]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - sim/v850/interp.c
76ecab7f7bfddfe91d4c46676f535d60216ef00c
[thirdparty/binutils-gdb.git] / sim / v850 / interp.c
1 #include "sim-main.h"
2 #include "sim-options.h"
3 #include "v850_sim.h"
4 #include "sim-assert.h"
5 #include "itable.h"
6
7 #include <stdlib.h>
8 #include <string.h>
9
10 #include "bfd.h"
11
12 static const char * get_insn_name (sim_cpu *, int);
13
14 /* For compatibility. */
15 SIM_DESC simulator;
16
17 /* V850 interrupt model. */
18
19 enum interrupt_type
20 {
21 int_reset,
22 int_nmi,
23 int_intov1,
24 int_intp10,
25 int_intp11,
26 int_intp12,
27 int_intp13,
28 int_intcm4,
29 num_int_types
30 };
31
32 const char *interrupt_names[] =
33 {
34 "reset",
35 "nmi",
36 "intov1",
37 "intp10",
38 "intp11",
39 "intp12",
40 "intp13",
41 "intcm4",
42 NULL
43 };
44
45 static void
46 do_interrupt (SIM_DESC sd, void *data)
47 {
48 const char **interrupt_name = (const char**)data;
49 enum interrupt_type inttype;
50 inttype = (interrupt_name - STATE_WATCHPOINTS (sd)->interrupt_names);
51
52 /* For a hardware reset, drop everything and jump to the start
53 address */
54 if (inttype == int_reset)
55 {
56 PC = 0;
57 PSW = 0x20;
58 ECR = 0;
59 sim_engine_restart (sd, NULL, NULL, NULL_CIA);
60 }
61
62 /* Deliver an NMI when allowed */
63 if (inttype == int_nmi)
64 {
65 if (PSW & PSW_NP)
66 {
67 /* We're already working on an NMI, so this one must wait
68 around until the previous one is done. The processor
69 ignores subsequent NMIs, so we don't need to count them.
70 Just keep re-scheduling a single NMI until it manages to
71 be delivered */
72 if (STATE_CPU (sd, 0)->pending_nmi != NULL)
73 sim_events_deschedule (sd, STATE_CPU (sd, 0)->pending_nmi);
74 STATE_CPU (sd, 0)->pending_nmi =
75 sim_events_schedule (sd, 1, do_interrupt, data);
76 return;
77 }
78 else
79 {
80 /* NMI can be delivered. Do not deschedule pending_nmi as
81 that, if still in the event queue, is a second NMI that
82 needs to be delivered later. */
83 FEPC = PC;
84 FEPSW = PSW;
85 /* Set the FECC part of the ECR. */
86 ECR &= 0x0000ffff;
87 ECR |= 0x10;
88 PSW |= PSW_NP;
89 PSW &= ~PSW_EP;
90 PSW |= PSW_ID;
91 PC = 0x10;
92 sim_engine_restart (sd, NULL, NULL, NULL_CIA);
93 }
94 }
95
96 /* deliver maskable interrupt when allowed */
97 if (inttype > int_nmi && inttype < num_int_types)
98 {
99 if ((PSW & PSW_NP) || (PSW & PSW_ID))
100 {
101 /* Can't deliver this interrupt, reschedule it for later */
102 sim_events_schedule (sd, 1, do_interrupt, data);
103 return;
104 }
105 else
106 {
107 /* save context */
108 EIPC = PC;
109 EIPSW = PSW;
110 /* Disable further interrupts. */
111 PSW |= PSW_ID;
112 /* Indicate that we're doing interrupt not exception processing. */
113 PSW &= ~PSW_EP;
114 /* Clear the EICC part of the ECR, will set below. */
115 ECR &= 0xffff0000;
116 switch (inttype)
117 {
118 case int_intov1:
119 PC = 0x80;
120 ECR |= 0x80;
121 break;
122 case int_intp10:
123 PC = 0x90;
124 ECR |= 0x90;
125 break;
126 case int_intp11:
127 PC = 0xa0;
128 ECR |= 0xa0;
129 break;
130 case int_intp12:
131 PC = 0xb0;
132 ECR |= 0xb0;
133 break;
134 case int_intp13:
135 PC = 0xc0;
136 ECR |= 0xc0;
137 break;
138 case int_intcm4:
139 PC = 0xd0;
140 ECR |= 0xd0;
141 break;
142 default:
143 /* Should never be possible. */
144 sim_engine_abort (sd, NULL, NULL_CIA,
145 "do_interrupt - internal error - bad switch");
146 break;
147 }
148 }
149 sim_engine_restart (sd, NULL, NULL, NULL_CIA);
150 }
151
152 /* some other interrupt? */
153 sim_engine_abort (sd, NULL, NULL_CIA,
154 "do_interrupt - internal error - interrupt %d unknown",
155 inttype);
156 }
157
158 /* Return name of an insn, used by insn profiling. */
159
160 static const char *
161 get_insn_name (sim_cpu *cpu, int i)
162 {
163 return itable[i].name;
164 }
165
166 /* These default values correspond to expected usage for the chip. */
167
168 uint32 OP[4];
169
170 static sim_cia
171 v850_pc_get (sim_cpu *cpu)
172 {
173 return PC;
174 }
175
176 static void
177 v850_pc_set (sim_cpu *cpu, sim_cia pc)
178 {
179 PC = pc;
180 }
181
182 static int v850_reg_fetch (SIM_CPU *, int, unsigned char *, int);
183 static int v850_reg_store (SIM_CPU *, int, unsigned char *, int);
184
185 SIM_DESC
186 sim_open (SIM_OPEN_KIND kind,
187 host_callback * cb,
188 struct bfd * abfd,
189 char * const * argv)
190 {
191 int i;
192 SIM_DESC sd = sim_state_alloc (kind, cb);
193 int mach;
194
195 SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
196
197 /* The cpu data is kept in a separately allocated chunk of memory. */
198 if (sim_cpu_alloc_all (sd, 1, /*cgen_cpu_max_extra_bytes ()*/0) != SIM_RC_OK)
199 return 0;
200
201 /* for compatibility */
202 simulator = sd;
203
204 /* FIXME: should be better way of setting up interrupts */
205 STATE_WATCHPOINTS (sd)->interrupt_handler = do_interrupt;
206 STATE_WATCHPOINTS (sd)->interrupt_names = interrupt_names;
207
208 /* Initialize the mechanism for doing insn profiling. */
209 CPU_INSN_NAME (STATE_CPU (sd, 0)) = get_insn_name;
210 CPU_MAX_INSNS (STATE_CPU (sd, 0)) = nr_itable_entries;
211
212 if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK)
213 return 0;
214
215 /* Allocate core managed memory */
216
217 /* "Mirror" the ROM addresses below 1MB. */
218 sim_do_commandf (sd, "memory region 0,0x100000,0x%lx", V850_ROM_SIZE);
219 /* Chunk of ram adjacent to rom */
220 sim_do_commandf (sd, "memory region 0x100000,0x%lx", V850_LOW_END-0x100000);
221 /* peripheral I/O region - mirror 1K across 4k (0x1000) */
222 sim_do_command (sd, "memory region 0xfff000,0x1000,1024");
223 /* similarly if in the internal RAM region */
224 sim_do_command (sd, "memory region 0xffe000,0x1000,1024");
225
226 /* The parser will print an error message for us, so we silently return. */
227 if (sim_parse_args (sd, argv) != SIM_RC_OK)
228 {
229 /* Uninstall the modules to avoid memory leaks,
230 file descriptor leaks, etc. */
231 sim_module_uninstall (sd);
232 return 0;
233 }
234
235 /* check for/establish the a reference program image */
236 if (sim_analyze_program (sd,
237 (STATE_PROG_ARGV (sd) != NULL
238 ? *STATE_PROG_ARGV (sd)
239 : NULL),
240 abfd) != SIM_RC_OK)
241 {
242 sim_module_uninstall (sd);
243 return 0;
244 }
245
246 /* establish any remaining configuration options */
247 if (sim_config (sd) != SIM_RC_OK)
248 {
249 sim_module_uninstall (sd);
250 return 0;
251 }
252
253 if (sim_post_argv_init (sd) != SIM_RC_OK)
254 {
255 /* Uninstall the modules to avoid memory leaks,
256 file descriptor leaks, etc. */
257 sim_module_uninstall (sd);
258 return 0;
259 }
260
261
262 /* determine the machine type */
263 if (STATE_ARCHITECTURE (sd) != NULL
264 && (STATE_ARCHITECTURE (sd)->arch == bfd_arch_v850
265 || STATE_ARCHITECTURE (sd)->arch == bfd_arch_v850_rh850))
266 mach = STATE_ARCHITECTURE (sd)->mach;
267 else
268 mach = bfd_mach_v850; /* default */
269
270 /* set machine specific configuration */
271 switch (mach)
272 {
273 case bfd_mach_v850:
274 case bfd_mach_v850e:
275 case bfd_mach_v850e1:
276 case bfd_mach_v850e2:
277 case bfd_mach_v850e2v3:
278 case bfd_mach_v850e3v5:
279 STATE_CPU (sd, 0)->psw_mask = (PSW_NP | PSW_EP | PSW_ID | PSW_SAT
280 | PSW_CY | PSW_OV | PSW_S | PSW_Z);
281 break;
282 }
283
284 /* CPU specific initialization. */
285 for (i = 0; i < MAX_NR_PROCESSORS; ++i)
286 {
287 SIM_CPU *cpu = STATE_CPU (sd, i);
288
289 CPU_REG_FETCH (cpu) = v850_reg_fetch;
290 CPU_REG_STORE (cpu) = v850_reg_store;
291 CPU_PC_FETCH (cpu) = v850_pc_get;
292 CPU_PC_STORE (cpu) = v850_pc_set;
293 }
294
295 return sd;
296 }
297
298 SIM_RC
299 sim_create_inferior (SIM_DESC sd,
300 struct bfd * prog_bfd,
301 char * const *argv,
302 char * const *env)
303 {
304 memset (&State, 0, sizeof (State));
305 if (prog_bfd != NULL)
306 PC = bfd_get_start_address (prog_bfd);
307 return SIM_RC_OK;
308 }
309
310 static int
311 v850_reg_fetch (SIM_CPU *cpu, int rn, unsigned char *memory, int length)
312 {
313 *(unsigned32*)memory = H2T_4 (State.regs[rn]);
314 return -1;
315 }
316
317 static int
318 v850_reg_store (SIM_CPU *cpu, int rn, unsigned char *memory, int length)
319 {
320 State.regs[rn] = T2H_4 (*(unsigned32 *) memory);
321 return length;
322 }