]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - sim/mips/sim-main.h
e27636c12f770f041c20db722a8a9b2ac316ed11
[thirdparty/binutils-gdb.git] / sim / mips / sim-main.h
1 /* MIPS Simulator definition.
2 Copyright (C) 1997-2015 Free Software Foundation, Inc.
3 Contributed by Cygnus Support.
4
5 This file is part of GDB, the GNU debugger.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #ifndef SIM_MAIN_H
21 #define SIM_MAIN_H
22
23 /* This simulator doesn't cache the Current Instruction Address */
24 /* #define SIM_ENGINE_HALT_HOOK(SD, LAST_CPU, CIA) */
25 /* #define SIM_ENGINE_RESUME_HOOK(SD, LAST_CPU, CIA) */
26
27 /* hobble some common features for moment */
28 #define WITH_WATCHPOINTS 1
29 #define WITH_MODULO_MEMORY 1
30
31
32 #define SIM_CORE_SIGNAL(SD,CPU,CIA,MAP,NR_BYTES,ADDR,TRANSFER,ERROR) \
33 mips_core_signal ((SD), (CPU), (CIA), (MAP), (NR_BYTES), (ADDR), (TRANSFER), (ERROR))
34
35 #include "sim-basics.h"
36
37 typedef address_word sim_cia;
38
39 typedef struct _sim_cpu SIM_CPU;
40
41 #include "sim-base.h"
42 #include "bfd.h"
43
44 /* Deprecated macros and types for manipulating 64bit values. Use
45 ../common/sim-bits.h and ../common/sim-endian.h macros instead. */
46
47 typedef signed64 word64;
48 typedef unsigned64 uword64;
49
50 #define WORD64LO(t) (unsigned int)((t)&0xFFFFFFFF)
51 #define WORD64HI(t) (unsigned int)(((uword64)(t))>>32)
52 #define SET64LO(t) (((uword64)(t))&0xFFFFFFFF)
53 #define SET64HI(t) (((uword64)(t))<<32)
54 #define WORD64(h,l) ((word64)((SET64HI(h)|SET64LO(l))))
55 #define UWORD64(h,l) (SET64HI(h)|SET64LO(l))
56
57 /* Check if a value will fit within a halfword: */
58 #define NOTHALFWORDVALUE(v) ((((((uword64)(v)>>16) == 0) && !((v) & ((unsigned)1 << 15))) || (((((uword64)(v)>>32) == 0xFFFFFFFF) && ((((uword64)(v)>>16) & 0xFFFF) == 0xFFFF)) && ((v) & ((unsigned)1 << 15)))) ? (1 == 0) : (1 == 1))
59
60
61
62 /* Floating-point operations: */
63
64 #include "sim-fpu.h"
65 #include "cp1.h"
66
67 /* FPU registers must be one of the following types. All other values
68 are reserved (and undefined). */
69 typedef enum {
70 fmt_single = 0,
71 fmt_double = 1,
72 fmt_word = 4,
73 fmt_long = 5,
74 fmt_ps = 6,
75 /* The following are well outside the normal acceptable format
76 range, and are used in the register status vector. */
77 fmt_unknown = 0x10000000,
78 fmt_uninterpreted = 0x20000000,
79 fmt_uninterpreted_32 = 0x40000000,
80 fmt_uninterpreted_64 = 0x80000000U,
81 } FP_formats;
82
83 /* For paired word (pw) operations, the opcode representation is fmt_word,
84 but register transfers (StoreFPR, ValueFPR, etc.) are done as fmt_long. */
85 #define fmt_pw fmt_long
86
87 /* This should be the COC1 value at the start of the preceding
88 instruction: */
89 #define PREVCOC1() ((STATE & simPCOC1) ? 1 : 0)
90
91 #ifdef TARGET_ENABLE_FR
92 /* FIXME: this should be enabled for all targets, but needs testing first. */
93 #define SizeFGR() (((WITH_TARGET_FLOATING_POINT_BITSIZE) == 64) \
94 ? ((SR & status_FR) ? 64 : 32) \
95 : (WITH_TARGET_FLOATING_POINT_BITSIZE))
96 #else
97 #define SizeFGR() (WITH_TARGET_FLOATING_POINT_BITSIZE)
98 #endif
99
100
101
102
103
104 /* HI/LO register accesses */
105
106 /* For some MIPS targets, the HI/LO registers have certain timing
107 restrictions in that, for instance, a read of a HI register must be
108 separated by at least three instructions from a preceeding read.
109
110 The struct below is used to record the last access by each of A MT,
111 MF or other OP instruction to a HI/LO register. See mips.igen for
112 more details. */
113
114 typedef struct _hilo_access {
115 signed64 timestamp;
116 address_word cia;
117 } hilo_access;
118
119 typedef struct _hilo_history {
120 hilo_access mt;
121 hilo_access mf;
122 hilo_access op;
123 } hilo_history;
124
125
126
127
128 /* Integer ALU operations: */
129
130 #include "sim-alu.h"
131
132 #define ALU32_END(ANS) \
133 if (ALU32_HAD_OVERFLOW) \
134 SignalExceptionIntegerOverflow (); \
135 (ANS) = (signed32) ALU32_OVERFLOW_RESULT
136
137
138 #define ALU64_END(ANS) \
139 if (ALU64_HAD_OVERFLOW) \
140 SignalExceptionIntegerOverflow (); \
141 (ANS) = ALU64_OVERFLOW_RESULT;
142
143
144
145
146
147 /* The following is probably not used for MIPS IV onwards: */
148 /* Slots for delayed register updates. For the moment we just have a
149 fixed number of slots (rather than a more generic, dynamic
150 system). This keeps the simulator fast. However, we only allow
151 for the register update to be delayed for a single instruction
152 cycle. */
153 #define PSLOTS (8) /* Maximum number of instruction cycles */
154
155 typedef struct _pending_write_queue {
156 int in;
157 int out;
158 int total;
159 int slot_delay[PSLOTS];
160 int slot_size[PSLOTS];
161 int slot_bit[PSLOTS];
162 void *slot_dest[PSLOTS];
163 unsigned64 slot_value[PSLOTS];
164 } pending_write_queue;
165
166 #ifndef PENDING_TRACE
167 #define PENDING_TRACE 0
168 #endif
169 #define PENDING_IN ((CPU)->pending.in)
170 #define PENDING_OUT ((CPU)->pending.out)
171 #define PENDING_TOTAL ((CPU)->pending.total)
172 #define PENDING_SLOT_SIZE ((CPU)->pending.slot_size)
173 #define PENDING_SLOT_BIT ((CPU)->pending.slot_bit)
174 #define PENDING_SLOT_DELAY ((CPU)->pending.slot_delay)
175 #define PENDING_SLOT_DEST ((CPU)->pending.slot_dest)
176 #define PENDING_SLOT_VALUE ((CPU)->pending.slot_value)
177
178 /* Invalidate the pending write queue, all pending writes are
179 discarded. */
180
181 #define PENDING_INVALIDATE() \
182 memset (&(CPU)->pending, 0, sizeof ((CPU)->pending))
183
184 /* Schedule a write to DEST for N cycles time. For 64 bit
185 destinations, schedule two writes. For floating point registers,
186 the caller should schedule a write to both the dest register and
187 the FPR_STATE register. When BIT is non-negative, only BIT of DEST
188 is updated. */
189
190 #define PENDING_SCHED(DEST,VAL,DELAY,BIT) \
191 do { \
192 if (PENDING_SLOT_DEST[PENDING_IN] != NULL) \
193 sim_engine_abort (SD, CPU, cia, \
194 "PENDING_SCHED - buffer overflow\n"); \
195 if (PENDING_TRACE) \
196 sim_io_eprintf (SD, "PENDING_SCHED - 0x%lx - dest 0x%lx, val 0x%lx, bit %d, size %d, pending_in %d, pending_out %d, pending_total %d\n", \
197 (unsigned long) cia, (unsigned long) &(DEST), \
198 (unsigned long) (VAL), (BIT), (int) sizeof (DEST),\
199 PENDING_IN, PENDING_OUT, PENDING_TOTAL); \
200 PENDING_SLOT_DELAY[PENDING_IN] = (DELAY) + 1; \
201 PENDING_SLOT_DEST[PENDING_IN] = &(DEST); \
202 PENDING_SLOT_VALUE[PENDING_IN] = (VAL); \
203 PENDING_SLOT_SIZE[PENDING_IN] = sizeof (DEST); \
204 PENDING_SLOT_BIT[PENDING_IN] = (BIT); \
205 PENDING_IN = (PENDING_IN + 1) % PSLOTS; \
206 PENDING_TOTAL += 1; \
207 } while (0)
208
209 #define PENDING_WRITE(DEST,VAL,DELAY) PENDING_SCHED(DEST,VAL,DELAY,-1)
210 #define PENDING_BIT(DEST,VAL,DELAY,BIT) PENDING_SCHED(DEST,VAL,DELAY,BIT)
211
212 #define PENDING_TICK() pending_tick (SD, CPU, cia)
213
214 #define PENDING_FLUSH() abort () /* think about this one */
215 #define PENDING_FP() abort () /* think about this one */
216
217 /* For backward compatibility */
218 #define PENDING_FILL(R,VAL) \
219 do { \
220 if ((R) >= FGR_BASE && (R) < FGR_BASE + NR_FGR) \
221 { \
222 PENDING_SCHED(FGR[(R) - FGR_BASE], VAL, 1, -1); \
223 PENDING_SCHED(FPR_STATE[(R) - FGR_BASE], fmt_uninterpreted, 1, -1); \
224 } \
225 else \
226 PENDING_SCHED(GPR[(R)], VAL, 1, -1); \
227 } while (0)
228
229
230 enum float_operation
231 {
232 FLOP_ADD, FLOP_SUB, FLOP_MUL, FLOP_MADD,
233 FLOP_MSUB, FLOP_MAX=10, FLOP_MIN, FLOP_ABS,
234 FLOP_ITOF0=14, FLOP_FTOI0=18, FLOP_NEG=23
235 };
236
237
238 /* The internal representation of an MDMX accumulator.
239 Note that 24 and 48 bit accumulator elements are represented in
240 32 or 64 bits. Since the accumulators are 2's complement with
241 overflow suppressed, high-order bits can be ignored in most contexts. */
242
243 typedef signed32 signed24;
244 typedef signed64 signed48;
245
246 typedef union {
247 signed24 ob[8];
248 signed48 qh[4];
249 } MDMX_accumulator;
250
251
252 /* Conventional system arguments. */
253 #define SIM_STATE sim_cpu *cpu, address_word cia
254 #define SIM_ARGS CPU, cia
255
256 struct _sim_cpu {
257
258
259 /* The following are internal simulator state variables: */
260 #define CIA_GET(CPU) ((CPU)->registers[PCIDX] + 0)
261 #define CIA_SET(CPU,CIA) ((CPU)->registers[PCIDX] = (CIA))
262 address_word dspc; /* delay-slot PC */
263 #define DSPC ((CPU)->dspc)
264
265 #define DELAY_SLOT(TARGET) NIA = delayslot32 (SD_, (TARGET))
266 #define NULLIFY_NEXT_INSTRUCTION() NIA = nullify_next_insn32 (SD_)
267
268
269 /* State of the simulator */
270 unsigned int state;
271 unsigned int dsstate;
272 #define STATE ((CPU)->state)
273 #define DSSTATE ((CPU)->dsstate)
274
275 /* Flags in the "state" variable: */
276 #define simHALTEX (1 << 2) /* 0 = run; 1 = halt on exception */
277 #define simHALTIN (1 << 3) /* 0 = run; 1 = halt on interrupt */
278 #define simTRACE (1 << 8) /* 0 = do nothing; 1 = trace address activity */
279 #define simPCOC0 (1 << 17) /* COC[1] from current */
280 #define simPCOC1 (1 << 18) /* COC[1] from previous */
281 #define simDELAYSLOT (1 << 24) /* 0 = do nothing; 1 = delay slot entry exists */
282 #define simSKIPNEXT (1 << 25) /* 0 = do nothing; 1 = skip instruction */
283 #define simSIGINT (1 << 28) /* 0 = do nothing; 1 = SIGINT has occured */
284 #define simJALDELAYSLOT (1 << 29) /* 1 = in jal delay slot */
285
286 #ifndef ENGINE_ISSUE_PREFIX_HOOK
287 #define ENGINE_ISSUE_PREFIX_HOOK() \
288 { \
289 /* Perform any pending writes */ \
290 PENDING_TICK(); \
291 /* Set previous flag, depending on current: */ \
292 if (STATE & simPCOC0) \
293 STATE |= simPCOC1; \
294 else \
295 STATE &= ~simPCOC1; \
296 /* and update the current value: */ \
297 if (GETFCC(0)) \
298 STATE |= simPCOC0; \
299 else \
300 STATE &= ~simPCOC0; \
301 }
302 #endif /* ENGINE_ISSUE_PREFIX_HOOK */
303
304
305 /* This is nasty, since we have to rely on matching the register
306 numbers used by GDB. Unfortunately, depending on the MIPS target
307 GDB uses different register numbers. We cannot just include the
308 relevant "gdb/tm.h" link, since GDB may not be configured before
309 the sim world, and also the GDB header file requires too much other
310 state. */
311
312 #ifndef TM_MIPS_H
313 #define LAST_EMBED_REGNUM (96)
314 #define NUM_REGS (LAST_EMBED_REGNUM + 1)
315
316 #define FP0_REGNUM 38 /* Floating point register 0 (single float) */
317 #define FCRCS_REGNUM 70 /* FP control/status */
318 #define FCRIR_REGNUM 71 /* FP implementation/revision */
319 #endif
320
321
322 /* To keep this default simulator simple, and fast, we use a direct
323 vector of registers. The internal simulator engine then uses
324 manifests to access the correct slot. */
325
326 unsigned_word registers[LAST_EMBED_REGNUM + 1];
327
328 int register_widths[NUM_REGS];
329 #define REGISTERS ((CPU)->registers)
330
331 #define GPR (&REGISTERS[0])
332 #define GPR_SET(N,VAL) (REGISTERS[(N)] = (VAL))
333
334 #define LO (REGISTERS[33])
335 #define HI (REGISTERS[34])
336 #define PCIDX 37
337 #define PC (REGISTERS[PCIDX])
338 #define CAUSE (REGISTERS[36])
339 #define SRIDX (32)
340 #define SR (REGISTERS[SRIDX]) /* CPU status register */
341 #define FCR0IDX (71)
342 #define FCR0 (REGISTERS[FCR0IDX]) /* really a 32bit register */
343 #define FCR31IDX (70)
344 #define FCR31 (REGISTERS[FCR31IDX]) /* really a 32bit register */
345 #define FCSR (FCR31)
346 #define Debug (REGISTERS[86])
347 #define DEPC (REGISTERS[87])
348 #define EPC (REGISTERS[88])
349 #define ACX (REGISTERS[89])
350
351 #define AC0LOIDX (33) /* Must be the same register as LO */
352 #define AC0HIIDX (34) /* Must be the same register as HI */
353 #define AC1LOIDX (90)
354 #define AC1HIIDX (91)
355 #define AC2LOIDX (92)
356 #define AC2HIIDX (93)
357 #define AC3LOIDX (94)
358 #define AC3HIIDX (95)
359
360 #define DSPLO(N) (REGISTERS[DSPLO_REGNUM[N]])
361 #define DSPHI(N) (REGISTERS[DSPHI_REGNUM[N]])
362
363 #define DSPCRIDX (96) /* DSP control register */
364 #define DSPCR (REGISTERS[DSPCRIDX])
365
366 #define DSPCR_POS_SHIFT (0)
367 #define DSPCR_POS_MASK (0x3f)
368 #define DSPCR_POS_SMASK (DSPCR_POS_MASK << DSPCR_POS_SHIFT)
369
370 #define DSPCR_SCOUNT_SHIFT (7)
371 #define DSPCR_SCOUNT_MASK (0x3f)
372 #define DSPCR_SCOUNT_SMASK (DSPCR_SCOUNT_MASK << DSPCR_SCOUNT_SHIFT)
373
374 #define DSPCR_CARRY_SHIFT (13)
375 #define DSPCR_CARRY_MASK (1)
376 #define DSPCR_CARRY_SMASK (DSPCR_CARRY_MASK << DSPCR_CARRY_SHIFT)
377 #define DSPCR_CARRY (1 << DSPCR_CARRY_SHIFT)
378
379 #define DSPCR_EFI_SHIFT (14)
380 #define DSPCR_EFI_MASK (1)
381 #define DSPCR_EFI_SMASK (DSPCR_EFI_MASK << DSPCR_EFI_SHIFT)
382 #define DSPCR_EFI (1 << DSPCR_EFI_MASK)
383
384 #define DSPCR_OUFLAG_SHIFT (16)
385 #define DSPCR_OUFLAG_MASK (0xff)
386 #define DSPCR_OUFLAG_SMASK (DSPCR_OUFLAG_MASK << DSPCR_OUFLAG_SHIFT)
387 #define DSPCR_OUFLAG4 (1 << (DSPCR_OUFLAG_SHIFT + 4))
388 #define DSPCR_OUFLAG5 (1 << (DSPCR_OUFLAG_SHIFT + 5))
389 #define DSPCR_OUFLAG6 (1 << (DSPCR_OUFLAG_SHIFT + 6))
390 #define DSPCR_OUFLAG7 (1 << (DSPCR_OUFLAG_SHIFT + 7))
391
392 #define DSPCR_CCOND_SHIFT (24)
393 #define DSPCR_CCOND_MASK (0xf)
394 #define DSPCR_CCOND_SMASK (DSPCR_CCOND_MASK << DSPCR_CCOND_SHIFT)
395
396 /* All internal state modified by signal_exception() that may need to be
397 rolled back for passing moment-of-exception image back to gdb. */
398 unsigned_word exc_trigger_registers[LAST_EMBED_REGNUM + 1];
399 unsigned_word exc_suspend_registers[LAST_EMBED_REGNUM + 1];
400 int exc_suspended;
401
402 #define SIM_CPU_EXCEPTION_TRIGGER(SD,CPU,CIA) mips_cpu_exception_trigger(SD,CPU,CIA)
403 #define SIM_CPU_EXCEPTION_SUSPEND(SD,CPU,EXC) mips_cpu_exception_suspend(SD,CPU,EXC)
404 #define SIM_CPU_EXCEPTION_RESUME(SD,CPU,EXC) mips_cpu_exception_resume(SD,CPU,EXC)
405
406 unsigned_word c0_config_reg;
407 #define C0_CONFIG ((CPU)->c0_config_reg)
408
409 /* The following are pseudonyms for standard registers */
410 #define ZERO (REGISTERS[0])
411 #define V0 (REGISTERS[2])
412 #define A0 (REGISTERS[4])
413 #define A1 (REGISTERS[5])
414 #define A2 (REGISTERS[6])
415 #define A3 (REGISTERS[7])
416 #define T8IDX 24
417 #define T8 (REGISTERS[T8IDX])
418 #define SPIDX 29
419 #define SP (REGISTERS[SPIDX])
420 #define RAIDX 31
421 #define RA (REGISTERS[RAIDX])
422
423 /* While space is allocated in the main registers arrray for some of
424 the COP0 registers, that space isn't sufficient. Unknown COP0
425 registers overflow into the array below */
426
427 #define NR_COP0_GPR 32
428 unsigned_word cop0_gpr[NR_COP0_GPR];
429 #define COP0_GPR ((CPU)->cop0_gpr)
430 #define COP0_BADVADDR (COP0_GPR[8])
431
432 /* While space is allocated for the floating point registers in the
433 main registers array, they are stored separatly. This is because
434 their size may not necessarily match the size of either the
435 general-purpose or system specific registers. */
436 #define NR_FGR (32)
437 #define FGR_BASE FP0_REGNUM
438 fp_word fgr[NR_FGR];
439 #define FGR ((CPU)->fgr)
440
441 /* Keep the current format state for each register: */
442 FP_formats fpr_state[32];
443 #define FPR_STATE ((CPU)->fpr_state)
444
445 pending_write_queue pending;
446
447 /* The MDMX accumulator (used only for MDMX ASE). */
448 MDMX_accumulator acc;
449 #define ACC ((CPU)->acc)
450
451 /* LLBIT = Load-Linked bit. A bit of "virtual" state used by atomic
452 read-write instructions. It is set when a linked load occurs. It
453 is tested and cleared by the conditional store. It is cleared
454 (during other CPU operations) when a store to the location would
455 no longer be atomic. In particular, it is cleared by exception
456 return instructions. */
457 int llbit;
458 #define LLBIT ((CPU)->llbit)
459
460
461 /* The HIHISTORY and LOHISTORY timestamps are used to ensure that
462 corruptions caused by using the HI or LO register too close to a
463 following operation is spotted. See mips.igen for more details. */
464
465 hilo_history hi_history;
466 #define HIHISTORY (&(CPU)->hi_history)
467 hilo_history lo_history;
468 #define LOHISTORY (&(CPU)->lo_history)
469
470
471 sim_cpu_base base;
472 };
473
474
475 /* MIPS specific simulator watch config */
476
477 void watch_options_install (SIM_DESC sd);
478
479 struct swatch {
480 sim_event *pc;
481 sim_event *clock;
482 sim_event *cycles;
483 };
484
485
486 /* FIXME: At present much of the simulator is still static */
487 struct sim_state {
488
489 struct swatch watch;
490
491 sim_cpu *cpu[MAX_NR_PROCESSORS];
492 #if (WITH_SMP)
493 #define STATE_CPU(sd,n) ((sd)->cpu[n])
494 #else
495 #define STATE_CPU(sd,n) ((sd)->cpu[0])
496 #endif
497
498 sim_state_base base;
499 };
500
501
502
503 /* Status information: */
504
505 /* TODO : these should be the bitmasks for these bits within the
506 status register. At the moment the following are VR4300
507 bit-positions: */
508 #define status_KSU_mask (0x18) /* mask for KSU bits */
509 #define status_KSU_shift (3) /* shift for field */
510 #define ksu_kernel (0x0)
511 #define ksu_supervisor (0x1)
512 #define ksu_user (0x2)
513 #define ksu_unknown (0x3)
514
515 #define SR_KSU ((SR & status_KSU_mask) >> status_KSU_shift)
516
517 #define status_IE (1 << 0) /* Interrupt enable */
518 #define status_EIE (1 << 16) /* Enable Interrupt Enable */
519 #define status_EXL (1 << 1) /* Exception level */
520 #define status_RE (1 << 25) /* Reverse Endian in user mode */
521 #define status_FR (1 << 26) /* enables MIPS III additional FP registers */
522 #define status_SR (1 << 20) /* soft reset or NMI */
523 #define status_BEV (1 << 22) /* Location of general exception vectors */
524 #define status_TS (1 << 21) /* TLB shutdown has occurred */
525 #define status_ERL (1 << 2) /* Error level */
526 #define status_IM7 (1 << 15) /* Timer Interrupt Mask */
527 #define status_RP (1 << 27) /* Reduced Power mode */
528
529 /* Specializations for TX39 family */
530 #define status_IEc (1 << 0) /* Interrupt enable (current) */
531 #define status_KUc (1 << 1) /* Kernel/User mode */
532 #define status_IEp (1 << 2) /* Interrupt enable (previous) */
533 #define status_KUp (1 << 3) /* Kernel/User mode */
534 #define status_IEo (1 << 4) /* Interrupt enable (old) */
535 #define status_KUo (1 << 5) /* Kernel/User mode */
536 #define status_IM_mask (0xff) /* Interrupt mask */
537 #define status_IM_shift (8)
538 #define status_NMI (1 << 20) /* NMI */
539 #define status_NMI (1 << 20) /* NMI */
540
541 /* Status bits used by MIPS32/MIPS64. */
542 #define status_UX (1 << 5) /* 64-bit user addrs */
543 #define status_SX (1 << 6) /* 64-bit supervisor addrs */
544 #define status_KX (1 << 7) /* 64-bit kernel addrs */
545 #define status_TS (1 << 21) /* TLB shutdown has occurred */
546 #define status_PX (1 << 23) /* Enable 64 bit operations */
547 #define status_MX (1 << 24) /* Enable MDMX resources */
548 #define status_CU0 (1 << 28) /* Coprocessor 0 usable */
549 #define status_CU1 (1 << 29) /* Coprocessor 1 usable */
550 #define status_CU2 (1 << 30) /* Coprocessor 2 usable */
551 #define status_CU3 (1 << 31) /* Coprocessor 3 usable */
552 /* Bits reserved for implementations: */
553 #define status_SBX (1 << 16) /* Enable SiByte SB-1 extensions. */
554
555 #define cause_BD ((unsigned)1 << 31) /* L1 Exception in branch delay slot */
556 #define cause_BD2 (1 << 30) /* L2 Exception in branch delay slot */
557 #define cause_CE_mask 0x30000000 /* Coprocessor exception */
558 #define cause_CE_shift 28
559 #define cause_EXC2_mask 0x00070000
560 #define cause_EXC2_shift 16
561 #define cause_IP7 (1 << 15) /* Interrupt pending */
562 #define cause_SIOP (1 << 12) /* SIO pending */
563 #define cause_IP3 (1 << 11) /* Int 0 pending */
564 #define cause_IP2 (1 << 10) /* Int 1 pending */
565
566 #define cause_EXC_mask (0x1c) /* Exception code */
567 #define cause_EXC_shift (2)
568
569 #define cause_SW0 (1 << 8) /* Software interrupt 0 */
570 #define cause_SW1 (1 << 9) /* Software interrupt 1 */
571 #define cause_IP_mask (0x3f) /* Interrupt pending field */
572 #define cause_IP_shift (10)
573
574 #define cause_set_EXC(x) CAUSE = (CAUSE & ~cause_EXC_mask) | ((x << cause_EXC_shift) & cause_EXC_mask)
575 #define cause_set_EXC2(x) CAUSE = (CAUSE & ~cause_EXC2_mask) | ((x << cause_EXC2_shift) & cause_EXC2_mask)
576
577
578 /* NOTE: We keep the following status flags as bit values (1 for true,
579 0 for false). This allows them to be used in binary boolean
580 operations without worrying about what exactly the non-zero true
581 value is. */
582
583 /* UserMode */
584 #ifdef SUBTARGET_R3900
585 #define UserMode ((SR & status_KUc) ? 1 : 0)
586 #else
587 #define UserMode ((((SR & status_KSU_mask) >> status_KSU_shift) == ksu_user) ? 1 : 0)
588 #endif /* SUBTARGET_R3900 */
589
590 /* BigEndianMem */
591 /* Hardware configuration. Affects endianness of LoadMemory and
592 StoreMemory and the endianness of Kernel and Supervisor mode
593 execution. The value is 0 for little-endian; 1 for big-endian. */
594 #define BigEndianMem (CURRENT_TARGET_BYTE_ORDER == BIG_ENDIAN)
595 /*(state & simBE) ? 1 : 0)*/
596
597 /* ReverseEndian */
598 /* This mode is selected if in User mode with the RE bit being set in
599 SR (Status Register). It reverses the endianness of load and store
600 instructions. */
601 #define ReverseEndian (((SR & status_RE) && UserMode) ? 1 : 0)
602
603 /* BigEndianCPU */
604 /* The endianness for load and store instructions (0=little;1=big). In
605 User mode this endianness may be switched by setting the state_RE
606 bit in the SR register. Thus, BigEndianCPU may be computed as
607 (BigEndianMem EOR ReverseEndian). */
608 #define BigEndianCPU (BigEndianMem ^ ReverseEndian) /* Already bits */
609
610
611
612 /* Exceptions: */
613
614 /* NOTE: These numbers depend on the processor architecture being
615 simulated: */
616 enum ExceptionCause {
617 Interrupt = 0,
618 TLBModification = 1,
619 TLBLoad = 2,
620 TLBStore = 3,
621 AddressLoad = 4,
622 AddressStore = 5,
623 InstructionFetch = 6,
624 DataReference = 7,
625 SystemCall = 8,
626 BreakPoint = 9,
627 ReservedInstruction = 10,
628 CoProcessorUnusable = 11,
629 IntegerOverflow = 12, /* Arithmetic overflow (IDT monitor raises SIGFPE) */
630 Trap = 13,
631 FPE = 15,
632 DebugBreakPoint = 16, /* Impl. dep. in MIPS32/MIPS64. */
633 MDMX = 22,
634 Watch = 23,
635 MCheck = 24,
636 CacheErr = 30,
637 NMIReset = 31, /* Reserved in MIPS32/MIPS64. */
638
639
640 /* The following exception code is actually private to the simulator
641 world. It is *NOT* a processor feature, and is used to signal
642 run-time errors in the simulator. */
643 SimulatorFault = 0xFFFFFFFF
644 };
645
646 #define TLB_REFILL (0)
647 #define TLB_INVALID (1)
648
649
650 /* The following break instructions are reserved for use by the
651 simulator. The first is used to halt the simulation. The second
652 is used by gdb for break-points. NOTE: Care must be taken, since
653 this value may be used in later revisions of the MIPS ISA. */
654 #define HALT_INSTRUCTION_MASK (0x03FFFFC0)
655
656 #define HALT_INSTRUCTION (0x03ff000d)
657 #define HALT_INSTRUCTION2 (0x0000ffcd)
658
659
660 #define BREAKPOINT_INSTRUCTION (0x0005000d)
661 #define BREAKPOINT_INSTRUCTION2 (0x0000014d)
662
663
664
665 void interrupt_event (SIM_DESC sd, void *data);
666
667 void signal_exception (SIM_DESC sd, sim_cpu *cpu, address_word cia, int exception, ...);
668 #define SignalException(exc,instruction) signal_exception (SD, CPU, cia, (exc), (instruction))
669 #define SignalExceptionInterrupt(level) signal_exception (SD, CPU, cia, Interrupt, level)
670 #define SignalExceptionInstructionFetch() signal_exception (SD, CPU, cia, InstructionFetch)
671 #define SignalExceptionAddressStore() signal_exception (SD, CPU, cia, AddressStore)
672 #define SignalExceptionAddressLoad() signal_exception (SD, CPU, cia, AddressLoad)
673 #define SignalExceptionDataReference() signal_exception (SD, CPU, cia, DataReference)
674 #define SignalExceptionSimulatorFault(buf) signal_exception (SD, CPU, cia, SimulatorFault, buf)
675 #define SignalExceptionFPE() signal_exception (SD, CPU, cia, FPE)
676 #define SignalExceptionIntegerOverflow() signal_exception (SD, CPU, cia, IntegerOverflow)
677 #define SignalExceptionCoProcessorUnusable(cop) signal_exception (SD, CPU, cia, CoProcessorUnusable)
678 #define SignalExceptionNMIReset() signal_exception (SD, CPU, cia, NMIReset)
679 #define SignalExceptionTLBRefillStore() signal_exception (SD, CPU, cia, TLBStore, TLB_REFILL)
680 #define SignalExceptionTLBRefillLoad() signal_exception (SD, CPU, cia, TLBLoad, TLB_REFILL)
681 #define SignalExceptionTLBInvalidStore() signal_exception (SD, CPU, cia, TLBStore, TLB_INVALID)
682 #define SignalExceptionTLBInvalidLoad() signal_exception (SD, CPU, cia, TLBLoad, TLB_INVALID)
683 #define SignalExceptionTLBModification() signal_exception (SD, CPU, cia, TLBModification)
684 #define SignalExceptionMDMX() signal_exception (SD, CPU, cia, MDMX)
685 #define SignalExceptionWatch() signal_exception (SD, CPU, cia, Watch)
686 #define SignalExceptionMCheck() signal_exception (SD, CPU, cia, MCheck)
687 #define SignalExceptionCacheErr() signal_exception (SD, CPU, cia, CacheErr)
688
689 /* Co-processor accesses */
690
691 /* XXX FIXME: For now, assume that FPU (cp1) is always usable. */
692 #define COP_Usable(coproc_num) (coproc_num == 1)
693
694 void cop_lw (SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, unsigned int memword);
695 void cop_ld (SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg, uword64 memword);
696 unsigned int cop_sw (SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg);
697 uword64 cop_sd (SIM_DESC sd, sim_cpu *cpu, address_word cia, int coproc_num, int coproc_reg);
698
699 #define COP_LW(coproc_num,coproc_reg,memword) \
700 cop_lw (SD, CPU, cia, coproc_num, coproc_reg, memword)
701 #define COP_LD(coproc_num,coproc_reg,memword) \
702 cop_ld (SD, CPU, cia, coproc_num, coproc_reg, memword)
703 #define COP_SW(coproc_num,coproc_reg) \
704 cop_sw (SD, CPU, cia, coproc_num, coproc_reg)
705 #define COP_SD(coproc_num,coproc_reg) \
706 cop_sd (SD, CPU, cia, coproc_num, coproc_reg)
707
708
709 void decode_coproc (SIM_DESC sd, sim_cpu *cpu, address_word cia, unsigned int instruction);
710 #define DecodeCoproc(instruction) \
711 decode_coproc (SD, CPU, cia, (instruction))
712
713 int sim_monitor (SIM_DESC sd, sim_cpu *cpu, address_word cia, unsigned int arg);
714
715
716 /* FPR access. */
717 unsigned64 value_fpr (SIM_STATE, int fpr, FP_formats);
718 #define ValueFPR(FPR,FMT) value_fpr (SIM_ARGS, (FPR), (FMT))
719 void store_fpr (SIM_STATE, int fpr, FP_formats fmt, unsigned64 value);
720 #define StoreFPR(FPR,FMT,VALUE) store_fpr (SIM_ARGS, (FPR), (FMT), (VALUE))
721 unsigned64 ps_lower (SIM_STATE, unsigned64 op);
722 #define PSLower(op) ps_lower (SIM_ARGS, op)
723 unsigned64 ps_upper (SIM_STATE, unsigned64 op);
724 #define PSUpper(op) ps_upper (SIM_ARGS, op)
725 unsigned64 pack_ps (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats from);
726 #define PackPS(op1,op2) pack_ps (SIM_ARGS, op1, op2, fmt_single)
727
728
729 /* FCR access. */
730 unsigned_word value_fcr (SIM_STATE, int fcr);
731 #define ValueFCR(FCR) value_fcr (SIM_ARGS, (FCR))
732 void store_fcr (SIM_STATE, int fcr, unsigned_word value);
733 #define StoreFCR(FCR,VALUE) store_fcr (SIM_ARGS, (FCR), (VALUE))
734 void test_fcsr (SIM_STATE);
735 #define TestFCSR() test_fcsr (SIM_ARGS)
736
737
738 /* FPU operations. */
739 void fp_cmp (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt, int abs, int cond, int cc);
740 #define Compare(op1,op2,fmt,cond,cc) fp_cmp(SIM_ARGS, op1, op2, fmt, 0, cond, cc)
741 unsigned64 fp_abs (SIM_STATE, unsigned64 op, FP_formats fmt);
742 #define AbsoluteValue(op,fmt) fp_abs(SIM_ARGS, op, fmt)
743 unsigned64 fp_neg (SIM_STATE, unsigned64 op, FP_formats fmt);
744 #define Negate(op,fmt) fp_neg(SIM_ARGS, op, fmt)
745 unsigned64 fp_add (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
746 #define Add(op1,op2,fmt) fp_add(SIM_ARGS, op1, op2, fmt)
747 unsigned64 fp_sub (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
748 #define Sub(op1,op2,fmt) fp_sub(SIM_ARGS, op1, op2, fmt)
749 unsigned64 fp_mul (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
750 #define Multiply(op1,op2,fmt) fp_mul(SIM_ARGS, op1, op2, fmt)
751 unsigned64 fp_div (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
752 #define Divide(op1,op2,fmt) fp_div(SIM_ARGS, op1, op2, fmt)
753 unsigned64 fp_recip (SIM_STATE, unsigned64 op, FP_formats fmt);
754 #define Recip(op,fmt) fp_recip(SIM_ARGS, op, fmt)
755 unsigned64 fp_sqrt (SIM_STATE, unsigned64 op, FP_formats fmt);
756 #define SquareRoot(op,fmt) fp_sqrt(SIM_ARGS, op, fmt)
757 unsigned64 fp_rsqrt (SIM_STATE, unsigned64 op, FP_formats fmt);
758 #define RSquareRoot(op,fmt) fp_rsqrt(SIM_ARGS, op, fmt)
759 unsigned64 fp_madd (SIM_STATE, unsigned64 op1, unsigned64 op2,
760 unsigned64 op3, FP_formats fmt);
761 #define MultiplyAdd(op1,op2,op3,fmt) fp_madd(SIM_ARGS, op1, op2, op3, fmt)
762 unsigned64 fp_msub (SIM_STATE, unsigned64 op1, unsigned64 op2,
763 unsigned64 op3, FP_formats fmt);
764 #define MultiplySub(op1,op2,op3,fmt) fp_msub(SIM_ARGS, op1, op2, op3, fmt)
765 unsigned64 fp_nmadd (SIM_STATE, unsigned64 op1, unsigned64 op2,
766 unsigned64 op3, FP_formats fmt);
767 #define NegMultiplyAdd(op1,op2,op3,fmt) fp_nmadd(SIM_ARGS, op1, op2, op3, fmt)
768 unsigned64 fp_nmsub (SIM_STATE, unsigned64 op1, unsigned64 op2,
769 unsigned64 op3, FP_formats fmt);
770 #define NegMultiplySub(op1,op2,op3,fmt) fp_nmsub(SIM_ARGS, op1, op2, op3, fmt)
771 unsigned64 convert (SIM_STATE, int rm, unsigned64 op, FP_formats from, FP_formats to);
772 #define Convert(rm,op,from,to) convert (SIM_ARGS, rm, op, from, to)
773 unsigned64 convert_ps (SIM_STATE, int rm, unsigned64 op, FP_formats from,
774 FP_formats to);
775 #define ConvertPS(rm,op,from,to) convert_ps (SIM_ARGS, rm, op, from, to)
776
777
778 /* MIPS-3D ASE operations. */
779 #define CompareAbs(op1,op2,fmt,cond,cc) \
780 fp_cmp(SIM_ARGS, op1, op2, fmt, 1, cond, cc)
781 unsigned64 fp_add_r (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
782 #define AddR(op1,op2,fmt) fp_add_r(SIM_ARGS, op1, op2, fmt)
783 unsigned64 fp_mul_r (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
784 #define MultiplyR(op1,op2,fmt) fp_mul_r(SIM_ARGS, op1, op2, fmt)
785 unsigned64 fp_recip1 (SIM_STATE, unsigned64 op, FP_formats fmt);
786 #define Recip1(op,fmt) fp_recip1(SIM_ARGS, op, fmt)
787 unsigned64 fp_recip2 (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
788 #define Recip2(op1,op2,fmt) fp_recip2(SIM_ARGS, op1, op2, fmt)
789 unsigned64 fp_rsqrt1 (SIM_STATE, unsigned64 op, FP_formats fmt);
790 #define RSquareRoot1(op,fmt) fp_rsqrt1(SIM_ARGS, op, fmt)
791 unsigned64 fp_rsqrt2 (SIM_STATE, unsigned64 op1, unsigned64 op2, FP_formats fmt);
792 #define RSquareRoot2(op1,op2,fmt) fp_rsqrt2(SIM_ARGS, op1, op2, fmt)
793
794
795 /* MDMX access. */
796
797 typedef unsigned int MX_fmtsel; /* MDMX format select field (5 bits). */
798 #define ob_fmtsel(sel) (((sel)<<1)|0x0)
799 #define qh_fmtsel(sel) (((sel)<<2)|0x1)
800
801 #define fmt_mdmx fmt_uninterpreted
802
803 #define MX_VECT_AND (0)
804 #define MX_VECT_NOR (1)
805 #define MX_VECT_OR (2)
806 #define MX_VECT_XOR (3)
807 #define MX_VECT_SLL (4)
808 #define MX_VECT_SRL (5)
809 #define MX_VECT_ADD (6)
810 #define MX_VECT_SUB (7)
811 #define MX_VECT_MIN (8)
812 #define MX_VECT_MAX (9)
813 #define MX_VECT_MUL (10)
814 #define MX_VECT_MSGN (11)
815 #define MX_VECT_SRA (12)
816 #define MX_VECT_ABSD (13) /* SB-1 only. */
817 #define MX_VECT_AVG (14) /* SB-1 only. */
818
819 unsigned64 mdmx_cpr_op (SIM_STATE, int op, unsigned64 op1, int vt, MX_fmtsel fmtsel);
820 #define MX_Add(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_ADD, op1, vt, fmtsel)
821 #define MX_And(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_AND, op1, vt, fmtsel)
822 #define MX_Max(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MAX, op1, vt, fmtsel)
823 #define MX_Min(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MIN, op1, vt, fmtsel)
824 #define MX_Msgn(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MSGN, op1, vt, fmtsel)
825 #define MX_Mul(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_MUL, op1, vt, fmtsel)
826 #define MX_Nor(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_NOR, op1, vt, fmtsel)
827 #define MX_Or(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_OR, op1, vt, fmtsel)
828 #define MX_ShiftLeftLogical(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SLL, op1, vt, fmtsel)
829 #define MX_ShiftRightArith(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SRA, op1, vt, fmtsel)
830 #define MX_ShiftRightLogical(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SRL, op1, vt, fmtsel)
831 #define MX_Sub(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_SUB, op1, vt, fmtsel)
832 #define MX_Xor(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_XOR, op1, vt, fmtsel)
833 #define MX_AbsDiff(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_ABSD, op1, vt, fmtsel)
834 #define MX_Avg(op1,vt,fmtsel) mdmx_cpr_op(SIM_ARGS, MX_VECT_AVG, op1, vt, fmtsel)
835
836 #define MX_C_EQ 0x1
837 #define MX_C_LT 0x4
838
839 void mdmx_cc_op (SIM_STATE, int cond, unsigned64 op1, int vt, MX_fmtsel fmtsel);
840 #define MX_Comp(op1,cond,vt,fmtsel) mdmx_cc_op(SIM_ARGS, cond, op1, vt, fmtsel)
841
842 unsigned64 mdmx_pick_op (SIM_STATE, int tf, unsigned64 op1, int vt, MX_fmtsel fmtsel);
843 #define MX_Pick(tf,op1,vt,fmtsel) mdmx_pick_op(SIM_ARGS, tf, op1, vt, fmtsel)
844
845 #define MX_VECT_ADDA (0)
846 #define MX_VECT_ADDL (1)
847 #define MX_VECT_MULA (2)
848 #define MX_VECT_MULL (3)
849 #define MX_VECT_MULS (4)
850 #define MX_VECT_MULSL (5)
851 #define MX_VECT_SUBA (6)
852 #define MX_VECT_SUBL (7)
853 #define MX_VECT_ABSDA (8) /* SB-1 only. */
854
855 void mdmx_acc_op (SIM_STATE, int op, unsigned64 op1, int vt, MX_fmtsel fmtsel);
856 #define MX_AddA(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_ADDA, op1, vt, fmtsel)
857 #define MX_AddL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_ADDL, op1, vt, fmtsel)
858 #define MX_MulA(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULA, op1, vt, fmtsel)
859 #define MX_MulL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULL, op1, vt, fmtsel)
860 #define MX_MulS(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULS, op1, vt, fmtsel)
861 #define MX_MulSL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_MULSL, op1, vt, fmtsel)
862 #define MX_SubA(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_SUBA, op1, vt, fmtsel)
863 #define MX_SubL(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_SUBL, op1, vt, fmtsel)
864 #define MX_AbsDiffC(op1,vt,fmtsel) mdmx_acc_op(SIM_ARGS, MX_VECT_ABSDA, op1, vt, fmtsel)
865
866 #define MX_FMT_OB (0)
867 #define MX_FMT_QH (1)
868
869 /* The following codes chosen to indicate the units of shift. */
870 #define MX_RAC_L (0)
871 #define MX_RAC_M (1)
872 #define MX_RAC_H (2)
873
874 unsigned64 mdmx_rac_op (SIM_STATE, int, int);
875 #define MX_RAC(op,fmt) mdmx_rac_op(SIM_ARGS, op, fmt)
876
877 void mdmx_wacl (SIM_STATE, int, unsigned64, unsigned64);
878 #define MX_WACL(fmt,vs,vt) mdmx_wacl(SIM_ARGS, fmt, vs, vt)
879 void mdmx_wach (SIM_STATE, int, unsigned64);
880 #define MX_WACH(fmt,vs) mdmx_wach(SIM_ARGS, fmt, vs)
881
882 #define MX_RND_AS (0)
883 #define MX_RND_AU (1)
884 #define MX_RND_ES (2)
885 #define MX_RND_EU (3)
886 #define MX_RND_ZS (4)
887 #define MX_RND_ZU (5)
888
889 unsigned64 mdmx_round_op (SIM_STATE, int, int, MX_fmtsel);
890 #define MX_RNAS(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_AS, vt, fmt)
891 #define MX_RNAU(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_AU, vt, fmt)
892 #define MX_RNES(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_ES, vt, fmt)
893 #define MX_RNEU(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_EU, vt, fmt)
894 #define MX_RZS(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_ZS, vt, fmt)
895 #define MX_RZU(vt,fmt) mdmx_round_op(SIM_ARGS, MX_RND_ZU, vt, fmt)
896
897 unsigned64 mdmx_shuffle (SIM_STATE, int, unsigned64, unsigned64);
898 #define MX_SHFL(shop,op1,op2) mdmx_shuffle(SIM_ARGS, shop, op1, op2)
899
900
901
902 /* Memory accesses */
903
904 /* The following are generic to all versions of the MIPS architecture
905 to date: */
906
907 /* Memory Access Types (for CCA): */
908 #define Uncached (0)
909 #define CachedNoncoherent (1)
910 #define CachedCoherent (2)
911 #define Cached (3)
912
913 #define isINSTRUCTION (1 == 0) /* FALSE */
914 #define isDATA (1 == 1) /* TRUE */
915 #define isLOAD (1 == 0) /* FALSE */
916 #define isSTORE (1 == 1) /* TRUE */
917 #define isREAL (1 == 0) /* FALSE */
918 #define isRAW (1 == 1) /* TRUE */
919 /* The parameter HOST (isTARGET / isHOST) is ignored */
920 #define isTARGET (1 == 0) /* FALSE */
921 /* #define isHOST (1 == 1) TRUE */
922
923 /* The "AccessLength" specifications for Loads and Stores. NOTE: This
924 is the number of bytes minus 1. */
925 #define AccessLength_BYTE (0)
926 #define AccessLength_HALFWORD (1)
927 #define AccessLength_TRIPLEBYTE (2)
928 #define AccessLength_WORD (3)
929 #define AccessLength_QUINTIBYTE (4)
930 #define AccessLength_SEXTIBYTE (5)
931 #define AccessLength_SEPTIBYTE (6)
932 #define AccessLength_DOUBLEWORD (7)
933 #define AccessLength_QUADWORD (15)
934
935 #define LOADDRMASK (WITH_TARGET_WORD_BITSIZE == 64 \
936 ? AccessLength_DOUBLEWORD /*7*/ \
937 : AccessLength_WORD /*3*/)
938 #define PSIZE (WITH_TARGET_ADDRESS_BITSIZE)
939
940
941 INLINE_SIM_MAIN (int) address_translation (SIM_DESC sd, sim_cpu *, address_word cia, address_word vAddr, int IorD, int LorS, address_word *pAddr, int *CCA, int raw);
942 #define AddressTranslation(vAddr,IorD,LorS,pAddr,CCA,host,raw) \
943 address_translation (SD, CPU, cia, vAddr, IorD, LorS, pAddr, CCA, raw)
944
945 INLINE_SIM_MAIN (void) load_memory (SIM_DESC sd, sim_cpu *cpu, address_word cia, uword64* memvalp, uword64* memval1p, int CCA, unsigned int AccessLength, address_word pAddr, address_word vAddr, int IorD);
946 #define LoadMemory(memvalp,memval1p,CCA,AccessLength,pAddr,vAddr,IorD,raw) \
947 load_memory (SD, CPU, cia, memvalp, memval1p, CCA, AccessLength, pAddr, vAddr, IorD)
948
949 INLINE_SIM_MAIN (void) store_memory (SIM_DESC sd, sim_cpu *cpu, address_word cia, int CCA, unsigned int AccessLength, uword64 MemElem, uword64 MemElem1, address_word pAddr, address_word vAddr);
950 #define StoreMemory(CCA,AccessLength,MemElem,MemElem1,pAddr,vAddr,raw) \
951 store_memory (SD, CPU, cia, CCA, AccessLength, MemElem, MemElem1, pAddr, vAddr)
952
953 INLINE_SIM_MAIN (void) cache_op (SIM_DESC sd, sim_cpu *cpu, address_word cia, int op, address_word pAddr, address_word vAddr, unsigned int instruction);
954 #define CacheOp(op,pAddr,vAddr,instruction) \
955 cache_op (SD, CPU, cia, op, pAddr, vAddr, instruction)
956
957 INLINE_SIM_MAIN (void) sync_operation (SIM_DESC sd, sim_cpu *cpu, address_word cia, int stype);
958 #define SyncOperation(stype) \
959 sync_operation (SD, CPU, cia, (stype))
960
961 INLINE_SIM_MAIN (void) prefetch (SIM_DESC sd, sim_cpu *cpu, address_word cia, int CCA, address_word pAddr, address_word vAddr, int DATA, int hint);
962 #define Prefetch(CCA,pAddr,vAddr,DATA,hint) \
963 prefetch (SD, CPU, cia, CCA, pAddr, vAddr, DATA, hint)
964
965 void unpredictable_action (sim_cpu *cpu, address_word cia);
966 #define NotWordValue(val) not_word_value (SD_, (val))
967 #define Unpredictable() unpredictable (SD_)
968 #define UnpredictableResult() /* For now, do nothing. */
969
970 INLINE_SIM_MAIN (unsigned32) ifetch32 (SIM_DESC sd, sim_cpu *cpu, address_word cia, address_word vaddr);
971 #define IMEM32(CIA) ifetch32 (SD, CPU, (CIA), (CIA))
972 INLINE_SIM_MAIN (unsigned16) ifetch16 (SIM_DESC sd, sim_cpu *cpu, address_word cia, address_word vaddr);
973 #define IMEM16(CIA) ifetch16 (SD, CPU, (CIA), ((CIA) & ~1))
974 #define IMEM16_IMMED(CIA,NR) ifetch16 (SD, CPU, (CIA), ((CIA) & ~1) + 2 * (NR))
975
976 void dotrace (SIM_DESC sd, sim_cpu *cpu, FILE *tracefh, int type, SIM_ADDR address, int width, char *comment, ...);
977 extern FILE *tracefh;
978
979 extern int DSPLO_REGNUM[4];
980 extern int DSPHI_REGNUM[4];
981
982 INLINE_SIM_MAIN (void) pending_tick (SIM_DESC sd, sim_cpu *cpu, address_word cia);
983 extern SIM_CORE_SIGNAL_FN mips_core_signal;
984
985 char* pr_addr (SIM_ADDR addr);
986 char* pr_uword64 (uword64 addr);
987
988
989 #define GPR_CLEAR(N) do { GPR_SET((N),0); } while (0)
990
991 void mips_cpu_exception_trigger(SIM_DESC sd, sim_cpu* cpu, address_word pc);
992 void mips_cpu_exception_suspend(SIM_DESC sd, sim_cpu* cpu, int exception);
993 void mips_cpu_exception_resume(SIM_DESC sd, sim_cpu* cpu, int exception);
994
995 #ifdef MIPS_MACH_MULTI
996 extern int mips_mach_multi(SIM_DESC sd);
997 #define MIPS_MACH(SD) mips_mach_multi(SD)
998 #else
999 #define MIPS_MACH(SD) MIPS_MACH_DEFAULT
1000 #endif
1001
1002 /* Macros for determining whether a MIPS IV or MIPS V part is subject
1003 to the hi/lo restrictions described in mips.igen. */
1004
1005 #define MIPS_MACH_HAS_MT_HILO_HAZARD(SD) \
1006 (MIPS_MACH (SD) != bfd_mach_mips5500)
1007
1008 #define MIPS_MACH_HAS_MULT_HILO_HAZARD(SD) \
1009 (MIPS_MACH (SD) != bfd_mach_mips5500)
1010
1011 #define MIPS_MACH_HAS_DIV_HILO_HAZARD(SD) \
1012 (MIPS_MACH (SD) != bfd_mach_mips5500)
1013
1014 #if H_REVEALS_MODULE_P (SIM_MAIN_INLINE)
1015 #include "sim-main.c"
1016 #endif
1017
1018 #endif