]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - sim/m32r/m32r.c
Update years in copyright notice for the GDB files.
[thirdparty/binutils-gdb.git] / sim / m32r / m32r.c
1 /* m32r simulator support code
2 Copyright (C) 1996-2013 Free Software Foundation, Inc.
3 Contributed by Cygnus Support.
4
5 This file is part of GDB, the GNU debugger.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #define WANT_CPU m32rbf
21 #define WANT_CPU_M32RBF
22
23 #include "sim-main.h"
24 #include "cgen-mem.h"
25 #include "cgen-ops.h"
26
27 /* Decode gdb ctrl register number. */
28
29 int
30 m32r_decode_gdb_ctrl_regnum (int gdb_regnum)
31 {
32 switch (gdb_regnum)
33 {
34 case PSW_REGNUM : return H_CR_PSW;
35 case CBR_REGNUM : return H_CR_CBR;
36 case SPI_REGNUM : return H_CR_SPI;
37 case SPU_REGNUM : return H_CR_SPU;
38 case BPC_REGNUM : return H_CR_BPC;
39 case BBPSW_REGNUM : return H_CR_BBPSW;
40 case BBPC_REGNUM : return H_CR_BBPC;
41 case EVB_REGNUM : return H_CR_CR5;
42 }
43 abort ();
44 }
45
46 /* The contents of BUF are in target byte order. */
47
48 int
49 m32rbf_fetch_register (SIM_CPU *current_cpu, int rn, unsigned char *buf, int len)
50 {
51 if (rn < 16)
52 SETTWI (buf, m32rbf_h_gr_get (current_cpu, rn));
53 else
54 switch (rn)
55 {
56 case PSW_REGNUM :
57 case CBR_REGNUM :
58 case SPI_REGNUM :
59 case SPU_REGNUM :
60 case BPC_REGNUM :
61 case BBPSW_REGNUM :
62 case BBPC_REGNUM :
63 SETTWI (buf, m32rbf_h_cr_get (current_cpu,
64 m32r_decode_gdb_ctrl_regnum (rn)));
65 break;
66 case PC_REGNUM :
67 SETTWI (buf, m32rbf_h_pc_get (current_cpu));
68 break;
69 case ACCL_REGNUM :
70 SETTWI (buf, GETLODI (m32rbf_h_accum_get (current_cpu)));
71 break;
72 case ACCH_REGNUM :
73 SETTWI (buf, GETHIDI (m32rbf_h_accum_get (current_cpu)));
74 break;
75 default :
76 return 0;
77 }
78
79 return -1; /*FIXME*/
80 }
81
82 /* The contents of BUF are in target byte order. */
83
84 int
85 m32rbf_store_register (SIM_CPU *current_cpu, int rn, unsigned char *buf, int len)
86 {
87 if (rn < 16)
88 m32rbf_h_gr_set (current_cpu, rn, GETTWI (buf));
89 else
90 switch (rn)
91 {
92 case PSW_REGNUM :
93 case CBR_REGNUM :
94 case SPI_REGNUM :
95 case SPU_REGNUM :
96 case BPC_REGNUM :
97 case BBPSW_REGNUM :
98 case BBPC_REGNUM :
99 m32rbf_h_cr_set (current_cpu,
100 m32r_decode_gdb_ctrl_regnum (rn),
101 GETTWI (buf));
102 break;
103 case PC_REGNUM :
104 m32rbf_h_pc_set (current_cpu, GETTWI (buf));
105 break;
106 case ACCL_REGNUM :
107 {
108 DI val = m32rbf_h_accum_get (current_cpu);
109 SETLODI (val, GETTWI (buf));
110 m32rbf_h_accum_set (current_cpu, val);
111 break;
112 }
113 case ACCH_REGNUM :
114 {
115 DI val = m32rbf_h_accum_get (current_cpu);
116 SETHIDI (val, GETTWI (buf));
117 m32rbf_h_accum_set (current_cpu, val);
118 break;
119 }
120 default :
121 return 0;
122 }
123
124 return -1; /*FIXME*/
125 }
126 \f
127 USI
128 m32rbf_h_cr_get_handler (SIM_CPU *current_cpu, UINT cr)
129 {
130 switch (cr)
131 {
132 case H_CR_PSW : /* psw */
133 return (((CPU (h_bpsw) & 0xc1) << 8)
134 | ((CPU (h_psw) & 0xc0) << 0)
135 | GET_H_COND ());
136 case H_CR_BBPSW : /* backup backup psw */
137 return CPU (h_bbpsw) & 0xc1;
138 case H_CR_CBR : /* condition bit */
139 return GET_H_COND ();
140 case H_CR_SPI : /* interrupt stack pointer */
141 if (! GET_H_SM ())
142 return CPU (h_gr[H_GR_SP]);
143 else
144 return CPU (h_cr[H_CR_SPI]);
145 case H_CR_SPU : /* user stack pointer */
146 if (GET_H_SM ())
147 return CPU (h_gr[H_GR_SP]);
148 else
149 return CPU (h_cr[H_CR_SPU]);
150 case H_CR_BPC : /* backup pc */
151 return CPU (h_cr[H_CR_BPC]) & 0xfffffffe;
152 case H_CR_BBPC : /* backup backup pc */
153 return CPU (h_cr[H_CR_BBPC]) & 0xfffffffe;
154 case 4 : /* ??? unspecified, but apparently available */
155 case 5 : /* ??? unspecified, but apparently available */
156 return CPU (h_cr[cr]);
157 default :
158 return 0;
159 }
160 }
161
162 void
163 m32rbf_h_cr_set_handler (SIM_CPU *current_cpu, UINT cr, USI newval)
164 {
165 switch (cr)
166 {
167 case H_CR_PSW : /* psw */
168 {
169 int old_sm = (CPU (h_psw) & 0x80) != 0;
170 int new_sm = (newval & 0x80) != 0;
171 CPU (h_bpsw) = (newval >> 8) & 0xff;
172 CPU (h_psw) = newval & 0xff;
173 SET_H_COND (newval & 1);
174 /* When switching stack modes, update the registers. */
175 if (old_sm != new_sm)
176 {
177 if (old_sm)
178 {
179 /* Switching user -> system. */
180 CPU (h_cr[H_CR_SPU]) = CPU (h_gr[H_GR_SP]);
181 CPU (h_gr[H_GR_SP]) = CPU (h_cr[H_CR_SPI]);
182 }
183 else
184 {
185 /* Switching system -> user. */
186 CPU (h_cr[H_CR_SPI]) = CPU (h_gr[H_GR_SP]);
187 CPU (h_gr[H_GR_SP]) = CPU (h_cr[H_CR_SPU]);
188 }
189 }
190 break;
191 }
192 case H_CR_BBPSW : /* backup backup psw */
193 CPU (h_bbpsw) = newval & 0xff;
194 break;
195 case H_CR_CBR : /* condition bit */
196 SET_H_COND (newval & 1);
197 break;
198 case H_CR_SPI : /* interrupt stack pointer */
199 if (! GET_H_SM ())
200 CPU (h_gr[H_GR_SP]) = newval;
201 else
202 CPU (h_cr[H_CR_SPI]) = newval;
203 break;
204 case H_CR_SPU : /* user stack pointer */
205 if (GET_H_SM ())
206 CPU (h_gr[H_GR_SP]) = newval;
207 else
208 CPU (h_cr[H_CR_SPU]) = newval;
209 break;
210 case H_CR_BPC : /* backup pc */
211 CPU (h_cr[H_CR_BPC]) = newval;
212 break;
213 case H_CR_BBPC : /* backup backup pc */
214 CPU (h_cr[H_CR_BBPC]) = newval;
215 break;
216 case 4 : /* ??? unspecified, but apparently available */
217 case 5 : /* ??? unspecified, but apparently available */
218 CPU (h_cr[cr]) = newval;
219 break;
220 default :
221 /* ignore */
222 break;
223 }
224 }
225
226 /* Cover fns to access h-psw. */
227
228 UQI
229 m32rbf_h_psw_get_handler (SIM_CPU *current_cpu)
230 {
231 return (CPU (h_psw) & 0xfe) | (CPU (h_cond) & 1);
232 }
233
234 void
235 m32rbf_h_psw_set_handler (SIM_CPU *current_cpu, UQI newval)
236 {
237 CPU (h_psw) = newval;
238 CPU (h_cond) = newval & 1;
239 }
240
241 /* Cover fns to access h-accum. */
242
243 DI
244 m32rbf_h_accum_get_handler (SIM_CPU *current_cpu)
245 {
246 /* Sign extend the top 8 bits. */
247 DI r;
248 #if 1
249 r = ANDDI (CPU (h_accum), MAKEDI (0xffffff, 0xffffffff));
250 r = XORDI (r, MAKEDI (0x800000, 0));
251 r = SUBDI (r, MAKEDI (0x800000, 0));
252 #else
253 SI hi,lo;
254 r = CPU (h_accum);
255 hi = GETHIDI (r);
256 lo = GETLODI (r);
257 hi = ((hi & 0xffffff) ^ 0x800000) - 0x800000;
258 r = MAKEDI (hi, lo);
259 #endif
260 return r;
261 }
262
263 void
264 m32rbf_h_accum_set_handler (SIM_CPU *current_cpu, DI newval)
265 {
266 CPU (h_accum) = newval;
267 }
268 \f
269 #if WITH_PROFILE_MODEL_P
270
271 /* FIXME: Some of these should be inline or macros. Later. */
272
273 /* Initialize cycle counting for an insn.
274 FIRST_P is non-zero if this is the first insn in a set of parallel
275 insns. */
276
277 void
278 m32rbf_model_insn_before (SIM_CPU *cpu, int first_p)
279 {
280 M32R_MISC_PROFILE *mp = CPU_M32R_MISC_PROFILE (cpu);
281 mp->cti_stall = 0;
282 mp->load_stall = 0;
283 if (first_p)
284 {
285 mp->load_regs_pending = 0;
286 mp->biggest_cycles = 0;
287 }
288 }
289
290 /* Record the cycles computed for an insn.
291 LAST_P is non-zero if this is the last insn in a set of parallel insns,
292 and we update the total cycle count.
293 CYCLES is the cycle count of the insn. */
294
295 void
296 m32rbf_model_insn_after (SIM_CPU *cpu, int last_p, int cycles)
297 {
298 PROFILE_DATA *p = CPU_PROFILE_DATA (cpu);
299 M32R_MISC_PROFILE *mp = CPU_M32R_MISC_PROFILE (cpu);
300 unsigned long total = cycles + mp->cti_stall + mp->load_stall;
301
302 if (last_p)
303 {
304 unsigned long biggest = total > mp->biggest_cycles ? total : mp->biggest_cycles;
305 PROFILE_MODEL_TOTAL_CYCLES (p) += biggest;
306 PROFILE_MODEL_CUR_INSN_CYCLES (p) = total;
307 }
308 else
309 {
310 /* Here we take advantage of the fact that !last_p -> first_p. */
311 mp->biggest_cycles = total;
312 PROFILE_MODEL_CUR_INSN_CYCLES (p) = total;
313 }
314
315 /* Branch and load stall counts are recorded independently of the
316 total cycle count. */
317 PROFILE_MODEL_CTI_STALL_CYCLES (p) += mp->cti_stall;
318 PROFILE_MODEL_LOAD_STALL_CYCLES (p) += mp->load_stall;
319
320 mp->load_regs = mp->load_regs_pending;
321 }
322
323 static INLINE void
324 check_load_stall (SIM_CPU *cpu, int regno)
325 {
326 UINT h_gr = CPU_M32R_MISC_PROFILE (cpu)->load_regs;
327
328 if (regno != -1
329 && (h_gr & (1 << regno)) != 0)
330 {
331 CPU_M32R_MISC_PROFILE (cpu)->load_stall += 2;
332 if (TRACE_INSN_P (cpu))
333 cgen_trace_printf (cpu, " ; Load stall of 2 cycles.");
334 }
335 }
336
337 int
338 m32rbf_model_m32r_d_u_exec (SIM_CPU *cpu, const IDESC *idesc,
339 int unit_num, int referenced,
340 INT sr, INT sr2, INT dr)
341 {
342 check_load_stall (cpu, sr);
343 check_load_stall (cpu, sr2);
344 return idesc->timing->units[unit_num].done;
345 }
346
347 int
348 m32rbf_model_m32r_d_u_cmp (SIM_CPU *cpu, const IDESC *idesc,
349 int unit_num, int referenced,
350 INT src1, INT src2)
351 {
352 check_load_stall (cpu, src1);
353 check_load_stall (cpu, src2);
354 return idesc->timing->units[unit_num].done;
355 }
356
357 int
358 m32rbf_model_m32r_d_u_mac (SIM_CPU *cpu, const IDESC *idesc,
359 int unit_num, int referenced,
360 INT src1, INT src2)
361 {
362 check_load_stall (cpu, src1);
363 check_load_stall (cpu, src2);
364 return idesc->timing->units[unit_num].done;
365 }
366
367 int
368 m32rbf_model_m32r_d_u_cti (SIM_CPU *cpu, const IDESC *idesc,
369 int unit_num, int referenced,
370 INT sr)
371 {
372 PROFILE_DATA *profile = CPU_PROFILE_DATA (cpu);
373 int taken_p = (referenced & (1 << 1)) != 0;
374
375 check_load_stall (cpu, sr);
376 if (taken_p)
377 {
378 CPU_M32R_MISC_PROFILE (cpu)->cti_stall += 2;
379 PROFILE_MODEL_TAKEN_COUNT (profile) += 1;
380 }
381 else
382 PROFILE_MODEL_UNTAKEN_COUNT (profile) += 1;
383 return idesc->timing->units[unit_num].done;
384 }
385
386 int
387 m32rbf_model_m32r_d_u_load (SIM_CPU *cpu, const IDESC *idesc,
388 int unit_num, int referenced,
389 INT sr, INT dr)
390 {
391 CPU_M32R_MISC_PROFILE (cpu)->load_regs_pending |= (1 << dr);
392 check_load_stall (cpu, sr);
393 return idesc->timing->units[unit_num].done;
394 }
395
396 int
397 m32rbf_model_m32r_d_u_store (SIM_CPU *cpu, const IDESC *idesc,
398 int unit_num, int referenced,
399 INT src1, INT src2)
400 {
401 check_load_stall (cpu, src1);
402 check_load_stall (cpu, src2);
403 return idesc->timing->units[unit_num].done;
404 }
405
406 int
407 m32rbf_model_test_u_exec (SIM_CPU *cpu, const IDESC *idesc,
408 int unit_num, int referenced)
409 {
410 return idesc->timing->units[unit_num].done;
411 }
412
413 #endif /* WITH_PROFILE_MODEL_P */