR_PROCESSORS; ++i)
72 {
73 current_cpu = STATE_CPU (sd, i);
74 frv_cache_invalidate_all (CPU_INSN_CACHE (current_cpu), 0);
75 frv_cache_invalidate_all (CPU_DATA_CACHE (current_cpu), 1);
76 }
77 frv_term (sd);
78 }
79 \f
80 /* Read/write functions for system call interface. */
81
82 static int
83 syscall_read_mem (host_callback *cb, struct cb_syscall *sc,
84 unsigned long taddr, char *buf, int bytes)
85 {
86 SIM_DESC sd = (SIM_DESC) sc->p1;
87 SIM_CPU *cpu = (SIM_CPU *) sc->p2;
88
89 frv_cache_invalidate_all (CPU_DATA_CACHE (cpu), 1);
90 return sim_core_read_buffer (sd, cpu, read_map, buf, taddr, bytes);
91 }
92
93 static int
94 syscall_write_mem (host_callback *cb, struct cb_syscall *sc,
95 unsigned long taddr, const char *buf, int bytes)
96 {
97 SIM_DESC sd = (SIM_DESC) sc->p1;
98 SIM_CPU *cpu = (SIM_CPU *) sc->p2;
99
100 frv_cache_invalidate_all (CPU_INSN_CACHE (cpu), 0);
101 frv_cache_invalidate_all (CPU_DATA_CACHE (cpu), 1);
102 return sim_core_write_buffer (sd, cpu, write_map, buf, taddr, bytes);
103 }
104
105 /* Handle TRA and TIRA insns. */
106 void
107 frv_itrap (SIM_CPU *current_cpu, PCADDR pc, USI base, SI offset)
108 {
109 SIM_DESC sd = CPU_STATE (current_cpu);
110 host_callback *cb = STATE_CALLBACK (sd);
111 USI num = ((base + offset) & 0x7f) + 0x80;
112
113 #ifdef SIM_HAVE_BREAKPOINTS
114 /* Check for breakpoints "owned" by the simulator first, regardless
115 of --environment. */
116 if (num == TRAP_BREAKPOINT)
117 {
118 /* First try sim-break.c. If it's a breakpoint the simulator "owns"
119 it doesn't return. Otherwise it returns and let's us try. */
120 sim_handle_breakpoint (sd, current_cpu, pc);
121 /* Fall through. */
122 }
123 #endif
124
125 if (STATE_ENVIRONMENT (sd) == OPERATING_ENVIRONMENT)
126 {
127 frv_queue_software_interrupt (current_cpu, num);
128 return;
129 }
130
131 switch (num)
132 {
133 case TRAP_SYSCALL :
134 {
135 CB_SYSCALL s;
136 CB_SYSCALL_INIT (&s);
137 s.func = GET_H_GR (7);
138 s.arg1 = GET_H_GR (8);
139 s.arg2 = GET_H_GR (9);
140 s.arg3 = GET_H_GR (10);
141
142 if (s.func == TARGET_SYS_exit)
143 {
144 sim_engine_halt (sd, current_cpu, NULL, pc, sim_exited, s.arg1);
145 }
146
147 s.p1 = (PTR) sd;
148 s.p2 = (PTR) current_cpu;
149 s.read_mem = syscall_read_mem;
150 s.write_mem = syscall_write_mem;
151 cb_syscall (cb, &s);
152 SET_H_GR (8, s.result);
153 SET_H_GR (9, s.result2);
154 SET_H_GR (10, s.errcode);
155 break;
156 }
157
158 case TRAP_BREAKPOINT:
159 sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP);
160 break;
161
162 /* Add support for dumping registers, either at fixed traps, or all
163 unknown traps if configured with --enable-sim-trapdump. */
164 default:
165 #if !TRAPDUMP
166 frv_queue_software_interrupt (current_cpu, num);
167 return;
168 #endif
169
170 #ifdef TRAP_REGDUMP1
171 case TRAP_REGDUMP1:
172 #endif
173
174 #ifdef TRAP_REGDUMP2
175 case TRAP_REGDUMP2:
176 #endif
177
178 #if TRAPDUMP || (defined (TRAP_REGDUMP1)) || (defined (TRAP_REGDUMP2))
179 {
180 char buf[256];
181 int i, j;
182
183 buf[0] = 0;
184 if (STATE_TEXT_SECTION (sd)
185 && pc >= STATE_TEXT_START (sd)
186 && pc < STATE_TEXT_END (sd))
187 {
188 const char *pc_filename = (const char *)0;
189 const char *pc_function = (const char *)0;
190 unsigned int pc_linenum = 0;
191
192 if (bfd_find_nearest_line (STATE_PROG_BFD (sd),
193 STATE_TEXT_SECTION (sd),
194 (struct bfd_symbol **) 0,
195 pc - STATE_TEXT_START (sd),
196 &pc_filename, &pc_function, &pc_linenum)
197 && (pc_function || pc_filename))
198 {
199 char *p = buf+2;
200 buf[0] = ' ';
201 buf[1] = '(';
202 if (pc_function)
203 {
204 strcpy (p, pc_function);
205 p += strlen (p);
206 }
207 else
208 {
209 char *q = (char *) strrchr (pc_filename, '/');
210 strcpy (p, (q) ? q+1 : pc_filename);
211 p += strlen (p);
212 }
213
214 if (pc_linenum)
215 {
216 sprintf (p, " line %d", pc_linenum);
217 p += strlen (p);
218 }
219
220 p[0] = ')';
221 p[1] = '\0';
222 if ((p+1) - buf > sizeof (buf))
223 abort ();
224 }
225 }
226
227 sim_io_printf (sd,
228 "\nRegister dump, pc = 0x%.8x%s, base = %u, offset = %d\n",
229 (unsigned)pc, buf, (unsigned)base, (int)offset);
230
231 for (i = 0; i < 64; i += 8)
232 {
233 long g0 = (long)GET_H_GR (i);
234 long g1 = (long)GET_H_GR (i+1);
235 long g2 = (long)GET_H_GR (i+2);
236 long g3 = (long)GET_H_GR (i+3);
237 long g4 = (long)GET_H_GR (i+4);
238 long g5 = (long)GET_H_GR (i+5);
239 long g6 = (long)GET_H_GR (i+6);
240 long g7 = (long)GET_H_GR (i+7);
241
242 if ((g0 | g1 | g2 | g3 | g4 | g5 | g6 | g7) != 0)
243 sim_io_printf (sd,
244 "\tgr%02d - gr%02d: 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx\n",
245 i, i+7, g0, g1, g2, g3, g4, g5, g6, g7);
246 }
247
248 for (i = 0; i < 64; i += 8)
249 {
250 long f0 = (long)GET_H_FR (i);
251 long f1 = (long)GET_H_FR (i+1);
252 long f2 = (long)GET_H_FR (i+2);
253 long f3 = (long)GET_H_FR (i+3);
254 long f4 = (long)GET_H_FR (i+4);
255 long f5 = (long)GET_H_FR (i+5);
256 long f6 = (long)GET_H_FR (i+6);
257 long f7 = (long)GET_H_FR (i+7);
258
259 if ((f0 | f1 | f2 | f3 | f4 | f5 | f6 | f7) != 0)
260 sim_io_printf (sd,
261 "\tfr%02d - fr%02d: 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx\n",
262 i, i+7, f0, f1, f2, f3, f4, f5, f6, f7);
263 }
264
265 sim_io_printf (sd,
266 "\tlr/lcr/cc/ccc: 0x%.8lx 0x%.8lx 0x%.8lx 0x%.8lx\n",
267 (long)GET_H_SPR (272),
268 (long)GET_H_SPR (273),
269 (long)GET_H_SPR (256),
270 (long)GET_H_SPR (263));
271 }
272 break;
273 #endif
274 }
275 }
276
277 /* Handle the MTRAP insn. */
278 void
279 frv_mtrap (SIM_CPU *current_cpu)
280 {
281 SIM_DESC sd = CPU_STATE (current_cpu);
282
283 /* Check the status of media exceptions in MSR0. */
284 SI msr = GET_MSR (0);
285 if (GET_MSR_AOVF (msr) || GET_MSR_MTT (msr) && STATE_ARCHITECTURE (sd)->mach != bfd_mach_fr550)
286 frv_queue_program_interrupt (current_cpu, FRV_MP_EXCEPTION);
287 }
288
289 /* Handle the BREAK insn. */
290 void
291 frv_break (SIM_CPU *current_cpu)
292 {
293 IADDR pc;
294 SIM_DESC sd = CPU_STATE (current_cpu);
295
296 #ifdef SIM_HAVE_BREAKPOINTS
297 /* First try sim-break.c. If it's a breakpoint the simulator "owns"
298 it doesn't return. Otherwise it returns and let's us try. */
299 pc = GET_H_PC ();
300 sim_handle_breakpoint (sd, current_cpu, pc);
301 /* Fall through. */
302 #endif
303
304 if (STATE_ENVIRONMENT (sd) != OPERATING_ENVIRONMENT)
305 {
306 /* Invalidate the insn cache because the debugger will presumably
307 replace the breakpoint insn with the real one. */
308 #ifndef SIM_HAVE_BREAKPOINTS
309 pc = GET_H_PC ();
310 #endif
311 sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP);
312 }
313
314 frv_queue_break_interrupt (current_cpu);
315 }
316
317 /* Return from trap. */
318 USI
319 frv_rett (SIM_CPU *current_cpu, PCADDR pc, BI debug_field)
320 {
321 USI new_pc;
322 /* if (normal running mode and debug_field==0
323 PC=PCSR
324 PSR.ET=1
325 PSR.S=PSR.PS
326 else if (debug running mode and debug_field==1)
327 PC=(BPCSR)
328 PSR.ET=BPSR.BET
329 PSR.S=BPSR.BS
330 change to normal running mode
331 */
332 int psr_s = GET_H_PSR_S ();
333 int psr_et = GET_H_PSR_ET ();
334
335 /* Check for exceptions in the priority order listed in the FRV Architecture
336 Volume 2. */
337 if (! psr_s)
338 {
339 /* Halt if PSR.ET is not set. See chapter 6 of the LSI. */
340 if (! psr_et)
341 {
342 SIM_DESC sd = CPU_STATE (current_cpu);
343 sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP);
344 }
345
346 /* privileged_instruction interrupt will have already been queued by
347 frv_detect_insn_access_interrupts. */
348 new_pc = pc + 4;
349 }
350 else if (psr_et)
351 {
352 /* Halt if PSR.S is set. See chapter 6 of the LSI. */
353 if (psr_s)
354 {
355 SIM_DESC sd = CPU_STATE (current_cpu);
356 sim_engine_halt (sd, current_cpu, NULL, pc, sim_stopped, SIM_SIGTRAP);
357 }
358
359 frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
360 new_pc = pc + 4;
361 }
362 else if (! CPU_DEBUG_STATE (current_cpu) && debug_field == 0)
363 {
364 USI psr = GET_PSR ();
365 /* Return from normal running state. */
366 new_pc = GET_H_SPR (H_SPR_PCSR);
367 SET_PSR_ET (psr, 1);
368 SET_PSR_S (psr, GET_PSR_PS (psr));
369 sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, H_SPR_PSR, psr);
370 }
371 else if (CPU_DEBUG_STATE (current_cpu) && debug_field == 1)
372 {
373 USI psr = GET_PSR ();
374 /* Return from debug state. */
375 new_pc = GET_H_SPR (H_SPR_BPCSR);
376 SET_PSR_ET (psr, GET_H_BPSR_BET ());
377 SET_PSR_S (psr, GET_H_BPSR_BS ());
378 sim_queue_fn_si_write (current_cpu, frvbf_h_spr_set, H_SPR_PSR, psr);
379 CPU_DEBUG_STATE (current_cpu) = 0;
380 }
381 else
382 new_pc = pc + 4;
383
384 return new_pc;
385 }
386 \f
387 /* Functions for handling non-excepting instruction side effects. */
388 static SI next_available_nesr (SIM_CPU *current_cpu, SI current_index)
389 {
390 FRV_REGISTER_CONTROL *control = CPU_REGISTER_CONTROL (current_cpu);
391 if (control->spr[H_SPR_NECR].implemented)
392 {
393 int limit;
394 USI necr = GET_NECR ();
395
396 /* See if any NESRs are implemented. First need to check the validity of
397 the NECR. */
398 if (! GET_NECR_VALID (necr))
399 return NO_NESR;
400
401 limit = GET_NECR_NEN (necr);
402 for (++current_index; current_index < limit; ++current_index)
403 {
404 SI nesr = GET_NESR (current_index);
405 if (! GET_NESR_VALID (nesr))
406 return current_index;
407 }
408 }
409 return NO_NESR;
410 }
411
412 static SI next_valid_nesr (SIM_CPU *current_cpu, SI current_index)
413 {
414 FRV_REGISTER_CONTROL *control = CPU_REGISTER_CONTROL (current_cpu);
415 if (control->spr[H_SPR_NECR].implemented)
416 {
417 int limit;
418 USI necr = GET_NECR ();
419
420 /* See if any NESRs are implemented. First need to check the validity of
421 the NECR. */
422 if (! GET_NECR_VALID (necr))
423 return NO_NESR;
424
425 limit = GET_NECR_NEN (necr);
426 for (++current_index; current_index < limit; ++current_index)
427 {
428 SI nesr = GET_NESR (current_index);
429 if (GET_NESR_VALID (nesr))
430 return current_index;
431 }
432 }
433 return NO_NESR;
434 }
435
436 BI
437 frvbf_check_non_excepting_load (
438 SIM_CPU *current_cpu, SI base_index, SI disp_index, SI target_index,
439 SI immediate_disp, QI data_size, BI is_float
440 )
441 {
442 BI rc = 1; /* perform the load. */
443 SIM_DESC sd = CPU_STATE (current_cpu);
444 int daec = 0;
445 int rec = 0;
446 int ec = 0;
447 USI necr;
448 int do_elos;
449 SI NE_flags[2];
450 SI NE_base;
451 SI nesr;
452 SI ne_index;
453 FRV_REGISTER_CONTROL *control;
454
455 SI address = GET_H_GR (base_index);
456 if (disp_index >= 0)
457 address += GET_H_GR (disp_index);
458 else
459 address += immediate_disp;
460
461 /* Check for interrupt factors. */
462 switch (data_size)
463 {
464 case NESR_UQI_SIZE:
465 case NESR_QI_SIZE:
466 break;
467 case NESR_UHI_SIZE:
468 case NESR_HI_SIZE:
469 if (address & 1)
470 ec = 1;
471 break;
472 case NESR_SI_SIZE:
473 if (address & 3)
474 ec = 1;
475 break;
476 case NESR_DI_SIZE:
477 if (address & 7)
478 ec = 1;
479 if (target_index & 1)
480 rec = 1;
481 break;
482 case NESR_XI_SIZE:
483 if (address & 0xf)
484 ec = 1;
485 if (target_index & 3)
486 rec = 1;
487 break;
488 default:
489 {
490 IADDR pc = GET_H_PC ();
491 sim_engine_abort (sd, current_cpu, pc,
492 "check_non_excepting_load: Incorrect data_size\n");
493 break;
494 }
495 }
496
497 control = CPU_REGISTER_CONTROL (current_cpu);
498 if (control->spr[H_SPR_NECR].implemented)
499 {
500 necr = GET_NECR ();
501 do_elos = GET_NECR_VALID (necr) && GET_NECR_ELOS (necr);
502 }
503 else
504 do_elos = 0;
505
506 /* NECR, NESR, NEEAR are only implemented for the full frv machine. */
507 if (do_elos)
508 {
509 ne_index = next_available_nesr (current_cpu, NO_NESR);
510 if (ne_index == NO_NESR)
511 {
512 IADDR pc = GET_H_PC ();
513 sim_engine_abort (sd, current_cpu, pc,
514 "No available NESR register\n");
515 }
516
517 /* Fill in the basic fields of the NESR. */
518 nesr = GET_NESR (ne_index);
519 SET_NESR_VALID (nesr);
520 SET_NESR_EAV (nesr);
521 SET_NESR_DRN (nesr, target_index);
522 SET_NESR_SIZE (nesr, data_size);
523 SET_NESR_NEAN (nesr, ne_index);
524 if (is_float)
525 SET_NESR_FR (nesr);
526 else
527 CLEAR_NESR_FR (nesr);
528
529 /* Set the corresponding NEEAR. */
530 SET_NEEAR (ne_index, address);
531
532 SET_NESR_DAEC (nesr, 0);
533 SET_NESR_REC (nesr, 0);
534 SET_NESR_EC (nesr, 0);
535 }
536
537 /* Set the NE flag corresponding to the target register if an interrupt
538 factor was detected.
539 daec is not checked here yet, but is declared for future reference. */
540 if (is_float)
541 NE_base = H_SPR_FNER0;
542 else
543 NE_base = H_SPR_GNER0;
544
545 GET_NE_FLAGS (NE_flags, NE_base);
546 if (rec)
547 {
548 SET_NE_FLAG (NE_flags, target_index);
549 if (do_elos)
550 SET_NESR_REC (nesr, NESR_REGISTER_NOT_ALIGNED);
551 }
552
553 if (ec)
554 {
555 SET_NE_FLAG (NE_flags, target_index);
556 if (do_elos)
557 SET_NESR_EC (nesr, NESR_MEM_ADDRESS_NOT_ALIGNED);
558 }
559
560 if (do_elos)
561 SET_NESR (ne_index, nesr);
562
563 /* If no interrupt factor was detected then set the NE flag on the
564 target register if the NE flag on one of the input registers
565 is already set. */
566 if (! rec && ! ec && ! daec)
567 {
568 BI ne_flag = GET_NE_FLAG (NE_flags, base_index);
569 if (disp_index >= 0)
570 ne_flag |= GET_NE_FLAG (NE_flags, disp_index);
571 if (ne_flag)
572 {
573 SET_NE_FLAG (NE_flags, target_index);
574 rc = 0; /* Do not perform the load. */
575 }
576 else
577 CLEAR_NE_FLAG (NE_flags, target_index);
578 }
579
580 SET_NE_FLAGS (NE_base, NE_flags);
581
582 return rc; /* perform the load? */
583 }
584
585 /* Record state for media exception: media_cr_not_aligned. */
586 void
587 frvbf_media_cr_not_aligned (SIM_CPU *current_cpu)
588 {
589 SIM_DESC sd = CPU_STATE (current_cpu);
590
591 /* On some machines this generates an illegal_instruction interrupt. */
592 switch (STATE_ARCHITECTURE (sd)->mach)
593 {
594 /* Note: there is a discrepancy between V2.2 of the FR400
595 instruction manual and the various FR4xx LSI specs. The former
596 claims that unaligned registers cause an mp_exception while the
597 latter say it's an illegal_instruction. The LSI specs appear
598 to be correct since MTT is fixed at 1. */
599 case bfd_mach_fr400:
600 case bfd_mach_fr450:
601 case bfd_mach_fr550:
602 frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
603 break;
604 default:
605 frv_set_mp_exception_registers (current_cpu, MTT_CR_NOT_ALIGNED, 0);
606 break;
607 }
608 }
609
610 /* Record state for media exception: media_acc_not_aligned. */
611 void
612 frvbf_media_acc_not_aligned (SIM_CPU *current_cpu)
613 {
614 SIM_DESC sd = CPU_STATE (current_cpu);
615
616 /* On some machines this generates an illegal_instruction interrupt. */
617 switch (STATE_ARCHITECTURE (sd)->mach)
618 {
619 /* See comment in frvbf_cr_not_aligned(). */
620 case bfd_mach_fr400:
621 case bfd_mach_fr450:
622 case bfd_mach_fr550:
623 frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
624 break;
625 default:
626 frv_set_mp_exception_registers (current_cpu, MTT_ACC_NOT_ALIGNED, 0);
627 break;
628 }
629 }
630
631 /* Record state for media exception: media_register_not_aligned. */
632 void
633 frvbf_media_register_not_aligned (SIM_CPU *current_cpu)
634 {
635 SIM_DESC sd = CPU_STATE (current_cpu);
636
637 /* On some machines this generates an illegal_instruction interrupt. */
638 switch (STATE_ARCHITECTURE (sd)->mach)
639 {
640 /* See comment in frvbf_cr_not_aligned(). */
641 case bfd_mach_fr400:
642 case bfd_mach_fr450:
643 case bfd_mach_fr550:
644 frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
645 break;
646 default:
647 frv_set_mp_exception_registers (current_cpu, MTT_INVALID_FR, 0);
648 break;
649 }
650 }
651
652 /* Record state for media exception: media_overflow. */
653 void
654 frvbf_media_overflow (SIM_CPU *current_cpu, int sie)
655 {
656 frv_set_mp_exception_registers (current_cpu, MTT_OVERFLOW, sie);
657 }
658
659 /* Queue a division exception. */
660 enum frv_dtt
661 frvbf_division_exception (SIM_CPU *current_cpu, enum frv_dtt dtt,
662 int target_index, int non_excepting)
663 {
664 /* If there was an overflow and it is masked, then record it in
665 ISR.AEXC. */
666 USI isr = GET_ISR ();
667 if ((dtt & FRV_DTT_OVERFLOW) && GET_ISR_EDE (isr))
668 {
669 dtt &= ~FRV_DTT_OVERFLOW;
670 SET_ISR_AEXC (isr);
671 SET_ISR (isr);
672 }
673 if (dtt != FRV_DTT_NO_EXCEPTION)
674 {
675 if (non_excepting)
676 {
677 /* Non excepting instruction, simply set the NE flag for the target
678 register. */
679 SI NE_flags[2];
680 GET_NE_FLAGS (NE_flags, H_SPR_GNER0);
681 SET_NE_FLAG (NE_flags, target_index);
682 SET_NE_FLAGS (H_SPR_GNER0, NE_flags);
683 }
684 else
685 frv_queue_division_exception_interrupt (current_cpu, dtt);
686 }
687 return dtt;
688 }
689
690 void
691 frvbf_check_recovering_store (
692 SIM_CPU *current_cpu, PCADDR address, SI regno, int size, int is_float
693 )
694 {
695 FRV_CACHE *cache = CPU_DATA_CACHE (current_cpu);
696 int reg_ix;
697
698 CPU_RSTR_INVALIDATE(current_cpu) = 0;
699
700 for (reg_ix = next_valid_nesr (current_cpu, NO_NESR);
701 reg_ix != NO_NESR;
702 reg_ix = next_valid_nesr (current_cpu, reg_ix))
703 {
704 if (address == GET_H_SPR (H_SPR_NEEAR0 + reg_ix))
705 {
706 SI nesr = GET_NESR (reg_ix);
707 int nesr_drn = GET_NESR_DRN (nesr);
708 BI nesr_fr = GET_NESR_FR (nesr);
709 SI remain;
710
711 /* Invalidate cache block containing this address.
712 If we need to count cycles, then the cache operation will be
713 initiated from the model profiling functions.
714 See frvbf_model_.... */
715 if (model_insn)
716 {
717 CPU_RSTR_INVALIDATE(current_cpu) = 1;
718 CPU_LOAD_ADDRESS (current_cpu) = address;
719 }
720 else
721 frv_cache_invalidate (cache, address, 1/* flush */);
722
723 /* Copy the stored value to the register indicated by NESR.DRN. */
724 for (remain = size; remain > 0; remain -= 4)
725 {
726 SI value;
727
728 if (is_float)
729 value = GET_H_FR (regno);
730 else
731 value = GET_H_GR (regno);
732
733 switch (size)
734 {
735 case 1:
736 value &= 0xff;
737 break;
738 case 2:
739 value &= 0xffff;
740 break;
741 default:
742 break;
743 }
744
745 if (nesr_fr)
746 sim_queue_fn_sf_write (current_cpu, frvbf_h_fr_set, nesr_drn,
747 value);
748 else
749 sim_queue_fn_si_write (current_cpu, frvbf_h_gr_set, nesr_drn,
750 value);
751
752 nesr_drn++;
753 regno++;
754 }
755 break; /* Only consider the first matching register. */
756 }
757 } /* loop over active neear registers. */
758 }
759
760 SI
761 frvbf_check_acc_range (SIM_CPU *current_cpu, SI regno)
762 {
763 /* Only applicable to fr550 */
764 SIM_DESC sd = CPU_STATE (current_cpu);
765 if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_fr550)
766 return;
767
768 /* On the fr550, media insns in slots 0 and 2 can only access
769 accumulators acc0-acc3. Insns in slots 1 and 3 can only access
770 accumulators acc4-acc7 */
771 switch (frv_current_fm_slot)
772 {
773 case UNIT_FM0:
774 case UNIT_FM2:
775 if (regno <= 3)
776 return 1; /* all is ok */
777 break;
778 case UNIT_FM1:
779 case UNIT_FM3:
780 if (regno >= 4)
781 return 1; /* all is ok */
782 break;
783 }
784
785 /* The specified accumulator is out of range. Queue an illegal_instruction
786 interrupt. */
787 frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
788 return 0;
789 }
790
791 void
792 frvbf_check_swap_address (SIM_CPU *current_cpu, SI address)
793 {
794 /* Only applicable to fr550 */
795 SIM_DESC sd = CPU_STATE (current_cpu);
796 if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_fr550)
797 return;
798
799 /* Adress must be aligned on a word boundary. */
800 if (address & 0x3)
801 frv_queue_data_access_exception_interrupt (current_cpu);
802 }
803
804 static void
805 clear_nesr_neear (SIM_CPU *current_cpu, SI target_index, BI is_float)
806 {
807 int reg_ix;
808
809 /* Only implemented for full frv. */
810 SIM_DESC sd = CPU_STATE (current_cpu);
811 if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_frv)
812 return;
813
814 /* Clear the appropriate NESR and NEEAR registers. */
815 for (reg_ix = next_valid_nesr (current_cpu, NO_NESR);
816 reg_ix != NO_NESR;
817 reg_ix = next_valid_nesr (current_cpu, reg_ix))
818 {
819 SI nesr;
820 /* The register is available, now check if it is active. */
821 nesr = GET_NESR (reg_ix);
822 if (GET_NESR_FR (nesr) == is_float)
823 {
824 if (target_index < 0 || GET_NESR_DRN (nesr) == target_index)
825 {
826 SET_NESR (reg_ix, 0);
827 SET_NEEAR (reg_ix, 0);
828 }
829 }
830 }
831 }
832
833 static void
834 clear_ne_flags (
835 SIM_CPU *current_cpu,
836 SI target_index,
837 int hi_available,
838 int lo_available,
839 SI NE_base
840 )
841 {
842 SI NE_flags[2];
843 int exception;
844
845 GET_NE_FLAGS (NE_flags, NE_base);
846 if (target_index >= 0)
847 CLEAR_NE_FLAG (NE_flags, target_index);
848 else
849 {
850 if (lo_available)
851 NE_flags[1] = 0;
852 if (hi_available)
853 NE_flags[0] = 0;
854 }
855 SET_NE_FLAGS (NE_base, NE_flags);
856 }
857
858 /* Return 1 if the given register is available, 0 otherwise. TARGET_INDEX==-1
859 means to check for any register available. */
860 static void
861 which_registers_available (
862 SIM_CPU *current_cpu, int *hi_available, int *lo_available, int is_float
863 )
864 {
865 if (is_float)
866 frv_fr_registers_available (current_cpu, hi_available, lo_available);
867 else
868 frv_gr_registers_available (current_cpu, hi_available, lo_available);
869 }
870
871 void
872 frvbf_clear_ne_flags (SIM_CPU *current_cpu, SI target_index, BI is_float)
873 {
874 int hi_available;
875 int lo_available;
876 int exception;
877 SI NE_base;
878 USI necr;
879 FRV_REGISTER_CONTROL *control;
880
881 /* Check for availability of the target register(s). */
882 which_registers_available (current_cpu, & hi_available, & lo_available,
883 is_float);
884
885 /* Check to make sure that the target register is available. */
886 if (! frv_check_register_access (current_cpu, target_index,
887 hi_available, lo_available))
888 return;
889
890 /* Determine whether we're working with GR or FR registers. */
891 if (is_float)
892 NE_base = H_SPR_FNER0;
893 else
894 NE_base = H_SPR_GNER0;
895
896 /* Always clear the appropriate NE flags. */
897 clear_ne_flags (current_cpu, target_index, hi_available, lo_available,
898 NE_base);
899
900 /* Clear the appropriate NESR and NEEAR registers. */
901 control = CPU_REGISTER_CONTROL (current_cpu);
902 if (control->spr[H_SPR_NECR].implemented)
903 {
904 necr = GET_NECR ();
905 if (GET_NECR_VALID (necr) && GET_NECR_ELOS (necr))
906 clear_nesr_neear (current_cpu, target_index, is_float);
907 }
908 }
909
910 void
911 frvbf_commit (SIM_CPU *current_cpu, SI target_index, BI is_float)
912 {
913 SI NE_base;
914 SI NE_flags[2];
915 BI NE_flag;
916 int exception;
917 int hi_available;
918 int lo_available;
919 USI necr;
920 FRV_REGISTER_CONTROL *control;
921
922 /* Check for availability of the target register(s). */
923 which_registers_available (current_cpu, & hi_available, & lo_available,
924 is_float);
925
926 /* Check to make sure that the target register is available. */
927 if (! frv_check_register_access (current_cpu, target_index,
928 hi_available, lo_available))
929 return;
930
931 /* Determine whether we're working with GR or FR registers. */
932 if (is_float)
933 NE_base = H_SPR_FNER0;
934 else
935 NE_base = H_SPR_GNER0;
936
937 /* Determine whether a ne exception is pending. */
938 GET_NE_FLAGS (NE_flags, NE_base);
939 if (target_index >= 0)
940 NE_flag = GET_NE_FLAG (NE_flags, target_index);
941 else
942 {
943 NE_flag =
944 hi_available && NE_flags[0] != 0 || lo_available && NE_flags[1] != 0;
945 }
946
947 /* Always clear the appropriate NE flags. */
948 clear_ne_flags (current_cpu, target_index, hi_available, lo_available,
949 NE_base);
950
951 control = CPU_REGISTER_CONTROL (current_cpu);
952 if (control->spr[H_SPR_NECR].implemented)
953 {
954 necr = GET_NECR ();
955 if (GET_NECR_VALID (necr) && GET_NECR_ELOS (necr) && NE_flag)
956 {
957 /* Clear the appropriate NESR and NEEAR registers. */
958 clear_nesr_neear (current_cpu, target_index, is_float);
959 frv_queue_program_interrupt (current_cpu, FRV_COMMIT_EXCEPTION);
960 }
961 }
962 }
963
964 /* Generate the appropriate fp_exception(s) based on the given status code. */
965 void
966 frvbf_fpu_error (CGEN_FPU* fpu, int status)
967 {
968 struct frv_fp_exception_info fp_info = {
969 FSR_NO_EXCEPTION, FTT_IEEE_754_EXCEPTION
970 };
971
972 if (status &
973 (sim_fpu_status_invalid_snan |
974 sim_fpu_status_invalid_qnan |
975 sim_fpu_status_invalid_isi |
976 sim_fpu_status_invalid_idi |
977 sim_fpu_status_invalid_zdz |
978 sim_fpu_status_invalid_imz |
979 sim_fpu_status_invalid_cvi |
980 sim_fpu_status_invalid_cmp |
981 sim_fpu_status_invalid_sqrt))
982 fp_info.fsr_mask |= FSR_INVALID_OPERATION;
983
984 if (status & sim_fpu_status_invalid_div0)
985 fp_info.fsr_mask |= FSR_DIVISION_BY_ZERO;
986
987 if (status & sim_fpu_status_inexact)
988 fp_info.fsr_mask |= FSR_INEXACT;
989
990 if (status & sim_fpu_status_overflow)
991 fp_info.fsr_mask |= FSR_OVERFLOW;
992
993 if (status & sim_fpu_status_underflow)
994 fp_info.fsr_mask |= FSR_UNDERFLOW;
995
996 if (status & sim_fpu_status_denorm)
997 {
998 fp_info.fsr_mask |= FSR_DENORMAL_INPUT;
999 fp_info.ftt = FTT_DENORMAL_INPUT;
1000 }
1001
1002 if (fp_info.fsr_mask != FSR_NO_EXCEPTION)
1003 {
1004 SIM_CPU *current_cpu = (SIM_CPU *)fpu->owner;
1005 frv_queue_fp_exception_interrupt (current_cpu, & fp_info);
1006 }
1007 }