]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - sim/mips/sim-main.h
2002-06-03 Chris Demetriou <cgd@broadcom.com>
[thirdparty/binutils-gdb.git] / sim / mips / sim-main.h
1 /* MIPS Simulator definition.
2 Copyright (C) 1997, 1998 Free Software Foundation, Inc.
3 Contributed by Cygnus Support.
4
5 This file is part of GDB, the GNU debugger.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License along
18 with this program; if not, write to the Free Software Foundation, Inc.,
19 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #ifndef SIM_MAIN_H
22 #define SIM_MAIN_H
23
24 /* This simulator doesn't cache the Current Instruction Address */
25 /* #define SIM_ENGINE_HALT_HOOK(SD, LAST_CPU, CIA) */
26 /* #define SIM_ENGINE_RESUME_HOOK(SD, LAST_CPU, CIA) */
27
28 #define SIM_HAVE_BIENDIAN
29
30
31 /* hobble some common features for moment */
32 #define WITH_WATCHPOINTS 1
33 #define WITH_MODULO_MEMORY 1
34
35
36 #define SIM_CORE_SIGNAL(SD,CPU,CIA,MAP,NR_BYTES,ADDR,TRANSFER,ERROR) \
37 mips_core_signal ((SD), (CPU), (CIA), (MAP), (NR_BYTES), (ADDR), (TRANSFER), (ERROR))
38
39 #include "sim-basics.h"
40
41 typedef address_word sim_cia;
42
43 #include "sim-base.h"
44
45
46 /* Deprecated macros and types for manipulating 64bit values. Use
47 ../common/sim-bits.h and ../common/sim-endian.h macros instead. */
48
49 typedef signed64 word64;
50 typedef unsigned64 uword64;
51
52 #define WORD64LO(t) (unsigned int)((t)&0xFFFFFFFF)
53 #define WORD64HI(t) (unsigned int)(((uword64)(t))>>32)
54 #define SET64LO(t) (((uword64)(t))&0xFFFFFFFF)
55 #define SET64HI(t) (((uword64)(t))<<32)
56 #define WORD64(h,l) ((word64)((SET64HI(h)|SET64LO(l))))
57 #define UWORD64(h,l) (SET64HI(h)|SET64LO(l))
58
59 /* Check if a value will fit within a halfword: */
60 #define NOTHALFWORDVALUE(v) ((((((uword64)(v)>>16) == 0) && !((v) & ((unsigned)1 << 15))) || (((((uword64)(v)>>32) == 0xFFFFFFFF) && ((((uword64)(v)>>16) & 0xFFFF) == 0xFFFF)) && ((v) & ((unsigned)1 << 15)))) ? (1 == 0) : (1 == 1))
61
62
63
64 /* Floating-point operations: */
65
66 #include "sim-fpu.h"
67
68 /* FPU registers must be one of the following types. All other values
69 are reserved (and undefined). */
70 typedef enum {
71 fmt_single = 0,
72 fmt_double = 1,
73 fmt_word = 4,
74 fmt_long = 5,
75 /* The following are well outside the normal acceptable format
76 range, and are used in the register status vector. */
77 fmt_unknown = 0x10000000,
78 fmt_uninterpreted = 0x20000000,
79 fmt_uninterpreted_32 = 0x40000000,
80 fmt_uninterpreted_64 = 0x80000000U,
81 } FP_formats;
82
83 unsigned64 value_fpr PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int fpr, FP_formats));
84 #define ValueFPR(FPR,FMT) value_fpr (SD, CPU, cia, (FPR), (FMT))
85
86 void store_fpr PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int fpr, FP_formats fmt, unsigned64 value));
87 #define StoreFPR(FPR,FMT,VALUE) store_fpr (SD, CPU, cia, (FPR), (FMT), (VALUE))
88
89 int NaN PARAMS ((unsigned64 op, FP_formats fmt));
90 int Infinity PARAMS ((unsigned64 op, FP_formats fmt));
91 int Less PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
92 int Equal PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
93 unsigned64 AbsoluteValue PARAMS ((unsigned64 op, FP_formats fmt));
94 unsigned64 Negate PARAMS ((unsigned64 op, FP_formats fmt));
95 unsigned64 Add PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
96 unsigned64 Sub PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
97 unsigned64 Multiply PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
98 unsigned64 Divide PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
99 unsigned64 Recip PARAMS ((unsigned64 op, FP_formats fmt));
100 unsigned64 SquareRoot PARAMS ((unsigned64 op, FP_formats fmt));
101 unsigned64 Max PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
102 unsigned64 Min PARAMS ((unsigned64 op1, unsigned64 op2, FP_formats fmt));
103 unsigned64 convert PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int rm, unsigned64 op, FP_formats from, FP_formats to));
104 #define Convert(rm,op,from,to) \
105 convert (SD, CPU, cia, rm, op, from, to)
106
107 /* Macro to update FPSR condition-code field. This is complicated by
108 the fact that there is a hole in the index range of the bits within
109 the FCSR register. Also, the number of bits visible depends on the
110 MIPS ISA version being supported. */
111
112 #define SETFCC(cc,v) {\
113 int bit = ((cc == 0) ? 23 : (24 + (cc)));\
114 FCSR = ((FCSR & ~(1 << bit)) | ((v) << bit));\
115 }
116 #define GETFCC(cc) (((((cc) == 0) ? (FCSR & (1 << 23)) : (FCSR & (1 << (24 + (cc))))) != 0) ? 1U : 0)
117
118 /* This should be the COC1 value at the start of the preceding
119 instruction: */
120 #define PREVCOC1() ((STATE & simPCOC1) ? 1 : 0)
121
122 #ifdef TARGET_ENABLE_FR
123 /* FIXME: this should be enabled for all targets, but needs testing first. */
124 #define SizeFGR() (((WITH_TARGET_FLOATING_POINT_BITSIZE) == 64) \
125 ? ((SR & status_FR) ? 64 : 32) \
126 : (WITH_TARGET_FLOATING_POINT_BITSIZE))
127 #else
128 #define SizeFGR() (WITH_TARGET_FLOATING_POINT_BITSIZE)
129 #endif
130
131 /* Standard FCRS bits: */
132 #define IR (0) /* Inexact Result */
133 #define UF (1) /* UnderFlow */
134 #define OF (2) /* OverFlow */
135 #define DZ (3) /* Division by Zero */
136 #define IO (4) /* Invalid Operation */
137 #define UO (5) /* Unimplemented Operation */
138
139 /* Get masks for individual flags: */
140 #if 1 /* SAFE version */
141 #define FP_FLAGS(b) (((unsigned)(b) < 5) ? (1 << ((b) + 2)) : 0)
142 #define FP_ENABLE(b) (((unsigned)(b) < 5) ? (1 << ((b) + 7)) : 0)
143 #define FP_CAUSE(b) (((unsigned)(b) < 6) ? (1 << ((b) + 12)) : 0)
144 #else
145 #define FP_FLAGS(b) (1 << ((b) + 2))
146 #define FP_ENABLE(b) (1 << ((b) + 7))
147 #define FP_CAUSE(b) (1 << ((b) + 12))
148 #endif
149
150 #define FP_FS (1 << 24) /* MIPS III onwards : Flush to Zero */
151
152 #define FP_MASK_RM (0x3)
153 #define FP_SH_RM (0)
154 #define FP_RM_NEAREST (0) /* Round to nearest (Round) */
155 #define FP_RM_TOZERO (1) /* Round to zero (Trunc) */
156 #define FP_RM_TOPINF (2) /* Round to Plus infinity (Ceil) */
157 #define FP_RM_TOMINF (3) /* Round to Minus infinity (Floor) */
158 #define GETRM() (int)((FCSR >> FP_SH_RM) & FP_MASK_RM)
159
160
161
162
163
164
165 /* HI/LO register accesses */
166
167 /* For some MIPS targets, the HI/LO registers have certain timing
168 restrictions in that, for instance, a read of a HI register must be
169 separated by at least three instructions from a preceeding read.
170
171 The struct below is used to record the last access by each of A MT,
172 MF or other OP instruction to a HI/LO register. See mips.igen for
173 more details. */
174
175 typedef struct _hilo_access {
176 signed64 timestamp;
177 address_word cia;
178 } hilo_access;
179
180 typedef struct _hilo_history {
181 hilo_access mt;
182 hilo_access mf;
183 hilo_access op;
184 } hilo_history;
185
186
187
188
189 /* Integer ALU operations: */
190
191 #include "sim-alu.h"
192
193 #define ALU32_END(ANS) \
194 if (ALU32_HAD_OVERFLOW) \
195 SignalExceptionIntegerOverflow (); \
196 (ANS) = (signed32) ALU32_OVERFLOW_RESULT
197
198
199 #define ALU64_END(ANS) \
200 if (ALU64_HAD_OVERFLOW) \
201 SignalExceptionIntegerOverflow (); \
202 (ANS) = ALU64_OVERFLOW_RESULT;
203
204
205
206
207
208 /* The following is probably not used for MIPS IV onwards: */
209 /* Slots for delayed register updates. For the moment we just have a
210 fixed number of slots (rather than a more generic, dynamic
211 system). This keeps the simulator fast. However, we only allow
212 for the register update to be delayed for a single instruction
213 cycle. */
214 #define PSLOTS (8) /* Maximum number of instruction cycles */
215
216 typedef struct _pending_write_queue {
217 int in;
218 int out;
219 int total;
220 int slot_delay[PSLOTS];
221 int slot_size[PSLOTS];
222 int slot_bit[PSLOTS];
223 void *slot_dest[PSLOTS];
224 unsigned64 slot_value[PSLOTS];
225 } pending_write_queue;
226
227 #ifndef PENDING_TRACE
228 #define PENDING_TRACE 0
229 #endif
230 #define PENDING_IN ((CPU)->pending.in)
231 #define PENDING_OUT ((CPU)->pending.out)
232 #define PENDING_TOTAL ((CPU)->pending.total)
233 #define PENDING_SLOT_SIZE ((CPU)->pending.slot_size)
234 #define PENDING_SLOT_BIT ((CPU)->pending.slot_bit)
235 #define PENDING_SLOT_DELAY ((CPU)->pending.slot_delay)
236 #define PENDING_SLOT_DEST ((CPU)->pending.slot_dest)
237 #define PENDING_SLOT_VALUE ((CPU)->pending.slot_value)
238
239 /* Invalidate the pending write queue, all pending writes are
240 discarded. */
241
242 #define PENDING_INVALIDATE() \
243 memset (&(CPU)->pending, 0, sizeof ((CPU)->pending))
244
245 /* Schedule a write to DEST for N cycles time. For 64 bit
246 destinations, schedule two writes. For floating point registers,
247 the caller should schedule a write to both the dest register and
248 the FPR_STATE register. When BIT is non-negative, only BIT of DEST
249 is updated. */
250
251 #define PENDING_SCHED(DEST,VAL,DELAY,BIT) \
252 do { \
253 if (PENDING_SLOT_DEST[PENDING_IN] != NULL) \
254 sim_engine_abort (SD, CPU, cia, \
255 "PENDING_SCHED - buffer overflow\n"); \
256 if (PENDING_TRACE) \
257 sim_io_eprintf (SD, "PENDING_SCHED - 0x%lx - dest 0x%lx, val 0x%lx, bit %d, size %d, pending_in %d, pending_out %d, pending_total %d\n", \
258 (unsigned long) cia, (unsigned long) &(DEST), \
259 (unsigned long) (VAL), (BIT), (int) sizeof (DEST),\
260 PENDING_IN, PENDING_OUT, PENDING_TOTAL); \
261 PENDING_SLOT_DELAY[PENDING_IN] = (DELAY) + 1; \
262 PENDING_SLOT_DEST[PENDING_IN] = &(DEST); \
263 PENDING_SLOT_VALUE[PENDING_IN] = (VAL); \
264 PENDING_SLOT_SIZE[PENDING_IN] = sizeof (DEST); \
265 PENDING_SLOT_BIT[PENDING_IN] = (BIT); \
266 PENDING_IN = (PENDING_IN + 1) % PSLOTS; \
267 PENDING_TOTAL += 1; \
268 } while (0)
269
270 #define PENDING_WRITE(DEST,VAL,DELAY) PENDING_SCHED(DEST,VAL,DELAY,-1)
271 #define PENDING_BIT(DEST,VAL,DELAY,BIT) PENDING_SCHED(DEST,VAL,DELAY,BIT)
272
273 #define PENDING_TICK() pending_tick (SD, CPU, cia)
274
275 #define PENDING_FLUSH() abort () /* think about this one */
276 #define PENDING_FP() abort () /* think about this one */
277
278 /* For backward compatibility */
279 #define PENDING_FILL(R,VAL) \
280 do { \
281 if ((R) >= FGRIDX && (R) < FGRIDX + NR_FGR) \
282 { \
283 PENDING_SCHED(FGR[(R) - FGRIDX], VAL, 1, -1); \
284 PENDING_SCHED(FPR_STATE[(R) - FGRIDX], fmt_uninterpreted, 1, -1); \
285 } \
286 else \
287 PENDING_SCHED(GPR[(R)], VAL, 1, -1); \
288 } while (0)
289
290
291 enum float_operation
292 {
293 FLOP_ADD, FLOP_SUB, FLOP_MUL, FLOP_MADD,
294 FLOP_MSUB, FLOP_MAX=10, FLOP_MIN, FLOP_ABS,
295 FLOP_ITOF0=14, FLOP_FTOI0=18, FLOP_NEG=23
296 };
297
298
299 /* The internal representation of an MDMX accumulator.
300 Note that 24 and 48 bit accumulator elements are represented in
301 32 or 64 bits. Since the accumulators are 2's complement with
302 overflow suppressed, high-order bits can be ignored in most contexts. */
303
304 typedef signed32 signed24;
305 typedef signed64 signed48;
306
307 typedef union {
308 signed24 ob[8];
309 signed48 qh[4];
310 } MDMX_accumulator;
311
312
313 /* Conventional system arguments. */
314 #define SIM_STATE sim_cpu *cpu, address_word cia
315 #define SIM_ARGS CPU, cia
316
317 struct _sim_cpu {
318
319
320 /* The following are internal simulator state variables: */
321 #define CIA_GET(CPU) ((CPU)->registers[PCIDX] + 0)
322 #define CIA_SET(CPU,CIA) ((CPU)->registers[PCIDX] = (CIA))
323 address_word dspc; /* delay-slot PC */
324 #define DSPC ((CPU)->dspc)
325
326 #define DELAY_SLOT(TARGET) NIA = delayslot32 (SD_, (TARGET))
327 #define NULLIFY_NEXT_INSTRUCTION() NIA = nullify_next_insn32 (SD_)
328
329
330 /* State of the simulator */
331 unsigned int state;
332 unsigned int dsstate;
333 #define STATE ((CPU)->state)
334 #define DSSTATE ((CPU)->dsstate)
335
336 /* Flags in the "state" variable: */
337 #define simHALTEX (1 << 2) /* 0 = run; 1 = halt on exception */
338 #define simHALTIN (1 << 3) /* 0 = run; 1 = halt on interrupt */
339 #define simTRACE (1 << 8) /* 0 = do nothing; 1 = trace address activity */
340 #define simPCOC0 (1 << 17) /* COC[1] from current */
341 #define simPCOC1 (1 << 18) /* COC[1] from previous */
342 #define simDELAYSLOT (1 << 24) /* 0 = do nothing; 1 = delay slot entry exists */
343 #define simSKIPNEXT (1 << 25) /* 0 = do nothing; 1 = skip instruction */
344 #define simSIGINT (1 << 28) /* 0 = do nothing; 1 = SIGINT has occured */
345 #define simJALDELAYSLOT (1 << 29) /* 1 = in jal delay slot */
346
347 #ifndef ENGINE_ISSUE_PREFIX_HOOK
348 #define ENGINE_ISSUE_PREFIX_HOOK() \
349 { \
350 /* Perform any pending writes */ \
351 PENDING_TICK(); \
352 /* Set previous flag, depending on current: */ \
353 if (STATE & simPCOC0) \
354 STATE |= simPCOC1; \
355 else \
356 STATE &= ~simPCOC1; \
357 /* and update the current value: */ \
358 if (GETFCC(0)) \
359 STATE |= simPCOC0; \
360 else \
361 STATE &= ~simPCOC0; \
362 }
363 #endif /* ENGINE_ISSUE_PREFIX_HOOK */
364
365
366 /* This is nasty, since we have to rely on matching the register
367 numbers used by GDB. Unfortunately, depending on the MIPS target
368 GDB uses different register numbers. We cannot just include the
369 relevant "gdb/tm.h" link, since GDB may not be configured before
370 the sim world, and also the GDB header file requires too much other
371 state. */
372
373 #ifndef TM_MIPS_H
374 #define LAST_EMBED_REGNUM (89)
375 #define NUM_REGS (LAST_EMBED_REGNUM + 1)
376
377
378 #endif
379
380
381 /* To keep this default simulator simple, and fast, we use a direct
382 vector of registers. The internal simulator engine then uses
383 manifests to access the correct slot. */
384
385 unsigned_word registers[LAST_EMBED_REGNUM + 1];
386
387 int register_widths[NUM_REGS];
388 #define REGISTERS ((CPU)->registers)
389
390 #define GPR (&REGISTERS[0])
391 #define GPR_SET(N,VAL) (REGISTERS[(N)] = (VAL))
392
393 /* While space is allocated for the floating point registers in the
394 main registers array, they are stored separatly. This is because
395 their size may not necessarily match the size of either the
396 general-purpose or system specific registers */
397 #define NR_FGR (32)
398 #define FGRIDX (38)
399 fp_word fgr[NR_FGR];
400 #define FGR ((CPU)->fgr)
401
402 #define LO (REGISTERS[33])
403 #define HI (REGISTERS[34])
404 #define PCIDX 37
405 #define PC (REGISTERS[PCIDX])
406 #define CAUSE (REGISTERS[36])
407 #define SRIDX (32)
408 #define SR (REGISTERS[SRIDX]) /* CPU status register */
409 #define FCR0IDX (71)
410 #define FCR0 (REGISTERS[FCR0IDX]) /* really a 32bit register */
411 #define FCR31IDX (70)
412 #define FCR31 (REGISTERS[FCR31IDX]) /* really a 32bit register */
413 #define FCSR (FCR31)
414 #define Debug (REGISTERS[86])
415 #define DEPC (REGISTERS[87])
416 #define EPC (REGISTERS[88])
417
418 /* All internal state modified by signal_exception() that may need to be
419 rolled back for passing moment-of-exception image back to gdb. */
420 unsigned_word exc_trigger_registers[LAST_EMBED_REGNUM + 1];
421 unsigned_word exc_suspend_registers[LAST_EMBED_REGNUM + 1];
422 int exc_suspended;
423
424 #define SIM_CPU_EXCEPTION_TRIGGER(SD,CPU,CIA) mips_cpu_exception_trigger(SD,CPU,CIA)
425 #define SIM_CPU_EXCEPTION_SUSPEND(SD,CPU,EXC) mips_cpu_exception_suspend(SD,CPU,EXC)
426 #define SIM_CPU_EXCEPTION_RESUME(SD,CPU,EXC) mips_cpu_exception_resume(SD,CPU,EXC)
427
428 unsigned_word c0_config_reg;
429 #define C0_CONFIG ((CPU)->c0_config_reg)
430
431 /* The following are pseudonyms for standard registers */
432 #define ZERO (REGISTERS[0])
433 #define V0 (REGISTERS[2])
434 #define A0 (REGISTERS[4])
435 #define A1 (REGISTERS[5])
436 #define A2 (REGISTERS[6])
437 #define A3 (REGISTERS[7])
438 #define T8IDX 24
439 #define T8 (REGISTERS[T8IDX])
440 #define SPIDX 29
441 #define SP (REGISTERS[SPIDX])
442 #define RAIDX 31
443 #define RA (REGISTERS[RAIDX])
444
445 /* While space is allocated in the main registers arrray for some of
446 the COP0 registers, that space isn't sufficient. Unknown COP0
447 registers overflow into the array below */
448
449 #define NR_COP0_GPR 32
450 unsigned_word cop0_gpr[NR_COP0_GPR];
451 #define COP0_GPR ((CPU)->cop0_gpr)
452 #define COP0_BADVADDR ((unsigned32)(COP0_GPR[8]))
453
454 /* Keep the current format state for each register: */
455 FP_formats fpr_state[32];
456 #define FPR_STATE ((CPU)->fpr_state)
457
458 pending_write_queue pending;
459
460 /* The MDMX accumulator (used only for MDMX ASE). */
461 MDMX_accumulator acc;
462 #define ACC ((CPU)->acc)
463
464 /* LLBIT = Load-Linked bit. A bit of "virtual" state used by atomic
465 read-write instructions. It is set when a linked load occurs. It
466 is tested and cleared by the conditional store. It is cleared
467 (during other CPU operations) when a store to the location would
468 no longer be atomic. In particular, it is cleared by exception
469 return instructions. */
470 int llbit;
471 #define LLBIT ((CPU)->llbit)
472
473
474 /* The HIHISTORY and LOHISTORY timestamps are used to ensure that
475 corruptions caused by using the HI or LO register too close to a
476 following operation is spotted. See mips.igen for more details. */
477
478 hilo_history hi_history;
479 #define HIHISTORY (&(CPU)->hi_history)
480 hilo_history lo_history;
481 #define LOHISTORY (&(CPU)->lo_history)
482
483 #define check_branch_bug()
484 #define mark_branch_bug(TARGET)
485
486
487
488 sim_cpu_base base;
489 };
490
491
492 /* MIPS specific simulator watch config */
493
494 void watch_options_install PARAMS ((SIM_DESC sd));
495
496 struct swatch {
497 sim_event *pc;
498 sim_event *clock;
499 sim_event *cycles;
500 };
501
502
503 /* FIXME: At present much of the simulator is still static */
504 struct sim_state {
505
506 struct swatch watch;
507
508 sim_cpu cpu[MAX_NR_PROCESSORS];
509 #if (WITH_SMP)
510 #define STATE_CPU(sd,n) (&(sd)->cpu[n])
511 #else
512 #define STATE_CPU(sd,n) (&(sd)->cpu[0])
513 #endif
514
515
516 sim_state_base base;
517 };
518
519
520
521 /* Status information: */
522
523 /* TODO : these should be the bitmasks for these bits within the
524 status register. At the moment the following are VR4300
525 bit-positions: */
526 #define status_KSU_mask (0x18) /* mask for KSU bits */
527 #define status_KSU_shift (3) /* shift for field */
528 #define ksu_kernel (0x0)
529 #define ksu_supervisor (0x1)
530 #define ksu_user (0x2)
531 #define ksu_unknown (0x3)
532
533 #define SR_KSU ((SR & status_KSU_mask) >> status_KSU_shift)
534
535 #define status_IE (1 << 0) /* Interrupt enable */
536 #define status_EIE (1 << 16) /* Enable Interrupt Enable */
537 #define status_EXL (1 << 1) /* Exception level */
538 #define status_RE (1 << 25) /* Reverse Endian in user mode */
539 #define status_FR (1 << 26) /* enables MIPS III additional FP registers */
540 #define status_SR (1 << 20) /* soft reset or NMI */
541 #define status_BEV (1 << 22) /* Location of general exception vectors */
542 #define status_TS (1 << 21) /* TLB shutdown has occurred */
543 #define status_ERL (1 << 2) /* Error level */
544 #define status_IM7 (1 << 15) /* Timer Interrupt Mask */
545 #define status_RP (1 << 27) /* Reduced Power mode */
546
547 /* Specializations for TX39 family */
548 #define status_IEc (1 << 0) /* Interrupt enable (current) */
549 #define status_KUc (1 << 1) /* Kernel/User mode */
550 #define status_IEp (1 << 2) /* Interrupt enable (previous) */
551 #define status_KUp (1 << 3) /* Kernel/User mode */
552 #define status_IEo (1 << 4) /* Interrupt enable (old) */
553 #define status_KUo (1 << 5) /* Kernel/User mode */
554 #define status_IM_mask (0xff) /* Interrupt mask */
555 #define status_IM_shift (8)
556 #define status_NMI (1 << 20) /* NMI */
557 #define status_NMI (1 << 20) /* NMI */
558
559 /* Status bits used by MIPS32/MIPS64. */
560 #define status_UX (1 << 5) /* 64-bit user addrs */
561 #define status_SX (1 << 6) /* 64-bit supervisor addrs */
562 #define status_KX (1 << 7) /* 64-bit kernel addrs */
563 #define status_TS (1 << 21) /* TLB shutdown has occurred */
564 #define status_PX (1 << 23) /* Enable 64 bit operations */
565 #define status_MX (1 << 24) /* Enable MDMX resources */
566 #define status_CU0 (1 << 28) /* Coprocessor 0 usable */
567 #define status_CU1 (1 << 29) /* Coprocessor 1 usable */
568 #define status_CU2 (1 << 30) /* Coprocessor 2 usable */
569 #define status_CU3 (1 << 31) /* Coprocessor 3 usable */
570 /* Bits reserved for implementations: */
571 #define status_SBX (1 << 16) /* Enable SiByte SB-1 extensions. */
572
573 #define cause_BD ((unsigned)1 << 31) /* L1 Exception in branch delay slot */
574 #define cause_BD2 (1 << 30) /* L2 Exception in branch delay slot */
575 #define cause_CE_mask 0x30000000 /* Coprocessor exception */
576 #define cause_CE_shift 28
577 #define cause_EXC2_mask 0x00070000
578 #define cause_EXC2_shift 16
579 #define cause_IP7 (1 << 15) /* Interrupt pending */
580 #define cause_SIOP (1 << 12) /* SIO pending */
581 #define cause_IP3 (1 << 11) /* Int 0 pending */
582 #define cause_IP2 (1 << 10) /* Int 1 pending */
583
584 #define cause_EXC_mask (0x1c) /* Exception code */
585 #define cause_EXC_shift (2)
586
587 #define cause_SW0 (1 << 8) /* Software interrupt 0 */
588 #define cause_SW1 (1 << 9) /* Software interrupt 1 */
589 #define cause_IP_mask (0x3f) /* Interrupt pending field */
590 #define cause_IP_shift (10)
591
592 #define cause_set_EXC(x) CAUSE = (CAUSE & ~cause_EXC_mask) | ((x << cause_EXC_shift) & cause_EXC_mask)
593 #define cause_set_EXC2(x) CAUSE = (CAUSE & ~cause_EXC2_mask) | ((x << cause_EXC2_shift) & cause_EXC2_mask)
594
595
596 /* NOTE: We keep the following status flags as bit values (1 for true,
597 0 for false). This allows them to be used in binary boolean
598 operations without worrying about what exactly the non-zero true
599 value is. */
600
601 /* UserMode */
602 #ifdef SUBTARGET_R3900
603 #define UserMode ((SR & status_KUc) ? 1 : 0)
604 #else
605 #define UserMode ((((SR & status_KSU_mask) >> status_KSU_shift) == ksu_user) ? 1 : 0)
606 #endif /* SUBTARGET_R3900 */
607
608 /* BigEndianMem */
609 /* Hardware configuration. Affects endianness of LoadMemory and
610 StoreMemory and the endianness of Kernel and Supervisor mode
611 execution. The value is 0 for little-endian; 1 for big-endian. */
612 #define BigEndianMem (CURRENT_TARGET_BYTE_ORDER == BIG_ENDIAN)
613 /*(state & simBE) ? 1 : 0)*/
614
615 /* ReverseEndian */
616 /* This mode is selected if in User mode with the RE bit being set in
617 SR (Status Register). It reverses the endianness of load and store
618 instructions. */
619 #define ReverseEndian (((SR & status_RE) && UserMode) ? 1 : 0)
620
621 /* BigEndianCPU */
622 /* The endianness for load and store instructions (0=little;1=big). In
623 User mode this endianness may be switched by setting the state_RE
624 bit in the SR register. Thus, BigEndianCPU may be computed as
625 (BigEndianMem EOR ReverseEndian). */
626 #define BigEndianCPU (BigEndianMem ^ ReverseEndian) /* Already bits */
627
628
629
630 /* Exceptions: */
631
632 /* NOTE: These numbers depend on the processor architecture being
633 simulated: */
634 enum ExceptionCause {
635 Interrupt = 0,
636 TLBModification = 1,
637 TLBLoad = 2,
638 TLBStore = 3,
639 AddressLoad = 4,
640 AddressStore = 5,
641 InstructionFetch = 6,
642 DataReference = 7,
643 SystemCall = 8,
644 BreakPoint = 9,
645 ReservedInstruction = 10,
646 CoProcessorUnusable = 11,
647 IntegerOverflow = 12, /* Arithmetic overflow (IDT monitor raises SIGFPE) */
648 Trap = 13,
649 FPE = 15,
650 DebugBreakPoint = 16, /* Impl. dep. in MIPS32/MIPS64. */
651 MDMX = 22,
652 Watch = 23,
653 MCheck = 24,
654 CacheErr = 30,
655 NMIReset = 31, /* Reserved in MIPS32/MIPS64. */
656
657
658 /* The following exception code is actually private to the simulator
659 world. It is *NOT* a processor feature, and is used to signal
660 run-time errors in the simulator. */
661 SimulatorFault = 0xFFFFFFFF
662 };
663
664 #define TLB_REFILL (0)
665 #define TLB_INVALID (1)
666
667
668 /* The following break instructions are reserved for use by the
669 simulator. The first is used to halt the simulation. The second
670 is used by gdb for break-points. NOTE: Care must be taken, since
671 this value may be used in later revisions of the MIPS ISA. */
672 #define HALT_INSTRUCTION_MASK (0x03FFFFC0)
673
674 #define HALT_INSTRUCTION (0x03ff000d)
675 #define HALT_INSTRUCTION2 (0x0000ffcd)
676
677
678 #define BREAKPOINT_INSTRUCTION (0x0005000d)
679 #define BREAKPOINT_INSTRUCTION2 (0x0000014d)
680
681
682
683 void interrupt_event (SIM_DESC sd, void *data);
684
685 void signal_exception (SIM_DESC sd, sim_cpu *cpu, address_word cia, int exception, ...);
686 #define SignalException(exc,instruction) signal_exception (SD, CPU, cia, (exc), (instruction))
687 #define SignalExceptionInterrupt(level) signal_exception (SD, CPU, cia, Interrupt, level)
688 #define SignalExceptionInstructionFetch() signal_exception (SD, CPU, cia, InstructionFetch)
689 #define SignalExceptionAddressStore() signal_exception (SD, CPU, cia, AddressStore)
690 #define SignalExceptionAddressLoad() signal_exception (SD, CPU, cia, AddressLoad)
691 #define SignalExceptionDataReference() signal_exception (SD, CPU, cia, DataReference)
692 #define SignalExceptionSimulatorFault(buf) signal_exception (SD, CPU, cia, SimulatorFault, buf)
693 #define SignalExceptionFPE() signal_exception (SD, CPU, cia, FPE)
694 #define SignalExceptionIntegerOverflow() signal_exception (SD, CPU, cia, IntegerOverflow)
695 #define SignalExceptionCoProcessorUnusable(cop) signal_exception (SD, CPU, cia, CoProcessorUnusable)
696 #define SignalExceptionNMIReset() signal_exception (SD, CPU, cia, NMIReset)
697 #define SignalExceptionTLBRefillStore() signal_exception (SD, CPU, cia, TLBStore, TLB_REFILL)
698 #define SignalExceptionTLBRefillLoad() signal_exception (SD, CPU, cia, TLBLoad, TLB_REFILL)
699 #define SignalExceptionTLBInvalidStore() signal_exception (SD, CPU, cia, TLBStore, TLB_INVALID)
700 #define SignalExceptionTLBInvalidLoad() signal_exception (SD, CPU, cia, TLBLoad, TLB_INVALID)
701 #define SignalExceptionTLBModification() signal_exception (SD, CPU, cia, TLBModification)
702 #define SignalExceptionMDMX() signal_exception (SD, CPU, cia, MDMX)
703 #define SignalExceptionWatch() signal_exception (SD, CPU, cia, Watch)
704 #define SignalExceptionMCheck() signal_exception (SD, CPU, cia, MCheck)
705 #define SignalExceptionCacheErr() signal_exception (SD, CPU, cia, CacheErr)
706
707 /* Co-processor accesses */
708
709 /* XXX FIXME: For now, assume that FPU (cp1) is always usable. */
710 #define COP_Usable(coproc_num) (coproc_num == 1)
711
712 void cop_lw PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, unsigned int memword));
713 void cop_ld PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, uword64 memword));
714 unsigned int cop_sw PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg));
715 uword64 cop_sd PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg));
716
717 #define COP_LW(coproc_num,coproc_reg,memword) \
718 cop_lw (SD, CPU, cia, coproc_num, coproc_reg, memword)
719 #define COP_LD(coproc_num,coproc_reg,memword) \
720 cop_ld (SD, CPU, cia, coproc_num, coproc_reg, memword)
721 #define COP_SW(coproc_num,coproc_reg) \
722 cop_sw (SD, CPU, cia, coproc_num, coproc_reg)
723 #define COP_SD(coproc_num,coproc_reg) \
724 cop_sd (SD, CPU, cia, coproc_num, coproc_reg)
725
726
727 void decode_coproc PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, unsigned int instruction));
728 #define DecodeCoproc(instruction) \
729 decode_coproc (SD, CPU, cia, (instruction))
730
731 int sim_monitor (SIM_DESC sd, sim_cpu *cpu, address_word cia, unsigned int arg);
732
733
734 /* MDMX access. */
735
736 typedef unsigned int MX_fmtsel; /* MDMX format select field (5 bits). */
737 #define ob_fmtsel(sel) (((sel)<<1)|0x0)
738 #define qh_fmtsel(sel) (((sel)<<2)|0x1)
739
740 #define fmt_mdmx fmt_uninterpreted
741
742 #define MX_VECT_AND (0)
743 #define MX_VECT_NOR (1)
744 #define MX_VECT_OR (2)
745 #define MX_VECT_XOR (3)
746 #define MX_VECT_SLL (4)
747 #define MX_VECT_SRL (5)
748 #define MX_VECT_ADD (6)
749 #define MX_VECT_SUB (7)
750 #define MX_VECT_MIN (8)
751 #define MX_VECT_MAX (9)
752 #define MX_VECT_MUL (10)
753 #define MX_VECT_MSGN (11)
754 #define MX_VECT_SRA (12)
755 #define MX_VECT_ABSD (13) /* SB-1 only. */
756 #define MX_VECT_AVG (14) /* SB-1 only. */
757
758 unsigned64 mdmx_cpr_op (SIM_STATE, int op, unsigned64 op1, int vt, MX_fmtsel fmtsel);
759 #define MX_Add(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_ADD, op1, vt, fmtsel)
760 #define MX_And(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_AND, op1, vt, fmtsel)
761 #define MX_Max(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MAX, op1, vt, fmtsel)
762 #define MX_Min(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MIN, op1, vt, fmtsel)
763 #define MX_Msgn(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MSGN, op1, vt, fmtsel)
764 #define MX_Mul(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MUL, op1, vt, fmtsel)
765 #define MX_Nor(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_NOR, op1, vt, fmtsel)
766 #define MX_Or(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_OR, op1, vt, fmtsel)
767 #define MX_ShiftLeftLogical(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SLL, op1, vt, fmtsel)
768 #define MX_ShiftRightArith(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SRA, op1, vt, fmtsel)
769 #define MX_ShiftRightLogical(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SRL, op1, vt, fmtsel)
770 #define MX_Sub(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SUB, op1, vt, fmtsel)
771 #define MX_Xor(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_XOR, op1, vt, fmtsel)
772 #define MX_AbsDiff(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_ABSD, op1, vt, fmtsel)
773 #define MX_Avg(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_AVG, op1, vt, fmtsel)
774
775 #define MX_C_EQ 0x1
776 #define MX_C_LT 0x4
777
778 void mdmx_cc_op (SIM_STATE, int cond, unsigned64 op1, int vt, MX_fmtsel fmtsel);
779 #define MX_Comp(op1,cond,vt,fmtsel) mdmx_cc_op(SIM_ARGS, cond, op1, vt, fmtsel)
780
781 unsigned64 mdmx_pick_op (SIM_STATE, int tf, unsigned64 op1, int vt, MX_fmtsel fmtsel);
782 #define MX_Pick(tf,op1,vt,fmtsel) mdmx_pick_op(SIM_ARGS, tf, op1, vt, fmtsel)
783
784 #define MX_VECT_ADDA (0)
785 #define MX_VECT_ADDL (1)
786 #define MX_VECT_MULA (2)
787 #define MX_VECT_MULL (3)
788 #define MX_VECT_MULS (4)
789 #define MX_VECT_MULSL (5)
790 #define MX_VECT_SUBA (6)
791 #define MX_VECT_SUBL (7)
792 #define MX_VECT_ABSDA (8) /* SB-1 only. */
793
794 void mdmx_acc_op (SIM_STATE, int op, unsigned64 op1, int vt, MX_fmtsel fmtsel);
795 #define MX_AddA(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_ADDA, op1, vt, fmtsel)
796 #define MX_AddL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_ADDL, op1, vt, fmtsel)
797 #define MX_MulA(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULA, op1, vt, fmtsel)
798 #define MX_MulL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULL, op1, vt, fmtsel)
799 #define MX_MulS(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULS, op1, vt, fmtsel)
800 #define MX_MulSL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULSL, op1, vt, fmtsel)
801 #define MX_SubA(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_SUBA, op1, vt, fmtsel)
802 #define MX_SubL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_SUBL, op1, vt, fmtsel)
803 #define MX_AbsDiffC(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_ABSDA, op1, vt, fmtsel)
804
805 #define MX_FMT_OB (0)
806 #define MX_FMT_QH (1)
807
808 /* The following codes chosen to indicate the units of shift. */
809 #define MX_RAC_L (0)
810 #define MX_RAC_M (1)
811 #define MX_RAC_H (2)
812
813 unsigned64 mdmx_rac_op (SIM_STATE, int, int);
814 #define MX_RAC(op,fmt) mdmx_rac_op(SIM_ARGS, op, fmt)
815
816 void mdmx_wacl (SIM_STATE, int, unsigned64, unsigned64);
817 #define MX_WACL(fmt,vs,vt) mdmx_wacl(SIM_ARGS, fmt, vs, vt)
818 void mdmx_wach (SIM_STATE, int, unsigned64);
819 #define MX_WACH(fmt,vs) mdmx_wach(SIM_ARGS, fmt, vs)
820
821 #define MX_RND_AS (0)
822 #define MX_RND_AU (1)
823 #define MX_RND_ES (2)
824 #define MX_RND_EU (3)
825 #define MX_RND_ZS (4)
826 #define MX_RND_ZU (5)
827
828 unsigned64 mdmx_round_op (SIM_STATE, int, int, MX_fmtsel);
829 #define MX_RNAS(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_AS, vt, fmt)
830 #define MX_RNAU(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_AU, vt, fmt)
831 #define MX_RNES(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_ES, vt, fmt)
832 #define MX_RNEU(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_EU, vt, fmt)
833 #define MX_RZS(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_ZS, vt, fmt)
834 #define MX_RZU(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_ZU, vt, fmt)
835
836 unsigned64 mdmx_shuffle (SIM_STATE, int, unsigned64, unsigned64);
837 #define MX_SHFL(shop,op1,op2) mdmx_shuffle(SIM_ARGS, shop, op1, op2)
838
839
840
841 /* Memory accesses */
842
843 /* The following are generic to all versions of the MIPS architecture
844 to date: */
845
846 /* Memory Access Types (for CCA): */
847 #define Uncached (0)
848 #define CachedNoncoherent (1)
849 #define CachedCoherent (2)
850 #define Cached (3)
851
852 #define isINSTRUCTION (1 == 0) /* FALSE */
853 #define isDATA (1 == 1) /* TRUE */
854 #define isLOAD (1 == 0) /* FALSE */
855 #define isSTORE (1 == 1) /* TRUE */
856 #define isREAL (1 == 0) /* FALSE */
857 #define isRAW (1 == 1) /* TRUE */
858 /* The parameter HOST (isTARGET / isHOST) is ignored */
859 #define isTARGET (1 == 0) /* FALSE */
860 /* #define isHOST (1 == 1) TRUE */
861
862 /* The "AccessLength" specifications for Loads and Stores. NOTE: This
863 is the number of bytes minus 1. */
864 #define AccessLength_BYTE (0)
865 #define AccessLength_HALFWORD (1)
866 #define AccessLength_TRIPLEBYTE (2)
867 #define AccessLength_WORD (3)
868 #define AccessLength_QUINTIBYTE (4)
869 #define AccessLength_SEXTIBYTE (5)
870 #define AccessLength_SEPTIBYTE (6)
871 #define AccessLength_DOUBLEWORD (7)
872 #define AccessLength_QUADWORD (15)
873
874 #define LOADDRMASK (WITH_TARGET_WORD_BITSIZE == 64 \
875 ? AccessLength_DOUBLEWORD /*7*/ \
876 : AccessLength_WORD /*3*/)
877 #define PSIZE (WITH_TARGET_ADDRESS_BITSIZE)
878
879
880 INLINE_SIM_MAIN (int) address_translation PARAMS ((SIM_DESC sd, sim_cpu *, address_word cia, address_word vAddr, int IorD, int LorS, address_word *pAddr, int *CCA, int raw));
881 #define AddressTranslation(vAddr,IorD,LorS,pAddr,CCA,host,raw) \
882 address_translation (SD, CPU, cia, vAddr, IorD, LorS, pAddr, CCA, raw)
883
884 INLINE_SIM_MAIN (void) load_memory PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, uword64* memvalp, uword64* memval1p, int CCA, unsigned int AccessLength, address_word pAddr, address_word vAddr, int IorD));
885 #define LoadMemory(memvalp,memval1p,CCA,AccessLength,pAddr,vAddr,IorD,raw) \
886 load_memory (SD, CPU, cia, memvalp, memval1p, CCA, AccessLength, pAddr, vAddr, IorD)
887
888 INLINE_SIM_MAIN (void) store_memory PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int CCA, unsigned int AccessLength, uword64 MemElem, uword64 MemElem1, address_word pAddr, address_word vAddr));
889 #define StoreMemory(CCA,AccessLength,MemElem,MemElem1,pAddr,vAddr,raw) \
890 store_memory (SD, CPU, cia, CCA, AccessLength, MemElem, MemElem1, pAddr, vAddr)
891
892 INLINE_SIM_MAIN (void) cache_op PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int op, address_word pAddr, address_word vAddr, unsigned int instruction));
893 #define CacheOp(op,pAddr,vAddr,instruction) \
894 cache_op (SD, CPU, cia, op, pAddr, vAddr, instruction)
895
896 INLINE_SIM_MAIN (void) sync_operation PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int stype));
897 #define SyncOperation(stype) \
898 sync_operation (SD, CPU, cia, (stype))
899
900 INLINE_SIM_MAIN (void) prefetch PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, int CCA, address_word pAddr, address_word vAddr, int DATA, int hint));
901 #define Prefetch(CCA,pAddr,vAddr,DATA,hint) \
902 prefetch (SD, CPU, cia, CCA, pAddr, vAddr, DATA, hint)
903
904 void unpredictable_action (sim_cpu *cpu, address_word cia);
905 #define NotWordValue(val) not_word_value (SD_, (val))
906 #define Unpredictable() unpredictable (SD_)
907 #define UnpredictableResult() /* For now, do nothing. */
908
909 INLINE_SIM_MAIN (unsigned32) ifetch32 PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, address_word vaddr));
910 #define IMEM32(CIA) ifetch32 (SD, CPU, (CIA), (CIA))
911 INLINE_SIM_MAIN (unsigned16) ifetch16 PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia, address_word vaddr));
912 #define IMEM16(CIA) ifetch16 (SD, CPU, (CIA), ((CIA) & ~1))
913 #define IMEM16_IMMED(CIA,NR) ifetch16 (SD, CPU, (CIA), ((CIA) & ~1) + 2 * (NR))
914
915 void dotrace PARAMS ((SIM_DESC sd, sim_cpu *cpu, FILE *tracefh, int type, SIM_ADDR address, int width, char *comment, ...));
916 extern FILE *tracefh;
917
918 INLINE_SIM_MAIN (void) pending_tick PARAMS ((SIM_DESC sd, sim_cpu *cpu, address_word cia));
919 extern SIM_CORE_SIGNAL_FN mips_core_signal;
920
921 char* pr_addr PARAMS ((SIM_ADDR addr));
922 char* pr_uword64 PARAMS ((uword64 addr));
923
924
925 #define GPR_CLEAR(N) do { GPR_SET((N),0); } while (0)
926
927 void mips_cpu_exception_trigger(SIM_DESC sd, sim_cpu* cpu, address_word pc);
928 void mips_cpu_exception_suspend(SIM_DESC sd, sim_cpu* cpu, int exception);
929 void mips_cpu_exception_resume(SIM_DESC sd, sim_cpu* cpu, int exception);
930
931
932 #if H_REVEALS_MODULE_P (SIM_MAIN_INLINE)
933 #include "sim-main.c"
934 #endif
935
936 #endif