]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - sim/m68hc11/interp.c
sim: m68hc11: convert to sim-cpu
[thirdparty/binutils-gdb.git] / sim / m68hc11 / interp.c
1 /* interp.c -- Simulator for Motorola 68HC11/68HC12
2 Copyright (C) 1999-2015 Free Software Foundation, Inc.
3 Written by Stephane Carrez (stcarrez@nerim.fr)
4
5 This file is part of GDB, the GNU debugger.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "sim-main.h"
21 #include "sim-assert.h"
22 #include "sim-hw.h"
23 #include "sim-options.h"
24 #include "hw-tree.h"
25 #include "hw-device.h"
26 #include "hw-ports.h"
27 #include "elf32-m68hc1x.h"
28
29 #ifndef MONITOR_BASE
30 # define MONITOR_BASE (0x0C000)
31 # define MONITOR_SIZE (0x04000)
32 #endif
33
34 static void sim_get_info (SIM_DESC sd, char *cmd);
35
36
37 char *interrupt_names[] = {
38 "reset",
39 "nmi",
40 "int",
41 NULL
42 };
43
44 #ifndef INLINE
45 #if defined(__GNUC__) && defined(__OPTIMIZE__)
46 #define INLINE __inline__
47 #else
48 #define INLINE
49 #endif
50 #endif
51
52 struct sim_info_list
53 {
54 const char *name;
55 const char *device;
56 };
57
58 struct sim_info_list dev_list_68hc11[] = {
59 {"cpu", "/m68hc11"},
60 {"timer", "/m68hc11/m68hc11tim"},
61 {"sio", "/m68hc11/m68hc11sio"},
62 {"spi", "/m68hc11/m68hc11spi"},
63 {"eeprom", "/m68hc11/m68hc11eepr"},
64 {0, 0}
65 };
66
67 struct sim_info_list dev_list_68hc12[] = {
68 {"cpu", "/m68hc12"},
69 {"timer", "/m68hc12/m68hc12tim"},
70 {"sio", "/m68hc12/m68hc12sio"},
71 {"spi", "/m68hc12/m68hc12spi"},
72 {"eeprom", "/m68hc12/m68hc12eepr"},
73 {0, 0}
74 };
75
76 /* Cover function of sim_state_free to free the cpu buffers as well. */
77
78 static void
79 free_state (SIM_DESC sd)
80 {
81 if (STATE_MODULES (sd) != NULL)
82 sim_module_uninstall (sd);
83
84 sim_state_free (sd);
85 }
86
87 /* Give some information about the simulator. */
88 static void
89 sim_get_info (SIM_DESC sd, char *cmd)
90 {
91 sim_cpu *cpu;
92
93 cpu = STATE_CPU (sd, 0);
94 if (cmd != 0 && (cmd[0] == ' ' || cmd[0] == '-'))
95 {
96 int i;
97 struct hw *hw_dev;
98 struct sim_info_list *dev_list;
99 const struct bfd_arch_info *arch;
100
101 arch = STATE_ARCHITECTURE (sd);
102 cmd++;
103
104 if (arch->arch == bfd_arch_m68hc11)
105 dev_list = dev_list_68hc11;
106 else
107 dev_list = dev_list_68hc12;
108
109 for (i = 0; dev_list[i].name; i++)
110 if (strcmp (cmd, dev_list[i].name) == 0)
111 break;
112
113 if (dev_list[i].name == 0)
114 {
115 sim_io_eprintf (sd, "Device '%s' not found.\n", cmd);
116 sim_io_eprintf (sd, "Valid devices: cpu timer sio eeprom\n");
117 return;
118 }
119 hw_dev = sim_hw_parse (sd, dev_list[i].device);
120 if (hw_dev == 0)
121 {
122 sim_io_eprintf (sd, "Device '%s' not found\n", dev_list[i].device);
123 return;
124 }
125 hw_ioctl (hw_dev, 23, 0);
126 return;
127 }
128
129 cpu_info (sd, cpu);
130 interrupts_info (sd, &cpu->cpu_interrupts);
131 }
132
133
134 void
135 sim_board_reset (SIM_DESC sd)
136 {
137 struct hw *hw_cpu;
138 sim_cpu *cpu;
139 const struct bfd_arch_info *arch;
140 const char *cpu_type;
141
142 cpu = STATE_CPU (sd, 0);
143 arch = STATE_ARCHITECTURE (sd);
144
145 /* hw_cpu = sim_hw_parse (sd, "/"); */
146 if (arch->arch == bfd_arch_m68hc11)
147 {
148 cpu->cpu_type = CPU_M6811;
149 cpu_type = "/m68hc11";
150 }
151 else
152 {
153 cpu->cpu_type = CPU_M6812;
154 cpu_type = "/m68hc12";
155 }
156
157 hw_cpu = sim_hw_parse (sd, cpu_type);
158 if (hw_cpu == 0)
159 {
160 sim_io_eprintf (sd, "%s cpu not found in device tree.", cpu_type);
161 return;
162 }
163
164 cpu_reset (cpu);
165 hw_port_event (hw_cpu, 3, 0);
166 cpu_restart (cpu);
167 }
168
169 static int
170 sim_hw_configure (SIM_DESC sd)
171 {
172 const struct bfd_arch_info *arch;
173 struct hw *device_tree;
174 sim_cpu *cpu;
175
176 arch = STATE_ARCHITECTURE (sd);
177 if (arch == 0)
178 return 0;
179
180 cpu = STATE_CPU (sd, 0);
181 cpu->cpu_configured_arch = arch;
182 device_tree = sim_hw_parse (sd, "/");
183 if (arch->arch == bfd_arch_m68hc11)
184 {
185 cpu->cpu_interpretor = cpu_interp_m6811;
186 if (hw_tree_find_property (device_tree, "/m68hc11/reg") == 0)
187 {
188 /* Allocate core managed memory */
189
190 /* the monitor */
191 sim_do_commandf (sd, "memory region 0x%lx@%d,0x%lx",
192 /* MONITOR_BASE, MONITOR_SIZE */
193 0x8000, M6811_RAM_LEVEL, 0x8000);
194 sim_do_commandf (sd, "memory region 0x000@%d,0x8000",
195 M6811_RAM_LEVEL);
196 sim_hw_parse (sd, "/m68hc11/reg 0x1000 0x03F");
197 if (cpu->bank_start < cpu->bank_end)
198 {
199 sim_do_commandf (sd, "memory region 0x%lx@%d,0x100000",
200 cpu->bank_virtual, M6811_RAM_LEVEL);
201 sim_hw_parse (sd, "/m68hc11/use_bank 1");
202 }
203 }
204 if (cpu->cpu_start_mode)
205 {
206 sim_hw_parse (sd, "/m68hc11/mode %s", cpu->cpu_start_mode);
207 }
208 if (hw_tree_find_property (device_tree, "/m68hc11/m68hc11sio/reg") == 0)
209 {
210 sim_hw_parse (sd, "/m68hc11/m68hc11sio/reg 0x2b 0x5");
211 sim_hw_parse (sd, "/m68hc11/m68hc11sio/backend stdio");
212 sim_hw_parse (sd, "/m68hc11 > cpu-reset reset /m68hc11/m68hc11sio");
213 }
214 if (hw_tree_find_property (device_tree, "/m68hc11/m68hc11tim/reg") == 0)
215 {
216 /* M68hc11 Timer configuration. */
217 sim_hw_parse (sd, "/m68hc11/m68hc11tim/reg 0x1b 0x5");
218 sim_hw_parse (sd, "/m68hc11 > cpu-reset reset /m68hc11/m68hc11tim");
219 sim_hw_parse (sd, "/m68hc11 > capture capture /m68hc11/m68hc11tim");
220 }
221
222 /* Create the SPI device. */
223 if (hw_tree_find_property (device_tree, "/m68hc11/m68hc11spi/reg") == 0)
224 {
225 sim_hw_parse (sd, "/m68hc11/m68hc11spi/reg 0x28 0x3");
226 sim_hw_parse (sd, "/m68hc11 > cpu-reset reset /m68hc11/m68hc11spi");
227 }
228 if (hw_tree_find_property (device_tree, "/m68hc11/nvram/reg") == 0)
229 {
230 /* M68hc11 persistent ram configuration. */
231 sim_hw_parse (sd, "/m68hc11/nvram/reg 0x0 256");
232 sim_hw_parse (sd, "/m68hc11/nvram/file m68hc11.ram");
233 sim_hw_parse (sd, "/m68hc11/nvram/mode save-modified");
234 /*sim_hw_parse (sd, "/m68hc11 > cpu-reset reset /m68hc11/pram"); */
235 }
236 if (hw_tree_find_property (device_tree, "/m68hc11/m68hc11eepr/reg") == 0)
237 {
238 sim_hw_parse (sd, "/m68hc11/m68hc11eepr/reg 0xb000 512");
239 sim_hw_parse (sd, "/m68hc11 > cpu-reset reset /m68hc11/m68hc11eepr");
240 }
241 sim_hw_parse (sd, "/m68hc11 > port-a cpu-write-port /m68hc11");
242 sim_hw_parse (sd, "/m68hc11 > port-b cpu-write-port /m68hc11");
243 sim_hw_parse (sd, "/m68hc11 > port-c cpu-write-port /m68hc11");
244 sim_hw_parse (sd, "/m68hc11 > port-d cpu-write-port /m68hc11");
245 cpu->hw_cpu = sim_hw_parse (sd, "/m68hc11");
246 }
247 else
248 {
249 cpu->cpu_interpretor = cpu_interp_m6812;
250 if (hw_tree_find_property (device_tree, "/m68hc12/reg") == 0)
251 {
252 /* Allocate core external memory. */
253 sim_do_commandf (sd, "memory region 0x%lx@%d,0x%lx",
254 0x8000, M6811_RAM_LEVEL, 0x8000);
255 sim_do_commandf (sd, "memory region 0x000@%d,0x8000",
256 M6811_RAM_LEVEL);
257 if (cpu->bank_start < cpu->bank_end)
258 {
259 sim_do_commandf (sd, "memory region 0x%lx@%d,0x100000",
260 cpu->bank_virtual, M6811_RAM_LEVEL);
261 sim_hw_parse (sd, "/m68hc12/use_bank 1");
262 }
263 sim_hw_parse (sd, "/m68hc12/reg 0x0 0x3FF");
264 }
265
266 if (!hw_tree_find_property (device_tree, "/m68hc12/m68hc12sio@1/reg"))
267 {
268 sim_hw_parse (sd, "/m68hc12/m68hc12sio@1/reg 0xC0 0x8");
269 sim_hw_parse (sd, "/m68hc12/m68hc12sio@1/backend stdio");
270 sim_hw_parse (sd, "/m68hc12 > cpu-reset reset /m68hc12/m68hc12sio@1");
271 }
272 if (hw_tree_find_property (device_tree, "/m68hc12/m68hc12tim/reg") == 0)
273 {
274 /* M68hc11 Timer configuration. */
275 sim_hw_parse (sd, "/m68hc12/m68hc12tim/reg 0x1b 0x5");
276 sim_hw_parse (sd, "/m68hc12 > cpu-reset reset /m68hc12/m68hc12tim");
277 sim_hw_parse (sd, "/m68hc12 > capture capture /m68hc12/m68hc12tim");
278 }
279
280 /* Create the SPI device. */
281 if (hw_tree_find_property (device_tree, "/m68hc12/m68hc12spi/reg") == 0)
282 {
283 sim_hw_parse (sd, "/m68hc12/m68hc12spi/reg 0x28 0x3");
284 sim_hw_parse (sd, "/m68hc12 > cpu-reset reset /m68hc12/m68hc12spi");
285 }
286 if (hw_tree_find_property (device_tree, "/m68hc12/nvram/reg") == 0)
287 {
288 /* M68hc11 persistent ram configuration. */
289 sim_hw_parse (sd, "/m68hc12/nvram/reg 0x2000 8192");
290 sim_hw_parse (sd, "/m68hc12/nvram/file m68hc12.ram");
291 sim_hw_parse (sd, "/m68hc12/nvram/mode save-modified");
292 }
293 if (hw_tree_find_property (device_tree, "/m68hc12/m68hc12eepr/reg") == 0)
294 {
295 sim_hw_parse (sd, "/m68hc12/m68hc12eepr/reg 0x0800 2048");
296 sim_hw_parse (sd, "/m68hc12 > cpu-reset reset /m68hc12/m68hc12eepr");
297 }
298
299 sim_hw_parse (sd, "/m68hc12 > port-a cpu-write-port /m68hc12");
300 sim_hw_parse (sd, "/m68hc12 > port-b cpu-write-port /m68hc12");
301 sim_hw_parse (sd, "/m68hc12 > port-c cpu-write-port /m68hc12");
302 sim_hw_parse (sd, "/m68hc12 > port-d cpu-write-port /m68hc12");
303 cpu->hw_cpu = sim_hw_parse (sd, "/m68hc12");
304 }
305 return 1;
306 }
307
308 /* Get the memory bank parameters by looking at the global symbols
309 defined by the linker. */
310 static int
311 sim_get_bank_parameters (SIM_DESC sd, bfd* abfd)
312 {
313 sim_cpu *cpu;
314 long symsize;
315 long symbol_count, i;
316 unsigned size;
317 asymbol** asymbols;
318 asymbol** current;
319
320 cpu = STATE_CPU (sd, 0);
321
322 symsize = bfd_get_symtab_upper_bound (abfd);
323 if (symsize < 0)
324 {
325 sim_io_eprintf (sd, "Cannot read symbols of program");
326 return 0;
327 }
328 asymbols = (asymbol **) xmalloc (symsize);
329 symbol_count = bfd_canonicalize_symtab (abfd, asymbols);
330 if (symbol_count < 0)
331 {
332 sim_io_eprintf (sd, "Cannot read symbols of program");
333 return 0;
334 }
335
336 size = 0;
337 for (i = 0, current = asymbols; i < symbol_count; i++, current++)
338 {
339 const char* name = bfd_asymbol_name (*current);
340
341 if (strcmp (name, BFD_M68HC11_BANK_START_NAME) == 0)
342 {
343 cpu->bank_start = bfd_asymbol_value (*current);
344 }
345 else if (strcmp (name, BFD_M68HC11_BANK_SIZE_NAME) == 0)
346 {
347 size = bfd_asymbol_value (*current);
348 }
349 else if (strcmp (name, BFD_M68HC11_BANK_VIRTUAL_NAME) == 0)
350 {
351 cpu->bank_virtual = bfd_asymbol_value (*current);
352 }
353 }
354 free (asymbols);
355
356 cpu->bank_end = cpu->bank_start + size;
357 cpu->bank_shift = 0;
358 for (; size > 1; size >>= 1)
359 cpu->bank_shift++;
360
361 return 0;
362 }
363
364 static int
365 sim_prepare_for_program (SIM_DESC sd, bfd* abfd)
366 {
367 sim_cpu *cpu;
368 int elf_flags = 0;
369
370 cpu = STATE_CPU (sd, 0);
371
372 if (abfd != NULL)
373 {
374 asection *s;
375
376 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
377 elf_flags = elf_elfheader (abfd)->e_flags;
378
379 cpu->cpu_elf_start = bfd_get_start_address (abfd);
380 /* See if any section sets the reset address */
381 cpu->cpu_use_elf_start = 1;
382 for (s = abfd->sections; s && cpu->cpu_use_elf_start; s = s->next)
383 {
384 if (s->flags & SEC_LOAD)
385 {
386 bfd_size_type size;
387
388 size = bfd_get_section_size (s);
389 if (size > 0)
390 {
391 bfd_vma lma;
392
393 if (STATE_LOAD_AT_LMA_P (sd))
394 lma = bfd_section_lma (abfd, s);
395 else
396 lma = bfd_section_vma (abfd, s);
397
398 if (lma <= 0xFFFE && lma+size >= 0x10000)
399 cpu->cpu_use_elf_start = 0;
400 }
401 }
402 }
403
404 if (elf_flags & E_M68HC12_BANKS)
405 {
406 if (sim_get_bank_parameters (sd, abfd) != 0)
407 sim_io_eprintf (sd, "Memory bank parameters are not initialized\n");
408 }
409 }
410
411 if (!sim_hw_configure (sd))
412 return SIM_RC_FAIL;
413
414 /* reset all state information */
415 sim_board_reset (sd);
416
417 return SIM_RC_OK;
418 }
419
420 static sim_cia
421 m68hc11_pc_get (sim_cpu *cpu)
422 {
423 return cpu_get_pc (cpu);
424 }
425
426 static void
427 m68hc11_pc_set (sim_cpu *cpu, sim_cia pc)
428 {
429 cpu_set_pc (cpu, pc);
430 }
431
432 SIM_DESC
433 sim_open (SIM_OPEN_KIND kind, host_callback *callback,
434 bfd *abfd, char **argv)
435 {
436 int i;
437 SIM_DESC sd;
438 sim_cpu *cpu;
439
440 sd = sim_state_alloc (kind, callback);
441
442 SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
443
444 /* The cpu data is kept in a separately allocated chunk of memory. */
445 if (sim_cpu_alloc_all (sd, 1, /*cgen_cpu_max_extra_bytes ()*/0) != SIM_RC_OK)
446 {
447 free_state (sd);
448 return 0;
449 }
450
451 cpu = STATE_CPU (sd, 0);
452
453 /* for compatibility */
454 current_alignment = NONSTRICT_ALIGNMENT;
455 current_target_byte_order = BIG_ENDIAN;
456
457 cpu_initialize (sd, cpu);
458
459 if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK)
460 {
461 free_state (sd);
462 return 0;
463 }
464
465 /* getopt will print the error message so we just have to exit if this fails.
466 FIXME: Hmmm... in the case of gdb we need getopt to call
467 print_filtered. */
468 if (sim_parse_args (sd, argv) != SIM_RC_OK)
469 {
470 /* Uninstall the modules to avoid memory leaks,
471 file descriptor leaks, etc. */
472 free_state (sd);
473 return 0;
474 }
475
476 /* Check for/establish the a reference program image. */
477 if (sim_analyze_program (sd,
478 (STATE_PROG_ARGV (sd) != NULL
479 ? *STATE_PROG_ARGV (sd)
480 : NULL), abfd) != SIM_RC_OK)
481 {
482 free_state (sd);
483 return 0;
484 }
485
486 /* Establish any remaining configuration options. */
487 if (sim_config (sd) != SIM_RC_OK)
488 {
489 free_state (sd);
490 return 0;
491 }
492
493 if (sim_post_argv_init (sd) != SIM_RC_OK)
494 {
495 /* Uninstall the modules to avoid memory leaks,
496 file descriptor leaks, etc. */
497 free_state (sd);
498 return 0;
499 }
500 if (sim_prepare_for_program (sd, abfd) != SIM_RC_OK)
501 {
502 free_state (sd);
503 return 0;
504 }
505
506 /* CPU specific initialization. */
507 for (i = 0; i < MAX_NR_PROCESSORS; ++i)
508 {
509 SIM_CPU *cpu = STATE_CPU (sd, i);
510
511 CPU_PC_FETCH (cpu) = m68hc11_pc_get;
512 CPU_PC_STORE (cpu) = m68hc11_pc_set;
513 }
514
515 return sd;
516 }
517
518
519 void
520 sim_close (SIM_DESC sd, int quitting)
521 {
522 /* shut down modules */
523 sim_module_uninstall (sd);
524
525 /* Ensure that any resources allocated through the callback
526 mechanism are released: */
527 sim_io_shutdown (sd);
528
529 /* FIXME - free SD */
530 sim_state_free (sd);
531 return;
532 }
533
534 /* Generic implementation of sim_engine_run that works within the
535 sim_engine setjmp/longjmp framework. */
536
537 void
538 sim_engine_run (SIM_DESC sd,
539 int next_cpu_nr, /* ignore */
540 int nr_cpus, /* ignore */
541 int siggnal) /* ignore */
542 {
543 sim_cpu *cpu;
544
545 SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
546 cpu = STATE_CPU (sd, 0);
547 while (1)
548 {
549 cpu_single_step (cpu);
550
551 /* process any events */
552 if (sim_events_tickn (sd, cpu->cpu_current_cycle))
553 {
554 sim_events_process (sd);
555 }
556 }
557 }
558
559 void
560 sim_info (SIM_DESC sd, int verbose)
561 {
562 const char *cpu_type;
563 const struct bfd_arch_info *arch;
564
565 /* Nothing to do if there is no verbose flag set. */
566 if (verbose == 0 && STATE_VERBOSE_P (sd) == 0)
567 return;
568
569 arch = STATE_ARCHITECTURE (sd);
570 if (arch->arch == bfd_arch_m68hc11)
571 cpu_type = "68HC11";
572 else
573 cpu_type = "68HC12";
574
575 sim_io_eprintf (sd, "Simulator info:\n");
576 sim_io_eprintf (sd, " CPU Motorola %s\n", cpu_type);
577 sim_get_info (sd, 0);
578 sim_module_info (sd, verbose || STATE_VERBOSE_P (sd));
579 }
580
581 SIM_RC
582 sim_create_inferior (SIM_DESC sd, struct bfd *abfd,
583 char **argv, char **env)
584 {
585 return sim_prepare_for_program (sd, abfd);
586 }
587
588 int
589 sim_fetch_register (SIM_DESC sd, int rn, unsigned char *memory, int length)
590 {
591 sim_cpu *cpu;
592 uint16 val;
593 int size = 2;
594
595 cpu = STATE_CPU (sd, 0);
596 switch (rn)
597 {
598 case A_REGNUM:
599 val = cpu_get_a (cpu);
600 size = 1;
601 break;
602
603 case B_REGNUM:
604 val = cpu_get_b (cpu);
605 size = 1;
606 break;
607
608 case D_REGNUM:
609 val = cpu_get_d (cpu);
610 break;
611
612 case X_REGNUM:
613 val = cpu_get_x (cpu);
614 break;
615
616 case Y_REGNUM:
617 val = cpu_get_y (cpu);
618 break;
619
620 case SP_REGNUM:
621 val = cpu_get_sp (cpu);
622 break;
623
624 case PC_REGNUM:
625 val = cpu_get_pc (cpu);
626 break;
627
628 case PSW_REGNUM:
629 val = cpu_get_ccr (cpu);
630 size = 1;
631 break;
632
633 case PAGE_REGNUM:
634 val = cpu_get_page (cpu);
635 size = 1;
636 break;
637
638 default:
639 val = 0;
640 break;
641 }
642 if (size == 1)
643 {
644 memory[0] = val;
645 }
646 else
647 {
648 memory[0] = val >> 8;
649 memory[1] = val & 0x0FF;
650 }
651 return size;
652 }
653
654 int
655 sim_store_register (SIM_DESC sd, int rn, unsigned char *memory, int length)
656 {
657 uint16 val;
658 sim_cpu *cpu;
659
660 cpu = STATE_CPU (sd, 0);
661
662 val = *memory++;
663 if (length == 2)
664 val = (val << 8) | *memory;
665
666 switch (rn)
667 {
668 case D_REGNUM:
669 cpu_set_d (cpu, val);
670 break;
671
672 case A_REGNUM:
673 cpu_set_a (cpu, val);
674 return 1;
675
676 case B_REGNUM:
677 cpu_set_b (cpu, val);
678 return 1;
679
680 case X_REGNUM:
681 cpu_set_x (cpu, val);
682 break;
683
684 case Y_REGNUM:
685 cpu_set_y (cpu, val);
686 break;
687
688 case SP_REGNUM:
689 cpu_set_sp (cpu, val);
690 break;
691
692 case PC_REGNUM:
693 cpu_set_pc (cpu, val);
694 break;
695
696 case PSW_REGNUM:
697 cpu_set_ccr (cpu, val);
698 return 1;
699
700 case PAGE_REGNUM:
701 cpu_set_page (cpu, val);
702 return 1;
703
704 default:
705 break;
706 }
707
708 return 2;
709 }
710
711 /* Halt the simulator after just one instruction */
712
713 static void
714 has_stepped (SIM_DESC sd,
715 void *data)
716 {
717 ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
718 sim_engine_halt (sd, NULL, NULL, NULL_CIA, sim_stopped, SIM_SIGTRAP);
719 }
720
721
722 /* Generic resume - assumes the existance of sim_engine_run */
723
724 void
725 sim_resume (SIM_DESC sd,
726 int step,
727 int siggnal)
728 {
729 sim_engine *engine = STATE_ENGINE (sd);
730 jmp_buf buf;
731 int jmpval;
732
733 ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
734
735 /* we only want to be single stepping the simulator once */
736 if (engine->stepper != NULL)
737 {
738 sim_events_deschedule (sd, engine->stepper);
739 engine->stepper = NULL;
740 }
741 sim_module_resume (sd);
742
743 /* run/resume the simulator */
744 engine->jmpbuf = &buf;
745 jmpval = setjmp (buf);
746 if (jmpval == sim_engine_start_jmpval
747 || jmpval == sim_engine_restart_jmpval)
748 {
749 int last_cpu_nr = sim_engine_last_cpu_nr (sd);
750 int next_cpu_nr = sim_engine_next_cpu_nr (sd);
751 int nr_cpus = sim_engine_nr_cpus (sd);
752
753 sim_events_preprocess (sd, last_cpu_nr >= nr_cpus, next_cpu_nr >= nr_cpus);
754 if (next_cpu_nr >= nr_cpus)
755 next_cpu_nr = 0;
756
757 /* Only deliver the siggnal ]sic] the first time through - don't
758 re-deliver any siggnal during a restart. */
759 if (jmpval == sim_engine_restart_jmpval)
760 siggnal = 0;
761
762 /* Install the stepping event after having processed some
763 pending events. This is necessary for HC11/HC12 simulator
764 because the tick counter is incremented by the number of cycles
765 the instruction took. Some pending ticks to process can still
766 be recorded internally by the simulator and sim_events_preprocess
767 will handle them. If the stepping event is inserted before,
768 these pending ticks will raise the event and the simulator will
769 stop without having executed any instruction. */
770 if (step)
771 engine->stepper = sim_events_schedule (sd, 0, has_stepped, sd);
772
773 #ifdef SIM_CPU_EXCEPTION_RESUME
774 {
775 sim_cpu* cpu = STATE_CPU (sd, next_cpu_nr);
776 SIM_CPU_EXCEPTION_RESUME(sd, cpu, siggnal);
777 }
778 #endif
779
780 sim_engine_run (sd, next_cpu_nr, nr_cpus, siggnal);
781 }
782 engine->jmpbuf = NULL;
783
784 sim_module_suspend (sd);
785 }