]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-data-ref.h
Update copyright years.
[thirdparty/gcc.git] / gcc / tree-data-ref.h
1 /* Data references and dependences detectors.
2 Copyright (C) 2003-2021 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #ifndef GCC_TREE_DATA_REF_H
22 #define GCC_TREE_DATA_REF_H
23
24 #include "graphds.h"
25 #include "tree-chrec.h"
26 #include "opt-problem.h"
27
28 /*
29 innermost_loop_behavior describes the evolution of the address of the memory
30 reference in the innermost enclosing loop. The address is expressed as
31 BASE + STEP * # of iteration, and base is further decomposed as the base
32 pointer (BASE_ADDRESS), loop invariant offset (OFFSET) and
33 constant offset (INIT). Examples, in loop nest
34
35 for (i = 0; i < 100; i++)
36 for (j = 3; j < 100; j++)
37
38 Example 1 Example 2
39 data-ref a[j].b[i][j] *(p + x + 16B + 4B * j)
40
41
42 innermost_loop_behavior
43 base_address &a p
44 offset i * D_i x
45 init 3 * D_j + offsetof (b) 28
46 step D_j 4
47
48 */
49 struct innermost_loop_behavior
50 {
51 tree base_address;
52 tree offset;
53 tree init;
54 tree step;
55
56 /* BASE_ADDRESS is known to be misaligned by BASE_MISALIGNMENT bytes
57 from an alignment boundary of BASE_ALIGNMENT bytes. For example,
58 if we had:
59
60 struct S __attribute__((aligned(16))) { ... };
61
62 char *ptr;
63 ... *(struct S *) (ptr - 4) ...;
64
65 the information would be:
66
67 base_address: ptr
68 base_aligment: 16
69 base_misalignment: 4
70 init: -4
71
72 where init cancels the base misalignment. If instead we had a
73 reference to a particular field:
74
75 struct S __attribute__((aligned(16))) { ... int f; ... };
76
77 char *ptr;
78 ... ((struct S *) (ptr - 4))->f ...;
79
80 the information would be:
81
82 base_address: ptr
83 base_aligment: 16
84 base_misalignment: 4
85 init: -4 + offsetof (S, f)
86
87 where base_address + init might also be misaligned, and by a different
88 amount from base_address. */
89 unsigned int base_alignment;
90 unsigned int base_misalignment;
91
92 /* The largest power of two that divides OFFSET, capped to a suitably
93 high value if the offset is zero. This is a byte rather than a bit
94 quantity. */
95 unsigned int offset_alignment;
96
97 /* Likewise for STEP. */
98 unsigned int step_alignment;
99 };
100
101 /* Describes the evolutions of indices of the memory reference. The indices
102 are indices of the ARRAY_REFs, indexes in artificial dimensions
103 added for member selection of records and the operands of MEM_REFs.
104 BASE_OBJECT is the part of the reference that is loop-invariant
105 (note that this reference does not have to cover the whole object
106 being accessed, in which case UNCONSTRAINED_BASE is set; hence it is
107 not recommended to use BASE_OBJECT in any code generation).
108 For the examples above,
109
110 base_object: a *(p + x + 4B * j_0)
111 indices: {j_0, +, 1}_2 {16, +, 4}_2
112 4
113 {i_0, +, 1}_1
114 {j_0, +, 1}_2
115 */
116
117 struct indices
118 {
119 /* The object. */
120 tree base_object;
121
122 /* A list of chrecs. Access functions of the indices. */
123 vec<tree> access_fns;
124
125 /* Whether BASE_OBJECT is an access representing the whole object
126 or whether the access could not be constrained. */
127 bool unconstrained_base;
128 };
129
130 struct dr_alias
131 {
132 /* The alias information that should be used for new pointers to this
133 location. */
134 struct ptr_info_def *ptr_info;
135 };
136
137 /* An integer vector. A vector formally consists of an element of a vector
138 space. A vector space is a set that is closed under vector addition
139 and scalar multiplication. In this vector space, an element is a list of
140 integers. */
141 typedef HOST_WIDE_INT lambda_int;
142 typedef lambda_int *lambda_vector;
143
144 /* An integer matrix. A matrix consists of m vectors of length n (IE
145 all vectors are the same length). */
146 typedef lambda_vector *lambda_matrix;
147
148
149
150 struct data_reference
151 {
152 /* A pointer to the statement that contains this DR. */
153 gimple *stmt;
154
155 /* A pointer to the memory reference. */
156 tree ref;
157
158 /* Auxiliary info specific to a pass. */
159 void *aux;
160
161 /* True when the data reference is in RHS of a stmt. */
162 bool is_read;
163
164 /* True when the data reference is conditional within STMT,
165 i.e. if it might not occur even when the statement is executed
166 and runs to completion. */
167 bool is_conditional_in_stmt;
168
169 /* Behavior of the memory reference in the innermost loop. */
170 struct innermost_loop_behavior innermost;
171
172 /* Subscripts of this data reference. */
173 struct indices indices;
174
175 /* Alias information for the data reference. */
176 struct dr_alias alias;
177 };
178
179 #define DR_STMT(DR) (DR)->stmt
180 #define DR_REF(DR) (DR)->ref
181 #define DR_BASE_OBJECT(DR) (DR)->indices.base_object
182 #define DR_UNCONSTRAINED_BASE(DR) (DR)->indices.unconstrained_base
183 #define DR_ACCESS_FNS(DR) (DR)->indices.access_fns
184 #define DR_ACCESS_FN(DR, I) DR_ACCESS_FNS (DR)[I]
185 #define DR_NUM_DIMENSIONS(DR) DR_ACCESS_FNS (DR).length ()
186 #define DR_IS_READ(DR) (DR)->is_read
187 #define DR_IS_WRITE(DR) (!DR_IS_READ (DR))
188 #define DR_IS_CONDITIONAL_IN_STMT(DR) (DR)->is_conditional_in_stmt
189 #define DR_BASE_ADDRESS(DR) (DR)->innermost.base_address
190 #define DR_OFFSET(DR) (DR)->innermost.offset
191 #define DR_INIT(DR) (DR)->innermost.init
192 #define DR_STEP(DR) (DR)->innermost.step
193 #define DR_PTR_INFO(DR) (DR)->alias.ptr_info
194 #define DR_BASE_ALIGNMENT(DR) (DR)->innermost.base_alignment
195 #define DR_BASE_MISALIGNMENT(DR) (DR)->innermost.base_misalignment
196 #define DR_OFFSET_ALIGNMENT(DR) (DR)->innermost.offset_alignment
197 #define DR_STEP_ALIGNMENT(DR) (DR)->innermost.step_alignment
198 #define DR_INNERMOST(DR) (DR)->innermost
199
200 typedef struct data_reference *data_reference_p;
201
202 /* This struct is used to store the information of a data reference,
203 including the data ref itself and the segment length for aliasing
204 checks. This is used to merge alias checks. */
205
206 class dr_with_seg_len
207 {
208 public:
209 dr_with_seg_len (data_reference_p d, tree len, unsigned HOST_WIDE_INT size,
210 unsigned int a)
211 : dr (d), seg_len (len), access_size (size), align (a) {}
212
213 data_reference_p dr;
214 /* The offset of the last access that needs to be checked minus
215 the offset of the first. */
216 tree seg_len;
217 /* A value that, when added to abs (SEG_LEN), gives the total number of
218 bytes in the segment. */
219 poly_uint64 access_size;
220 /* The minimum common alignment of DR's start address, SEG_LEN and
221 ACCESS_SIZE. */
222 unsigned int align;
223 };
224
225 /* Flags that describe a potential alias between two dr_with_seg_lens.
226 In general, each pair of dr_with_seg_lens represents a composite of
227 multiple access pairs P, so testing flags like DR_IS_READ on the DRs
228 does not give meaningful information.
229
230 DR_ALIAS_RAW:
231 There is a pair in P for which the second reference is a read
232 and the first is a write.
233
234 DR_ALIAS_WAR:
235 There is a pair in P for which the second reference is a write
236 and the first is a read.
237
238 DR_ALIAS_WAW:
239 There is a pair in P for which both references are writes.
240
241 DR_ALIAS_ARBITRARY:
242 Either
243 (a) it isn't possible to classify one pair in P as RAW, WAW or WAR; or
244 (b) there is a pair in P that breaks the ordering assumption below.
245
246 This flag overrides the RAW, WAR and WAW flags above.
247
248 DR_ALIAS_UNSWAPPED:
249 DR_ALIAS_SWAPPED:
250 Temporary flags that indicate whether there is a pair P whose
251 DRs have or haven't been swapped around.
252
253 DR_ALIAS_MIXED_STEPS:
254 The DR_STEP for one of the data references in the pair does not
255 accurately describe that reference for all members of P. (Note
256 that the flag does not say anything about whether the DR_STEPs
257 of the two references in the pair are the same.)
258
259 The ordering assumption mentioned above is that for every pair
260 (DR_A, DR_B) in P:
261
262 (1) The original code accesses n elements for DR_A and n elements for DR_B,
263 interleaved as follows:
264
265 one access of size DR_A.access_size at DR_A.dr
266 one access of size DR_B.access_size at DR_B.dr
267 one access of size DR_A.access_size at DR_A.dr + STEP_A
268 one access of size DR_B.access_size at DR_B.dr + STEP_B
269 one access of size DR_A.access_size at DR_A.dr + STEP_A * 2
270 one access of size DR_B.access_size at DR_B.dr + STEP_B * 2
271 ...
272
273 (2) The new code accesses the same data in exactly two chunks:
274
275 one group of accesses spanning |DR_A.seg_len| + DR_A.access_size
276 one group of accesses spanning |DR_B.seg_len| + DR_B.access_size
277
278 A pair might break this assumption if the DR_A and DR_B accesses
279 in the original or the new code are mingled in some way. For example,
280 if DR_A.access_size represents the effect of two individual writes
281 to nearby locations, the pair breaks the assumption if those writes
282 occur either side of the access for DR_B.
283
284 Note that DR_ALIAS_ARBITRARY describes whether the ordering assumption
285 fails to hold for any individual pair in P. If the assumption *does*
286 hold for every pair in P, it doesn't matter whether it holds for the
287 composite pair or not. In other words, P should represent the complete
288 set of pairs that the composite pair is testing, so only the ordering
289 of two accesses in the same member of P matters. */
290 const unsigned int DR_ALIAS_RAW = 1U << 0;
291 const unsigned int DR_ALIAS_WAR = 1U << 1;
292 const unsigned int DR_ALIAS_WAW = 1U << 2;
293 const unsigned int DR_ALIAS_ARBITRARY = 1U << 3;
294 const unsigned int DR_ALIAS_SWAPPED = 1U << 4;
295 const unsigned int DR_ALIAS_UNSWAPPED = 1U << 5;
296 const unsigned int DR_ALIAS_MIXED_STEPS = 1U << 6;
297
298 /* This struct contains two dr_with_seg_len objects with aliasing data
299 refs. Two comparisons are generated from them. */
300
301 class dr_with_seg_len_pair_t
302 {
303 public:
304 /* WELL_ORDERED indicates that the ordering assumption described above
305 DR_ALIAS_ARBITRARY holds. REORDERED indicates that it doesn't. */
306 enum sequencing { WELL_ORDERED, REORDERED };
307
308 dr_with_seg_len_pair_t (const dr_with_seg_len &,
309 const dr_with_seg_len &, sequencing);
310
311 dr_with_seg_len first;
312 dr_with_seg_len second;
313 unsigned int flags;
314 };
315
316 inline dr_with_seg_len_pair_t::
317 dr_with_seg_len_pair_t (const dr_with_seg_len &d1, const dr_with_seg_len &d2,
318 sequencing seq)
319 : first (d1), second (d2), flags (0)
320 {
321 if (DR_IS_READ (d1.dr) && DR_IS_WRITE (d2.dr))
322 flags |= DR_ALIAS_WAR;
323 else if (DR_IS_WRITE (d1.dr) && DR_IS_READ (d2.dr))
324 flags |= DR_ALIAS_RAW;
325 else if (DR_IS_WRITE (d1.dr) && DR_IS_WRITE (d2.dr))
326 flags |= DR_ALIAS_WAW;
327 else
328 gcc_unreachable ();
329 if (seq == REORDERED)
330 flags |= DR_ALIAS_ARBITRARY;
331 }
332
333 enum data_dependence_direction {
334 dir_positive,
335 dir_negative,
336 dir_equal,
337 dir_positive_or_negative,
338 dir_positive_or_equal,
339 dir_negative_or_equal,
340 dir_star,
341 dir_independent
342 };
343
344 /* The description of the grid of iterations that overlap. At most
345 two loops are considered at the same time just now, hence at most
346 two functions are needed. For each of the functions, we store
347 the vector of coefficients, f[0] + x * f[1] + y * f[2] + ...,
348 where x, y, ... are variables. */
349
350 #define MAX_DIM 2
351
352 /* Special values of N. */
353 #define NO_DEPENDENCE 0
354 #define NOT_KNOWN (MAX_DIM + 1)
355 #define CF_NONTRIVIAL_P(CF) ((CF)->n != NO_DEPENDENCE && (CF)->n != NOT_KNOWN)
356 #define CF_NOT_KNOWN_P(CF) ((CF)->n == NOT_KNOWN)
357 #define CF_NO_DEPENDENCE_P(CF) ((CF)->n == NO_DEPENDENCE)
358
359 typedef vec<tree> affine_fn;
360
361 struct conflict_function
362 {
363 unsigned n;
364 affine_fn fns[MAX_DIM];
365 };
366
367 /* What is a subscript? Given two array accesses a subscript is the
368 tuple composed of the access functions for a given dimension.
369 Example: Given A[f1][f2][f3] and B[g1][g2][g3], there are three
370 subscripts: (f1, g1), (f2, g2), (f3, g3). These three subscripts
371 are stored in the data_dependence_relation structure under the form
372 of an array of subscripts. */
373
374 struct subscript
375 {
376 /* The access functions of the two references. */
377 tree access_fn[2];
378
379 /* A description of the iterations for which the elements are
380 accessed twice. */
381 conflict_function *conflicting_iterations_in_a;
382 conflict_function *conflicting_iterations_in_b;
383
384 /* This field stores the information about the iteration domain
385 validity of the dependence relation. */
386 tree last_conflict;
387
388 /* Distance from the iteration that access a conflicting element in
389 A to the iteration that access this same conflicting element in
390 B. The distance is a tree scalar expression, i.e. a constant or a
391 symbolic expression, but certainly not a chrec function. */
392 tree distance;
393 };
394
395 typedef struct subscript *subscript_p;
396
397 #define SUB_ACCESS_FN(SUB, I) (SUB)->access_fn[I]
398 #define SUB_CONFLICTS_IN_A(SUB) (SUB)->conflicting_iterations_in_a
399 #define SUB_CONFLICTS_IN_B(SUB) (SUB)->conflicting_iterations_in_b
400 #define SUB_LAST_CONFLICT(SUB) (SUB)->last_conflict
401 #define SUB_DISTANCE(SUB) (SUB)->distance
402
403 /* A data_dependence_relation represents a relation between two
404 data_references A and B. */
405
406 struct data_dependence_relation
407 {
408
409 struct data_reference *a;
410 struct data_reference *b;
411
412 /* A "yes/no/maybe" field for the dependence relation:
413
414 - when "ARE_DEPENDENT == NULL_TREE", there exist a dependence
415 relation between A and B, and the description of this relation
416 is given in the SUBSCRIPTS array,
417
418 - when "ARE_DEPENDENT == chrec_known", there is no dependence and
419 SUBSCRIPTS is empty,
420
421 - when "ARE_DEPENDENT == chrec_dont_know", there may be a dependence,
422 but the analyzer cannot be more specific. */
423 tree are_dependent;
424
425 /* If nonnull, COULD_BE_INDEPENDENT_P is true and the accesses are
426 independent when the runtime addresses of OBJECT_A and OBJECT_B
427 are different. The addresses of both objects are invariant in the
428 loop nest. */
429 tree object_a;
430 tree object_b;
431
432 /* For each subscript in the dependence test, there is an element in
433 this array. This is the attribute that labels the edge A->B of
434 the data_dependence_relation. */
435 vec<subscript_p> subscripts;
436
437 /* The analyzed loop nest. */
438 vec<loop_p> loop_nest;
439
440 /* The classic direction vector. */
441 vec<lambda_vector> dir_vects;
442
443 /* The classic distance vector. */
444 vec<lambda_vector> dist_vects;
445
446 /* Is the dependence reversed with respect to the lexicographic order? */
447 bool reversed_p;
448
449 /* When the dependence relation is affine, it can be represented by
450 a distance vector. */
451 bool affine_p;
452
453 /* Set to true when the dependence relation is on the same data
454 access. */
455 bool self_reference_p;
456
457 /* True if the dependence described is conservatively correct rather
458 than exact, and if it is still possible for the accesses to be
459 conditionally independent. For example, the a and b references in:
460
461 struct s *a, *b;
462 for (int i = 0; i < n; ++i)
463 a->f[i] += b->f[i];
464
465 conservatively have a distance vector of (0), for the case in which
466 a == b, but the accesses are independent if a != b. Similarly,
467 the a and b references in:
468
469 struct s *a, *b;
470 for (int i = 0; i < n; ++i)
471 a[0].f[i] += b[i].f[i];
472
473 conservatively have a distance vector of (0), but they are indepenent
474 when a != b + i. In contrast, the references in:
475
476 struct s *a;
477 for (int i = 0; i < n; ++i)
478 a->f[i] += a->f[i];
479
480 have the same distance vector of (0), but the accesses can never be
481 independent. */
482 bool could_be_independent_p;
483 };
484
485 typedef struct data_dependence_relation *ddr_p;
486
487 #define DDR_A(DDR) (DDR)->a
488 #define DDR_B(DDR) (DDR)->b
489 #define DDR_AFFINE_P(DDR) (DDR)->affine_p
490 #define DDR_ARE_DEPENDENT(DDR) (DDR)->are_dependent
491 #define DDR_OBJECT_A(DDR) (DDR)->object_a
492 #define DDR_OBJECT_B(DDR) (DDR)->object_b
493 #define DDR_SUBSCRIPTS(DDR) (DDR)->subscripts
494 #define DDR_SUBSCRIPT(DDR, I) DDR_SUBSCRIPTS (DDR)[I]
495 #define DDR_NUM_SUBSCRIPTS(DDR) DDR_SUBSCRIPTS (DDR).length ()
496
497 #define DDR_LOOP_NEST(DDR) (DDR)->loop_nest
498 /* The size of the direction/distance vectors: the number of loops in
499 the loop nest. */
500 #define DDR_NB_LOOPS(DDR) (DDR_LOOP_NEST (DDR).length ())
501 #define DDR_SELF_REFERENCE(DDR) (DDR)->self_reference_p
502
503 #define DDR_DIST_VECTS(DDR) ((DDR)->dist_vects)
504 #define DDR_DIR_VECTS(DDR) ((DDR)->dir_vects)
505 #define DDR_NUM_DIST_VECTS(DDR) \
506 (DDR_DIST_VECTS (DDR).length ())
507 #define DDR_NUM_DIR_VECTS(DDR) \
508 (DDR_DIR_VECTS (DDR).length ())
509 #define DDR_DIR_VECT(DDR, I) \
510 DDR_DIR_VECTS (DDR)[I]
511 #define DDR_DIST_VECT(DDR, I) \
512 DDR_DIST_VECTS (DDR)[I]
513 #define DDR_REVERSED_P(DDR) (DDR)->reversed_p
514 #define DDR_COULD_BE_INDEPENDENT_P(DDR) (DDR)->could_be_independent_p
515
516 \f
517 opt_result dr_analyze_innermost (innermost_loop_behavior *, tree,
518 class loop *, const gimple *);
519 extern bool compute_data_dependences_for_loop (class loop *, bool,
520 vec<loop_p> *,
521 vec<data_reference_p> *,
522 vec<ddr_p> *);
523 extern void debug_ddrs (vec<ddr_p> );
524 extern void dump_data_reference (FILE *, struct data_reference *);
525 extern void debug (data_reference &ref);
526 extern void debug (data_reference *ptr);
527 extern void debug_data_reference (struct data_reference *);
528 extern void debug_data_references (vec<data_reference_p> );
529 extern void debug (vec<data_reference_p> &ref);
530 extern void debug (vec<data_reference_p> *ptr);
531 extern void debug_data_dependence_relation (struct data_dependence_relation *);
532 extern void dump_data_dependence_relations (FILE *, vec<ddr_p> );
533 extern void debug (vec<ddr_p> &ref);
534 extern void debug (vec<ddr_p> *ptr);
535 extern void debug_data_dependence_relations (vec<ddr_p> );
536 extern void free_dependence_relation (struct data_dependence_relation *);
537 extern void free_dependence_relations (vec<ddr_p> );
538 extern void free_data_ref (data_reference_p);
539 extern void free_data_refs (vec<data_reference_p> );
540 extern opt_result find_data_references_in_stmt (class loop *, gimple *,
541 vec<data_reference_p> *);
542 extern bool graphite_find_data_references_in_stmt (edge, loop_p, gimple *,
543 vec<data_reference_p> *);
544 tree find_data_references_in_loop (class loop *, vec<data_reference_p> *);
545 bool loop_nest_has_data_refs (loop_p loop);
546 struct data_reference *create_data_ref (edge, loop_p, tree, gimple *, bool,
547 bool);
548 extern bool find_loop_nest (class loop *, vec<loop_p> *);
549 extern struct data_dependence_relation *initialize_data_dependence_relation
550 (struct data_reference *, struct data_reference *, vec<loop_p>);
551 extern void compute_affine_dependence (struct data_dependence_relation *,
552 loop_p);
553 extern void compute_self_dependence (struct data_dependence_relation *);
554 extern bool compute_all_dependences (vec<data_reference_p> ,
555 vec<ddr_p> *,
556 vec<loop_p>, bool);
557 extern tree find_data_references_in_bb (class loop *, basic_block,
558 vec<data_reference_p> *);
559 extern unsigned int dr_alignment (innermost_loop_behavior *);
560 extern tree get_base_for_alignment (tree, unsigned int *);
561
562 /* Return the alignment in bytes that DR is guaranteed to have at all
563 times. */
564
565 inline unsigned int
566 dr_alignment (data_reference *dr)
567 {
568 return dr_alignment (&DR_INNERMOST (dr));
569 }
570
571 extern bool dr_may_alias_p (const struct data_reference *,
572 const struct data_reference *, class loop *);
573 extern bool dr_equal_offsets_p (struct data_reference *,
574 struct data_reference *);
575
576 extern opt_result runtime_alias_check_p (ddr_p, class loop *, bool);
577 extern int data_ref_compare_tree (tree, tree);
578 extern void prune_runtime_alias_test_list (vec<dr_with_seg_len_pair_t> *,
579 poly_uint64);
580 extern void create_runtime_alias_checks (class loop *,
581 vec<dr_with_seg_len_pair_t> *, tree*);
582 extern tree dr_direction_indicator (struct data_reference *);
583 extern tree dr_zero_step_indicator (struct data_reference *);
584 extern bool dr_known_forward_stride_p (struct data_reference *);
585
586 /* Return true when the base objects of data references A and B are
587 the same memory object. */
588
589 static inline bool
590 same_data_refs_base_objects (data_reference_p a, data_reference_p b)
591 {
592 return DR_NUM_DIMENSIONS (a) == DR_NUM_DIMENSIONS (b)
593 && operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b), 0);
594 }
595
596 /* Return true when the data references A and B are accessing the same
597 memory object with the same access functions. */
598
599 static inline bool
600 same_data_refs (data_reference_p a, data_reference_p b)
601 {
602 unsigned int i;
603
604 /* The references are exactly the same. */
605 if (operand_equal_p (DR_REF (a), DR_REF (b), 0))
606 return true;
607
608 if (!same_data_refs_base_objects (a, b))
609 return false;
610
611 for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
612 if (!eq_evolutions_p (DR_ACCESS_FN (a, i), DR_ACCESS_FN (b, i)))
613 return false;
614
615 return true;
616 }
617
618 /* Returns true when all the dependences are computable. */
619
620 inline bool
621 known_dependences_p (vec<ddr_p> dependence_relations)
622 {
623 ddr_p ddr;
624 unsigned int i;
625
626 FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
627 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
628 return false;
629
630 return true;
631 }
632
633 /* Returns the dependence level for a vector DIST of size LENGTH.
634 LEVEL = 0 means a lexicographic dependence, i.e. a dependence due
635 to the sequence of statements, not carried by any loop. */
636
637 static inline unsigned
638 dependence_level (lambda_vector dist_vect, int length)
639 {
640 int i;
641
642 for (i = 0; i < length; i++)
643 if (dist_vect[i] != 0)
644 return i + 1;
645
646 return 0;
647 }
648
649 /* Return the dependence level for the DDR relation. */
650
651 static inline unsigned
652 ddr_dependence_level (ddr_p ddr)
653 {
654 unsigned vector;
655 unsigned level = 0;
656
657 if (DDR_DIST_VECTS (ddr).exists ())
658 level = dependence_level (DDR_DIST_VECT (ddr, 0), DDR_NB_LOOPS (ddr));
659
660 for (vector = 1; vector < DDR_NUM_DIST_VECTS (ddr); vector++)
661 level = MIN (level, dependence_level (DDR_DIST_VECT (ddr, vector),
662 DDR_NB_LOOPS (ddr)));
663 return level;
664 }
665
666 /* Return the index of the variable VAR in the LOOP_NEST array. */
667
668 static inline int
669 index_in_loop_nest (int var, vec<loop_p> loop_nest)
670 {
671 class loop *loopi;
672 int var_index;
673
674 for (var_index = 0; loop_nest.iterate (var_index, &loopi); var_index++)
675 if (loopi->num == var)
676 return var_index;
677
678 gcc_unreachable ();
679 }
680
681 /* Returns true when the data reference DR the form "A[i] = ..."
682 with a stride equal to its unit type size. */
683
684 static inline bool
685 adjacent_dr_p (struct data_reference *dr)
686 {
687 /* If this is a bitfield store bail out. */
688 if (TREE_CODE (DR_REF (dr)) == COMPONENT_REF
689 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr), 1)))
690 return false;
691
692 if (!DR_STEP (dr)
693 || TREE_CODE (DR_STEP (dr)) != INTEGER_CST)
694 return false;
695
696 return tree_int_cst_equal (fold_unary (ABS_EXPR, TREE_TYPE (DR_STEP (dr)),
697 DR_STEP (dr)),
698 TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr))));
699 }
700
701 void split_constant_offset (tree , tree *, tree *);
702
703 /* Compute the greatest common divisor of a VECTOR of SIZE numbers. */
704
705 static inline lambda_int
706 lambda_vector_gcd (lambda_vector vector, int size)
707 {
708 int i;
709 lambda_int gcd1 = 0;
710
711 if (size > 0)
712 {
713 gcd1 = vector[0];
714 for (i = 1; i < size; i++)
715 gcd1 = gcd (gcd1, vector[i]);
716 }
717 return gcd1;
718 }
719
720 /* Allocate a new vector of given SIZE. */
721
722 static inline lambda_vector
723 lambda_vector_new (int size)
724 {
725 /* ??? We shouldn't abuse the GC allocator here. */
726 return ggc_cleared_vec_alloc<lambda_int> (size);
727 }
728
729 /* Clear out vector VEC1 of length SIZE. */
730
731 static inline void
732 lambda_vector_clear (lambda_vector vec1, int size)
733 {
734 memset (vec1, 0, size * sizeof (*vec1));
735 }
736
737 /* Returns true when the vector V is lexicographically positive, in
738 other words, when the first nonzero element is positive. */
739
740 static inline bool
741 lambda_vector_lexico_pos (lambda_vector v,
742 unsigned n)
743 {
744 unsigned i;
745 for (i = 0; i < n; i++)
746 {
747 if (v[i] == 0)
748 continue;
749 if (v[i] < 0)
750 return false;
751 if (v[i] > 0)
752 return true;
753 }
754 return true;
755 }
756
757 /* Return true if vector VEC1 of length SIZE is the zero vector. */
758
759 static inline bool
760 lambda_vector_zerop (lambda_vector vec1, int size)
761 {
762 int i;
763 for (i = 0; i < size; i++)
764 if (vec1[i] != 0)
765 return false;
766 return true;
767 }
768
769 /* Allocate a matrix of M rows x N cols. */
770
771 static inline lambda_matrix
772 lambda_matrix_new (int m, int n, struct obstack *lambda_obstack)
773 {
774 lambda_matrix mat;
775 int i;
776
777 mat = XOBNEWVEC (lambda_obstack, lambda_vector, m);
778
779 for (i = 0; i < m; i++)
780 mat[i] = XOBNEWVEC (lambda_obstack, lambda_int, n);
781
782 return mat;
783 }
784
785 #endif /* GCC_TREE_DATA_REF_H */