]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - sim/m32r/m32r.c
a677dda0976b92bf85ccdcc1fb9b93e5119d05be
[thirdparty/binutils-gdb.git] / sim / m32r / m32r.c
1 /* m32r simulator support code
2 Copyright (C) 1996, 1997, 1998, 2003, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Cygnus Support.
5
6 This file is part of GDB, the GNU debugger.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #define WANT_CPU m32rbf
22 #define WANT_CPU_M32RBF
23
24 #include "sim-main.h"
25 #include "cgen-mem.h"
26 #include "cgen-ops.h"
27
28 /* Decode gdb ctrl register number. */
29
30 int
31 m32r_decode_gdb_ctrl_regnum (int gdb_regnum)
32 {
33 switch (gdb_regnum)
34 {
35 case PSW_REGNUM : return H_CR_PSW;
36 case CBR_REGNUM : return H_CR_CBR;
37 case SPI_REGNUM : return H_CR_SPI;
38 case SPU_REGNUM : return H_CR_SPU;
39 case BPC_REGNUM : return H_CR_BPC;
40 case BBPSW_REGNUM : return H_CR_BBPSW;
41 case BBPC_REGNUM : return H_CR_BBPC;
42 case EVB_REGNUM : return H_CR_CR5;
43 }
44 abort ();
45 }
46
47 /* The contents of BUF are in target byte order. */
48
49 int
50 m32rbf_fetch_register (SIM_CPU *current_cpu, int rn, unsigned char *buf, int len)
51 {
52 if (rn < 16)
53 SETTWI (buf, m32rbf_h_gr_get (current_cpu, rn));
54 else
55 switch (rn)
56 {
57 case PSW_REGNUM :
58 case CBR_REGNUM :
59 case SPI_REGNUM :
60 case SPU_REGNUM :
61 case BPC_REGNUM :
62 case BBPSW_REGNUM :
63 case BBPC_REGNUM :
64 SETTWI (buf, m32rbf_h_cr_get (current_cpu,
65 m32r_decode_gdb_ctrl_regnum (rn)));
66 break;
67 case PC_REGNUM :
68 SETTWI (buf, m32rbf_h_pc_get (current_cpu));
69 break;
70 case ACCL_REGNUM :
71 SETTWI (buf, GETLODI (m32rbf_h_accum_get (current_cpu)));
72 break;
73 case ACCH_REGNUM :
74 SETTWI (buf, GETHIDI (m32rbf_h_accum_get (current_cpu)));
75 break;
76 default :
77 return 0;
78 }
79
80 return -1; /*FIXME*/
81 }
82
83 /* The contents of BUF are in target byte order. */
84
85 int
86 m32rbf_store_register (SIM_CPU *current_cpu, int rn, unsigned char *buf, int len)
87 {
88 if (rn < 16)
89 m32rbf_h_gr_set (current_cpu, rn, GETTWI (buf));
90 else
91 switch (rn)
92 {
93 case PSW_REGNUM :
94 case CBR_REGNUM :
95 case SPI_REGNUM :
96 case SPU_REGNUM :
97 case BPC_REGNUM :
98 case BBPSW_REGNUM :
99 case BBPC_REGNUM :
100 m32rbf_h_cr_set (current_cpu,
101 m32r_decode_gdb_ctrl_regnum (rn),
102 GETTWI (buf));
103 break;
104 case PC_REGNUM :
105 m32rbf_h_pc_set (current_cpu, GETTWI (buf));
106 break;
107 case ACCL_REGNUM :
108 {
109 DI val = m32rbf_h_accum_get (current_cpu);
110 SETLODI (val, GETTWI (buf));
111 m32rbf_h_accum_set (current_cpu, val);
112 break;
113 }
114 case ACCH_REGNUM :
115 {
116 DI val = m32rbf_h_accum_get (current_cpu);
117 SETHIDI (val, GETTWI (buf));
118 m32rbf_h_accum_set (current_cpu, val);
119 break;
120 }
121 default :
122 return 0;
123 }
124
125 return -1; /*FIXME*/
126 }
127 \f
128 USI
129 m32rbf_h_cr_get_handler (SIM_CPU *current_cpu, UINT cr)
130 {
131 switch (cr)
132 {
133 case H_CR_PSW : /* psw */
134 return (((CPU (h_bpsw) & 0xc1) << 8)
135 | ((CPU (h_psw) & 0xc0) << 0)
136 | GET_H_COND ());
137 case H_CR_BBPSW : /* backup backup psw */
138 return CPU (h_bbpsw) & 0xc1;
139 case H_CR_CBR : /* condition bit */
140 return GET_H_COND ();
141 case H_CR_SPI : /* interrupt stack pointer */
142 if (! GET_H_SM ())
143 return CPU (h_gr[H_GR_SP]);
144 else
145 return CPU (h_cr[H_CR_SPI]);
146 case H_CR_SPU : /* user stack pointer */
147 if (GET_H_SM ())
148 return CPU (h_gr[H_GR_SP]);
149 else
150 return CPU (h_cr[H_CR_SPU]);
151 case H_CR_BPC : /* backup pc */
152 return CPU (h_cr[H_CR_BPC]) & 0xfffffffe;
153 case H_CR_BBPC : /* backup backup pc */
154 return CPU (h_cr[H_CR_BBPC]) & 0xfffffffe;
155 case 4 : /* ??? unspecified, but apparently available */
156 case 5 : /* ??? unspecified, but apparently available */
157 return CPU (h_cr[cr]);
158 default :
159 return 0;
160 }
161 }
162
163 void
164 m32rbf_h_cr_set_handler (SIM_CPU *current_cpu, UINT cr, USI newval)
165 {
166 switch (cr)
167 {
168 case H_CR_PSW : /* psw */
169 {
170 int old_sm = (CPU (h_psw) & 0x80) != 0;
171 int new_sm = (newval & 0x80) != 0;
172 CPU (h_bpsw) = (newval >> 8) & 0xff;
173 CPU (h_psw) = newval & 0xff;
174 SET_H_COND (newval & 1);
175 /* When switching stack modes, update the registers. */
176 if (old_sm != new_sm)
177 {
178 if (old_sm)
179 {
180 /* Switching user -> system. */
181 CPU (h_cr[H_CR_SPU]) = CPU (h_gr[H_GR_SP]);
182 CPU (h_gr[H_GR_SP]) = CPU (h_cr[H_CR_SPI]);
183 }
184 else
185 {
186 /* Switching system -> user. */
187 CPU (h_cr[H_CR_SPI]) = CPU (h_gr[H_GR_SP]);
188 CPU (h_gr[H_GR_SP]) = CPU (h_cr[H_CR_SPU]);
189 }
190 }
191 break;
192 }
193 case H_CR_BBPSW : /* backup backup psw */
194 CPU (h_bbpsw) = newval & 0xff;
195 break;
196 case H_CR_CBR : /* condition bit */
197 SET_H_COND (newval & 1);
198 break;
199 case H_CR_SPI : /* interrupt stack pointer */
200 if (! GET_H_SM ())
201 CPU (h_gr[H_GR_SP]) = newval;
202 else
203 CPU (h_cr[H_CR_SPI]) = newval;
204 break;
205 case H_CR_SPU : /* user stack pointer */
206 if (GET_H_SM ())
207 CPU (h_gr[H_GR_SP]) = newval;
208 else
209 CPU (h_cr[H_CR_SPU]) = newval;
210 break;
211 case H_CR_BPC : /* backup pc */
212 CPU (h_cr[H_CR_BPC]) = newval;
213 break;
214 case H_CR_BBPC : /* backup backup pc */
215 CPU (h_cr[H_CR_BBPC]) = newval;
216 break;
217 case 4 : /* ??? unspecified, but apparently available */
218 case 5 : /* ??? unspecified, but apparently available */
219 CPU (h_cr[cr]) = newval;
220 break;
221 default :
222 /* ignore */
223 break;
224 }
225 }
226
227 /* Cover fns to access h-psw. */
228
229 UQI
230 m32rbf_h_psw_get_handler (SIM_CPU *current_cpu)
231 {
232 return (CPU (h_psw) & 0xfe) | (CPU (h_cond) & 1);
233 }
234
235 void
236 m32rbf_h_psw_set_handler (SIM_CPU *current_cpu, UQI newval)
237 {
238 CPU (h_psw) = newval;
239 CPU (h_cond) = newval & 1;
240 }
241
242 /* Cover fns to access h-accum. */
243
244 DI
245 m32rbf_h_accum_get_handler (SIM_CPU *current_cpu)
246 {
247 /* Sign extend the top 8 bits. */
248 DI r;
249 #if 1
250 r = ANDDI (CPU (h_accum), MAKEDI (0xffffff, 0xffffffff));
251 r = XORDI (r, MAKEDI (0x800000, 0));
252 r = SUBDI (r, MAKEDI (0x800000, 0));
253 #else
254 SI hi,lo;
255 r = CPU (h_accum);
256 hi = GETHIDI (r);
257 lo = GETLODI (r);
258 hi = ((hi & 0xffffff) ^ 0x800000) - 0x800000;
259 r = MAKEDI (hi, lo);
260 #endif
261 return r;
262 }
263
264 void
265 m32rbf_h_accum_set_handler (SIM_CPU *current_cpu, DI newval)
266 {
267 CPU (h_accum) = newval;
268 }
269 \f
270 #if WITH_PROFILE_MODEL_P
271
272 /* FIXME: Some of these should be inline or macros. Later. */
273
274 /* Initialize cycle counting for an insn.
275 FIRST_P is non-zero if this is the first insn in a set of parallel
276 insns. */
277
278 void
279 m32rbf_model_insn_before (SIM_CPU *cpu, int first_p)
280 {
281 M32R_MISC_PROFILE *mp = CPU_M32R_MISC_PROFILE (cpu);
282 mp->cti_stall = 0;
283 mp->load_stall = 0;
284 if (first_p)
285 {
286 mp->load_regs_pending = 0;
287 mp->biggest_cycles = 0;
288 }
289 }
290
291 /* Record the cycles computed for an insn.
292 LAST_P is non-zero if this is the last insn in a set of parallel insns,
293 and we update the total cycle count.
294 CYCLES is the cycle count of the insn. */
295
296 void
297 m32rbf_model_insn_after (SIM_CPU *cpu, int last_p, int cycles)
298 {
299 PROFILE_DATA *p = CPU_PROFILE_DATA (cpu);
300 M32R_MISC_PROFILE *mp = CPU_M32R_MISC_PROFILE (cpu);
301 unsigned long total = cycles + mp->cti_stall + mp->load_stall;
302
303 if (last_p)
304 {
305 unsigned long biggest = total > mp->biggest_cycles ? total : mp->biggest_cycles;
306 PROFILE_MODEL_TOTAL_CYCLES (p) += biggest;
307 PROFILE_MODEL_CUR_INSN_CYCLES (p) = total;
308 }
309 else
310 {
311 /* Here we take advantage of the fact that !last_p -> first_p. */
312 mp->biggest_cycles = total;
313 PROFILE_MODEL_CUR_INSN_CYCLES (p) = total;
314 }
315
316 /* Branch and load stall counts are recorded independently of the
317 total cycle count. */
318 PROFILE_MODEL_CTI_STALL_CYCLES (p) += mp->cti_stall;
319 PROFILE_MODEL_LOAD_STALL_CYCLES (p) += mp->load_stall;
320
321 mp->load_regs = mp->load_regs_pending;
322 }
323
324 static INLINE void
325 check_load_stall (SIM_CPU *cpu, int regno)
326 {
327 UINT h_gr = CPU_M32R_MISC_PROFILE (cpu)->load_regs;
328
329 if (regno != -1
330 && (h_gr & (1 << regno)) != 0)
331 {
332 CPU_M32R_MISC_PROFILE (cpu)->load_stall += 2;
333 if (TRACE_INSN_P (cpu))
334 cgen_trace_printf (cpu, " ; Load stall of 2 cycles.");
335 }
336 }
337
338 int
339 m32rbf_model_m32r_d_u_exec (SIM_CPU *cpu, const IDESC *idesc,
340 int unit_num, int referenced,
341 INT sr, INT sr2, INT dr)
342 {
343 check_load_stall (cpu, sr);
344 check_load_stall (cpu, sr2);
345 return idesc->timing->units[unit_num].done;
346 }
347
348 int
349 m32rbf_model_m32r_d_u_cmp (SIM_CPU *cpu, const IDESC *idesc,
350 int unit_num, int referenced,
351 INT src1, INT src2)
352 {
353 check_load_stall (cpu, src1);
354 check_load_stall (cpu, src2);
355 return idesc->timing->units[unit_num].done;
356 }
357
358 int
359 m32rbf_model_m32r_d_u_mac (SIM_CPU *cpu, const IDESC *idesc,
360 int unit_num, int referenced,
361 INT src1, INT src2)
362 {
363 check_load_stall (cpu, src1);
364 check_load_stall (cpu, src2);
365 return idesc->timing->units[unit_num].done;
366 }
367
368 int
369 m32rbf_model_m32r_d_u_cti (SIM_CPU *cpu, const IDESC *idesc,
370 int unit_num, int referenced,
371 INT sr)
372 {
373 PROFILE_DATA *profile = CPU_PROFILE_DATA (cpu);
374 int taken_p = (referenced & (1 << 1)) != 0;
375
376 check_load_stall (cpu, sr);
377 if (taken_p)
378 {
379 CPU_M32R_MISC_PROFILE (cpu)->cti_stall += 2;
380 PROFILE_MODEL_TAKEN_COUNT (profile) += 1;
381 }
382 else
383 PROFILE_MODEL_UNTAKEN_COUNT (profile) += 1;
384 return idesc->timing->units[unit_num].done;
385 }
386
387 int
388 m32rbf_model_m32r_d_u_load (SIM_CPU *cpu, const IDESC *idesc,
389 int unit_num, int referenced,
390 INT sr, INT dr)
391 {
392 CPU_M32R_MISC_PROFILE (cpu)->load_regs_pending |= (1 << dr);
393 check_load_stall (cpu, sr);
394 return idesc->timing->units[unit_num].done;
395 }
396
397 int
398 m32rbf_model_m32r_d_u_store (SIM_CPU *cpu, const IDESC *idesc,
399 int unit_num, int referenced,
400 INT src1, INT src2)
401 {
402 check_load_stall (cpu, src1);
403 check_load_stall (cpu, src2);
404 return idesc->timing->units[unit_num].done;
405 }
406
407 int
408 m32rbf_model_test_u_exec (SIM_CPU *cpu, const IDESC *idesc,
409 int unit_num, int referenced)
410 {
411 return idesc->timing->units[unit_num].done;
412 }
413
414 #endif /* WITH_PROFILE_MODEL_P */