]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - sim/v850/sim-main.h
9d56469d666562c02bec8430e9dd6ca47da833e2
[thirdparty/binutils-gdb.git] / sim / v850 / sim-main.h
1 #ifndef SIM_MAIN_H
2 #define SIM_MAIN_H
3
4 /* The v850 has 32bit words, numbered 31 (MSB) to 0 (LSB) */
5
6 #define WITH_TARGET_WORD_MSB 31
7
8 #include "sim-basics.h"
9 #include "sim-signal.h"
10 #include "sim-fpu.h"
11 #include "sim-base.h"
12
13 #include "simops.h"
14
15 typedef uint32_t reg_t;
16 typedef uint64_t reg64_t;
17
18
19 /* The current state of the processor; registers, memory, etc. */
20
21 typedef struct _v850_regs {
22 reg_t regs[32]; /* general-purpose registers */
23 reg_t sregs[32]; /* system registers, including psw */
24 reg_t pc;
25 int dummy_mem; /* where invalid accesses go */
26 reg_t mpu0_sregs[28]; /* mpu0 system registers */
27 reg_t mpu1_sregs[28]; /* mpu1 system registers */
28 reg_t fpu_sregs[28]; /* fpu system registers */
29 reg_t selID_sregs[7][32]; /* system registers, selID 1 thru selID 7 */
30 reg64_t vregs[32]; /* vector registers. */
31 } v850_regs;
32
33 struct v850_sim_cpu {
34 v850_regs reg;
35 reg_t psw_mask; /* only allow non-reserved bits to be set */
36 sim_event *pending_nmi;
37 };
38
39 #define V850_SIM_CPU(cpu) ((struct v850_sim_cpu *) CPU_ARCH_DATA (cpu))
40
41 /* For compatibility, until all functions converted to passing
42 SIM_DESC as an argument */
43 extern SIM_DESC simulator;
44
45
46 #define V850_ROM_SIZE 0x8000
47 #define V850_LOW_END 0x200000
48 #define V850_HIGH_START 0xffe000
49
50
51 /* Because we are still using the old semantic table, provide compat
52 macro's that store the instruction where the old simops expects
53 it. */
54
55 extern uint32_t OP[4];
56 #if 0
57 OP[0] = inst & 0x1f; /* RRRRR -> reg1 */
58 OP[1] = (inst >> 11) & 0x1f; /* rrrrr -> reg2 */
59 OP[2] = (inst >> 16) & 0xffff; /* wwwww -> reg3 OR imm16 */
60 OP[3] = inst;
61 #endif
62
63 #define SAVE_1 \
64 PC = cia; \
65 OP[0] = instruction_0 & 0x1f; \
66 OP[1] = (instruction_0 >> 11) & 0x1f; \
67 OP[2] = 0; \
68 OP[3] = instruction_0
69
70 #define COMPAT_1(CALL) \
71 SAVE_1; \
72 PC += (CALL); \
73 nia = PC
74
75 #define SAVE_2 \
76 PC = cia; \
77 OP[0] = instruction_0 & 0x1f; \
78 OP[1] = (instruction_0 >> 11) & 0x1f; \
79 OP[2] = instruction_1; \
80 OP[3] = (instruction_1 << 16) | instruction_0
81
82 #define COMPAT_2(CALL) \
83 SAVE_2; \
84 PC += (CALL); \
85 nia = PC
86
87
88 /* new */
89 #define GR (V850_SIM_CPU (CPU)->reg.regs)
90 #define SR (V850_SIM_CPU (CPU)->reg.sregs)
91 #define VR (V850_SIM_CPU (CPU)->reg.vregs)
92 #define MPU0_SR (V850_SIM_CPU (STATE_CPU (sd, 0))->reg.mpu0_sregs)
93 #define MPU1_SR (V850_SIM_CPU (STATE_CPU (sd, 0))->reg.mpu1_sregs)
94 #define FPU_SR (V850_SIM_CPU (STATE_CPU (sd, 0))->reg.fpu_sregs)
95
96 /* old */
97 #define State (V850_SIM_CPU (STATE_CPU (simulator, 0))->reg)
98 #define PC (State.pc)
99 #define SP_REGNO 3
100 #define SP (State.regs[SP_REGNO])
101 #define EP (State.regs[30])
102
103 #define EIPC (State.sregs[0])
104 #define EIPSW (State.sregs[1])
105 #define FEPC (State.sregs[2])
106 #define FEPSW (State.sregs[3])
107 #define ECR (State.sregs[4])
108 #define PSW (State.sregs[5])
109 #define PSW_REGNO 5
110 #define EIIC (State.sregs[13])
111 #define FEIC (State.sregs[14])
112 #define DBIC (SR[15])
113 #define CTPC (SR[16])
114 #define CTPSW (SR[17])
115 #define DBPC (State.sregs[18])
116 #define DBPSW (State.sregs[19])
117 #define CTBP (State.sregs[20])
118 #define DIR (SR[21])
119 #define EIWR (SR[28])
120 #define FEWR (SR[29])
121 #define DBWR (SR[30])
122 #define BSEL (SR[31])
123
124 #define PSW_US BIT32 (8)
125 #define PSW_NP 0x80
126 #define PSW_EP 0x40
127 #define PSW_ID 0x20
128 #define PSW_SAT 0x10
129 #define PSW_CY 0x8
130 #define PSW_OV 0x4
131 #define PSW_S 0x2
132 #define PSW_Z 0x1
133
134 #define PSW_NPV (1<<18)
135 #define PSW_DMP (1<<17)
136 #define PSW_IMP (1<<16)
137
138 #define ECR_EICC 0x0000ffff
139 #define ECR_FECC 0xffff0000
140
141 /* FPU */
142
143 #define FPSR (FPU_SR[6])
144 #define FPSR_REGNO 6
145 #define FPEPC (FPU_SR[7])
146 #define FPST (FPU_SR[8])
147 #define FPST_REGNO 8
148 #define FPCC (FPU_SR[9])
149 #define FPCFG (FPU_SR[10])
150 #define FPCFG_REGNO 10
151
152 #define FPSR_DEM 0x00200000
153 #define FPSR_SEM 0x00100000
154 #define FPSR_RM 0x000c0000
155 #define FPSR_RN 0x00000000
156 #define FPSR_FS 0x00020000
157 #define FPSR_PR 0x00010000
158
159 #define FPSR_XC 0x0000fc00
160 #define FPSR_XCE 0x00008000
161 #define FPSR_XCV 0x00004000
162 #define FPSR_XCZ 0x00002000
163 #define FPSR_XCO 0x00001000
164 #define FPSR_XCU 0x00000800
165 #define FPSR_XCI 0x00000400
166
167 #define FPSR_XE 0x000003e0
168 #define FPSR_XEV 0x00000200
169 #define FPSR_XEZ 0x00000100
170 #define FPSR_XEO 0x00000080
171 #define FPSR_XEU 0x00000040
172 #define FPSR_XEI 0x00000020
173
174 #define FPSR_XP 0x0000001f
175 #define FPSR_XPV 0x00000010
176 #define FPSR_XPZ 0x00000008
177 #define FPSR_XPO 0x00000004
178 #define FPSR_XPU 0x00000002
179 #define FPSR_XPI 0x00000001
180
181 #define FPST_PR 0x00008000
182 #define FPST_XCE 0x00002000
183 #define FPST_XCV 0x00001000
184 #define FPST_XCZ 0x00000800
185 #define FPST_XCO 0x00000400
186 #define FPST_XCU 0x00000200
187 #define FPST_XCI 0x00000100
188
189 #define FPST_XPV 0x00000010
190 #define FPST_XPZ 0x00000008
191 #define FPST_XPO 0x00000004
192 #define FPST_XPU 0x00000002
193 #define FPST_XPI 0x00000001
194
195 #define FPCFG_RM 0x00000180
196 #define FPCFG_XEV 0x00000010
197 #define FPCFG_XEZ 0x00000008
198 #define FPCFG_XEO 0x00000004
199 #define FPCFG_XEU 0x00000002
200 #define FPCFG_XEI 0x00000001
201
202 #define GET_FPCC()\
203 ((FPSR >> 24) &0xf)
204
205 #define CLEAR_FPCC(bbb)\
206 (FPSR &= ~(1 << (bbb+24)))
207
208 #define SET_FPCC(bbb)\
209 (FPSR |= 1 << (bbb+24))
210
211 #define TEST_FPCC(bbb)\
212 ((FPSR & (1 << (bbb+24))) != 0)
213
214 #define FPSR_GET_ROUND() \
215 (((FPSR & FPSR_RM) == FPSR_RN) ? sim_fpu_round_near \
216 : ((FPSR & FPSR_RM) == 0x00040000) ? sim_fpu_round_up \
217 : ((FPSR & FPSR_RM) == 0x00080000) ? sim_fpu_round_down \
218 : sim_fpu_round_zero)
219
220
221 enum FPU_COMPARE {
222 FPU_CMP_F = 0,
223 FPU_CMP_UN,
224 FPU_CMP_EQ,
225 FPU_CMP_UEQ,
226 FPU_CMP_OLT,
227 FPU_CMP_ULT,
228 FPU_CMP_OLE,
229 FPU_CMP_ULE,
230 FPU_CMP_SF,
231 FPU_CMP_NGLE,
232 FPU_CMP_SEQ,
233 FPU_CMP_NGL,
234 FPU_CMP_LT,
235 FPU_CMP_NGE,
236 FPU_CMP_LE,
237 FPU_CMP_NGT
238 };
239
240
241 /* MPU */
242 #define MPM (MPU1_SR[0])
243 #define MPC (MPU1_SR[1])
244 #define MPC_REGNO 1
245 #define TID (MPU1_SR[2])
246 #define PPA (MPU1_SR[3])
247 #define PPM (MPU1_SR[4])
248 #define PPC (MPU1_SR[5])
249 #define DCC (MPU1_SR[6])
250 #define DCV0 (MPU1_SR[7])
251 #define DCV1 (MPU1_SR[8])
252 #define SPAL (MPU1_SR[10])
253 #define SPAU (MPU1_SR[11])
254 #define IPA0L (MPU1_SR[12])
255 #define IPA0U (MPU1_SR[13])
256 #define IPA1L (MPU1_SR[14])
257 #define IPA1U (MPU1_SR[15])
258 #define IPA2L (MPU1_SR[16])
259 #define IPA2U (MPU1_SR[17])
260 #define IPA3L (MPU1_SR[18])
261 #define IPA3U (MPU1_SR[19])
262 #define DPA0L (MPU1_SR[20])
263 #define DPA0U (MPU1_SR[21])
264 #define DPA1L (MPU1_SR[22])
265 #define DPA1U (MPU1_SR[23])
266 #define DPA2L (MPU1_SR[24])
267 #define DPA2U (MPU1_SR[25])
268 #define DPA3L (MPU1_SR[26])
269 #define DPA3U (MPU1_SR[27])
270
271 #define PPC_PPE 0x1
272 #define SPAL_SPE 0x1
273 #define SPAL_SPS 0x10
274
275 #define VIP (MPU0_SR[0])
276 #define VMECR (MPU0_SR[4])
277 #define VMTID (MPU0_SR[5])
278 #define VMADR (MPU0_SR[6])
279 #define VPECR (MPU0_SR[8])
280 #define VPTID (MPU0_SR[9])
281 #define VPADR (MPU0_SR[10])
282 #define VDECR (MPU0_SR[12])
283 #define VDTID (MPU0_SR[13])
284
285 #define MPM_AUE 0x2
286 #define MPM_MPE 0x1
287
288 #define VMECR_VMX 0x2
289 #define VMECR_VMR 0x4
290 #define VMECR_VMW 0x8
291 #define VMECR_VMS 0x10
292 #define VMECR_VMRMW 0x20
293 #define VMECR_VMMS 0x40
294
295 #define IPA2ADDR(IPA) ((IPA) & 0x1fffff80)
296 #define IPA_IPE 0x1
297 #define IPA_IPX 0x2
298 #define IPA_IPR 0x4
299 #define IPE0 (IPA0L & IPA_IPE)
300 #define IPE1 (IPA1L & IPA_IPE)
301 #define IPE2 (IPA2L & IPA_IPE)
302 #define IPE3 (IPA3L & IPA_IPE)
303 #define IPX0 (IPA0L & IPA_IPX)
304 #define IPX1 (IPA1L & IPA_IPX)
305 #define IPX2 (IPA2L & IPA_IPX)
306 #define IPX3 (IPA3L & IPA_IPX)
307 #define IPR0 (IPA0L & IPA_IPR)
308 #define IPR1 (IPA1L & IPA_IPR)
309 #define IPR2 (IPA2L & IPA_IPR)
310 #define IPR3 (IPA3L & IPA_IPR)
311
312 #define DPA2ADDR(DPA) ((DPA) & 0x1fffff80)
313 #define DPA_DPE 0x1
314 #define DPA_DPR 0x4
315 #define DPA_DPW 0x8
316 #define DPE0 (DPA0L & DPA_DPE)
317 #define DPE1 (DPA1L & DPA_DPE)
318 #define DPE2 (DPA2L & DPA_DPE)
319 #define DPE3 (DPA3L & DPA_DPE)
320 #define DPR0 (DPA0L & DPA_DPR)
321 #define DPR1 (DPA1L & DPA_DPR)
322 #define DPR2 (DPA2L & DPA_DPR)
323 #define DPR3 (DPA3L & DPA_DPR)
324 #define DPW0 (DPA0L & DPA_DPW)
325 #define DPW1 (DPA1L & DPA_DPW)
326 #define DPW2 (DPA2L & DPA_DPW)
327 #define DPW3 (DPA3L & DPA_DPW)
328
329 #define DCC_DCE0 0x1
330 #define DCC_DCE1 0x10000
331
332 #define PPA2ADDR(PPA) ((PPA) & 0x1fffff80)
333 #define PPC_PPC 0xfffffffe
334 #define PPC_PPE 0x1
335 #define PPC_PPM 0x0000fff8
336
337
338 #define SEXT3(x) ((((x)&0x7)^(~0x3))+0x4)
339
340 /* sign-extend a 4-bit number */
341 #define SEXT4(x) ((((x)&0xf)^(~0x7))+0x8)
342
343 /* sign-extend a 5-bit number */
344 #define SEXT5(x) ((((x)&0x1f)^(~0xf))+0x10)
345
346 /* sign-extend a 9-bit number */
347 #define SEXT9(x) ((((x)&0x1ff)^(~0xff))+0x100)
348
349 /* sign-extend a 22-bit number */
350 #define SEXT22(x) ((((x)&0x3fffff)^(~0x1fffff))+0x200000)
351
352 /* sign extend a 40 bit number */
353 #define SEXT40(x) ((((x) & UNSIGNED64 (0xffffffffff)) \
354 ^ (~UNSIGNED64 (0x7fffffffff))) \
355 + UNSIGNED64 (0x8000000000))
356
357 /* sign extend a 44 bit number */
358 #define SEXT44(x) ((((x) & UNSIGNED64 (0xfffffffffff)) \
359 ^ (~ UNSIGNED64 (0x7ffffffffff))) \
360 + UNSIGNED64 (0x80000000000))
361
362 /* sign extend a 60 bit number */
363 #define SEXT60(x) ((((x) & UNSIGNED64 (0xfffffffffffffff)) \
364 ^ (~ UNSIGNED64 (0x7ffffffffffffff))) \
365 + UNSIGNED64 (0x800000000000000))
366
367 /* No sign extension */
368 #define NOP(x) (x)
369
370 #define INC_ADDR(x,i) x = ((State.MD && x == MOD_E) ? MOD_S : (x)+(i))
371
372 #define RLW(x) load_mem (x, 4)
373
374 /* Function declarations. */
375
376 #define IMEM16(EA) \
377 sim_core_read_aligned_2 (CPU, PC, exec_map, (EA))
378
379 #define IMEM16_IMMED(EA,N) \
380 sim_core_read_aligned_2 (STATE_CPU (sd, 0), \
381 PC, exec_map, (EA) + (N) * 2)
382
383 #define load_mem(ADDR,LEN) \
384 sim_core_read_unaligned_##LEN (STATE_CPU (simulator, 0), \
385 PC, read_map, (ADDR))
386
387 #define store_mem(ADDR,LEN,DATA) \
388 sim_core_write_unaligned_##LEN (STATE_CPU (simulator, 0), \
389 PC, write_map, (ADDR), (DATA))
390
391
392 /* compare cccc field against PSW */
393 int condition_met (unsigned code);
394
395
396 /* Debug/tracing calls */
397
398 enum op_types
399 {
400 OP_UNKNOWN,
401 OP_NONE,
402 OP_TRAP,
403 OP_REG,
404 OP_REG_REG,
405 OP_REG_REG_CMP,
406 OP_REG_REG_MOVE,
407 OP_IMM_REG,
408 OP_IMM_REG_CMP,
409 OP_IMM_REG_MOVE,
410 OP_COND_BR,
411 OP_LOAD16,
412 OP_STORE16,
413 OP_LOAD32,
414 OP_STORE32,
415 OP_JUMP,
416 OP_IMM_REG_REG,
417 OP_UIMM_REG_REG,
418 OP_IMM16_REG_REG,
419 OP_UIMM16_REG_REG,
420 OP_BIT,
421 OP_EX1,
422 OP_EX2,
423 OP_LDSR,
424 OP_STSR,
425 OP_BIT_CHANGE,
426 OP_REG_REG_REG,
427 OP_REG_REG3,
428 OP_IMM_REG_REG_REG,
429 OP_PUSHPOP1,
430 OP_PUSHPOP2,
431 OP_PUSHPOP3,
432 };
433
434 #if WITH_TRACE_ANY_P
435 void trace_input (char *name, enum op_types type, int size);
436 void trace_output (enum op_types result);
437 void trace_result (int has_result, uint32_t result);
438
439 extern int trace_num_values;
440 extern uint32_t trace_values[];
441 extern uint32_t trace_pc;
442 extern const char *trace_name;
443 extern int trace_module;
444
445 #define TRACE_BRANCH0() \
446 do { \
447 if (TRACE_BRANCH_P (CPU)) { \
448 trace_module = TRACE_BRANCH_IDX; \
449 trace_pc = cia; \
450 trace_name = itable[MY_INDEX].name; \
451 trace_num_values = 0; \
452 trace_result (1, (nia)); \
453 } \
454 } while (0)
455
456 #define TRACE_BRANCH1(IN1) \
457 do { \
458 if (TRACE_BRANCH_P (CPU)) { \
459 trace_module = TRACE_BRANCH_IDX; \
460 trace_pc = cia; \
461 trace_name = itable[MY_INDEX].name; \
462 trace_values[0] = (IN1); \
463 trace_num_values = 1; \
464 trace_result (1, (nia)); \
465 } \
466 } while (0)
467
468 #define TRACE_BRANCH2(IN1, IN2) \
469 do { \
470 if (TRACE_BRANCH_P (CPU)) { \
471 trace_module = TRACE_BRANCH_IDX; \
472 trace_pc = cia; \
473 trace_name = itable[MY_INDEX].name; \
474 trace_values[0] = (IN1); \
475 trace_values[1] = (IN2); \
476 trace_num_values = 2; \
477 trace_result (1, (nia)); \
478 } \
479 } while (0)
480
481 #define TRACE_BRANCH3(IN1, IN2, IN3) \
482 do { \
483 if (TRACE_BRANCH_P (CPU)) { \
484 trace_module = TRACE_BRANCH_IDX; \
485 trace_pc = cia; \
486 trace_name = itable[MY_INDEX].name; \
487 trace_values[0] = (IN1); \
488 trace_values[1] = (IN2); \
489 trace_values[2] = (IN3); \
490 trace_num_values = 3; \
491 trace_result (1, (nia)); \
492 } \
493 } while (0)
494
495 #define TRACE_LD(ADDR,RESULT) \
496 do { \
497 if (TRACE_MEMORY_P (CPU)) { \
498 trace_module = TRACE_MEMORY_IDX; \
499 trace_pc = cia; \
500 trace_name = itable[MY_INDEX].name; \
501 trace_values[0] = (ADDR); \
502 trace_num_values = 1; \
503 trace_result (1, (RESULT)); \
504 } \
505 } while (0)
506
507 #define TRACE_LD_NAME(NAME, ADDR,RESULT) \
508 do { \
509 if (TRACE_MEMORY_P (CPU)) { \
510 trace_module = TRACE_MEMORY_IDX; \
511 trace_pc = cia; \
512 trace_name = (NAME); \
513 trace_values[0] = (ADDR); \
514 trace_num_values = 1; \
515 trace_result (1, (RESULT)); \
516 } \
517 } while (0)
518
519 #define TRACE_ST(ADDR,RESULT) \
520 do { \
521 if (TRACE_MEMORY_P (CPU)) { \
522 trace_module = TRACE_MEMORY_IDX; \
523 trace_pc = cia; \
524 trace_name = itable[MY_INDEX].name; \
525 trace_values[0] = (ADDR); \
526 trace_num_values = 1; \
527 trace_result (1, (RESULT)); \
528 } \
529 } while (0)
530
531 #define TRACE_FP_INPUT_FPU1(V0) \
532 do { \
533 if (TRACE_FPU_P (CPU)) \
534 { \
535 uint64_t f0; \
536 sim_fpu_to64 (&f0, (V0)); \
537 trace_input_fp1 (SD, CPU, TRACE_FPU_IDX, f0); \
538 } \
539 } while (0)
540
541 #define TRACE_FP_INPUT_FPU2(V0, V1) \
542 do { \
543 if (TRACE_FPU_P (CPU)) \
544 { \
545 uint64_t f0, f1; \
546 sim_fpu_to64 (&f0, (V0)); \
547 sim_fpu_to64 (&f1, (V1)); \
548 trace_input_fp2 (SD, CPU, TRACE_FPU_IDX, f0, f1); \
549 } \
550 } while (0)
551
552 #define TRACE_FP_INPUT_FPU3(V0, V1, V2) \
553 do { \
554 if (TRACE_FPU_P (CPU)) \
555 { \
556 uint64_t f0, f1, f2; \
557 sim_fpu_to64 (&f0, (V0)); \
558 sim_fpu_to64 (&f1, (V1)); \
559 sim_fpu_to64 (&f2, (V2)); \
560 trace_input_fp3 (SD, CPU, TRACE_FPU_IDX, f0, f1, f2); \
561 } \
562 } while (0)
563
564 #define TRACE_FP_INPUT_BOOL1_FPU2(V0, V1, V2) \
565 do { \
566 if (TRACE_FPU_P (CPU)) \
567 { \
568 int d0 = (V0); \
569 uint64_t f1, f2; \
570 TRACE_DATA *data = CPU_TRACE_DATA (CPU); \
571 TRACE_IDX (data) = TRACE_FPU_IDX; \
572 sim_fpu_to64 (&f1, (V1)); \
573 sim_fpu_to64 (&f2, (V2)); \
574 save_data (SD, data, trace_fmt_bool, sizeof (d0), &d0); \
575 save_data (SD, data, trace_fmt_fp, sizeof (fp_word), &f1); \
576 save_data (SD, data, trace_fmt_fp, sizeof (fp_word), &f2); \
577 } \
578 } while (0)
579
580 #define TRACE_FP_INPUT_WORD2(V0, V1) \
581 do { \
582 if (TRACE_FPU_P (CPU)) \
583 trace_input_word2 (SD, CPU, TRACE_FPU_IDX, (V0), (V1)); \
584 } while (0)
585
586 #define TRACE_FP_RESULT_FPU1(R0) \
587 do { \
588 if (TRACE_FPU_P (CPU)) \
589 { \
590 uint64_t f0; \
591 sim_fpu_to64 (&f0, (R0)); \
592 trace_result_fp1 (SD, CPU, TRACE_FPU_IDX, f0); \
593 } \
594 } while (0)
595
596 #define TRACE_FP_RESULT_WORD1(R0) TRACE_FP_RESULT_WORD(R0)
597
598 #define TRACE_FP_RESULT_WORD2(R0, R1) \
599 do { \
600 if (TRACE_FPU_P (CPU)) \
601 trace_result_word2 (SD, CPU, TRACE_FPU_IDX, (R0), (R1)); \
602 } while (0)
603
604 #else
605 #define trace_input(NAME, IN1, IN2)
606 #define trace_output(RESULT)
607 #define trace_result(HAS_RESULT, RESULT)
608
609 #define TRACE_ALU_INPUT0()
610 #define TRACE_ALU_INPUT1(IN0)
611 #define TRACE_ALU_INPUT2(IN0, IN1)
612 #define TRACE_ALU_INPUT2(IN0, IN1)
613 #define TRACE_ALU_INPUT2(IN0, IN1 INS2)
614 #define TRACE_ALU_RESULT(RESULT)
615
616 #define TRACE_BRANCH0()
617 #define TRACE_BRANCH1(IN1)
618 #define TRACE_BRANCH2(IN1, IN2)
619 #define TRACE_BRANCH2(IN1, IN2, IN3)
620
621 #define TRACE_LD(ADDR,RESULT)
622 #define TRACE_ST(ADDR,RESULT)
623
624 #endif
625
626 #define GPR_SET(N, VAL) (State.regs[(N)] = (VAL))
627 #define GPR_CLEAR(N) (State.regs[(N)] = 0)
628
629 extern void divun ( unsigned int N,
630 unsigned long int als,
631 unsigned long int sfi,
632 uint32_t /*unsigned long int*/ * quotient_ptr,
633 uint32_t /*unsigned long int*/ * remainder_ptr,
634 int *overflow_ptr
635 );
636 extern void divn ( unsigned int N,
637 unsigned long int als,
638 unsigned long int sfi,
639 int32_t /*signed long int*/ * quotient_ptr,
640 int32_t /*signed long int*/ * remainder_ptr,
641 int *overflow_ptr
642 );
643 extern int type1_regs[];
644 extern int type2_regs[];
645 extern int type3_regs[];
646
647 #define SESR_OV (1 << 0)
648 #define SESR_SOV (1 << 1)
649
650 #define SESR (State.sregs[12])
651
652 #define ROUND_Q62_Q31(X) ((((X) + (1 << 30)) >> 31) & 0xffffffff)
653 #define ROUND_Q62_Q15(X) ((((X) + (1 << 30)) >> 47) & 0xffff)
654 #define ROUND_Q31_Q15(X) ((((X) + (1 << 15)) >> 15) & 0xffff)
655 #define ROUND_Q30_Q15(X) ((((X) + (1 << 14)) >> 15) & 0xffff)
656
657 #define SAT16(X) \
658 do \
659 { \
660 int64_t z = (X); \
661 if (z > 0x7fff) \
662 { \
663 SESR |= SESR_OV | SESR_SOV; \
664 z = 0x7fff; \
665 } \
666 else if (z < -0x8000) \
667 { \
668 SESR |= SESR_OV | SESR_SOV; \
669 z = - 0x8000; \
670 } \
671 (X) = z; \
672 } \
673 while (0)
674
675 #define SAT32(X) \
676 do \
677 { \
678 int64_t z = (X); \
679 if (z > 0x7fffffff) \
680 { \
681 SESR |= SESR_OV | SESR_SOV; \
682 z = 0x7fffffff; \
683 } \
684 else if (z < -0x80000000) \
685 { \
686 SESR |= SESR_OV | SESR_SOV; \
687 z = - 0x80000000; \
688 } \
689 (X) = z; \
690 } \
691 while (0)
692
693 #define ABS16(X) \
694 do \
695 { \
696 int64_t z = (X) & 0xffff; \
697 if (z == 0x8000) \
698 { \
699 SESR |= SESR_OV | SESR_SOV; \
700 z = 0x7fff; \
701 } \
702 else if (z & 0x8000) \
703 { \
704 z = (- z) & 0xffff; \
705 } \
706 (X) = z; \
707 } \
708 while (0)
709
710 #define ABS32(X) \
711 do \
712 { \
713 int64_t z = (X) & 0xffffffff; \
714 if (z == 0x80000000) \
715 { \
716 SESR |= SESR_OV | SESR_SOV; \
717 z = 0x7fffffff; \
718 } \
719 else if (z & 0x80000000) \
720 { \
721 z = (- z) & 0xffffffff; \
722 } \
723 (X) = z; \
724 } \
725 while (0)
726
727 #endif