]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree.c
Update copyright years.
[thirdparty/gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987-2021 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains the low level primitives for operating on tree nodes,
21 including allocation, list operations, interning of identifiers,
22 construction of data type nodes and statement nodes,
23 and construction of type conversion nodes. It also contains
24 tables index by tree code that describe how to take apart
25 nodes of that code.
26
27 It is intended to be language-independent but can occasionally
28 calls language-dependent routines. */
29
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "backend.h"
34 #include "target.h"
35 #include "tree.h"
36 #include "gimple.h"
37 #include "tree-pass.h"
38 #include "ssa.h"
39 #include "cgraph.h"
40 #include "diagnostic.h"
41 #include "flags.h"
42 #include "alias.h"
43 #include "fold-const.h"
44 #include "stor-layout.h"
45 #include "calls.h"
46 #include "attribs.h"
47 #include "toplev.h" /* get_random_seed */
48 #include "output.h"
49 #include "common/common-target.h"
50 #include "langhooks.h"
51 #include "tree-inline.h"
52 #include "tree-iterator.h"
53 #include "internal-fn.h"
54 #include "gimple-iterator.h"
55 #include "gimplify.h"
56 #include "tree-dfa.h"
57 #include "langhooks-def.h"
58 #include "tree-diagnostic.h"
59 #include "except.h"
60 #include "builtins.h"
61 #include "print-tree.h"
62 #include "ipa-utils.h"
63 #include "selftest.h"
64 #include "stringpool.h"
65 #include "attribs.h"
66 #include "rtl.h"
67 #include "regs.h"
68 #include "tree-vector-builder.h"
69 #include "gimple-fold.h"
70 #include "escaped_string.h"
71
72 /* Tree code classes. */
73
74 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
75 #define END_OF_BASE_TREE_CODES tcc_exceptional,
76
77 const enum tree_code_class tree_code_type[] = {
78 #include "all-tree.def"
79 };
80
81 #undef DEFTREECODE
82 #undef END_OF_BASE_TREE_CODES
83
84 /* Table indexed by tree code giving number of expression
85 operands beyond the fixed part of the node structure.
86 Not used for types or decls. */
87
88 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
89 #define END_OF_BASE_TREE_CODES 0,
90
91 const unsigned char tree_code_length[] = {
92 #include "all-tree.def"
93 };
94
95 #undef DEFTREECODE
96 #undef END_OF_BASE_TREE_CODES
97
98 /* Names of tree components.
99 Used for printing out the tree and error messages. */
100 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
101 #define END_OF_BASE_TREE_CODES "@dummy",
102
103 static const char *const tree_code_name[] = {
104 #include "all-tree.def"
105 };
106
107 #undef DEFTREECODE
108 #undef END_OF_BASE_TREE_CODES
109
110 /* Each tree code class has an associated string representation.
111 These must correspond to the tree_code_class entries. */
112
113 const char *const tree_code_class_strings[] =
114 {
115 "exceptional",
116 "constant",
117 "type",
118 "declaration",
119 "reference",
120 "comparison",
121 "unary",
122 "binary",
123 "statement",
124 "vl_exp",
125 "expression"
126 };
127
128 /* obstack.[ch] explicitly declined to prototype this. */
129 extern int _obstack_allocated_p (struct obstack *h, void *obj);
130
131 /* Statistics-gathering stuff. */
132
133 static uint64_t tree_code_counts[MAX_TREE_CODES];
134 uint64_t tree_node_counts[(int) all_kinds];
135 uint64_t tree_node_sizes[(int) all_kinds];
136
137 /* Keep in sync with tree.h:enum tree_node_kind. */
138 static const char * const tree_node_kind_names[] = {
139 "decls",
140 "types",
141 "blocks",
142 "stmts",
143 "refs",
144 "exprs",
145 "constants",
146 "identifiers",
147 "vecs",
148 "binfos",
149 "ssa names",
150 "constructors",
151 "random kinds",
152 "lang_decl kinds",
153 "lang_type kinds",
154 "omp clauses",
155 };
156
157 /* Unique id for next decl created. */
158 static GTY(()) int next_decl_uid;
159 /* Unique id for next type created. */
160 static GTY(()) unsigned next_type_uid = 1;
161 /* Unique id for next debug decl created. Use negative numbers,
162 to catch erroneous uses. */
163 static GTY(()) int next_debug_decl_uid;
164
165 /* Since we cannot rehash a type after it is in the table, we have to
166 keep the hash code. */
167
168 struct GTY((for_user)) type_hash {
169 unsigned long hash;
170 tree type;
171 };
172
173 /* Initial size of the hash table (rounded to next prime). */
174 #define TYPE_HASH_INITIAL_SIZE 1000
175
176 struct type_cache_hasher : ggc_cache_ptr_hash<type_hash>
177 {
178 static hashval_t hash (type_hash *t) { return t->hash; }
179 static bool equal (type_hash *a, type_hash *b);
180
181 static int
182 keep_cache_entry (type_hash *&t)
183 {
184 return ggc_marked_p (t->type);
185 }
186 };
187
188 /* Now here is the hash table. When recording a type, it is added to
189 the slot whose index is the hash code. Note that the hash table is
190 used for several kinds of types (function types, array types and
191 array index range types, for now). While all these live in the
192 same table, they are completely independent, and the hash code is
193 computed differently for each of these. */
194
195 static GTY ((cache)) hash_table<type_cache_hasher> *type_hash_table;
196
197 /* Hash table and temporary node for larger integer const values. */
198 static GTY (()) tree int_cst_node;
199
200 struct int_cst_hasher : ggc_cache_ptr_hash<tree_node>
201 {
202 static hashval_t hash (tree t);
203 static bool equal (tree x, tree y);
204 };
205
206 static GTY ((cache)) hash_table<int_cst_hasher> *int_cst_hash_table;
207
208 /* Class and variable for making sure that there is a single POLY_INT_CST
209 for a given value. */
210 struct poly_int_cst_hasher : ggc_cache_ptr_hash<tree_node>
211 {
212 typedef std::pair<tree, const poly_wide_int *> compare_type;
213 static hashval_t hash (tree t);
214 static bool equal (tree x, const compare_type &y);
215 };
216
217 static GTY ((cache)) hash_table<poly_int_cst_hasher> *poly_int_cst_hash_table;
218
219 /* Hash table for optimization flags and target option flags. Use the same
220 hash table for both sets of options. Nodes for building the current
221 optimization and target option nodes. The assumption is most of the time
222 the options created will already be in the hash table, so we avoid
223 allocating and freeing up a node repeatably. */
224 static GTY (()) tree cl_optimization_node;
225 static GTY (()) tree cl_target_option_node;
226
227 struct cl_option_hasher : ggc_cache_ptr_hash<tree_node>
228 {
229 static hashval_t hash (tree t);
230 static bool equal (tree x, tree y);
231 };
232
233 static GTY ((cache)) hash_table<cl_option_hasher> *cl_option_hash_table;
234
235 /* General tree->tree mapping structure for use in hash tables. */
236
237
238 static GTY ((cache))
239 hash_table<tree_decl_map_cache_hasher> *debug_expr_for_decl;
240
241 static GTY ((cache))
242 hash_table<tree_decl_map_cache_hasher> *value_expr_for_decl;
243
244 struct tree_vec_map_cache_hasher : ggc_cache_ptr_hash<tree_vec_map>
245 {
246 static hashval_t hash (tree_vec_map *m) { return DECL_UID (m->base.from); }
247
248 static bool
249 equal (tree_vec_map *a, tree_vec_map *b)
250 {
251 return a->base.from == b->base.from;
252 }
253
254 static int
255 keep_cache_entry (tree_vec_map *&m)
256 {
257 return ggc_marked_p (m->base.from);
258 }
259 };
260
261 static GTY ((cache))
262 hash_table<tree_vec_map_cache_hasher> *debug_args_for_decl;
263
264 static void set_type_quals (tree, int);
265 static void print_type_hash_statistics (void);
266 static void print_debug_expr_statistics (void);
267 static void print_value_expr_statistics (void);
268
269 static tree build_array_type_1 (tree, tree, bool, bool, bool);
270
271 tree global_trees[TI_MAX];
272 tree integer_types[itk_none];
273
274 bool int_n_enabled_p[NUM_INT_N_ENTS];
275 struct int_n_trees_t int_n_trees [NUM_INT_N_ENTS];
276
277 bool tree_contains_struct[MAX_TREE_CODES][64];
278
279 /* Number of operands for each OpenMP clause. */
280 unsigned const char omp_clause_num_ops[] =
281 {
282 0, /* OMP_CLAUSE_ERROR */
283 1, /* OMP_CLAUSE_PRIVATE */
284 1, /* OMP_CLAUSE_SHARED */
285 1, /* OMP_CLAUSE_FIRSTPRIVATE */
286 2, /* OMP_CLAUSE_LASTPRIVATE */
287 5, /* OMP_CLAUSE_REDUCTION */
288 5, /* OMP_CLAUSE_TASK_REDUCTION */
289 5, /* OMP_CLAUSE_IN_REDUCTION */
290 1, /* OMP_CLAUSE_COPYIN */
291 1, /* OMP_CLAUSE_COPYPRIVATE */
292 3, /* OMP_CLAUSE_LINEAR */
293 2, /* OMP_CLAUSE_ALIGNED */
294 2, /* OMP_CLAUSE_ALLOCATE */
295 1, /* OMP_CLAUSE_DEPEND */
296 1, /* OMP_CLAUSE_NONTEMPORAL */
297 1, /* OMP_CLAUSE_UNIFORM */
298 1, /* OMP_CLAUSE_TO_DECLARE */
299 1, /* OMP_CLAUSE_LINK */
300 2, /* OMP_CLAUSE_FROM */
301 2, /* OMP_CLAUSE_TO */
302 2, /* OMP_CLAUSE_MAP */
303 1, /* OMP_CLAUSE_USE_DEVICE_PTR */
304 1, /* OMP_CLAUSE_USE_DEVICE_ADDR */
305 1, /* OMP_CLAUSE_IS_DEVICE_PTR */
306 1, /* OMP_CLAUSE_INCLUSIVE */
307 1, /* OMP_CLAUSE_EXCLUSIVE */
308 2, /* OMP_CLAUSE__CACHE_ */
309 2, /* OMP_CLAUSE_GANG */
310 1, /* OMP_CLAUSE_ASYNC */
311 1, /* OMP_CLAUSE_WAIT */
312 0, /* OMP_CLAUSE_AUTO */
313 0, /* OMP_CLAUSE_SEQ */
314 1, /* OMP_CLAUSE__LOOPTEMP_ */
315 1, /* OMP_CLAUSE__REDUCTEMP_ */
316 1, /* OMP_CLAUSE__CONDTEMP_ */
317 1, /* OMP_CLAUSE__SCANTEMP_ */
318 1, /* OMP_CLAUSE_IF */
319 1, /* OMP_CLAUSE_NUM_THREADS */
320 1, /* OMP_CLAUSE_SCHEDULE */
321 0, /* OMP_CLAUSE_NOWAIT */
322 1, /* OMP_CLAUSE_ORDERED */
323 0, /* OMP_CLAUSE_DEFAULT */
324 3, /* OMP_CLAUSE_COLLAPSE */
325 0, /* OMP_CLAUSE_UNTIED */
326 1, /* OMP_CLAUSE_FINAL */
327 0, /* OMP_CLAUSE_MERGEABLE */
328 1, /* OMP_CLAUSE_DEVICE */
329 1, /* OMP_CLAUSE_DIST_SCHEDULE */
330 0, /* OMP_CLAUSE_INBRANCH */
331 0, /* OMP_CLAUSE_NOTINBRANCH */
332 1, /* OMP_CLAUSE_NUM_TEAMS */
333 1, /* OMP_CLAUSE_THREAD_LIMIT */
334 0, /* OMP_CLAUSE_PROC_BIND */
335 1, /* OMP_CLAUSE_SAFELEN */
336 1, /* OMP_CLAUSE_SIMDLEN */
337 0, /* OMP_CLAUSE_DEVICE_TYPE */
338 0, /* OMP_CLAUSE_FOR */
339 0, /* OMP_CLAUSE_PARALLEL */
340 0, /* OMP_CLAUSE_SECTIONS */
341 0, /* OMP_CLAUSE_TASKGROUP */
342 1, /* OMP_CLAUSE_PRIORITY */
343 1, /* OMP_CLAUSE_GRAINSIZE */
344 1, /* OMP_CLAUSE_NUM_TASKS */
345 0, /* OMP_CLAUSE_NOGROUP */
346 0, /* OMP_CLAUSE_THREADS */
347 0, /* OMP_CLAUSE_SIMD */
348 1, /* OMP_CLAUSE_HINT */
349 0, /* OMP_CLAUSE_DEFAULTMAP */
350 0, /* OMP_CLAUSE_ORDER */
351 0, /* OMP_CLAUSE_BIND */
352 1, /* OMP_CLAUSE__SIMDUID_ */
353 0, /* OMP_CLAUSE__SIMT_ */
354 0, /* OMP_CLAUSE_INDEPENDENT */
355 1, /* OMP_CLAUSE_WORKER */
356 1, /* OMP_CLAUSE_VECTOR */
357 1, /* OMP_CLAUSE_NUM_GANGS */
358 1, /* OMP_CLAUSE_NUM_WORKERS */
359 1, /* OMP_CLAUSE_VECTOR_LENGTH */
360 3, /* OMP_CLAUSE_TILE */
361 0, /* OMP_CLAUSE_IF_PRESENT */
362 0, /* OMP_CLAUSE_FINALIZE */
363 };
364
365 const char * const omp_clause_code_name[] =
366 {
367 "error_clause",
368 "private",
369 "shared",
370 "firstprivate",
371 "lastprivate",
372 "reduction",
373 "task_reduction",
374 "in_reduction",
375 "copyin",
376 "copyprivate",
377 "linear",
378 "aligned",
379 "allocate",
380 "depend",
381 "nontemporal",
382 "uniform",
383 "to",
384 "link",
385 "from",
386 "to",
387 "map",
388 "use_device_ptr",
389 "use_device_addr",
390 "is_device_ptr",
391 "inclusive",
392 "exclusive",
393 "_cache_",
394 "gang",
395 "async",
396 "wait",
397 "auto",
398 "seq",
399 "_looptemp_",
400 "_reductemp_",
401 "_condtemp_",
402 "_scantemp_",
403 "if",
404 "num_threads",
405 "schedule",
406 "nowait",
407 "ordered",
408 "default",
409 "collapse",
410 "untied",
411 "final",
412 "mergeable",
413 "device",
414 "dist_schedule",
415 "inbranch",
416 "notinbranch",
417 "num_teams",
418 "thread_limit",
419 "proc_bind",
420 "safelen",
421 "simdlen",
422 "device_type",
423 "for",
424 "parallel",
425 "sections",
426 "taskgroup",
427 "priority",
428 "grainsize",
429 "num_tasks",
430 "nogroup",
431 "threads",
432 "simd",
433 "hint",
434 "defaultmap",
435 "order",
436 "bind",
437 "_simduid_",
438 "_simt_",
439 "independent",
440 "worker",
441 "vector",
442 "num_gangs",
443 "num_workers",
444 "vector_length",
445 "tile",
446 "if_present",
447 "finalize",
448 };
449
450
451 /* Return the tree node structure used by tree code CODE. */
452
453 static inline enum tree_node_structure_enum
454 tree_node_structure_for_code (enum tree_code code)
455 {
456 switch (TREE_CODE_CLASS (code))
457 {
458 case tcc_declaration:
459 switch (code)
460 {
461 case CONST_DECL: return TS_CONST_DECL;
462 case DEBUG_EXPR_DECL: return TS_DECL_WRTL;
463 case FIELD_DECL: return TS_FIELD_DECL;
464 case FUNCTION_DECL: return TS_FUNCTION_DECL;
465 case LABEL_DECL: return TS_LABEL_DECL;
466 case PARM_DECL: return TS_PARM_DECL;
467 case RESULT_DECL: return TS_RESULT_DECL;
468 case TRANSLATION_UNIT_DECL: return TS_TRANSLATION_UNIT_DECL;
469 case TYPE_DECL: return TS_TYPE_DECL;
470 case VAR_DECL: return TS_VAR_DECL;
471 default: return TS_DECL_NON_COMMON;
472 }
473
474 case tcc_type: return TS_TYPE_NON_COMMON;
475
476 case tcc_binary:
477 case tcc_comparison:
478 case tcc_expression:
479 case tcc_reference:
480 case tcc_statement:
481 case tcc_unary:
482 case tcc_vl_exp: return TS_EXP;
483
484 default: /* tcc_constant and tcc_exceptional */
485 break;
486 }
487
488 switch (code)
489 {
490 /* tcc_constant cases. */
491 case COMPLEX_CST: return TS_COMPLEX;
492 case FIXED_CST: return TS_FIXED_CST;
493 case INTEGER_CST: return TS_INT_CST;
494 case POLY_INT_CST: return TS_POLY_INT_CST;
495 case REAL_CST: return TS_REAL_CST;
496 case STRING_CST: return TS_STRING;
497 case VECTOR_CST: return TS_VECTOR;
498 case VOID_CST: return TS_TYPED;
499
500 /* tcc_exceptional cases. */
501 case BLOCK: return TS_BLOCK;
502 case CONSTRUCTOR: return TS_CONSTRUCTOR;
503 case ERROR_MARK: return TS_COMMON;
504 case IDENTIFIER_NODE: return TS_IDENTIFIER;
505 case OMP_CLAUSE: return TS_OMP_CLAUSE;
506 case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
507 case PLACEHOLDER_EXPR: return TS_COMMON;
508 case SSA_NAME: return TS_SSA_NAME;
509 case STATEMENT_LIST: return TS_STATEMENT_LIST;
510 case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
511 case TREE_BINFO: return TS_BINFO;
512 case TREE_LIST: return TS_LIST;
513 case TREE_VEC: return TS_VEC;
514
515 default:
516 gcc_unreachable ();
517 }
518 }
519
520
521 /* Initialize tree_contains_struct to describe the hierarchy of tree
522 nodes. */
523
524 static void
525 initialize_tree_contains_struct (void)
526 {
527 unsigned i;
528
529 for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
530 {
531 enum tree_code code;
532 enum tree_node_structure_enum ts_code;
533
534 code = (enum tree_code) i;
535 ts_code = tree_node_structure_for_code (code);
536
537 /* Mark the TS structure itself. */
538 tree_contains_struct[code][ts_code] = 1;
539
540 /* Mark all the structures that TS is derived from. */
541 switch (ts_code)
542 {
543 case TS_TYPED:
544 case TS_BLOCK:
545 case TS_OPTIMIZATION:
546 case TS_TARGET_OPTION:
547 MARK_TS_BASE (code);
548 break;
549
550 case TS_COMMON:
551 case TS_INT_CST:
552 case TS_POLY_INT_CST:
553 case TS_REAL_CST:
554 case TS_FIXED_CST:
555 case TS_VECTOR:
556 case TS_STRING:
557 case TS_COMPLEX:
558 case TS_SSA_NAME:
559 case TS_CONSTRUCTOR:
560 case TS_EXP:
561 case TS_STATEMENT_LIST:
562 MARK_TS_TYPED (code);
563 break;
564
565 case TS_IDENTIFIER:
566 case TS_DECL_MINIMAL:
567 case TS_TYPE_COMMON:
568 case TS_LIST:
569 case TS_VEC:
570 case TS_BINFO:
571 case TS_OMP_CLAUSE:
572 MARK_TS_COMMON (code);
573 break;
574
575 case TS_TYPE_WITH_LANG_SPECIFIC:
576 MARK_TS_TYPE_COMMON (code);
577 break;
578
579 case TS_TYPE_NON_COMMON:
580 MARK_TS_TYPE_WITH_LANG_SPECIFIC (code);
581 break;
582
583 case TS_DECL_COMMON:
584 MARK_TS_DECL_MINIMAL (code);
585 break;
586
587 case TS_DECL_WRTL:
588 case TS_CONST_DECL:
589 MARK_TS_DECL_COMMON (code);
590 break;
591
592 case TS_DECL_NON_COMMON:
593 MARK_TS_DECL_WITH_VIS (code);
594 break;
595
596 case TS_DECL_WITH_VIS:
597 case TS_PARM_DECL:
598 case TS_LABEL_DECL:
599 case TS_RESULT_DECL:
600 MARK_TS_DECL_WRTL (code);
601 break;
602
603 case TS_FIELD_DECL:
604 MARK_TS_DECL_COMMON (code);
605 break;
606
607 case TS_VAR_DECL:
608 MARK_TS_DECL_WITH_VIS (code);
609 break;
610
611 case TS_TYPE_DECL:
612 case TS_FUNCTION_DECL:
613 MARK_TS_DECL_NON_COMMON (code);
614 break;
615
616 case TS_TRANSLATION_UNIT_DECL:
617 MARK_TS_DECL_COMMON (code);
618 break;
619
620 default:
621 gcc_unreachable ();
622 }
623 }
624
625 /* Basic consistency checks for attributes used in fold. */
626 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
627 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
628 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
629 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
630 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
631 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
632 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
633 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
634 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
635 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
636 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
637 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
638 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
639 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
640 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
641 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
642 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
643 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
644 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
645 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
646 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
647 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
648 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
649 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
650 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
651 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
652 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
653 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
654 gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
655 gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
656 gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
657 gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
658 gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
659 gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
660 gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
661 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
662 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
663 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
664 gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_MINIMAL]);
665 gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_COMMON]);
666 }
667
668
669 /* Init tree.c. */
670
671 void
672 init_ttree (void)
673 {
674 /* Initialize the hash table of types. */
675 type_hash_table
676 = hash_table<type_cache_hasher>::create_ggc (TYPE_HASH_INITIAL_SIZE);
677
678 debug_expr_for_decl
679 = hash_table<tree_decl_map_cache_hasher>::create_ggc (512);
680
681 value_expr_for_decl
682 = hash_table<tree_decl_map_cache_hasher>::create_ggc (512);
683
684 int_cst_hash_table = hash_table<int_cst_hasher>::create_ggc (1024);
685
686 poly_int_cst_hash_table = hash_table<poly_int_cst_hasher>::create_ggc (64);
687
688 int_cst_node = make_int_cst (1, 1);
689
690 cl_option_hash_table = hash_table<cl_option_hasher>::create_ggc (64);
691
692 cl_optimization_node = make_node (OPTIMIZATION_NODE);
693 cl_target_option_node = make_node (TARGET_OPTION_NODE);
694
695 /* Initialize the tree_contains_struct array. */
696 initialize_tree_contains_struct ();
697 lang_hooks.init_ts ();
698 }
699
700 \f
701 /* The name of the object as the assembler will see it (but before any
702 translations made by ASM_OUTPUT_LABELREF). Often this is the same
703 as DECL_NAME. It is an IDENTIFIER_NODE. */
704 tree
705 decl_assembler_name (tree decl)
706 {
707 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
708 lang_hooks.set_decl_assembler_name (decl);
709 return DECL_ASSEMBLER_NAME_RAW (decl);
710 }
711
712 /* The DECL_ASSEMBLER_NAME_RAW of DECL is being explicitly set to NAME
713 (either of which may be NULL). Inform the FE, if this changes the
714 name. */
715
716 void
717 overwrite_decl_assembler_name (tree decl, tree name)
718 {
719 if (DECL_ASSEMBLER_NAME_RAW (decl) != name)
720 lang_hooks.overwrite_decl_assembler_name (decl, name);
721 }
722
723 /* When the target supports COMDAT groups, this indicates which group the
724 DECL is associated with. This can be either an IDENTIFIER_NODE or a
725 decl, in which case its DECL_ASSEMBLER_NAME identifies the group. */
726 tree
727 decl_comdat_group (const_tree node)
728 {
729 struct symtab_node *snode = symtab_node::get (node);
730 if (!snode)
731 return NULL;
732 return snode->get_comdat_group ();
733 }
734
735 /* Likewise, but make sure it's been reduced to an IDENTIFIER_NODE. */
736 tree
737 decl_comdat_group_id (const_tree node)
738 {
739 struct symtab_node *snode = symtab_node::get (node);
740 if (!snode)
741 return NULL;
742 return snode->get_comdat_group_id ();
743 }
744
745 /* When the target supports named section, return its name as IDENTIFIER_NODE
746 or NULL if it is in no section. */
747 const char *
748 decl_section_name (const_tree node)
749 {
750 struct symtab_node *snode = symtab_node::get (node);
751 if (!snode)
752 return NULL;
753 return snode->get_section ();
754 }
755
756 /* Set section name of NODE to VALUE (that is expected to be
757 identifier node) */
758 void
759 set_decl_section_name (tree node, const char *value)
760 {
761 struct symtab_node *snode;
762
763 if (value == NULL)
764 {
765 snode = symtab_node::get (node);
766 if (!snode)
767 return;
768 }
769 else if (VAR_P (node))
770 snode = varpool_node::get_create (node);
771 else
772 snode = cgraph_node::get_create (node);
773 snode->set_section (value);
774 }
775
776 /* Set section name of NODE to match the section name of OTHER.
777
778 set_decl_section_name (decl, other) is equivalent to
779 set_decl_section_name (decl, DECL_SECTION_NAME (other)), but possibly more
780 efficient. */
781 void
782 set_decl_section_name (tree decl, const_tree other)
783 {
784 struct symtab_node *other_node = symtab_node::get (other);
785 if (other_node)
786 {
787 struct symtab_node *decl_node;
788 if (VAR_P (decl))
789 decl_node = varpool_node::get_create (decl);
790 else
791 decl_node = cgraph_node::get_create (decl);
792 decl_node->set_section (*other_node);
793 }
794 else
795 {
796 struct symtab_node *decl_node = symtab_node::get (decl);
797 if (!decl_node)
798 return;
799 decl_node->set_section (NULL);
800 }
801 }
802
803 /* Return TLS model of a variable NODE. */
804 enum tls_model
805 decl_tls_model (const_tree node)
806 {
807 struct varpool_node *snode = varpool_node::get (node);
808 if (!snode)
809 return TLS_MODEL_NONE;
810 return snode->tls_model;
811 }
812
813 /* Set TLS model of variable NODE to MODEL. */
814 void
815 set_decl_tls_model (tree node, enum tls_model model)
816 {
817 struct varpool_node *vnode;
818
819 if (model == TLS_MODEL_NONE)
820 {
821 vnode = varpool_node::get (node);
822 if (!vnode)
823 return;
824 }
825 else
826 vnode = varpool_node::get_create (node);
827 vnode->tls_model = model;
828 }
829
830 /* Compute the number of bytes occupied by a tree with code CODE.
831 This function cannot be used for nodes that have variable sizes,
832 including TREE_VEC, INTEGER_CST, STRING_CST, and CALL_EXPR. */
833 size_t
834 tree_code_size (enum tree_code code)
835 {
836 switch (TREE_CODE_CLASS (code))
837 {
838 case tcc_declaration: /* A decl node */
839 switch (code)
840 {
841 case FIELD_DECL: return sizeof (tree_field_decl);
842 case PARM_DECL: return sizeof (tree_parm_decl);
843 case VAR_DECL: return sizeof (tree_var_decl);
844 case LABEL_DECL: return sizeof (tree_label_decl);
845 case RESULT_DECL: return sizeof (tree_result_decl);
846 case CONST_DECL: return sizeof (tree_const_decl);
847 case TYPE_DECL: return sizeof (tree_type_decl);
848 case FUNCTION_DECL: return sizeof (tree_function_decl);
849 case DEBUG_EXPR_DECL: return sizeof (tree_decl_with_rtl);
850 case TRANSLATION_UNIT_DECL: return sizeof (tree_translation_unit_decl);
851 case NAMESPACE_DECL:
852 case IMPORTED_DECL:
853 case NAMELIST_DECL: return sizeof (tree_decl_non_common);
854 default:
855 gcc_checking_assert (code >= NUM_TREE_CODES);
856 return lang_hooks.tree_size (code);
857 }
858
859 case tcc_type: /* a type node */
860 switch (code)
861 {
862 case OFFSET_TYPE:
863 case ENUMERAL_TYPE:
864 case BOOLEAN_TYPE:
865 case INTEGER_TYPE:
866 case REAL_TYPE:
867 case OPAQUE_TYPE:
868 case POINTER_TYPE:
869 case REFERENCE_TYPE:
870 case NULLPTR_TYPE:
871 case FIXED_POINT_TYPE:
872 case COMPLEX_TYPE:
873 case VECTOR_TYPE:
874 case ARRAY_TYPE:
875 case RECORD_TYPE:
876 case UNION_TYPE:
877 case QUAL_UNION_TYPE:
878 case VOID_TYPE:
879 case FUNCTION_TYPE:
880 case METHOD_TYPE:
881 case LANG_TYPE: return sizeof (tree_type_non_common);
882 default:
883 gcc_checking_assert (code >= NUM_TREE_CODES);
884 return lang_hooks.tree_size (code);
885 }
886
887 case tcc_reference: /* a reference */
888 case tcc_expression: /* an expression */
889 case tcc_statement: /* an expression with side effects */
890 case tcc_comparison: /* a comparison expression */
891 case tcc_unary: /* a unary arithmetic expression */
892 case tcc_binary: /* a binary arithmetic expression */
893 return (sizeof (struct tree_exp)
894 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
895
896 case tcc_constant: /* a constant */
897 switch (code)
898 {
899 case VOID_CST: return sizeof (tree_typed);
900 case INTEGER_CST: gcc_unreachable ();
901 case POLY_INT_CST: return sizeof (tree_poly_int_cst);
902 case REAL_CST: return sizeof (tree_real_cst);
903 case FIXED_CST: return sizeof (tree_fixed_cst);
904 case COMPLEX_CST: return sizeof (tree_complex);
905 case VECTOR_CST: gcc_unreachable ();
906 case STRING_CST: gcc_unreachable ();
907 default:
908 gcc_checking_assert (code >= NUM_TREE_CODES);
909 return lang_hooks.tree_size (code);
910 }
911
912 case tcc_exceptional: /* something random, like an identifier. */
913 switch (code)
914 {
915 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
916 case TREE_LIST: return sizeof (tree_list);
917
918 case ERROR_MARK:
919 case PLACEHOLDER_EXPR: return sizeof (tree_common);
920
921 case TREE_VEC: gcc_unreachable ();
922 case OMP_CLAUSE: gcc_unreachable ();
923
924 case SSA_NAME: return sizeof (tree_ssa_name);
925
926 case STATEMENT_LIST: return sizeof (tree_statement_list);
927 case BLOCK: return sizeof (struct tree_block);
928 case CONSTRUCTOR: return sizeof (tree_constructor);
929 case OPTIMIZATION_NODE: return sizeof (tree_optimization_option);
930 case TARGET_OPTION_NODE: return sizeof (tree_target_option);
931
932 default:
933 gcc_checking_assert (code >= NUM_TREE_CODES);
934 return lang_hooks.tree_size (code);
935 }
936
937 default:
938 gcc_unreachable ();
939 }
940 }
941
942 /* Compute the number of bytes occupied by NODE. This routine only
943 looks at TREE_CODE, except for those nodes that have variable sizes. */
944 size_t
945 tree_size (const_tree node)
946 {
947 const enum tree_code code = TREE_CODE (node);
948 switch (code)
949 {
950 case INTEGER_CST:
951 return (sizeof (struct tree_int_cst)
952 + (TREE_INT_CST_EXT_NUNITS (node) - 1) * sizeof (HOST_WIDE_INT));
953
954 case TREE_BINFO:
955 return (offsetof (struct tree_binfo, base_binfos)
956 + vec<tree, va_gc>
957 ::embedded_size (BINFO_N_BASE_BINFOS (node)));
958
959 case TREE_VEC:
960 return (sizeof (struct tree_vec)
961 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
962
963 case VECTOR_CST:
964 return (sizeof (struct tree_vector)
965 + (vector_cst_encoded_nelts (node) - 1) * sizeof (tree));
966
967 case STRING_CST:
968 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
969
970 case OMP_CLAUSE:
971 return (sizeof (struct tree_omp_clause)
972 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
973 * sizeof (tree));
974
975 default:
976 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
977 return (sizeof (struct tree_exp)
978 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
979 else
980 return tree_code_size (code);
981 }
982 }
983
984 /* Return tree node kind based on tree CODE. */
985
986 static tree_node_kind
987 get_stats_node_kind (enum tree_code code)
988 {
989 enum tree_code_class type = TREE_CODE_CLASS (code);
990
991 switch (type)
992 {
993 case tcc_declaration: /* A decl node */
994 return d_kind;
995 case tcc_type: /* a type node */
996 return t_kind;
997 case tcc_statement: /* an expression with side effects */
998 return s_kind;
999 case tcc_reference: /* a reference */
1000 return r_kind;
1001 case tcc_expression: /* an expression */
1002 case tcc_comparison: /* a comparison expression */
1003 case tcc_unary: /* a unary arithmetic expression */
1004 case tcc_binary: /* a binary arithmetic expression */
1005 return e_kind;
1006 case tcc_constant: /* a constant */
1007 return c_kind;
1008 case tcc_exceptional: /* something random, like an identifier. */
1009 switch (code)
1010 {
1011 case IDENTIFIER_NODE:
1012 return id_kind;
1013 case TREE_VEC:
1014 return vec_kind;
1015 case TREE_BINFO:
1016 return binfo_kind;
1017 case SSA_NAME:
1018 return ssa_name_kind;
1019 case BLOCK:
1020 return b_kind;
1021 case CONSTRUCTOR:
1022 return constr_kind;
1023 case OMP_CLAUSE:
1024 return omp_clause_kind;
1025 default:
1026 return x_kind;
1027 }
1028 break;
1029 case tcc_vl_exp:
1030 return e_kind;
1031 default:
1032 gcc_unreachable ();
1033 }
1034 }
1035
1036 /* Record interesting allocation statistics for a tree node with CODE
1037 and LENGTH. */
1038
1039 static void
1040 record_node_allocation_statistics (enum tree_code code, size_t length)
1041 {
1042 if (!GATHER_STATISTICS)
1043 return;
1044
1045 tree_node_kind kind = get_stats_node_kind (code);
1046
1047 tree_code_counts[(int) code]++;
1048 tree_node_counts[(int) kind]++;
1049 tree_node_sizes[(int) kind] += length;
1050 }
1051
1052 /* Allocate and return a new UID from the DECL_UID namespace. */
1053
1054 int
1055 allocate_decl_uid (void)
1056 {
1057 return next_decl_uid++;
1058 }
1059
1060 /* Return a newly allocated node of code CODE. For decl and type
1061 nodes, some other fields are initialized. The rest of the node is
1062 initialized to zero. This function cannot be used for TREE_VEC,
1063 INTEGER_CST or OMP_CLAUSE nodes, which is enforced by asserts in
1064 tree_code_size.
1065
1066 Achoo! I got a code in the node. */
1067
1068 tree
1069 make_node (enum tree_code code MEM_STAT_DECL)
1070 {
1071 tree t;
1072 enum tree_code_class type = TREE_CODE_CLASS (code);
1073 size_t length = tree_code_size (code);
1074
1075 record_node_allocation_statistics (code, length);
1076
1077 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1078 TREE_SET_CODE (t, code);
1079
1080 switch (type)
1081 {
1082 case tcc_statement:
1083 if (code != DEBUG_BEGIN_STMT)
1084 TREE_SIDE_EFFECTS (t) = 1;
1085 break;
1086
1087 case tcc_declaration:
1088 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
1089 {
1090 if (code == FUNCTION_DECL)
1091 {
1092 SET_DECL_ALIGN (t, FUNCTION_ALIGNMENT (FUNCTION_BOUNDARY));
1093 SET_DECL_MODE (t, FUNCTION_MODE);
1094 }
1095 else
1096 SET_DECL_ALIGN (t, 1);
1097 }
1098 DECL_SOURCE_LOCATION (t) = input_location;
1099 if (TREE_CODE (t) == DEBUG_EXPR_DECL)
1100 DECL_UID (t) = --next_debug_decl_uid;
1101 else
1102 {
1103 DECL_UID (t) = allocate_decl_uid ();
1104 SET_DECL_PT_UID (t, -1);
1105 }
1106 if (TREE_CODE (t) == LABEL_DECL)
1107 LABEL_DECL_UID (t) = -1;
1108
1109 break;
1110
1111 case tcc_type:
1112 TYPE_UID (t) = next_type_uid++;
1113 SET_TYPE_ALIGN (t, BITS_PER_UNIT);
1114 TYPE_USER_ALIGN (t) = 0;
1115 TYPE_MAIN_VARIANT (t) = t;
1116 TYPE_CANONICAL (t) = t;
1117
1118 /* Default to no attributes for type, but let target change that. */
1119 TYPE_ATTRIBUTES (t) = NULL_TREE;
1120 targetm.set_default_type_attributes (t);
1121
1122 /* We have not yet computed the alias set for this type. */
1123 TYPE_ALIAS_SET (t) = -1;
1124 break;
1125
1126 case tcc_constant:
1127 TREE_CONSTANT (t) = 1;
1128 break;
1129
1130 case tcc_expression:
1131 switch (code)
1132 {
1133 case INIT_EXPR:
1134 case MODIFY_EXPR:
1135 case VA_ARG_EXPR:
1136 case PREDECREMENT_EXPR:
1137 case PREINCREMENT_EXPR:
1138 case POSTDECREMENT_EXPR:
1139 case POSTINCREMENT_EXPR:
1140 /* All of these have side-effects, no matter what their
1141 operands are. */
1142 TREE_SIDE_EFFECTS (t) = 1;
1143 break;
1144
1145 default:
1146 break;
1147 }
1148 break;
1149
1150 case tcc_exceptional:
1151 switch (code)
1152 {
1153 case TARGET_OPTION_NODE:
1154 TREE_TARGET_OPTION(t)
1155 = ggc_cleared_alloc<struct cl_target_option> ();
1156 break;
1157
1158 case OPTIMIZATION_NODE:
1159 TREE_OPTIMIZATION (t)
1160 = ggc_cleared_alloc<struct cl_optimization> ();
1161 break;
1162
1163 default:
1164 break;
1165 }
1166 break;
1167
1168 default:
1169 /* Other classes need no special treatment. */
1170 break;
1171 }
1172
1173 return t;
1174 }
1175
1176 /* Free tree node. */
1177
1178 void
1179 free_node (tree node)
1180 {
1181 enum tree_code code = TREE_CODE (node);
1182 if (GATHER_STATISTICS)
1183 {
1184 enum tree_node_kind kind = get_stats_node_kind (code);
1185
1186 gcc_checking_assert (tree_code_counts[(int) TREE_CODE (node)] != 0);
1187 gcc_checking_assert (tree_node_counts[(int) kind] != 0);
1188 gcc_checking_assert (tree_node_sizes[(int) kind] >= tree_size (node));
1189
1190 tree_code_counts[(int) TREE_CODE (node)]--;
1191 tree_node_counts[(int) kind]--;
1192 tree_node_sizes[(int) kind] -= tree_size (node);
1193 }
1194 if (CODE_CONTAINS_STRUCT (code, TS_CONSTRUCTOR))
1195 vec_free (CONSTRUCTOR_ELTS (node));
1196 else if (code == BLOCK)
1197 vec_free (BLOCK_NONLOCALIZED_VARS (node));
1198 else if (code == TREE_BINFO)
1199 vec_free (BINFO_BASE_ACCESSES (node));
1200 else if (code == OPTIMIZATION_NODE)
1201 cl_optimization_option_free (TREE_OPTIMIZATION (node));
1202 else if (code == TARGET_OPTION_NODE)
1203 cl_target_option_free (TREE_TARGET_OPTION (node));
1204 ggc_free (node);
1205 }
1206 \f
1207 /* Return a new node with the same contents as NODE except that its
1208 TREE_CHAIN, if it has one, is zero and it has a fresh uid. */
1209
1210 tree
1211 copy_node (tree node MEM_STAT_DECL)
1212 {
1213 tree t;
1214 enum tree_code code = TREE_CODE (node);
1215 size_t length;
1216
1217 gcc_assert (code != STATEMENT_LIST);
1218
1219 length = tree_size (node);
1220 record_node_allocation_statistics (code, length);
1221 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
1222 memcpy (t, node, length);
1223
1224 if (CODE_CONTAINS_STRUCT (code, TS_COMMON))
1225 TREE_CHAIN (t) = 0;
1226 TREE_ASM_WRITTEN (t) = 0;
1227 TREE_VISITED (t) = 0;
1228
1229 if (TREE_CODE_CLASS (code) == tcc_declaration)
1230 {
1231 if (code == DEBUG_EXPR_DECL)
1232 DECL_UID (t) = --next_debug_decl_uid;
1233 else
1234 {
1235 DECL_UID (t) = allocate_decl_uid ();
1236 if (DECL_PT_UID_SET_P (node))
1237 SET_DECL_PT_UID (t, DECL_PT_UID (node));
1238 }
1239 if ((TREE_CODE (node) == PARM_DECL || VAR_P (node))
1240 && DECL_HAS_VALUE_EXPR_P (node))
1241 {
1242 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
1243 DECL_HAS_VALUE_EXPR_P (t) = 1;
1244 }
1245 /* DECL_DEBUG_EXPR is copied explicitly by callers. */
1246 if (VAR_P (node))
1247 {
1248 DECL_HAS_DEBUG_EXPR_P (t) = 0;
1249 t->decl_with_vis.symtab_node = NULL;
1250 }
1251 if (VAR_P (node) && DECL_HAS_INIT_PRIORITY_P (node))
1252 {
1253 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
1254 DECL_HAS_INIT_PRIORITY_P (t) = 1;
1255 }
1256 if (TREE_CODE (node) == FUNCTION_DECL)
1257 {
1258 DECL_STRUCT_FUNCTION (t) = NULL;
1259 t->decl_with_vis.symtab_node = NULL;
1260 }
1261 }
1262 else if (TREE_CODE_CLASS (code) == tcc_type)
1263 {
1264 TYPE_UID (t) = next_type_uid++;
1265 /* The following is so that the debug code for
1266 the copy is different from the original type.
1267 The two statements usually duplicate each other
1268 (because they clear fields of the same union),
1269 but the optimizer should catch that. */
1270 TYPE_SYMTAB_ADDRESS (t) = 0;
1271 TYPE_SYMTAB_DIE (t) = 0;
1272
1273 /* Do not copy the values cache. */
1274 if (TYPE_CACHED_VALUES_P (t))
1275 {
1276 TYPE_CACHED_VALUES_P (t) = 0;
1277 TYPE_CACHED_VALUES (t) = NULL_TREE;
1278 }
1279 }
1280 else if (code == TARGET_OPTION_NODE)
1281 {
1282 TREE_TARGET_OPTION (t) = ggc_alloc<struct cl_target_option>();
1283 memcpy (TREE_TARGET_OPTION (t), TREE_TARGET_OPTION (node),
1284 sizeof (struct cl_target_option));
1285 }
1286 else if (code == OPTIMIZATION_NODE)
1287 {
1288 TREE_OPTIMIZATION (t) = ggc_alloc<struct cl_optimization>();
1289 memcpy (TREE_OPTIMIZATION (t), TREE_OPTIMIZATION (node),
1290 sizeof (struct cl_optimization));
1291 }
1292
1293 return t;
1294 }
1295
1296 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1297 For example, this can copy a list made of TREE_LIST nodes. */
1298
1299 tree
1300 copy_list (tree list)
1301 {
1302 tree head;
1303 tree prev, next;
1304
1305 if (list == 0)
1306 return 0;
1307
1308 head = prev = copy_node (list);
1309 next = TREE_CHAIN (list);
1310 while (next)
1311 {
1312 TREE_CHAIN (prev) = copy_node (next);
1313 prev = TREE_CHAIN (prev);
1314 next = TREE_CHAIN (next);
1315 }
1316 return head;
1317 }
1318
1319 \f
1320 /* Return the value that TREE_INT_CST_EXT_NUNITS should have for an
1321 INTEGER_CST with value CST and type TYPE. */
1322
1323 static unsigned int
1324 get_int_cst_ext_nunits (tree type, const wide_int &cst)
1325 {
1326 gcc_checking_assert (cst.get_precision () == TYPE_PRECISION (type));
1327 /* We need extra HWIs if CST is an unsigned integer with its
1328 upper bit set. */
1329 if (TYPE_UNSIGNED (type) && wi::neg_p (cst))
1330 return cst.get_precision () / HOST_BITS_PER_WIDE_INT + 1;
1331 return cst.get_len ();
1332 }
1333
1334 /* Return a new INTEGER_CST with value CST and type TYPE. */
1335
1336 static tree
1337 build_new_int_cst (tree type, const wide_int &cst)
1338 {
1339 unsigned int len = cst.get_len ();
1340 unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
1341 tree nt = make_int_cst (len, ext_len);
1342
1343 if (len < ext_len)
1344 {
1345 --ext_len;
1346 TREE_INT_CST_ELT (nt, ext_len)
1347 = zext_hwi (-1, cst.get_precision () % HOST_BITS_PER_WIDE_INT);
1348 for (unsigned int i = len; i < ext_len; ++i)
1349 TREE_INT_CST_ELT (nt, i) = -1;
1350 }
1351 else if (TYPE_UNSIGNED (type)
1352 && cst.get_precision () < len * HOST_BITS_PER_WIDE_INT)
1353 {
1354 len--;
1355 TREE_INT_CST_ELT (nt, len)
1356 = zext_hwi (cst.elt (len),
1357 cst.get_precision () % HOST_BITS_PER_WIDE_INT);
1358 }
1359
1360 for (unsigned int i = 0; i < len; i++)
1361 TREE_INT_CST_ELT (nt, i) = cst.elt (i);
1362 TREE_TYPE (nt) = type;
1363 return nt;
1364 }
1365
1366 /* Return a new POLY_INT_CST with coefficients COEFFS and type TYPE. */
1367
1368 static tree
1369 build_new_poly_int_cst (tree type, tree (&coeffs)[NUM_POLY_INT_COEFFS]
1370 CXX_MEM_STAT_INFO)
1371 {
1372 size_t length = sizeof (struct tree_poly_int_cst);
1373 record_node_allocation_statistics (POLY_INT_CST, length);
1374
1375 tree t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1376
1377 TREE_SET_CODE (t, POLY_INT_CST);
1378 TREE_CONSTANT (t) = 1;
1379 TREE_TYPE (t) = type;
1380 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1381 POLY_INT_CST_COEFF (t, i) = coeffs[i];
1382 return t;
1383 }
1384
1385 /* Create a constant tree that contains CST sign-extended to TYPE. */
1386
1387 tree
1388 build_int_cst (tree type, poly_int64 cst)
1389 {
1390 /* Support legacy code. */
1391 if (!type)
1392 type = integer_type_node;
1393
1394 return wide_int_to_tree (type, wi::shwi (cst, TYPE_PRECISION (type)));
1395 }
1396
1397 /* Create a constant tree that contains CST zero-extended to TYPE. */
1398
1399 tree
1400 build_int_cstu (tree type, poly_uint64 cst)
1401 {
1402 return wide_int_to_tree (type, wi::uhwi (cst, TYPE_PRECISION (type)));
1403 }
1404
1405 /* Create a constant tree that contains CST sign-extended to TYPE. */
1406
1407 tree
1408 build_int_cst_type (tree type, poly_int64 cst)
1409 {
1410 gcc_assert (type);
1411 return wide_int_to_tree (type, wi::shwi (cst, TYPE_PRECISION (type)));
1412 }
1413
1414 /* Constructs tree in type TYPE from with value given by CST. Signedness
1415 of CST is assumed to be the same as the signedness of TYPE. */
1416
1417 tree
1418 double_int_to_tree (tree type, double_int cst)
1419 {
1420 return wide_int_to_tree (type, widest_int::from (cst, TYPE_SIGN (type)));
1421 }
1422
1423 /* We force the wide_int CST to the range of the type TYPE by sign or
1424 zero extending it. OVERFLOWABLE indicates if we are interested in
1425 overflow of the value, when >0 we are only interested in signed
1426 overflow, for <0 we are interested in any overflow. OVERFLOWED
1427 indicates whether overflow has already occurred. CONST_OVERFLOWED
1428 indicates whether constant overflow has already occurred. We force
1429 T's value to be within range of T's type (by setting to 0 or 1 all
1430 the bits outside the type's range). We set TREE_OVERFLOWED if,
1431 OVERFLOWED is nonzero,
1432 or OVERFLOWABLE is >0 and signed overflow occurs
1433 or OVERFLOWABLE is <0 and any overflow occurs
1434 We return a new tree node for the extended wide_int. The node
1435 is shared if no overflow flags are set. */
1436
1437
1438 tree
1439 force_fit_type (tree type, const poly_wide_int_ref &cst,
1440 int overflowable, bool overflowed)
1441 {
1442 signop sign = TYPE_SIGN (type);
1443
1444 /* If we need to set overflow flags, return a new unshared node. */
1445 if (overflowed || !wi::fits_to_tree_p (cst, type))
1446 {
1447 if (overflowed
1448 || overflowable < 0
1449 || (overflowable > 0 && sign == SIGNED))
1450 {
1451 poly_wide_int tmp = poly_wide_int::from (cst, TYPE_PRECISION (type),
1452 sign);
1453 tree t;
1454 if (tmp.is_constant ())
1455 t = build_new_int_cst (type, tmp.coeffs[0]);
1456 else
1457 {
1458 tree coeffs[NUM_POLY_INT_COEFFS];
1459 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1460 {
1461 coeffs[i] = build_new_int_cst (type, tmp.coeffs[i]);
1462 TREE_OVERFLOW (coeffs[i]) = 1;
1463 }
1464 t = build_new_poly_int_cst (type, coeffs);
1465 }
1466 TREE_OVERFLOW (t) = 1;
1467 return t;
1468 }
1469 }
1470
1471 /* Else build a shared node. */
1472 return wide_int_to_tree (type, cst);
1473 }
1474
1475 /* These are the hash table functions for the hash table of INTEGER_CST
1476 nodes of a sizetype. */
1477
1478 /* Return the hash code X, an INTEGER_CST. */
1479
1480 hashval_t
1481 int_cst_hasher::hash (tree x)
1482 {
1483 const_tree const t = x;
1484 hashval_t code = TYPE_UID (TREE_TYPE (t));
1485 int i;
1486
1487 for (i = 0; i < TREE_INT_CST_NUNITS (t); i++)
1488 code = iterative_hash_host_wide_int (TREE_INT_CST_ELT(t, i), code);
1489
1490 return code;
1491 }
1492
1493 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1494 is the same as that given by *Y, which is the same. */
1495
1496 bool
1497 int_cst_hasher::equal (tree x, tree y)
1498 {
1499 const_tree const xt = x;
1500 const_tree const yt = y;
1501
1502 if (TREE_TYPE (xt) != TREE_TYPE (yt)
1503 || TREE_INT_CST_NUNITS (xt) != TREE_INT_CST_NUNITS (yt)
1504 || TREE_INT_CST_EXT_NUNITS (xt) != TREE_INT_CST_EXT_NUNITS (yt))
1505 return false;
1506
1507 for (int i = 0; i < TREE_INT_CST_NUNITS (xt); i++)
1508 if (TREE_INT_CST_ELT (xt, i) != TREE_INT_CST_ELT (yt, i))
1509 return false;
1510
1511 return true;
1512 }
1513
1514 /* Cache wide_int CST into the TYPE_CACHED_VALUES cache for TYPE.
1515 SLOT is the slot entry to store it in, and MAX_SLOTS is the maximum
1516 number of slots that can be cached for the type. */
1517
1518 static inline tree
1519 cache_wide_int_in_type_cache (tree type, const wide_int &cst,
1520 int slot, int max_slots)
1521 {
1522 gcc_checking_assert (slot >= 0);
1523 /* Initialize cache. */
1524 if (!TYPE_CACHED_VALUES_P (type))
1525 {
1526 TYPE_CACHED_VALUES_P (type) = 1;
1527 TYPE_CACHED_VALUES (type) = make_tree_vec (max_slots);
1528 }
1529 tree t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), slot);
1530 if (!t)
1531 {
1532 /* Create a new shared int. */
1533 t = build_new_int_cst (type, cst);
1534 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), slot) = t;
1535 }
1536 return t;
1537 }
1538
1539 /* Create an INT_CST node of TYPE and value CST.
1540 The returned node is always shared. For small integers we use a
1541 per-type vector cache, for larger ones we use a single hash table.
1542 The value is extended from its precision according to the sign of
1543 the type to be a multiple of HOST_BITS_PER_WIDE_INT. This defines
1544 the upper bits and ensures that hashing and value equality based
1545 upon the underlying HOST_WIDE_INTs works without masking. */
1546
1547 static tree
1548 wide_int_to_tree_1 (tree type, const wide_int_ref &pcst)
1549 {
1550 tree t;
1551 int ix = -1;
1552 int limit = 0;
1553
1554 gcc_assert (type);
1555 unsigned int prec = TYPE_PRECISION (type);
1556 signop sgn = TYPE_SIGN (type);
1557
1558 /* Verify that everything is canonical. */
1559 int l = pcst.get_len ();
1560 if (l > 1)
1561 {
1562 if (pcst.elt (l - 1) == 0)
1563 gcc_checking_assert (pcst.elt (l - 2) < 0);
1564 if (pcst.elt (l - 1) == HOST_WIDE_INT_M1)
1565 gcc_checking_assert (pcst.elt (l - 2) >= 0);
1566 }
1567
1568 wide_int cst = wide_int::from (pcst, prec, sgn);
1569 unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
1570
1571 enum tree_code code = TREE_CODE (type);
1572 if (code == POINTER_TYPE || code == REFERENCE_TYPE)
1573 {
1574 /* Cache NULL pointer and zero bounds. */
1575 if (cst == 0)
1576 ix = 0;
1577 /* Cache upper bounds of pointers. */
1578 else if (cst == wi::max_value (prec, sgn))
1579 ix = 1;
1580 /* Cache 1 which is used for a non-zero range. */
1581 else if (cst == 1)
1582 ix = 2;
1583
1584 if (ix >= 0)
1585 {
1586 t = cache_wide_int_in_type_cache (type, cst, ix, 3);
1587 /* Make sure no one is clobbering the shared constant. */
1588 gcc_checking_assert (TREE_TYPE (t) == type
1589 && cst == wi::to_wide (t));
1590 return t;
1591 }
1592 }
1593 if (ext_len == 1)
1594 {
1595 /* We just need to store a single HOST_WIDE_INT. */
1596 HOST_WIDE_INT hwi;
1597 if (TYPE_UNSIGNED (type))
1598 hwi = cst.to_uhwi ();
1599 else
1600 hwi = cst.to_shwi ();
1601
1602 switch (code)
1603 {
1604 case NULLPTR_TYPE:
1605 gcc_assert (hwi == 0);
1606 /* Fallthru. */
1607
1608 case POINTER_TYPE:
1609 case REFERENCE_TYPE:
1610 /* Ignore pointers, as they were already handled above. */
1611 break;
1612
1613 case BOOLEAN_TYPE:
1614 /* Cache false or true. */
1615 limit = 2;
1616 if (IN_RANGE (hwi, 0, 1))
1617 ix = hwi;
1618 break;
1619
1620 case INTEGER_TYPE:
1621 case OFFSET_TYPE:
1622 if (TYPE_SIGN (type) == UNSIGNED)
1623 {
1624 /* Cache [0, N). */
1625 limit = param_integer_share_limit;
1626 if (IN_RANGE (hwi, 0, param_integer_share_limit - 1))
1627 ix = hwi;
1628 }
1629 else
1630 {
1631 /* Cache [-1, N). */
1632 limit = param_integer_share_limit + 1;
1633 if (IN_RANGE (hwi, -1, param_integer_share_limit - 1))
1634 ix = hwi + 1;
1635 }
1636 break;
1637
1638 case ENUMERAL_TYPE:
1639 break;
1640
1641 default:
1642 gcc_unreachable ();
1643 }
1644
1645 if (ix >= 0)
1646 {
1647 t = cache_wide_int_in_type_cache (type, cst, ix, limit);
1648 /* Make sure no one is clobbering the shared constant. */
1649 gcc_checking_assert (TREE_TYPE (t) == type
1650 && TREE_INT_CST_NUNITS (t) == 1
1651 && TREE_INT_CST_OFFSET_NUNITS (t) == 1
1652 && TREE_INT_CST_EXT_NUNITS (t) == 1
1653 && TREE_INT_CST_ELT (t, 0) == hwi);
1654 return t;
1655 }
1656 else
1657 {
1658 /* Use the cache of larger shared ints, using int_cst_node as
1659 a temporary. */
1660
1661 TREE_INT_CST_ELT (int_cst_node, 0) = hwi;
1662 TREE_TYPE (int_cst_node) = type;
1663
1664 tree *slot = int_cst_hash_table->find_slot (int_cst_node, INSERT);
1665 t = *slot;
1666 if (!t)
1667 {
1668 /* Insert this one into the hash table. */
1669 t = int_cst_node;
1670 *slot = t;
1671 /* Make a new node for next time round. */
1672 int_cst_node = make_int_cst (1, 1);
1673 }
1674 }
1675 }
1676 else
1677 {
1678 /* The value either hashes properly or we drop it on the floor
1679 for the gc to take care of. There will not be enough of them
1680 to worry about. */
1681
1682 tree nt = build_new_int_cst (type, cst);
1683 tree *slot = int_cst_hash_table->find_slot (nt, INSERT);
1684 t = *slot;
1685 if (!t)
1686 {
1687 /* Insert this one into the hash table. */
1688 t = nt;
1689 *slot = t;
1690 }
1691 else
1692 ggc_free (nt);
1693 }
1694
1695 return t;
1696 }
1697
1698 hashval_t
1699 poly_int_cst_hasher::hash (tree t)
1700 {
1701 inchash::hash hstate;
1702
1703 hstate.add_int (TYPE_UID (TREE_TYPE (t)));
1704 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1705 hstate.add_wide_int (wi::to_wide (POLY_INT_CST_COEFF (t, i)));
1706
1707 return hstate.end ();
1708 }
1709
1710 bool
1711 poly_int_cst_hasher::equal (tree x, const compare_type &y)
1712 {
1713 if (TREE_TYPE (x) != y.first)
1714 return false;
1715 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1716 if (wi::to_wide (POLY_INT_CST_COEFF (x, i)) != y.second->coeffs[i])
1717 return false;
1718 return true;
1719 }
1720
1721 /* Build a POLY_INT_CST node with type TYPE and with the elements in VALUES.
1722 The elements must also have type TYPE. */
1723
1724 tree
1725 build_poly_int_cst (tree type, const poly_wide_int_ref &values)
1726 {
1727 unsigned int prec = TYPE_PRECISION (type);
1728 gcc_assert (prec <= values.coeffs[0].get_precision ());
1729 poly_wide_int c = poly_wide_int::from (values, prec, SIGNED);
1730
1731 inchash::hash h;
1732 h.add_int (TYPE_UID (type));
1733 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1734 h.add_wide_int (c.coeffs[i]);
1735 poly_int_cst_hasher::compare_type comp (type, &c);
1736 tree *slot = poly_int_cst_hash_table->find_slot_with_hash (comp, h.end (),
1737 INSERT);
1738 if (*slot == NULL_TREE)
1739 {
1740 tree coeffs[NUM_POLY_INT_COEFFS];
1741 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
1742 coeffs[i] = wide_int_to_tree_1 (type, c.coeffs[i]);
1743 *slot = build_new_poly_int_cst (type, coeffs);
1744 }
1745 return *slot;
1746 }
1747
1748 /* Create a constant tree with value VALUE in type TYPE. */
1749
1750 tree
1751 wide_int_to_tree (tree type, const poly_wide_int_ref &value)
1752 {
1753 if (value.is_constant ())
1754 return wide_int_to_tree_1 (type, value.coeffs[0]);
1755 return build_poly_int_cst (type, value);
1756 }
1757
1758 /* Insert INTEGER_CST T into a cache of integer constants. And return
1759 the cached constant (which may or may not be T). If MIGHT_DUPLICATE
1760 is false, and T falls into the type's 'smaller values' range, there
1761 cannot be an existing entry. Otherwise, if MIGHT_DUPLICATE is true,
1762 or the value is large, should an existing entry exist, it is
1763 returned (rather than inserting T). */
1764
1765 tree
1766 cache_integer_cst (tree t, bool might_duplicate ATTRIBUTE_UNUSED)
1767 {
1768 tree type = TREE_TYPE (t);
1769 int ix = -1;
1770 int limit = 0;
1771 int prec = TYPE_PRECISION (type);
1772
1773 gcc_assert (!TREE_OVERFLOW (t));
1774
1775 /* The caching indices here must match those in
1776 wide_int_to_type_1. */
1777 switch (TREE_CODE (type))
1778 {
1779 case NULLPTR_TYPE:
1780 gcc_checking_assert (integer_zerop (t));
1781 /* Fallthru. */
1782
1783 case POINTER_TYPE:
1784 case REFERENCE_TYPE:
1785 {
1786 if (integer_zerop (t))
1787 ix = 0;
1788 else if (integer_onep (t))
1789 ix = 2;
1790
1791 if (ix >= 0)
1792 limit = 3;
1793 }
1794 break;
1795
1796 case BOOLEAN_TYPE:
1797 /* Cache false or true. */
1798 limit = 2;
1799 if (wi::ltu_p (wi::to_wide (t), 2))
1800 ix = TREE_INT_CST_ELT (t, 0);
1801 break;
1802
1803 case INTEGER_TYPE:
1804 case OFFSET_TYPE:
1805 if (TYPE_UNSIGNED (type))
1806 {
1807 /* Cache 0..N */
1808 limit = param_integer_share_limit;
1809
1810 /* This is a little hokie, but if the prec is smaller than
1811 what is necessary to hold param_integer_share_limit, then the
1812 obvious test will not get the correct answer. */
1813 if (prec < HOST_BITS_PER_WIDE_INT)
1814 {
1815 if (tree_to_uhwi (t)
1816 < (unsigned HOST_WIDE_INT) param_integer_share_limit)
1817 ix = tree_to_uhwi (t);
1818 }
1819 else if (wi::ltu_p (wi::to_wide (t), param_integer_share_limit))
1820 ix = tree_to_uhwi (t);
1821 }
1822 else
1823 {
1824 /* Cache -1..N */
1825 limit = param_integer_share_limit + 1;
1826
1827 if (integer_minus_onep (t))
1828 ix = 0;
1829 else if (!wi::neg_p (wi::to_wide (t)))
1830 {
1831 if (prec < HOST_BITS_PER_WIDE_INT)
1832 {
1833 if (tree_to_shwi (t) < param_integer_share_limit)
1834 ix = tree_to_shwi (t) + 1;
1835 }
1836 else if (wi::ltu_p (wi::to_wide (t), param_integer_share_limit))
1837 ix = tree_to_shwi (t) + 1;
1838 }
1839 }
1840 break;
1841
1842 case ENUMERAL_TYPE:
1843 /* The slot used by TYPE_CACHED_VALUES is used for the enum
1844 members. */
1845 break;
1846
1847 default:
1848 gcc_unreachable ();
1849 }
1850
1851 if (ix >= 0)
1852 {
1853 /* Look for it in the type's vector of small shared ints. */
1854 if (!TYPE_CACHED_VALUES_P (type))
1855 {
1856 TYPE_CACHED_VALUES_P (type) = 1;
1857 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1858 }
1859
1860 if (tree r = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix))
1861 {
1862 gcc_checking_assert (might_duplicate);
1863 t = r;
1864 }
1865 else
1866 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1867 }
1868 else
1869 {
1870 /* Use the cache of larger shared ints. */
1871 tree *slot = int_cst_hash_table->find_slot (t, INSERT);
1872 if (tree r = *slot)
1873 {
1874 /* If there is already an entry for the number verify it's the
1875 same value. */
1876 gcc_checking_assert (wi::to_wide (tree (r)) == wi::to_wide (t));
1877 /* And return the cached value. */
1878 t = r;
1879 }
1880 else
1881 /* Otherwise insert this one into the hash table. */
1882 *slot = t;
1883 }
1884
1885 return t;
1886 }
1887
1888
1889 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1890 and the rest are zeros. */
1891
1892 tree
1893 build_low_bits_mask (tree type, unsigned bits)
1894 {
1895 gcc_assert (bits <= TYPE_PRECISION (type));
1896
1897 return wide_int_to_tree (type, wi::mask (bits, false,
1898 TYPE_PRECISION (type)));
1899 }
1900
1901 /* Checks that X is integer constant that can be expressed in (unsigned)
1902 HOST_WIDE_INT without loss of precision. */
1903
1904 bool
1905 cst_and_fits_in_hwi (const_tree x)
1906 {
1907 return (TREE_CODE (x) == INTEGER_CST
1908 && (tree_fits_shwi_p (x) || tree_fits_uhwi_p (x)));
1909 }
1910
1911 /* Build a newly constructed VECTOR_CST with the given values of
1912 (VECTOR_CST_)LOG2_NPATTERNS and (VECTOR_CST_)NELTS_PER_PATTERN. */
1913
1914 tree
1915 make_vector (unsigned log2_npatterns,
1916 unsigned int nelts_per_pattern MEM_STAT_DECL)
1917 {
1918 gcc_assert (IN_RANGE (nelts_per_pattern, 1, 3));
1919 tree t;
1920 unsigned npatterns = 1 << log2_npatterns;
1921 unsigned encoded_nelts = npatterns * nelts_per_pattern;
1922 unsigned length = (sizeof (struct tree_vector)
1923 + (encoded_nelts - 1) * sizeof (tree));
1924
1925 record_node_allocation_statistics (VECTOR_CST, length);
1926
1927 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
1928
1929 TREE_SET_CODE (t, VECTOR_CST);
1930 TREE_CONSTANT (t) = 1;
1931 VECTOR_CST_LOG2_NPATTERNS (t) = log2_npatterns;
1932 VECTOR_CST_NELTS_PER_PATTERN (t) = nelts_per_pattern;
1933
1934 return t;
1935 }
1936
1937 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1938 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1939
1940 tree
1941 build_vector_from_ctor (tree type, vec<constructor_elt, va_gc> *v)
1942 {
1943 if (vec_safe_length (v) == 0)
1944 return build_zero_cst (type);
1945
1946 unsigned HOST_WIDE_INT idx, nelts;
1947 tree value;
1948
1949 /* We can't construct a VECTOR_CST for a variable number of elements. */
1950 nelts = TYPE_VECTOR_SUBPARTS (type).to_constant ();
1951 tree_vector_builder vec (type, nelts, 1);
1952 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1953 {
1954 if (TREE_CODE (value) == VECTOR_CST)
1955 {
1956 /* If NELTS is constant then this must be too. */
1957 unsigned int sub_nelts = VECTOR_CST_NELTS (value).to_constant ();
1958 for (unsigned i = 0; i < sub_nelts; ++i)
1959 vec.quick_push (VECTOR_CST_ELT (value, i));
1960 }
1961 else
1962 vec.quick_push (value);
1963 }
1964 while (vec.length () < nelts)
1965 vec.quick_push (build_zero_cst (TREE_TYPE (type)));
1966
1967 return vec.build ();
1968 }
1969
1970 /* Build a vector of type VECTYPE where all the elements are SCs. */
1971 tree
1972 build_vector_from_val (tree vectype, tree sc)
1973 {
1974 unsigned HOST_WIDE_INT i, nunits;
1975
1976 if (sc == error_mark_node)
1977 return sc;
1978
1979 /* Verify that the vector type is suitable for SC. Note that there
1980 is some inconsistency in the type-system with respect to restrict
1981 qualifications of pointers. Vector types always have a main-variant
1982 element type and the qualification is applied to the vector-type.
1983 So TREE_TYPE (vector-type) does not return a properly qualified
1984 vector element-type. */
1985 gcc_checking_assert (types_compatible_p (TYPE_MAIN_VARIANT (TREE_TYPE (sc)),
1986 TREE_TYPE (vectype)));
1987
1988 if (CONSTANT_CLASS_P (sc))
1989 {
1990 tree_vector_builder v (vectype, 1, 1);
1991 v.quick_push (sc);
1992 return v.build ();
1993 }
1994 else if (!TYPE_VECTOR_SUBPARTS (vectype).is_constant (&nunits))
1995 return fold_build1 (VEC_DUPLICATE_EXPR, vectype, sc);
1996 else
1997 {
1998 vec<constructor_elt, va_gc> *v;
1999 vec_alloc (v, nunits);
2000 for (i = 0; i < nunits; ++i)
2001 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, sc);
2002 return build_constructor (vectype, v);
2003 }
2004 }
2005
2006 /* If TYPE is not a vector type, just return SC, otherwise return
2007 build_vector_from_val (TYPE, SC). */
2008
2009 tree
2010 build_uniform_cst (tree type, tree sc)
2011 {
2012 if (!VECTOR_TYPE_P (type))
2013 return sc;
2014
2015 return build_vector_from_val (type, sc);
2016 }
2017
2018 /* Build a vector series of type TYPE in which element I has the value
2019 BASE + I * STEP. The result is a constant if BASE and STEP are constant
2020 and a VEC_SERIES_EXPR otherwise. */
2021
2022 tree
2023 build_vec_series (tree type, tree base, tree step)
2024 {
2025 if (integer_zerop (step))
2026 return build_vector_from_val (type, base);
2027 if (TREE_CODE (base) == INTEGER_CST && TREE_CODE (step) == INTEGER_CST)
2028 {
2029 tree_vector_builder builder (type, 1, 3);
2030 tree elt1 = wide_int_to_tree (TREE_TYPE (base),
2031 wi::to_wide (base) + wi::to_wide (step));
2032 tree elt2 = wide_int_to_tree (TREE_TYPE (base),
2033 wi::to_wide (elt1) + wi::to_wide (step));
2034 builder.quick_push (base);
2035 builder.quick_push (elt1);
2036 builder.quick_push (elt2);
2037 return builder.build ();
2038 }
2039 return build2 (VEC_SERIES_EXPR, type, base, step);
2040 }
2041
2042 /* Return a vector with the same number of units and number of bits
2043 as VEC_TYPE, but in which the elements are a linear series of unsigned
2044 integers { BASE, BASE + STEP, BASE + STEP * 2, ... }. */
2045
2046 tree
2047 build_index_vector (tree vec_type, poly_uint64 base, poly_uint64 step)
2048 {
2049 tree index_vec_type = vec_type;
2050 tree index_elt_type = TREE_TYPE (vec_type);
2051 poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vec_type);
2052 if (!INTEGRAL_TYPE_P (index_elt_type) || !TYPE_UNSIGNED (index_elt_type))
2053 {
2054 index_elt_type = build_nonstandard_integer_type
2055 (GET_MODE_BITSIZE (SCALAR_TYPE_MODE (index_elt_type)), true);
2056 index_vec_type = build_vector_type (index_elt_type, nunits);
2057 }
2058
2059 tree_vector_builder v (index_vec_type, 1, 3);
2060 for (unsigned int i = 0; i < 3; ++i)
2061 v.quick_push (build_int_cstu (index_elt_type, base + i * step));
2062 return v.build ();
2063 }
2064
2065 /* Return a VECTOR_CST of type VEC_TYPE in which the first NUM_A
2066 elements are A and the rest are B. */
2067
2068 tree
2069 build_vector_a_then_b (tree vec_type, unsigned int num_a, tree a, tree b)
2070 {
2071 gcc_assert (known_le (num_a, TYPE_VECTOR_SUBPARTS (vec_type)));
2072 unsigned int count = constant_lower_bound (TYPE_VECTOR_SUBPARTS (vec_type));
2073 /* Optimize the constant case. */
2074 if ((count & 1) == 0 && TYPE_VECTOR_SUBPARTS (vec_type).is_constant ())
2075 count /= 2;
2076 tree_vector_builder builder (vec_type, count, 2);
2077 for (unsigned int i = 0; i < count * 2; ++i)
2078 builder.quick_push (i < num_a ? a : b);
2079 return builder.build ();
2080 }
2081
2082 /* Something has messed with the elements of CONSTRUCTOR C after it was built;
2083 calculate TREE_CONSTANT and TREE_SIDE_EFFECTS. */
2084
2085 void
2086 recompute_constructor_flags (tree c)
2087 {
2088 unsigned int i;
2089 tree val;
2090 bool constant_p = true;
2091 bool side_effects_p = false;
2092 vec<constructor_elt, va_gc> *vals = CONSTRUCTOR_ELTS (c);
2093
2094 FOR_EACH_CONSTRUCTOR_VALUE (vals, i, val)
2095 {
2096 /* Mostly ctors will have elts that don't have side-effects, so
2097 the usual case is to scan all the elements. Hence a single
2098 loop for both const and side effects, rather than one loop
2099 each (with early outs). */
2100 if (!TREE_CONSTANT (val))
2101 constant_p = false;
2102 if (TREE_SIDE_EFFECTS (val))
2103 side_effects_p = true;
2104 }
2105
2106 TREE_SIDE_EFFECTS (c) = side_effects_p;
2107 TREE_CONSTANT (c) = constant_p;
2108 }
2109
2110 /* Make sure that TREE_CONSTANT and TREE_SIDE_EFFECTS are correct for
2111 CONSTRUCTOR C. */
2112
2113 void
2114 verify_constructor_flags (tree c)
2115 {
2116 unsigned int i;
2117 tree val;
2118 bool constant_p = TREE_CONSTANT (c);
2119 bool side_effects_p = TREE_SIDE_EFFECTS (c);
2120 vec<constructor_elt, va_gc> *vals = CONSTRUCTOR_ELTS (c);
2121
2122 FOR_EACH_CONSTRUCTOR_VALUE (vals, i, val)
2123 {
2124 if (constant_p && !TREE_CONSTANT (val))
2125 internal_error ("non-constant element in constant CONSTRUCTOR");
2126 if (!side_effects_p && TREE_SIDE_EFFECTS (val))
2127 internal_error ("side-effects element in no-side-effects CONSTRUCTOR");
2128 }
2129 }
2130
2131 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
2132 are in the vec pointed to by VALS. */
2133 tree
2134 build_constructor (tree type, vec<constructor_elt, va_gc> *vals MEM_STAT_DECL)
2135 {
2136 tree c = make_node (CONSTRUCTOR PASS_MEM_STAT);
2137
2138 TREE_TYPE (c) = type;
2139 CONSTRUCTOR_ELTS (c) = vals;
2140
2141 recompute_constructor_flags (c);
2142
2143 return c;
2144 }
2145
2146 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
2147 INDEX and VALUE. */
2148 tree
2149 build_constructor_single (tree type, tree index, tree value)
2150 {
2151 vec<constructor_elt, va_gc> *v;
2152 constructor_elt elt = {index, value};
2153
2154 vec_alloc (v, 1);
2155 v->quick_push (elt);
2156
2157 return build_constructor (type, v);
2158 }
2159
2160
2161 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
2162 are in a list pointed to by VALS. */
2163 tree
2164 build_constructor_from_list (tree type, tree vals)
2165 {
2166 tree t;
2167 vec<constructor_elt, va_gc> *v = NULL;
2168
2169 if (vals)
2170 {
2171 vec_alloc (v, list_length (vals));
2172 for (t = vals; t; t = TREE_CHAIN (t))
2173 CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
2174 }
2175
2176 return build_constructor (type, v);
2177 }
2178
2179 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
2180 are in a vector pointed to by VALS. Note that the TREE_PURPOSE
2181 fields in the constructor remain null. */
2182
2183 tree
2184 build_constructor_from_vec (tree type, const vec<tree, va_gc> *vals)
2185 {
2186 vec<constructor_elt, va_gc> *v = NULL;
2187
2188 for (tree t : vals)
2189 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, t);
2190
2191 return build_constructor (type, v);
2192 }
2193
2194 /* Return a new CONSTRUCTOR node whose type is TYPE. NELTS is the number
2195 of elements, provided as index/value pairs. */
2196
2197 tree
2198 build_constructor_va (tree type, int nelts, ...)
2199 {
2200 vec<constructor_elt, va_gc> *v = NULL;
2201 va_list p;
2202
2203 va_start (p, nelts);
2204 vec_alloc (v, nelts);
2205 while (nelts--)
2206 {
2207 tree index = va_arg (p, tree);
2208 tree value = va_arg (p, tree);
2209 CONSTRUCTOR_APPEND_ELT (v, index, value);
2210 }
2211 va_end (p);
2212 return build_constructor (type, v);
2213 }
2214
2215 /* Return a node of type TYPE for which TREE_CLOBBER_P is true. */
2216
2217 tree
2218 build_clobber (tree type)
2219 {
2220 tree clobber = build_constructor (type, NULL);
2221 TREE_THIS_VOLATILE (clobber) = true;
2222 return clobber;
2223 }
2224
2225 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
2226
2227 tree
2228 build_fixed (tree type, FIXED_VALUE_TYPE f)
2229 {
2230 tree v;
2231 FIXED_VALUE_TYPE *fp;
2232
2233 v = make_node (FIXED_CST);
2234 fp = ggc_alloc<fixed_value> ();
2235 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
2236
2237 TREE_TYPE (v) = type;
2238 TREE_FIXED_CST_PTR (v) = fp;
2239 return v;
2240 }
2241
2242 /* Return a new REAL_CST node whose type is TYPE and value is D. */
2243
2244 tree
2245 build_real (tree type, REAL_VALUE_TYPE d)
2246 {
2247 tree v;
2248 REAL_VALUE_TYPE *dp;
2249 int overflow = 0;
2250
2251 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
2252 Consider doing it via real_convert now. */
2253
2254 v = make_node (REAL_CST);
2255 dp = ggc_alloc<real_value> ();
2256 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
2257
2258 TREE_TYPE (v) = type;
2259 TREE_REAL_CST_PTR (v) = dp;
2260 TREE_OVERFLOW (v) = overflow;
2261 return v;
2262 }
2263
2264 /* Like build_real, but first truncate D to the type. */
2265
2266 tree
2267 build_real_truncate (tree type, REAL_VALUE_TYPE d)
2268 {
2269 return build_real (type, real_value_truncate (TYPE_MODE (type), d));
2270 }
2271
2272 /* Return a new REAL_CST node whose type is TYPE
2273 and whose value is the integer value of the INTEGER_CST node I. */
2274
2275 REAL_VALUE_TYPE
2276 real_value_from_int_cst (const_tree type, const_tree i)
2277 {
2278 REAL_VALUE_TYPE d;
2279
2280 /* Clear all bits of the real value type so that we can later do
2281 bitwise comparisons to see if two values are the same. */
2282 memset (&d, 0, sizeof d);
2283
2284 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode, wi::to_wide (i),
2285 TYPE_SIGN (TREE_TYPE (i)));
2286 return d;
2287 }
2288
2289 /* Given a tree representing an integer constant I, return a tree
2290 representing the same value as a floating-point constant of type TYPE. */
2291
2292 tree
2293 build_real_from_int_cst (tree type, const_tree i)
2294 {
2295 tree v;
2296 int overflow = TREE_OVERFLOW (i);
2297
2298 v = build_real (type, real_value_from_int_cst (type, i));
2299
2300 TREE_OVERFLOW (v) |= overflow;
2301 return v;
2302 }
2303
2304 /* Return a new REAL_CST node whose type is TYPE
2305 and whose value is the integer value I which has sign SGN. */
2306
2307 tree
2308 build_real_from_wide (tree type, const wide_int_ref &i, signop sgn)
2309 {
2310 REAL_VALUE_TYPE d;
2311
2312 /* Clear all bits of the real value type so that we can later do
2313 bitwise comparisons to see if two values are the same. */
2314 memset (&d, 0, sizeof d);
2315
2316 real_from_integer (&d, TYPE_MODE (type), i, sgn);
2317 return build_real (type, d);
2318 }
2319
2320 /* Return a newly constructed STRING_CST node whose value is the LEN
2321 characters at STR when STR is nonnull, or all zeros otherwise.
2322 Note that for a C string literal, LEN should include the trailing NUL.
2323 The TREE_TYPE is not initialized. */
2324
2325 tree
2326 build_string (unsigned len, const char *str /*= NULL */)
2327 {
2328 /* Do not waste bytes provided by padding of struct tree_string. */
2329 unsigned size = len + offsetof (struct tree_string, str) + 1;
2330
2331 record_node_allocation_statistics (STRING_CST, size);
2332
2333 tree s = (tree) ggc_internal_alloc (size);
2334
2335 memset (s, 0, sizeof (struct tree_typed));
2336 TREE_SET_CODE (s, STRING_CST);
2337 TREE_CONSTANT (s) = 1;
2338 TREE_STRING_LENGTH (s) = len;
2339 if (str)
2340 memcpy (s->string.str, str, len);
2341 else
2342 memset (s->string.str, 0, len);
2343 s->string.str[len] = '\0';
2344
2345 return s;
2346 }
2347
2348 /* Return a newly constructed COMPLEX_CST node whose value is
2349 specified by the real and imaginary parts REAL and IMAG.
2350 Both REAL and IMAG should be constant nodes. TYPE, if specified,
2351 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
2352
2353 tree
2354 build_complex (tree type, tree real, tree imag)
2355 {
2356 gcc_assert (CONSTANT_CLASS_P (real));
2357 gcc_assert (CONSTANT_CLASS_P (imag));
2358
2359 tree t = make_node (COMPLEX_CST);
2360
2361 TREE_REALPART (t) = real;
2362 TREE_IMAGPART (t) = imag;
2363 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
2364 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
2365 return t;
2366 }
2367
2368 /* Build a complex (inf +- 0i), such as for the result of cproj.
2369 TYPE is the complex tree type of the result. If NEG is true, the
2370 imaginary zero is negative. */
2371
2372 tree
2373 build_complex_inf (tree type, bool neg)
2374 {
2375 REAL_VALUE_TYPE rinf, rzero = dconst0;
2376
2377 real_inf (&rinf);
2378 rzero.sign = neg;
2379 return build_complex (type, build_real (TREE_TYPE (type), rinf),
2380 build_real (TREE_TYPE (type), rzero));
2381 }
2382
2383 /* Return the constant 1 in type TYPE. If TYPE has several elements, each
2384 element is set to 1. In particular, this is 1 + i for complex types. */
2385
2386 tree
2387 build_each_one_cst (tree type)
2388 {
2389 if (TREE_CODE (type) == COMPLEX_TYPE)
2390 {
2391 tree scalar = build_one_cst (TREE_TYPE (type));
2392 return build_complex (type, scalar, scalar);
2393 }
2394 else
2395 return build_one_cst (type);
2396 }
2397
2398 /* Return a constant of arithmetic type TYPE which is the
2399 multiplicative identity of the set TYPE. */
2400
2401 tree
2402 build_one_cst (tree type)
2403 {
2404 switch (TREE_CODE (type))
2405 {
2406 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2407 case POINTER_TYPE: case REFERENCE_TYPE:
2408 case OFFSET_TYPE:
2409 return build_int_cst (type, 1);
2410
2411 case REAL_TYPE:
2412 return build_real (type, dconst1);
2413
2414 case FIXED_POINT_TYPE:
2415 /* We can only generate 1 for accum types. */
2416 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
2417 return build_fixed (type, FCONST1 (TYPE_MODE (type)));
2418
2419 case VECTOR_TYPE:
2420 {
2421 tree scalar = build_one_cst (TREE_TYPE (type));
2422
2423 return build_vector_from_val (type, scalar);
2424 }
2425
2426 case COMPLEX_TYPE:
2427 return build_complex (type,
2428 build_one_cst (TREE_TYPE (type)),
2429 build_zero_cst (TREE_TYPE (type)));
2430
2431 default:
2432 gcc_unreachable ();
2433 }
2434 }
2435
2436 /* Return an integer of type TYPE containing all 1's in as much precision as
2437 it contains, or a complex or vector whose subparts are such integers. */
2438
2439 tree
2440 build_all_ones_cst (tree type)
2441 {
2442 if (TREE_CODE (type) == COMPLEX_TYPE)
2443 {
2444 tree scalar = build_all_ones_cst (TREE_TYPE (type));
2445 return build_complex (type, scalar, scalar);
2446 }
2447 else
2448 return build_minus_one_cst (type);
2449 }
2450
2451 /* Return a constant of arithmetic type TYPE which is the
2452 opposite of the multiplicative identity of the set TYPE. */
2453
2454 tree
2455 build_minus_one_cst (tree type)
2456 {
2457 switch (TREE_CODE (type))
2458 {
2459 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2460 case POINTER_TYPE: case REFERENCE_TYPE:
2461 case OFFSET_TYPE:
2462 return build_int_cst (type, -1);
2463
2464 case REAL_TYPE:
2465 return build_real (type, dconstm1);
2466
2467 case FIXED_POINT_TYPE:
2468 /* We can only generate 1 for accum types. */
2469 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
2470 return build_fixed (type,
2471 fixed_from_double_int (double_int_minus_one,
2472 SCALAR_TYPE_MODE (type)));
2473
2474 case VECTOR_TYPE:
2475 {
2476 tree scalar = build_minus_one_cst (TREE_TYPE (type));
2477
2478 return build_vector_from_val (type, scalar);
2479 }
2480
2481 case COMPLEX_TYPE:
2482 return build_complex (type,
2483 build_minus_one_cst (TREE_TYPE (type)),
2484 build_zero_cst (TREE_TYPE (type)));
2485
2486 default:
2487 gcc_unreachable ();
2488 }
2489 }
2490
2491 /* Build 0 constant of type TYPE. This is used by constructor folding
2492 and thus the constant should be represented in memory by
2493 zero(es). */
2494
2495 tree
2496 build_zero_cst (tree type)
2497 {
2498 switch (TREE_CODE (type))
2499 {
2500 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2501 case POINTER_TYPE: case REFERENCE_TYPE:
2502 case OFFSET_TYPE: case NULLPTR_TYPE:
2503 return build_int_cst (type, 0);
2504
2505 case REAL_TYPE:
2506 return build_real (type, dconst0);
2507
2508 case FIXED_POINT_TYPE:
2509 return build_fixed (type, FCONST0 (TYPE_MODE (type)));
2510
2511 case VECTOR_TYPE:
2512 {
2513 tree scalar = build_zero_cst (TREE_TYPE (type));
2514
2515 return build_vector_from_val (type, scalar);
2516 }
2517
2518 case COMPLEX_TYPE:
2519 {
2520 tree zero = build_zero_cst (TREE_TYPE (type));
2521
2522 return build_complex (type, zero, zero);
2523 }
2524
2525 default:
2526 if (!AGGREGATE_TYPE_P (type))
2527 return fold_convert (type, integer_zero_node);
2528 return build_constructor (type, NULL);
2529 }
2530 }
2531
2532
2533 /* Build a BINFO with LEN language slots. */
2534
2535 tree
2536 make_tree_binfo (unsigned base_binfos MEM_STAT_DECL)
2537 {
2538 tree t;
2539 size_t length = (offsetof (struct tree_binfo, base_binfos)
2540 + vec<tree, va_gc>::embedded_size (base_binfos));
2541
2542 record_node_allocation_statistics (TREE_BINFO, length);
2543
2544 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
2545
2546 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
2547
2548 TREE_SET_CODE (t, TREE_BINFO);
2549
2550 BINFO_BASE_BINFOS (t)->embedded_init (base_binfos);
2551
2552 return t;
2553 }
2554
2555 /* Create a CASE_LABEL_EXPR tree node and return it. */
2556
2557 tree
2558 build_case_label (tree low_value, tree high_value, tree label_decl)
2559 {
2560 tree t = make_node (CASE_LABEL_EXPR);
2561
2562 TREE_TYPE (t) = void_type_node;
2563 SET_EXPR_LOCATION (t, DECL_SOURCE_LOCATION (label_decl));
2564
2565 CASE_LOW (t) = low_value;
2566 CASE_HIGH (t) = high_value;
2567 CASE_LABEL (t) = label_decl;
2568 CASE_CHAIN (t) = NULL_TREE;
2569
2570 return t;
2571 }
2572
2573 /* Build a newly constructed INTEGER_CST node. LEN and EXT_LEN are the
2574 values of TREE_INT_CST_NUNITS and TREE_INT_CST_EXT_NUNITS respectively.
2575 The latter determines the length of the HOST_WIDE_INT vector. */
2576
2577 tree
2578 make_int_cst (int len, int ext_len MEM_STAT_DECL)
2579 {
2580 tree t;
2581 int length = ((ext_len - 1) * sizeof (HOST_WIDE_INT)
2582 + sizeof (struct tree_int_cst));
2583
2584 gcc_assert (len);
2585 record_node_allocation_statistics (INTEGER_CST, length);
2586
2587 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
2588
2589 TREE_SET_CODE (t, INTEGER_CST);
2590 TREE_INT_CST_NUNITS (t) = len;
2591 TREE_INT_CST_EXT_NUNITS (t) = ext_len;
2592 /* to_offset can only be applied to trees that are offset_int-sized
2593 or smaller. EXT_LEN is correct if it fits, otherwise the constant
2594 must be exactly the precision of offset_int and so LEN is correct. */
2595 if (ext_len <= OFFSET_INT_ELTS)
2596 TREE_INT_CST_OFFSET_NUNITS (t) = ext_len;
2597 else
2598 TREE_INT_CST_OFFSET_NUNITS (t) = len;
2599
2600 TREE_CONSTANT (t) = 1;
2601
2602 return t;
2603 }
2604
2605 /* Build a newly constructed TREE_VEC node of length LEN. */
2606
2607 tree
2608 make_tree_vec (int len MEM_STAT_DECL)
2609 {
2610 tree t;
2611 size_t length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
2612
2613 record_node_allocation_statistics (TREE_VEC, length);
2614
2615 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
2616
2617 TREE_SET_CODE (t, TREE_VEC);
2618 TREE_VEC_LENGTH (t) = len;
2619
2620 return t;
2621 }
2622
2623 /* Grow a TREE_VEC node to new length LEN. */
2624
2625 tree
2626 grow_tree_vec (tree v, int len MEM_STAT_DECL)
2627 {
2628 gcc_assert (TREE_CODE (v) == TREE_VEC);
2629
2630 int oldlen = TREE_VEC_LENGTH (v);
2631 gcc_assert (len > oldlen);
2632
2633 size_t oldlength = (oldlen - 1) * sizeof (tree) + sizeof (struct tree_vec);
2634 size_t length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
2635
2636 record_node_allocation_statistics (TREE_VEC, length - oldlength);
2637
2638 v = (tree) ggc_realloc (v, length PASS_MEM_STAT);
2639
2640 TREE_VEC_LENGTH (v) = len;
2641
2642 return v;
2643 }
2644 \f
2645 /* Return 1 if EXPR is the constant zero, whether it is integral, float or
2646 fixed, and scalar, complex or vector. */
2647
2648 bool
2649 zerop (const_tree expr)
2650 {
2651 return (integer_zerop (expr)
2652 || real_zerop (expr)
2653 || fixed_zerop (expr));
2654 }
2655
2656 /* Return 1 if EXPR is the integer constant zero or a complex constant
2657 of zero, or a location wrapper for such a constant. */
2658
2659 bool
2660 integer_zerop (const_tree expr)
2661 {
2662 STRIP_ANY_LOCATION_WRAPPER (expr);
2663
2664 switch (TREE_CODE (expr))
2665 {
2666 case INTEGER_CST:
2667 return wi::to_wide (expr) == 0;
2668 case COMPLEX_CST:
2669 return (integer_zerop (TREE_REALPART (expr))
2670 && integer_zerop (TREE_IMAGPART (expr)));
2671 case VECTOR_CST:
2672 return (VECTOR_CST_NPATTERNS (expr) == 1
2673 && VECTOR_CST_DUPLICATE_P (expr)
2674 && integer_zerop (VECTOR_CST_ENCODED_ELT (expr, 0)));
2675 default:
2676 return false;
2677 }
2678 }
2679
2680 /* Return 1 if EXPR is the integer constant one or the corresponding
2681 complex constant, or a location wrapper for such a constant. */
2682
2683 bool
2684 integer_onep (const_tree expr)
2685 {
2686 STRIP_ANY_LOCATION_WRAPPER (expr);
2687
2688 switch (TREE_CODE (expr))
2689 {
2690 case INTEGER_CST:
2691 return wi::eq_p (wi::to_widest (expr), 1);
2692 case COMPLEX_CST:
2693 return (integer_onep (TREE_REALPART (expr))
2694 && integer_zerop (TREE_IMAGPART (expr)));
2695 case VECTOR_CST:
2696 return (VECTOR_CST_NPATTERNS (expr) == 1
2697 && VECTOR_CST_DUPLICATE_P (expr)
2698 && integer_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
2699 default:
2700 return false;
2701 }
2702 }
2703
2704 /* Return 1 if EXPR is the integer constant one. For complex and vector,
2705 return 1 if every piece is the integer constant one.
2706 Also return 1 for location wrappers for such a constant. */
2707
2708 bool
2709 integer_each_onep (const_tree expr)
2710 {
2711 STRIP_ANY_LOCATION_WRAPPER (expr);
2712
2713 if (TREE_CODE (expr) == COMPLEX_CST)
2714 return (integer_onep (TREE_REALPART (expr))
2715 && integer_onep (TREE_IMAGPART (expr)));
2716 else
2717 return integer_onep (expr);
2718 }
2719
2720 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
2721 it contains, or a complex or vector whose subparts are such integers,
2722 or a location wrapper for such a constant. */
2723
2724 bool
2725 integer_all_onesp (const_tree expr)
2726 {
2727 STRIP_ANY_LOCATION_WRAPPER (expr);
2728
2729 if (TREE_CODE (expr) == COMPLEX_CST
2730 && integer_all_onesp (TREE_REALPART (expr))
2731 && integer_all_onesp (TREE_IMAGPART (expr)))
2732 return true;
2733
2734 else if (TREE_CODE (expr) == VECTOR_CST)
2735 return (VECTOR_CST_NPATTERNS (expr) == 1
2736 && VECTOR_CST_DUPLICATE_P (expr)
2737 && integer_all_onesp (VECTOR_CST_ENCODED_ELT (expr, 0)));
2738
2739 else if (TREE_CODE (expr) != INTEGER_CST)
2740 return false;
2741
2742 return (wi::max_value (TYPE_PRECISION (TREE_TYPE (expr)), UNSIGNED)
2743 == wi::to_wide (expr));
2744 }
2745
2746 /* Return 1 if EXPR is the integer constant minus one, or a location wrapper
2747 for such a constant. */
2748
2749 bool
2750 integer_minus_onep (const_tree expr)
2751 {
2752 STRIP_ANY_LOCATION_WRAPPER (expr);
2753
2754 if (TREE_CODE (expr) == COMPLEX_CST)
2755 return (integer_all_onesp (TREE_REALPART (expr))
2756 && integer_zerop (TREE_IMAGPART (expr)));
2757 else
2758 return integer_all_onesp (expr);
2759 }
2760
2761 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
2762 one bit on), or a location wrapper for such a constant. */
2763
2764 bool
2765 integer_pow2p (const_tree expr)
2766 {
2767 STRIP_ANY_LOCATION_WRAPPER (expr);
2768
2769 if (TREE_CODE (expr) == COMPLEX_CST
2770 && integer_pow2p (TREE_REALPART (expr))
2771 && integer_zerop (TREE_IMAGPART (expr)))
2772 return true;
2773
2774 if (TREE_CODE (expr) != INTEGER_CST)
2775 return false;
2776
2777 return wi::popcount (wi::to_wide (expr)) == 1;
2778 }
2779
2780 /* Return 1 if EXPR is an integer constant other than zero or a
2781 complex constant other than zero, or a location wrapper for such a
2782 constant. */
2783
2784 bool
2785 integer_nonzerop (const_tree expr)
2786 {
2787 STRIP_ANY_LOCATION_WRAPPER (expr);
2788
2789 return ((TREE_CODE (expr) == INTEGER_CST
2790 && wi::to_wide (expr) != 0)
2791 || (TREE_CODE (expr) == COMPLEX_CST
2792 && (integer_nonzerop (TREE_REALPART (expr))
2793 || integer_nonzerop (TREE_IMAGPART (expr)))));
2794 }
2795
2796 /* Return 1 if EXPR is the integer constant one. For vector,
2797 return 1 if every piece is the integer constant minus one
2798 (representing the value TRUE).
2799 Also return 1 for location wrappers for such a constant. */
2800
2801 bool
2802 integer_truep (const_tree expr)
2803 {
2804 STRIP_ANY_LOCATION_WRAPPER (expr);
2805
2806 if (TREE_CODE (expr) == VECTOR_CST)
2807 return integer_all_onesp (expr);
2808 return integer_onep (expr);
2809 }
2810
2811 /* Return 1 if EXPR is the fixed-point constant zero, or a location wrapper
2812 for such a constant. */
2813
2814 bool
2815 fixed_zerop (const_tree expr)
2816 {
2817 STRIP_ANY_LOCATION_WRAPPER (expr);
2818
2819 return (TREE_CODE (expr) == FIXED_CST
2820 && TREE_FIXED_CST (expr).data.is_zero ());
2821 }
2822
2823 /* Return the power of two represented by a tree node known to be a
2824 power of two. */
2825
2826 int
2827 tree_log2 (const_tree expr)
2828 {
2829 if (TREE_CODE (expr) == COMPLEX_CST)
2830 return tree_log2 (TREE_REALPART (expr));
2831
2832 return wi::exact_log2 (wi::to_wide (expr));
2833 }
2834
2835 /* Similar, but return the largest integer Y such that 2 ** Y is less
2836 than or equal to EXPR. */
2837
2838 int
2839 tree_floor_log2 (const_tree expr)
2840 {
2841 if (TREE_CODE (expr) == COMPLEX_CST)
2842 return tree_log2 (TREE_REALPART (expr));
2843
2844 return wi::floor_log2 (wi::to_wide (expr));
2845 }
2846
2847 /* Return number of known trailing zero bits in EXPR, or, if the value of
2848 EXPR is known to be zero, the precision of it's type. */
2849
2850 unsigned int
2851 tree_ctz (const_tree expr)
2852 {
2853 if (!INTEGRAL_TYPE_P (TREE_TYPE (expr))
2854 && !POINTER_TYPE_P (TREE_TYPE (expr)))
2855 return 0;
2856
2857 unsigned int ret1, ret2, prec = TYPE_PRECISION (TREE_TYPE (expr));
2858 switch (TREE_CODE (expr))
2859 {
2860 case INTEGER_CST:
2861 ret1 = wi::ctz (wi::to_wide (expr));
2862 return MIN (ret1, prec);
2863 case SSA_NAME:
2864 ret1 = wi::ctz (get_nonzero_bits (expr));
2865 return MIN (ret1, prec);
2866 case PLUS_EXPR:
2867 case MINUS_EXPR:
2868 case BIT_IOR_EXPR:
2869 case BIT_XOR_EXPR:
2870 case MIN_EXPR:
2871 case MAX_EXPR:
2872 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2873 if (ret1 == 0)
2874 return ret1;
2875 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2876 return MIN (ret1, ret2);
2877 case POINTER_PLUS_EXPR:
2878 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2879 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2880 /* Second operand is sizetype, which could be in theory
2881 wider than pointer's precision. Make sure we never
2882 return more than prec. */
2883 ret2 = MIN (ret2, prec);
2884 return MIN (ret1, ret2);
2885 case BIT_AND_EXPR:
2886 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2887 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2888 return MAX (ret1, ret2);
2889 case MULT_EXPR:
2890 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2891 ret2 = tree_ctz (TREE_OPERAND (expr, 1));
2892 return MIN (ret1 + ret2, prec);
2893 case LSHIFT_EXPR:
2894 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2895 if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
2896 && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
2897 {
2898 ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
2899 return MIN (ret1 + ret2, prec);
2900 }
2901 return ret1;
2902 case RSHIFT_EXPR:
2903 if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
2904 && (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
2905 {
2906 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2907 ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
2908 if (ret1 > ret2)
2909 return ret1 - ret2;
2910 }
2911 return 0;
2912 case TRUNC_DIV_EXPR:
2913 case CEIL_DIV_EXPR:
2914 case FLOOR_DIV_EXPR:
2915 case ROUND_DIV_EXPR:
2916 case EXACT_DIV_EXPR:
2917 if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
2918 && tree_int_cst_sgn (TREE_OPERAND (expr, 1)) == 1)
2919 {
2920 int l = tree_log2 (TREE_OPERAND (expr, 1));
2921 if (l >= 0)
2922 {
2923 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2924 ret2 = l;
2925 if (ret1 > ret2)
2926 return ret1 - ret2;
2927 }
2928 }
2929 return 0;
2930 CASE_CONVERT:
2931 ret1 = tree_ctz (TREE_OPERAND (expr, 0));
2932 if (ret1 && ret1 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (expr, 0))))
2933 ret1 = prec;
2934 return MIN (ret1, prec);
2935 case SAVE_EXPR:
2936 return tree_ctz (TREE_OPERAND (expr, 0));
2937 case COND_EXPR:
2938 ret1 = tree_ctz (TREE_OPERAND (expr, 1));
2939 if (ret1 == 0)
2940 return 0;
2941 ret2 = tree_ctz (TREE_OPERAND (expr, 2));
2942 return MIN (ret1, ret2);
2943 case COMPOUND_EXPR:
2944 return tree_ctz (TREE_OPERAND (expr, 1));
2945 case ADDR_EXPR:
2946 ret1 = get_pointer_alignment (CONST_CAST_TREE (expr));
2947 if (ret1 > BITS_PER_UNIT)
2948 {
2949 ret1 = ctz_hwi (ret1 / BITS_PER_UNIT);
2950 return MIN (ret1, prec);
2951 }
2952 return 0;
2953 default:
2954 return 0;
2955 }
2956 }
2957
2958 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
2959 decimal float constants, so don't return 1 for them.
2960 Also return 1 for location wrappers around such a constant. */
2961
2962 bool
2963 real_zerop (const_tree expr)
2964 {
2965 STRIP_ANY_LOCATION_WRAPPER (expr);
2966
2967 switch (TREE_CODE (expr))
2968 {
2969 case REAL_CST:
2970 return real_equal (&TREE_REAL_CST (expr), &dconst0)
2971 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
2972 case COMPLEX_CST:
2973 return real_zerop (TREE_REALPART (expr))
2974 && real_zerop (TREE_IMAGPART (expr));
2975 case VECTOR_CST:
2976 {
2977 /* Don't simply check for a duplicate because the predicate
2978 accepts both +0.0 and -0.0. */
2979 unsigned count = vector_cst_encoded_nelts (expr);
2980 for (unsigned int i = 0; i < count; ++i)
2981 if (!real_zerop (VECTOR_CST_ENCODED_ELT (expr, i)))
2982 return false;
2983 return true;
2984 }
2985 default:
2986 return false;
2987 }
2988 }
2989
2990 /* Return 1 if EXPR is the real constant one in real or complex form.
2991 Trailing zeroes matter for decimal float constants, so don't return
2992 1 for them.
2993 Also return 1 for location wrappers around such a constant. */
2994
2995 bool
2996 real_onep (const_tree expr)
2997 {
2998 STRIP_ANY_LOCATION_WRAPPER (expr);
2999
3000 switch (TREE_CODE (expr))
3001 {
3002 case REAL_CST:
3003 return real_equal (&TREE_REAL_CST (expr), &dconst1)
3004 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
3005 case COMPLEX_CST:
3006 return real_onep (TREE_REALPART (expr))
3007 && real_zerop (TREE_IMAGPART (expr));
3008 case VECTOR_CST:
3009 return (VECTOR_CST_NPATTERNS (expr) == 1
3010 && VECTOR_CST_DUPLICATE_P (expr)
3011 && real_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
3012 default:
3013 return false;
3014 }
3015 }
3016
3017 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes
3018 matter for decimal float constants, so don't return 1 for them.
3019 Also return 1 for location wrappers around such a constant. */
3020
3021 bool
3022 real_minus_onep (const_tree expr)
3023 {
3024 STRIP_ANY_LOCATION_WRAPPER (expr);
3025
3026 switch (TREE_CODE (expr))
3027 {
3028 case REAL_CST:
3029 return real_equal (&TREE_REAL_CST (expr), &dconstm1)
3030 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
3031 case COMPLEX_CST:
3032 return real_minus_onep (TREE_REALPART (expr))
3033 && real_zerop (TREE_IMAGPART (expr));
3034 case VECTOR_CST:
3035 return (VECTOR_CST_NPATTERNS (expr) == 1
3036 && VECTOR_CST_DUPLICATE_P (expr)
3037 && real_minus_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
3038 default:
3039 return false;
3040 }
3041 }
3042
3043 /* Nonzero if EXP is a constant or a cast of a constant. */
3044
3045 bool
3046 really_constant_p (const_tree exp)
3047 {
3048 /* This is not quite the same as STRIP_NOPS. It does more. */
3049 while (CONVERT_EXPR_P (exp)
3050 || TREE_CODE (exp) == NON_LVALUE_EXPR)
3051 exp = TREE_OPERAND (exp, 0);
3052 return TREE_CONSTANT (exp);
3053 }
3054
3055 /* Return true if T holds a polynomial pointer difference, storing it in
3056 *VALUE if so. A true return means that T's precision is no greater
3057 than 64 bits, which is the largest address space we support, so *VALUE
3058 never loses precision. However, the signedness of the result does
3059 not necessarily match the signedness of T: sometimes an unsigned type
3060 like sizetype is used to encode a value that is actually negative. */
3061
3062 bool
3063 ptrdiff_tree_p (const_tree t, poly_int64_pod *value)
3064 {
3065 if (!t)
3066 return false;
3067 if (TREE_CODE (t) == INTEGER_CST)
3068 {
3069 if (!cst_and_fits_in_hwi (t))
3070 return false;
3071 *value = int_cst_value (t);
3072 return true;
3073 }
3074 if (POLY_INT_CST_P (t))
3075 {
3076 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
3077 if (!cst_and_fits_in_hwi (POLY_INT_CST_COEFF (t, i)))
3078 return false;
3079 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
3080 value->coeffs[i] = int_cst_value (POLY_INT_CST_COEFF (t, i));
3081 return true;
3082 }
3083 return false;
3084 }
3085
3086 poly_int64
3087 tree_to_poly_int64 (const_tree t)
3088 {
3089 gcc_assert (tree_fits_poly_int64_p (t));
3090 if (POLY_INT_CST_P (t))
3091 return poly_int_cst_value (t).force_shwi ();
3092 return TREE_INT_CST_LOW (t);
3093 }
3094
3095 poly_uint64
3096 tree_to_poly_uint64 (const_tree t)
3097 {
3098 gcc_assert (tree_fits_poly_uint64_p (t));
3099 if (POLY_INT_CST_P (t))
3100 return poly_int_cst_value (t).force_uhwi ();
3101 return TREE_INT_CST_LOW (t);
3102 }
3103 \f
3104 /* Return first list element whose TREE_VALUE is ELEM.
3105 Return 0 if ELEM is not in LIST. */
3106
3107 tree
3108 value_member (tree elem, tree list)
3109 {
3110 while (list)
3111 {
3112 if (elem == TREE_VALUE (list))
3113 return list;
3114 list = TREE_CHAIN (list);
3115 }
3116 return NULL_TREE;
3117 }
3118
3119 /* Return first list element whose TREE_PURPOSE is ELEM.
3120 Return 0 if ELEM is not in LIST. */
3121
3122 tree
3123 purpose_member (const_tree elem, tree list)
3124 {
3125 while (list)
3126 {
3127 if (elem == TREE_PURPOSE (list))
3128 return list;
3129 list = TREE_CHAIN (list);
3130 }
3131 return NULL_TREE;
3132 }
3133
3134 /* Return true if ELEM is in V. */
3135
3136 bool
3137 vec_member (const_tree elem, vec<tree, va_gc> *v)
3138 {
3139 unsigned ix;
3140 tree t;
3141 FOR_EACH_VEC_SAFE_ELT (v, ix, t)
3142 if (elem == t)
3143 return true;
3144 return false;
3145 }
3146
3147 /* Returns element number IDX (zero-origin) of chain CHAIN, or
3148 NULL_TREE. */
3149
3150 tree
3151 chain_index (int idx, tree chain)
3152 {
3153 for (; chain && idx > 0; --idx)
3154 chain = TREE_CHAIN (chain);
3155 return chain;
3156 }
3157
3158 /* Return nonzero if ELEM is part of the chain CHAIN. */
3159
3160 bool
3161 chain_member (const_tree elem, const_tree chain)
3162 {
3163 while (chain)
3164 {
3165 if (elem == chain)
3166 return true;
3167 chain = DECL_CHAIN (chain);
3168 }
3169
3170 return false;
3171 }
3172
3173 /* Return the length of a chain of nodes chained through TREE_CHAIN.
3174 We expect a null pointer to mark the end of the chain.
3175 This is the Lisp primitive `length'. */
3176
3177 int
3178 list_length (const_tree t)
3179 {
3180 const_tree p = t;
3181 #ifdef ENABLE_TREE_CHECKING
3182 const_tree q = t;
3183 #endif
3184 int len = 0;
3185
3186 while (p)
3187 {
3188 p = TREE_CHAIN (p);
3189 #ifdef ENABLE_TREE_CHECKING
3190 if (len % 2)
3191 q = TREE_CHAIN (q);
3192 gcc_assert (p != q);
3193 #endif
3194 len++;
3195 }
3196
3197 return len;
3198 }
3199
3200 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
3201 UNION_TYPE TYPE, or NULL_TREE if none. */
3202
3203 tree
3204 first_field (const_tree type)
3205 {
3206 tree t = TYPE_FIELDS (type);
3207 while (t && TREE_CODE (t) != FIELD_DECL)
3208 t = TREE_CHAIN (t);
3209 return t;
3210 }
3211
3212 /* Returns the last FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
3213 UNION_TYPE TYPE, or NULL_TREE if none. */
3214
3215 tree
3216 last_field (const_tree type)
3217 {
3218 tree last = NULL_TREE;
3219
3220 for (tree fld = TYPE_FIELDS (type); fld; fld = TREE_CHAIN (fld))
3221 {
3222 if (TREE_CODE (fld) != FIELD_DECL)
3223 continue;
3224
3225 last = fld;
3226 }
3227
3228 return last;
3229 }
3230
3231 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
3232 by modifying the last node in chain 1 to point to chain 2.
3233 This is the Lisp primitive `nconc'. */
3234
3235 tree
3236 chainon (tree op1, tree op2)
3237 {
3238 tree t1;
3239
3240 if (!op1)
3241 return op2;
3242 if (!op2)
3243 return op1;
3244
3245 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
3246 continue;
3247 TREE_CHAIN (t1) = op2;
3248
3249 #ifdef ENABLE_TREE_CHECKING
3250 {
3251 tree t2;
3252 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
3253 gcc_assert (t2 != t1);
3254 }
3255 #endif
3256
3257 return op1;
3258 }
3259
3260 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
3261
3262 tree
3263 tree_last (tree chain)
3264 {
3265 tree next;
3266 if (chain)
3267 while ((next = TREE_CHAIN (chain)))
3268 chain = next;
3269 return chain;
3270 }
3271
3272 /* Reverse the order of elements in the chain T,
3273 and return the new head of the chain (old last element). */
3274
3275 tree
3276 nreverse (tree t)
3277 {
3278 tree prev = 0, decl, next;
3279 for (decl = t; decl; decl = next)
3280 {
3281 /* We shouldn't be using this function to reverse BLOCK chains; we
3282 have blocks_nreverse for that. */
3283 gcc_checking_assert (TREE_CODE (decl) != BLOCK);
3284 next = TREE_CHAIN (decl);
3285 TREE_CHAIN (decl) = prev;
3286 prev = decl;
3287 }
3288 return prev;
3289 }
3290 \f
3291 /* Return a newly created TREE_LIST node whose
3292 purpose and value fields are PARM and VALUE. */
3293
3294 tree
3295 build_tree_list (tree parm, tree value MEM_STAT_DECL)
3296 {
3297 tree t = make_node (TREE_LIST PASS_MEM_STAT);
3298 TREE_PURPOSE (t) = parm;
3299 TREE_VALUE (t) = value;
3300 return t;
3301 }
3302
3303 /* Build a chain of TREE_LIST nodes from a vector. */
3304
3305 tree
3306 build_tree_list_vec (const vec<tree, va_gc> *vec MEM_STAT_DECL)
3307 {
3308 tree ret = NULL_TREE;
3309 tree *pp = &ret;
3310 unsigned int i;
3311 tree t;
3312 FOR_EACH_VEC_SAFE_ELT (vec, i, t)
3313 {
3314 *pp = build_tree_list (NULL, t PASS_MEM_STAT);
3315 pp = &TREE_CHAIN (*pp);
3316 }
3317 return ret;
3318 }
3319
3320 /* Return a newly created TREE_LIST node whose
3321 purpose and value fields are PURPOSE and VALUE
3322 and whose TREE_CHAIN is CHAIN. */
3323
3324 tree
3325 tree_cons (tree purpose, tree value, tree chain MEM_STAT_DECL)
3326 {
3327 tree node;
3328
3329 node = ggc_alloc_tree_node_stat (sizeof (struct tree_list) PASS_MEM_STAT);
3330 memset (node, 0, sizeof (struct tree_common));
3331
3332 record_node_allocation_statistics (TREE_LIST, sizeof (struct tree_list));
3333
3334 TREE_SET_CODE (node, TREE_LIST);
3335 TREE_CHAIN (node) = chain;
3336 TREE_PURPOSE (node) = purpose;
3337 TREE_VALUE (node) = value;
3338 return node;
3339 }
3340
3341 /* Return the values of the elements of a CONSTRUCTOR as a vector of
3342 trees. */
3343
3344 vec<tree, va_gc> *
3345 ctor_to_vec (tree ctor)
3346 {
3347 vec<tree, va_gc> *vec;
3348 vec_alloc (vec, CONSTRUCTOR_NELTS (ctor));
3349 unsigned int ix;
3350 tree val;
3351
3352 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
3353 vec->quick_push (val);
3354
3355 return vec;
3356 }
3357 \f
3358 /* Return the size nominally occupied by an object of type TYPE
3359 when it resides in memory. The value is measured in units of bytes,
3360 and its data type is that normally used for type sizes
3361 (which is the first type created by make_signed_type or
3362 make_unsigned_type). */
3363
3364 tree
3365 size_in_bytes_loc (location_t loc, const_tree type)
3366 {
3367 tree t;
3368
3369 if (type == error_mark_node)
3370 return integer_zero_node;
3371
3372 type = TYPE_MAIN_VARIANT (type);
3373 t = TYPE_SIZE_UNIT (type);
3374
3375 if (t == 0)
3376 {
3377 lang_hooks.types.incomplete_type_error (loc, NULL_TREE, type);
3378 return size_zero_node;
3379 }
3380
3381 return t;
3382 }
3383
3384 /* Return the size of TYPE (in bytes) as a wide integer
3385 or return -1 if the size can vary or is larger than an integer. */
3386
3387 HOST_WIDE_INT
3388 int_size_in_bytes (const_tree type)
3389 {
3390 tree t;
3391
3392 if (type == error_mark_node)
3393 return 0;
3394
3395 type = TYPE_MAIN_VARIANT (type);
3396 t = TYPE_SIZE_UNIT (type);
3397
3398 if (t && tree_fits_uhwi_p (t))
3399 return TREE_INT_CST_LOW (t);
3400 else
3401 return -1;
3402 }
3403
3404 /* Return the maximum size of TYPE (in bytes) as a wide integer
3405 or return -1 if the size can vary or is larger than an integer. */
3406
3407 HOST_WIDE_INT
3408 max_int_size_in_bytes (const_tree type)
3409 {
3410 HOST_WIDE_INT size = -1;
3411 tree size_tree;
3412
3413 /* If this is an array type, check for a possible MAX_SIZE attached. */
3414
3415 if (TREE_CODE (type) == ARRAY_TYPE)
3416 {
3417 size_tree = TYPE_ARRAY_MAX_SIZE (type);
3418
3419 if (size_tree && tree_fits_uhwi_p (size_tree))
3420 size = tree_to_uhwi (size_tree);
3421 }
3422
3423 /* If we still haven't been able to get a size, see if the language
3424 can compute a maximum size. */
3425
3426 if (size == -1)
3427 {
3428 size_tree = lang_hooks.types.max_size (type);
3429
3430 if (size_tree && tree_fits_uhwi_p (size_tree))
3431 size = tree_to_uhwi (size_tree);
3432 }
3433
3434 return size;
3435 }
3436 \f
3437 /* Return the bit position of FIELD, in bits from the start of the record.
3438 This is a tree of type bitsizetype. */
3439
3440 tree
3441 bit_position (const_tree field)
3442 {
3443 return bit_from_pos (DECL_FIELD_OFFSET (field),
3444 DECL_FIELD_BIT_OFFSET (field));
3445 }
3446 \f
3447 /* Return the byte position of FIELD, in bytes from the start of the record.
3448 This is a tree of type sizetype. */
3449
3450 tree
3451 byte_position (const_tree field)
3452 {
3453 return byte_from_pos (DECL_FIELD_OFFSET (field),
3454 DECL_FIELD_BIT_OFFSET (field));
3455 }
3456
3457 /* Likewise, but return as an integer. It must be representable in
3458 that way (since it could be a signed value, we don't have the
3459 option of returning -1 like int_size_in_byte can. */
3460
3461 HOST_WIDE_INT
3462 int_byte_position (const_tree field)
3463 {
3464 return tree_to_shwi (byte_position (field));
3465 }
3466 \f
3467 /* Return, as a tree node, the number of elements for TYPE (which is an
3468 ARRAY_TYPE) minus one. This counts only elements of the top array. */
3469
3470 tree
3471 array_type_nelts (const_tree type)
3472 {
3473 tree index_type, min, max;
3474
3475 /* If they did it with unspecified bounds, then we should have already
3476 given an error about it before we got here. */
3477 if (! TYPE_DOMAIN (type))
3478 return error_mark_node;
3479
3480 index_type = TYPE_DOMAIN (type);
3481 min = TYPE_MIN_VALUE (index_type);
3482 max = TYPE_MAX_VALUE (index_type);
3483
3484 /* TYPE_MAX_VALUE may not be set if the array has unknown length. */
3485 if (!max)
3486 {
3487 /* zero sized arrays are represented from C FE as complete types with
3488 NULL TYPE_MAX_VALUE and zero TYPE_SIZE, while C++ FE represents
3489 them as min 0, max -1. */
3490 if (COMPLETE_TYPE_P (type)
3491 && integer_zerop (TYPE_SIZE (type))
3492 && integer_zerop (min))
3493 return build_int_cst (TREE_TYPE (min), -1);
3494
3495 return error_mark_node;
3496 }
3497
3498 return (integer_zerop (min)
3499 ? max
3500 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
3501 }
3502 \f
3503 /* If arg is static -- a reference to an object in static storage -- then
3504 return the object. This is not the same as the C meaning of `static'.
3505 If arg isn't static, return NULL. */
3506
3507 tree
3508 staticp (tree arg)
3509 {
3510 switch (TREE_CODE (arg))
3511 {
3512 case FUNCTION_DECL:
3513 /* Nested functions are static, even though taking their address will
3514 involve a trampoline as we unnest the nested function and create
3515 the trampoline on the tree level. */
3516 return arg;
3517
3518 case VAR_DECL:
3519 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
3520 && ! DECL_THREAD_LOCAL_P (arg)
3521 && ! DECL_DLLIMPORT_P (arg)
3522 ? arg : NULL);
3523
3524 case CONST_DECL:
3525 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
3526 ? arg : NULL);
3527
3528 case CONSTRUCTOR:
3529 return TREE_STATIC (arg) ? arg : NULL;
3530
3531 case LABEL_DECL:
3532 case STRING_CST:
3533 return arg;
3534
3535 case COMPONENT_REF:
3536 /* If the thing being referenced is not a field, then it is
3537 something language specific. */
3538 gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
3539
3540 /* If we are referencing a bitfield, we can't evaluate an
3541 ADDR_EXPR at compile time and so it isn't a constant. */
3542 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
3543 return NULL;
3544
3545 return staticp (TREE_OPERAND (arg, 0));
3546
3547 case BIT_FIELD_REF:
3548 return NULL;
3549
3550 case INDIRECT_REF:
3551 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
3552
3553 case ARRAY_REF:
3554 case ARRAY_RANGE_REF:
3555 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
3556 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
3557 return staticp (TREE_OPERAND (arg, 0));
3558 else
3559 return NULL;
3560
3561 case COMPOUND_LITERAL_EXPR:
3562 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
3563
3564 default:
3565 return NULL;
3566 }
3567 }
3568
3569 \f
3570
3571
3572 /* Return whether OP is a DECL whose address is function-invariant. */
3573
3574 bool
3575 decl_address_invariant_p (const_tree op)
3576 {
3577 /* The conditions below are slightly less strict than the one in
3578 staticp. */
3579
3580 switch (TREE_CODE (op))
3581 {
3582 case PARM_DECL:
3583 case RESULT_DECL:
3584 case LABEL_DECL:
3585 case FUNCTION_DECL:
3586 return true;
3587
3588 case VAR_DECL:
3589 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
3590 || DECL_THREAD_LOCAL_P (op)
3591 || DECL_CONTEXT (op) == current_function_decl
3592 || decl_function_context (op) == current_function_decl)
3593 return true;
3594 break;
3595
3596 case CONST_DECL:
3597 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
3598 || decl_function_context (op) == current_function_decl)
3599 return true;
3600 break;
3601
3602 default:
3603 break;
3604 }
3605
3606 return false;
3607 }
3608
3609 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
3610
3611 bool
3612 decl_address_ip_invariant_p (const_tree op)
3613 {
3614 /* The conditions below are slightly less strict than the one in
3615 staticp. */
3616
3617 switch (TREE_CODE (op))
3618 {
3619 case LABEL_DECL:
3620 case FUNCTION_DECL:
3621 case STRING_CST:
3622 return true;
3623
3624 case VAR_DECL:
3625 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
3626 && !DECL_DLLIMPORT_P (op))
3627 || DECL_THREAD_LOCAL_P (op))
3628 return true;
3629 break;
3630
3631 case CONST_DECL:
3632 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
3633 return true;
3634 break;
3635
3636 default:
3637 break;
3638 }
3639
3640 return false;
3641 }
3642
3643
3644 /* Return true if T is function-invariant (internal function, does
3645 not handle arithmetic; that's handled in skip_simple_arithmetic and
3646 tree_invariant_p). */
3647
3648 static bool
3649 tree_invariant_p_1 (tree t)
3650 {
3651 tree op;
3652
3653 if (TREE_CONSTANT (t)
3654 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
3655 return true;
3656
3657 switch (TREE_CODE (t))
3658 {
3659 case SAVE_EXPR:
3660 return true;
3661
3662 case ADDR_EXPR:
3663 op = TREE_OPERAND (t, 0);
3664 while (handled_component_p (op))
3665 {
3666 switch (TREE_CODE (op))
3667 {
3668 case ARRAY_REF:
3669 case ARRAY_RANGE_REF:
3670 if (!tree_invariant_p (TREE_OPERAND (op, 1))
3671 || TREE_OPERAND (op, 2) != NULL_TREE
3672 || TREE_OPERAND (op, 3) != NULL_TREE)
3673 return false;
3674 break;
3675
3676 case COMPONENT_REF:
3677 if (TREE_OPERAND (op, 2) != NULL_TREE)
3678 return false;
3679 break;
3680
3681 default:;
3682 }
3683 op = TREE_OPERAND (op, 0);
3684 }
3685
3686 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
3687
3688 default:
3689 break;
3690 }
3691
3692 return false;
3693 }
3694
3695 /* Return true if T is function-invariant. */
3696
3697 bool
3698 tree_invariant_p (tree t)
3699 {
3700 tree inner = skip_simple_arithmetic (t);
3701 return tree_invariant_p_1 (inner);
3702 }
3703
3704 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
3705 Do this to any expression which may be used in more than one place,
3706 but must be evaluated only once.
3707
3708 Normally, expand_expr would reevaluate the expression each time.
3709 Calling save_expr produces something that is evaluated and recorded
3710 the first time expand_expr is called on it. Subsequent calls to
3711 expand_expr just reuse the recorded value.
3712
3713 The call to expand_expr that generates code that actually computes
3714 the value is the first call *at compile time*. Subsequent calls
3715 *at compile time* generate code to use the saved value.
3716 This produces correct result provided that *at run time* control
3717 always flows through the insns made by the first expand_expr
3718 before reaching the other places where the save_expr was evaluated.
3719 You, the caller of save_expr, must make sure this is so.
3720
3721 Constants, and certain read-only nodes, are returned with no
3722 SAVE_EXPR because that is safe. Expressions containing placeholders
3723 are not touched; see tree.def for an explanation of what these
3724 are used for. */
3725
3726 tree
3727 save_expr (tree expr)
3728 {
3729 tree inner;
3730
3731 /* If the tree evaluates to a constant, then we don't want to hide that
3732 fact (i.e. this allows further folding, and direct checks for constants).
3733 However, a read-only object that has side effects cannot be bypassed.
3734 Since it is no problem to reevaluate literals, we just return the
3735 literal node. */
3736 inner = skip_simple_arithmetic (expr);
3737 if (TREE_CODE (inner) == ERROR_MARK)
3738 return inner;
3739
3740 if (tree_invariant_p_1 (inner))
3741 return expr;
3742
3743 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
3744 it means that the size or offset of some field of an object depends on
3745 the value within another field.
3746
3747 Note that it must not be the case that EXPR contains both a PLACEHOLDER_EXPR
3748 and some variable since it would then need to be both evaluated once and
3749 evaluated more than once. Front-ends must assure this case cannot
3750 happen by surrounding any such subexpressions in their own SAVE_EXPR
3751 and forcing evaluation at the proper time. */
3752 if (contains_placeholder_p (inner))
3753 return expr;
3754
3755 expr = build1_loc (EXPR_LOCATION (expr), SAVE_EXPR, TREE_TYPE (expr), expr);
3756
3757 /* This expression might be placed ahead of a jump to ensure that the
3758 value was computed on both sides of the jump. So make sure it isn't
3759 eliminated as dead. */
3760 TREE_SIDE_EFFECTS (expr) = 1;
3761 return expr;
3762 }
3763
3764 /* Look inside EXPR into any simple arithmetic operations. Return the
3765 outermost non-arithmetic or non-invariant node. */
3766
3767 tree
3768 skip_simple_arithmetic (tree expr)
3769 {
3770 /* We don't care about whether this can be used as an lvalue in this
3771 context. */
3772 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3773 expr = TREE_OPERAND (expr, 0);
3774
3775 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
3776 a constant, it will be more efficient to not make another SAVE_EXPR since
3777 it will allow better simplification and GCSE will be able to merge the
3778 computations if they actually occur. */
3779 while (true)
3780 {
3781 if (UNARY_CLASS_P (expr))
3782 expr = TREE_OPERAND (expr, 0);
3783 else if (BINARY_CLASS_P (expr))
3784 {
3785 if (tree_invariant_p (TREE_OPERAND (expr, 1)))
3786 expr = TREE_OPERAND (expr, 0);
3787 else if (tree_invariant_p (TREE_OPERAND (expr, 0)))
3788 expr = TREE_OPERAND (expr, 1);
3789 else
3790 break;
3791 }
3792 else
3793 break;
3794 }
3795
3796 return expr;
3797 }
3798
3799 /* Look inside EXPR into simple arithmetic operations involving constants.
3800 Return the outermost non-arithmetic or non-constant node. */
3801
3802 tree
3803 skip_simple_constant_arithmetic (tree expr)
3804 {
3805 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
3806 expr = TREE_OPERAND (expr, 0);
3807
3808 while (true)
3809 {
3810 if (UNARY_CLASS_P (expr))
3811 expr = TREE_OPERAND (expr, 0);
3812 else if (BINARY_CLASS_P (expr))
3813 {
3814 if (TREE_CONSTANT (TREE_OPERAND (expr, 1)))
3815 expr = TREE_OPERAND (expr, 0);
3816 else if (TREE_CONSTANT (TREE_OPERAND (expr, 0)))
3817 expr = TREE_OPERAND (expr, 1);
3818 else
3819 break;
3820 }
3821 else
3822 break;
3823 }
3824
3825 return expr;
3826 }
3827
3828 /* Return which tree structure is used by T. */
3829
3830 enum tree_node_structure_enum
3831 tree_node_structure (const_tree t)
3832 {
3833 const enum tree_code code = TREE_CODE (t);
3834 return tree_node_structure_for_code (code);
3835 }
3836
3837 /* Set various status flags when building a CALL_EXPR object T. */
3838
3839 static void
3840 process_call_operands (tree t)
3841 {
3842 bool side_effects = TREE_SIDE_EFFECTS (t);
3843 bool read_only = false;
3844 int i = call_expr_flags (t);
3845
3846 /* Calls have side-effects, except those to const or pure functions. */
3847 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
3848 side_effects = true;
3849 /* Propagate TREE_READONLY of arguments for const functions. */
3850 if (i & ECF_CONST)
3851 read_only = true;
3852
3853 if (!side_effects || read_only)
3854 for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
3855 {
3856 tree op = TREE_OPERAND (t, i);
3857 if (op && TREE_SIDE_EFFECTS (op))
3858 side_effects = true;
3859 if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
3860 read_only = false;
3861 }
3862
3863 TREE_SIDE_EFFECTS (t) = side_effects;
3864 TREE_READONLY (t) = read_only;
3865 }
3866 \f
3867 /* Return true if EXP contains a PLACEHOLDER_EXPR, i.e. if it represents a
3868 size or offset that depends on a field within a record. */
3869
3870 bool
3871 contains_placeholder_p (const_tree exp)
3872 {
3873 enum tree_code code;
3874
3875 if (!exp)
3876 return 0;
3877
3878 code = TREE_CODE (exp);
3879 if (code == PLACEHOLDER_EXPR)
3880 return 1;
3881
3882 switch (TREE_CODE_CLASS (code))
3883 {
3884 case tcc_reference:
3885 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
3886 position computations since they will be converted into a
3887 WITH_RECORD_EXPR involving the reference, which will assume
3888 here will be valid. */
3889 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3890
3891 case tcc_exceptional:
3892 if (code == TREE_LIST)
3893 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
3894 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
3895 break;
3896
3897 case tcc_unary:
3898 case tcc_binary:
3899 case tcc_comparison:
3900 case tcc_expression:
3901 switch (code)
3902 {
3903 case COMPOUND_EXPR:
3904 /* Ignoring the first operand isn't quite right, but works best. */
3905 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
3906
3907 case COND_EXPR:
3908 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3909 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
3910 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
3911
3912 case SAVE_EXPR:
3913 /* The save_expr function never wraps anything containing
3914 a PLACEHOLDER_EXPR. */
3915 return 0;
3916
3917 default:
3918 break;
3919 }
3920
3921 switch (TREE_CODE_LENGTH (code))
3922 {
3923 case 1:
3924 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
3925 case 2:
3926 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
3927 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
3928 default:
3929 return 0;
3930 }
3931
3932 case tcc_vl_exp:
3933 switch (code)
3934 {
3935 case CALL_EXPR:
3936 {
3937 const_tree arg;
3938 const_call_expr_arg_iterator iter;
3939 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
3940 if (CONTAINS_PLACEHOLDER_P (arg))
3941 return 1;
3942 return 0;
3943 }
3944 default:
3945 return 0;
3946 }
3947
3948 default:
3949 return 0;
3950 }
3951 return 0;
3952 }
3953
3954 /* Return true if any part of the structure of TYPE involves a PLACEHOLDER_EXPR
3955 directly. This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and
3956 field positions. */
3957
3958 static bool
3959 type_contains_placeholder_1 (const_tree type)
3960 {
3961 /* If the size contains a placeholder or the parent type (component type in
3962 the case of arrays) type involves a placeholder, this type does. */
3963 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
3964 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
3965 || (!POINTER_TYPE_P (type)
3966 && TREE_TYPE (type)
3967 && type_contains_placeholder_p (TREE_TYPE (type))))
3968 return true;
3969
3970 /* Now do type-specific checks. Note that the last part of the check above
3971 greatly limits what we have to do below. */
3972 switch (TREE_CODE (type))
3973 {
3974 case VOID_TYPE:
3975 case OPAQUE_TYPE:
3976 case COMPLEX_TYPE:
3977 case ENUMERAL_TYPE:
3978 case BOOLEAN_TYPE:
3979 case POINTER_TYPE:
3980 case OFFSET_TYPE:
3981 case REFERENCE_TYPE:
3982 case METHOD_TYPE:
3983 case FUNCTION_TYPE:
3984 case VECTOR_TYPE:
3985 case NULLPTR_TYPE:
3986 return false;
3987
3988 case INTEGER_TYPE:
3989 case REAL_TYPE:
3990 case FIXED_POINT_TYPE:
3991 /* Here we just check the bounds. */
3992 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
3993 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
3994
3995 case ARRAY_TYPE:
3996 /* We have already checked the component type above, so just check
3997 the domain type. Flexible array members have a null domain. */
3998 return TYPE_DOMAIN (type) ?
3999 type_contains_placeholder_p (TYPE_DOMAIN (type)) : false;
4000
4001 case RECORD_TYPE:
4002 case UNION_TYPE:
4003 case QUAL_UNION_TYPE:
4004 {
4005 tree field;
4006
4007 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
4008 if (TREE_CODE (field) == FIELD_DECL
4009 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
4010 || (TREE_CODE (type) == QUAL_UNION_TYPE
4011 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
4012 || type_contains_placeholder_p (TREE_TYPE (field))))
4013 return true;
4014
4015 return false;
4016 }
4017
4018 default:
4019 gcc_unreachable ();
4020 }
4021 }
4022
4023 /* Wrapper around above function used to cache its result. */
4024
4025 bool
4026 type_contains_placeholder_p (tree type)
4027 {
4028 bool result;
4029
4030 /* If the contains_placeholder_bits field has been initialized,
4031 then we know the answer. */
4032 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
4033 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
4034
4035 /* Indicate that we've seen this type node, and the answer is false.
4036 This is what we want to return if we run into recursion via fields. */
4037 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
4038
4039 /* Compute the real value. */
4040 result = type_contains_placeholder_1 (type);
4041
4042 /* Store the real value. */
4043 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
4044
4045 return result;
4046 }
4047 \f
4048 /* Push tree EXP onto vector QUEUE if it is not already present. */
4049
4050 static void
4051 push_without_duplicates (tree exp, vec<tree> *queue)
4052 {
4053 unsigned int i;
4054 tree iter;
4055
4056 FOR_EACH_VEC_ELT (*queue, i, iter)
4057 if (simple_cst_equal (iter, exp) == 1)
4058 break;
4059
4060 if (!iter)
4061 queue->safe_push (exp);
4062 }
4063
4064 /* Given a tree EXP, find all occurrences of references to fields
4065 in a PLACEHOLDER_EXPR and place them in vector REFS without
4066 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
4067 we assume here that EXP contains only arithmetic expressions
4068 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
4069 argument list. */
4070
4071 void
4072 find_placeholder_in_expr (tree exp, vec<tree> *refs)
4073 {
4074 enum tree_code code = TREE_CODE (exp);
4075 tree inner;
4076 int i;
4077
4078 /* We handle TREE_LIST and COMPONENT_REF separately. */
4079 if (code == TREE_LIST)
4080 {
4081 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
4082 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
4083 }
4084 else if (code == COMPONENT_REF)
4085 {
4086 for (inner = TREE_OPERAND (exp, 0);
4087 REFERENCE_CLASS_P (inner);
4088 inner = TREE_OPERAND (inner, 0))
4089 ;
4090
4091 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
4092 push_without_duplicates (exp, refs);
4093 else
4094 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
4095 }
4096 else
4097 switch (TREE_CODE_CLASS (code))
4098 {
4099 case tcc_constant:
4100 break;
4101
4102 case tcc_declaration:
4103 /* Variables allocated to static storage can stay. */
4104 if (!TREE_STATIC (exp))
4105 push_without_duplicates (exp, refs);
4106 break;
4107
4108 case tcc_expression:
4109 /* This is the pattern built in ada/make_aligning_type. */
4110 if (code == ADDR_EXPR
4111 && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
4112 {
4113 push_without_duplicates (exp, refs);
4114 break;
4115 }
4116
4117 /* Fall through. */
4118
4119 case tcc_exceptional:
4120 case tcc_unary:
4121 case tcc_binary:
4122 case tcc_comparison:
4123 case tcc_reference:
4124 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
4125 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
4126 break;
4127
4128 case tcc_vl_exp:
4129 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
4130 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
4131 break;
4132
4133 default:
4134 gcc_unreachable ();
4135 }
4136 }
4137
4138 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
4139 return a tree with all occurrences of references to F in a
4140 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
4141 CONST_DECLs. Note that we assume here that EXP contains only
4142 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
4143 occurring only in their argument list. */
4144
4145 tree
4146 substitute_in_expr (tree exp, tree f, tree r)
4147 {
4148 enum tree_code code = TREE_CODE (exp);
4149 tree op0, op1, op2, op3;
4150 tree new_tree;
4151
4152 /* We handle TREE_LIST and COMPONENT_REF separately. */
4153 if (code == TREE_LIST)
4154 {
4155 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
4156 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
4157 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
4158 return exp;
4159
4160 return tree_cons (TREE_PURPOSE (exp), op1, op0);
4161 }
4162 else if (code == COMPONENT_REF)
4163 {
4164 tree inner;
4165
4166 /* If this expression is getting a value from a PLACEHOLDER_EXPR
4167 and it is the right field, replace it with R. */
4168 for (inner = TREE_OPERAND (exp, 0);
4169 REFERENCE_CLASS_P (inner);
4170 inner = TREE_OPERAND (inner, 0))
4171 ;
4172
4173 /* The field. */
4174 op1 = TREE_OPERAND (exp, 1);
4175
4176 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
4177 return r;
4178
4179 /* If this expression hasn't been completed let, leave it alone. */
4180 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
4181 return exp;
4182
4183 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4184 if (op0 == TREE_OPERAND (exp, 0))
4185 return exp;
4186
4187 new_tree
4188 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
4189 }
4190 else
4191 switch (TREE_CODE_CLASS (code))
4192 {
4193 case tcc_constant:
4194 return exp;
4195
4196 case tcc_declaration:
4197 if (exp == f)
4198 return r;
4199 else
4200 return exp;
4201
4202 case tcc_expression:
4203 if (exp == f)
4204 return r;
4205
4206 /* Fall through. */
4207
4208 case tcc_exceptional:
4209 case tcc_unary:
4210 case tcc_binary:
4211 case tcc_comparison:
4212 case tcc_reference:
4213 switch (TREE_CODE_LENGTH (code))
4214 {
4215 case 0:
4216 return exp;
4217
4218 case 1:
4219 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4220 if (op0 == TREE_OPERAND (exp, 0))
4221 return exp;
4222
4223 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
4224 break;
4225
4226 case 2:
4227 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4228 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
4229
4230 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
4231 return exp;
4232
4233 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
4234 break;
4235
4236 case 3:
4237 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4238 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
4239 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
4240
4241 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4242 && op2 == TREE_OPERAND (exp, 2))
4243 return exp;
4244
4245 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
4246 break;
4247
4248 case 4:
4249 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
4250 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
4251 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
4252 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
4253
4254 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4255 && op2 == TREE_OPERAND (exp, 2)
4256 && op3 == TREE_OPERAND (exp, 3))
4257 return exp;
4258
4259 new_tree
4260 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
4261 break;
4262
4263 default:
4264 gcc_unreachable ();
4265 }
4266 break;
4267
4268 case tcc_vl_exp:
4269 {
4270 int i;
4271
4272 new_tree = NULL_TREE;
4273
4274 /* If we are trying to replace F with a constant or with another
4275 instance of one of the arguments of the call, inline back
4276 functions which do nothing else than computing a value from
4277 the arguments they are passed. This makes it possible to
4278 fold partially or entirely the replacement expression. */
4279 if (code == CALL_EXPR)
4280 {
4281 bool maybe_inline = false;
4282 if (CONSTANT_CLASS_P (r))
4283 maybe_inline = true;
4284 else
4285 for (i = 3; i < TREE_OPERAND_LENGTH (exp); i++)
4286 if (operand_equal_p (TREE_OPERAND (exp, i), r, 0))
4287 {
4288 maybe_inline = true;
4289 break;
4290 }
4291 if (maybe_inline)
4292 {
4293 tree t = maybe_inline_call_in_expr (exp);
4294 if (t)
4295 return SUBSTITUTE_IN_EXPR (t, f, r);
4296 }
4297 }
4298
4299 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
4300 {
4301 tree op = TREE_OPERAND (exp, i);
4302 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
4303 if (new_op != op)
4304 {
4305 if (!new_tree)
4306 new_tree = copy_node (exp);
4307 TREE_OPERAND (new_tree, i) = new_op;
4308 }
4309 }
4310
4311 if (new_tree)
4312 {
4313 new_tree = fold (new_tree);
4314 if (TREE_CODE (new_tree) == CALL_EXPR)
4315 process_call_operands (new_tree);
4316 }
4317 else
4318 return exp;
4319 }
4320 break;
4321
4322 default:
4323 gcc_unreachable ();
4324 }
4325
4326 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
4327
4328 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
4329 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
4330
4331 return new_tree;
4332 }
4333
4334 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
4335 for it within OBJ, a tree that is an object or a chain of references. */
4336
4337 tree
4338 substitute_placeholder_in_expr (tree exp, tree obj)
4339 {
4340 enum tree_code code = TREE_CODE (exp);
4341 tree op0, op1, op2, op3;
4342 tree new_tree;
4343
4344 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
4345 in the chain of OBJ. */
4346 if (code == PLACEHOLDER_EXPR)
4347 {
4348 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
4349 tree elt;
4350
4351 for (elt = obj; elt != 0;
4352 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
4353 || TREE_CODE (elt) == COND_EXPR)
4354 ? TREE_OPERAND (elt, 1)
4355 : (REFERENCE_CLASS_P (elt)
4356 || UNARY_CLASS_P (elt)
4357 || BINARY_CLASS_P (elt)
4358 || VL_EXP_CLASS_P (elt)
4359 || EXPRESSION_CLASS_P (elt))
4360 ? TREE_OPERAND (elt, 0) : 0))
4361 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
4362 return elt;
4363
4364 for (elt = obj; elt != 0;
4365 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
4366 || TREE_CODE (elt) == COND_EXPR)
4367 ? TREE_OPERAND (elt, 1)
4368 : (REFERENCE_CLASS_P (elt)
4369 || UNARY_CLASS_P (elt)
4370 || BINARY_CLASS_P (elt)
4371 || VL_EXP_CLASS_P (elt)
4372 || EXPRESSION_CLASS_P (elt))
4373 ? TREE_OPERAND (elt, 0) : 0))
4374 if (POINTER_TYPE_P (TREE_TYPE (elt))
4375 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
4376 == need_type))
4377 return fold_build1 (INDIRECT_REF, need_type, elt);
4378
4379 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
4380 survives until RTL generation, there will be an error. */
4381 return exp;
4382 }
4383
4384 /* TREE_LIST is special because we need to look at TREE_VALUE
4385 and TREE_CHAIN, not TREE_OPERANDS. */
4386 else if (code == TREE_LIST)
4387 {
4388 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
4389 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
4390 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
4391 return exp;
4392
4393 return tree_cons (TREE_PURPOSE (exp), op1, op0);
4394 }
4395 else
4396 switch (TREE_CODE_CLASS (code))
4397 {
4398 case tcc_constant:
4399 case tcc_declaration:
4400 return exp;
4401
4402 case tcc_exceptional:
4403 case tcc_unary:
4404 case tcc_binary:
4405 case tcc_comparison:
4406 case tcc_expression:
4407 case tcc_reference:
4408 case tcc_statement:
4409 switch (TREE_CODE_LENGTH (code))
4410 {
4411 case 0:
4412 return exp;
4413
4414 case 1:
4415 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4416 if (op0 == TREE_OPERAND (exp, 0))
4417 return exp;
4418
4419 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
4420 break;
4421
4422 case 2:
4423 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4424 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4425
4426 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
4427 return exp;
4428
4429 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
4430 break;
4431
4432 case 3:
4433 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4434 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4435 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
4436
4437 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4438 && op2 == TREE_OPERAND (exp, 2))
4439 return exp;
4440
4441 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
4442 break;
4443
4444 case 4:
4445 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
4446 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
4447 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
4448 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
4449
4450 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
4451 && op2 == TREE_OPERAND (exp, 2)
4452 && op3 == TREE_OPERAND (exp, 3))
4453 return exp;
4454
4455 new_tree
4456 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
4457 break;
4458
4459 default:
4460 gcc_unreachable ();
4461 }
4462 break;
4463
4464 case tcc_vl_exp:
4465 {
4466 int i;
4467
4468 new_tree = NULL_TREE;
4469
4470 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
4471 {
4472 tree op = TREE_OPERAND (exp, i);
4473 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
4474 if (new_op != op)
4475 {
4476 if (!new_tree)
4477 new_tree = copy_node (exp);
4478 TREE_OPERAND (new_tree, i) = new_op;
4479 }
4480 }
4481
4482 if (new_tree)
4483 {
4484 new_tree = fold (new_tree);
4485 if (TREE_CODE (new_tree) == CALL_EXPR)
4486 process_call_operands (new_tree);
4487 }
4488 else
4489 return exp;
4490 }
4491 break;
4492
4493 default:
4494 gcc_unreachable ();
4495 }
4496
4497 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
4498
4499 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
4500 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
4501
4502 return new_tree;
4503 }
4504 \f
4505
4506 /* Subroutine of stabilize_reference; this is called for subtrees of
4507 references. Any expression with side-effects must be put in a SAVE_EXPR
4508 to ensure that it is only evaluated once.
4509
4510 We don't put SAVE_EXPR nodes around everything, because assigning very
4511 simple expressions to temporaries causes us to miss good opportunities
4512 for optimizations. Among other things, the opportunity to fold in the
4513 addition of a constant into an addressing mode often gets lost, e.g.
4514 "y[i+1] += x;". In general, we take the approach that we should not make
4515 an assignment unless we are forced into it - i.e., that any non-side effect
4516 operator should be allowed, and that cse should take care of coalescing
4517 multiple utterances of the same expression should that prove fruitful. */
4518
4519 static tree
4520 stabilize_reference_1 (tree e)
4521 {
4522 tree result;
4523 enum tree_code code = TREE_CODE (e);
4524
4525 /* We cannot ignore const expressions because it might be a reference
4526 to a const array but whose index contains side-effects. But we can
4527 ignore things that are actual constant or that already have been
4528 handled by this function. */
4529
4530 if (tree_invariant_p (e))
4531 return e;
4532
4533 switch (TREE_CODE_CLASS (code))
4534 {
4535 case tcc_exceptional:
4536 /* Always wrap STATEMENT_LIST into SAVE_EXPR, even if it doesn't
4537 have side-effects. */
4538 if (code == STATEMENT_LIST)
4539 return save_expr (e);
4540 /* FALLTHRU */
4541 case tcc_type:
4542 case tcc_declaration:
4543 case tcc_comparison:
4544 case tcc_statement:
4545 case tcc_expression:
4546 case tcc_reference:
4547 case tcc_vl_exp:
4548 /* If the expression has side-effects, then encase it in a SAVE_EXPR
4549 so that it will only be evaluated once. */
4550 /* The reference (r) and comparison (<) classes could be handled as
4551 below, but it is generally faster to only evaluate them once. */
4552 if (TREE_SIDE_EFFECTS (e))
4553 return save_expr (e);
4554 return e;
4555
4556 case tcc_constant:
4557 /* Constants need no processing. In fact, we should never reach
4558 here. */
4559 return e;
4560
4561 case tcc_binary:
4562 /* Division is slow and tends to be compiled with jumps,
4563 especially the division by powers of 2 that is often
4564 found inside of an array reference. So do it just once. */
4565 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
4566 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
4567 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
4568 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
4569 return save_expr (e);
4570 /* Recursively stabilize each operand. */
4571 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
4572 stabilize_reference_1 (TREE_OPERAND (e, 1)));
4573 break;
4574
4575 case tcc_unary:
4576 /* Recursively stabilize each operand. */
4577 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
4578 break;
4579
4580 default:
4581 gcc_unreachable ();
4582 }
4583
4584 TREE_TYPE (result) = TREE_TYPE (e);
4585 TREE_READONLY (result) = TREE_READONLY (e);
4586 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
4587 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
4588
4589 return result;
4590 }
4591
4592 /* Stabilize a reference so that we can use it any number of times
4593 without causing its operands to be evaluated more than once.
4594 Returns the stabilized reference. This works by means of save_expr,
4595 so see the caveats in the comments about save_expr.
4596
4597 Also allows conversion expressions whose operands are references.
4598 Any other kind of expression is returned unchanged. */
4599
4600 tree
4601 stabilize_reference (tree ref)
4602 {
4603 tree result;
4604 enum tree_code code = TREE_CODE (ref);
4605
4606 switch (code)
4607 {
4608 case VAR_DECL:
4609 case PARM_DECL:
4610 case RESULT_DECL:
4611 /* No action is needed in this case. */
4612 return ref;
4613
4614 CASE_CONVERT:
4615 case FLOAT_EXPR:
4616 case FIX_TRUNC_EXPR:
4617 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
4618 break;
4619
4620 case INDIRECT_REF:
4621 result = build_nt (INDIRECT_REF,
4622 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
4623 break;
4624
4625 case COMPONENT_REF:
4626 result = build_nt (COMPONENT_REF,
4627 stabilize_reference (TREE_OPERAND (ref, 0)),
4628 TREE_OPERAND (ref, 1), NULL_TREE);
4629 break;
4630
4631 case BIT_FIELD_REF:
4632 result = build_nt (BIT_FIELD_REF,
4633 stabilize_reference (TREE_OPERAND (ref, 0)),
4634 TREE_OPERAND (ref, 1), TREE_OPERAND (ref, 2));
4635 REF_REVERSE_STORAGE_ORDER (result) = REF_REVERSE_STORAGE_ORDER (ref);
4636 break;
4637
4638 case ARRAY_REF:
4639 result = build_nt (ARRAY_REF,
4640 stabilize_reference (TREE_OPERAND (ref, 0)),
4641 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
4642 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
4643 break;
4644
4645 case ARRAY_RANGE_REF:
4646 result = build_nt (ARRAY_RANGE_REF,
4647 stabilize_reference (TREE_OPERAND (ref, 0)),
4648 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
4649 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
4650 break;
4651
4652 case COMPOUND_EXPR:
4653 /* We cannot wrap the first expression in a SAVE_EXPR, as then
4654 it wouldn't be ignored. This matters when dealing with
4655 volatiles. */
4656 return stabilize_reference_1 (ref);
4657
4658 /* If arg isn't a kind of lvalue we recognize, make no change.
4659 Caller should recognize the error for an invalid lvalue. */
4660 default:
4661 return ref;
4662
4663 case ERROR_MARK:
4664 return error_mark_node;
4665 }
4666
4667 TREE_TYPE (result) = TREE_TYPE (ref);
4668 TREE_READONLY (result) = TREE_READONLY (ref);
4669 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
4670 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
4671
4672 return result;
4673 }
4674 \f
4675 /* Low-level constructors for expressions. */
4676
4677 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
4678 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
4679
4680 void
4681 recompute_tree_invariant_for_addr_expr (tree t)
4682 {
4683 tree node;
4684 bool tc = true, se = false;
4685
4686 gcc_assert (TREE_CODE (t) == ADDR_EXPR);
4687
4688 /* We started out assuming this address is both invariant and constant, but
4689 does not have side effects. Now go down any handled components and see if
4690 any of them involve offsets that are either non-constant or non-invariant.
4691 Also check for side-effects.
4692
4693 ??? Note that this code makes no attempt to deal with the case where
4694 taking the address of something causes a copy due to misalignment. */
4695
4696 #define UPDATE_FLAGS(NODE) \
4697 do { tree _node = (NODE); \
4698 if (_node && !TREE_CONSTANT (_node)) tc = false; \
4699 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
4700
4701 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
4702 node = TREE_OPERAND (node, 0))
4703 {
4704 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
4705 array reference (probably made temporarily by the G++ front end),
4706 so ignore all the operands. */
4707 if ((TREE_CODE (node) == ARRAY_REF
4708 || TREE_CODE (node) == ARRAY_RANGE_REF)
4709 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
4710 {
4711 UPDATE_FLAGS (TREE_OPERAND (node, 1));
4712 if (TREE_OPERAND (node, 2))
4713 UPDATE_FLAGS (TREE_OPERAND (node, 2));
4714 if (TREE_OPERAND (node, 3))
4715 UPDATE_FLAGS (TREE_OPERAND (node, 3));
4716 }
4717 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
4718 FIELD_DECL, apparently. The G++ front end can put something else
4719 there, at least temporarily. */
4720 else if (TREE_CODE (node) == COMPONENT_REF
4721 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
4722 {
4723 if (TREE_OPERAND (node, 2))
4724 UPDATE_FLAGS (TREE_OPERAND (node, 2));
4725 }
4726 }
4727
4728 node = lang_hooks.expr_to_decl (node, &tc, &se);
4729
4730 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
4731 the address, since &(*a)->b is a form of addition. If it's a constant, the
4732 address is constant too. If it's a decl, its address is constant if the
4733 decl is static. Everything else is not constant and, furthermore,
4734 taking the address of a volatile variable is not volatile. */
4735 if (TREE_CODE (node) == INDIRECT_REF
4736 || TREE_CODE (node) == MEM_REF)
4737 UPDATE_FLAGS (TREE_OPERAND (node, 0));
4738 else if (CONSTANT_CLASS_P (node))
4739 ;
4740 else if (DECL_P (node))
4741 tc &= (staticp (node) != NULL_TREE);
4742 else
4743 {
4744 tc = false;
4745 se |= TREE_SIDE_EFFECTS (node);
4746 }
4747
4748
4749 TREE_CONSTANT (t) = tc;
4750 TREE_SIDE_EFFECTS (t) = se;
4751 #undef UPDATE_FLAGS
4752 }
4753
4754 /* Build an expression of code CODE, data type TYPE, and operands as
4755 specified. Expressions and reference nodes can be created this way.
4756 Constants, decls, types and misc nodes cannot be.
4757
4758 We define 5 non-variadic functions, from 0 to 4 arguments. This is
4759 enough for all extant tree codes. */
4760
4761 tree
4762 build0 (enum tree_code code, tree tt MEM_STAT_DECL)
4763 {
4764 tree t;
4765
4766 gcc_assert (TREE_CODE_LENGTH (code) == 0);
4767
4768 t = make_node (code PASS_MEM_STAT);
4769 TREE_TYPE (t) = tt;
4770
4771 return t;
4772 }
4773
4774 tree
4775 build1 (enum tree_code code, tree type, tree node MEM_STAT_DECL)
4776 {
4777 int length = sizeof (struct tree_exp);
4778 tree t;
4779
4780 record_node_allocation_statistics (code, length);
4781
4782 gcc_assert (TREE_CODE_LENGTH (code) == 1);
4783
4784 t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
4785
4786 memset (t, 0, sizeof (struct tree_common));
4787
4788 TREE_SET_CODE (t, code);
4789
4790 TREE_TYPE (t) = type;
4791 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
4792 TREE_OPERAND (t, 0) = node;
4793 if (node && !TYPE_P (node))
4794 {
4795 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
4796 TREE_READONLY (t) = TREE_READONLY (node);
4797 }
4798
4799 if (TREE_CODE_CLASS (code) == tcc_statement)
4800 {
4801 if (code != DEBUG_BEGIN_STMT)
4802 TREE_SIDE_EFFECTS (t) = 1;
4803 }
4804 else switch (code)
4805 {
4806 case VA_ARG_EXPR:
4807 /* All of these have side-effects, no matter what their
4808 operands are. */
4809 TREE_SIDE_EFFECTS (t) = 1;
4810 TREE_READONLY (t) = 0;
4811 break;
4812
4813 case INDIRECT_REF:
4814 /* Whether a dereference is readonly has nothing to do with whether
4815 its operand is readonly. */
4816 TREE_READONLY (t) = 0;
4817 break;
4818
4819 case ADDR_EXPR:
4820 if (node)
4821 recompute_tree_invariant_for_addr_expr (t);
4822 break;
4823
4824 default:
4825 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
4826 && node && !TYPE_P (node)
4827 && TREE_CONSTANT (node))
4828 TREE_CONSTANT (t) = 1;
4829 if (TREE_CODE_CLASS (code) == tcc_reference
4830 && node && TREE_THIS_VOLATILE (node))
4831 TREE_THIS_VOLATILE (t) = 1;
4832 break;
4833 }
4834
4835 return t;
4836 }
4837
4838 #define PROCESS_ARG(N) \
4839 do { \
4840 TREE_OPERAND (t, N) = arg##N; \
4841 if (arg##N &&!TYPE_P (arg##N)) \
4842 { \
4843 if (TREE_SIDE_EFFECTS (arg##N)) \
4844 side_effects = 1; \
4845 if (!TREE_READONLY (arg##N) \
4846 && !CONSTANT_CLASS_P (arg##N)) \
4847 (void) (read_only = 0); \
4848 if (!TREE_CONSTANT (arg##N)) \
4849 (void) (constant = 0); \
4850 } \
4851 } while (0)
4852
4853 tree
4854 build2 (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
4855 {
4856 bool constant, read_only, side_effects, div_by_zero;
4857 tree t;
4858
4859 gcc_assert (TREE_CODE_LENGTH (code) == 2);
4860
4861 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
4862 && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
4863 /* When sizetype precision doesn't match that of pointers
4864 we need to be able to build explicit extensions or truncations
4865 of the offset argument. */
4866 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
4867 gcc_assert (TREE_CODE (arg0) == INTEGER_CST
4868 && TREE_CODE (arg1) == INTEGER_CST);
4869
4870 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
4871 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
4872 && ptrofftype_p (TREE_TYPE (arg1)));
4873
4874 t = make_node (code PASS_MEM_STAT);
4875 TREE_TYPE (t) = tt;
4876
4877 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
4878 result based on those same flags for the arguments. But if the
4879 arguments aren't really even `tree' expressions, we shouldn't be trying
4880 to do this. */
4881
4882 /* Expressions without side effects may be constant if their
4883 arguments are as well. */
4884 constant = (TREE_CODE_CLASS (code) == tcc_comparison
4885 || TREE_CODE_CLASS (code) == tcc_binary);
4886 read_only = 1;
4887 side_effects = TREE_SIDE_EFFECTS (t);
4888
4889 switch (code)
4890 {
4891 case TRUNC_DIV_EXPR:
4892 case CEIL_DIV_EXPR:
4893 case FLOOR_DIV_EXPR:
4894 case ROUND_DIV_EXPR:
4895 case EXACT_DIV_EXPR:
4896 case CEIL_MOD_EXPR:
4897 case FLOOR_MOD_EXPR:
4898 case ROUND_MOD_EXPR:
4899 case TRUNC_MOD_EXPR:
4900 div_by_zero = integer_zerop (arg1);
4901 break;
4902 default:
4903 div_by_zero = false;
4904 }
4905
4906 PROCESS_ARG (0);
4907 PROCESS_ARG (1);
4908
4909 TREE_SIDE_EFFECTS (t) = side_effects;
4910 if (code == MEM_REF)
4911 {
4912 if (arg0 && TREE_CODE (arg0) == ADDR_EXPR)
4913 {
4914 tree o = TREE_OPERAND (arg0, 0);
4915 TREE_READONLY (t) = TREE_READONLY (o);
4916 TREE_THIS_VOLATILE (t) = TREE_THIS_VOLATILE (o);
4917 }
4918 }
4919 else
4920 {
4921 TREE_READONLY (t) = read_only;
4922 /* Don't mark X / 0 as constant. */
4923 TREE_CONSTANT (t) = constant && !div_by_zero;
4924 TREE_THIS_VOLATILE (t)
4925 = (TREE_CODE_CLASS (code) == tcc_reference
4926 && arg0 && TREE_THIS_VOLATILE (arg0));
4927 }
4928
4929 return t;
4930 }
4931
4932
4933 tree
4934 build3 (enum tree_code code, tree tt, tree arg0, tree arg1,
4935 tree arg2 MEM_STAT_DECL)
4936 {
4937 bool constant, read_only, side_effects;
4938 tree t;
4939
4940 gcc_assert (TREE_CODE_LENGTH (code) == 3);
4941 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
4942
4943 t = make_node (code PASS_MEM_STAT);
4944 TREE_TYPE (t) = tt;
4945
4946 read_only = 1;
4947
4948 /* As a special exception, if COND_EXPR has NULL branches, we
4949 assume that it is a gimple statement and always consider
4950 it to have side effects. */
4951 if (code == COND_EXPR
4952 && tt == void_type_node
4953 && arg1 == NULL_TREE
4954 && arg2 == NULL_TREE)
4955 side_effects = true;
4956 else
4957 side_effects = TREE_SIDE_EFFECTS (t);
4958
4959 PROCESS_ARG (0);
4960 PROCESS_ARG (1);
4961 PROCESS_ARG (2);
4962
4963 if (code == COND_EXPR)
4964 TREE_READONLY (t) = read_only;
4965
4966 TREE_SIDE_EFFECTS (t) = side_effects;
4967 TREE_THIS_VOLATILE (t)
4968 = (TREE_CODE_CLASS (code) == tcc_reference
4969 && arg0 && TREE_THIS_VOLATILE (arg0));
4970
4971 return t;
4972 }
4973
4974 tree
4975 build4 (enum tree_code code, tree tt, tree arg0, tree arg1,
4976 tree arg2, tree arg3 MEM_STAT_DECL)
4977 {
4978 bool constant, read_only, side_effects;
4979 tree t;
4980
4981 gcc_assert (TREE_CODE_LENGTH (code) == 4);
4982
4983 t = make_node (code PASS_MEM_STAT);
4984 TREE_TYPE (t) = tt;
4985
4986 side_effects = TREE_SIDE_EFFECTS (t);
4987
4988 PROCESS_ARG (0);
4989 PROCESS_ARG (1);
4990 PROCESS_ARG (2);
4991 PROCESS_ARG (3);
4992
4993 TREE_SIDE_EFFECTS (t) = side_effects;
4994 TREE_THIS_VOLATILE (t)
4995 = (TREE_CODE_CLASS (code) == tcc_reference
4996 && arg0 && TREE_THIS_VOLATILE (arg0));
4997
4998 return t;
4999 }
5000
5001 tree
5002 build5 (enum tree_code code, tree tt, tree arg0, tree arg1,
5003 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
5004 {
5005 bool constant, read_only, side_effects;
5006 tree t;
5007
5008 gcc_assert (TREE_CODE_LENGTH (code) == 5);
5009
5010 t = make_node (code PASS_MEM_STAT);
5011 TREE_TYPE (t) = tt;
5012
5013 side_effects = TREE_SIDE_EFFECTS (t);
5014
5015 PROCESS_ARG (0);
5016 PROCESS_ARG (1);
5017 PROCESS_ARG (2);
5018 PROCESS_ARG (3);
5019 PROCESS_ARG (4);
5020
5021 TREE_SIDE_EFFECTS (t) = side_effects;
5022 if (code == TARGET_MEM_REF)
5023 {
5024 if (arg0 && TREE_CODE (arg0) == ADDR_EXPR)
5025 {
5026 tree o = TREE_OPERAND (arg0, 0);
5027 TREE_READONLY (t) = TREE_READONLY (o);
5028 TREE_THIS_VOLATILE (t) = TREE_THIS_VOLATILE (o);
5029 }
5030 }
5031 else
5032 TREE_THIS_VOLATILE (t)
5033 = (TREE_CODE_CLASS (code) == tcc_reference
5034 && arg0 && TREE_THIS_VOLATILE (arg0));
5035
5036 return t;
5037 }
5038
5039 /* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
5040 on the pointer PTR. */
5041
5042 tree
5043 build_simple_mem_ref_loc (location_t loc, tree ptr)
5044 {
5045 poly_int64 offset = 0;
5046 tree ptype = TREE_TYPE (ptr);
5047 tree tem;
5048 /* For convenience allow addresses that collapse to a simple base
5049 and offset. */
5050 if (TREE_CODE (ptr) == ADDR_EXPR
5051 && (handled_component_p (TREE_OPERAND (ptr, 0))
5052 || TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF))
5053 {
5054 ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset);
5055 gcc_assert (ptr);
5056 if (TREE_CODE (ptr) == MEM_REF)
5057 {
5058 offset += mem_ref_offset (ptr).force_shwi ();
5059 ptr = TREE_OPERAND (ptr, 0);
5060 }
5061 else
5062 ptr = build_fold_addr_expr (ptr);
5063 gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr));
5064 }
5065 tem = build2 (MEM_REF, TREE_TYPE (ptype),
5066 ptr, build_int_cst (ptype, offset));
5067 SET_EXPR_LOCATION (tem, loc);
5068 return tem;
5069 }
5070
5071 /* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T. */
5072
5073 poly_offset_int
5074 mem_ref_offset (const_tree t)
5075 {
5076 return poly_offset_int::from (wi::to_poly_wide (TREE_OPERAND (t, 1)),
5077 SIGNED);
5078 }
5079
5080 /* Return an invariant ADDR_EXPR of type TYPE taking the address of BASE
5081 offsetted by OFFSET units. */
5082
5083 tree
5084 build_invariant_address (tree type, tree base, poly_int64 offset)
5085 {
5086 tree ref = fold_build2 (MEM_REF, TREE_TYPE (type),
5087 build_fold_addr_expr (base),
5088 build_int_cst (ptr_type_node, offset));
5089 tree addr = build1 (ADDR_EXPR, type, ref);
5090 recompute_tree_invariant_for_addr_expr (addr);
5091 return addr;
5092 }
5093
5094 /* Similar except don't specify the TREE_TYPE
5095 and leave the TREE_SIDE_EFFECTS as 0.
5096 It is permissible for arguments to be null,
5097 or even garbage if their values do not matter. */
5098
5099 tree
5100 build_nt (enum tree_code code, ...)
5101 {
5102 tree t;
5103 int length;
5104 int i;
5105 va_list p;
5106
5107 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
5108
5109 va_start (p, code);
5110
5111 t = make_node (code);
5112 length = TREE_CODE_LENGTH (code);
5113
5114 for (i = 0; i < length; i++)
5115 TREE_OPERAND (t, i) = va_arg (p, tree);
5116
5117 va_end (p);
5118 return t;
5119 }
5120
5121 /* Similar to build_nt, but for creating a CALL_EXPR object with a
5122 tree vec. */
5123
5124 tree
5125 build_nt_call_vec (tree fn, vec<tree, va_gc> *args)
5126 {
5127 tree ret, t;
5128 unsigned int ix;
5129
5130 ret = build_vl_exp (CALL_EXPR, vec_safe_length (args) + 3);
5131 CALL_EXPR_FN (ret) = fn;
5132 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
5133 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
5134 CALL_EXPR_ARG (ret, ix) = t;
5135 return ret;
5136 }
5137 \f
5138 /* Create a DECL_... node of code CODE, name NAME (if non-null)
5139 and data type TYPE.
5140 We do NOT enter this node in any sort of symbol table.
5141
5142 LOC is the location of the decl.
5143
5144 layout_decl is used to set up the decl's storage layout.
5145 Other slots are initialized to 0 or null pointers. */
5146
5147 tree
5148 build_decl (location_t loc, enum tree_code code, tree name,
5149 tree type MEM_STAT_DECL)
5150 {
5151 tree t;
5152
5153 t = make_node (code PASS_MEM_STAT);
5154 DECL_SOURCE_LOCATION (t) = loc;
5155
5156 /* if (type == error_mark_node)
5157 type = integer_type_node; */
5158 /* That is not done, deliberately, so that having error_mark_node
5159 as the type can suppress useless errors in the use of this variable. */
5160
5161 DECL_NAME (t) = name;
5162 TREE_TYPE (t) = type;
5163
5164 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
5165 layout_decl (t, 0);
5166
5167 return t;
5168 }
5169
5170 /* Builds and returns function declaration with NAME and TYPE. */
5171
5172 tree
5173 build_fn_decl (const char *name, tree type)
5174 {
5175 tree id = get_identifier (name);
5176 tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
5177
5178 DECL_EXTERNAL (decl) = 1;
5179 TREE_PUBLIC (decl) = 1;
5180 DECL_ARTIFICIAL (decl) = 1;
5181 TREE_NOTHROW (decl) = 1;
5182
5183 return decl;
5184 }
5185
5186 vec<tree, va_gc> *all_translation_units;
5187
5188 /* Builds a new translation-unit decl with name NAME, queues it in the
5189 global list of translation-unit decls and returns it. */
5190
5191 tree
5192 build_translation_unit_decl (tree name)
5193 {
5194 tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL,
5195 name, NULL_TREE);
5196 TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name;
5197 vec_safe_push (all_translation_units, tu);
5198 return tu;
5199 }
5200
5201 \f
5202 /* BLOCK nodes are used to represent the structure of binding contours
5203 and declarations, once those contours have been exited and their contents
5204 compiled. This information is used for outputting debugging info. */
5205
5206 tree
5207 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
5208 {
5209 tree block = make_node (BLOCK);
5210
5211 BLOCK_VARS (block) = vars;
5212 BLOCK_SUBBLOCKS (block) = subblocks;
5213 BLOCK_SUPERCONTEXT (block) = supercontext;
5214 BLOCK_CHAIN (block) = chain;
5215 return block;
5216 }
5217
5218 \f
5219 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
5220
5221 LOC is the location to use in tree T. */
5222
5223 void
5224 protected_set_expr_location (tree t, location_t loc)
5225 {
5226 if (CAN_HAVE_LOCATION_P (t))
5227 SET_EXPR_LOCATION (t, loc);
5228 else if (t && TREE_CODE (t) == STATEMENT_LIST)
5229 {
5230 t = expr_single (t);
5231 if (t && CAN_HAVE_LOCATION_P (t))
5232 SET_EXPR_LOCATION (t, loc);
5233 }
5234 }
5235
5236 /* Like PROTECTED_SET_EXPR_LOCATION, but only do that if T has
5237 UNKNOWN_LOCATION. */
5238
5239 void
5240 protected_set_expr_location_if_unset (tree t, location_t loc)
5241 {
5242 t = expr_single (t);
5243 if (t && !EXPR_HAS_LOCATION (t))
5244 protected_set_expr_location (t, loc);
5245 }
5246
5247 /* Data used when collecting DECLs and TYPEs for language data removal. */
5248
5249 class free_lang_data_d
5250 {
5251 public:
5252 free_lang_data_d () : decls (100), types (100) {}
5253
5254 /* Worklist to avoid excessive recursion. */
5255 auto_vec<tree> worklist;
5256
5257 /* Set of traversed objects. Used to avoid duplicate visits. */
5258 hash_set<tree> pset;
5259
5260 /* Array of symbols to process with free_lang_data_in_decl. */
5261 auto_vec<tree> decls;
5262
5263 /* Array of types to process with free_lang_data_in_type. */
5264 auto_vec<tree> types;
5265 };
5266
5267
5268 /* Add type or decl T to one of the list of tree nodes that need their
5269 language data removed. The lists are held inside FLD. */
5270
5271 static void
5272 add_tree_to_fld_list (tree t, class free_lang_data_d *fld)
5273 {
5274 if (DECL_P (t))
5275 fld->decls.safe_push (t);
5276 else if (TYPE_P (t))
5277 fld->types.safe_push (t);
5278 else
5279 gcc_unreachable ();
5280 }
5281
5282 /* Push tree node T into FLD->WORKLIST. */
5283
5284 static inline void
5285 fld_worklist_push (tree t, class free_lang_data_d *fld)
5286 {
5287 if (t && !is_lang_specific (t) && !fld->pset.contains (t))
5288 fld->worklist.safe_push ((t));
5289 }
5290
5291
5292 \f
5293 /* Return simplified TYPE_NAME of TYPE. */
5294
5295 static tree
5296 fld_simplified_type_name (tree type)
5297 {
5298 if (!TYPE_NAME (type) || TREE_CODE (TYPE_NAME (type)) != TYPE_DECL)
5299 return TYPE_NAME (type);
5300 /* Drop TYPE_DECLs in TYPE_NAME in favor of the identifier in the
5301 TYPE_DECL if the type doesn't have linkage.
5302 this must match fld_ */
5303 if (type != TYPE_MAIN_VARIANT (type)
5304 || (!DECL_ASSEMBLER_NAME_SET_P (TYPE_NAME (type))
5305 && (TREE_CODE (type) != RECORD_TYPE
5306 || !TYPE_BINFO (type)
5307 || !BINFO_VTABLE (TYPE_BINFO (type)))))
5308 return DECL_NAME (TYPE_NAME (type));
5309 return TYPE_NAME (type);
5310 }
5311
5312 /* Do same comparsion as check_qualified_type skipping lang part of type
5313 and be more permissive about type names: we only care that names are
5314 same (for diagnostics) and that ODR names are the same.
5315 If INNER_TYPE is non-NULL, be sure that TREE_TYPE match it. */
5316
5317 static bool
5318 fld_type_variant_equal_p (tree t, tree v, tree inner_type)
5319 {
5320 if (TYPE_QUALS (t) != TYPE_QUALS (v)
5321 /* We want to match incomplete variants with complete types.
5322 In this case we need to ignore alignment. */
5323 || ((!RECORD_OR_UNION_TYPE_P (t) || COMPLETE_TYPE_P (v))
5324 && (TYPE_ALIGN (t) != TYPE_ALIGN (v)
5325 || TYPE_USER_ALIGN (t) != TYPE_USER_ALIGN (v)))
5326 || fld_simplified_type_name (t) != fld_simplified_type_name (v)
5327 || !attribute_list_equal (TYPE_ATTRIBUTES (t),
5328 TYPE_ATTRIBUTES (v))
5329 || (inner_type && TREE_TYPE (v) != inner_type))
5330 return false;
5331
5332 return true;
5333 }
5334
5335 /* Find variant of FIRST that match T and create new one if necessary.
5336 Set TREE_TYPE to INNER_TYPE if non-NULL. */
5337
5338 static tree
5339 fld_type_variant (tree first, tree t, class free_lang_data_d *fld,
5340 tree inner_type = NULL)
5341 {
5342 if (first == TYPE_MAIN_VARIANT (t))
5343 return t;
5344 for (tree v = first; v; v = TYPE_NEXT_VARIANT (v))
5345 if (fld_type_variant_equal_p (t, v, inner_type))
5346 return v;
5347 tree v = build_variant_type_copy (first);
5348 TYPE_READONLY (v) = TYPE_READONLY (t);
5349 TYPE_VOLATILE (v) = TYPE_VOLATILE (t);
5350 TYPE_ATOMIC (v) = TYPE_ATOMIC (t);
5351 TYPE_RESTRICT (v) = TYPE_RESTRICT (t);
5352 TYPE_ADDR_SPACE (v) = TYPE_ADDR_SPACE (t);
5353 TYPE_NAME (v) = TYPE_NAME (t);
5354 TYPE_ATTRIBUTES (v) = TYPE_ATTRIBUTES (t);
5355 TYPE_CANONICAL (v) = TYPE_CANONICAL (t);
5356 /* Variants of incomplete types should have alignment
5357 set to BITS_PER_UNIT. Do not copy the actual alignment. */
5358 if (!RECORD_OR_UNION_TYPE_P (v) || COMPLETE_TYPE_P (v))
5359 {
5360 SET_TYPE_ALIGN (v, TYPE_ALIGN (t));
5361 TYPE_USER_ALIGN (v) = TYPE_USER_ALIGN (t);
5362 }
5363 if (inner_type)
5364 TREE_TYPE (v) = inner_type;
5365 gcc_checking_assert (fld_type_variant_equal_p (t,v, inner_type));
5366 if (!fld->pset.add (v))
5367 add_tree_to_fld_list (v, fld);
5368 return v;
5369 }
5370
5371 /* Map complete types to incomplete types. */
5372
5373 static hash_map<tree, tree> *fld_incomplete_types;
5374
5375 /* Map types to simplified types. */
5376
5377 static hash_map<tree, tree> *fld_simplified_types;
5378
5379 /* Produce variant of T whose TREE_TYPE is T2. If it is main variant,
5380 use MAP to prevent duplicates. */
5381
5382 static tree
5383 fld_process_array_type (tree t, tree t2, hash_map<tree, tree> *map,
5384 class free_lang_data_d *fld)
5385 {
5386 if (TREE_TYPE (t) == t2)
5387 return t;
5388
5389 if (TYPE_MAIN_VARIANT (t) != t)
5390 {
5391 return fld_type_variant
5392 (fld_process_array_type (TYPE_MAIN_VARIANT (t),
5393 TYPE_MAIN_VARIANT (t2), map, fld),
5394 t, fld, t2);
5395 }
5396
5397 bool existed;
5398 tree &array
5399 = map->get_or_insert (t, &existed);
5400 if (!existed)
5401 {
5402 array
5403 = build_array_type_1 (t2, TYPE_DOMAIN (t), TYPE_TYPELESS_STORAGE (t),
5404 false, false);
5405 TYPE_CANONICAL (array) = TYPE_CANONICAL (t);
5406 if (!fld->pset.add (array))
5407 add_tree_to_fld_list (array, fld);
5408 }
5409 return array;
5410 }
5411
5412 /* Return CTX after removal of contexts that are not relevant */
5413
5414 static tree
5415 fld_decl_context (tree ctx)
5416 {
5417 /* Variably modified types are needed for tree_is_indexable to decide
5418 whether the type needs to go to local or global section.
5419 This code is semi-broken but for now it is easiest to keep contexts
5420 as expected. */
5421 if (ctx && TYPE_P (ctx)
5422 && !variably_modified_type_p (ctx, NULL_TREE))
5423 {
5424 while (ctx && TYPE_P (ctx))
5425 ctx = TYPE_CONTEXT (ctx);
5426 }
5427 return ctx;
5428 }
5429
5430 /* For T being aggregate type try to turn it into a incomplete variant.
5431 Return T if no simplification is possible. */
5432
5433 static tree
5434 fld_incomplete_type_of (tree t, class free_lang_data_d *fld)
5435 {
5436 if (!t)
5437 return NULL;
5438 if (POINTER_TYPE_P (t))
5439 {
5440 tree t2 = fld_incomplete_type_of (TREE_TYPE (t), fld);
5441 if (t2 != TREE_TYPE (t))
5442 {
5443 tree first;
5444 if (TREE_CODE (t) == POINTER_TYPE)
5445 first = build_pointer_type_for_mode (t2, TYPE_MODE (t),
5446 TYPE_REF_CAN_ALIAS_ALL (t));
5447 else
5448 first = build_reference_type_for_mode (t2, TYPE_MODE (t),
5449 TYPE_REF_CAN_ALIAS_ALL (t));
5450 gcc_assert (TYPE_CANONICAL (t2) != t2
5451 && TYPE_CANONICAL (t2) == TYPE_CANONICAL (TREE_TYPE (t)));
5452 if (!fld->pset.add (first))
5453 add_tree_to_fld_list (first, fld);
5454 return fld_type_variant (first, t, fld);
5455 }
5456 return t;
5457 }
5458 if (TREE_CODE (t) == ARRAY_TYPE)
5459 return fld_process_array_type (t,
5460 fld_incomplete_type_of (TREE_TYPE (t), fld),
5461 fld_incomplete_types, fld);
5462 if ((!RECORD_OR_UNION_TYPE_P (t) && TREE_CODE (t) != ENUMERAL_TYPE)
5463 || !COMPLETE_TYPE_P (t))
5464 return t;
5465 if (TYPE_MAIN_VARIANT (t) == t)
5466 {
5467 bool existed;
5468 tree &copy
5469 = fld_incomplete_types->get_or_insert (t, &existed);
5470
5471 if (!existed)
5472 {
5473 copy = build_distinct_type_copy (t);
5474
5475 /* It is possible that type was not seen by free_lang_data yet. */
5476 if (!fld->pset.add (copy))
5477 add_tree_to_fld_list (copy, fld);
5478 TYPE_SIZE (copy) = NULL;
5479 TYPE_USER_ALIGN (copy) = 0;
5480 TYPE_SIZE_UNIT (copy) = NULL;
5481 TYPE_CANONICAL (copy) = TYPE_CANONICAL (t);
5482 TREE_ADDRESSABLE (copy) = 0;
5483 if (AGGREGATE_TYPE_P (t))
5484 {
5485 SET_TYPE_MODE (copy, VOIDmode);
5486 SET_TYPE_ALIGN (copy, BITS_PER_UNIT);
5487 TYPE_TYPELESS_STORAGE (copy) = 0;
5488 TYPE_FIELDS (copy) = NULL;
5489 TYPE_BINFO (copy) = NULL;
5490 TYPE_FINAL_P (copy) = 0;
5491 TYPE_EMPTY_P (copy) = 0;
5492 }
5493 else
5494 {
5495 TYPE_VALUES (copy) = NULL;
5496 ENUM_IS_OPAQUE (copy) = 0;
5497 ENUM_IS_SCOPED (copy) = 0;
5498 }
5499
5500 /* Build copy of TYPE_DECL in TYPE_NAME if necessary.
5501 This is needed for ODR violation warnings to come out right (we
5502 want duplicate TYPE_DECLs whenever the type is duplicated because
5503 of ODR violation. Because lang data in the TYPE_DECL may not
5504 have been freed yet, rebuild it from scratch and copy relevant
5505 fields. */
5506 TYPE_NAME (copy) = fld_simplified_type_name (copy);
5507 tree name = TYPE_NAME (copy);
5508
5509 if (name && TREE_CODE (name) == TYPE_DECL)
5510 {
5511 gcc_checking_assert (TREE_TYPE (name) == t);
5512 tree name2 = build_decl (DECL_SOURCE_LOCATION (name), TYPE_DECL,
5513 DECL_NAME (name), copy);
5514 if (DECL_ASSEMBLER_NAME_SET_P (name))
5515 SET_DECL_ASSEMBLER_NAME (name2, DECL_ASSEMBLER_NAME (name));
5516 SET_DECL_ALIGN (name2, 0);
5517 DECL_CONTEXT (name2) = fld_decl_context
5518 (DECL_CONTEXT (name));
5519 TYPE_NAME (copy) = name2;
5520 }
5521 }
5522 return copy;
5523 }
5524 return (fld_type_variant
5525 (fld_incomplete_type_of (TYPE_MAIN_VARIANT (t), fld), t, fld));
5526 }
5527
5528 /* Simplify type T for scenarios where we do not need complete pointer
5529 types. */
5530
5531 static tree
5532 fld_simplified_type (tree t, class free_lang_data_d *fld)
5533 {
5534 if (!t)
5535 return t;
5536 if (POINTER_TYPE_P (t))
5537 return fld_incomplete_type_of (t, fld);
5538 /* FIXME: This triggers verification error, see PR88140. */
5539 if (TREE_CODE (t) == ARRAY_TYPE && 0)
5540 return fld_process_array_type (t, fld_simplified_type (TREE_TYPE (t), fld),
5541 fld_simplified_types, fld);
5542 return t;
5543 }
5544
5545 /* Reset the expression *EXPR_P, a size or position.
5546
5547 ??? We could reset all non-constant sizes or positions. But it's cheap
5548 enough to not do so and refrain from adding workarounds to dwarf2out.c.
5549
5550 We need to reset self-referential sizes or positions because they cannot
5551 be gimplified and thus can contain a CALL_EXPR after the gimplification
5552 is finished, which will run afoul of LTO streaming. And they need to be
5553 reset to something essentially dummy but not constant, so as to preserve
5554 the properties of the object they are attached to. */
5555
5556 static inline void
5557 free_lang_data_in_one_sizepos (tree *expr_p)
5558 {
5559 tree expr = *expr_p;
5560 if (CONTAINS_PLACEHOLDER_P (expr))
5561 *expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr));
5562 }
5563
5564
5565 /* Reset all the fields in a binfo node BINFO. We only keep
5566 BINFO_VTABLE, which is used by gimple_fold_obj_type_ref. */
5567
5568 static void
5569 free_lang_data_in_binfo (tree binfo)
5570 {
5571 unsigned i;
5572 tree t;
5573
5574 gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
5575
5576 BINFO_VIRTUALS (binfo) = NULL_TREE;
5577 BINFO_BASE_ACCESSES (binfo) = NULL;
5578 BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
5579 BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
5580 BINFO_VPTR_FIELD (binfo) = NULL_TREE;
5581 TREE_PUBLIC (binfo) = 0;
5582
5583 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (binfo), i, t)
5584 free_lang_data_in_binfo (t);
5585 }
5586
5587
5588 /* Reset all language specific information still present in TYPE. */
5589
5590 static void
5591 free_lang_data_in_type (tree type, class free_lang_data_d *fld)
5592 {
5593 gcc_assert (TYPE_P (type));
5594
5595 /* Give the FE a chance to remove its own data first. */
5596 lang_hooks.free_lang_data (type);
5597
5598 TREE_LANG_FLAG_0 (type) = 0;
5599 TREE_LANG_FLAG_1 (type) = 0;
5600 TREE_LANG_FLAG_2 (type) = 0;
5601 TREE_LANG_FLAG_3 (type) = 0;
5602 TREE_LANG_FLAG_4 (type) = 0;
5603 TREE_LANG_FLAG_5 (type) = 0;
5604 TREE_LANG_FLAG_6 (type) = 0;
5605
5606 TYPE_NEEDS_CONSTRUCTING (type) = 0;
5607
5608 /* Purge non-marked variants from the variants chain, so that they
5609 don't reappear in the IL after free_lang_data. */
5610 while (TYPE_NEXT_VARIANT (type)
5611 && !fld->pset.contains (TYPE_NEXT_VARIANT (type)))
5612 {
5613 tree t = TYPE_NEXT_VARIANT (type);
5614 TYPE_NEXT_VARIANT (type) = TYPE_NEXT_VARIANT (t);
5615 /* Turn the removed types into distinct types. */
5616 TYPE_MAIN_VARIANT (t) = t;
5617 TYPE_NEXT_VARIANT (t) = NULL_TREE;
5618 }
5619
5620 if (TREE_CODE (type) == FUNCTION_TYPE)
5621 {
5622 TREE_TYPE (type) = fld_simplified_type (TREE_TYPE (type), fld);
5623 /* Remove the const and volatile qualifiers from arguments. The
5624 C++ front end removes them, but the C front end does not,
5625 leading to false ODR violation errors when merging two
5626 instances of the same function signature compiled by
5627 different front ends. */
5628 for (tree p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
5629 {
5630 TREE_VALUE (p) = fld_simplified_type (TREE_VALUE (p), fld);
5631 tree arg_type = TREE_VALUE (p);
5632
5633 if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
5634 {
5635 int quals = TYPE_QUALS (arg_type)
5636 & ~TYPE_QUAL_CONST
5637 & ~TYPE_QUAL_VOLATILE;
5638 TREE_VALUE (p) = build_qualified_type (arg_type, quals);
5639 if (!fld->pset.add (TREE_VALUE (p)))
5640 free_lang_data_in_type (TREE_VALUE (p), fld);
5641 }
5642 /* C++ FE uses TREE_PURPOSE to store initial values. */
5643 TREE_PURPOSE (p) = NULL;
5644 }
5645 }
5646 else if (TREE_CODE (type) == METHOD_TYPE)
5647 {
5648 TREE_TYPE (type) = fld_simplified_type (TREE_TYPE (type), fld);
5649 for (tree p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
5650 {
5651 /* C++ FE uses TREE_PURPOSE to store initial values. */
5652 TREE_VALUE (p) = fld_simplified_type (TREE_VALUE (p), fld);
5653 TREE_PURPOSE (p) = NULL;
5654 }
5655 }
5656 else if (RECORD_OR_UNION_TYPE_P (type))
5657 {
5658 /* Remove members that are not FIELD_DECLs from the field list
5659 of an aggregate. These occur in C++. */
5660 for (tree *prev = &TYPE_FIELDS (type), member; (member = *prev);)
5661 if (TREE_CODE (member) == FIELD_DECL)
5662 prev = &DECL_CHAIN (member);
5663 else
5664 *prev = DECL_CHAIN (member);
5665
5666 TYPE_VFIELD (type) = NULL_TREE;
5667
5668 if (TYPE_BINFO (type))
5669 {
5670 free_lang_data_in_binfo (TYPE_BINFO (type));
5671 /* We need to preserve link to bases and virtual table for all
5672 polymorphic types to make devirtualization machinery working. */
5673 if (!BINFO_VTABLE (TYPE_BINFO (type)))
5674 TYPE_BINFO (type) = NULL;
5675 }
5676 }
5677 else if (INTEGRAL_TYPE_P (type)
5678 || SCALAR_FLOAT_TYPE_P (type)
5679 || FIXED_POINT_TYPE_P (type))
5680 {
5681 if (TREE_CODE (type) == ENUMERAL_TYPE)
5682 {
5683 ENUM_IS_OPAQUE (type) = 0;
5684 ENUM_IS_SCOPED (type) = 0;
5685 /* Type values are used only for C++ ODR checking. Drop them
5686 for all type variants and non-ODR types.
5687 For ODR types the data is freed in free_odr_warning_data. */
5688 if (!TYPE_VALUES (type))
5689 ;
5690 else if (TYPE_MAIN_VARIANT (type) != type
5691 || !type_with_linkage_p (type)
5692 || type_in_anonymous_namespace_p (type))
5693 TYPE_VALUES (type) = NULL;
5694 else
5695 register_odr_enum (type);
5696 }
5697 free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type));
5698 free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type));
5699 }
5700
5701 TYPE_LANG_SLOT_1 (type) = NULL_TREE;
5702
5703 free_lang_data_in_one_sizepos (&TYPE_SIZE (type));
5704 free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type));
5705
5706 if (TYPE_CONTEXT (type)
5707 && TREE_CODE (TYPE_CONTEXT (type)) == BLOCK)
5708 {
5709 tree ctx = TYPE_CONTEXT (type);
5710 do
5711 {
5712 ctx = BLOCK_SUPERCONTEXT (ctx);
5713 }
5714 while (ctx && TREE_CODE (ctx) == BLOCK);
5715 TYPE_CONTEXT (type) = ctx;
5716 }
5717
5718 TYPE_STUB_DECL (type) = NULL;
5719 TYPE_NAME (type) = fld_simplified_type_name (type);
5720 }
5721
5722
5723 /* Return true if DECL may need an assembler name to be set. */
5724
5725 static inline bool
5726 need_assembler_name_p (tree decl)
5727 {
5728 /* We use DECL_ASSEMBLER_NAME to hold mangled type names for One Definition
5729 Rule merging. This makes type_odr_p to return true on those types during
5730 LTO and by comparing the mangled name, we can say what types are intended
5731 to be equivalent across compilation unit.
5732
5733 We do not store names of type_in_anonymous_namespace_p.
5734
5735 Record, union and enumeration type have linkage that allows use
5736 to check type_in_anonymous_namespace_p. We do not mangle compound types
5737 that always can be compared structurally.
5738
5739 Similarly for builtin types, we compare properties of their main variant.
5740 A special case are integer types where mangling do make differences
5741 between char/signed char/unsigned char etc. Storing name for these makes
5742 e.g. -fno-signed-char/-fsigned-char mismatches to be handled well.
5743 See cp/mangle.c:write_builtin_type for details. */
5744
5745 if (TREE_CODE (decl) == TYPE_DECL)
5746 {
5747 if (DECL_NAME (decl)
5748 && decl == TYPE_NAME (TREE_TYPE (decl))
5749 && TYPE_MAIN_VARIANT (TREE_TYPE (decl)) == TREE_TYPE (decl)
5750 && !TYPE_ARTIFICIAL (TREE_TYPE (decl))
5751 && ((TREE_CODE (TREE_TYPE (decl)) != RECORD_TYPE
5752 && TREE_CODE (TREE_TYPE (decl)) != UNION_TYPE)
5753 || TYPE_CXX_ODR_P (TREE_TYPE (decl)))
5754 && (type_with_linkage_p (TREE_TYPE (decl))
5755 || TREE_CODE (TREE_TYPE (decl)) == INTEGER_TYPE)
5756 && !variably_modified_type_p (TREE_TYPE (decl), NULL_TREE))
5757 return !DECL_ASSEMBLER_NAME_SET_P (decl);
5758 return false;
5759 }
5760 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
5761 if (!VAR_OR_FUNCTION_DECL_P (decl))
5762 return false;
5763
5764 /* If DECL already has its assembler name set, it does not need a
5765 new one. */
5766 if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
5767 || DECL_ASSEMBLER_NAME_SET_P (decl))
5768 return false;
5769
5770 /* Abstract decls do not need an assembler name. */
5771 if (DECL_ABSTRACT_P (decl))
5772 return false;
5773
5774 /* For VAR_DECLs, only static, public and external symbols need an
5775 assembler name. */
5776 if (VAR_P (decl)
5777 && !TREE_STATIC (decl)
5778 && !TREE_PUBLIC (decl)
5779 && !DECL_EXTERNAL (decl))
5780 return false;
5781
5782 if (TREE_CODE (decl) == FUNCTION_DECL)
5783 {
5784 /* Do not set assembler name on builtins. Allow RTL expansion to
5785 decide whether to expand inline or via a regular call. */
5786 if (fndecl_built_in_p (decl)
5787 && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
5788 return false;
5789
5790 /* Functions represented in the callgraph need an assembler name. */
5791 if (cgraph_node::get (decl) != NULL)
5792 return true;
5793
5794 /* Unused and not public functions don't need an assembler name. */
5795 if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
5796 return false;
5797 }
5798
5799 return true;
5800 }
5801
5802
5803 /* Reset all language specific information still present in symbol
5804 DECL. */
5805
5806 static void
5807 free_lang_data_in_decl (tree decl, class free_lang_data_d *fld)
5808 {
5809 gcc_assert (DECL_P (decl));
5810
5811 /* Give the FE a chance to remove its own data first. */
5812 lang_hooks.free_lang_data (decl);
5813
5814 TREE_LANG_FLAG_0 (decl) = 0;
5815 TREE_LANG_FLAG_1 (decl) = 0;
5816 TREE_LANG_FLAG_2 (decl) = 0;
5817 TREE_LANG_FLAG_3 (decl) = 0;
5818 TREE_LANG_FLAG_4 (decl) = 0;
5819 TREE_LANG_FLAG_5 (decl) = 0;
5820 TREE_LANG_FLAG_6 (decl) = 0;
5821
5822 free_lang_data_in_one_sizepos (&DECL_SIZE (decl));
5823 free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl));
5824 if (TREE_CODE (decl) == FIELD_DECL)
5825 {
5826 DECL_FCONTEXT (decl) = NULL;
5827 free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl));
5828 if (TREE_CODE (DECL_CONTEXT (decl)) == QUAL_UNION_TYPE)
5829 DECL_QUALIFIER (decl) = NULL_TREE;
5830 }
5831
5832 if (TREE_CODE (decl) == FUNCTION_DECL)
5833 {
5834 struct cgraph_node *node;
5835 /* Frontends do not set TREE_ADDRESSABLE on public variables even though
5836 the address may be taken in other unit, so this flag has no practical
5837 use for middle-end.
5838
5839 It would make more sense if frontends set TREE_ADDRESSABLE to 0 only
5840 for public objects that indeed cannot be adressed, but it is not
5841 the case. Set the flag to true so we do not get merge failures for
5842 i.e. virtual tables between units that take address of it and
5843 units that don't. */
5844 if (TREE_PUBLIC (decl))
5845 TREE_ADDRESSABLE (decl) = true;
5846 TREE_TYPE (decl) = fld_simplified_type (TREE_TYPE (decl), fld);
5847 if (!(node = cgraph_node::get (decl))
5848 || (!node->definition && !node->clones))
5849 {
5850 if (node)
5851 node->release_body ();
5852 else
5853 {
5854 release_function_body (decl);
5855 DECL_ARGUMENTS (decl) = NULL;
5856 DECL_RESULT (decl) = NULL;
5857 DECL_INITIAL (decl) = error_mark_node;
5858 }
5859 }
5860 if (gimple_has_body_p (decl) || (node && node->thunk))
5861 {
5862 tree t;
5863
5864 /* If DECL has a gimple body, then the context for its
5865 arguments must be DECL. Otherwise, it doesn't really
5866 matter, as we will not be emitting any code for DECL. In
5867 general, there may be other instances of DECL created by
5868 the front end and since PARM_DECLs are generally shared,
5869 their DECL_CONTEXT changes as the replicas of DECL are
5870 created. The only time where DECL_CONTEXT is important
5871 is for the FUNCTION_DECLs that have a gimple body (since
5872 the PARM_DECL will be used in the function's body). */
5873 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
5874 DECL_CONTEXT (t) = decl;
5875 if (!DECL_FUNCTION_SPECIFIC_TARGET (decl))
5876 DECL_FUNCTION_SPECIFIC_TARGET (decl)
5877 = target_option_default_node;
5878 if (!DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl))
5879 DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl)
5880 = optimization_default_node;
5881 }
5882
5883 /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
5884 At this point, it is not needed anymore. */
5885 DECL_SAVED_TREE (decl) = NULL_TREE;
5886
5887 /* Clear the abstract origin if it refers to a method.
5888 Otherwise dwarf2out.c will ICE as we splice functions out of
5889 TYPE_FIELDS and thus the origin will not be output
5890 correctly. */
5891 if (DECL_ABSTRACT_ORIGIN (decl)
5892 && DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))
5893 && RECORD_OR_UNION_TYPE_P
5894 (DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))))
5895 DECL_ABSTRACT_ORIGIN (decl) = NULL_TREE;
5896
5897 DECL_VINDEX (decl) = NULL_TREE;
5898 }
5899 else if (VAR_P (decl))
5900 {
5901 /* See comment above why we set the flag for functions. */
5902 if (TREE_PUBLIC (decl))
5903 TREE_ADDRESSABLE (decl) = true;
5904 if ((DECL_EXTERNAL (decl)
5905 && (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
5906 || (decl_function_context (decl) && !TREE_STATIC (decl)))
5907 DECL_INITIAL (decl) = NULL_TREE;
5908 }
5909 else if (TREE_CODE (decl) == TYPE_DECL)
5910 {
5911 DECL_VISIBILITY (decl) = VISIBILITY_DEFAULT;
5912 DECL_VISIBILITY_SPECIFIED (decl) = 0;
5913 TREE_PUBLIC (decl) = 0;
5914 TREE_PRIVATE (decl) = 0;
5915 DECL_ARTIFICIAL (decl) = 0;
5916 TYPE_DECL_SUPPRESS_DEBUG (decl) = 0;
5917 DECL_INITIAL (decl) = NULL_TREE;
5918 DECL_ORIGINAL_TYPE (decl) = NULL_TREE;
5919 DECL_MODE (decl) = VOIDmode;
5920 SET_DECL_ALIGN (decl, 0);
5921 /* TREE_TYPE is cleared at WPA time in free_odr_warning_data. */
5922 }
5923 else if (TREE_CODE (decl) == FIELD_DECL)
5924 {
5925 TREE_TYPE (decl) = fld_simplified_type (TREE_TYPE (decl), fld);
5926 DECL_INITIAL (decl) = NULL_TREE;
5927 }
5928 else if (TREE_CODE (decl) == TRANSLATION_UNIT_DECL
5929 && DECL_INITIAL (decl)
5930 && TREE_CODE (DECL_INITIAL (decl)) == BLOCK)
5931 {
5932 /* Strip builtins from the translation-unit BLOCK. We still have targets
5933 without builtin_decl_explicit support and also builtins are shared
5934 nodes and thus we can't use TREE_CHAIN in multiple lists. */
5935 tree *nextp = &BLOCK_VARS (DECL_INITIAL (decl));
5936 while (*nextp)
5937 {
5938 tree var = *nextp;
5939 if (TREE_CODE (var) == FUNCTION_DECL
5940 && fndecl_built_in_p (var))
5941 *nextp = TREE_CHAIN (var);
5942 else
5943 nextp = &TREE_CHAIN (var);
5944 }
5945 }
5946 /* We need to keep field decls associated with their trees. Otherwise tree
5947 merging may merge some fileds and keep others disjoint wich in turn will
5948 not do well with TREE_CHAIN pointers linking them.
5949
5950 Also do not drop containing types for virtual methods and tables because
5951 these are needed by devirtualization.
5952 C++ destructors are special because C++ frontends sometimes produces
5953 virtual destructor as an alias of non-virtual destructor. In
5954 devirutalization code we always walk through aliases and we need
5955 context to be preserved too. See PR89335 */
5956 if (TREE_CODE (decl) != FIELD_DECL
5957 && ((TREE_CODE (decl) != VAR_DECL && TREE_CODE (decl) != FUNCTION_DECL)
5958 || (!DECL_VIRTUAL_P (decl)
5959 && (TREE_CODE (decl) != FUNCTION_DECL
5960 || !DECL_CXX_DESTRUCTOR_P (decl)))))
5961 DECL_CONTEXT (decl) = fld_decl_context (DECL_CONTEXT (decl));
5962 }
5963
5964
5965 /* Operand callback helper for free_lang_data_in_node. *TP is the
5966 subtree operand being considered. */
5967
5968 static tree
5969 find_decls_types_r (tree *tp, int *ws, void *data)
5970 {
5971 tree t = *tp;
5972 class free_lang_data_d *fld = (class free_lang_data_d *) data;
5973
5974 if (TREE_CODE (t) == TREE_LIST)
5975 return NULL_TREE;
5976
5977 /* Language specific nodes will be removed, so there is no need
5978 to gather anything under them. */
5979 if (is_lang_specific (t))
5980 {
5981 *ws = 0;
5982 return NULL_TREE;
5983 }
5984
5985 if (DECL_P (t))
5986 {
5987 /* Note that walk_tree does not traverse every possible field in
5988 decls, so we have to do our own traversals here. */
5989 add_tree_to_fld_list (t, fld);
5990
5991 fld_worklist_push (DECL_NAME (t), fld);
5992 fld_worklist_push (DECL_CONTEXT (t), fld);
5993 fld_worklist_push (DECL_SIZE (t), fld);
5994 fld_worklist_push (DECL_SIZE_UNIT (t), fld);
5995
5996 /* We are going to remove everything under DECL_INITIAL for
5997 TYPE_DECLs. No point walking them. */
5998 if (TREE_CODE (t) != TYPE_DECL)
5999 fld_worklist_push (DECL_INITIAL (t), fld);
6000
6001 fld_worklist_push (DECL_ATTRIBUTES (t), fld);
6002 fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
6003
6004 if (TREE_CODE (t) == FUNCTION_DECL)
6005 {
6006 fld_worklist_push (DECL_ARGUMENTS (t), fld);
6007 fld_worklist_push (DECL_RESULT (t), fld);
6008 }
6009 else if (TREE_CODE (t) == FIELD_DECL)
6010 {
6011 fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
6012 fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
6013 fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
6014 fld_worklist_push (DECL_FCONTEXT (t), fld);
6015 }
6016
6017 if ((VAR_P (t) || TREE_CODE (t) == PARM_DECL)
6018 && DECL_HAS_VALUE_EXPR_P (t))
6019 fld_worklist_push (DECL_VALUE_EXPR (t), fld);
6020
6021 if (TREE_CODE (t) != FIELD_DECL
6022 && TREE_CODE (t) != TYPE_DECL)
6023 fld_worklist_push (TREE_CHAIN (t), fld);
6024 *ws = 0;
6025 }
6026 else if (TYPE_P (t))
6027 {
6028 /* Note that walk_tree does not traverse every possible field in
6029 types, so we have to do our own traversals here. */
6030 add_tree_to_fld_list (t, fld);
6031
6032 if (!RECORD_OR_UNION_TYPE_P (t))
6033 fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
6034 fld_worklist_push (TYPE_SIZE (t), fld);
6035 fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
6036 fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
6037 fld_worklist_push (TYPE_POINTER_TO (t), fld);
6038 fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
6039 fld_worklist_push (TYPE_NAME (t), fld);
6040 /* While we do not stream TYPE_POINTER_TO and TYPE_REFERENCE_TO
6041 lists, we may look types up in these lists and use them while
6042 optimizing the function body. Thus we need to free lang data
6043 in them. */
6044 if (TREE_CODE (t) == POINTER_TYPE)
6045 fld_worklist_push (TYPE_NEXT_PTR_TO (t), fld);
6046 if (TREE_CODE (t) == REFERENCE_TYPE)
6047 fld_worklist_push (TYPE_NEXT_REF_TO (t), fld);
6048 if (!POINTER_TYPE_P (t))
6049 fld_worklist_push (TYPE_MIN_VALUE_RAW (t), fld);
6050 /* TYPE_MAX_VALUE_RAW is TYPE_BINFO for record types. */
6051 if (!RECORD_OR_UNION_TYPE_P (t))
6052 fld_worklist_push (TYPE_MAX_VALUE_RAW (t), fld);
6053 fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
6054 /* Do not walk TYPE_NEXT_VARIANT. We do not stream it and thus
6055 do not and want not to reach unused variants this way. */
6056 if (TYPE_CONTEXT (t))
6057 {
6058 tree ctx = TYPE_CONTEXT (t);
6059 /* We adjust BLOCK TYPE_CONTEXTs to the innermost non-BLOCK one.
6060 So push that instead. */
6061 while (ctx && TREE_CODE (ctx) == BLOCK)
6062 ctx = BLOCK_SUPERCONTEXT (ctx);
6063 fld_worklist_push (ctx, fld);
6064 }
6065 fld_worklist_push (TYPE_CANONICAL (t), fld);
6066
6067 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
6068 {
6069 unsigned i;
6070 tree tem;
6071 FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (TYPE_BINFO (t)), i, tem)
6072 fld_worklist_push (TREE_TYPE (tem), fld);
6073 fld_worklist_push (BINFO_TYPE (TYPE_BINFO (t)), fld);
6074 fld_worklist_push (BINFO_VTABLE (TYPE_BINFO (t)), fld);
6075 }
6076 if (RECORD_OR_UNION_TYPE_P (t))
6077 {
6078 tree tem;
6079 /* Push all TYPE_FIELDS - there can be interleaving interesting
6080 and non-interesting things. */
6081 tem = TYPE_FIELDS (t);
6082 while (tem)
6083 {
6084 if (TREE_CODE (tem) == FIELD_DECL)
6085 fld_worklist_push (tem, fld);
6086 tem = TREE_CHAIN (tem);
6087 }
6088 }
6089 if (FUNC_OR_METHOD_TYPE_P (t))
6090 fld_worklist_push (TYPE_METHOD_BASETYPE (t), fld);
6091
6092 fld_worklist_push (TYPE_STUB_DECL (t), fld);
6093 *ws = 0;
6094 }
6095 else if (TREE_CODE (t) == BLOCK)
6096 {
6097 for (tree *tem = &BLOCK_VARS (t); *tem; )
6098 {
6099 if (TREE_CODE (*tem) != LABEL_DECL
6100 && (TREE_CODE (*tem) != VAR_DECL
6101 || !auto_var_in_fn_p (*tem, DECL_CONTEXT (*tem))))
6102 {
6103 gcc_assert (TREE_CODE (*tem) != RESULT_DECL
6104 && TREE_CODE (*tem) != PARM_DECL);
6105 *tem = TREE_CHAIN (*tem);
6106 }
6107 else
6108 {
6109 fld_worklist_push (*tem, fld);
6110 tem = &TREE_CHAIN (*tem);
6111 }
6112 }
6113 for (tree tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem))
6114 fld_worklist_push (tem, fld);
6115 fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld);
6116 }
6117
6118 if (TREE_CODE (t) != IDENTIFIER_NODE
6119 && CODE_CONTAINS_STRUCT (TREE_CODE (t), TS_TYPED))
6120 fld_worklist_push (TREE_TYPE (t), fld);
6121
6122 return NULL_TREE;
6123 }
6124
6125
6126 /* Find decls and types in T. */
6127
6128 static void
6129 find_decls_types (tree t, class free_lang_data_d *fld)
6130 {
6131 while (1)
6132 {
6133 if (!fld->pset.contains (t))
6134 walk_tree (&t, find_decls_types_r, fld, &fld->pset);
6135 if (fld->worklist.is_empty ())
6136 break;
6137 t = fld->worklist.pop ();
6138 }
6139 }
6140
6141 /* Translate all the types in LIST with the corresponding runtime
6142 types. */
6143
6144 static tree
6145 get_eh_types_for_runtime (tree list)
6146 {
6147 tree head, prev;
6148
6149 if (list == NULL_TREE)
6150 return NULL_TREE;
6151
6152 head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
6153 prev = head;
6154 list = TREE_CHAIN (list);
6155 while (list)
6156 {
6157 tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
6158 TREE_CHAIN (prev) = n;
6159 prev = TREE_CHAIN (prev);
6160 list = TREE_CHAIN (list);
6161 }
6162
6163 return head;
6164 }
6165
6166
6167 /* Find decls and types referenced in EH region R and store them in
6168 FLD->DECLS and FLD->TYPES. */
6169
6170 static void
6171 find_decls_types_in_eh_region (eh_region r, class free_lang_data_d *fld)
6172 {
6173 switch (r->type)
6174 {
6175 case ERT_CLEANUP:
6176 break;
6177
6178 case ERT_TRY:
6179 {
6180 eh_catch c;
6181
6182 /* The types referenced in each catch must first be changed to the
6183 EH types used at runtime. This removes references to FE types
6184 in the region. */
6185 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
6186 {
6187 c->type_list = get_eh_types_for_runtime (c->type_list);
6188 walk_tree (&c->type_list, find_decls_types_r, fld, &fld->pset);
6189 }
6190 }
6191 break;
6192
6193 case ERT_ALLOWED_EXCEPTIONS:
6194 r->u.allowed.type_list
6195 = get_eh_types_for_runtime (r->u.allowed.type_list);
6196 walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, &fld->pset);
6197 break;
6198
6199 case ERT_MUST_NOT_THROW:
6200 walk_tree (&r->u.must_not_throw.failure_decl,
6201 find_decls_types_r, fld, &fld->pset);
6202 break;
6203 }
6204 }
6205
6206
6207 /* Find decls and types referenced in cgraph node N and store them in
6208 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
6209 look for *every* kind of DECL and TYPE node reachable from N,
6210 including those embedded inside types and decls (i.e,, TYPE_DECLs,
6211 NAMESPACE_DECLs, etc). */
6212
6213 static void
6214 find_decls_types_in_node (struct cgraph_node *n, class free_lang_data_d *fld)
6215 {
6216 basic_block bb;
6217 struct function *fn;
6218 unsigned ix;
6219 tree t;
6220
6221 find_decls_types (n->decl, fld);
6222
6223 if (!gimple_has_body_p (n->decl))
6224 return;
6225
6226 gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
6227
6228 fn = DECL_STRUCT_FUNCTION (n->decl);
6229
6230 /* Traverse locals. */
6231 FOR_EACH_LOCAL_DECL (fn, ix, t)
6232 find_decls_types (t, fld);
6233
6234 /* Traverse EH regions in FN. */
6235 {
6236 eh_region r;
6237 FOR_ALL_EH_REGION_FN (r, fn)
6238 find_decls_types_in_eh_region (r, fld);
6239 }
6240
6241 /* Traverse every statement in FN. */
6242 FOR_EACH_BB_FN (bb, fn)
6243 {
6244 gphi_iterator psi;
6245 gimple_stmt_iterator si;
6246 unsigned i;
6247
6248 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
6249 {
6250 gphi *phi = psi.phi ();
6251
6252 for (i = 0; i < gimple_phi_num_args (phi); i++)
6253 {
6254 tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
6255 find_decls_types (*arg_p, fld);
6256 }
6257 }
6258
6259 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6260 {
6261 gimple *stmt = gsi_stmt (si);
6262
6263 if (is_gimple_call (stmt))
6264 find_decls_types (gimple_call_fntype (stmt), fld);
6265
6266 for (i = 0; i < gimple_num_ops (stmt); i++)
6267 {
6268 tree arg = gimple_op (stmt, i);
6269 find_decls_types (arg, fld);
6270 /* find_decls_types doesn't walk TREE_PURPOSE of TREE_LISTs,
6271 which we need for asm stmts. */
6272 if (arg
6273 && TREE_CODE (arg) == TREE_LIST
6274 && TREE_PURPOSE (arg)
6275 && gimple_code (stmt) == GIMPLE_ASM)
6276 find_decls_types (TREE_PURPOSE (arg), fld);
6277 }
6278 }
6279 }
6280 }
6281
6282
6283 /* Find decls and types referenced in varpool node N and store them in
6284 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
6285 look for *every* kind of DECL and TYPE node reachable from N,
6286 including those embedded inside types and decls (i.e,, TYPE_DECLs,
6287 NAMESPACE_DECLs, etc). */
6288
6289 static void
6290 find_decls_types_in_var (varpool_node *v, class free_lang_data_d *fld)
6291 {
6292 find_decls_types (v->decl, fld);
6293 }
6294
6295 /* If T needs an assembler name, have one created for it. */
6296
6297 void
6298 assign_assembler_name_if_needed (tree t)
6299 {
6300 if (need_assembler_name_p (t))
6301 {
6302 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
6303 diagnostics that use input_location to show locus
6304 information. The problem here is that, at this point,
6305 input_location is generally anchored to the end of the file
6306 (since the parser is long gone), so we don't have a good
6307 position to pin it to.
6308
6309 To alleviate this problem, this uses the location of T's
6310 declaration. Examples of this are
6311 testsuite/g++.dg/template/cond2.C and
6312 testsuite/g++.dg/template/pr35240.C. */
6313 location_t saved_location = input_location;
6314 input_location = DECL_SOURCE_LOCATION (t);
6315
6316 decl_assembler_name (t);
6317
6318 input_location = saved_location;
6319 }
6320 }
6321
6322
6323 /* Free language specific information for every operand and expression
6324 in every node of the call graph. This process operates in three stages:
6325
6326 1- Every callgraph node and varpool node is traversed looking for
6327 decls and types embedded in them. This is a more exhaustive
6328 search than that done by find_referenced_vars, because it will
6329 also collect individual fields, decls embedded in types, etc.
6330
6331 2- All the decls found are sent to free_lang_data_in_decl.
6332
6333 3- All the types found are sent to free_lang_data_in_type.
6334
6335 The ordering between decls and types is important because
6336 free_lang_data_in_decl sets assembler names, which includes
6337 mangling. So types cannot be freed up until assembler names have
6338 been set up. */
6339
6340 static void
6341 free_lang_data_in_cgraph (class free_lang_data_d *fld)
6342 {
6343 struct cgraph_node *n;
6344 varpool_node *v;
6345 tree t;
6346 unsigned i;
6347 alias_pair *p;
6348
6349 /* Find decls and types in the body of every function in the callgraph. */
6350 FOR_EACH_FUNCTION (n)
6351 find_decls_types_in_node (n, fld);
6352
6353 FOR_EACH_VEC_SAFE_ELT (alias_pairs, i, p)
6354 find_decls_types (p->decl, fld);
6355
6356 /* Find decls and types in every varpool symbol. */
6357 FOR_EACH_VARIABLE (v)
6358 find_decls_types_in_var (v, fld);
6359
6360 /* Set the assembler name on every decl found. We need to do this
6361 now because free_lang_data_in_decl will invalidate data needed
6362 for mangling. This breaks mangling on interdependent decls. */
6363 FOR_EACH_VEC_ELT (fld->decls, i, t)
6364 assign_assembler_name_if_needed (t);
6365
6366 /* Traverse every decl found freeing its language data. */
6367 FOR_EACH_VEC_ELT (fld->decls, i, t)
6368 free_lang_data_in_decl (t, fld);
6369
6370 /* Traverse every type found freeing its language data. */
6371 FOR_EACH_VEC_ELT (fld->types, i, t)
6372 free_lang_data_in_type (t, fld);
6373 }
6374
6375
6376 /* Free resources that are used by FE but are not needed once they are done. */
6377
6378 static unsigned
6379 free_lang_data (void)
6380 {
6381 unsigned i;
6382 class free_lang_data_d fld;
6383
6384 /* If we are the LTO frontend we have freed lang-specific data already. */
6385 if (in_lto_p
6386 || (!flag_generate_lto && !flag_generate_offload))
6387 {
6388 /* Rebuild type inheritance graph even when not doing LTO to get
6389 consistent profile data. */
6390 rebuild_type_inheritance_graph ();
6391 return 0;
6392 }
6393
6394 fld_incomplete_types = new hash_map<tree, tree>;
6395 fld_simplified_types = new hash_map<tree, tree>;
6396
6397 /* Provide a dummy TRANSLATION_UNIT_DECL if the FE failed to provide one. */
6398 if (vec_safe_is_empty (all_translation_units))
6399 build_translation_unit_decl (NULL_TREE);
6400
6401 /* Allocate and assign alias sets to the standard integer types
6402 while the slots are still in the way the frontends generated them. */
6403 for (i = 0; i < itk_none; ++i)
6404 if (integer_types[i])
6405 TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
6406
6407 /* Traverse the IL resetting language specific information for
6408 operands, expressions, etc. */
6409 free_lang_data_in_cgraph (&fld);
6410
6411 /* Create gimple variants for common types. */
6412 for (unsigned i = 0;
6413 i < sizeof (builtin_structptr_types) / sizeof (builtin_structptr_type);
6414 ++i)
6415 builtin_structptr_types[i].node = builtin_structptr_types[i].base;
6416
6417 /* Reset some langhooks. Do not reset types_compatible_p, it may
6418 still be used indirectly via the get_alias_set langhook. */
6419 lang_hooks.dwarf_name = lhd_dwarf_name;
6420 lang_hooks.decl_printable_name = gimple_decl_printable_name;
6421 lang_hooks.gimplify_expr = lhd_gimplify_expr;
6422 lang_hooks.overwrite_decl_assembler_name = lhd_overwrite_decl_assembler_name;
6423 lang_hooks.print_xnode = lhd_print_tree_nothing;
6424 lang_hooks.print_decl = lhd_print_tree_nothing;
6425 lang_hooks.print_type = lhd_print_tree_nothing;
6426 lang_hooks.print_identifier = lhd_print_tree_nothing;
6427
6428 lang_hooks.tree_inlining.var_mod_type_p = hook_bool_tree_tree_false;
6429
6430 if (flag_checking)
6431 {
6432 int i;
6433 tree t;
6434
6435 FOR_EACH_VEC_ELT (fld.types, i, t)
6436 verify_type (t);
6437 }
6438
6439 /* We do not want the default decl_assembler_name implementation,
6440 rather if we have fixed everything we want a wrapper around it
6441 asserting that all non-local symbols already got their assembler
6442 name and only produce assembler names for local symbols. Or rather
6443 make sure we never call decl_assembler_name on local symbols and
6444 devise a separate, middle-end private scheme for it. */
6445
6446 /* Reset diagnostic machinery. */
6447 tree_diagnostics_defaults (global_dc);
6448
6449 rebuild_type_inheritance_graph ();
6450
6451 delete fld_incomplete_types;
6452 delete fld_simplified_types;
6453
6454 return 0;
6455 }
6456
6457
6458 namespace {
6459
6460 const pass_data pass_data_ipa_free_lang_data =
6461 {
6462 SIMPLE_IPA_PASS, /* type */
6463 "*free_lang_data", /* name */
6464 OPTGROUP_NONE, /* optinfo_flags */
6465 TV_IPA_FREE_LANG_DATA, /* tv_id */
6466 0, /* properties_required */
6467 0, /* properties_provided */
6468 0, /* properties_destroyed */
6469 0, /* todo_flags_start */
6470 0, /* todo_flags_finish */
6471 };
6472
6473 class pass_ipa_free_lang_data : public simple_ipa_opt_pass
6474 {
6475 public:
6476 pass_ipa_free_lang_data (gcc::context *ctxt)
6477 : simple_ipa_opt_pass (pass_data_ipa_free_lang_data, ctxt)
6478 {}
6479
6480 /* opt_pass methods: */
6481 virtual unsigned int execute (function *) { return free_lang_data (); }
6482
6483 }; // class pass_ipa_free_lang_data
6484
6485 } // anon namespace
6486
6487 simple_ipa_opt_pass *
6488 make_pass_ipa_free_lang_data (gcc::context *ctxt)
6489 {
6490 return new pass_ipa_free_lang_data (ctxt);
6491 }
6492 \f
6493 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
6494 of the various TYPE_QUAL values. */
6495
6496 static void
6497 set_type_quals (tree type, int type_quals)
6498 {
6499 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
6500 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
6501 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
6502 TYPE_ATOMIC (type) = (type_quals & TYPE_QUAL_ATOMIC) != 0;
6503 TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
6504 }
6505
6506 /* Returns true iff CAND and BASE have equivalent language-specific
6507 qualifiers. */
6508
6509 bool
6510 check_lang_type (const_tree cand, const_tree base)
6511 {
6512 if (lang_hooks.types.type_hash_eq == NULL)
6513 return true;
6514 /* type_hash_eq currently only applies to these types. */
6515 if (TREE_CODE (cand) != FUNCTION_TYPE
6516 && TREE_CODE (cand) != METHOD_TYPE)
6517 return true;
6518 return lang_hooks.types.type_hash_eq (cand, base);
6519 }
6520
6521 /* This function checks to see if TYPE matches the size one of the built-in
6522 atomic types, and returns that core atomic type. */
6523
6524 static tree
6525 find_atomic_core_type (const_tree type)
6526 {
6527 tree base_atomic_type;
6528
6529 /* Only handle complete types. */
6530 if (!tree_fits_uhwi_p (TYPE_SIZE (type)))
6531 return NULL_TREE;
6532
6533 switch (tree_to_uhwi (TYPE_SIZE (type)))
6534 {
6535 case 8:
6536 base_atomic_type = atomicQI_type_node;
6537 break;
6538
6539 case 16:
6540 base_atomic_type = atomicHI_type_node;
6541 break;
6542
6543 case 32:
6544 base_atomic_type = atomicSI_type_node;
6545 break;
6546
6547 case 64:
6548 base_atomic_type = atomicDI_type_node;
6549 break;
6550
6551 case 128:
6552 base_atomic_type = atomicTI_type_node;
6553 break;
6554
6555 default:
6556 base_atomic_type = NULL_TREE;
6557 }
6558
6559 return base_atomic_type;
6560 }
6561
6562 /* Returns true iff unqualified CAND and BASE are equivalent. */
6563
6564 bool
6565 check_base_type (const_tree cand, const_tree base)
6566 {
6567 if (TYPE_NAME (cand) != TYPE_NAME (base)
6568 /* Apparently this is needed for Objective-C. */
6569 || TYPE_CONTEXT (cand) != TYPE_CONTEXT (base)
6570 || !attribute_list_equal (TYPE_ATTRIBUTES (cand),
6571 TYPE_ATTRIBUTES (base)))
6572 return false;
6573 /* Check alignment. */
6574 if (TYPE_ALIGN (cand) == TYPE_ALIGN (base))
6575 return true;
6576 /* Atomic types increase minimal alignment. We must to do so as well
6577 or we get duplicated canonical types. See PR88686. */
6578 if ((TYPE_QUALS (cand) & TYPE_QUAL_ATOMIC))
6579 {
6580 /* See if this object can map to a basic atomic type. */
6581 tree atomic_type = find_atomic_core_type (cand);
6582 if (atomic_type && TYPE_ALIGN (atomic_type) == TYPE_ALIGN (cand))
6583 return true;
6584 }
6585 return false;
6586 }
6587
6588 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
6589
6590 bool
6591 check_qualified_type (const_tree cand, const_tree base, int type_quals)
6592 {
6593 return (TYPE_QUALS (cand) == type_quals
6594 && check_base_type (cand, base)
6595 && check_lang_type (cand, base));
6596 }
6597
6598 /* Returns true iff CAND is equivalent to BASE with ALIGN. */
6599
6600 static bool
6601 check_aligned_type (const_tree cand, const_tree base, unsigned int align)
6602 {
6603 return (TYPE_QUALS (cand) == TYPE_QUALS (base)
6604 && TYPE_NAME (cand) == TYPE_NAME (base)
6605 /* Apparently this is needed for Objective-C. */
6606 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
6607 /* Check alignment. */
6608 && TYPE_ALIGN (cand) == align
6609 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
6610 TYPE_ATTRIBUTES (base))
6611 && check_lang_type (cand, base));
6612 }
6613
6614 /* Return a version of the TYPE, qualified as indicated by the
6615 TYPE_QUALS, if one exists. If no qualified version exists yet,
6616 return NULL_TREE. */
6617
6618 tree
6619 get_qualified_type (tree type, int type_quals)
6620 {
6621 if (TYPE_QUALS (type) == type_quals)
6622 return type;
6623
6624 tree mv = TYPE_MAIN_VARIANT (type);
6625 if (check_qualified_type (mv, type, type_quals))
6626 return mv;
6627
6628 /* Search the chain of variants to see if there is already one there just
6629 like the one we need to have. If so, use that existing one. We must
6630 preserve the TYPE_NAME, since there is code that depends on this. */
6631 for (tree *tp = &TYPE_NEXT_VARIANT (mv); *tp; tp = &TYPE_NEXT_VARIANT (*tp))
6632 if (check_qualified_type (*tp, type, type_quals))
6633 {
6634 /* Put the found variant at the head of the variant list so
6635 frequently searched variants get found faster. The C++ FE
6636 benefits greatly from this. */
6637 tree t = *tp;
6638 *tp = TYPE_NEXT_VARIANT (t);
6639 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (mv);
6640 TYPE_NEXT_VARIANT (mv) = t;
6641 return t;
6642 }
6643
6644 return NULL_TREE;
6645 }
6646
6647 /* Like get_qualified_type, but creates the type if it does not
6648 exist. This function never returns NULL_TREE. */
6649
6650 tree
6651 build_qualified_type (tree type, int type_quals MEM_STAT_DECL)
6652 {
6653 tree t;
6654
6655 /* See if we already have the appropriate qualified variant. */
6656 t = get_qualified_type (type, type_quals);
6657
6658 /* If not, build it. */
6659 if (!t)
6660 {
6661 t = build_variant_type_copy (type PASS_MEM_STAT);
6662 set_type_quals (t, type_quals);
6663
6664 if (((type_quals & TYPE_QUAL_ATOMIC) == TYPE_QUAL_ATOMIC))
6665 {
6666 /* See if this object can map to a basic atomic type. */
6667 tree atomic_type = find_atomic_core_type (type);
6668 if (atomic_type)
6669 {
6670 /* Ensure the alignment of this type is compatible with
6671 the required alignment of the atomic type. */
6672 if (TYPE_ALIGN (atomic_type) > TYPE_ALIGN (t))
6673 SET_TYPE_ALIGN (t, TYPE_ALIGN (atomic_type));
6674 }
6675 }
6676
6677 if (TYPE_STRUCTURAL_EQUALITY_P (type))
6678 /* Propagate structural equality. */
6679 SET_TYPE_STRUCTURAL_EQUALITY (t);
6680 else if (TYPE_CANONICAL (type) != type)
6681 /* Build the underlying canonical type, since it is different
6682 from TYPE. */
6683 {
6684 tree c = build_qualified_type (TYPE_CANONICAL (type), type_quals);
6685 TYPE_CANONICAL (t) = TYPE_CANONICAL (c);
6686 }
6687 else
6688 /* T is its own canonical type. */
6689 TYPE_CANONICAL (t) = t;
6690
6691 }
6692
6693 return t;
6694 }
6695
6696 /* Create a variant of type T with alignment ALIGN. */
6697
6698 tree
6699 build_aligned_type (tree type, unsigned int align)
6700 {
6701 tree t;
6702
6703 if (TYPE_PACKED (type)
6704 || TYPE_ALIGN (type) == align)
6705 return type;
6706
6707 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
6708 if (check_aligned_type (t, type, align))
6709 return t;
6710
6711 t = build_variant_type_copy (type);
6712 SET_TYPE_ALIGN (t, align);
6713 TYPE_USER_ALIGN (t) = 1;
6714
6715 return t;
6716 }
6717
6718 /* Create a new distinct copy of TYPE. The new type is made its own
6719 MAIN_VARIANT. If TYPE requires structural equality checks, the
6720 resulting type requires structural equality checks; otherwise, its
6721 TYPE_CANONICAL points to itself. */
6722
6723 tree
6724 build_distinct_type_copy (tree type MEM_STAT_DECL)
6725 {
6726 tree t = copy_node (type PASS_MEM_STAT);
6727
6728 TYPE_POINTER_TO (t) = 0;
6729 TYPE_REFERENCE_TO (t) = 0;
6730
6731 /* Set the canonical type either to a new equivalence class, or
6732 propagate the need for structural equality checks. */
6733 if (TYPE_STRUCTURAL_EQUALITY_P (type))
6734 SET_TYPE_STRUCTURAL_EQUALITY (t);
6735 else
6736 TYPE_CANONICAL (t) = t;
6737
6738 /* Make it its own variant. */
6739 TYPE_MAIN_VARIANT (t) = t;
6740 TYPE_NEXT_VARIANT (t) = 0;
6741
6742 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
6743 whose TREE_TYPE is not t. This can also happen in the Ada
6744 frontend when using subtypes. */
6745
6746 return t;
6747 }
6748
6749 /* Create a new variant of TYPE, equivalent but distinct. This is so
6750 the caller can modify it. TYPE_CANONICAL for the return type will
6751 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
6752 are considered equal by the language itself (or that both types
6753 require structural equality checks). */
6754
6755 tree
6756 build_variant_type_copy (tree type MEM_STAT_DECL)
6757 {
6758 tree t, m = TYPE_MAIN_VARIANT (type);
6759
6760 t = build_distinct_type_copy (type PASS_MEM_STAT);
6761
6762 /* Since we're building a variant, assume that it is a non-semantic
6763 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
6764 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
6765 /* Type variants have no alias set defined. */
6766 TYPE_ALIAS_SET (t) = -1;
6767
6768 /* Add the new type to the chain of variants of TYPE. */
6769 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
6770 TYPE_NEXT_VARIANT (m) = t;
6771 TYPE_MAIN_VARIANT (t) = m;
6772
6773 return t;
6774 }
6775 \f
6776 /* Return true if the from tree in both tree maps are equal. */
6777
6778 int
6779 tree_map_base_eq (const void *va, const void *vb)
6780 {
6781 const struct tree_map_base *const a = (const struct tree_map_base *) va,
6782 *const b = (const struct tree_map_base *) vb;
6783 return (a->from == b->from);
6784 }
6785
6786 /* Hash a from tree in a tree_base_map. */
6787
6788 unsigned int
6789 tree_map_base_hash (const void *item)
6790 {
6791 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
6792 }
6793
6794 /* Return true if this tree map structure is marked for garbage collection
6795 purposes. We simply return true if the from tree is marked, so that this
6796 structure goes away when the from tree goes away. */
6797
6798 int
6799 tree_map_base_marked_p (const void *p)
6800 {
6801 return ggc_marked_p (((const struct tree_map_base *) p)->from);
6802 }
6803
6804 /* Hash a from tree in a tree_map. */
6805
6806 unsigned int
6807 tree_map_hash (const void *item)
6808 {
6809 return (((const struct tree_map *) item)->hash);
6810 }
6811
6812 /* Hash a from tree in a tree_decl_map. */
6813
6814 unsigned int
6815 tree_decl_map_hash (const void *item)
6816 {
6817 return DECL_UID (((const struct tree_decl_map *) item)->base.from);
6818 }
6819
6820 /* Return the initialization priority for DECL. */
6821
6822 priority_type
6823 decl_init_priority_lookup (tree decl)
6824 {
6825 symtab_node *snode = symtab_node::get (decl);
6826
6827 if (!snode)
6828 return DEFAULT_INIT_PRIORITY;
6829 return
6830 snode->get_init_priority ();
6831 }
6832
6833 /* Return the finalization priority for DECL. */
6834
6835 priority_type
6836 decl_fini_priority_lookup (tree decl)
6837 {
6838 cgraph_node *node = cgraph_node::get (decl);
6839
6840 if (!node)
6841 return DEFAULT_INIT_PRIORITY;
6842 return
6843 node->get_fini_priority ();
6844 }
6845
6846 /* Set the initialization priority for DECL to PRIORITY. */
6847
6848 void
6849 decl_init_priority_insert (tree decl, priority_type priority)
6850 {
6851 struct symtab_node *snode;
6852
6853 if (priority == DEFAULT_INIT_PRIORITY)
6854 {
6855 snode = symtab_node::get (decl);
6856 if (!snode)
6857 return;
6858 }
6859 else if (VAR_P (decl))
6860 snode = varpool_node::get_create (decl);
6861 else
6862 snode = cgraph_node::get_create (decl);
6863 snode->set_init_priority (priority);
6864 }
6865
6866 /* Set the finalization priority for DECL to PRIORITY. */
6867
6868 void
6869 decl_fini_priority_insert (tree decl, priority_type priority)
6870 {
6871 struct cgraph_node *node;
6872
6873 if (priority == DEFAULT_INIT_PRIORITY)
6874 {
6875 node = cgraph_node::get (decl);
6876 if (!node)
6877 return;
6878 }
6879 else
6880 node = cgraph_node::get_create (decl);
6881 node->set_fini_priority (priority);
6882 }
6883
6884 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
6885
6886 static void
6887 print_debug_expr_statistics (void)
6888 {
6889 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
6890 (long) debug_expr_for_decl->size (),
6891 (long) debug_expr_for_decl->elements (),
6892 debug_expr_for_decl->collisions ());
6893 }
6894
6895 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
6896
6897 static void
6898 print_value_expr_statistics (void)
6899 {
6900 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
6901 (long) value_expr_for_decl->size (),
6902 (long) value_expr_for_decl->elements (),
6903 value_expr_for_decl->collisions ());
6904 }
6905
6906 /* Lookup a debug expression for FROM, and return it if we find one. */
6907
6908 tree
6909 decl_debug_expr_lookup (tree from)
6910 {
6911 struct tree_decl_map *h, in;
6912 in.base.from = from;
6913
6914 h = debug_expr_for_decl->find_with_hash (&in, DECL_UID (from));
6915 if (h)
6916 return h->to;
6917 return NULL_TREE;
6918 }
6919
6920 /* Insert a mapping FROM->TO in the debug expression hashtable. */
6921
6922 void
6923 decl_debug_expr_insert (tree from, tree to)
6924 {
6925 struct tree_decl_map *h;
6926
6927 h = ggc_alloc<tree_decl_map> ();
6928 h->base.from = from;
6929 h->to = to;
6930 *debug_expr_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT) = h;
6931 }
6932
6933 /* Lookup a value expression for FROM, and return it if we find one. */
6934
6935 tree
6936 decl_value_expr_lookup (tree from)
6937 {
6938 struct tree_decl_map *h, in;
6939 in.base.from = from;
6940
6941 h = value_expr_for_decl->find_with_hash (&in, DECL_UID (from));
6942 if (h)
6943 return h->to;
6944 return NULL_TREE;
6945 }
6946
6947 /* Insert a mapping FROM->TO in the value expression hashtable. */
6948
6949 void
6950 decl_value_expr_insert (tree from, tree to)
6951 {
6952 struct tree_decl_map *h;
6953
6954 h = ggc_alloc<tree_decl_map> ();
6955 h->base.from = from;
6956 h->to = to;
6957 *value_expr_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT) = h;
6958 }
6959
6960 /* Lookup a vector of debug arguments for FROM, and return it if we
6961 find one. */
6962
6963 vec<tree, va_gc> **
6964 decl_debug_args_lookup (tree from)
6965 {
6966 struct tree_vec_map *h, in;
6967
6968 if (!DECL_HAS_DEBUG_ARGS_P (from))
6969 return NULL;
6970 gcc_checking_assert (debug_args_for_decl != NULL);
6971 in.base.from = from;
6972 h = debug_args_for_decl->find_with_hash (&in, DECL_UID (from));
6973 if (h)
6974 return &h->to;
6975 return NULL;
6976 }
6977
6978 /* Insert a mapping FROM->empty vector of debug arguments in the value
6979 expression hashtable. */
6980
6981 vec<tree, va_gc> **
6982 decl_debug_args_insert (tree from)
6983 {
6984 struct tree_vec_map *h;
6985 tree_vec_map **loc;
6986
6987 if (DECL_HAS_DEBUG_ARGS_P (from))
6988 return decl_debug_args_lookup (from);
6989 if (debug_args_for_decl == NULL)
6990 debug_args_for_decl = hash_table<tree_vec_map_cache_hasher>::create_ggc (64);
6991 h = ggc_alloc<tree_vec_map> ();
6992 h->base.from = from;
6993 h->to = NULL;
6994 loc = debug_args_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT);
6995 *loc = h;
6996 DECL_HAS_DEBUG_ARGS_P (from) = 1;
6997 return &h->to;
6998 }
6999
7000 /* Hashing of types so that we don't make duplicates.
7001 The entry point is `type_hash_canon'. */
7002
7003 /* Generate the default hash code for TYPE. This is designed for
7004 speed, rather than maximum entropy. */
7005
7006 hashval_t
7007 type_hash_canon_hash (tree type)
7008 {
7009 inchash::hash hstate;
7010
7011 hstate.add_int (TREE_CODE (type));
7012
7013 if (TREE_TYPE (type))
7014 hstate.add_object (TYPE_HASH (TREE_TYPE (type)));
7015
7016 for (tree t = TYPE_ATTRIBUTES (type); t; t = TREE_CHAIN (t))
7017 /* Just the identifier is adequate to distinguish. */
7018 hstate.add_object (IDENTIFIER_HASH_VALUE (get_attribute_name (t)));
7019
7020 switch (TREE_CODE (type))
7021 {
7022 case METHOD_TYPE:
7023 hstate.add_object (TYPE_HASH (TYPE_METHOD_BASETYPE (type)));
7024 /* FALLTHROUGH. */
7025 case FUNCTION_TYPE:
7026 for (tree t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
7027 if (TREE_VALUE (t) != error_mark_node)
7028 hstate.add_object (TYPE_HASH (TREE_VALUE (t)));
7029 break;
7030
7031 case OFFSET_TYPE:
7032 hstate.add_object (TYPE_HASH (TYPE_OFFSET_BASETYPE (type)));
7033 break;
7034
7035 case ARRAY_TYPE:
7036 {
7037 if (TYPE_DOMAIN (type))
7038 hstate.add_object (TYPE_HASH (TYPE_DOMAIN (type)));
7039 if (!AGGREGATE_TYPE_P (TREE_TYPE (type)))
7040 {
7041 unsigned typeless = TYPE_TYPELESS_STORAGE (type);
7042 hstate.add_object (typeless);
7043 }
7044 }
7045 break;
7046
7047 case INTEGER_TYPE:
7048 {
7049 tree t = TYPE_MAX_VALUE (type);
7050 if (!t)
7051 t = TYPE_MIN_VALUE (type);
7052 for (int i = 0; i < TREE_INT_CST_NUNITS (t); i++)
7053 hstate.add_object (TREE_INT_CST_ELT (t, i));
7054 break;
7055 }
7056
7057 case REAL_TYPE:
7058 case FIXED_POINT_TYPE:
7059 {
7060 unsigned prec = TYPE_PRECISION (type);
7061 hstate.add_object (prec);
7062 break;
7063 }
7064
7065 case VECTOR_TYPE:
7066 hstate.add_poly_int (TYPE_VECTOR_SUBPARTS (type));
7067 break;
7068
7069 default:
7070 break;
7071 }
7072
7073 return hstate.end ();
7074 }
7075
7076 /* These are the Hashtable callback functions. */
7077
7078 /* Returns true iff the types are equivalent. */
7079
7080 bool
7081 type_cache_hasher::equal (type_hash *a, type_hash *b)
7082 {
7083 /* First test the things that are the same for all types. */
7084 if (a->hash != b->hash
7085 || TREE_CODE (a->type) != TREE_CODE (b->type)
7086 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
7087 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
7088 TYPE_ATTRIBUTES (b->type))
7089 || (TREE_CODE (a->type) != COMPLEX_TYPE
7090 && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
7091 return 0;
7092
7093 /* Be careful about comparing arrays before and after the element type
7094 has been completed; don't compare TYPE_ALIGN unless both types are
7095 complete. */
7096 if (COMPLETE_TYPE_P (a->type) && COMPLETE_TYPE_P (b->type)
7097 && (TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
7098 || TYPE_MODE (a->type) != TYPE_MODE (b->type)))
7099 return 0;
7100
7101 switch (TREE_CODE (a->type))
7102 {
7103 case VOID_TYPE:
7104 case OPAQUE_TYPE:
7105 case COMPLEX_TYPE:
7106 case POINTER_TYPE:
7107 case REFERENCE_TYPE:
7108 case NULLPTR_TYPE:
7109 return 1;
7110
7111 case VECTOR_TYPE:
7112 return known_eq (TYPE_VECTOR_SUBPARTS (a->type),
7113 TYPE_VECTOR_SUBPARTS (b->type));
7114
7115 case ENUMERAL_TYPE:
7116 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
7117 && !(TYPE_VALUES (a->type)
7118 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
7119 && TYPE_VALUES (b->type)
7120 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
7121 && type_list_equal (TYPE_VALUES (a->type),
7122 TYPE_VALUES (b->type))))
7123 return 0;
7124
7125 /* fall through */
7126
7127 case INTEGER_TYPE:
7128 case REAL_TYPE:
7129 case BOOLEAN_TYPE:
7130 if (TYPE_PRECISION (a->type) != TYPE_PRECISION (b->type))
7131 return false;
7132 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
7133 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
7134 TYPE_MAX_VALUE (b->type)))
7135 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
7136 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
7137 TYPE_MIN_VALUE (b->type))));
7138
7139 case FIXED_POINT_TYPE:
7140 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
7141
7142 case OFFSET_TYPE:
7143 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
7144
7145 case METHOD_TYPE:
7146 if (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
7147 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
7148 || (TYPE_ARG_TYPES (a->type)
7149 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
7150 && TYPE_ARG_TYPES (b->type)
7151 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
7152 && type_list_equal (TYPE_ARG_TYPES (a->type),
7153 TYPE_ARG_TYPES (b->type)))))
7154 break;
7155 return 0;
7156 case ARRAY_TYPE:
7157 /* Don't compare TYPE_TYPELESS_STORAGE flag on aggregates,
7158 where the flag should be inherited from the element type
7159 and can change after ARRAY_TYPEs are created; on non-aggregates
7160 compare it and hash it, scalars will never have that flag set
7161 and we need to differentiate between arrays created by different
7162 front-ends or middle-end created arrays. */
7163 return (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type)
7164 && (AGGREGATE_TYPE_P (TREE_TYPE (a->type))
7165 || (TYPE_TYPELESS_STORAGE (a->type)
7166 == TYPE_TYPELESS_STORAGE (b->type))));
7167
7168 case RECORD_TYPE:
7169 case UNION_TYPE:
7170 case QUAL_UNION_TYPE:
7171 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
7172 || (TYPE_FIELDS (a->type)
7173 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
7174 && TYPE_FIELDS (b->type)
7175 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
7176 && type_list_equal (TYPE_FIELDS (a->type),
7177 TYPE_FIELDS (b->type))));
7178
7179 case FUNCTION_TYPE:
7180 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
7181 || (TYPE_ARG_TYPES (a->type)
7182 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
7183 && TYPE_ARG_TYPES (b->type)
7184 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
7185 && type_list_equal (TYPE_ARG_TYPES (a->type),
7186 TYPE_ARG_TYPES (b->type))))
7187 break;
7188 return 0;
7189
7190 default:
7191 return 0;
7192 }
7193
7194 if (lang_hooks.types.type_hash_eq != NULL)
7195 return lang_hooks.types.type_hash_eq (a->type, b->type);
7196
7197 return 1;
7198 }
7199
7200 /* Given TYPE, and HASHCODE its hash code, return the canonical
7201 object for an identical type if one already exists.
7202 Otherwise, return TYPE, and record it as the canonical object.
7203
7204 To use this function, first create a type of the sort you want.
7205 Then compute its hash code from the fields of the type that
7206 make it different from other similar types.
7207 Then call this function and use the value. */
7208
7209 tree
7210 type_hash_canon (unsigned int hashcode, tree type)
7211 {
7212 type_hash in;
7213 type_hash **loc;
7214
7215 /* The hash table only contains main variants, so ensure that's what we're
7216 being passed. */
7217 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
7218
7219 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
7220 must call that routine before comparing TYPE_ALIGNs. */
7221 layout_type (type);
7222
7223 in.hash = hashcode;
7224 in.type = type;
7225
7226 loc = type_hash_table->find_slot_with_hash (&in, hashcode, INSERT);
7227 if (*loc)
7228 {
7229 tree t1 = ((type_hash *) *loc)->type;
7230 gcc_assert (TYPE_MAIN_VARIANT (t1) == t1
7231 && t1 != type);
7232 if (TYPE_UID (type) + 1 == next_type_uid)
7233 --next_type_uid;
7234 /* Free also min/max values and the cache for integer
7235 types. This can't be done in free_node, as LTO frees
7236 those on its own. */
7237 if (TREE_CODE (type) == INTEGER_TYPE)
7238 {
7239 if (TYPE_MIN_VALUE (type)
7240 && TREE_TYPE (TYPE_MIN_VALUE (type)) == type)
7241 {
7242 /* Zero is always in TYPE_CACHED_VALUES. */
7243 if (! TYPE_UNSIGNED (type))
7244 int_cst_hash_table->remove_elt (TYPE_MIN_VALUE (type));
7245 ggc_free (TYPE_MIN_VALUE (type));
7246 }
7247 if (TYPE_MAX_VALUE (type)
7248 && TREE_TYPE (TYPE_MAX_VALUE (type)) == type)
7249 {
7250 int_cst_hash_table->remove_elt (TYPE_MAX_VALUE (type));
7251 ggc_free (TYPE_MAX_VALUE (type));
7252 }
7253 if (TYPE_CACHED_VALUES_P (type))
7254 ggc_free (TYPE_CACHED_VALUES (type));
7255 }
7256 free_node (type);
7257 return t1;
7258 }
7259 else
7260 {
7261 struct type_hash *h;
7262
7263 h = ggc_alloc<type_hash> ();
7264 h->hash = hashcode;
7265 h->type = type;
7266 *loc = h;
7267
7268 return type;
7269 }
7270 }
7271
7272 static void
7273 print_type_hash_statistics (void)
7274 {
7275 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
7276 (long) type_hash_table->size (),
7277 (long) type_hash_table->elements (),
7278 type_hash_table->collisions ());
7279 }
7280
7281 /* Given two lists of types
7282 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
7283 return 1 if the lists contain the same types in the same order.
7284 Also, the TREE_PURPOSEs must match. */
7285
7286 bool
7287 type_list_equal (const_tree l1, const_tree l2)
7288 {
7289 const_tree t1, t2;
7290
7291 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
7292 if (TREE_VALUE (t1) != TREE_VALUE (t2)
7293 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
7294 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
7295 && (TREE_TYPE (TREE_PURPOSE (t1))
7296 == TREE_TYPE (TREE_PURPOSE (t2))))))
7297 return false;
7298
7299 return t1 == t2;
7300 }
7301
7302 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
7303 given by TYPE. If the argument list accepts variable arguments,
7304 then this function counts only the ordinary arguments. */
7305
7306 int
7307 type_num_arguments (const_tree fntype)
7308 {
7309 int i = 0;
7310
7311 for (tree t = TYPE_ARG_TYPES (fntype); t; t = TREE_CHAIN (t))
7312 /* If the function does not take a variable number of arguments,
7313 the last element in the list will have type `void'. */
7314 if (VOID_TYPE_P (TREE_VALUE (t)))
7315 break;
7316 else
7317 ++i;
7318
7319 return i;
7320 }
7321
7322 /* Return the type of the function TYPE's argument ARGNO if known.
7323 For vararg function's where ARGNO refers to one of the variadic
7324 arguments return null. Otherwise, return a void_type_node for
7325 out-of-bounds ARGNO. */
7326
7327 tree
7328 type_argument_type (const_tree fntype, unsigned argno)
7329 {
7330 /* Treat zero the same as an out-of-bounds argument number. */
7331 if (!argno)
7332 return void_type_node;
7333
7334 function_args_iterator iter;
7335
7336 tree argtype;
7337 unsigned i = 1;
7338 FOREACH_FUNCTION_ARGS (fntype, argtype, iter)
7339 {
7340 /* A vararg function's argument list ends in a null. Otherwise,
7341 an ordinary function's argument list ends with void. Return
7342 null if ARGNO refers to a vararg argument, void_type_node if
7343 it's out of bounds, and the formal argument type otherwise. */
7344 if (!argtype)
7345 break;
7346
7347 if (i == argno || VOID_TYPE_P (argtype))
7348 return argtype;
7349
7350 ++i;
7351 }
7352
7353 return NULL_TREE;
7354 }
7355
7356 /* Nonzero if integer constants T1 and T2
7357 represent the same constant value. */
7358
7359 int
7360 tree_int_cst_equal (const_tree t1, const_tree t2)
7361 {
7362 if (t1 == t2)
7363 return 1;
7364
7365 if (t1 == 0 || t2 == 0)
7366 return 0;
7367
7368 STRIP_ANY_LOCATION_WRAPPER (t1);
7369 STRIP_ANY_LOCATION_WRAPPER (t2);
7370
7371 if (TREE_CODE (t1) == INTEGER_CST
7372 && TREE_CODE (t2) == INTEGER_CST
7373 && wi::to_widest (t1) == wi::to_widest (t2))
7374 return 1;
7375
7376 return 0;
7377 }
7378
7379 /* Return true if T is an INTEGER_CST whose numerical value (extended
7380 according to TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. */
7381
7382 bool
7383 tree_fits_shwi_p (const_tree t)
7384 {
7385 return (t != NULL_TREE
7386 && TREE_CODE (t) == INTEGER_CST
7387 && wi::fits_shwi_p (wi::to_widest (t)));
7388 }
7389
7390 /* Return true if T is an INTEGER_CST or POLY_INT_CST whose numerical
7391 value (extended according to TYPE_UNSIGNED) fits in a poly_int64. */
7392
7393 bool
7394 tree_fits_poly_int64_p (const_tree t)
7395 {
7396 if (t == NULL_TREE)
7397 return false;
7398 if (POLY_INT_CST_P (t))
7399 {
7400 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; i++)
7401 if (!wi::fits_shwi_p (wi::to_wide (POLY_INT_CST_COEFF (t, i))))
7402 return false;
7403 return true;
7404 }
7405 return (TREE_CODE (t) == INTEGER_CST
7406 && wi::fits_shwi_p (wi::to_widest (t)));
7407 }
7408
7409 /* Return true if T is an INTEGER_CST whose numerical value (extended
7410 according to TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. */
7411
7412 bool
7413 tree_fits_uhwi_p (const_tree t)
7414 {
7415 return (t != NULL_TREE
7416 && TREE_CODE (t) == INTEGER_CST
7417 && wi::fits_uhwi_p (wi::to_widest (t)));
7418 }
7419
7420 /* Return true if T is an INTEGER_CST or POLY_INT_CST whose numerical
7421 value (extended according to TYPE_UNSIGNED) fits in a poly_uint64. */
7422
7423 bool
7424 tree_fits_poly_uint64_p (const_tree t)
7425 {
7426 if (t == NULL_TREE)
7427 return false;
7428 if (POLY_INT_CST_P (t))
7429 {
7430 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; i++)
7431 if (!wi::fits_uhwi_p (wi::to_widest (POLY_INT_CST_COEFF (t, i))))
7432 return false;
7433 return true;
7434 }
7435 return (TREE_CODE (t) == INTEGER_CST
7436 && wi::fits_uhwi_p (wi::to_widest (t)));
7437 }
7438
7439 /* T is an INTEGER_CST whose numerical value (extended according to
7440 TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. Return that
7441 HOST_WIDE_INT. */
7442
7443 HOST_WIDE_INT
7444 tree_to_shwi (const_tree t)
7445 {
7446 gcc_assert (tree_fits_shwi_p (t));
7447 return TREE_INT_CST_LOW (t);
7448 }
7449
7450 /* T is an INTEGER_CST whose numerical value (extended according to
7451 TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. Return that
7452 HOST_WIDE_INT. */
7453
7454 unsigned HOST_WIDE_INT
7455 tree_to_uhwi (const_tree t)
7456 {
7457 gcc_assert (tree_fits_uhwi_p (t));
7458 return TREE_INT_CST_LOW (t);
7459 }
7460
7461 /* Return the most significant (sign) bit of T. */
7462
7463 int
7464 tree_int_cst_sign_bit (const_tree t)
7465 {
7466 unsigned bitno = TYPE_PRECISION (TREE_TYPE (t)) - 1;
7467
7468 return wi::extract_uhwi (wi::to_wide (t), bitno, 1);
7469 }
7470
7471 /* Return an indication of the sign of the integer constant T.
7472 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
7473 Note that -1 will never be returned if T's type is unsigned. */
7474
7475 int
7476 tree_int_cst_sgn (const_tree t)
7477 {
7478 if (wi::to_wide (t) == 0)
7479 return 0;
7480 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
7481 return 1;
7482 else if (wi::neg_p (wi::to_wide (t)))
7483 return -1;
7484 else
7485 return 1;
7486 }
7487
7488 /* Return the minimum number of bits needed to represent VALUE in a
7489 signed or unsigned type, UNSIGNEDP says which. */
7490
7491 unsigned int
7492 tree_int_cst_min_precision (tree value, signop sgn)
7493 {
7494 /* If the value is negative, compute its negative minus 1. The latter
7495 adjustment is because the absolute value of the largest negative value
7496 is one larger than the largest positive value. This is equivalent to
7497 a bit-wise negation, so use that operation instead. */
7498
7499 if (tree_int_cst_sgn (value) < 0)
7500 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
7501
7502 /* Return the number of bits needed, taking into account the fact
7503 that we need one more bit for a signed than unsigned type.
7504 If value is 0 or -1, the minimum precision is 1 no matter
7505 whether unsignedp is true or false. */
7506
7507 if (integer_zerop (value))
7508 return 1;
7509 else
7510 return tree_floor_log2 (value) + 1 + (sgn == SIGNED ? 1 : 0) ;
7511 }
7512
7513 /* Return truthvalue of whether T1 is the same tree structure as T2.
7514 Return 1 if they are the same.
7515 Return 0 if they are understandably different.
7516 Return -1 if either contains tree structure not understood by
7517 this function. */
7518
7519 int
7520 simple_cst_equal (const_tree t1, const_tree t2)
7521 {
7522 enum tree_code code1, code2;
7523 int cmp;
7524 int i;
7525
7526 if (t1 == t2)
7527 return 1;
7528 if (t1 == 0 || t2 == 0)
7529 return 0;
7530
7531 /* For location wrappers to be the same, they must be at the same
7532 source location (and wrap the same thing). */
7533 if (location_wrapper_p (t1) && location_wrapper_p (t2))
7534 {
7535 if (EXPR_LOCATION (t1) != EXPR_LOCATION (t2))
7536 return 0;
7537 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7538 }
7539
7540 code1 = TREE_CODE (t1);
7541 code2 = TREE_CODE (t2);
7542
7543 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
7544 {
7545 if (CONVERT_EXPR_CODE_P (code2)
7546 || code2 == NON_LVALUE_EXPR)
7547 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7548 else
7549 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
7550 }
7551
7552 else if (CONVERT_EXPR_CODE_P (code2)
7553 || code2 == NON_LVALUE_EXPR)
7554 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
7555
7556 if (code1 != code2)
7557 return 0;
7558
7559 switch (code1)
7560 {
7561 case INTEGER_CST:
7562 return wi::to_widest (t1) == wi::to_widest (t2);
7563
7564 case REAL_CST:
7565 return real_identical (&TREE_REAL_CST (t1), &TREE_REAL_CST (t2));
7566
7567 case FIXED_CST:
7568 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
7569
7570 case STRING_CST:
7571 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
7572 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
7573 TREE_STRING_LENGTH (t1)));
7574
7575 case CONSTRUCTOR:
7576 {
7577 unsigned HOST_WIDE_INT idx;
7578 vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (t1);
7579 vec<constructor_elt, va_gc> *v2 = CONSTRUCTOR_ELTS (t2);
7580
7581 if (vec_safe_length (v1) != vec_safe_length (v2))
7582 return false;
7583
7584 for (idx = 0; idx < vec_safe_length (v1); ++idx)
7585 /* ??? Should we handle also fields here? */
7586 if (!simple_cst_equal ((*v1)[idx].value, (*v2)[idx].value))
7587 return false;
7588 return true;
7589 }
7590
7591 case SAVE_EXPR:
7592 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7593
7594 case CALL_EXPR:
7595 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
7596 if (cmp <= 0)
7597 return cmp;
7598 if (call_expr_nargs (t1) != call_expr_nargs (t2))
7599 return 0;
7600 {
7601 const_tree arg1, arg2;
7602 const_call_expr_arg_iterator iter1, iter2;
7603 for (arg1 = first_const_call_expr_arg (t1, &iter1),
7604 arg2 = first_const_call_expr_arg (t2, &iter2);
7605 arg1 && arg2;
7606 arg1 = next_const_call_expr_arg (&iter1),
7607 arg2 = next_const_call_expr_arg (&iter2))
7608 {
7609 cmp = simple_cst_equal (arg1, arg2);
7610 if (cmp <= 0)
7611 return cmp;
7612 }
7613 return arg1 == arg2;
7614 }
7615
7616 case TARGET_EXPR:
7617 /* Special case: if either target is an unallocated VAR_DECL,
7618 it means that it's going to be unified with whatever the
7619 TARGET_EXPR is really supposed to initialize, so treat it
7620 as being equivalent to anything. */
7621 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
7622 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
7623 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
7624 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
7625 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
7626 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
7627 cmp = 1;
7628 else
7629 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7630
7631 if (cmp <= 0)
7632 return cmp;
7633
7634 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
7635
7636 case WITH_CLEANUP_EXPR:
7637 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7638 if (cmp <= 0)
7639 return cmp;
7640
7641 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
7642
7643 case COMPONENT_REF:
7644 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
7645 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
7646
7647 return 0;
7648
7649 case VAR_DECL:
7650 case PARM_DECL:
7651 case CONST_DECL:
7652 case FUNCTION_DECL:
7653 return 0;
7654
7655 default:
7656 if (POLY_INT_CST_P (t1))
7657 /* A false return means maybe_ne rather than known_ne. */
7658 return known_eq (poly_widest_int::from (poly_int_cst_value (t1),
7659 TYPE_SIGN (TREE_TYPE (t1))),
7660 poly_widest_int::from (poly_int_cst_value (t2),
7661 TYPE_SIGN (TREE_TYPE (t2))));
7662 break;
7663 }
7664
7665 /* This general rule works for most tree codes. All exceptions should be
7666 handled above. If this is a language-specific tree code, we can't
7667 trust what might be in the operand, so say we don't know
7668 the situation. */
7669 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
7670 return -1;
7671
7672 switch (TREE_CODE_CLASS (code1))
7673 {
7674 case tcc_unary:
7675 case tcc_binary:
7676 case tcc_comparison:
7677 case tcc_expression:
7678 case tcc_reference:
7679 case tcc_statement:
7680 cmp = 1;
7681 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
7682 {
7683 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
7684 if (cmp <= 0)
7685 return cmp;
7686 }
7687
7688 return cmp;
7689
7690 default:
7691 return -1;
7692 }
7693 }
7694
7695 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
7696 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
7697 than U, respectively. */
7698
7699 int
7700 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
7701 {
7702 if (tree_int_cst_sgn (t) < 0)
7703 return -1;
7704 else if (!tree_fits_uhwi_p (t))
7705 return 1;
7706 else if (TREE_INT_CST_LOW (t) == u)
7707 return 0;
7708 else if (TREE_INT_CST_LOW (t) < u)
7709 return -1;
7710 else
7711 return 1;
7712 }
7713
7714 /* Return true if SIZE represents a constant size that is in bounds of
7715 what the middle-end and the backend accepts (covering not more than
7716 half of the address-space).
7717 When PERR is non-null, set *PERR on failure to the description of
7718 why SIZE is not valid. */
7719
7720 bool
7721 valid_constant_size_p (const_tree size, cst_size_error *perr /* = NULL */)
7722 {
7723 if (POLY_INT_CST_P (size))
7724 {
7725 if (TREE_OVERFLOW (size))
7726 return false;
7727 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
7728 if (!valid_constant_size_p (POLY_INT_CST_COEFF (size, i)))
7729 return false;
7730 return true;
7731 }
7732
7733 cst_size_error error;
7734 if (!perr)
7735 perr = &error;
7736
7737 if (TREE_CODE (size) != INTEGER_CST)
7738 {
7739 *perr = cst_size_not_constant;
7740 return false;
7741 }
7742
7743 if (TREE_OVERFLOW_P (size))
7744 {
7745 *perr = cst_size_overflow;
7746 return false;
7747 }
7748
7749 if (tree_int_cst_sgn (size) < 0)
7750 {
7751 *perr = cst_size_negative;
7752 return false;
7753 }
7754 if (!tree_fits_uhwi_p (size)
7755 || (wi::to_widest (TYPE_MAX_VALUE (sizetype))
7756 < wi::to_widest (size) * 2))
7757 {
7758 *perr = cst_size_too_big;
7759 return false;
7760 }
7761
7762 return true;
7763 }
7764
7765 /* Return the precision of the type, or for a complex or vector type the
7766 precision of the type of its elements. */
7767
7768 unsigned int
7769 element_precision (const_tree type)
7770 {
7771 if (!TYPE_P (type))
7772 type = TREE_TYPE (type);
7773 enum tree_code code = TREE_CODE (type);
7774 if (code == COMPLEX_TYPE || code == VECTOR_TYPE)
7775 type = TREE_TYPE (type);
7776
7777 return TYPE_PRECISION (type);
7778 }
7779
7780 /* Return true if CODE represents an associative tree code. Otherwise
7781 return false. */
7782 bool
7783 associative_tree_code (enum tree_code code)
7784 {
7785 switch (code)
7786 {
7787 case BIT_IOR_EXPR:
7788 case BIT_AND_EXPR:
7789 case BIT_XOR_EXPR:
7790 case PLUS_EXPR:
7791 case MULT_EXPR:
7792 case MIN_EXPR:
7793 case MAX_EXPR:
7794 return true;
7795
7796 default:
7797 break;
7798 }
7799 return false;
7800 }
7801
7802 /* Return true if CODE represents a commutative tree code. Otherwise
7803 return false. */
7804 bool
7805 commutative_tree_code (enum tree_code code)
7806 {
7807 switch (code)
7808 {
7809 case PLUS_EXPR:
7810 case MULT_EXPR:
7811 case MULT_HIGHPART_EXPR:
7812 case MIN_EXPR:
7813 case MAX_EXPR:
7814 case BIT_IOR_EXPR:
7815 case BIT_XOR_EXPR:
7816 case BIT_AND_EXPR:
7817 case NE_EXPR:
7818 case EQ_EXPR:
7819 case UNORDERED_EXPR:
7820 case ORDERED_EXPR:
7821 case UNEQ_EXPR:
7822 case LTGT_EXPR:
7823 case TRUTH_AND_EXPR:
7824 case TRUTH_XOR_EXPR:
7825 case TRUTH_OR_EXPR:
7826 case WIDEN_MULT_EXPR:
7827 case VEC_WIDEN_MULT_HI_EXPR:
7828 case VEC_WIDEN_MULT_LO_EXPR:
7829 case VEC_WIDEN_MULT_EVEN_EXPR:
7830 case VEC_WIDEN_MULT_ODD_EXPR:
7831 return true;
7832
7833 default:
7834 break;
7835 }
7836 return false;
7837 }
7838
7839 /* Return true if CODE represents a ternary tree code for which the
7840 first two operands are commutative. Otherwise return false. */
7841 bool
7842 commutative_ternary_tree_code (enum tree_code code)
7843 {
7844 switch (code)
7845 {
7846 case WIDEN_MULT_PLUS_EXPR:
7847 case WIDEN_MULT_MINUS_EXPR:
7848 case DOT_PROD_EXPR:
7849 return true;
7850
7851 default:
7852 break;
7853 }
7854 return false;
7855 }
7856
7857 /* Returns true if CODE can overflow. */
7858
7859 bool
7860 operation_can_overflow (enum tree_code code)
7861 {
7862 switch (code)
7863 {
7864 case PLUS_EXPR:
7865 case MINUS_EXPR:
7866 case MULT_EXPR:
7867 case LSHIFT_EXPR:
7868 /* Can overflow in various ways. */
7869 return true;
7870 case TRUNC_DIV_EXPR:
7871 case EXACT_DIV_EXPR:
7872 case FLOOR_DIV_EXPR:
7873 case CEIL_DIV_EXPR:
7874 /* For INT_MIN / -1. */
7875 return true;
7876 case NEGATE_EXPR:
7877 case ABS_EXPR:
7878 /* For -INT_MIN. */
7879 return true;
7880 default:
7881 /* These operators cannot overflow. */
7882 return false;
7883 }
7884 }
7885
7886 /* Returns true if CODE operating on operands of type TYPE doesn't overflow, or
7887 ftrapv doesn't generate trapping insns for CODE. */
7888
7889 bool
7890 operation_no_trapping_overflow (tree type, enum tree_code code)
7891 {
7892 gcc_checking_assert (ANY_INTEGRAL_TYPE_P (type));
7893
7894 /* We don't generate instructions that trap on overflow for complex or vector
7895 types. */
7896 if (!INTEGRAL_TYPE_P (type))
7897 return true;
7898
7899 if (!TYPE_OVERFLOW_TRAPS (type))
7900 return true;
7901
7902 switch (code)
7903 {
7904 case PLUS_EXPR:
7905 case MINUS_EXPR:
7906 case MULT_EXPR:
7907 case NEGATE_EXPR:
7908 case ABS_EXPR:
7909 /* These operators can overflow, and -ftrapv generates trapping code for
7910 these. */
7911 return false;
7912 case TRUNC_DIV_EXPR:
7913 case EXACT_DIV_EXPR:
7914 case FLOOR_DIV_EXPR:
7915 case CEIL_DIV_EXPR:
7916 case LSHIFT_EXPR:
7917 /* These operators can overflow, but -ftrapv does not generate trapping
7918 code for these. */
7919 return true;
7920 default:
7921 /* These operators cannot overflow. */
7922 return true;
7923 }
7924 }
7925
7926 /* Constructors for pointer, array and function types.
7927 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
7928 constructed by language-dependent code, not here.) */
7929
7930 /* Construct, lay out and return the type of pointers to TO_TYPE with
7931 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
7932 reference all of memory. If such a type has already been
7933 constructed, reuse it. */
7934
7935 tree
7936 build_pointer_type_for_mode (tree to_type, machine_mode mode,
7937 bool can_alias_all)
7938 {
7939 tree t;
7940 bool could_alias = can_alias_all;
7941
7942 if (to_type == error_mark_node)
7943 return error_mark_node;
7944
7945 /* If the pointed-to type has the may_alias attribute set, force
7946 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
7947 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
7948 can_alias_all = true;
7949
7950 /* In some cases, languages will have things that aren't a POINTER_TYPE
7951 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
7952 In that case, return that type without regard to the rest of our
7953 operands.
7954
7955 ??? This is a kludge, but consistent with the way this function has
7956 always operated and there doesn't seem to be a good way to avoid this
7957 at the moment. */
7958 if (TYPE_POINTER_TO (to_type) != 0
7959 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
7960 return TYPE_POINTER_TO (to_type);
7961
7962 /* First, if we already have a type for pointers to TO_TYPE and it's
7963 the proper mode, use it. */
7964 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
7965 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
7966 return t;
7967
7968 t = make_node (POINTER_TYPE);
7969
7970 TREE_TYPE (t) = to_type;
7971 SET_TYPE_MODE (t, mode);
7972 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
7973 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
7974 TYPE_POINTER_TO (to_type) = t;
7975
7976 /* During LTO we do not set TYPE_CANONICAL of pointers and references. */
7977 if (TYPE_STRUCTURAL_EQUALITY_P (to_type) || in_lto_p)
7978 SET_TYPE_STRUCTURAL_EQUALITY (t);
7979 else if (TYPE_CANONICAL (to_type) != to_type || could_alias)
7980 TYPE_CANONICAL (t)
7981 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
7982 mode, false);
7983
7984 /* Lay out the type. This function has many callers that are concerned
7985 with expression-construction, and this simplifies them all. */
7986 layout_type (t);
7987
7988 return t;
7989 }
7990
7991 /* By default build pointers in ptr_mode. */
7992
7993 tree
7994 build_pointer_type (tree to_type)
7995 {
7996 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
7997 : TYPE_ADDR_SPACE (to_type);
7998 machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
7999 return build_pointer_type_for_mode (to_type, pointer_mode, false);
8000 }
8001
8002 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
8003
8004 tree
8005 build_reference_type_for_mode (tree to_type, machine_mode mode,
8006 bool can_alias_all)
8007 {
8008 tree t;
8009 bool could_alias = can_alias_all;
8010
8011 if (to_type == error_mark_node)
8012 return error_mark_node;
8013
8014 /* If the pointed-to type has the may_alias attribute set, force
8015 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
8016 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
8017 can_alias_all = true;
8018
8019 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
8020 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
8021 In that case, return that type without regard to the rest of our
8022 operands.
8023
8024 ??? This is a kludge, but consistent with the way this function has
8025 always operated and there doesn't seem to be a good way to avoid this
8026 at the moment. */
8027 if (TYPE_REFERENCE_TO (to_type) != 0
8028 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
8029 return TYPE_REFERENCE_TO (to_type);
8030
8031 /* First, if we already have a type for pointers to TO_TYPE and it's
8032 the proper mode, use it. */
8033 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
8034 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
8035 return t;
8036
8037 t = make_node (REFERENCE_TYPE);
8038
8039 TREE_TYPE (t) = to_type;
8040 SET_TYPE_MODE (t, mode);
8041 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
8042 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
8043 TYPE_REFERENCE_TO (to_type) = t;
8044
8045 /* During LTO we do not set TYPE_CANONICAL of pointers and references. */
8046 if (TYPE_STRUCTURAL_EQUALITY_P (to_type) || in_lto_p)
8047 SET_TYPE_STRUCTURAL_EQUALITY (t);
8048 else if (TYPE_CANONICAL (to_type) != to_type || could_alias)
8049 TYPE_CANONICAL (t)
8050 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
8051 mode, false);
8052
8053 layout_type (t);
8054
8055 return t;
8056 }
8057
8058
8059 /* Build the node for the type of references-to-TO_TYPE by default
8060 in ptr_mode. */
8061
8062 tree
8063 build_reference_type (tree to_type)
8064 {
8065 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
8066 : TYPE_ADDR_SPACE (to_type);
8067 machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
8068 return build_reference_type_for_mode (to_type, pointer_mode, false);
8069 }
8070
8071 #define MAX_INT_CACHED_PREC \
8072 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
8073 static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
8074
8075 /* Builds a signed or unsigned integer type of precision PRECISION.
8076 Used for C bitfields whose precision does not match that of
8077 built-in target types. */
8078 tree
8079 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
8080 int unsignedp)
8081 {
8082 tree itype, ret;
8083
8084 if (unsignedp)
8085 unsignedp = MAX_INT_CACHED_PREC + 1;
8086
8087 if (precision <= MAX_INT_CACHED_PREC)
8088 {
8089 itype = nonstandard_integer_type_cache[precision + unsignedp];
8090 if (itype)
8091 return itype;
8092 }
8093
8094 itype = make_node (INTEGER_TYPE);
8095 TYPE_PRECISION (itype) = precision;
8096
8097 if (unsignedp)
8098 fixup_unsigned_type (itype);
8099 else
8100 fixup_signed_type (itype);
8101
8102 inchash::hash hstate;
8103 inchash::add_expr (TYPE_MAX_VALUE (itype), hstate);
8104 ret = type_hash_canon (hstate.end (), itype);
8105 if (precision <= MAX_INT_CACHED_PREC)
8106 nonstandard_integer_type_cache[precision + unsignedp] = ret;
8107
8108 return ret;
8109 }
8110
8111 #define MAX_BOOL_CACHED_PREC \
8112 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
8113 static GTY(()) tree nonstandard_boolean_type_cache[MAX_BOOL_CACHED_PREC + 1];
8114
8115 /* Builds a boolean type of precision PRECISION.
8116 Used for boolean vectors to choose proper vector element size. */
8117 tree
8118 build_nonstandard_boolean_type (unsigned HOST_WIDE_INT precision)
8119 {
8120 tree type;
8121
8122 if (precision <= MAX_BOOL_CACHED_PREC)
8123 {
8124 type = nonstandard_boolean_type_cache[precision];
8125 if (type)
8126 return type;
8127 }
8128
8129 type = make_node (BOOLEAN_TYPE);
8130 TYPE_PRECISION (type) = precision;
8131 fixup_signed_type (type);
8132
8133 if (precision <= MAX_INT_CACHED_PREC)
8134 nonstandard_boolean_type_cache[precision] = type;
8135
8136 return type;
8137 }
8138
8139 /* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE
8140 or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL. If SHARED
8141 is true, reuse such a type that has already been constructed. */
8142
8143 static tree
8144 build_range_type_1 (tree type, tree lowval, tree highval, bool shared)
8145 {
8146 tree itype = make_node (INTEGER_TYPE);
8147
8148 TREE_TYPE (itype) = type;
8149
8150 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
8151 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
8152
8153 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
8154 SET_TYPE_MODE (itype, TYPE_MODE (type));
8155 TYPE_SIZE (itype) = TYPE_SIZE (type);
8156 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
8157 SET_TYPE_ALIGN (itype, TYPE_ALIGN (type));
8158 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
8159 SET_TYPE_WARN_IF_NOT_ALIGN (itype, TYPE_WARN_IF_NOT_ALIGN (type));
8160
8161 if (!shared)
8162 return itype;
8163
8164 if ((TYPE_MIN_VALUE (itype)
8165 && TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST)
8166 || (TYPE_MAX_VALUE (itype)
8167 && TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST))
8168 {
8169 /* Since we cannot reliably merge this type, we need to compare it using
8170 structural equality checks. */
8171 SET_TYPE_STRUCTURAL_EQUALITY (itype);
8172 return itype;
8173 }
8174
8175 hashval_t hash = type_hash_canon_hash (itype);
8176 itype = type_hash_canon (hash, itype);
8177
8178 return itype;
8179 }
8180
8181 /* Wrapper around build_range_type_1 with SHARED set to true. */
8182
8183 tree
8184 build_range_type (tree type, tree lowval, tree highval)
8185 {
8186 return build_range_type_1 (type, lowval, highval, true);
8187 }
8188
8189 /* Wrapper around build_range_type_1 with SHARED set to false. */
8190
8191 tree
8192 build_nonshared_range_type (tree type, tree lowval, tree highval)
8193 {
8194 return build_range_type_1 (type, lowval, highval, false);
8195 }
8196
8197 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
8198 MAXVAL should be the maximum value in the domain
8199 (one less than the length of the array).
8200
8201 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
8202 We don't enforce this limit, that is up to caller (e.g. language front end).
8203 The limit exists because the result is a signed type and we don't handle
8204 sizes that use more than one HOST_WIDE_INT. */
8205
8206 tree
8207 build_index_type (tree maxval)
8208 {
8209 return build_range_type (sizetype, size_zero_node, maxval);
8210 }
8211
8212 /* Return true if the debug information for TYPE, a subtype, should be emitted
8213 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
8214 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
8215 debug info and doesn't reflect the source code. */
8216
8217 bool
8218 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
8219 {
8220 tree base_type = TREE_TYPE (type), low, high;
8221
8222 /* Subrange types have a base type which is an integral type. */
8223 if (!INTEGRAL_TYPE_P (base_type))
8224 return false;
8225
8226 /* Get the real bounds of the subtype. */
8227 if (lang_hooks.types.get_subrange_bounds)
8228 lang_hooks.types.get_subrange_bounds (type, &low, &high);
8229 else
8230 {
8231 low = TYPE_MIN_VALUE (type);
8232 high = TYPE_MAX_VALUE (type);
8233 }
8234
8235 /* If the type and its base type have the same representation and the same
8236 name, then the type is not a subrange but a copy of the base type. */
8237 if ((TREE_CODE (base_type) == INTEGER_TYPE
8238 || TREE_CODE (base_type) == BOOLEAN_TYPE)
8239 && int_size_in_bytes (type) == int_size_in_bytes (base_type)
8240 && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
8241 && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type))
8242 && TYPE_IDENTIFIER (type) == TYPE_IDENTIFIER (base_type))
8243 return false;
8244
8245 if (lowval)
8246 *lowval = low;
8247 if (highval)
8248 *highval = high;
8249 return true;
8250 }
8251
8252 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
8253 and number of elements specified by the range of values of INDEX_TYPE.
8254 If TYPELESS_STORAGE is true, TYPE_TYPELESS_STORAGE flag is set on the type.
8255 If SHARED is true, reuse such a type that has already been constructed.
8256 If SET_CANONICAL is true, compute TYPE_CANONICAL from the element type. */
8257
8258 static tree
8259 build_array_type_1 (tree elt_type, tree index_type, bool typeless_storage,
8260 bool shared, bool set_canonical)
8261 {
8262 tree t;
8263
8264 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
8265 {
8266 error ("arrays of functions are not meaningful");
8267 elt_type = integer_type_node;
8268 }
8269
8270 t = make_node (ARRAY_TYPE);
8271 TREE_TYPE (t) = elt_type;
8272 TYPE_DOMAIN (t) = index_type;
8273 TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
8274 TYPE_TYPELESS_STORAGE (t) = typeless_storage;
8275 layout_type (t);
8276
8277 if (shared)
8278 {
8279 hashval_t hash = type_hash_canon_hash (t);
8280 t = type_hash_canon (hash, t);
8281 }
8282
8283 if (TYPE_CANONICAL (t) == t && set_canonical)
8284 {
8285 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
8286 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type))
8287 || in_lto_p)
8288 SET_TYPE_STRUCTURAL_EQUALITY (t);
8289 else if (TYPE_CANONICAL (elt_type) != elt_type
8290 || (index_type && TYPE_CANONICAL (index_type) != index_type))
8291 TYPE_CANONICAL (t)
8292 = build_array_type_1 (TYPE_CANONICAL (elt_type),
8293 index_type
8294 ? TYPE_CANONICAL (index_type) : NULL_TREE,
8295 typeless_storage, shared, set_canonical);
8296 }
8297
8298 return t;
8299 }
8300
8301 /* Wrapper around build_array_type_1 with SHARED set to true. */
8302
8303 tree
8304 build_array_type (tree elt_type, tree index_type, bool typeless_storage)
8305 {
8306 return
8307 build_array_type_1 (elt_type, index_type, typeless_storage, true, true);
8308 }
8309
8310 /* Wrapper around build_array_type_1 with SHARED set to false. */
8311
8312 tree
8313 build_nonshared_array_type (tree elt_type, tree index_type)
8314 {
8315 return build_array_type_1 (elt_type, index_type, false, false, true);
8316 }
8317
8318 /* Return a representation of ELT_TYPE[NELTS], using indices of type
8319 sizetype. */
8320
8321 tree
8322 build_array_type_nelts (tree elt_type, poly_uint64 nelts)
8323 {
8324 return build_array_type (elt_type, build_index_type (size_int (nelts - 1)));
8325 }
8326
8327 /* Recursively examines the array elements of TYPE, until a non-array
8328 element type is found. */
8329
8330 tree
8331 strip_array_types (tree type)
8332 {
8333 while (TREE_CODE (type) == ARRAY_TYPE)
8334 type = TREE_TYPE (type);
8335
8336 return type;
8337 }
8338
8339 /* Computes the canonical argument types from the argument type list
8340 ARGTYPES.
8341
8342 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
8343 on entry to this function, or if any of the ARGTYPES are
8344 structural.
8345
8346 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
8347 true on entry to this function, or if any of the ARGTYPES are
8348 non-canonical.
8349
8350 Returns a canonical argument list, which may be ARGTYPES when the
8351 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
8352 true) or would not differ from ARGTYPES. */
8353
8354 static tree
8355 maybe_canonicalize_argtypes (tree argtypes,
8356 bool *any_structural_p,
8357 bool *any_noncanonical_p)
8358 {
8359 tree arg;
8360 bool any_noncanonical_argtypes_p = false;
8361
8362 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
8363 {
8364 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
8365 /* Fail gracefully by stating that the type is structural. */
8366 *any_structural_p = true;
8367 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
8368 *any_structural_p = true;
8369 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
8370 || TREE_PURPOSE (arg))
8371 /* If the argument has a default argument, we consider it
8372 non-canonical even though the type itself is canonical.
8373 That way, different variants of function and method types
8374 with default arguments will all point to the variant with
8375 no defaults as their canonical type. */
8376 any_noncanonical_argtypes_p = true;
8377 }
8378
8379 if (*any_structural_p)
8380 return argtypes;
8381
8382 if (any_noncanonical_argtypes_p)
8383 {
8384 /* Build the canonical list of argument types. */
8385 tree canon_argtypes = NULL_TREE;
8386 bool is_void = false;
8387
8388 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
8389 {
8390 if (arg == void_list_node)
8391 is_void = true;
8392 else
8393 canon_argtypes = tree_cons (NULL_TREE,
8394 TYPE_CANONICAL (TREE_VALUE (arg)),
8395 canon_argtypes);
8396 }
8397
8398 canon_argtypes = nreverse (canon_argtypes);
8399 if (is_void)
8400 canon_argtypes = chainon (canon_argtypes, void_list_node);
8401
8402 /* There is a non-canonical type. */
8403 *any_noncanonical_p = true;
8404 return canon_argtypes;
8405 }
8406
8407 /* The canonical argument types are the same as ARGTYPES. */
8408 return argtypes;
8409 }
8410
8411 /* Construct, lay out and return
8412 the type of functions returning type VALUE_TYPE
8413 given arguments of types ARG_TYPES.
8414 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
8415 are data type nodes for the arguments of the function.
8416 If such a type has already been constructed, reuse it. */
8417
8418 tree
8419 build_function_type (tree value_type, tree arg_types)
8420 {
8421 tree t;
8422 inchash::hash hstate;
8423 bool any_structural_p, any_noncanonical_p;
8424 tree canon_argtypes;
8425
8426 gcc_assert (arg_types != error_mark_node);
8427
8428 if (TREE_CODE (value_type) == FUNCTION_TYPE)
8429 {
8430 error ("function return type cannot be function");
8431 value_type = integer_type_node;
8432 }
8433
8434 /* Make a node of the sort we want. */
8435 t = make_node (FUNCTION_TYPE);
8436 TREE_TYPE (t) = value_type;
8437 TYPE_ARG_TYPES (t) = arg_types;
8438
8439 /* If we already have such a type, use the old one. */
8440 hashval_t hash = type_hash_canon_hash (t);
8441 t = type_hash_canon (hash, t);
8442
8443 /* Set up the canonical type. */
8444 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
8445 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
8446 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
8447 &any_structural_p,
8448 &any_noncanonical_p);
8449 if (any_structural_p)
8450 SET_TYPE_STRUCTURAL_EQUALITY (t);
8451 else if (any_noncanonical_p)
8452 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
8453 canon_argtypes);
8454
8455 if (!COMPLETE_TYPE_P (t))
8456 layout_type (t);
8457 return t;
8458 }
8459
8460 /* Build a function type. The RETURN_TYPE is the type returned by the
8461 function. If VAARGS is set, no void_type_node is appended to the
8462 list. ARGP must be always be terminated be a NULL_TREE. */
8463
8464 static tree
8465 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
8466 {
8467 tree t, args, last;
8468
8469 t = va_arg (argp, tree);
8470 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
8471 args = tree_cons (NULL_TREE, t, args);
8472
8473 if (vaargs)
8474 {
8475 last = args;
8476 if (args != NULL_TREE)
8477 args = nreverse (args);
8478 gcc_assert (last != void_list_node);
8479 }
8480 else if (args == NULL_TREE)
8481 args = void_list_node;
8482 else
8483 {
8484 last = args;
8485 args = nreverse (args);
8486 TREE_CHAIN (last) = void_list_node;
8487 }
8488 args = build_function_type (return_type, args);
8489
8490 return args;
8491 }
8492
8493 /* Build a function type. The RETURN_TYPE is the type returned by the
8494 function. If additional arguments are provided, they are
8495 additional argument types. The list of argument types must always
8496 be terminated by NULL_TREE. */
8497
8498 tree
8499 build_function_type_list (tree return_type, ...)
8500 {
8501 tree args;
8502 va_list p;
8503
8504 va_start (p, return_type);
8505 args = build_function_type_list_1 (false, return_type, p);
8506 va_end (p);
8507 return args;
8508 }
8509
8510 /* Build a variable argument function type. The RETURN_TYPE is the
8511 type returned by the function. If additional arguments are provided,
8512 they are additional argument types. The list of argument types must
8513 always be terminated by NULL_TREE. */
8514
8515 tree
8516 build_varargs_function_type_list (tree return_type, ...)
8517 {
8518 tree args;
8519 va_list p;
8520
8521 va_start (p, return_type);
8522 args = build_function_type_list_1 (true, return_type, p);
8523 va_end (p);
8524
8525 return args;
8526 }
8527
8528 /* Build a function type. RETURN_TYPE is the type returned by the
8529 function; VAARGS indicates whether the function takes varargs. The
8530 function takes N named arguments, the types of which are provided in
8531 ARG_TYPES. */
8532
8533 static tree
8534 build_function_type_array_1 (bool vaargs, tree return_type, int n,
8535 tree *arg_types)
8536 {
8537 int i;
8538 tree t = vaargs ? NULL_TREE : void_list_node;
8539
8540 for (i = n - 1; i >= 0; i--)
8541 t = tree_cons (NULL_TREE, arg_types[i], t);
8542
8543 return build_function_type (return_type, t);
8544 }
8545
8546 /* Build a function type. RETURN_TYPE is the type returned by the
8547 function. The function takes N named arguments, the types of which
8548 are provided in ARG_TYPES. */
8549
8550 tree
8551 build_function_type_array (tree return_type, int n, tree *arg_types)
8552 {
8553 return build_function_type_array_1 (false, return_type, n, arg_types);
8554 }
8555
8556 /* Build a variable argument function type. RETURN_TYPE is the type
8557 returned by the function. The function takes N named arguments, the
8558 types of which are provided in ARG_TYPES. */
8559
8560 tree
8561 build_varargs_function_type_array (tree return_type, int n, tree *arg_types)
8562 {
8563 return build_function_type_array_1 (true, return_type, n, arg_types);
8564 }
8565
8566 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
8567 and ARGTYPES (a TREE_LIST) are the return type and arguments types
8568 for the method. An implicit additional parameter (of type
8569 pointer-to-BASETYPE) is added to the ARGTYPES. */
8570
8571 tree
8572 build_method_type_directly (tree basetype,
8573 tree rettype,
8574 tree argtypes)
8575 {
8576 tree t;
8577 tree ptype;
8578 bool any_structural_p, any_noncanonical_p;
8579 tree canon_argtypes;
8580
8581 /* Make a node of the sort we want. */
8582 t = make_node (METHOD_TYPE);
8583
8584 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8585 TREE_TYPE (t) = rettype;
8586 ptype = build_pointer_type (basetype);
8587
8588 /* The actual arglist for this function includes a "hidden" argument
8589 which is "this". Put it into the list of argument types. */
8590 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
8591 TYPE_ARG_TYPES (t) = argtypes;
8592
8593 /* If we already have such a type, use the old one. */
8594 hashval_t hash = type_hash_canon_hash (t);
8595 t = type_hash_canon (hash, t);
8596
8597 /* Set up the canonical type. */
8598 any_structural_p
8599 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8600 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
8601 any_noncanonical_p
8602 = (TYPE_CANONICAL (basetype) != basetype
8603 || TYPE_CANONICAL (rettype) != rettype);
8604 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
8605 &any_structural_p,
8606 &any_noncanonical_p);
8607 if (any_structural_p)
8608 SET_TYPE_STRUCTURAL_EQUALITY (t);
8609 else if (any_noncanonical_p)
8610 TYPE_CANONICAL (t)
8611 = build_method_type_directly (TYPE_CANONICAL (basetype),
8612 TYPE_CANONICAL (rettype),
8613 canon_argtypes);
8614 if (!COMPLETE_TYPE_P (t))
8615 layout_type (t);
8616
8617 return t;
8618 }
8619
8620 /* Construct, lay out and return the type of methods belonging to class
8621 BASETYPE and whose arguments and values are described by TYPE.
8622 If that type exists already, reuse it.
8623 TYPE must be a FUNCTION_TYPE node. */
8624
8625 tree
8626 build_method_type (tree basetype, tree type)
8627 {
8628 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
8629
8630 return build_method_type_directly (basetype,
8631 TREE_TYPE (type),
8632 TYPE_ARG_TYPES (type));
8633 }
8634
8635 /* Construct, lay out and return the type of offsets to a value
8636 of type TYPE, within an object of type BASETYPE.
8637 If a suitable offset type exists already, reuse it. */
8638
8639 tree
8640 build_offset_type (tree basetype, tree type)
8641 {
8642 tree t;
8643
8644 /* Make a node of the sort we want. */
8645 t = make_node (OFFSET_TYPE);
8646
8647 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
8648 TREE_TYPE (t) = type;
8649
8650 /* If we already have such a type, use the old one. */
8651 hashval_t hash = type_hash_canon_hash (t);
8652 t = type_hash_canon (hash, t);
8653
8654 if (!COMPLETE_TYPE_P (t))
8655 layout_type (t);
8656
8657 if (TYPE_CANONICAL (t) == t)
8658 {
8659 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
8660 || TYPE_STRUCTURAL_EQUALITY_P (type))
8661 SET_TYPE_STRUCTURAL_EQUALITY (t);
8662 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
8663 || TYPE_CANONICAL (type) != type)
8664 TYPE_CANONICAL (t)
8665 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
8666 TYPE_CANONICAL (type));
8667 }
8668
8669 return t;
8670 }
8671
8672 /* Create a complex type whose components are COMPONENT_TYPE.
8673
8674 If NAMED is true, the type is given a TYPE_NAME. We do not always
8675 do so because this creates a DECL node and thus make the DECL_UIDs
8676 dependent on the type canonicalization hashtable, which is GC-ed,
8677 so the DECL_UIDs would not be stable wrt garbage collection. */
8678
8679 tree
8680 build_complex_type (tree component_type, bool named)
8681 {
8682 gcc_assert (INTEGRAL_TYPE_P (component_type)
8683 || SCALAR_FLOAT_TYPE_P (component_type)
8684 || FIXED_POINT_TYPE_P (component_type));
8685
8686 /* Make a node of the sort we want. */
8687 tree probe = make_node (COMPLEX_TYPE);
8688
8689 TREE_TYPE (probe) = TYPE_MAIN_VARIANT (component_type);
8690
8691 /* If we already have such a type, use the old one. */
8692 hashval_t hash = type_hash_canon_hash (probe);
8693 tree t = type_hash_canon (hash, probe);
8694
8695 if (t == probe)
8696 {
8697 /* We created a new type. The hash insertion will have laid
8698 out the type. We need to check the canonicalization and
8699 maybe set the name. */
8700 gcc_checking_assert (COMPLETE_TYPE_P (t)
8701 && !TYPE_NAME (t)
8702 && TYPE_CANONICAL (t) == t);
8703
8704 if (TYPE_STRUCTURAL_EQUALITY_P (TREE_TYPE (t)))
8705 SET_TYPE_STRUCTURAL_EQUALITY (t);
8706 else if (TYPE_CANONICAL (TREE_TYPE (t)) != TREE_TYPE (t))
8707 TYPE_CANONICAL (t)
8708 = build_complex_type (TYPE_CANONICAL (TREE_TYPE (t)), named);
8709
8710 /* We need to create a name, since complex is a fundamental type. */
8711 if (named)
8712 {
8713 const char *name = NULL;
8714
8715 if (TREE_TYPE (t) == char_type_node)
8716 name = "complex char";
8717 else if (TREE_TYPE (t) == signed_char_type_node)
8718 name = "complex signed char";
8719 else if (TREE_TYPE (t) == unsigned_char_type_node)
8720 name = "complex unsigned char";
8721 else if (TREE_TYPE (t) == short_integer_type_node)
8722 name = "complex short int";
8723 else if (TREE_TYPE (t) == short_unsigned_type_node)
8724 name = "complex short unsigned int";
8725 else if (TREE_TYPE (t) == integer_type_node)
8726 name = "complex int";
8727 else if (TREE_TYPE (t) == unsigned_type_node)
8728 name = "complex unsigned int";
8729 else if (TREE_TYPE (t) == long_integer_type_node)
8730 name = "complex long int";
8731 else if (TREE_TYPE (t) == long_unsigned_type_node)
8732 name = "complex long unsigned int";
8733 else if (TREE_TYPE (t) == long_long_integer_type_node)
8734 name = "complex long long int";
8735 else if (TREE_TYPE (t) == long_long_unsigned_type_node)
8736 name = "complex long long unsigned int";
8737
8738 if (name != NULL)
8739 TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
8740 get_identifier (name), t);
8741 }
8742 }
8743
8744 return build_qualified_type (t, TYPE_QUALS (component_type));
8745 }
8746
8747 /* If TYPE is a real or complex floating-point type and the target
8748 does not directly support arithmetic on TYPE then return the wider
8749 type to be used for arithmetic on TYPE. Otherwise, return
8750 NULL_TREE. */
8751
8752 tree
8753 excess_precision_type (tree type)
8754 {
8755 /* The target can give two different responses to the question of
8756 which excess precision mode it would like depending on whether we
8757 are in -fexcess-precision=standard or -fexcess-precision=fast. */
8758
8759 enum excess_precision_type requested_type
8760 = (flag_excess_precision == EXCESS_PRECISION_FAST
8761 ? EXCESS_PRECISION_TYPE_FAST
8762 : EXCESS_PRECISION_TYPE_STANDARD);
8763
8764 enum flt_eval_method target_flt_eval_method
8765 = targetm.c.excess_precision (requested_type);
8766
8767 /* The target should not ask for unpredictable float evaluation (though
8768 it might advertise that implicitly the evaluation is unpredictable,
8769 but we don't care about that here, it will have been reported
8770 elsewhere). If it does ask for unpredictable evaluation, we have
8771 nothing to do here. */
8772 gcc_assert (target_flt_eval_method != FLT_EVAL_METHOD_UNPREDICTABLE);
8773
8774 /* Nothing to do. The target has asked for all types we know about
8775 to be computed with their native precision and range. */
8776 if (target_flt_eval_method == FLT_EVAL_METHOD_PROMOTE_TO_FLOAT16)
8777 return NULL_TREE;
8778
8779 /* The target will promote this type in a target-dependent way, so excess
8780 precision ought to leave it alone. */
8781 if (targetm.promoted_type (type) != NULL_TREE)
8782 return NULL_TREE;
8783
8784 machine_mode float16_type_mode = (float16_type_node
8785 ? TYPE_MODE (float16_type_node)
8786 : VOIDmode);
8787 machine_mode float_type_mode = TYPE_MODE (float_type_node);
8788 machine_mode double_type_mode = TYPE_MODE (double_type_node);
8789
8790 switch (TREE_CODE (type))
8791 {
8792 case REAL_TYPE:
8793 {
8794 machine_mode type_mode = TYPE_MODE (type);
8795 switch (target_flt_eval_method)
8796 {
8797 case FLT_EVAL_METHOD_PROMOTE_TO_FLOAT:
8798 if (type_mode == float16_type_mode)
8799 return float_type_node;
8800 break;
8801 case FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE:
8802 if (type_mode == float16_type_mode
8803 || type_mode == float_type_mode)
8804 return double_type_node;
8805 break;
8806 case FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE:
8807 if (type_mode == float16_type_mode
8808 || type_mode == float_type_mode
8809 || type_mode == double_type_mode)
8810 return long_double_type_node;
8811 break;
8812 default:
8813 gcc_unreachable ();
8814 }
8815 break;
8816 }
8817 case COMPLEX_TYPE:
8818 {
8819 if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
8820 return NULL_TREE;
8821 machine_mode type_mode = TYPE_MODE (TREE_TYPE (type));
8822 switch (target_flt_eval_method)
8823 {
8824 case FLT_EVAL_METHOD_PROMOTE_TO_FLOAT:
8825 if (type_mode == float16_type_mode)
8826 return complex_float_type_node;
8827 break;
8828 case FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE:
8829 if (type_mode == float16_type_mode
8830 || type_mode == float_type_mode)
8831 return complex_double_type_node;
8832 break;
8833 case FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE:
8834 if (type_mode == float16_type_mode
8835 || type_mode == float_type_mode
8836 || type_mode == double_type_mode)
8837 return complex_long_double_type_node;
8838 break;
8839 default:
8840 gcc_unreachable ();
8841 }
8842 break;
8843 }
8844 default:
8845 break;
8846 }
8847
8848 return NULL_TREE;
8849 }
8850 \f
8851 /* Return OP, stripped of any conversions to wider types as much as is safe.
8852 Converting the value back to OP's type makes a value equivalent to OP.
8853
8854 If FOR_TYPE is nonzero, we return a value which, if converted to
8855 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
8856
8857 OP must have integer, real or enumeral type. Pointers are not allowed!
8858
8859 There are some cases where the obvious value we could return
8860 would regenerate to OP if converted to OP's type,
8861 but would not extend like OP to wider types.
8862 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
8863 For example, if OP is (unsigned short)(signed char)-1,
8864 we avoid returning (signed char)-1 if FOR_TYPE is int,
8865 even though extending that to an unsigned short would regenerate OP,
8866 since the result of extending (signed char)-1 to (int)
8867 is different from (int) OP. */
8868
8869 tree
8870 get_unwidened (tree op, tree for_type)
8871 {
8872 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
8873 tree type = TREE_TYPE (op);
8874 unsigned final_prec
8875 = TYPE_PRECISION (for_type != 0 ? for_type : type);
8876 int uns
8877 = (for_type != 0 && for_type != type
8878 && final_prec > TYPE_PRECISION (type)
8879 && TYPE_UNSIGNED (type));
8880 tree win = op;
8881
8882 while (CONVERT_EXPR_P (op))
8883 {
8884 int bitschange;
8885
8886 /* TYPE_PRECISION on vector types has different meaning
8887 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
8888 so avoid them here. */
8889 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
8890 break;
8891
8892 bitschange = TYPE_PRECISION (TREE_TYPE (op))
8893 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
8894
8895 /* Truncations are many-one so cannot be removed.
8896 Unless we are later going to truncate down even farther. */
8897 if (bitschange < 0
8898 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
8899 break;
8900
8901 /* See what's inside this conversion. If we decide to strip it,
8902 we will set WIN. */
8903 op = TREE_OPERAND (op, 0);
8904
8905 /* If we have not stripped any zero-extensions (uns is 0),
8906 we can strip any kind of extension.
8907 If we have previously stripped a zero-extension,
8908 only zero-extensions can safely be stripped.
8909 Any extension can be stripped if the bits it would produce
8910 are all going to be discarded later by truncating to FOR_TYPE. */
8911
8912 if (bitschange > 0)
8913 {
8914 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
8915 win = op;
8916 /* TYPE_UNSIGNED says whether this is a zero-extension.
8917 Let's avoid computing it if it does not affect WIN
8918 and if UNS will not be needed again. */
8919 if ((uns
8920 || CONVERT_EXPR_P (op))
8921 && TYPE_UNSIGNED (TREE_TYPE (op)))
8922 {
8923 uns = 1;
8924 win = op;
8925 }
8926 }
8927 }
8928
8929 /* If we finally reach a constant see if it fits in sth smaller and
8930 in that case convert it. */
8931 if (TREE_CODE (win) == INTEGER_CST)
8932 {
8933 tree wtype = TREE_TYPE (win);
8934 unsigned prec = wi::min_precision (wi::to_wide (win), TYPE_SIGN (wtype));
8935 if (for_type)
8936 prec = MAX (prec, final_prec);
8937 if (prec < TYPE_PRECISION (wtype))
8938 {
8939 tree t = lang_hooks.types.type_for_size (prec, TYPE_UNSIGNED (wtype));
8940 if (t && TYPE_PRECISION (t) < TYPE_PRECISION (wtype))
8941 win = fold_convert (t, win);
8942 }
8943 }
8944
8945 return win;
8946 }
8947 \f
8948 /* Return OP or a simpler expression for a narrower value
8949 which can be sign-extended or zero-extended to give back OP.
8950 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
8951 or 0 if the value should be sign-extended. */
8952
8953 tree
8954 get_narrower (tree op, int *unsignedp_ptr)
8955 {
8956 int uns = 0;
8957 int first = 1;
8958 tree win = op;
8959 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
8960
8961 if (TREE_CODE (op) == COMPOUND_EXPR)
8962 {
8963 do
8964 op = TREE_OPERAND (op, 1);
8965 while (TREE_CODE (op) == COMPOUND_EXPR);
8966 tree ret = get_narrower (op, unsignedp_ptr);
8967 if (ret == op)
8968 return win;
8969 auto_vec <tree, 16> v;
8970 unsigned int i;
8971 for (op = win; TREE_CODE (op) == COMPOUND_EXPR;
8972 op = TREE_OPERAND (op, 1))
8973 v.safe_push (op);
8974 FOR_EACH_VEC_ELT_REVERSE (v, i, op)
8975 ret = build2_loc (EXPR_LOCATION (op), COMPOUND_EXPR,
8976 TREE_TYPE (ret), TREE_OPERAND (op, 0),
8977 ret);
8978 return ret;
8979 }
8980 while (TREE_CODE (op) == NOP_EXPR)
8981 {
8982 int bitschange
8983 = (TYPE_PRECISION (TREE_TYPE (op))
8984 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
8985
8986 /* Truncations are many-one so cannot be removed. */
8987 if (bitschange < 0)
8988 break;
8989
8990 /* See what's inside this conversion. If we decide to strip it,
8991 we will set WIN. */
8992
8993 if (bitschange > 0)
8994 {
8995 op = TREE_OPERAND (op, 0);
8996 /* An extension: the outermost one can be stripped,
8997 but remember whether it is zero or sign extension. */
8998 if (first)
8999 uns = TYPE_UNSIGNED (TREE_TYPE (op));
9000 /* Otherwise, if a sign extension has been stripped,
9001 only sign extensions can now be stripped;
9002 if a zero extension has been stripped, only zero-extensions. */
9003 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
9004 break;
9005 first = 0;
9006 }
9007 else /* bitschange == 0 */
9008 {
9009 /* A change in nominal type can always be stripped, but we must
9010 preserve the unsignedness. */
9011 if (first)
9012 uns = TYPE_UNSIGNED (TREE_TYPE (op));
9013 first = 0;
9014 op = TREE_OPERAND (op, 0);
9015 /* Keep trying to narrow, but don't assign op to win if it
9016 would turn an integral type into something else. */
9017 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
9018 continue;
9019 }
9020
9021 win = op;
9022 }
9023
9024 if (TREE_CODE (op) == COMPONENT_REF
9025 /* Since type_for_size always gives an integer type. */
9026 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
9027 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
9028 /* Ensure field is laid out already. */
9029 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
9030 && tree_fits_uhwi_p (DECL_SIZE (TREE_OPERAND (op, 1))))
9031 {
9032 unsigned HOST_WIDE_INT innerprec
9033 = tree_to_uhwi (DECL_SIZE (TREE_OPERAND (op, 1)));
9034 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
9035 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
9036 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
9037
9038 /* We can get this structure field in a narrower type that fits it,
9039 but the resulting extension to its nominal type (a fullword type)
9040 must satisfy the same conditions as for other extensions.
9041
9042 Do this only for fields that are aligned (not bit-fields),
9043 because when bit-field insns will be used there is no
9044 advantage in doing this. */
9045
9046 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
9047 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
9048 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
9049 && type != 0)
9050 {
9051 if (first)
9052 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
9053 win = fold_convert (type, op);
9054 }
9055 }
9056
9057 *unsignedp_ptr = uns;
9058 return win;
9059 }
9060 \f
9061 /* Return true if integer constant C has a value that is permissible
9062 for TYPE, an integral type. */
9063
9064 bool
9065 int_fits_type_p (const_tree c, const_tree type)
9066 {
9067 tree type_low_bound, type_high_bound;
9068 bool ok_for_low_bound, ok_for_high_bound;
9069 signop sgn_c = TYPE_SIGN (TREE_TYPE (c));
9070
9071 /* Non-standard boolean types can have arbitrary precision but various
9072 transformations assume that they can only take values 0 and +/-1. */
9073 if (TREE_CODE (type) == BOOLEAN_TYPE)
9074 return wi::fits_to_boolean_p (wi::to_wide (c), type);
9075
9076 retry:
9077 type_low_bound = TYPE_MIN_VALUE (type);
9078 type_high_bound = TYPE_MAX_VALUE (type);
9079
9080 /* If at least one bound of the type is a constant integer, we can check
9081 ourselves and maybe make a decision. If no such decision is possible, but
9082 this type is a subtype, try checking against that. Otherwise, use
9083 fits_to_tree_p, which checks against the precision.
9084
9085 Compute the status for each possibly constant bound, and return if we see
9086 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
9087 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
9088 for "constant known to fit". */
9089
9090 /* Check if c >= type_low_bound. */
9091 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
9092 {
9093 if (tree_int_cst_lt (c, type_low_bound))
9094 return false;
9095 ok_for_low_bound = true;
9096 }
9097 else
9098 ok_for_low_bound = false;
9099
9100 /* Check if c <= type_high_bound. */
9101 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
9102 {
9103 if (tree_int_cst_lt (type_high_bound, c))
9104 return false;
9105 ok_for_high_bound = true;
9106 }
9107 else
9108 ok_for_high_bound = false;
9109
9110 /* If the constant fits both bounds, the result is known. */
9111 if (ok_for_low_bound && ok_for_high_bound)
9112 return true;
9113
9114 /* Perform some generic filtering which may allow making a decision
9115 even if the bounds are not constant. First, negative integers
9116 never fit in unsigned types, */
9117 if (TYPE_UNSIGNED (type) && sgn_c == SIGNED && wi::neg_p (wi::to_wide (c)))
9118 return false;
9119
9120 /* Second, narrower types always fit in wider ones. */
9121 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
9122 return true;
9123
9124 /* Third, unsigned integers with top bit set never fit signed types. */
9125 if (!TYPE_UNSIGNED (type) && sgn_c == UNSIGNED)
9126 {
9127 int prec = GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (TREE_TYPE (c))) - 1;
9128 if (prec < TYPE_PRECISION (TREE_TYPE (c)))
9129 {
9130 /* When a tree_cst is converted to a wide-int, the precision
9131 is taken from the type. However, if the precision of the
9132 mode underneath the type is smaller than that, it is
9133 possible that the value will not fit. The test below
9134 fails if any bit is set between the sign bit of the
9135 underlying mode and the top bit of the type. */
9136 if (wi::zext (wi::to_wide (c), prec - 1) != wi::to_wide (c))
9137 return false;
9138 }
9139 else if (wi::neg_p (wi::to_wide (c)))
9140 return false;
9141 }
9142
9143 /* If we haven't been able to decide at this point, there nothing more we
9144 can check ourselves here. Look at the base type if we have one and it
9145 has the same precision. */
9146 if (TREE_CODE (type) == INTEGER_TYPE
9147 && TREE_TYPE (type) != 0
9148 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
9149 {
9150 type = TREE_TYPE (type);
9151 goto retry;
9152 }
9153
9154 /* Or to fits_to_tree_p, if nothing else. */
9155 return wi::fits_to_tree_p (wi::to_wide (c), type);
9156 }
9157
9158 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
9159 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
9160 represented (assuming two's-complement arithmetic) within the bit
9161 precision of the type are returned instead. */
9162
9163 void
9164 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
9165 {
9166 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
9167 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
9168 wi::to_mpz (wi::to_wide (TYPE_MIN_VALUE (type)), min, TYPE_SIGN (type));
9169 else
9170 {
9171 if (TYPE_UNSIGNED (type))
9172 mpz_set_ui (min, 0);
9173 else
9174 {
9175 wide_int mn = wi::min_value (TYPE_PRECISION (type), SIGNED);
9176 wi::to_mpz (mn, min, SIGNED);
9177 }
9178 }
9179
9180 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
9181 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
9182 wi::to_mpz (wi::to_wide (TYPE_MAX_VALUE (type)), max, TYPE_SIGN (type));
9183 else
9184 {
9185 wide_int mn = wi::max_value (TYPE_PRECISION (type), TYPE_SIGN (type));
9186 wi::to_mpz (mn, max, TYPE_SIGN (type));
9187 }
9188 }
9189
9190 /* Return true if VAR is an automatic variable. */
9191
9192 bool
9193 auto_var_p (const_tree var)
9194 {
9195 return ((((VAR_P (var) && ! DECL_EXTERNAL (var))
9196 || TREE_CODE (var) == PARM_DECL)
9197 && ! TREE_STATIC (var))
9198 || TREE_CODE (var) == RESULT_DECL);
9199 }
9200
9201 /* Return true if VAR is an automatic variable defined in function FN. */
9202
9203 bool
9204 auto_var_in_fn_p (const_tree var, const_tree fn)
9205 {
9206 return (DECL_P (var) && DECL_CONTEXT (var) == fn
9207 && (auto_var_p (var)
9208 || TREE_CODE (var) == LABEL_DECL));
9209 }
9210
9211 /* Subprogram of following function. Called by walk_tree.
9212
9213 Return *TP if it is an automatic variable or parameter of the
9214 function passed in as DATA. */
9215
9216 static tree
9217 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
9218 {
9219 tree fn = (tree) data;
9220
9221 if (TYPE_P (*tp))
9222 *walk_subtrees = 0;
9223
9224 else if (DECL_P (*tp)
9225 && auto_var_in_fn_p (*tp, fn))
9226 return *tp;
9227
9228 return NULL_TREE;
9229 }
9230
9231 /* Returns true if T is, contains, or refers to a type with variable
9232 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
9233 arguments, but not the return type. If FN is nonzero, only return
9234 true if a modifier of the type or position of FN is a variable or
9235 parameter inside FN.
9236
9237 This concept is more general than that of C99 'variably modified types':
9238 in C99, a struct type is never variably modified because a VLA may not
9239 appear as a structure member. However, in GNU C code like:
9240
9241 struct S { int i[f()]; };
9242
9243 is valid, and other languages may define similar constructs. */
9244
9245 bool
9246 variably_modified_type_p (tree type, tree fn)
9247 {
9248 tree t;
9249
9250 /* Test if T is either variable (if FN is zero) or an expression containing
9251 a variable in FN. If TYPE isn't gimplified, return true also if
9252 gimplify_one_sizepos would gimplify the expression into a local
9253 variable. */
9254 #define RETURN_TRUE_IF_VAR(T) \
9255 do { tree _t = (T); \
9256 if (_t != NULL_TREE \
9257 && _t != error_mark_node \
9258 && !CONSTANT_CLASS_P (_t) \
9259 && TREE_CODE (_t) != PLACEHOLDER_EXPR \
9260 && (!fn \
9261 || (!TYPE_SIZES_GIMPLIFIED (type) \
9262 && (TREE_CODE (_t) != VAR_DECL \
9263 && !CONTAINS_PLACEHOLDER_P (_t))) \
9264 || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
9265 return true; } while (0)
9266
9267 if (type == error_mark_node)
9268 return false;
9269
9270 /* If TYPE itself has variable size, it is variably modified. */
9271 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
9272 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
9273
9274 switch (TREE_CODE (type))
9275 {
9276 case POINTER_TYPE:
9277 case REFERENCE_TYPE:
9278 case VECTOR_TYPE:
9279 /* Ada can have pointer types refering to themselves indirectly. */
9280 if (TREE_VISITED (type))
9281 return false;
9282 TREE_VISITED (type) = true;
9283 if (variably_modified_type_p (TREE_TYPE (type), fn))
9284 {
9285 TREE_VISITED (type) = false;
9286 return true;
9287 }
9288 TREE_VISITED (type) = false;
9289 break;
9290
9291 case FUNCTION_TYPE:
9292 case METHOD_TYPE:
9293 /* If TYPE is a function type, it is variably modified if the
9294 return type is variably modified. */
9295 if (variably_modified_type_p (TREE_TYPE (type), fn))
9296 return true;
9297 break;
9298
9299 case INTEGER_TYPE:
9300 case REAL_TYPE:
9301 case FIXED_POINT_TYPE:
9302 case ENUMERAL_TYPE:
9303 case BOOLEAN_TYPE:
9304 /* Scalar types are variably modified if their end points
9305 aren't constant. */
9306 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
9307 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
9308 break;
9309
9310 case RECORD_TYPE:
9311 case UNION_TYPE:
9312 case QUAL_UNION_TYPE:
9313 /* We can't see if any of the fields are variably-modified by the
9314 definition we normally use, since that would produce infinite
9315 recursion via pointers. */
9316 /* This is variably modified if some field's type is. */
9317 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
9318 if (TREE_CODE (t) == FIELD_DECL)
9319 {
9320 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
9321 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
9322 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
9323
9324 /* If the type is a qualified union, then the DECL_QUALIFIER
9325 of fields can also be an expression containing a variable. */
9326 if (TREE_CODE (type) == QUAL_UNION_TYPE)
9327 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
9328
9329 /* If the field is a qualified union, then it's only a container
9330 for what's inside so we look into it. That's necessary in LTO
9331 mode because the sizes of the field tested above have been set
9332 to PLACEHOLDER_EXPRs by free_lang_data. */
9333 if (TREE_CODE (TREE_TYPE (t)) == QUAL_UNION_TYPE
9334 && variably_modified_type_p (TREE_TYPE (t), fn))
9335 return true;
9336 }
9337 break;
9338
9339 case ARRAY_TYPE:
9340 /* Do not call ourselves to avoid infinite recursion. This is
9341 variably modified if the element type is. */
9342 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
9343 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
9344 break;
9345
9346 default:
9347 break;
9348 }
9349
9350 /* The current language may have other cases to check, but in general,
9351 all other types are not variably modified. */
9352 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
9353
9354 #undef RETURN_TRUE_IF_VAR
9355 }
9356
9357 /* Given a DECL or TYPE, return the scope in which it was declared, or
9358 NULL_TREE if there is no containing scope. */
9359
9360 tree
9361 get_containing_scope (const_tree t)
9362 {
9363 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
9364 }
9365
9366 /* Returns the ultimate TRANSLATION_UNIT_DECL context of DECL or NULL. */
9367
9368 const_tree
9369 get_ultimate_context (const_tree decl)
9370 {
9371 while (decl && TREE_CODE (decl) != TRANSLATION_UNIT_DECL)
9372 {
9373 if (TREE_CODE (decl) == BLOCK)
9374 decl = BLOCK_SUPERCONTEXT (decl);
9375 else
9376 decl = get_containing_scope (decl);
9377 }
9378 return decl;
9379 }
9380
9381 /* Return the innermost context enclosing DECL that is
9382 a FUNCTION_DECL, or zero if none. */
9383
9384 tree
9385 decl_function_context (const_tree decl)
9386 {
9387 tree context;
9388
9389 if (TREE_CODE (decl) == ERROR_MARK)
9390 return 0;
9391
9392 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
9393 where we look up the function at runtime. Such functions always take
9394 a first argument of type 'pointer to real context'.
9395
9396 C++ should really be fixed to use DECL_CONTEXT for the real context,
9397 and use something else for the "virtual context". */
9398 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VIRTUAL_P (decl))
9399 context
9400 = TYPE_MAIN_VARIANT
9401 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
9402 else
9403 context = DECL_CONTEXT (decl);
9404
9405 while (context && TREE_CODE (context) != FUNCTION_DECL)
9406 {
9407 if (TREE_CODE (context) == BLOCK)
9408 context = BLOCK_SUPERCONTEXT (context);
9409 else
9410 context = get_containing_scope (context);
9411 }
9412
9413 return context;
9414 }
9415
9416 /* Return the innermost context enclosing DECL that is
9417 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
9418 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
9419
9420 tree
9421 decl_type_context (const_tree decl)
9422 {
9423 tree context = DECL_CONTEXT (decl);
9424
9425 while (context)
9426 switch (TREE_CODE (context))
9427 {
9428 case NAMESPACE_DECL:
9429 case TRANSLATION_UNIT_DECL:
9430 return NULL_TREE;
9431
9432 case RECORD_TYPE:
9433 case UNION_TYPE:
9434 case QUAL_UNION_TYPE:
9435 return context;
9436
9437 case TYPE_DECL:
9438 case FUNCTION_DECL:
9439 context = DECL_CONTEXT (context);
9440 break;
9441
9442 case BLOCK:
9443 context = BLOCK_SUPERCONTEXT (context);
9444 break;
9445
9446 default:
9447 gcc_unreachable ();
9448 }
9449
9450 return NULL_TREE;
9451 }
9452
9453 /* CALL is a CALL_EXPR. Return the declaration for the function
9454 called, or NULL_TREE if the called function cannot be
9455 determined. */
9456
9457 tree
9458 get_callee_fndecl (const_tree call)
9459 {
9460 tree addr;
9461
9462 if (call == error_mark_node)
9463 return error_mark_node;
9464
9465 /* It's invalid to call this function with anything but a
9466 CALL_EXPR. */
9467 gcc_assert (TREE_CODE (call) == CALL_EXPR);
9468
9469 /* The first operand to the CALL is the address of the function
9470 called. */
9471 addr = CALL_EXPR_FN (call);
9472
9473 /* If there is no function, return early. */
9474 if (addr == NULL_TREE)
9475 return NULL_TREE;
9476
9477 STRIP_NOPS (addr);
9478
9479 /* If this is a readonly function pointer, extract its initial value. */
9480 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
9481 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
9482 && DECL_INITIAL (addr))
9483 addr = DECL_INITIAL (addr);
9484
9485 /* If the address is just `&f' for some function `f', then we know
9486 that `f' is being called. */
9487 if (TREE_CODE (addr) == ADDR_EXPR
9488 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
9489 return TREE_OPERAND (addr, 0);
9490
9491 /* We couldn't figure out what was being called. */
9492 return NULL_TREE;
9493 }
9494
9495 /* If CALL_EXPR CALL calls a normal built-in function or an internal function,
9496 return the associated function code, otherwise return CFN_LAST. */
9497
9498 combined_fn
9499 get_call_combined_fn (const_tree call)
9500 {
9501 /* It's invalid to call this function with anything but a CALL_EXPR. */
9502 gcc_assert (TREE_CODE (call) == CALL_EXPR);
9503
9504 if (!CALL_EXPR_FN (call))
9505 return as_combined_fn (CALL_EXPR_IFN (call));
9506
9507 tree fndecl = get_callee_fndecl (call);
9508 if (fndecl && fndecl_built_in_p (fndecl, BUILT_IN_NORMAL))
9509 return as_combined_fn (DECL_FUNCTION_CODE (fndecl));
9510
9511 return CFN_LAST;
9512 }
9513
9514 /* Comparator of indices based on tree_node_counts. */
9515
9516 static int
9517 tree_nodes_cmp (const void *p1, const void *p2)
9518 {
9519 const unsigned *n1 = (const unsigned *)p1;
9520 const unsigned *n2 = (const unsigned *)p2;
9521
9522 return tree_node_counts[*n1] - tree_node_counts[*n2];
9523 }
9524
9525 /* Comparator of indices based on tree_code_counts. */
9526
9527 static int
9528 tree_codes_cmp (const void *p1, const void *p2)
9529 {
9530 const unsigned *n1 = (const unsigned *)p1;
9531 const unsigned *n2 = (const unsigned *)p2;
9532
9533 return tree_code_counts[*n1] - tree_code_counts[*n2];
9534 }
9535
9536 #define TREE_MEM_USAGE_SPACES 40
9537
9538 /* Print debugging information about tree nodes generated during the compile,
9539 and any language-specific information. */
9540
9541 void
9542 dump_tree_statistics (void)
9543 {
9544 if (GATHER_STATISTICS)
9545 {
9546 uint64_t total_nodes, total_bytes;
9547 fprintf (stderr, "\nKind Nodes Bytes\n");
9548 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9549 total_nodes = total_bytes = 0;
9550
9551 {
9552 auto_vec<unsigned> indices (all_kinds);
9553 for (unsigned i = 0; i < all_kinds; i++)
9554 indices.quick_push (i);
9555 indices.qsort (tree_nodes_cmp);
9556
9557 for (unsigned i = 0; i < (int) all_kinds; i++)
9558 {
9559 unsigned j = indices[i];
9560 fprintf (stderr, "%-20s %6" PRIu64 "%c %9" PRIu64 "%c\n",
9561 tree_node_kind_names[j], SIZE_AMOUNT (tree_node_counts[j]),
9562 SIZE_AMOUNT (tree_node_sizes[j]));
9563 total_nodes += tree_node_counts[j];
9564 total_bytes += tree_node_sizes[j];
9565 }
9566 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9567 fprintf (stderr, "%-20s %6" PRIu64 "%c %9" PRIu64 "%c\n", "Total",
9568 SIZE_AMOUNT (total_nodes), SIZE_AMOUNT (total_bytes));
9569 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9570 }
9571
9572 {
9573 fprintf (stderr, "Code Nodes\n");
9574 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9575
9576 auto_vec<unsigned> indices (MAX_TREE_CODES);
9577 for (unsigned i = 0; i < MAX_TREE_CODES; i++)
9578 indices.quick_push (i);
9579 indices.qsort (tree_codes_cmp);
9580
9581 for (unsigned i = 0; i < MAX_TREE_CODES; i++)
9582 {
9583 unsigned j = indices[i];
9584 fprintf (stderr, "%-32s %6" PRIu64 "%c\n",
9585 get_tree_code_name ((enum tree_code) j),
9586 SIZE_AMOUNT (tree_code_counts[j]));
9587 }
9588 mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
9589 fprintf (stderr, "\n");
9590 ssanames_print_statistics ();
9591 fprintf (stderr, "\n");
9592 phinodes_print_statistics ();
9593 fprintf (stderr, "\n");
9594 }
9595 }
9596 else
9597 fprintf (stderr, "(No per-node statistics)\n");
9598
9599 print_type_hash_statistics ();
9600 print_debug_expr_statistics ();
9601 print_value_expr_statistics ();
9602 lang_hooks.print_statistics ();
9603 }
9604 \f
9605 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
9606
9607 /* Generate a crc32 of the low BYTES bytes of VALUE. */
9608
9609 unsigned
9610 crc32_unsigned_n (unsigned chksum, unsigned value, unsigned bytes)
9611 {
9612 /* This relies on the raw feedback's top 4 bits being zero. */
9613 #define FEEDBACK(X) ((X) * 0x04c11db7)
9614 #define SYNDROME(X) (FEEDBACK ((X) & 1) ^ FEEDBACK ((X) & 2) \
9615 ^ FEEDBACK ((X) & 4) ^ FEEDBACK ((X) & 8))
9616 static const unsigned syndromes[16] =
9617 {
9618 SYNDROME(0x0), SYNDROME(0x1), SYNDROME(0x2), SYNDROME(0x3),
9619 SYNDROME(0x4), SYNDROME(0x5), SYNDROME(0x6), SYNDROME(0x7),
9620 SYNDROME(0x8), SYNDROME(0x9), SYNDROME(0xa), SYNDROME(0xb),
9621 SYNDROME(0xc), SYNDROME(0xd), SYNDROME(0xe), SYNDROME(0xf),
9622 };
9623 #undef FEEDBACK
9624 #undef SYNDROME
9625
9626 value <<= (32 - bytes * 8);
9627 for (unsigned ix = bytes * 2; ix--; value <<= 4)
9628 {
9629 unsigned feedback = syndromes[((value ^ chksum) >> 28) & 0xf];
9630
9631 chksum = (chksum << 4) ^ feedback;
9632 }
9633
9634 return chksum;
9635 }
9636
9637 /* Generate a crc32 of a string. */
9638
9639 unsigned
9640 crc32_string (unsigned chksum, const char *string)
9641 {
9642 do
9643 chksum = crc32_byte (chksum, *string);
9644 while (*string++);
9645 return chksum;
9646 }
9647
9648 /* P is a string that will be used in a symbol. Mask out any characters
9649 that are not valid in that context. */
9650
9651 void
9652 clean_symbol_name (char *p)
9653 {
9654 for (; *p; p++)
9655 if (! (ISALNUM (*p)
9656 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
9657 || *p == '$'
9658 #endif
9659 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
9660 || *p == '.'
9661 #endif
9662 ))
9663 *p = '_';
9664 }
9665
9666 static GTY(()) unsigned anon_cnt = 0; /* Saved for PCH. */
9667
9668 /* Create a unique anonymous identifier. The identifier is still a
9669 valid assembly label. */
9670
9671 tree
9672 make_anon_name ()
9673 {
9674 const char *fmt =
9675 #if !defined (NO_DOT_IN_LABEL)
9676 "."
9677 #elif !defined (NO_DOLLAR_IN_LABEL)
9678 "$"
9679 #else
9680 "_"
9681 #endif
9682 "_anon_%d";
9683
9684 char buf[24];
9685 int len = snprintf (buf, sizeof (buf), fmt, anon_cnt++);
9686 gcc_checking_assert (len < int (sizeof (buf)));
9687
9688 tree id = get_identifier_with_length (buf, len);
9689 IDENTIFIER_ANON_P (id) = true;
9690
9691 return id;
9692 }
9693
9694 /* Generate a name for a special-purpose function.
9695 The generated name may need to be unique across the whole link.
9696 Changes to this function may also require corresponding changes to
9697 xstrdup_mask_random.
9698 TYPE is some string to identify the purpose of this function to the
9699 linker or collect2; it must start with an uppercase letter,
9700 one of:
9701 I - for constructors
9702 D - for destructors
9703 N - for C++ anonymous namespaces
9704 F - for DWARF unwind frame information. */
9705
9706 tree
9707 get_file_function_name (const char *type)
9708 {
9709 char *buf;
9710 const char *p;
9711 char *q;
9712
9713 /* If we already have a name we know to be unique, just use that. */
9714 if (first_global_object_name)
9715 p = q = ASTRDUP (first_global_object_name);
9716 /* If the target is handling the constructors/destructors, they
9717 will be local to this file and the name is only necessary for
9718 debugging purposes.
9719 We also assign sub_I and sub_D sufixes to constructors called from
9720 the global static constructors. These are always local. */
9721 else if (((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
9722 || (strncmp (type, "sub_", 4) == 0
9723 && (type[4] == 'I' || type[4] == 'D')))
9724 {
9725 const char *file = main_input_filename;
9726 if (! file)
9727 file = LOCATION_FILE (input_location);
9728 /* Just use the file's basename, because the full pathname
9729 might be quite long. */
9730 p = q = ASTRDUP (lbasename (file));
9731 }
9732 else
9733 {
9734 /* Otherwise, the name must be unique across the entire link.
9735 We don't have anything that we know to be unique to this translation
9736 unit, so use what we do have and throw in some randomness. */
9737 unsigned len;
9738 const char *name = weak_global_object_name;
9739 const char *file = main_input_filename;
9740
9741 if (! name)
9742 name = "";
9743 if (! file)
9744 file = LOCATION_FILE (input_location);
9745
9746 len = strlen (file);
9747 q = (char *) alloca (9 + 19 + len + 1);
9748 memcpy (q, file, len + 1);
9749
9750 snprintf (q + len, 9 + 19 + 1, "_%08X_" HOST_WIDE_INT_PRINT_HEX,
9751 crc32_string (0, name), get_random_seed (false));
9752
9753 p = q;
9754 }
9755
9756 clean_symbol_name (q);
9757 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
9758 + strlen (type));
9759
9760 /* Set up the name of the file-level functions we may need.
9761 Use a global object (which is already required to be unique over
9762 the program) rather than the file name (which imposes extra
9763 constraints). */
9764 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
9765
9766 return get_identifier (buf);
9767 }
9768 \f
9769 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
9770
9771 /* Complain that the tree code of NODE does not match the expected 0
9772 terminated list of trailing codes. The trailing code list can be
9773 empty, for a more vague error message. FILE, LINE, and FUNCTION
9774 are of the caller. */
9775
9776 void
9777 tree_check_failed (const_tree node, const char *file,
9778 int line, const char *function, ...)
9779 {
9780 va_list args;
9781 const char *buffer;
9782 unsigned length = 0;
9783 enum tree_code code;
9784
9785 va_start (args, function);
9786 while ((code = (enum tree_code) va_arg (args, int)))
9787 length += 4 + strlen (get_tree_code_name (code));
9788 va_end (args);
9789 if (length)
9790 {
9791 char *tmp;
9792 va_start (args, function);
9793 length += strlen ("expected ");
9794 buffer = tmp = (char *) alloca (length);
9795 length = 0;
9796 while ((code = (enum tree_code) va_arg (args, int)))
9797 {
9798 const char *prefix = length ? " or " : "expected ";
9799
9800 strcpy (tmp + length, prefix);
9801 length += strlen (prefix);
9802 strcpy (tmp + length, get_tree_code_name (code));
9803 length += strlen (get_tree_code_name (code));
9804 }
9805 va_end (args);
9806 }
9807 else
9808 buffer = "unexpected node";
9809
9810 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9811 buffer, get_tree_code_name (TREE_CODE (node)),
9812 function, trim_filename (file), line);
9813 }
9814
9815 /* Complain that the tree code of NODE does match the expected 0
9816 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
9817 the caller. */
9818
9819 void
9820 tree_not_check_failed (const_tree node, const char *file,
9821 int line, const char *function, ...)
9822 {
9823 va_list args;
9824 char *buffer;
9825 unsigned length = 0;
9826 enum tree_code code;
9827
9828 va_start (args, function);
9829 while ((code = (enum tree_code) va_arg (args, int)))
9830 length += 4 + strlen (get_tree_code_name (code));
9831 va_end (args);
9832 va_start (args, function);
9833 buffer = (char *) alloca (length);
9834 length = 0;
9835 while ((code = (enum tree_code) va_arg (args, int)))
9836 {
9837 if (length)
9838 {
9839 strcpy (buffer + length, " or ");
9840 length += 4;
9841 }
9842 strcpy (buffer + length, get_tree_code_name (code));
9843 length += strlen (get_tree_code_name (code));
9844 }
9845 va_end (args);
9846
9847 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
9848 buffer, get_tree_code_name (TREE_CODE (node)),
9849 function, trim_filename (file), line);
9850 }
9851
9852 /* Similar to tree_check_failed, except that we check for a class of tree
9853 code, given in CL. */
9854
9855 void
9856 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
9857 const char *file, int line, const char *function)
9858 {
9859 internal_error
9860 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
9861 TREE_CODE_CLASS_STRING (cl),
9862 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9863 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9864 }
9865
9866 /* Similar to tree_check_failed, except that instead of specifying a
9867 dozen codes, use the knowledge that they're all sequential. */
9868
9869 void
9870 tree_range_check_failed (const_tree node, const char *file, int line,
9871 const char *function, enum tree_code c1,
9872 enum tree_code c2)
9873 {
9874 char *buffer;
9875 unsigned length = 0;
9876 unsigned int c;
9877
9878 for (c = c1; c <= c2; ++c)
9879 length += 4 + strlen (get_tree_code_name ((enum tree_code) c));
9880
9881 length += strlen ("expected ");
9882 buffer = (char *) alloca (length);
9883 length = 0;
9884
9885 for (c = c1; c <= c2; ++c)
9886 {
9887 const char *prefix = length ? " or " : "expected ";
9888
9889 strcpy (buffer + length, prefix);
9890 length += strlen (prefix);
9891 strcpy (buffer + length, get_tree_code_name ((enum tree_code) c));
9892 length += strlen (get_tree_code_name ((enum tree_code) c));
9893 }
9894
9895 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9896 buffer, get_tree_code_name (TREE_CODE (node)),
9897 function, trim_filename (file), line);
9898 }
9899
9900
9901 /* Similar to tree_check_failed, except that we check that a tree does
9902 not have the specified code, given in CL. */
9903
9904 void
9905 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
9906 const char *file, int line, const char *function)
9907 {
9908 internal_error
9909 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
9910 TREE_CODE_CLASS_STRING (cl),
9911 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
9912 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9913 }
9914
9915
9916 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
9917
9918 void
9919 omp_clause_check_failed (const_tree node, const char *file, int line,
9920 const char *function, enum omp_clause_code code)
9921 {
9922 internal_error ("tree check: expected %<omp_clause %s%>, have %qs "
9923 "in %s, at %s:%d",
9924 omp_clause_code_name[code],
9925 get_tree_code_name (TREE_CODE (node)),
9926 function, trim_filename (file), line);
9927 }
9928
9929
9930 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
9931
9932 void
9933 omp_clause_range_check_failed (const_tree node, const char *file, int line,
9934 const char *function, enum omp_clause_code c1,
9935 enum omp_clause_code c2)
9936 {
9937 char *buffer;
9938 unsigned length = 0;
9939 unsigned int c;
9940
9941 for (c = c1; c <= c2; ++c)
9942 length += 4 + strlen (omp_clause_code_name[c]);
9943
9944 length += strlen ("expected ");
9945 buffer = (char *) alloca (length);
9946 length = 0;
9947
9948 for (c = c1; c <= c2; ++c)
9949 {
9950 const char *prefix = length ? " or " : "expected ";
9951
9952 strcpy (buffer + length, prefix);
9953 length += strlen (prefix);
9954 strcpy (buffer + length, omp_clause_code_name[c]);
9955 length += strlen (omp_clause_code_name[c]);
9956 }
9957
9958 internal_error ("tree check: %s, have %s in %s, at %s:%d",
9959 buffer, omp_clause_code_name[TREE_CODE (node)],
9960 function, trim_filename (file), line);
9961 }
9962
9963
9964 #undef DEFTREESTRUCT
9965 #define DEFTREESTRUCT(VAL, NAME) NAME,
9966
9967 static const char *ts_enum_names[] = {
9968 #include "treestruct.def"
9969 };
9970 #undef DEFTREESTRUCT
9971
9972 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
9973
9974 /* Similar to tree_class_check_failed, except that we check for
9975 whether CODE contains the tree structure identified by EN. */
9976
9977 void
9978 tree_contains_struct_check_failed (const_tree node,
9979 const enum tree_node_structure_enum en,
9980 const char *file, int line,
9981 const char *function)
9982 {
9983 internal_error
9984 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
9985 TS_ENUM_NAME (en),
9986 get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
9987 }
9988
9989
9990 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
9991 (dynamically sized) vector. */
9992
9993 void
9994 tree_int_cst_elt_check_failed (int idx, int len, const char *file, int line,
9995 const char *function)
9996 {
9997 internal_error
9998 ("tree check: accessed elt %d of %<tree_int_cst%> with %d elts in %s, "
9999 "at %s:%d",
10000 idx + 1, len, function, trim_filename (file), line);
10001 }
10002
10003 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
10004 (dynamically sized) vector. */
10005
10006 void
10007 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
10008 const char *function)
10009 {
10010 internal_error
10011 ("tree check: accessed elt %d of %<tree_vec%> with %d elts in %s, at %s:%d",
10012 idx + 1, len, function, trim_filename (file), line);
10013 }
10014
10015 /* Similar to above, except that the check is for the bounds of the operand
10016 vector of an expression node EXP. */
10017
10018 void
10019 tree_operand_check_failed (int idx, const_tree exp, const char *file,
10020 int line, const char *function)
10021 {
10022 enum tree_code code = TREE_CODE (exp);
10023 internal_error
10024 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
10025 idx + 1, get_tree_code_name (code), TREE_OPERAND_LENGTH (exp),
10026 function, trim_filename (file), line);
10027 }
10028
10029 /* Similar to above, except that the check is for the number of
10030 operands of an OMP_CLAUSE node. */
10031
10032 void
10033 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
10034 int line, const char *function)
10035 {
10036 internal_error
10037 ("tree check: accessed operand %d of %<omp_clause %s%> with %d operands "
10038 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
10039 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
10040 trim_filename (file), line);
10041 }
10042 #endif /* ENABLE_TREE_CHECKING */
10043 \f
10044 /* Create a new vector type node holding NUNITS units of type INNERTYPE,
10045 and mapped to the machine mode MODE. Initialize its fields and build
10046 the information necessary for debugging output. */
10047
10048 static tree
10049 make_vector_type (tree innertype, poly_int64 nunits, machine_mode mode)
10050 {
10051 tree t;
10052 tree mv_innertype = TYPE_MAIN_VARIANT (innertype);
10053
10054 t = make_node (VECTOR_TYPE);
10055 TREE_TYPE (t) = mv_innertype;
10056 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
10057 SET_TYPE_MODE (t, mode);
10058
10059 if (TYPE_STRUCTURAL_EQUALITY_P (mv_innertype) || in_lto_p)
10060 SET_TYPE_STRUCTURAL_EQUALITY (t);
10061 else if ((TYPE_CANONICAL (mv_innertype) != innertype
10062 || mode != VOIDmode)
10063 && !VECTOR_BOOLEAN_TYPE_P (t))
10064 TYPE_CANONICAL (t)
10065 = make_vector_type (TYPE_CANONICAL (mv_innertype), nunits, VOIDmode);
10066
10067 layout_type (t);
10068
10069 hashval_t hash = type_hash_canon_hash (t);
10070 t = type_hash_canon (hash, t);
10071
10072 /* We have built a main variant, based on the main variant of the
10073 inner type. Use it to build the variant we return. */
10074 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
10075 && TREE_TYPE (t) != innertype)
10076 return build_type_attribute_qual_variant (t,
10077 TYPE_ATTRIBUTES (innertype),
10078 TYPE_QUALS (innertype));
10079
10080 return t;
10081 }
10082
10083 static tree
10084 make_or_reuse_type (unsigned size, int unsignedp)
10085 {
10086 int i;
10087
10088 if (size == INT_TYPE_SIZE)
10089 return unsignedp ? unsigned_type_node : integer_type_node;
10090 if (size == CHAR_TYPE_SIZE)
10091 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
10092 if (size == SHORT_TYPE_SIZE)
10093 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
10094 if (size == LONG_TYPE_SIZE)
10095 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
10096 if (size == LONG_LONG_TYPE_SIZE)
10097 return (unsignedp ? long_long_unsigned_type_node
10098 : long_long_integer_type_node);
10099
10100 for (i = 0; i < NUM_INT_N_ENTS; i ++)
10101 if (size == int_n_data[i].bitsize
10102 && int_n_enabled_p[i])
10103 return (unsignedp ? int_n_trees[i].unsigned_type
10104 : int_n_trees[i].signed_type);
10105
10106 if (unsignedp)
10107 return make_unsigned_type (size);
10108 else
10109 return make_signed_type (size);
10110 }
10111
10112 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
10113
10114 static tree
10115 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
10116 {
10117 if (satp)
10118 {
10119 if (size == SHORT_FRACT_TYPE_SIZE)
10120 return unsignedp ? sat_unsigned_short_fract_type_node
10121 : sat_short_fract_type_node;
10122 if (size == FRACT_TYPE_SIZE)
10123 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
10124 if (size == LONG_FRACT_TYPE_SIZE)
10125 return unsignedp ? sat_unsigned_long_fract_type_node
10126 : sat_long_fract_type_node;
10127 if (size == LONG_LONG_FRACT_TYPE_SIZE)
10128 return unsignedp ? sat_unsigned_long_long_fract_type_node
10129 : sat_long_long_fract_type_node;
10130 }
10131 else
10132 {
10133 if (size == SHORT_FRACT_TYPE_SIZE)
10134 return unsignedp ? unsigned_short_fract_type_node
10135 : short_fract_type_node;
10136 if (size == FRACT_TYPE_SIZE)
10137 return unsignedp ? unsigned_fract_type_node : fract_type_node;
10138 if (size == LONG_FRACT_TYPE_SIZE)
10139 return unsignedp ? unsigned_long_fract_type_node
10140 : long_fract_type_node;
10141 if (size == LONG_LONG_FRACT_TYPE_SIZE)
10142 return unsignedp ? unsigned_long_long_fract_type_node
10143 : long_long_fract_type_node;
10144 }
10145
10146 return make_fract_type (size, unsignedp, satp);
10147 }
10148
10149 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
10150
10151 static tree
10152 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
10153 {
10154 if (satp)
10155 {
10156 if (size == SHORT_ACCUM_TYPE_SIZE)
10157 return unsignedp ? sat_unsigned_short_accum_type_node
10158 : sat_short_accum_type_node;
10159 if (size == ACCUM_TYPE_SIZE)
10160 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
10161 if (size == LONG_ACCUM_TYPE_SIZE)
10162 return unsignedp ? sat_unsigned_long_accum_type_node
10163 : sat_long_accum_type_node;
10164 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
10165 return unsignedp ? sat_unsigned_long_long_accum_type_node
10166 : sat_long_long_accum_type_node;
10167 }
10168 else
10169 {
10170 if (size == SHORT_ACCUM_TYPE_SIZE)
10171 return unsignedp ? unsigned_short_accum_type_node
10172 : short_accum_type_node;
10173 if (size == ACCUM_TYPE_SIZE)
10174 return unsignedp ? unsigned_accum_type_node : accum_type_node;
10175 if (size == LONG_ACCUM_TYPE_SIZE)
10176 return unsignedp ? unsigned_long_accum_type_node
10177 : long_accum_type_node;
10178 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
10179 return unsignedp ? unsigned_long_long_accum_type_node
10180 : long_long_accum_type_node;
10181 }
10182
10183 return make_accum_type (size, unsignedp, satp);
10184 }
10185
10186
10187 /* Create an atomic variant node for TYPE. This routine is called
10188 during initialization of data types to create the 5 basic atomic
10189 types. The generic build_variant_type function requires these to
10190 already be set up in order to function properly, so cannot be
10191 called from there. If ALIGN is non-zero, then ensure alignment is
10192 overridden to this value. */
10193
10194 static tree
10195 build_atomic_base (tree type, unsigned int align)
10196 {
10197 tree t;
10198
10199 /* Make sure its not already registered. */
10200 if ((t = get_qualified_type (type, TYPE_QUAL_ATOMIC)))
10201 return t;
10202
10203 t = build_variant_type_copy (type);
10204 set_type_quals (t, TYPE_QUAL_ATOMIC);
10205
10206 if (align)
10207 SET_TYPE_ALIGN (t, align);
10208
10209 return t;
10210 }
10211
10212 /* Information about the _FloatN and _FloatNx types. This must be in
10213 the same order as the corresponding TI_* enum values. */
10214 const floatn_type_info floatn_nx_types[NUM_FLOATN_NX_TYPES] =
10215 {
10216 { 16, false },
10217 { 32, false },
10218 { 64, false },
10219 { 128, false },
10220 { 32, true },
10221 { 64, true },
10222 { 128, true },
10223 };
10224
10225
10226 /* Create nodes for all integer types (and error_mark_node) using the sizes
10227 of C datatypes. SIGNED_CHAR specifies whether char is signed. */
10228
10229 void
10230 build_common_tree_nodes (bool signed_char)
10231 {
10232 int i;
10233
10234 error_mark_node = make_node (ERROR_MARK);
10235 TREE_TYPE (error_mark_node) = error_mark_node;
10236
10237 initialize_sizetypes ();
10238
10239 /* Define both `signed char' and `unsigned char'. */
10240 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
10241 TYPE_STRING_FLAG (signed_char_type_node) = 1;
10242 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
10243 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
10244
10245 /* Define `char', which is like either `signed char' or `unsigned char'
10246 but not the same as either. */
10247 char_type_node
10248 = (signed_char
10249 ? make_signed_type (CHAR_TYPE_SIZE)
10250 : make_unsigned_type (CHAR_TYPE_SIZE));
10251 TYPE_STRING_FLAG (char_type_node) = 1;
10252
10253 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
10254 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
10255 integer_type_node = make_signed_type (INT_TYPE_SIZE);
10256 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
10257 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
10258 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
10259 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
10260 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
10261
10262 for (i = 0; i < NUM_INT_N_ENTS; i ++)
10263 {
10264 int_n_trees[i].signed_type = make_signed_type (int_n_data[i].bitsize);
10265 int_n_trees[i].unsigned_type = make_unsigned_type (int_n_data[i].bitsize);
10266
10267 if (int_n_enabled_p[i])
10268 {
10269 integer_types[itk_intN_0 + i * 2] = int_n_trees[i].signed_type;
10270 integer_types[itk_unsigned_intN_0 + i * 2] = int_n_trees[i].unsigned_type;
10271 }
10272 }
10273
10274 /* Define a boolean type. This type only represents boolean values but
10275 may be larger than char depending on the value of BOOL_TYPE_SIZE. */
10276 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
10277 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
10278 TYPE_PRECISION (boolean_type_node) = 1;
10279 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
10280
10281 /* Define what type to use for size_t. */
10282 if (strcmp (SIZE_TYPE, "unsigned int") == 0)
10283 size_type_node = unsigned_type_node;
10284 else if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
10285 size_type_node = long_unsigned_type_node;
10286 else if (strcmp (SIZE_TYPE, "long long unsigned int") == 0)
10287 size_type_node = long_long_unsigned_type_node;
10288 else if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
10289 size_type_node = short_unsigned_type_node;
10290 else
10291 {
10292 int i;
10293
10294 size_type_node = NULL_TREE;
10295 for (i = 0; i < NUM_INT_N_ENTS; i++)
10296 if (int_n_enabled_p[i])
10297 {
10298 char name[50], altname[50];
10299 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
10300 sprintf (altname, "__int%d__ unsigned", int_n_data[i].bitsize);
10301
10302 if (strcmp (name, SIZE_TYPE) == 0
10303 || strcmp (altname, SIZE_TYPE) == 0)
10304 {
10305 size_type_node = int_n_trees[i].unsigned_type;
10306 }
10307 }
10308 if (size_type_node == NULL_TREE)
10309 gcc_unreachable ();
10310 }
10311
10312 /* Define what type to use for ptrdiff_t. */
10313 if (strcmp (PTRDIFF_TYPE, "int") == 0)
10314 ptrdiff_type_node = integer_type_node;
10315 else if (strcmp (PTRDIFF_TYPE, "long int") == 0)
10316 ptrdiff_type_node = long_integer_type_node;
10317 else if (strcmp (PTRDIFF_TYPE, "long long int") == 0)
10318 ptrdiff_type_node = long_long_integer_type_node;
10319 else if (strcmp (PTRDIFF_TYPE, "short int") == 0)
10320 ptrdiff_type_node = short_integer_type_node;
10321 else
10322 {
10323 ptrdiff_type_node = NULL_TREE;
10324 for (int i = 0; i < NUM_INT_N_ENTS; i++)
10325 if (int_n_enabled_p[i])
10326 {
10327 char name[50], altname[50];
10328 sprintf (name, "__int%d", int_n_data[i].bitsize);
10329 sprintf (altname, "__int%d__", int_n_data[i].bitsize);
10330
10331 if (strcmp (name, PTRDIFF_TYPE) == 0
10332 || strcmp (altname, PTRDIFF_TYPE) == 0)
10333 ptrdiff_type_node = int_n_trees[i].signed_type;
10334 }
10335 if (ptrdiff_type_node == NULL_TREE)
10336 gcc_unreachable ();
10337 }
10338
10339 /* Fill in the rest of the sized types. Reuse existing type nodes
10340 when possible. */
10341 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
10342 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
10343 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
10344 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
10345 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
10346
10347 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
10348 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
10349 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
10350 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
10351 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
10352
10353 /* Don't call build_qualified type for atomics. That routine does
10354 special processing for atomics, and until they are initialized
10355 it's better not to make that call.
10356
10357 Check to see if there is a target override for atomic types. */
10358
10359 atomicQI_type_node = build_atomic_base (unsigned_intQI_type_node,
10360 targetm.atomic_align_for_mode (QImode));
10361 atomicHI_type_node = build_atomic_base (unsigned_intHI_type_node,
10362 targetm.atomic_align_for_mode (HImode));
10363 atomicSI_type_node = build_atomic_base (unsigned_intSI_type_node,
10364 targetm.atomic_align_for_mode (SImode));
10365 atomicDI_type_node = build_atomic_base (unsigned_intDI_type_node,
10366 targetm.atomic_align_for_mode (DImode));
10367 atomicTI_type_node = build_atomic_base (unsigned_intTI_type_node,
10368 targetm.atomic_align_for_mode (TImode));
10369
10370 access_public_node = get_identifier ("public");
10371 access_protected_node = get_identifier ("protected");
10372 access_private_node = get_identifier ("private");
10373
10374 /* Define these next since types below may used them. */
10375 integer_zero_node = build_int_cst (integer_type_node, 0);
10376 integer_one_node = build_int_cst (integer_type_node, 1);
10377 integer_three_node = build_int_cst (integer_type_node, 3);
10378 integer_minus_one_node = build_int_cst (integer_type_node, -1);
10379
10380 size_zero_node = size_int (0);
10381 size_one_node = size_int (1);
10382 bitsize_zero_node = bitsize_int (0);
10383 bitsize_one_node = bitsize_int (1);
10384 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
10385
10386 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
10387 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
10388
10389 void_type_node = make_node (VOID_TYPE);
10390 layout_type (void_type_node);
10391
10392 /* We are not going to have real types in C with less than byte alignment,
10393 so we might as well not have any types that claim to have it. */
10394 SET_TYPE_ALIGN (void_type_node, BITS_PER_UNIT);
10395 TYPE_USER_ALIGN (void_type_node) = 0;
10396
10397 void_node = make_node (VOID_CST);
10398 TREE_TYPE (void_node) = void_type_node;
10399
10400 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
10401 layout_type (TREE_TYPE (null_pointer_node));
10402
10403 ptr_type_node = build_pointer_type (void_type_node);
10404 const_ptr_type_node
10405 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
10406 for (unsigned i = 0;
10407 i < sizeof (builtin_structptr_types) / sizeof (builtin_structptr_type);
10408 ++i)
10409 builtin_structptr_types[i].node = builtin_structptr_types[i].base;
10410
10411 pointer_sized_int_node = build_nonstandard_integer_type (POINTER_SIZE, 1);
10412
10413 float_type_node = make_node (REAL_TYPE);
10414 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
10415 layout_type (float_type_node);
10416
10417 double_type_node = make_node (REAL_TYPE);
10418 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
10419 layout_type (double_type_node);
10420
10421 long_double_type_node = make_node (REAL_TYPE);
10422 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
10423 layout_type (long_double_type_node);
10424
10425 for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
10426 {
10427 int n = floatn_nx_types[i].n;
10428 bool extended = floatn_nx_types[i].extended;
10429 scalar_float_mode mode;
10430 if (!targetm.floatn_mode (n, extended).exists (&mode))
10431 continue;
10432 int precision = GET_MODE_PRECISION (mode);
10433 /* Work around the rs6000 KFmode having precision 113 not
10434 128. */
10435 const struct real_format *fmt = REAL_MODE_FORMAT (mode);
10436 gcc_assert (fmt->b == 2 && fmt->emin + fmt->emax == 3);
10437 int min_precision = fmt->p + ceil_log2 (fmt->emax - fmt->emin);
10438 if (!extended)
10439 gcc_assert (min_precision == n);
10440 if (precision < min_precision)
10441 precision = min_precision;
10442 FLOATN_NX_TYPE_NODE (i) = make_node (REAL_TYPE);
10443 TYPE_PRECISION (FLOATN_NX_TYPE_NODE (i)) = precision;
10444 layout_type (FLOATN_NX_TYPE_NODE (i));
10445 SET_TYPE_MODE (FLOATN_NX_TYPE_NODE (i), mode);
10446 }
10447
10448 float_ptr_type_node = build_pointer_type (float_type_node);
10449 double_ptr_type_node = build_pointer_type (double_type_node);
10450 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
10451 integer_ptr_type_node = build_pointer_type (integer_type_node);
10452
10453 /* Fixed size integer types. */
10454 uint16_type_node = make_or_reuse_type (16, 1);
10455 uint32_type_node = make_or_reuse_type (32, 1);
10456 uint64_type_node = make_or_reuse_type (64, 1);
10457 if (targetm.scalar_mode_supported_p (TImode))
10458 uint128_type_node = make_or_reuse_type (128, 1);
10459
10460 /* Decimal float types. */
10461 if (targetm.decimal_float_supported_p ())
10462 {
10463 dfloat32_type_node = make_node (REAL_TYPE);
10464 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
10465 SET_TYPE_MODE (dfloat32_type_node, SDmode);
10466 layout_type (dfloat32_type_node);
10467
10468 dfloat64_type_node = make_node (REAL_TYPE);
10469 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
10470 SET_TYPE_MODE (dfloat64_type_node, DDmode);
10471 layout_type (dfloat64_type_node);
10472
10473 dfloat128_type_node = make_node (REAL_TYPE);
10474 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
10475 SET_TYPE_MODE (dfloat128_type_node, TDmode);
10476 layout_type (dfloat128_type_node);
10477 }
10478
10479 complex_integer_type_node = build_complex_type (integer_type_node, true);
10480 complex_float_type_node = build_complex_type (float_type_node, true);
10481 complex_double_type_node = build_complex_type (double_type_node, true);
10482 complex_long_double_type_node = build_complex_type (long_double_type_node,
10483 true);
10484
10485 for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
10486 {
10487 if (FLOATN_NX_TYPE_NODE (i) != NULL_TREE)
10488 COMPLEX_FLOATN_NX_TYPE_NODE (i)
10489 = build_complex_type (FLOATN_NX_TYPE_NODE (i));
10490 }
10491
10492 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
10493 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
10494 sat_ ## KIND ## _type_node = \
10495 make_sat_signed_ ## KIND ## _type (SIZE); \
10496 sat_unsigned_ ## KIND ## _type_node = \
10497 make_sat_unsigned_ ## KIND ## _type (SIZE); \
10498 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
10499 unsigned_ ## KIND ## _type_node = \
10500 make_unsigned_ ## KIND ## _type (SIZE);
10501
10502 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
10503 sat_ ## WIDTH ## KIND ## _type_node = \
10504 make_sat_signed_ ## KIND ## _type (SIZE); \
10505 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
10506 make_sat_unsigned_ ## KIND ## _type (SIZE); \
10507 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
10508 unsigned_ ## WIDTH ## KIND ## _type_node = \
10509 make_unsigned_ ## KIND ## _type (SIZE);
10510
10511 /* Make fixed-point type nodes based on four different widths. */
10512 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
10513 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
10514 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
10515 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
10516 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
10517
10518 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
10519 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
10520 NAME ## _type_node = \
10521 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
10522 u ## NAME ## _type_node = \
10523 make_or_reuse_unsigned_ ## KIND ## _type \
10524 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
10525 sat_ ## NAME ## _type_node = \
10526 make_or_reuse_sat_signed_ ## KIND ## _type \
10527 (GET_MODE_BITSIZE (MODE ## mode)); \
10528 sat_u ## NAME ## _type_node = \
10529 make_or_reuse_sat_unsigned_ ## KIND ## _type \
10530 (GET_MODE_BITSIZE (U ## MODE ## mode));
10531
10532 /* Fixed-point type and mode nodes. */
10533 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
10534 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
10535 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
10536 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
10537 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
10538 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
10539 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
10540 MAKE_FIXED_MODE_NODE (accum, ha, HA)
10541 MAKE_FIXED_MODE_NODE (accum, sa, SA)
10542 MAKE_FIXED_MODE_NODE (accum, da, DA)
10543 MAKE_FIXED_MODE_NODE (accum, ta, TA)
10544
10545 {
10546 tree t = targetm.build_builtin_va_list ();
10547
10548 /* Many back-ends define record types without setting TYPE_NAME.
10549 If we copied the record type here, we'd keep the original
10550 record type without a name. This breaks name mangling. So,
10551 don't copy record types and let c_common_nodes_and_builtins()
10552 declare the type to be __builtin_va_list. */
10553 if (TREE_CODE (t) != RECORD_TYPE)
10554 t = build_variant_type_copy (t);
10555
10556 va_list_type_node = t;
10557 }
10558
10559 /* SCEV analyzer global shared trees. */
10560 chrec_dont_know = make_node (SCEV_NOT_KNOWN);
10561 TREE_TYPE (chrec_dont_know) = void_type_node;
10562 chrec_known = make_node (SCEV_KNOWN);
10563 TREE_TYPE (chrec_known) = void_type_node;
10564 }
10565
10566 /* Modify DECL for given flags.
10567 TM_PURE attribute is set only on types, so the function will modify
10568 DECL's type when ECF_TM_PURE is used. */
10569
10570 void
10571 set_call_expr_flags (tree decl, int flags)
10572 {
10573 if (flags & ECF_NOTHROW)
10574 TREE_NOTHROW (decl) = 1;
10575 if (flags & ECF_CONST)
10576 TREE_READONLY (decl) = 1;
10577 if (flags & ECF_PURE)
10578 DECL_PURE_P (decl) = 1;
10579 if (flags & ECF_LOOPING_CONST_OR_PURE)
10580 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
10581 if (flags & ECF_NOVOPS)
10582 DECL_IS_NOVOPS (decl) = 1;
10583 if (flags & ECF_NORETURN)
10584 TREE_THIS_VOLATILE (decl) = 1;
10585 if (flags & ECF_MALLOC)
10586 DECL_IS_MALLOC (decl) = 1;
10587 if (flags & ECF_RETURNS_TWICE)
10588 DECL_IS_RETURNS_TWICE (decl) = 1;
10589 if (flags & ECF_LEAF)
10590 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("leaf"),
10591 NULL, DECL_ATTRIBUTES (decl));
10592 if (flags & ECF_COLD)
10593 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("cold"),
10594 NULL, DECL_ATTRIBUTES (decl));
10595 if (flags & ECF_RET1)
10596 DECL_ATTRIBUTES (decl)
10597 = tree_cons (get_identifier ("fn spec"),
10598 build_tree_list (NULL_TREE, build_string (2, "1 ")),
10599 DECL_ATTRIBUTES (decl));
10600 if ((flags & ECF_TM_PURE) && flag_tm)
10601 apply_tm_attr (decl, get_identifier ("transaction_pure"));
10602 /* Looping const or pure is implied by noreturn.
10603 There is currently no way to declare looping const or looping pure alone. */
10604 gcc_assert (!(flags & ECF_LOOPING_CONST_OR_PURE)
10605 || ((flags & ECF_NORETURN) && (flags & (ECF_CONST | ECF_PURE))));
10606 }
10607
10608
10609 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
10610
10611 static void
10612 local_define_builtin (const char *name, tree type, enum built_in_function code,
10613 const char *library_name, int ecf_flags)
10614 {
10615 tree decl;
10616
10617 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
10618 library_name, NULL_TREE);
10619 set_call_expr_flags (decl, ecf_flags);
10620
10621 set_builtin_decl (code, decl, true);
10622 }
10623
10624 /* Call this function after instantiating all builtins that the language
10625 front end cares about. This will build the rest of the builtins
10626 and internal functions that are relied upon by the tree optimizers and
10627 the middle-end. */
10628
10629 void
10630 build_common_builtin_nodes (void)
10631 {
10632 tree tmp, ftype;
10633 int ecf_flags;
10634
10635 if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE)
10636 || !builtin_decl_explicit_p (BUILT_IN_ABORT))
10637 {
10638 ftype = build_function_type (void_type_node, void_list_node);
10639 if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE))
10640 local_define_builtin ("__builtin_unreachable", ftype,
10641 BUILT_IN_UNREACHABLE,
10642 "__builtin_unreachable",
10643 ECF_NOTHROW | ECF_LEAF | ECF_NORETURN
10644 | ECF_CONST | ECF_COLD);
10645 if (!builtin_decl_explicit_p (BUILT_IN_ABORT))
10646 local_define_builtin ("__builtin_abort", ftype, BUILT_IN_ABORT,
10647 "abort",
10648 ECF_LEAF | ECF_NORETURN | ECF_CONST | ECF_COLD);
10649 }
10650
10651 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY)
10652 || !builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
10653 {
10654 ftype = build_function_type_list (ptr_type_node,
10655 ptr_type_node, const_ptr_type_node,
10656 size_type_node, NULL_TREE);
10657
10658 if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY))
10659 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
10660 "memcpy", ECF_NOTHROW | ECF_LEAF);
10661 if (!builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
10662 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
10663 "memmove", ECF_NOTHROW | ECF_LEAF);
10664 }
10665
10666 if (!builtin_decl_explicit_p (BUILT_IN_MEMCMP))
10667 {
10668 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
10669 const_ptr_type_node, size_type_node,
10670 NULL_TREE);
10671 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
10672 "memcmp", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10673 }
10674
10675 if (!builtin_decl_explicit_p (BUILT_IN_MEMSET))
10676 {
10677 ftype = build_function_type_list (ptr_type_node,
10678 ptr_type_node, integer_type_node,
10679 size_type_node, NULL_TREE);
10680 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
10681 "memset", ECF_NOTHROW | ECF_LEAF);
10682 }
10683
10684 /* If we're checking the stack, `alloca' can throw. */
10685 const int alloca_flags
10686 = ECF_MALLOC | ECF_LEAF | (flag_stack_check ? 0 : ECF_NOTHROW);
10687
10688 if (!builtin_decl_explicit_p (BUILT_IN_ALLOCA))
10689 {
10690 ftype = build_function_type_list (ptr_type_node,
10691 size_type_node, NULL_TREE);
10692 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
10693 "alloca", alloca_flags);
10694 }
10695
10696 ftype = build_function_type_list (ptr_type_node, size_type_node,
10697 size_type_node, NULL_TREE);
10698 local_define_builtin ("__builtin_alloca_with_align", ftype,
10699 BUILT_IN_ALLOCA_WITH_ALIGN,
10700 "__builtin_alloca_with_align",
10701 alloca_flags);
10702
10703 ftype = build_function_type_list (ptr_type_node, size_type_node,
10704 size_type_node, size_type_node, NULL_TREE);
10705 local_define_builtin ("__builtin_alloca_with_align_and_max", ftype,
10706 BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX,
10707 "__builtin_alloca_with_align_and_max",
10708 alloca_flags);
10709
10710 ftype = build_function_type_list (void_type_node,
10711 ptr_type_node, ptr_type_node,
10712 ptr_type_node, NULL_TREE);
10713 local_define_builtin ("__builtin_init_trampoline", ftype,
10714 BUILT_IN_INIT_TRAMPOLINE,
10715 "__builtin_init_trampoline", ECF_NOTHROW | ECF_LEAF);
10716 local_define_builtin ("__builtin_init_heap_trampoline", ftype,
10717 BUILT_IN_INIT_HEAP_TRAMPOLINE,
10718 "__builtin_init_heap_trampoline",
10719 ECF_NOTHROW | ECF_LEAF);
10720 local_define_builtin ("__builtin_init_descriptor", ftype,
10721 BUILT_IN_INIT_DESCRIPTOR,
10722 "__builtin_init_descriptor", ECF_NOTHROW | ECF_LEAF);
10723
10724 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
10725 local_define_builtin ("__builtin_adjust_trampoline", ftype,
10726 BUILT_IN_ADJUST_TRAMPOLINE,
10727 "__builtin_adjust_trampoline",
10728 ECF_CONST | ECF_NOTHROW);
10729 local_define_builtin ("__builtin_adjust_descriptor", ftype,
10730 BUILT_IN_ADJUST_DESCRIPTOR,
10731 "__builtin_adjust_descriptor",
10732 ECF_CONST | ECF_NOTHROW);
10733
10734 ftype = build_function_type_list (void_type_node,
10735 ptr_type_node, ptr_type_node, NULL_TREE);
10736 if (!builtin_decl_explicit_p (BUILT_IN_CLEAR_CACHE))
10737 local_define_builtin ("__builtin___clear_cache", ftype,
10738 BUILT_IN_CLEAR_CACHE,
10739 "__clear_cache",
10740 ECF_NOTHROW);
10741
10742 local_define_builtin ("__builtin_nonlocal_goto", ftype,
10743 BUILT_IN_NONLOCAL_GOTO,
10744 "__builtin_nonlocal_goto",
10745 ECF_NORETURN | ECF_NOTHROW);
10746
10747 ftype = build_function_type_list (void_type_node,
10748 ptr_type_node, ptr_type_node, NULL_TREE);
10749 local_define_builtin ("__builtin_setjmp_setup", ftype,
10750 BUILT_IN_SETJMP_SETUP,
10751 "__builtin_setjmp_setup", ECF_NOTHROW);
10752
10753 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10754 local_define_builtin ("__builtin_setjmp_receiver", ftype,
10755 BUILT_IN_SETJMP_RECEIVER,
10756 "__builtin_setjmp_receiver", ECF_NOTHROW | ECF_LEAF);
10757
10758 ftype = build_function_type_list (ptr_type_node, NULL_TREE);
10759 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
10760 "__builtin_stack_save", ECF_NOTHROW | ECF_LEAF);
10761
10762 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10763 local_define_builtin ("__builtin_stack_restore", ftype,
10764 BUILT_IN_STACK_RESTORE,
10765 "__builtin_stack_restore", ECF_NOTHROW | ECF_LEAF);
10766
10767 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
10768 const_ptr_type_node, size_type_node,
10769 NULL_TREE);
10770 local_define_builtin ("__builtin_memcmp_eq", ftype, BUILT_IN_MEMCMP_EQ,
10771 "__builtin_memcmp_eq",
10772 ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10773
10774 local_define_builtin ("__builtin_strncmp_eq", ftype, BUILT_IN_STRNCMP_EQ,
10775 "__builtin_strncmp_eq",
10776 ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10777
10778 local_define_builtin ("__builtin_strcmp_eq", ftype, BUILT_IN_STRCMP_EQ,
10779 "__builtin_strcmp_eq",
10780 ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10781
10782 /* If there's a possibility that we might use the ARM EABI, build the
10783 alternate __cxa_end_cleanup node used to resume from C++. */
10784 if (targetm.arm_eabi_unwinder)
10785 {
10786 ftype = build_function_type_list (void_type_node, NULL_TREE);
10787 local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
10788 BUILT_IN_CXA_END_CLEANUP,
10789 "__cxa_end_cleanup", ECF_NORETURN | ECF_LEAF);
10790 }
10791
10792 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
10793 local_define_builtin ("__builtin_unwind_resume", ftype,
10794 BUILT_IN_UNWIND_RESUME,
10795 ((targetm_common.except_unwind_info (&global_options)
10796 == UI_SJLJ)
10797 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
10798 ECF_NORETURN);
10799
10800 if (builtin_decl_explicit (BUILT_IN_RETURN_ADDRESS) == NULL_TREE)
10801 {
10802 ftype = build_function_type_list (ptr_type_node, integer_type_node,
10803 NULL_TREE);
10804 local_define_builtin ("__builtin_return_address", ftype,
10805 BUILT_IN_RETURN_ADDRESS,
10806 "__builtin_return_address",
10807 ECF_NOTHROW);
10808 }
10809
10810 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER)
10811 || !builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10812 {
10813 ftype = build_function_type_list (void_type_node, ptr_type_node,
10814 ptr_type_node, NULL_TREE);
10815 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER))
10816 local_define_builtin ("__cyg_profile_func_enter", ftype,
10817 BUILT_IN_PROFILE_FUNC_ENTER,
10818 "__cyg_profile_func_enter", 0);
10819 if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
10820 local_define_builtin ("__cyg_profile_func_exit", ftype,
10821 BUILT_IN_PROFILE_FUNC_EXIT,
10822 "__cyg_profile_func_exit", 0);
10823 }
10824
10825 /* The exception object and filter values from the runtime. The argument
10826 must be zero before exception lowering, i.e. from the front end. After
10827 exception lowering, it will be the region number for the exception
10828 landing pad. These functions are PURE instead of CONST to prevent
10829 them from being hoisted past the exception edge that will initialize
10830 its value in the landing pad. */
10831 ftype = build_function_type_list (ptr_type_node,
10832 integer_type_node, NULL_TREE);
10833 ecf_flags = ECF_PURE | ECF_NOTHROW | ECF_LEAF;
10834 /* Only use TM_PURE if we have TM language support. */
10835 if (builtin_decl_explicit_p (BUILT_IN_TM_LOAD_1))
10836 ecf_flags |= ECF_TM_PURE;
10837 local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
10838 "__builtin_eh_pointer", ecf_flags);
10839
10840 tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
10841 ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE);
10842 local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
10843 "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
10844
10845 ftype = build_function_type_list (void_type_node,
10846 integer_type_node, integer_type_node,
10847 NULL_TREE);
10848 local_define_builtin ("__builtin_eh_copy_values", ftype,
10849 BUILT_IN_EH_COPY_VALUES,
10850 "__builtin_eh_copy_values", ECF_NOTHROW);
10851
10852 /* Complex multiplication and division. These are handled as builtins
10853 rather than optabs because emit_library_call_value doesn't support
10854 complex. Further, we can do slightly better with folding these
10855 beasties if the real and complex parts of the arguments are separate. */
10856 {
10857 int mode;
10858
10859 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
10860 {
10861 char mode_name_buf[4], *q;
10862 const char *p;
10863 enum built_in_function mcode, dcode;
10864 tree type, inner_type;
10865 const char *prefix = "__";
10866
10867 if (targetm.libfunc_gnu_prefix)
10868 prefix = "__gnu_";
10869
10870 type = lang_hooks.types.type_for_mode ((machine_mode) mode, 0);
10871 if (type == NULL)
10872 continue;
10873 inner_type = TREE_TYPE (type);
10874
10875 ftype = build_function_type_list (type, inner_type, inner_type,
10876 inner_type, inner_type, NULL_TREE);
10877
10878 mcode = ((enum built_in_function)
10879 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10880 dcode = ((enum built_in_function)
10881 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
10882
10883 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
10884 *q = TOLOWER (*p);
10885 *q = '\0';
10886
10887 /* For -ftrapping-math these should throw from a former
10888 -fnon-call-exception stmt. */
10889 built_in_names[mcode] = concat (prefix, "mul", mode_name_buf, "3",
10890 NULL);
10891 local_define_builtin (built_in_names[mcode], ftype, mcode,
10892 built_in_names[mcode],
10893 ECF_CONST | ECF_LEAF);
10894
10895 built_in_names[dcode] = concat (prefix, "div", mode_name_buf, "3",
10896 NULL);
10897 local_define_builtin (built_in_names[dcode], ftype, dcode,
10898 built_in_names[dcode],
10899 ECF_CONST | ECF_LEAF);
10900 }
10901 }
10902
10903 init_internal_fns ();
10904 }
10905
10906 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
10907 better way.
10908
10909 If we requested a pointer to a vector, build up the pointers that
10910 we stripped off while looking for the inner type. Similarly for
10911 return values from functions.
10912
10913 The argument TYPE is the top of the chain, and BOTTOM is the
10914 new type which we will point to. */
10915
10916 tree
10917 reconstruct_complex_type (tree type, tree bottom)
10918 {
10919 tree inner, outer;
10920
10921 if (TREE_CODE (type) == POINTER_TYPE)
10922 {
10923 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10924 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
10925 TYPE_REF_CAN_ALIAS_ALL (type));
10926 }
10927 else if (TREE_CODE (type) == REFERENCE_TYPE)
10928 {
10929 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10930 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
10931 TYPE_REF_CAN_ALIAS_ALL (type));
10932 }
10933 else if (TREE_CODE (type) == ARRAY_TYPE)
10934 {
10935 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10936 outer = build_array_type (inner, TYPE_DOMAIN (type));
10937 }
10938 else if (TREE_CODE (type) == FUNCTION_TYPE)
10939 {
10940 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10941 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
10942 }
10943 else if (TREE_CODE (type) == METHOD_TYPE)
10944 {
10945 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10946 /* The build_method_type_directly() routine prepends 'this' to argument list,
10947 so we must compensate by getting rid of it. */
10948 outer
10949 = build_method_type_directly
10950 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
10951 inner,
10952 TREE_CHAIN (TYPE_ARG_TYPES (type)));
10953 }
10954 else if (TREE_CODE (type) == OFFSET_TYPE)
10955 {
10956 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
10957 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
10958 }
10959 else
10960 return bottom;
10961
10962 return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
10963 TYPE_QUALS (type));
10964 }
10965
10966 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
10967 the inner type. */
10968 tree
10969 build_vector_type_for_mode (tree innertype, machine_mode mode)
10970 {
10971 poly_int64 nunits;
10972 unsigned int bitsize;
10973
10974 switch (GET_MODE_CLASS (mode))
10975 {
10976 case MODE_VECTOR_BOOL:
10977 case MODE_VECTOR_INT:
10978 case MODE_VECTOR_FLOAT:
10979 case MODE_VECTOR_FRACT:
10980 case MODE_VECTOR_UFRACT:
10981 case MODE_VECTOR_ACCUM:
10982 case MODE_VECTOR_UACCUM:
10983 nunits = GET_MODE_NUNITS (mode);
10984 break;
10985
10986 case MODE_INT:
10987 /* Check that there are no leftover bits. */
10988 bitsize = GET_MODE_BITSIZE (as_a <scalar_int_mode> (mode));
10989 gcc_assert (bitsize % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
10990 nunits = bitsize / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
10991 break;
10992
10993 default:
10994 gcc_unreachable ();
10995 }
10996
10997 return make_vector_type (innertype, nunits, mode);
10998 }
10999
11000 /* Similarly, but takes the inner type and number of units, which must be
11001 a power of two. */
11002
11003 tree
11004 build_vector_type (tree innertype, poly_int64 nunits)
11005 {
11006 return make_vector_type (innertype, nunits, VOIDmode);
11007 }
11008
11009 /* Build a truth vector with NUNITS units, giving it mode MASK_MODE. */
11010
11011 tree
11012 build_truth_vector_type_for_mode (poly_uint64 nunits, machine_mode mask_mode)
11013 {
11014 gcc_assert (mask_mode != BLKmode);
11015
11016 unsigned HOST_WIDE_INT esize;
11017 if (VECTOR_MODE_P (mask_mode))
11018 {
11019 poly_uint64 vsize = GET_MODE_BITSIZE (mask_mode);
11020 esize = vector_element_size (vsize, nunits);
11021 }
11022 else
11023 esize = 1;
11024
11025 tree bool_type = build_nonstandard_boolean_type (esize);
11026
11027 return make_vector_type (bool_type, nunits, mask_mode);
11028 }
11029
11030 /* Build a vector type that holds one boolean result for each element of
11031 vector type VECTYPE. The public interface for this operation is
11032 truth_type_for. */
11033
11034 static tree
11035 build_truth_vector_type_for (tree vectype)
11036 {
11037 machine_mode vector_mode = TYPE_MODE (vectype);
11038 poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype);
11039
11040 machine_mode mask_mode;
11041 if (VECTOR_MODE_P (vector_mode)
11042 && targetm.vectorize.get_mask_mode (vector_mode).exists (&mask_mode))
11043 return build_truth_vector_type_for_mode (nunits, mask_mode);
11044
11045 poly_uint64 vsize = tree_to_poly_uint64 (TYPE_SIZE (vectype));
11046 unsigned HOST_WIDE_INT esize = vector_element_size (vsize, nunits);
11047 tree bool_type = build_nonstandard_boolean_type (esize);
11048
11049 return make_vector_type (bool_type, nunits, VOIDmode);
11050 }
11051
11052 /* Like build_vector_type, but builds a variant type with TYPE_VECTOR_OPAQUE
11053 set. */
11054
11055 tree
11056 build_opaque_vector_type (tree innertype, poly_int64 nunits)
11057 {
11058 tree t = make_vector_type (innertype, nunits, VOIDmode);
11059 tree cand;
11060 /* We always build the non-opaque variant before the opaque one,
11061 so if it already exists, it is TYPE_NEXT_VARIANT of this one. */
11062 cand = TYPE_NEXT_VARIANT (t);
11063 if (cand
11064 && TYPE_VECTOR_OPAQUE (cand)
11065 && check_qualified_type (cand, t, TYPE_QUALS (t)))
11066 return cand;
11067 /* Othewise build a variant type and make sure to queue it after
11068 the non-opaque type. */
11069 cand = build_distinct_type_copy (t);
11070 TYPE_VECTOR_OPAQUE (cand) = true;
11071 TYPE_CANONICAL (cand) = TYPE_CANONICAL (t);
11072 TYPE_NEXT_VARIANT (cand) = TYPE_NEXT_VARIANT (t);
11073 TYPE_NEXT_VARIANT (t) = cand;
11074 TYPE_MAIN_VARIANT (cand) = TYPE_MAIN_VARIANT (t);
11075 return cand;
11076 }
11077
11078 /* Return the value of element I of VECTOR_CST T as a wide_int. */
11079
11080 wide_int
11081 vector_cst_int_elt (const_tree t, unsigned int i)
11082 {
11083 /* First handle elements that are directly encoded. */
11084 unsigned int encoded_nelts = vector_cst_encoded_nelts (t);
11085 if (i < encoded_nelts)
11086 return wi::to_wide (VECTOR_CST_ENCODED_ELT (t, i));
11087
11088 /* Identify the pattern that contains element I and work out the index of
11089 the last encoded element for that pattern. */
11090 unsigned int npatterns = VECTOR_CST_NPATTERNS (t);
11091 unsigned int pattern = i % npatterns;
11092 unsigned int count = i / npatterns;
11093 unsigned int final_i = encoded_nelts - npatterns + pattern;
11094
11095 /* If there are no steps, the final encoded value is the right one. */
11096 if (!VECTOR_CST_STEPPED_P (t))
11097 return wi::to_wide (VECTOR_CST_ENCODED_ELT (t, final_i));
11098
11099 /* Otherwise work out the value from the last two encoded elements. */
11100 tree v1 = VECTOR_CST_ENCODED_ELT (t, final_i - npatterns);
11101 tree v2 = VECTOR_CST_ENCODED_ELT (t, final_i);
11102 wide_int diff = wi::to_wide (v2) - wi::to_wide (v1);
11103 return wi::to_wide (v2) + (count - 2) * diff;
11104 }
11105
11106 /* Return the value of element I of VECTOR_CST T. */
11107
11108 tree
11109 vector_cst_elt (const_tree t, unsigned int i)
11110 {
11111 /* First handle elements that are directly encoded. */
11112 unsigned int encoded_nelts = vector_cst_encoded_nelts (t);
11113 if (i < encoded_nelts)
11114 return VECTOR_CST_ENCODED_ELT (t, i);
11115
11116 /* If there are no steps, the final encoded value is the right one. */
11117 if (!VECTOR_CST_STEPPED_P (t))
11118 {
11119 /* Identify the pattern that contains element I and work out the index of
11120 the last encoded element for that pattern. */
11121 unsigned int npatterns = VECTOR_CST_NPATTERNS (t);
11122 unsigned int pattern = i % npatterns;
11123 unsigned int final_i = encoded_nelts - npatterns + pattern;
11124 return VECTOR_CST_ENCODED_ELT (t, final_i);
11125 }
11126
11127 /* Otherwise work out the value from the last two encoded elements. */
11128 return wide_int_to_tree (TREE_TYPE (TREE_TYPE (t)),
11129 vector_cst_int_elt (t, i));
11130 }
11131
11132 /* Given an initializer INIT, return TRUE if INIT is zero or some
11133 aggregate of zeros. Otherwise return FALSE. If NONZERO is not
11134 null, set *NONZERO if and only if INIT is known not to be all
11135 zeros. The combination of return value of false and *NONZERO
11136 false implies that INIT may but need not be all zeros. Other
11137 combinations indicate definitive answers. */
11138
11139 bool
11140 initializer_zerop (const_tree init, bool *nonzero /* = NULL */)
11141 {
11142 bool dummy;
11143 if (!nonzero)
11144 nonzero = &dummy;
11145
11146 /* Conservatively clear NONZERO and set it only if INIT is definitely
11147 not all zero. */
11148 *nonzero = false;
11149
11150 STRIP_NOPS (init);
11151
11152 unsigned HOST_WIDE_INT off = 0;
11153
11154 switch (TREE_CODE (init))
11155 {
11156 case INTEGER_CST:
11157 if (integer_zerop (init))
11158 return true;
11159
11160 *nonzero = true;
11161 return false;
11162
11163 case REAL_CST:
11164 /* ??? Note that this is not correct for C4X float formats. There,
11165 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
11166 negative exponent. */
11167 if (real_zerop (init)
11168 && !REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init)))
11169 return true;
11170
11171 *nonzero = true;
11172 return false;
11173
11174 case FIXED_CST:
11175 if (fixed_zerop (init))
11176 return true;
11177
11178 *nonzero = true;
11179 return false;
11180
11181 case COMPLEX_CST:
11182 if (integer_zerop (init)
11183 || (real_zerop (init)
11184 && !REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
11185 && !REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init)))))
11186 return true;
11187
11188 *nonzero = true;
11189 return false;
11190
11191 case VECTOR_CST:
11192 if (VECTOR_CST_NPATTERNS (init) == 1
11193 && VECTOR_CST_DUPLICATE_P (init)
11194 && initializer_zerop (VECTOR_CST_ENCODED_ELT (init, 0)))
11195 return true;
11196
11197 *nonzero = true;
11198 return false;
11199
11200 case CONSTRUCTOR:
11201 {
11202 if (TREE_CLOBBER_P (init))
11203 return false;
11204
11205 unsigned HOST_WIDE_INT idx;
11206 tree elt;
11207
11208 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
11209 if (!initializer_zerop (elt, nonzero))
11210 return false;
11211
11212 return true;
11213 }
11214
11215 case MEM_REF:
11216 {
11217 tree arg = TREE_OPERAND (init, 0);
11218 if (TREE_CODE (arg) != ADDR_EXPR)
11219 return false;
11220 tree offset = TREE_OPERAND (init, 1);
11221 if (TREE_CODE (offset) != INTEGER_CST
11222 || !tree_fits_uhwi_p (offset))
11223 return false;
11224 off = tree_to_uhwi (offset);
11225 if (INT_MAX < off)
11226 return false;
11227 arg = TREE_OPERAND (arg, 0);
11228 if (TREE_CODE (arg) != STRING_CST)
11229 return false;
11230 init = arg;
11231 }
11232 /* Fall through. */
11233
11234 case STRING_CST:
11235 {
11236 gcc_assert (off <= INT_MAX);
11237
11238 int i = off;
11239 int n = TREE_STRING_LENGTH (init);
11240 if (n <= i)
11241 return false;
11242
11243 /* We need to loop through all elements to handle cases like
11244 "\0" and "\0foobar". */
11245 for (i = 0; i < n; ++i)
11246 if (TREE_STRING_POINTER (init)[i] != '\0')
11247 {
11248 *nonzero = true;
11249 return false;
11250 }
11251
11252 return true;
11253 }
11254
11255 default:
11256 return false;
11257 }
11258 }
11259
11260 /* Return true if EXPR is an initializer expression in which every element
11261 is a constant that is numerically equal to 0 or 1. The elements do not
11262 need to be equal to each other. */
11263
11264 bool
11265 initializer_each_zero_or_onep (const_tree expr)
11266 {
11267 STRIP_ANY_LOCATION_WRAPPER (expr);
11268
11269 switch (TREE_CODE (expr))
11270 {
11271 case INTEGER_CST:
11272 return integer_zerop (expr) || integer_onep (expr);
11273
11274 case REAL_CST:
11275 return real_zerop (expr) || real_onep (expr);
11276
11277 case VECTOR_CST:
11278 {
11279 unsigned HOST_WIDE_INT nelts = vector_cst_encoded_nelts (expr);
11280 if (VECTOR_CST_STEPPED_P (expr)
11281 && !TYPE_VECTOR_SUBPARTS (TREE_TYPE (expr)).is_constant (&nelts))
11282 return false;
11283
11284 for (unsigned int i = 0; i < nelts; ++i)
11285 {
11286 tree elt = vector_cst_elt (expr, i);
11287 if (!initializer_each_zero_or_onep (elt))
11288 return false;
11289 }
11290
11291 return true;
11292 }
11293
11294 default:
11295 return false;
11296 }
11297 }
11298
11299 /* Check if vector VEC consists of all the equal elements and
11300 that the number of elements corresponds to the type of VEC.
11301 The function returns first element of the vector
11302 or NULL_TREE if the vector is not uniform. */
11303 tree
11304 uniform_vector_p (const_tree vec)
11305 {
11306 tree first, t;
11307 unsigned HOST_WIDE_INT i, nelts;
11308
11309 if (vec == NULL_TREE)
11310 return NULL_TREE;
11311
11312 gcc_assert (VECTOR_TYPE_P (TREE_TYPE (vec)));
11313
11314 if (TREE_CODE (vec) == VEC_DUPLICATE_EXPR)
11315 return TREE_OPERAND (vec, 0);
11316
11317 else if (TREE_CODE (vec) == VECTOR_CST)
11318 {
11319 if (VECTOR_CST_NPATTERNS (vec) == 1 && VECTOR_CST_DUPLICATE_P (vec))
11320 return VECTOR_CST_ENCODED_ELT (vec, 0);
11321 return NULL_TREE;
11322 }
11323
11324 else if (TREE_CODE (vec) == CONSTRUCTOR
11325 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (vec)).is_constant (&nelts))
11326 {
11327 first = error_mark_node;
11328
11329 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (vec), i, t)
11330 {
11331 if (i == 0)
11332 {
11333 first = t;
11334 continue;
11335 }
11336 if (!operand_equal_p (first, t, 0))
11337 return NULL_TREE;
11338 }
11339 if (i != nelts)
11340 return NULL_TREE;
11341
11342 return first;
11343 }
11344
11345 return NULL_TREE;
11346 }
11347
11348 /* If the argument is INTEGER_CST, return it. If the argument is vector
11349 with all elements the same INTEGER_CST, return that INTEGER_CST. Otherwise
11350 return NULL_TREE.
11351 Look through location wrappers. */
11352
11353 tree
11354 uniform_integer_cst_p (tree t)
11355 {
11356 STRIP_ANY_LOCATION_WRAPPER (t);
11357
11358 if (TREE_CODE (t) == INTEGER_CST)
11359 return t;
11360
11361 if (VECTOR_TYPE_P (TREE_TYPE (t)))
11362 {
11363 t = uniform_vector_p (t);
11364 if (t && TREE_CODE (t) == INTEGER_CST)
11365 return t;
11366 }
11367
11368 return NULL_TREE;
11369 }
11370
11371 /* If VECTOR_CST T has a single nonzero element, return the index of that
11372 element, otherwise return -1. */
11373
11374 int
11375 single_nonzero_element (const_tree t)
11376 {
11377 unsigned HOST_WIDE_INT nelts;
11378 unsigned int repeat_nelts;
11379 if (VECTOR_CST_NELTS (t).is_constant (&nelts))
11380 repeat_nelts = nelts;
11381 else if (VECTOR_CST_NELTS_PER_PATTERN (t) == 2)
11382 {
11383 nelts = vector_cst_encoded_nelts (t);
11384 repeat_nelts = VECTOR_CST_NPATTERNS (t);
11385 }
11386 else
11387 return -1;
11388
11389 int res = -1;
11390 for (unsigned int i = 0; i < nelts; ++i)
11391 {
11392 tree elt = vector_cst_elt (t, i);
11393 if (!integer_zerop (elt) && !real_zerop (elt))
11394 {
11395 if (res >= 0 || i >= repeat_nelts)
11396 return -1;
11397 res = i;
11398 }
11399 }
11400 return res;
11401 }
11402
11403 /* Build an empty statement at location LOC. */
11404
11405 tree
11406 build_empty_stmt (location_t loc)
11407 {
11408 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
11409 SET_EXPR_LOCATION (t, loc);
11410 return t;
11411 }
11412
11413
11414 /* Build an OpenMP clause with code CODE. LOC is the location of the
11415 clause. */
11416
11417 tree
11418 build_omp_clause (location_t loc, enum omp_clause_code code)
11419 {
11420 tree t;
11421 int size, length;
11422
11423 length = omp_clause_num_ops[code];
11424 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
11425
11426 record_node_allocation_statistics (OMP_CLAUSE, size);
11427
11428 t = (tree) ggc_internal_alloc (size);
11429 memset (t, 0, size);
11430 TREE_SET_CODE (t, OMP_CLAUSE);
11431 OMP_CLAUSE_SET_CODE (t, code);
11432 OMP_CLAUSE_LOCATION (t) = loc;
11433
11434 return t;
11435 }
11436
11437 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
11438 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
11439 Except for the CODE and operand count field, other storage for the
11440 object is initialized to zeros. */
11441
11442 tree
11443 build_vl_exp (enum tree_code code, int len MEM_STAT_DECL)
11444 {
11445 tree t;
11446 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
11447
11448 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
11449 gcc_assert (len >= 1);
11450
11451 record_node_allocation_statistics (code, length);
11452
11453 t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
11454
11455 TREE_SET_CODE (t, code);
11456
11457 /* Can't use TREE_OPERAND to store the length because if checking is
11458 enabled, it will try to check the length before we store it. :-P */
11459 t->exp.operands[0] = build_int_cst (sizetype, len);
11460
11461 return t;
11462 }
11463
11464 /* Helper function for build_call_* functions; build a CALL_EXPR with
11465 indicated RETURN_TYPE, FN, and NARGS, but do not initialize any of
11466 the argument slots. */
11467
11468 static tree
11469 build_call_1 (tree return_type, tree fn, int nargs)
11470 {
11471 tree t;
11472
11473 t = build_vl_exp (CALL_EXPR, nargs + 3);
11474 TREE_TYPE (t) = return_type;
11475 CALL_EXPR_FN (t) = fn;
11476 CALL_EXPR_STATIC_CHAIN (t) = NULL;
11477
11478 return t;
11479 }
11480
11481 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
11482 FN and a null static chain slot. NARGS is the number of call arguments
11483 which are specified as "..." arguments. */
11484
11485 tree
11486 build_call_nary (tree return_type, tree fn, int nargs, ...)
11487 {
11488 tree ret;
11489 va_list args;
11490 va_start (args, nargs);
11491 ret = build_call_valist (return_type, fn, nargs, args);
11492 va_end (args);
11493 return ret;
11494 }
11495
11496 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
11497 FN and a null static chain slot. NARGS is the number of call arguments
11498 which are specified as a va_list ARGS. */
11499
11500 tree
11501 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
11502 {
11503 tree t;
11504 int i;
11505
11506 t = build_call_1 (return_type, fn, nargs);
11507 for (i = 0; i < nargs; i++)
11508 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
11509 process_call_operands (t);
11510 return t;
11511 }
11512
11513 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
11514 FN and a null static chain slot. NARGS is the number of call arguments
11515 which are specified as a tree array ARGS. */
11516
11517 tree
11518 build_call_array_loc (location_t loc, tree return_type, tree fn,
11519 int nargs, const tree *args)
11520 {
11521 tree t;
11522 int i;
11523
11524 t = build_call_1 (return_type, fn, nargs);
11525 for (i = 0; i < nargs; i++)
11526 CALL_EXPR_ARG (t, i) = args[i];
11527 process_call_operands (t);
11528 SET_EXPR_LOCATION (t, loc);
11529 return t;
11530 }
11531
11532 /* Like build_call_array, but takes a vec. */
11533
11534 tree
11535 build_call_vec (tree return_type, tree fn, vec<tree, va_gc> *args)
11536 {
11537 tree ret, t;
11538 unsigned int ix;
11539
11540 ret = build_call_1 (return_type, fn, vec_safe_length (args));
11541 FOR_EACH_VEC_SAFE_ELT (args, ix, t)
11542 CALL_EXPR_ARG (ret, ix) = t;
11543 process_call_operands (ret);
11544 return ret;
11545 }
11546
11547 /* Conveniently construct a function call expression. FNDECL names the
11548 function to be called and N arguments are passed in the array
11549 ARGARRAY. */
11550
11551 tree
11552 build_call_expr_loc_array (location_t loc, tree fndecl, int n, tree *argarray)
11553 {
11554 tree fntype = TREE_TYPE (fndecl);
11555 tree fn = build1 (ADDR_EXPR, build_pointer_type (fntype), fndecl);
11556
11557 return fold_build_call_array_loc (loc, TREE_TYPE (fntype), fn, n, argarray);
11558 }
11559
11560 /* Conveniently construct a function call expression. FNDECL names the
11561 function to be called and the arguments are passed in the vector
11562 VEC. */
11563
11564 tree
11565 build_call_expr_loc_vec (location_t loc, tree fndecl, vec<tree, va_gc> *vec)
11566 {
11567 return build_call_expr_loc_array (loc, fndecl, vec_safe_length (vec),
11568 vec_safe_address (vec));
11569 }
11570
11571
11572 /* Conveniently construct a function call expression. FNDECL names the
11573 function to be called, N is the number of arguments, and the "..."
11574 parameters are the argument expressions. */
11575
11576 tree
11577 build_call_expr_loc (location_t loc, tree fndecl, int n, ...)
11578 {
11579 va_list ap;
11580 tree *argarray = XALLOCAVEC (tree, n);
11581 int i;
11582
11583 va_start (ap, n);
11584 for (i = 0; i < n; i++)
11585 argarray[i] = va_arg (ap, tree);
11586 va_end (ap);
11587 return build_call_expr_loc_array (loc, fndecl, n, argarray);
11588 }
11589
11590 /* Like build_call_expr_loc (UNKNOWN_LOCATION, ...). Duplicated because
11591 varargs macros aren't supported by all bootstrap compilers. */
11592
11593 tree
11594 build_call_expr (tree fndecl, int n, ...)
11595 {
11596 va_list ap;
11597 tree *argarray = XALLOCAVEC (tree, n);
11598 int i;
11599
11600 va_start (ap, n);
11601 for (i = 0; i < n; i++)
11602 argarray[i] = va_arg (ap, tree);
11603 va_end (ap);
11604 return build_call_expr_loc_array (UNKNOWN_LOCATION, fndecl, n, argarray);
11605 }
11606
11607 /* Build an internal call to IFN, with arguments ARGS[0:N-1] and with return
11608 type TYPE. This is just like CALL_EXPR, except its CALL_EXPR_FN is NULL.
11609 It will get gimplified later into an ordinary internal function. */
11610
11611 tree
11612 build_call_expr_internal_loc_array (location_t loc, internal_fn ifn,
11613 tree type, int n, const tree *args)
11614 {
11615 tree t = build_call_1 (type, NULL_TREE, n);
11616 for (int i = 0; i < n; ++i)
11617 CALL_EXPR_ARG (t, i) = args[i];
11618 SET_EXPR_LOCATION (t, loc);
11619 CALL_EXPR_IFN (t) = ifn;
11620 process_call_operands (t);
11621 return t;
11622 }
11623
11624 /* Build internal call expression. This is just like CALL_EXPR, except
11625 its CALL_EXPR_FN is NULL. It will get gimplified later into ordinary
11626 internal function. */
11627
11628 tree
11629 build_call_expr_internal_loc (location_t loc, enum internal_fn ifn,
11630 tree type, int n, ...)
11631 {
11632 va_list ap;
11633 tree *argarray = XALLOCAVEC (tree, n);
11634 int i;
11635
11636 va_start (ap, n);
11637 for (i = 0; i < n; i++)
11638 argarray[i] = va_arg (ap, tree);
11639 va_end (ap);
11640 return build_call_expr_internal_loc_array (loc, ifn, type, n, argarray);
11641 }
11642
11643 /* Return a function call to FN, if the target is guaranteed to support it,
11644 or null otherwise.
11645
11646 N is the number of arguments, passed in the "...", and TYPE is the
11647 type of the return value. */
11648
11649 tree
11650 maybe_build_call_expr_loc (location_t loc, combined_fn fn, tree type,
11651 int n, ...)
11652 {
11653 va_list ap;
11654 tree *argarray = XALLOCAVEC (tree, n);
11655 int i;
11656
11657 va_start (ap, n);
11658 for (i = 0; i < n; i++)
11659 argarray[i] = va_arg (ap, tree);
11660 va_end (ap);
11661 if (internal_fn_p (fn))
11662 {
11663 internal_fn ifn = as_internal_fn (fn);
11664 if (direct_internal_fn_p (ifn))
11665 {
11666 tree_pair types = direct_internal_fn_types (ifn, type, argarray);
11667 if (!direct_internal_fn_supported_p (ifn, types,
11668 OPTIMIZE_FOR_BOTH))
11669 return NULL_TREE;
11670 }
11671 return build_call_expr_internal_loc_array (loc, ifn, type, n, argarray);
11672 }
11673 else
11674 {
11675 tree fndecl = builtin_decl_implicit (as_builtin_fn (fn));
11676 if (!fndecl)
11677 return NULL_TREE;
11678 return build_call_expr_loc_array (loc, fndecl, n, argarray);
11679 }
11680 }
11681
11682 /* Return a function call to the appropriate builtin alloca variant.
11683
11684 SIZE is the size to be allocated. ALIGN, if non-zero, is the requested
11685 alignment of the allocated area. MAX_SIZE, if non-negative, is an upper
11686 bound for SIZE in case it is not a fixed value. */
11687
11688 tree
11689 build_alloca_call_expr (tree size, unsigned int align, HOST_WIDE_INT max_size)
11690 {
11691 if (max_size >= 0)
11692 {
11693 tree t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX);
11694 return
11695 build_call_expr (t, 3, size, size_int (align), size_int (max_size));
11696 }
11697 else if (align > 0)
11698 {
11699 tree t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
11700 return build_call_expr (t, 2, size, size_int (align));
11701 }
11702 else
11703 {
11704 tree t = builtin_decl_explicit (BUILT_IN_ALLOCA);
11705 return build_call_expr (t, 1, size);
11706 }
11707 }
11708
11709 /* Create a new constant string literal of type ELTYPE[SIZE] (or LEN
11710 if SIZE == -1) and return a tree node representing char* pointer to
11711 it as an ADDR_EXPR (ARRAY_REF (ELTYPE, ...)). When STR is nonnull
11712 the STRING_CST value is the LEN bytes at STR (the representation
11713 of the string, which may be wide). Otherwise it's all zeros. */
11714
11715 tree
11716 build_string_literal (unsigned len, const char *str /* = NULL */,
11717 tree eltype /* = char_type_node */,
11718 unsigned HOST_WIDE_INT size /* = -1 */)
11719 {
11720 tree t = build_string (len, str);
11721 /* Set the maximum valid index based on the string length or SIZE. */
11722 unsigned HOST_WIDE_INT maxidx
11723 = (size == HOST_WIDE_INT_M1U ? len : size) - 1;
11724
11725 tree index = build_index_type (size_int (maxidx));
11726 eltype = build_type_variant (eltype, 1, 0);
11727 tree type = build_array_type (eltype, index);
11728 TREE_TYPE (t) = type;
11729 TREE_CONSTANT (t) = 1;
11730 TREE_READONLY (t) = 1;
11731 TREE_STATIC (t) = 1;
11732
11733 type = build_pointer_type (eltype);
11734 t = build1 (ADDR_EXPR, type,
11735 build4 (ARRAY_REF, eltype,
11736 t, integer_zero_node, NULL_TREE, NULL_TREE));
11737 return t;
11738 }
11739
11740
11741
11742 /* Return true if T (assumed to be a DECL) must be assigned a memory
11743 location. */
11744
11745 bool
11746 needs_to_live_in_memory (const_tree t)
11747 {
11748 return (TREE_ADDRESSABLE (t)
11749 || is_global_var (t)
11750 || (TREE_CODE (t) == RESULT_DECL
11751 && !DECL_BY_REFERENCE (t)
11752 && aggregate_value_p (t, current_function_decl)));
11753 }
11754
11755 /* Return value of a constant X and sign-extend it. */
11756
11757 HOST_WIDE_INT
11758 int_cst_value (const_tree x)
11759 {
11760 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
11761 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
11762
11763 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
11764 gcc_assert (cst_and_fits_in_hwi (x));
11765
11766 if (bits < HOST_BITS_PER_WIDE_INT)
11767 {
11768 bool negative = ((val >> (bits - 1)) & 1) != 0;
11769 if (negative)
11770 val |= HOST_WIDE_INT_M1U << (bits - 1) << 1;
11771 else
11772 val &= ~(HOST_WIDE_INT_M1U << (bits - 1) << 1);
11773 }
11774
11775 return val;
11776 }
11777
11778 /* If TYPE is an integral or pointer type, return an integer type with
11779 the same precision which is unsigned iff UNSIGNEDP is true, or itself
11780 if TYPE is already an integer type of signedness UNSIGNEDP.
11781 If TYPE is a floating-point type, return an integer type with the same
11782 bitsize and with the signedness given by UNSIGNEDP; this is useful
11783 when doing bit-level operations on a floating-point value. */
11784
11785 tree
11786 signed_or_unsigned_type_for (int unsignedp, tree type)
11787 {
11788 if (ANY_INTEGRAL_TYPE_P (type) && TYPE_UNSIGNED (type) == unsignedp)
11789 return type;
11790
11791 if (TREE_CODE (type) == VECTOR_TYPE)
11792 {
11793 tree inner = TREE_TYPE (type);
11794 tree inner2 = signed_or_unsigned_type_for (unsignedp, inner);
11795 if (!inner2)
11796 return NULL_TREE;
11797 if (inner == inner2)
11798 return type;
11799 return build_vector_type (inner2, TYPE_VECTOR_SUBPARTS (type));
11800 }
11801
11802 if (TREE_CODE (type) == COMPLEX_TYPE)
11803 {
11804 tree inner = TREE_TYPE (type);
11805 tree inner2 = signed_or_unsigned_type_for (unsignedp, inner);
11806 if (!inner2)
11807 return NULL_TREE;
11808 if (inner == inner2)
11809 return type;
11810 return build_complex_type (inner2);
11811 }
11812
11813 unsigned int bits;
11814 if (INTEGRAL_TYPE_P (type)
11815 || POINTER_TYPE_P (type)
11816 || TREE_CODE (type) == OFFSET_TYPE)
11817 bits = TYPE_PRECISION (type);
11818 else if (TREE_CODE (type) == REAL_TYPE)
11819 bits = GET_MODE_BITSIZE (SCALAR_TYPE_MODE (type));
11820 else
11821 return NULL_TREE;
11822
11823 return build_nonstandard_integer_type (bits, unsignedp);
11824 }
11825
11826 /* If TYPE is an integral or pointer type, return an integer type with
11827 the same precision which is unsigned, or itself if TYPE is already an
11828 unsigned integer type. If TYPE is a floating-point type, return an
11829 unsigned integer type with the same bitsize as TYPE. */
11830
11831 tree
11832 unsigned_type_for (tree type)
11833 {
11834 return signed_or_unsigned_type_for (1, type);
11835 }
11836
11837 /* If TYPE is an integral or pointer type, return an integer type with
11838 the same precision which is signed, or itself if TYPE is already a
11839 signed integer type. If TYPE is a floating-point type, return a
11840 signed integer type with the same bitsize as TYPE. */
11841
11842 tree
11843 signed_type_for (tree type)
11844 {
11845 return signed_or_unsigned_type_for (0, type);
11846 }
11847
11848 /* If TYPE is a vector type, return a signed integer vector type with the
11849 same width and number of subparts. Otherwise return boolean_type_node. */
11850
11851 tree
11852 truth_type_for (tree type)
11853 {
11854 if (TREE_CODE (type) == VECTOR_TYPE)
11855 {
11856 if (VECTOR_BOOLEAN_TYPE_P (type))
11857 return type;
11858 return build_truth_vector_type_for (type);
11859 }
11860 else
11861 return boolean_type_node;
11862 }
11863
11864 /* Returns the largest value obtainable by casting something in INNER type to
11865 OUTER type. */
11866
11867 tree
11868 upper_bound_in_type (tree outer, tree inner)
11869 {
11870 unsigned int det = 0;
11871 unsigned oprec = TYPE_PRECISION (outer);
11872 unsigned iprec = TYPE_PRECISION (inner);
11873 unsigned prec;
11874
11875 /* Compute a unique number for every combination. */
11876 det |= (oprec > iprec) ? 4 : 0;
11877 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
11878 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
11879
11880 /* Determine the exponent to use. */
11881 switch (det)
11882 {
11883 case 0:
11884 case 1:
11885 /* oprec <= iprec, outer: signed, inner: don't care. */
11886 prec = oprec - 1;
11887 break;
11888 case 2:
11889 case 3:
11890 /* oprec <= iprec, outer: unsigned, inner: don't care. */
11891 prec = oprec;
11892 break;
11893 case 4:
11894 /* oprec > iprec, outer: signed, inner: signed. */
11895 prec = iprec - 1;
11896 break;
11897 case 5:
11898 /* oprec > iprec, outer: signed, inner: unsigned. */
11899 prec = iprec;
11900 break;
11901 case 6:
11902 /* oprec > iprec, outer: unsigned, inner: signed. */
11903 prec = oprec;
11904 break;
11905 case 7:
11906 /* oprec > iprec, outer: unsigned, inner: unsigned. */
11907 prec = iprec;
11908 break;
11909 default:
11910 gcc_unreachable ();
11911 }
11912
11913 return wide_int_to_tree (outer,
11914 wi::mask (prec, false, TYPE_PRECISION (outer)));
11915 }
11916
11917 /* Returns the smallest value obtainable by casting something in INNER type to
11918 OUTER type. */
11919
11920 tree
11921 lower_bound_in_type (tree outer, tree inner)
11922 {
11923 unsigned oprec = TYPE_PRECISION (outer);
11924 unsigned iprec = TYPE_PRECISION (inner);
11925
11926 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
11927 and obtain 0. */
11928 if (TYPE_UNSIGNED (outer)
11929 /* If we are widening something of an unsigned type, OUTER type
11930 contains all values of INNER type. In particular, both INNER
11931 and OUTER types have zero in common. */
11932 || (oprec > iprec && TYPE_UNSIGNED (inner)))
11933 return build_int_cst (outer, 0);
11934 else
11935 {
11936 /* If we are widening a signed type to another signed type, we
11937 want to obtain -2^^(iprec-1). If we are keeping the
11938 precision or narrowing to a signed type, we want to obtain
11939 -2^(oprec-1). */
11940 unsigned prec = oprec > iprec ? iprec : oprec;
11941 return wide_int_to_tree (outer,
11942 wi::mask (prec - 1, true,
11943 TYPE_PRECISION (outer)));
11944 }
11945 }
11946
11947 /* Return nonzero if two operands that are suitable for PHI nodes are
11948 necessarily equal. Specifically, both ARG0 and ARG1 must be either
11949 SSA_NAME or invariant. Note that this is strictly an optimization.
11950 That is, callers of this function can directly call operand_equal_p
11951 and get the same result, only slower. */
11952
11953 int
11954 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
11955 {
11956 if (arg0 == arg1)
11957 return 1;
11958 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
11959 return 0;
11960 return operand_equal_p (arg0, arg1, 0);
11961 }
11962
11963 /* Returns number of zeros at the end of binary representation of X. */
11964
11965 tree
11966 num_ending_zeros (const_tree x)
11967 {
11968 return build_int_cst (TREE_TYPE (x), wi::ctz (wi::to_wide (x)));
11969 }
11970
11971
11972 #define WALK_SUBTREE(NODE) \
11973 do \
11974 { \
11975 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
11976 if (result) \
11977 return result; \
11978 } \
11979 while (0)
11980
11981 /* This is a subroutine of walk_tree that walks field of TYPE that are to
11982 be walked whenever a type is seen in the tree. Rest of operands and return
11983 value are as for walk_tree. */
11984
11985 static tree
11986 walk_type_fields (tree type, walk_tree_fn func, void *data,
11987 hash_set<tree> *pset, walk_tree_lh lh)
11988 {
11989 tree result = NULL_TREE;
11990
11991 switch (TREE_CODE (type))
11992 {
11993 case POINTER_TYPE:
11994 case REFERENCE_TYPE:
11995 case VECTOR_TYPE:
11996 /* We have to worry about mutually recursive pointers. These can't
11997 be written in C. They can in Ada. It's pathological, but
11998 there's an ACATS test (c38102a) that checks it. Deal with this
11999 by checking if we're pointing to another pointer, that one
12000 points to another pointer, that one does too, and we have no htab.
12001 If so, get a hash table. We check three levels deep to avoid
12002 the cost of the hash table if we don't need one. */
12003 if (POINTER_TYPE_P (TREE_TYPE (type))
12004 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
12005 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
12006 && !pset)
12007 {
12008 result = walk_tree_without_duplicates (&TREE_TYPE (type),
12009 func, data);
12010 if (result)
12011 return result;
12012
12013 break;
12014 }
12015
12016 /* fall through */
12017
12018 case COMPLEX_TYPE:
12019 WALK_SUBTREE (TREE_TYPE (type));
12020 break;
12021
12022 case METHOD_TYPE:
12023 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
12024
12025 /* Fall through. */
12026
12027 case FUNCTION_TYPE:
12028 WALK_SUBTREE (TREE_TYPE (type));
12029 {
12030 tree arg;
12031
12032 /* We never want to walk into default arguments. */
12033 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
12034 WALK_SUBTREE (TREE_VALUE (arg));
12035 }
12036 break;
12037
12038 case ARRAY_TYPE:
12039 /* Don't follow this nodes's type if a pointer for fear that
12040 we'll have infinite recursion. If we have a PSET, then we
12041 need not fear. */
12042 if (pset
12043 || (!POINTER_TYPE_P (TREE_TYPE (type))
12044 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
12045 WALK_SUBTREE (TREE_TYPE (type));
12046 WALK_SUBTREE (TYPE_DOMAIN (type));
12047 break;
12048
12049 case OFFSET_TYPE:
12050 WALK_SUBTREE (TREE_TYPE (type));
12051 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
12052 break;
12053
12054 default:
12055 break;
12056 }
12057
12058 return NULL_TREE;
12059 }
12060
12061 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
12062 called with the DATA and the address of each sub-tree. If FUNC returns a
12063 non-NULL value, the traversal is stopped, and the value returned by FUNC
12064 is returned. If PSET is non-NULL it is used to record the nodes visited,
12065 and to avoid visiting a node more than once. */
12066
12067 tree
12068 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
12069 hash_set<tree> *pset, walk_tree_lh lh)
12070 {
12071 enum tree_code code;
12072 int walk_subtrees;
12073 tree result;
12074
12075 #define WALK_SUBTREE_TAIL(NODE) \
12076 do \
12077 { \
12078 tp = & (NODE); \
12079 goto tail_recurse; \
12080 } \
12081 while (0)
12082
12083 tail_recurse:
12084 /* Skip empty subtrees. */
12085 if (!*tp)
12086 return NULL_TREE;
12087
12088 /* Don't walk the same tree twice, if the user has requested
12089 that we avoid doing so. */
12090 if (pset && pset->add (*tp))
12091 return NULL_TREE;
12092
12093 /* Call the function. */
12094 walk_subtrees = 1;
12095 result = (*func) (tp, &walk_subtrees, data);
12096
12097 /* If we found something, return it. */
12098 if (result)
12099 return result;
12100
12101 code = TREE_CODE (*tp);
12102
12103 /* Even if we didn't, FUNC may have decided that there was nothing
12104 interesting below this point in the tree. */
12105 if (!walk_subtrees)
12106 {
12107 /* But we still need to check our siblings. */
12108 if (code == TREE_LIST)
12109 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
12110 else if (code == OMP_CLAUSE)
12111 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12112 else
12113 return NULL_TREE;
12114 }
12115
12116 if (lh)
12117 {
12118 result = (*lh) (tp, &walk_subtrees, func, data, pset);
12119 if (result || !walk_subtrees)
12120 return result;
12121 }
12122
12123 switch (code)
12124 {
12125 case ERROR_MARK:
12126 case IDENTIFIER_NODE:
12127 case INTEGER_CST:
12128 case REAL_CST:
12129 case FIXED_CST:
12130 case VECTOR_CST:
12131 case STRING_CST:
12132 case BLOCK:
12133 case PLACEHOLDER_EXPR:
12134 case SSA_NAME:
12135 case FIELD_DECL:
12136 case RESULT_DECL:
12137 /* None of these have subtrees other than those already walked
12138 above. */
12139 break;
12140
12141 case TREE_LIST:
12142 WALK_SUBTREE (TREE_VALUE (*tp));
12143 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
12144 break;
12145
12146 case TREE_VEC:
12147 {
12148 int len = TREE_VEC_LENGTH (*tp);
12149
12150 if (len == 0)
12151 break;
12152
12153 /* Walk all elements but the first. */
12154 while (--len)
12155 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
12156
12157 /* Now walk the first one as a tail call. */
12158 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
12159 }
12160
12161 case COMPLEX_CST:
12162 WALK_SUBTREE (TREE_REALPART (*tp));
12163 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
12164
12165 case CONSTRUCTOR:
12166 {
12167 unsigned HOST_WIDE_INT idx;
12168 constructor_elt *ce;
12169
12170 for (idx = 0; vec_safe_iterate (CONSTRUCTOR_ELTS (*tp), idx, &ce);
12171 idx++)
12172 WALK_SUBTREE (ce->value);
12173 }
12174 break;
12175
12176 case SAVE_EXPR:
12177 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
12178
12179 case BIND_EXPR:
12180 {
12181 tree decl;
12182 for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl))
12183 {
12184 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
12185 into declarations that are just mentioned, rather than
12186 declared; they don't really belong to this part of the tree.
12187 And, we can see cycles: the initializer for a declaration
12188 can refer to the declaration itself. */
12189 WALK_SUBTREE (DECL_INITIAL (decl));
12190 WALK_SUBTREE (DECL_SIZE (decl));
12191 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
12192 }
12193 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
12194 }
12195
12196 case STATEMENT_LIST:
12197 {
12198 tree_stmt_iterator i;
12199 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
12200 WALK_SUBTREE (*tsi_stmt_ptr (i));
12201 }
12202 break;
12203
12204 case OMP_CLAUSE:
12205 switch (OMP_CLAUSE_CODE (*tp))
12206 {
12207 case OMP_CLAUSE_GANG:
12208 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 1));
12209 /* FALLTHRU */
12210
12211 case OMP_CLAUSE_ASYNC:
12212 case OMP_CLAUSE_WAIT:
12213 case OMP_CLAUSE_WORKER:
12214 case OMP_CLAUSE_VECTOR:
12215 case OMP_CLAUSE_NUM_GANGS:
12216 case OMP_CLAUSE_NUM_WORKERS:
12217 case OMP_CLAUSE_VECTOR_LENGTH:
12218 case OMP_CLAUSE_PRIVATE:
12219 case OMP_CLAUSE_SHARED:
12220 case OMP_CLAUSE_FIRSTPRIVATE:
12221 case OMP_CLAUSE_COPYIN:
12222 case OMP_CLAUSE_COPYPRIVATE:
12223 case OMP_CLAUSE_FINAL:
12224 case OMP_CLAUSE_IF:
12225 case OMP_CLAUSE_NUM_THREADS:
12226 case OMP_CLAUSE_SCHEDULE:
12227 case OMP_CLAUSE_UNIFORM:
12228 case OMP_CLAUSE_DEPEND:
12229 case OMP_CLAUSE_NONTEMPORAL:
12230 case OMP_CLAUSE_NUM_TEAMS:
12231 case OMP_CLAUSE_THREAD_LIMIT:
12232 case OMP_CLAUSE_DEVICE:
12233 case OMP_CLAUSE_DIST_SCHEDULE:
12234 case OMP_CLAUSE_SAFELEN:
12235 case OMP_CLAUSE_SIMDLEN:
12236 case OMP_CLAUSE_ORDERED:
12237 case OMP_CLAUSE_PRIORITY:
12238 case OMP_CLAUSE_GRAINSIZE:
12239 case OMP_CLAUSE_NUM_TASKS:
12240 case OMP_CLAUSE_HINT:
12241 case OMP_CLAUSE_TO_DECLARE:
12242 case OMP_CLAUSE_LINK:
12243 case OMP_CLAUSE_USE_DEVICE_PTR:
12244 case OMP_CLAUSE_USE_DEVICE_ADDR:
12245 case OMP_CLAUSE_IS_DEVICE_PTR:
12246 case OMP_CLAUSE_INCLUSIVE:
12247 case OMP_CLAUSE_EXCLUSIVE:
12248 case OMP_CLAUSE__LOOPTEMP_:
12249 case OMP_CLAUSE__REDUCTEMP_:
12250 case OMP_CLAUSE__CONDTEMP_:
12251 case OMP_CLAUSE__SCANTEMP_:
12252 case OMP_CLAUSE__SIMDUID_:
12253 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
12254 /* FALLTHRU */
12255
12256 case OMP_CLAUSE_INDEPENDENT:
12257 case OMP_CLAUSE_NOWAIT:
12258 case OMP_CLAUSE_DEFAULT:
12259 case OMP_CLAUSE_UNTIED:
12260 case OMP_CLAUSE_MERGEABLE:
12261 case OMP_CLAUSE_PROC_BIND:
12262 case OMP_CLAUSE_DEVICE_TYPE:
12263 case OMP_CLAUSE_INBRANCH:
12264 case OMP_CLAUSE_NOTINBRANCH:
12265 case OMP_CLAUSE_FOR:
12266 case OMP_CLAUSE_PARALLEL:
12267 case OMP_CLAUSE_SECTIONS:
12268 case OMP_CLAUSE_TASKGROUP:
12269 case OMP_CLAUSE_NOGROUP:
12270 case OMP_CLAUSE_THREADS:
12271 case OMP_CLAUSE_SIMD:
12272 case OMP_CLAUSE_DEFAULTMAP:
12273 case OMP_CLAUSE_ORDER:
12274 case OMP_CLAUSE_BIND:
12275 case OMP_CLAUSE_AUTO:
12276 case OMP_CLAUSE_SEQ:
12277 case OMP_CLAUSE_TILE:
12278 case OMP_CLAUSE__SIMT_:
12279 case OMP_CLAUSE_IF_PRESENT:
12280 case OMP_CLAUSE_FINALIZE:
12281 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12282
12283 case OMP_CLAUSE_LASTPRIVATE:
12284 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
12285 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
12286 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12287
12288 case OMP_CLAUSE_COLLAPSE:
12289 {
12290 int i;
12291 for (i = 0; i < 3; i++)
12292 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
12293 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12294 }
12295
12296 case OMP_CLAUSE_LINEAR:
12297 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
12298 WALK_SUBTREE (OMP_CLAUSE_LINEAR_STEP (*tp));
12299 WALK_SUBTREE (OMP_CLAUSE_LINEAR_STMT (*tp));
12300 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12301
12302 case OMP_CLAUSE_ALIGNED:
12303 case OMP_CLAUSE_ALLOCATE:
12304 case OMP_CLAUSE_FROM:
12305 case OMP_CLAUSE_TO:
12306 case OMP_CLAUSE_MAP:
12307 case OMP_CLAUSE__CACHE_:
12308 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
12309 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 1));
12310 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12311
12312 case OMP_CLAUSE_REDUCTION:
12313 case OMP_CLAUSE_TASK_REDUCTION:
12314 case OMP_CLAUSE_IN_REDUCTION:
12315 {
12316 int i;
12317 for (i = 0; i < 5; i++)
12318 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
12319 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
12320 }
12321
12322 default:
12323 gcc_unreachable ();
12324 }
12325 break;
12326
12327 case TARGET_EXPR:
12328 {
12329 int i, len;
12330
12331 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
12332 But, we only want to walk once. */
12333 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
12334 for (i = 0; i < len; ++i)
12335 WALK_SUBTREE (TREE_OPERAND (*tp, i));
12336 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
12337 }
12338
12339 case DECL_EXPR:
12340 /* If this is a TYPE_DECL, walk into the fields of the type that it's
12341 defining. We only want to walk into these fields of a type in this
12342 case and not in the general case of a mere reference to the type.
12343
12344 The criterion is as follows: if the field can be an expression, it
12345 must be walked only here. This should be in keeping with the fields
12346 that are directly gimplified in gimplify_type_sizes in order for the
12347 mark/copy-if-shared/unmark machinery of the gimplifier to work with
12348 variable-sized types.
12349
12350 Note that DECLs get walked as part of processing the BIND_EXPR. */
12351 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
12352 {
12353 /* Call the function for the decl so e.g. copy_tree_body_r can
12354 replace it with the remapped one. */
12355 result = (*func) (&DECL_EXPR_DECL (*tp), &walk_subtrees, data);
12356 if (result || !walk_subtrees)
12357 return result;
12358
12359 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
12360 if (TREE_CODE (*type_p) == ERROR_MARK)
12361 return NULL_TREE;
12362
12363 /* Call the function for the type. See if it returns anything or
12364 doesn't want us to continue. If we are to continue, walk both
12365 the normal fields and those for the declaration case. */
12366 result = (*func) (type_p, &walk_subtrees, data);
12367 if (result || !walk_subtrees)
12368 return result;
12369
12370 /* But do not walk a pointed-to type since it may itself need to
12371 be walked in the declaration case if it isn't anonymous. */
12372 if (!POINTER_TYPE_P (*type_p))
12373 {
12374 result = walk_type_fields (*type_p, func, data, pset, lh);
12375 if (result)
12376 return result;
12377 }
12378
12379 /* If this is a record type, also walk the fields. */
12380 if (RECORD_OR_UNION_TYPE_P (*type_p))
12381 {
12382 tree field;
12383
12384 for (field = TYPE_FIELDS (*type_p); field;
12385 field = DECL_CHAIN (field))
12386 {
12387 /* We'd like to look at the type of the field, but we can
12388 easily get infinite recursion. So assume it's pointed
12389 to elsewhere in the tree. Also, ignore things that
12390 aren't fields. */
12391 if (TREE_CODE (field) != FIELD_DECL)
12392 continue;
12393
12394 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
12395 WALK_SUBTREE (DECL_SIZE (field));
12396 WALK_SUBTREE (DECL_SIZE_UNIT (field));
12397 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
12398 WALK_SUBTREE (DECL_QUALIFIER (field));
12399 }
12400 }
12401
12402 /* Same for scalar types. */
12403 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
12404 || TREE_CODE (*type_p) == ENUMERAL_TYPE
12405 || TREE_CODE (*type_p) == INTEGER_TYPE
12406 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
12407 || TREE_CODE (*type_p) == REAL_TYPE)
12408 {
12409 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
12410 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
12411 }
12412
12413 WALK_SUBTREE (TYPE_SIZE (*type_p));
12414 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
12415 }
12416 /* FALLTHRU */
12417
12418 default:
12419 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
12420 {
12421 int i, len;
12422
12423 /* Walk over all the sub-trees of this operand. */
12424 len = TREE_OPERAND_LENGTH (*tp);
12425
12426 /* Go through the subtrees. We need to do this in forward order so
12427 that the scope of a FOR_EXPR is handled properly. */
12428 if (len)
12429 {
12430 for (i = 0; i < len - 1; ++i)
12431 WALK_SUBTREE (TREE_OPERAND (*tp, i));
12432 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
12433 }
12434 }
12435 /* If this is a type, walk the needed fields in the type. */
12436 else if (TYPE_P (*tp))
12437 return walk_type_fields (*tp, func, data, pset, lh);
12438 break;
12439 }
12440
12441 /* We didn't find what we were looking for. */
12442 return NULL_TREE;
12443
12444 #undef WALK_SUBTREE_TAIL
12445 }
12446 #undef WALK_SUBTREE
12447
12448 /* Like walk_tree, but does not walk duplicate nodes more than once. */
12449
12450 tree
12451 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
12452 walk_tree_lh lh)
12453 {
12454 tree result;
12455
12456 hash_set<tree> pset;
12457 result = walk_tree_1 (tp, func, data, &pset, lh);
12458 return result;
12459 }
12460
12461
12462 tree
12463 tree_block (tree t)
12464 {
12465 const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
12466
12467 if (IS_EXPR_CODE_CLASS (c))
12468 return LOCATION_BLOCK (t->exp.locus);
12469 gcc_unreachable ();
12470 return NULL;
12471 }
12472
12473 void
12474 tree_set_block (tree t, tree b)
12475 {
12476 const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
12477
12478 if (IS_EXPR_CODE_CLASS (c))
12479 {
12480 t->exp.locus = set_block (t->exp.locus, b);
12481 }
12482 else
12483 gcc_unreachable ();
12484 }
12485
12486 /* Create a nameless artificial label and put it in the current
12487 function context. The label has a location of LOC. Returns the
12488 newly created label. */
12489
12490 tree
12491 create_artificial_label (location_t loc)
12492 {
12493 tree lab = build_decl (loc,
12494 LABEL_DECL, NULL_TREE, void_type_node);
12495
12496 DECL_ARTIFICIAL (lab) = 1;
12497 DECL_IGNORED_P (lab) = 1;
12498 DECL_CONTEXT (lab) = current_function_decl;
12499 return lab;
12500 }
12501
12502 /* Given a tree, try to return a useful variable name that we can use
12503 to prefix a temporary that is being assigned the value of the tree.
12504 I.E. given <temp> = &A, return A. */
12505
12506 const char *
12507 get_name (tree t)
12508 {
12509 tree stripped_decl;
12510
12511 stripped_decl = t;
12512 STRIP_NOPS (stripped_decl);
12513 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
12514 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
12515 else if (TREE_CODE (stripped_decl) == SSA_NAME)
12516 {
12517 tree name = SSA_NAME_IDENTIFIER (stripped_decl);
12518 if (!name)
12519 return NULL;
12520 return IDENTIFIER_POINTER (name);
12521 }
12522 else
12523 {
12524 switch (TREE_CODE (stripped_decl))
12525 {
12526 case ADDR_EXPR:
12527 return get_name (TREE_OPERAND (stripped_decl, 0));
12528 default:
12529 return NULL;
12530 }
12531 }
12532 }
12533
12534 /* Return true if TYPE has a variable argument list. */
12535
12536 bool
12537 stdarg_p (const_tree fntype)
12538 {
12539 function_args_iterator args_iter;
12540 tree n = NULL_TREE, t;
12541
12542 if (!fntype)
12543 return false;
12544
12545 FOREACH_FUNCTION_ARGS (fntype, t, args_iter)
12546 {
12547 n = t;
12548 }
12549
12550 return n != NULL_TREE && n != void_type_node;
12551 }
12552
12553 /* Return true if TYPE has a prototype. */
12554
12555 bool
12556 prototype_p (const_tree fntype)
12557 {
12558 tree t;
12559
12560 gcc_assert (fntype != NULL_TREE);
12561
12562 t = TYPE_ARG_TYPES (fntype);
12563 return (t != NULL_TREE);
12564 }
12565
12566 /* If BLOCK is inlined from an __attribute__((__artificial__))
12567 routine, return pointer to location from where it has been
12568 called. */
12569 location_t *
12570 block_nonartificial_location (tree block)
12571 {
12572 location_t *ret = NULL;
12573
12574 while (block && TREE_CODE (block) == BLOCK
12575 && BLOCK_ABSTRACT_ORIGIN (block))
12576 {
12577 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
12578 if (TREE_CODE (ao) == FUNCTION_DECL)
12579 {
12580 /* If AO is an artificial inline, point RET to the
12581 call site locus at which it has been inlined and continue
12582 the loop, in case AO's caller is also an artificial
12583 inline. */
12584 if (DECL_DECLARED_INLINE_P (ao)
12585 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
12586 ret = &BLOCK_SOURCE_LOCATION (block);
12587 else
12588 break;
12589 }
12590 else if (TREE_CODE (ao) != BLOCK)
12591 break;
12592
12593 block = BLOCK_SUPERCONTEXT (block);
12594 }
12595 return ret;
12596 }
12597
12598
12599 /* If EXP is inlined from an __attribute__((__artificial__))
12600 function, return the location of the original call expression. */
12601
12602 location_t
12603 tree_nonartificial_location (tree exp)
12604 {
12605 location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
12606
12607 if (loc)
12608 return *loc;
12609 else
12610 return EXPR_LOCATION (exp);
12611 }
12612
12613 /* Return the location into which EXP has been inlined. Analogous
12614 to tree_nonartificial_location() above but not limited to artificial
12615 functions declared inline. If SYSTEM_HEADER is true, return
12616 the macro expansion point of the location if it's in a system header */
12617
12618 location_t
12619 tree_inlined_location (tree exp, bool system_header /* = true */)
12620 {
12621 location_t loc = UNKNOWN_LOCATION;
12622
12623 tree block = TREE_BLOCK (exp);
12624
12625 while (block && TREE_CODE (block) == BLOCK
12626 && BLOCK_ABSTRACT_ORIGIN (block))
12627 {
12628 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
12629 if (TREE_CODE (ao) == FUNCTION_DECL)
12630 loc = BLOCK_SOURCE_LOCATION (block);
12631 else if (TREE_CODE (ao) != BLOCK)
12632 break;
12633
12634 block = BLOCK_SUPERCONTEXT (block);
12635 }
12636
12637 if (loc == UNKNOWN_LOCATION)
12638 loc = EXPR_LOCATION (exp);
12639
12640 if (system_header)
12641 return expansion_point_location_if_in_system_header (loc);
12642
12643 return loc;
12644 }
12645
12646 /* These are the hash table functions for the hash table of OPTIMIZATION_NODE
12647 nodes. */
12648
12649 /* Return the hash code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
12650
12651 hashval_t
12652 cl_option_hasher::hash (tree x)
12653 {
12654 const_tree const t = x;
12655 const char *p;
12656 size_t i;
12657 size_t len = 0;
12658 hashval_t hash = 0;
12659
12660 if (TREE_CODE (t) == OPTIMIZATION_NODE)
12661 {
12662 p = (const char *)TREE_OPTIMIZATION (t);
12663 len = sizeof (struct cl_optimization);
12664 }
12665
12666 else if (TREE_CODE (t) == TARGET_OPTION_NODE)
12667 return cl_target_option_hash (TREE_TARGET_OPTION (t));
12668
12669 else
12670 gcc_unreachable ();
12671
12672 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
12673 something else. */
12674 for (i = 0; i < len; i++)
12675 if (p[i])
12676 hash = (hash << 4) ^ ((i << 2) | p[i]);
12677
12678 return hash;
12679 }
12680
12681 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
12682 TARGET_OPTION tree node) is the same as that given by *Y, which is the
12683 same. */
12684
12685 bool
12686 cl_option_hasher::equal (tree x, tree y)
12687 {
12688 const_tree const xt = x;
12689 const_tree const yt = y;
12690
12691 if (TREE_CODE (xt) != TREE_CODE (yt))
12692 return 0;
12693
12694 if (TREE_CODE (xt) == OPTIMIZATION_NODE)
12695 return cl_optimization_option_eq (TREE_OPTIMIZATION (xt),
12696 TREE_OPTIMIZATION (yt));
12697 else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
12698 return cl_target_option_eq (TREE_TARGET_OPTION (xt),
12699 TREE_TARGET_OPTION (yt));
12700 else
12701 gcc_unreachable ();
12702 }
12703
12704 /* Build an OPTIMIZATION_NODE based on the options in OPTS and OPTS_SET. */
12705
12706 tree
12707 build_optimization_node (struct gcc_options *opts,
12708 struct gcc_options *opts_set)
12709 {
12710 tree t;
12711
12712 /* Use the cache of optimization nodes. */
12713
12714 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node),
12715 opts, opts_set);
12716
12717 tree *slot = cl_option_hash_table->find_slot (cl_optimization_node, INSERT);
12718 t = *slot;
12719 if (!t)
12720 {
12721 /* Insert this one into the hash table. */
12722 t = cl_optimization_node;
12723 *slot = t;
12724
12725 /* Make a new node for next time round. */
12726 cl_optimization_node = make_node (OPTIMIZATION_NODE);
12727 }
12728
12729 return t;
12730 }
12731
12732 /* Build a TARGET_OPTION_NODE based on the options in OPTS and OPTS_SET. */
12733
12734 tree
12735 build_target_option_node (struct gcc_options *opts,
12736 struct gcc_options *opts_set)
12737 {
12738 tree t;
12739
12740 /* Use the cache of optimization nodes. */
12741
12742 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node),
12743 opts, opts_set);
12744
12745 tree *slot = cl_option_hash_table->find_slot (cl_target_option_node, INSERT);
12746 t = *slot;
12747 if (!t)
12748 {
12749 /* Insert this one into the hash table. */
12750 t = cl_target_option_node;
12751 *slot = t;
12752
12753 /* Make a new node for next time round. */
12754 cl_target_option_node = make_node (TARGET_OPTION_NODE);
12755 }
12756
12757 return t;
12758 }
12759
12760 /* Clear TREE_TARGET_GLOBALS of all TARGET_OPTION_NODE trees,
12761 so that they aren't saved during PCH writing. */
12762
12763 void
12764 prepare_target_option_nodes_for_pch (void)
12765 {
12766 hash_table<cl_option_hasher>::iterator iter = cl_option_hash_table->begin ();
12767 for (; iter != cl_option_hash_table->end (); ++iter)
12768 if (TREE_CODE (*iter) == TARGET_OPTION_NODE)
12769 TREE_TARGET_GLOBALS (*iter) = NULL;
12770 }
12771
12772 /* Determine the "ultimate origin" of a block. */
12773
12774 tree
12775 block_ultimate_origin (const_tree block)
12776 {
12777 tree origin = BLOCK_ABSTRACT_ORIGIN (block);
12778
12779 if (origin == NULL_TREE)
12780 return NULL_TREE;
12781 else
12782 {
12783 gcc_checking_assert ((DECL_P (origin)
12784 && DECL_ORIGIN (origin) == origin)
12785 || BLOCK_ORIGIN (origin) == origin);
12786 return origin;
12787 }
12788 }
12789
12790 /* Return true iff conversion from INNER_TYPE to OUTER_TYPE generates
12791 no instruction. */
12792
12793 bool
12794 tree_nop_conversion_p (const_tree outer_type, const_tree inner_type)
12795 {
12796 /* Do not strip casts into or out of differing address spaces. */
12797 if (POINTER_TYPE_P (outer_type)
12798 && TYPE_ADDR_SPACE (TREE_TYPE (outer_type)) != ADDR_SPACE_GENERIC)
12799 {
12800 if (!POINTER_TYPE_P (inner_type)
12801 || (TYPE_ADDR_SPACE (TREE_TYPE (outer_type))
12802 != TYPE_ADDR_SPACE (TREE_TYPE (inner_type))))
12803 return false;
12804 }
12805 else if (POINTER_TYPE_P (inner_type)
12806 && TYPE_ADDR_SPACE (TREE_TYPE (inner_type)) != ADDR_SPACE_GENERIC)
12807 {
12808 /* We already know that outer_type is not a pointer with
12809 a non-generic address space. */
12810 return false;
12811 }
12812
12813 /* Use precision rather then machine mode when we can, which gives
12814 the correct answer even for submode (bit-field) types. */
12815 if ((INTEGRAL_TYPE_P (outer_type)
12816 || POINTER_TYPE_P (outer_type)
12817 || TREE_CODE (outer_type) == OFFSET_TYPE)
12818 && (INTEGRAL_TYPE_P (inner_type)
12819 || POINTER_TYPE_P (inner_type)
12820 || TREE_CODE (inner_type) == OFFSET_TYPE))
12821 return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
12822
12823 /* Otherwise fall back on comparing machine modes (e.g. for
12824 aggregate types, floats). */
12825 return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
12826 }
12827
12828 /* Return true iff conversion in EXP generates no instruction. Mark
12829 it inline so that we fully inline into the stripping functions even
12830 though we have two uses of this function. */
12831
12832 static inline bool
12833 tree_nop_conversion (const_tree exp)
12834 {
12835 tree outer_type, inner_type;
12836
12837 if (location_wrapper_p (exp))
12838 return true;
12839 if (!CONVERT_EXPR_P (exp)
12840 && TREE_CODE (exp) != NON_LVALUE_EXPR)
12841 return false;
12842
12843 outer_type = TREE_TYPE (exp);
12844 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
12845 if (!inner_type || inner_type == error_mark_node)
12846 return false;
12847
12848 return tree_nop_conversion_p (outer_type, inner_type);
12849 }
12850
12851 /* Return true iff conversion in EXP generates no instruction. Don't
12852 consider conversions changing the signedness. */
12853
12854 static bool
12855 tree_sign_nop_conversion (const_tree exp)
12856 {
12857 tree outer_type, inner_type;
12858
12859 if (!tree_nop_conversion (exp))
12860 return false;
12861
12862 outer_type = TREE_TYPE (exp);
12863 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
12864
12865 return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
12866 && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
12867 }
12868
12869 /* Strip conversions from EXP according to tree_nop_conversion and
12870 return the resulting expression. */
12871
12872 tree
12873 tree_strip_nop_conversions (tree exp)
12874 {
12875 while (tree_nop_conversion (exp))
12876 exp = TREE_OPERAND (exp, 0);
12877 return exp;
12878 }
12879
12880 /* Strip conversions from EXP according to tree_sign_nop_conversion
12881 and return the resulting expression. */
12882
12883 tree
12884 tree_strip_sign_nop_conversions (tree exp)
12885 {
12886 while (tree_sign_nop_conversion (exp))
12887 exp = TREE_OPERAND (exp, 0);
12888 return exp;
12889 }
12890
12891 /* Avoid any floating point extensions from EXP. */
12892 tree
12893 strip_float_extensions (tree exp)
12894 {
12895 tree sub, expt, subt;
12896
12897 /* For floating point constant look up the narrowest type that can hold
12898 it properly and handle it like (type)(narrowest_type)constant.
12899 This way we can optimize for instance a=a*2.0 where "a" is float
12900 but 2.0 is double constant. */
12901 if (TREE_CODE (exp) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (TREE_TYPE (exp)))
12902 {
12903 REAL_VALUE_TYPE orig;
12904 tree type = NULL;
12905
12906 orig = TREE_REAL_CST (exp);
12907 if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
12908 && exact_real_truncate (TYPE_MODE (float_type_node), &orig))
12909 type = float_type_node;
12910 else if (TYPE_PRECISION (TREE_TYPE (exp))
12911 > TYPE_PRECISION (double_type_node)
12912 && exact_real_truncate (TYPE_MODE (double_type_node), &orig))
12913 type = double_type_node;
12914 if (type)
12915 return build_real_truncate (type, orig);
12916 }
12917
12918 if (!CONVERT_EXPR_P (exp))
12919 return exp;
12920
12921 sub = TREE_OPERAND (exp, 0);
12922 subt = TREE_TYPE (sub);
12923 expt = TREE_TYPE (exp);
12924
12925 if (!FLOAT_TYPE_P (subt))
12926 return exp;
12927
12928 if (DECIMAL_FLOAT_TYPE_P (expt) != DECIMAL_FLOAT_TYPE_P (subt))
12929 return exp;
12930
12931 if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
12932 return exp;
12933
12934 return strip_float_extensions (sub);
12935 }
12936
12937 /* Strip out all handled components that produce invariant
12938 offsets. */
12939
12940 const_tree
12941 strip_invariant_refs (const_tree op)
12942 {
12943 while (handled_component_p (op))
12944 {
12945 switch (TREE_CODE (op))
12946 {
12947 case ARRAY_REF:
12948 case ARRAY_RANGE_REF:
12949 if (!is_gimple_constant (TREE_OPERAND (op, 1))
12950 || TREE_OPERAND (op, 2) != NULL_TREE
12951 || TREE_OPERAND (op, 3) != NULL_TREE)
12952 return NULL;
12953 break;
12954
12955 case COMPONENT_REF:
12956 if (TREE_OPERAND (op, 2) != NULL_TREE)
12957 return NULL;
12958 break;
12959
12960 default:;
12961 }
12962 op = TREE_OPERAND (op, 0);
12963 }
12964
12965 return op;
12966 }
12967
12968 static GTY(()) tree gcc_eh_personality_decl;
12969
12970 /* Return the GCC personality function decl. */
12971
12972 tree
12973 lhd_gcc_personality (void)
12974 {
12975 if (!gcc_eh_personality_decl)
12976 gcc_eh_personality_decl = build_personality_function ("gcc");
12977 return gcc_eh_personality_decl;
12978 }
12979
12980 /* TARGET is a call target of GIMPLE call statement
12981 (obtained by gimple_call_fn). Return true if it is
12982 OBJ_TYPE_REF representing an virtual call of C++ method.
12983 (As opposed to OBJ_TYPE_REF representing objc calls
12984 through a cast where middle-end devirtualization machinery
12985 can't apply.) FOR_DUMP_P is true when being called from
12986 the dump routines. */
12987
12988 bool
12989 virtual_method_call_p (const_tree target, bool for_dump_p)
12990 {
12991 if (TREE_CODE (target) != OBJ_TYPE_REF)
12992 return false;
12993 tree t = TREE_TYPE (target);
12994 gcc_checking_assert (TREE_CODE (t) == POINTER_TYPE);
12995 t = TREE_TYPE (t);
12996 if (TREE_CODE (t) == FUNCTION_TYPE)
12997 return false;
12998 gcc_checking_assert (TREE_CODE (t) == METHOD_TYPE);
12999 /* If we do not have BINFO associated, it means that type was built
13000 without devirtualization enabled. Do not consider this a virtual
13001 call. */
13002 if (!TYPE_BINFO (obj_type_ref_class (target, for_dump_p)))
13003 return false;
13004 return true;
13005 }
13006
13007 /* Lookup sub-BINFO of BINFO of TYPE at offset POS. */
13008
13009 static tree
13010 lookup_binfo_at_offset (tree binfo, tree type, HOST_WIDE_INT pos)
13011 {
13012 unsigned int i;
13013 tree base_binfo, b;
13014
13015 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
13016 if (pos == tree_to_shwi (BINFO_OFFSET (base_binfo))
13017 && types_same_for_odr (TREE_TYPE (base_binfo), type))
13018 return base_binfo;
13019 else if ((b = lookup_binfo_at_offset (base_binfo, type, pos)) != NULL)
13020 return b;
13021 return NULL;
13022 }
13023
13024 /* Try to find a base info of BINFO that would have its field decl at offset
13025 OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be
13026 found, return, otherwise return NULL_TREE. */
13027
13028 tree
13029 get_binfo_at_offset (tree binfo, poly_int64 offset, tree expected_type)
13030 {
13031 tree type = BINFO_TYPE (binfo);
13032
13033 while (true)
13034 {
13035 HOST_WIDE_INT pos, size;
13036 tree fld;
13037 int i;
13038
13039 if (types_same_for_odr (type, expected_type))
13040 return binfo;
13041 if (maybe_lt (offset, 0))
13042 return NULL_TREE;
13043
13044 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
13045 {
13046 if (TREE_CODE (fld) != FIELD_DECL || !DECL_ARTIFICIAL (fld))
13047 continue;
13048
13049 pos = int_bit_position (fld);
13050 size = tree_to_uhwi (DECL_SIZE (fld));
13051 if (known_in_range_p (offset, pos, size))
13052 break;
13053 }
13054 if (!fld || TREE_CODE (TREE_TYPE (fld)) != RECORD_TYPE)
13055 return NULL_TREE;
13056
13057 /* Offset 0 indicates the primary base, whose vtable contents are
13058 represented in the binfo for the derived class. */
13059 else if (maybe_ne (offset, 0))
13060 {
13061 tree found_binfo = NULL, base_binfo;
13062 /* Offsets in BINFO are in bytes relative to the whole structure
13063 while POS is in bits relative to the containing field. */
13064 int binfo_offset = (tree_to_shwi (BINFO_OFFSET (binfo)) + pos
13065 / BITS_PER_UNIT);
13066
13067 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
13068 if (tree_to_shwi (BINFO_OFFSET (base_binfo)) == binfo_offset
13069 && types_same_for_odr (TREE_TYPE (base_binfo), TREE_TYPE (fld)))
13070 {
13071 found_binfo = base_binfo;
13072 break;
13073 }
13074 if (found_binfo)
13075 binfo = found_binfo;
13076 else
13077 binfo = lookup_binfo_at_offset (binfo, TREE_TYPE (fld),
13078 binfo_offset);
13079 }
13080
13081 type = TREE_TYPE (fld);
13082 offset -= pos;
13083 }
13084 }
13085
13086 /* Returns true if X is a typedef decl. */
13087
13088 bool
13089 is_typedef_decl (const_tree x)
13090 {
13091 return (x && TREE_CODE (x) == TYPE_DECL
13092 && DECL_ORIGINAL_TYPE (x) != NULL_TREE);
13093 }
13094
13095 /* Returns true iff TYPE is a type variant created for a typedef. */
13096
13097 bool
13098 typedef_variant_p (const_tree type)
13099 {
13100 return is_typedef_decl (TYPE_NAME (type));
13101 }
13102
13103 /* PR 84195: Replace control characters in "unescaped" with their
13104 escaped equivalents. Allow newlines if -fmessage-length has
13105 been set to a non-zero value. This is done here, rather than
13106 where the attribute is recorded as the message length can
13107 change between these two locations. */
13108
13109 void
13110 escaped_string::escape (const char *unescaped)
13111 {
13112 char *escaped;
13113 size_t i, new_i, len;
13114
13115 if (m_owned)
13116 free (m_str);
13117
13118 m_str = const_cast<char *> (unescaped);
13119 m_owned = false;
13120
13121 if (unescaped == NULL || *unescaped == 0)
13122 return;
13123
13124 len = strlen (unescaped);
13125 escaped = NULL;
13126 new_i = 0;
13127
13128 for (i = 0; i < len; i++)
13129 {
13130 char c = unescaped[i];
13131
13132 if (!ISCNTRL (c))
13133 {
13134 if (escaped)
13135 escaped[new_i++] = c;
13136 continue;
13137 }
13138
13139 if (c != '\n' || !pp_is_wrapping_line (global_dc->printer))
13140 {
13141 if (escaped == NULL)
13142 {
13143 /* We only allocate space for a new string if we
13144 actually encounter a control character that
13145 needs replacing. */
13146 escaped = (char *) xmalloc (len * 2 + 1);
13147 strncpy (escaped, unescaped, i);
13148 new_i = i;
13149 }
13150
13151 escaped[new_i++] = '\\';
13152
13153 switch (c)
13154 {
13155 case '\a': escaped[new_i++] = 'a'; break;
13156 case '\b': escaped[new_i++] = 'b'; break;
13157 case '\f': escaped[new_i++] = 'f'; break;
13158 case '\n': escaped[new_i++] = 'n'; break;
13159 case '\r': escaped[new_i++] = 'r'; break;
13160 case '\t': escaped[new_i++] = 't'; break;
13161 case '\v': escaped[new_i++] = 'v'; break;
13162 default: escaped[new_i++] = '?'; break;
13163 }
13164 }
13165 else if (escaped)
13166 escaped[new_i++] = c;
13167 }
13168
13169 if (escaped)
13170 {
13171 escaped[new_i] = 0;
13172 m_str = escaped;
13173 m_owned = true;
13174 }
13175 }
13176
13177 /* Warn about a use of an identifier which was marked deprecated. Returns
13178 whether a warning was given. */
13179
13180 bool
13181 warn_deprecated_use (tree node, tree attr)
13182 {
13183 escaped_string msg;
13184
13185 if (node == 0 || !warn_deprecated_decl)
13186 return false;
13187
13188 if (!attr)
13189 {
13190 if (DECL_P (node))
13191 attr = DECL_ATTRIBUTES (node);
13192 else if (TYPE_P (node))
13193 {
13194 tree decl = TYPE_STUB_DECL (node);
13195 if (decl)
13196 attr = lookup_attribute ("deprecated",
13197 TYPE_ATTRIBUTES (TREE_TYPE (decl)));
13198 }
13199 }
13200
13201 if (attr)
13202 attr = lookup_attribute ("deprecated", attr);
13203
13204 if (attr)
13205 msg.escape (TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
13206
13207 bool w = false;
13208 if (DECL_P (node))
13209 {
13210 auto_diagnostic_group d;
13211 if (msg)
13212 w = warning (OPT_Wdeprecated_declarations,
13213 "%qD is deprecated: %s", node, (const char *) msg);
13214 else
13215 w = warning (OPT_Wdeprecated_declarations,
13216 "%qD is deprecated", node);
13217 if (w)
13218 inform (DECL_SOURCE_LOCATION (node), "declared here");
13219 }
13220 else if (TYPE_P (node))
13221 {
13222 tree what = NULL_TREE;
13223 tree decl = TYPE_STUB_DECL (node);
13224
13225 if (TYPE_NAME (node))
13226 {
13227 if (TREE_CODE (TYPE_NAME (node)) == IDENTIFIER_NODE)
13228 what = TYPE_NAME (node);
13229 else if (TREE_CODE (TYPE_NAME (node)) == TYPE_DECL
13230 && DECL_NAME (TYPE_NAME (node)))
13231 what = DECL_NAME (TYPE_NAME (node));
13232 }
13233
13234 auto_diagnostic_group d;
13235 if (what)
13236 {
13237 if (msg)
13238 w = warning (OPT_Wdeprecated_declarations,
13239 "%qE is deprecated: %s", what, (const char *) msg);
13240 else
13241 w = warning (OPT_Wdeprecated_declarations,
13242 "%qE is deprecated", what);
13243 }
13244 else
13245 {
13246 if (msg)
13247 w = warning (OPT_Wdeprecated_declarations,
13248 "type is deprecated: %s", (const char *) msg);
13249 else
13250 w = warning (OPT_Wdeprecated_declarations,
13251 "type is deprecated");
13252 }
13253
13254 if (w && decl)
13255 inform (DECL_SOURCE_LOCATION (decl), "declared here");
13256 }
13257
13258 return w;
13259 }
13260
13261 /* Return true if REF has a COMPONENT_REF with a bit-field field declaration
13262 somewhere in it. */
13263
13264 bool
13265 contains_bitfld_component_ref_p (const_tree ref)
13266 {
13267 while (handled_component_p (ref))
13268 {
13269 if (TREE_CODE (ref) == COMPONENT_REF
13270 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
13271 return true;
13272 ref = TREE_OPERAND (ref, 0);
13273 }
13274
13275 return false;
13276 }
13277
13278 /* Try to determine whether a TRY_CATCH expression can fall through.
13279 This is a subroutine of block_may_fallthru. */
13280
13281 static bool
13282 try_catch_may_fallthru (const_tree stmt)
13283 {
13284 tree_stmt_iterator i;
13285
13286 /* If the TRY block can fall through, the whole TRY_CATCH can
13287 fall through. */
13288 if (block_may_fallthru (TREE_OPERAND (stmt, 0)))
13289 return true;
13290
13291 i = tsi_start (TREE_OPERAND (stmt, 1));
13292 switch (TREE_CODE (tsi_stmt (i)))
13293 {
13294 case CATCH_EXPR:
13295 /* We expect to see a sequence of CATCH_EXPR trees, each with a
13296 catch expression and a body. The whole TRY_CATCH may fall
13297 through iff any of the catch bodies falls through. */
13298 for (; !tsi_end_p (i); tsi_next (&i))
13299 {
13300 if (block_may_fallthru (CATCH_BODY (tsi_stmt (i))))
13301 return true;
13302 }
13303 return false;
13304
13305 case EH_FILTER_EXPR:
13306 /* The exception filter expression only matters if there is an
13307 exception. If the exception does not match EH_FILTER_TYPES,
13308 we will execute EH_FILTER_FAILURE, and we will fall through
13309 if that falls through. If the exception does match
13310 EH_FILTER_TYPES, the stack unwinder will continue up the
13311 stack, so we will not fall through. We don't know whether we
13312 will throw an exception which matches EH_FILTER_TYPES or not,
13313 so we just ignore EH_FILTER_TYPES and assume that we might
13314 throw an exception which doesn't match. */
13315 return block_may_fallthru (EH_FILTER_FAILURE (tsi_stmt (i)));
13316
13317 default:
13318 /* This case represents statements to be executed when an
13319 exception occurs. Those statements are implicitly followed
13320 by a RESX statement to resume execution after the exception.
13321 So in this case the TRY_CATCH never falls through. */
13322 return false;
13323 }
13324 }
13325
13326 /* Try to determine if we can fall out of the bottom of BLOCK. This guess
13327 need not be 100% accurate; simply be conservative and return true if we
13328 don't know. This is used only to avoid stupidly generating extra code.
13329 If we're wrong, we'll just delete the extra code later. */
13330
13331 bool
13332 block_may_fallthru (const_tree block)
13333 {
13334 /* This CONST_CAST is okay because expr_last returns its argument
13335 unmodified and we assign it to a const_tree. */
13336 const_tree stmt = expr_last (CONST_CAST_TREE (block));
13337
13338 switch (stmt ? TREE_CODE (stmt) : ERROR_MARK)
13339 {
13340 case GOTO_EXPR:
13341 case RETURN_EXPR:
13342 /* Easy cases. If the last statement of the block implies
13343 control transfer, then we can't fall through. */
13344 return false;
13345
13346 case SWITCH_EXPR:
13347 /* If there is a default: label or case labels cover all possible
13348 SWITCH_COND values, then the SWITCH_EXPR will transfer control
13349 to some case label in all cases and all we care is whether the
13350 SWITCH_BODY falls through. */
13351 if (SWITCH_ALL_CASES_P (stmt))
13352 return block_may_fallthru (SWITCH_BODY (stmt));
13353 return true;
13354
13355 case COND_EXPR:
13356 if (block_may_fallthru (COND_EXPR_THEN (stmt)))
13357 return true;
13358 return block_may_fallthru (COND_EXPR_ELSE (stmt));
13359
13360 case BIND_EXPR:
13361 return block_may_fallthru (BIND_EXPR_BODY (stmt));
13362
13363 case TRY_CATCH_EXPR:
13364 return try_catch_may_fallthru (stmt);
13365
13366 case TRY_FINALLY_EXPR:
13367 /* The finally clause is always executed after the try clause,
13368 so if it does not fall through, then the try-finally will not
13369 fall through. Otherwise, if the try clause does not fall
13370 through, then when the finally clause falls through it will
13371 resume execution wherever the try clause was going. So the
13372 whole try-finally will only fall through if both the try
13373 clause and the finally clause fall through. */
13374 return (block_may_fallthru (TREE_OPERAND (stmt, 0))
13375 && block_may_fallthru (TREE_OPERAND (stmt, 1)));
13376
13377 case EH_ELSE_EXPR:
13378 return block_may_fallthru (TREE_OPERAND (stmt, 0));
13379
13380 case MODIFY_EXPR:
13381 if (TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR)
13382 stmt = TREE_OPERAND (stmt, 1);
13383 else
13384 return true;
13385 /* FALLTHRU */
13386
13387 case CALL_EXPR:
13388 /* Functions that do not return do not fall through. */
13389 return (call_expr_flags (stmt) & ECF_NORETURN) == 0;
13390
13391 case CLEANUP_POINT_EXPR:
13392 return block_may_fallthru (TREE_OPERAND (stmt, 0));
13393
13394 case TARGET_EXPR:
13395 return block_may_fallthru (TREE_OPERAND (stmt, 1));
13396
13397 case ERROR_MARK:
13398 return true;
13399
13400 default:
13401 return lang_hooks.block_may_fallthru (stmt);
13402 }
13403 }
13404
13405 /* True if we are using EH to handle cleanups. */
13406 static bool using_eh_for_cleanups_flag = false;
13407
13408 /* This routine is called from front ends to indicate eh should be used for
13409 cleanups. */
13410 void
13411 using_eh_for_cleanups (void)
13412 {
13413 using_eh_for_cleanups_flag = true;
13414 }
13415
13416 /* Query whether EH is used for cleanups. */
13417 bool
13418 using_eh_for_cleanups_p (void)
13419 {
13420 return using_eh_for_cleanups_flag;
13421 }
13422
13423 /* Wrapper for tree_code_name to ensure that tree code is valid */
13424 const char *
13425 get_tree_code_name (enum tree_code code)
13426 {
13427 const char *invalid = "<invalid tree code>";
13428
13429 /* The tree_code enum promotes to signed, but we could be getting
13430 invalid values, so force an unsigned comparison. */
13431 if (unsigned (code) >= MAX_TREE_CODES)
13432 {
13433 if (code == 0xa5a5)
13434 return "ggc_freed";
13435 return invalid;
13436 }
13437
13438 return tree_code_name[code];
13439 }
13440
13441 /* Drops the TREE_OVERFLOW flag from T. */
13442
13443 tree
13444 drop_tree_overflow (tree t)
13445 {
13446 gcc_checking_assert (TREE_OVERFLOW (t));
13447
13448 /* For tree codes with a sharing machinery re-build the result. */
13449 if (poly_int_tree_p (t))
13450 return wide_int_to_tree (TREE_TYPE (t), wi::to_poly_wide (t));
13451
13452 /* For VECTOR_CST, remove the overflow bits from the encoded elements
13453 and canonicalize the result. */
13454 if (TREE_CODE (t) == VECTOR_CST)
13455 {
13456 tree_vector_builder builder;
13457 builder.new_unary_operation (TREE_TYPE (t), t, true);
13458 unsigned int count = builder.encoded_nelts ();
13459 for (unsigned int i = 0; i < count; ++i)
13460 {
13461 tree elt = VECTOR_CST_ELT (t, i);
13462 if (TREE_OVERFLOW (elt))
13463 elt = drop_tree_overflow (elt);
13464 builder.quick_push (elt);
13465 }
13466 return builder.build ();
13467 }
13468
13469 /* Otherwise, as all tcc_constants are possibly shared, copy the node
13470 and drop the flag. */
13471 t = copy_node (t);
13472 TREE_OVERFLOW (t) = 0;
13473
13474 /* For constants that contain nested constants, drop the flag
13475 from those as well. */
13476 if (TREE_CODE (t) == COMPLEX_CST)
13477 {
13478 if (TREE_OVERFLOW (TREE_REALPART (t)))
13479 TREE_REALPART (t) = drop_tree_overflow (TREE_REALPART (t));
13480 if (TREE_OVERFLOW (TREE_IMAGPART (t)))
13481 TREE_IMAGPART (t) = drop_tree_overflow (TREE_IMAGPART (t));
13482 }
13483
13484 return t;
13485 }
13486
13487 /* Given a memory reference expression T, return its base address.
13488 The base address of a memory reference expression is the main
13489 object being referenced. For instance, the base address for
13490 'array[i].fld[j]' is 'array'. You can think of this as stripping
13491 away the offset part from a memory address.
13492
13493 This function calls handled_component_p to strip away all the inner
13494 parts of the memory reference until it reaches the base object. */
13495
13496 tree
13497 get_base_address (tree t)
13498 {
13499 while (handled_component_p (t))
13500 t = TREE_OPERAND (t, 0);
13501
13502 if ((TREE_CODE (t) == MEM_REF
13503 || TREE_CODE (t) == TARGET_MEM_REF)
13504 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR)
13505 t = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
13506
13507 /* ??? Either the alias oracle or all callers need to properly deal
13508 with WITH_SIZE_EXPRs before we can look through those. */
13509 if (TREE_CODE (t) == WITH_SIZE_EXPR)
13510 return NULL_TREE;
13511
13512 return t;
13513 }
13514
13515 /* Return a tree of sizetype representing the size, in bytes, of the element
13516 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
13517
13518 tree
13519 array_ref_element_size (tree exp)
13520 {
13521 tree aligned_size = TREE_OPERAND (exp, 3);
13522 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
13523 location_t loc = EXPR_LOCATION (exp);
13524
13525 /* If a size was specified in the ARRAY_REF, it's the size measured
13526 in alignment units of the element type. So multiply by that value. */
13527 if (aligned_size)
13528 {
13529 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
13530 sizetype from another type of the same width and signedness. */
13531 if (TREE_TYPE (aligned_size) != sizetype)
13532 aligned_size = fold_convert_loc (loc, sizetype, aligned_size);
13533 return size_binop_loc (loc, MULT_EXPR, aligned_size,
13534 size_int (TYPE_ALIGN_UNIT (elmt_type)));
13535 }
13536
13537 /* Otherwise, take the size from that of the element type. Substitute
13538 any PLACEHOLDER_EXPR that we have. */
13539 else
13540 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
13541 }
13542
13543 /* Return a tree representing the lower bound of the array mentioned in
13544 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
13545
13546 tree
13547 array_ref_low_bound (tree exp)
13548 {
13549 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
13550
13551 /* If a lower bound is specified in EXP, use it. */
13552 if (TREE_OPERAND (exp, 2))
13553 return TREE_OPERAND (exp, 2);
13554
13555 /* Otherwise, if there is a domain type and it has a lower bound, use it,
13556 substituting for a PLACEHOLDER_EXPR as needed. */
13557 if (domain_type && TYPE_MIN_VALUE (domain_type))
13558 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
13559
13560 /* Otherwise, return a zero of the appropriate type. */
13561 tree idxtype = TREE_TYPE (TREE_OPERAND (exp, 1));
13562 return (idxtype == error_mark_node
13563 ? integer_zero_node : build_int_cst (idxtype, 0));
13564 }
13565
13566 /* Return a tree representing the upper bound of the array mentioned in
13567 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
13568
13569 tree
13570 array_ref_up_bound (tree exp)
13571 {
13572 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
13573
13574 /* If there is a domain type and it has an upper bound, use it, substituting
13575 for a PLACEHOLDER_EXPR as needed. */
13576 if (domain_type && TYPE_MAX_VALUE (domain_type))
13577 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
13578
13579 /* Otherwise fail. */
13580 return NULL_TREE;
13581 }
13582
13583 /* Returns true if REF is an array reference, component reference,
13584 or memory reference to an array at the end of a structure.
13585 If this is the case, the array may be allocated larger
13586 than its upper bound implies. */
13587
13588 bool
13589 array_at_struct_end_p (tree ref)
13590 {
13591 tree atype;
13592
13593 if (TREE_CODE (ref) == ARRAY_REF
13594 || TREE_CODE (ref) == ARRAY_RANGE_REF)
13595 {
13596 atype = TREE_TYPE (TREE_OPERAND (ref, 0));
13597 ref = TREE_OPERAND (ref, 0);
13598 }
13599 else if (TREE_CODE (ref) == COMPONENT_REF
13600 && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 1))) == ARRAY_TYPE)
13601 atype = TREE_TYPE (TREE_OPERAND (ref, 1));
13602 else if (TREE_CODE (ref) == MEM_REF)
13603 {
13604 tree arg = TREE_OPERAND (ref, 0);
13605 if (TREE_CODE (arg) == ADDR_EXPR)
13606 arg = TREE_OPERAND (arg, 0);
13607 tree argtype = TREE_TYPE (arg);
13608 if (TREE_CODE (argtype) == RECORD_TYPE)
13609 {
13610 if (tree fld = last_field (argtype))
13611 {
13612 atype = TREE_TYPE (fld);
13613 if (TREE_CODE (atype) != ARRAY_TYPE)
13614 return false;
13615 if (VAR_P (arg) && DECL_SIZE (fld))
13616 return false;
13617 }
13618 else
13619 return false;
13620 }
13621 else
13622 return false;
13623 }
13624 else
13625 return false;
13626
13627 if (TREE_CODE (ref) == STRING_CST)
13628 return false;
13629
13630 tree ref_to_array = ref;
13631 while (handled_component_p (ref))
13632 {
13633 /* If the reference chain contains a component reference to a
13634 non-union type and there follows another field the reference
13635 is not at the end of a structure. */
13636 if (TREE_CODE (ref) == COMPONENT_REF)
13637 {
13638 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 0))) == RECORD_TYPE)
13639 {
13640 tree nextf = DECL_CHAIN (TREE_OPERAND (ref, 1));
13641 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
13642 nextf = DECL_CHAIN (nextf);
13643 if (nextf)
13644 return false;
13645 }
13646 }
13647 /* If we have a multi-dimensional array we do not consider
13648 a non-innermost dimension as flex array if the whole
13649 multi-dimensional array is at struct end.
13650 Same for an array of aggregates with a trailing array
13651 member. */
13652 else if (TREE_CODE (ref) == ARRAY_REF)
13653 return false;
13654 else if (TREE_CODE (ref) == ARRAY_RANGE_REF)
13655 ;
13656 /* If we view an underlying object as sth else then what we
13657 gathered up to now is what we have to rely on. */
13658 else if (TREE_CODE (ref) == VIEW_CONVERT_EXPR)
13659 break;
13660 else
13661 gcc_unreachable ();
13662
13663 ref = TREE_OPERAND (ref, 0);
13664 }
13665
13666 /* The array now is at struct end. Treat flexible arrays as
13667 always subject to extend, even into just padding constrained by
13668 an underlying decl. */
13669 if (! TYPE_SIZE (atype)
13670 || ! TYPE_DOMAIN (atype)
13671 || ! TYPE_MAX_VALUE (TYPE_DOMAIN (atype)))
13672 return true;
13673
13674 if (TREE_CODE (ref) == MEM_REF
13675 && TREE_CODE (TREE_OPERAND (ref, 0)) == ADDR_EXPR)
13676 ref = TREE_OPERAND (TREE_OPERAND (ref, 0), 0);
13677
13678 /* If the reference is based on a declared entity, the size of the array
13679 is constrained by its given domain. (Do not trust commons PR/69368). */
13680 if (DECL_P (ref)
13681 && !(flag_unconstrained_commons
13682 && VAR_P (ref) && DECL_COMMON (ref))
13683 && DECL_SIZE_UNIT (ref)
13684 && TREE_CODE (DECL_SIZE_UNIT (ref)) == INTEGER_CST)
13685 {
13686 /* Check whether the array domain covers all of the available
13687 padding. */
13688 poly_int64 offset;
13689 if (TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (atype))) != INTEGER_CST
13690 || TREE_CODE (TYPE_MAX_VALUE (TYPE_DOMAIN (atype))) != INTEGER_CST
13691 || TREE_CODE (TYPE_MIN_VALUE (TYPE_DOMAIN (atype))) != INTEGER_CST)
13692 return true;
13693 if (! get_addr_base_and_unit_offset (ref_to_array, &offset))
13694 return true;
13695
13696 /* If at least one extra element fits it is a flexarray. */
13697 if (known_le ((wi::to_offset (TYPE_MAX_VALUE (TYPE_DOMAIN (atype)))
13698 - wi::to_offset (TYPE_MIN_VALUE (TYPE_DOMAIN (atype)))
13699 + 2)
13700 * wi::to_offset (TYPE_SIZE_UNIT (TREE_TYPE (atype))),
13701 wi::to_offset (DECL_SIZE_UNIT (ref)) - offset))
13702 return true;
13703
13704 return false;
13705 }
13706
13707 return true;
13708 }
13709
13710 /* Return a tree representing the offset, in bytes, of the field referenced
13711 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
13712
13713 tree
13714 component_ref_field_offset (tree exp)
13715 {
13716 tree aligned_offset = TREE_OPERAND (exp, 2);
13717 tree field = TREE_OPERAND (exp, 1);
13718 location_t loc = EXPR_LOCATION (exp);
13719
13720 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
13721 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
13722 value. */
13723 if (aligned_offset)
13724 {
13725 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
13726 sizetype from another type of the same width and signedness. */
13727 if (TREE_TYPE (aligned_offset) != sizetype)
13728 aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset);
13729 return size_binop_loc (loc, MULT_EXPR, aligned_offset,
13730 size_int (DECL_OFFSET_ALIGN (field)
13731 / BITS_PER_UNIT));
13732 }
13733
13734 /* Otherwise, take the offset from that of the field. Substitute
13735 any PLACEHOLDER_EXPR that we have. */
13736 else
13737 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
13738 }
13739
13740 /* Given the initializer INIT, return the initializer for the field
13741 DECL if it exists, otherwise null. Used to obtain the initializer
13742 for a flexible array member and determine its size. */
13743
13744 static tree
13745 get_initializer_for (tree init, tree decl)
13746 {
13747 STRIP_NOPS (init);
13748
13749 tree fld, fld_init;
13750 unsigned HOST_WIDE_INT i;
13751 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), i, fld, fld_init)
13752 {
13753 if (decl == fld)
13754 return fld_init;
13755
13756 if (TREE_CODE (fld) == CONSTRUCTOR)
13757 {
13758 fld_init = get_initializer_for (fld_init, decl);
13759 if (fld_init)
13760 return fld_init;
13761 }
13762 }
13763
13764 return NULL_TREE;
13765 }
13766
13767 /* Determines the size of the member referenced by the COMPONENT_REF
13768 REF, using its initializer expression if necessary in order to
13769 determine the size of an initialized flexible array member.
13770 If non-null, set *ARK when REF refers to an interior zero-length
13771 array or a trailing one-element array.
13772 Returns the size as sizetype (which might be zero for an object
13773 with an uninitialized flexible array member) or null if the size
13774 cannot be determined. */
13775
13776 tree
13777 component_ref_size (tree ref, special_array_member *sam /* = NULL */)
13778 {
13779 gcc_assert (TREE_CODE (ref) == COMPONENT_REF);
13780
13781 special_array_member sambuf;
13782 if (!sam)
13783 sam = &sambuf;
13784 *sam = special_array_member::none;
13785
13786 /* The object/argument referenced by the COMPONENT_REF and its type. */
13787 tree arg = TREE_OPERAND (ref, 0);
13788 tree argtype = TREE_TYPE (arg);
13789 /* The referenced member. */
13790 tree member = TREE_OPERAND (ref, 1);
13791
13792 tree memsize = DECL_SIZE_UNIT (member);
13793 if (memsize)
13794 {
13795 tree memtype = TREE_TYPE (member);
13796 if (TREE_CODE (memtype) != ARRAY_TYPE)
13797 /* DECL_SIZE may be less than TYPE_SIZE in C++ when referring
13798 to the type of a class with a virtual base which doesn't
13799 reflect the size of the virtual's members (see pr97595).
13800 If that's the case fail for now and implement something
13801 more robust in the future. */
13802 return (tree_int_cst_equal (memsize, TYPE_SIZE_UNIT (memtype))
13803 ? memsize : NULL_TREE);
13804
13805 bool trailing = array_at_struct_end_p (ref);
13806 bool zero_length = integer_zerop (memsize);
13807 if (!trailing && !zero_length)
13808 /* MEMBER is either an interior array or is an array with
13809 more than one element. */
13810 return memsize;
13811
13812 if (zero_length)
13813 {
13814 if (trailing)
13815 *sam = special_array_member::trail_0;
13816 else
13817 {
13818 *sam = special_array_member::int_0;
13819 memsize = NULL_TREE;
13820 }
13821 }
13822
13823 if (!zero_length)
13824 if (tree dom = TYPE_DOMAIN (memtype))
13825 if (tree min = TYPE_MIN_VALUE (dom))
13826 if (tree max = TYPE_MAX_VALUE (dom))
13827 if (TREE_CODE (min) == INTEGER_CST
13828 && TREE_CODE (max) == INTEGER_CST)
13829 {
13830 offset_int minidx = wi::to_offset (min);
13831 offset_int maxidx = wi::to_offset (max);
13832 offset_int neltsm1 = maxidx - minidx;
13833 if (neltsm1 > 0)
13834 /* MEMBER is an array with more than one element. */
13835 return memsize;
13836
13837 if (neltsm1 == 0)
13838 *sam = special_array_member::trail_1;
13839 }
13840
13841 /* For a refernce to a zero- or one-element array member of a union
13842 use the size of the union instead of the size of the member. */
13843 if (TREE_CODE (argtype) == UNION_TYPE)
13844 memsize = TYPE_SIZE_UNIT (argtype);
13845 }
13846
13847 /* MEMBER is either a bona fide flexible array member, or a zero-length
13848 array member, or an array of length one treated as such. */
13849
13850 /* If the reference is to a declared object and the member a true
13851 flexible array, try to determine its size from its initializer. */
13852 poly_int64 baseoff = 0;
13853 tree base = get_addr_base_and_unit_offset (ref, &baseoff);
13854 if (!base || !VAR_P (base))
13855 {
13856 if (*sam != special_array_member::int_0)
13857 return NULL_TREE;
13858
13859 if (TREE_CODE (arg) != COMPONENT_REF)
13860 return NULL_TREE;
13861
13862 base = arg;
13863 while (TREE_CODE (base) == COMPONENT_REF)
13864 base = TREE_OPERAND (base, 0);
13865 baseoff = tree_to_poly_int64 (byte_position (TREE_OPERAND (ref, 1)));
13866 }
13867
13868 /* BASE is the declared object of which MEMBER is either a member
13869 or that is cast to ARGTYPE (e.g., a char buffer used to store
13870 an ARGTYPE object). */
13871 tree basetype = TREE_TYPE (base);
13872
13873 /* Determine the base type of the referenced object. If it's
13874 the same as ARGTYPE and MEMBER has a known size, return it. */
13875 tree bt = basetype;
13876 if (*sam != special_array_member::int_0)
13877 while (TREE_CODE (bt) == ARRAY_TYPE)
13878 bt = TREE_TYPE (bt);
13879 bool typematch = useless_type_conversion_p (argtype, bt);
13880 if (memsize && typematch)
13881 return memsize;
13882
13883 memsize = NULL_TREE;
13884
13885 if (typematch)
13886 /* MEMBER is a true flexible array member. Compute its size from
13887 the initializer of the BASE object if it has one. */
13888 if (tree init = DECL_P (base) ? DECL_INITIAL (base) : NULL_TREE)
13889 if (init != error_mark_node)
13890 {
13891 init = get_initializer_for (init, member);
13892 if (init)
13893 {
13894 memsize = TYPE_SIZE_UNIT (TREE_TYPE (init));
13895 if (tree refsize = TYPE_SIZE_UNIT (argtype))
13896 {
13897 /* Use the larger of the initializer size and the tail
13898 padding in the enclosing struct. */
13899 poly_int64 rsz = tree_to_poly_int64 (refsize);
13900 rsz -= baseoff;
13901 if (known_lt (tree_to_poly_int64 (memsize), rsz))
13902 memsize = wide_int_to_tree (TREE_TYPE (memsize), rsz);
13903 }
13904
13905 baseoff = 0;
13906 }
13907 }
13908
13909 if (!memsize)
13910 {
13911 if (typematch)
13912 {
13913 if (DECL_P (base)
13914 && DECL_EXTERNAL (base)
13915 && bt == basetype
13916 && *sam != special_array_member::int_0)
13917 /* The size of a flexible array member of an extern struct
13918 with no initializer cannot be determined (it's defined
13919 in another translation unit and can have an initializer
13920 with an arbitrary number of elements). */
13921 return NULL_TREE;
13922
13923 /* Use the size of the base struct or, for interior zero-length
13924 arrays, the size of the enclosing type. */
13925 memsize = TYPE_SIZE_UNIT (bt);
13926 }
13927 else if (DECL_P (base))
13928 /* Use the size of the BASE object (possibly an array of some
13929 other type such as char used to store the struct). */
13930 memsize = DECL_SIZE_UNIT (base);
13931 else
13932 return NULL_TREE;
13933 }
13934
13935 /* If the flexible array member has a known size use the greater
13936 of it and the tail padding in the enclosing struct.
13937 Otherwise, when the size of the flexible array member is unknown
13938 and the referenced object is not a struct, use the size of its
13939 type when known. This detects sizes of array buffers when cast
13940 to struct types with flexible array members. */
13941 if (memsize)
13942 {
13943 poly_int64 memsz64 = memsize ? tree_to_poly_int64 (memsize) : 0;
13944 if (known_lt (baseoff, memsz64))
13945 {
13946 memsz64 -= baseoff;
13947 return wide_int_to_tree (TREE_TYPE (memsize), memsz64);
13948 }
13949 return size_zero_node;
13950 }
13951
13952 /* Return "don't know" for an external non-array object since its
13953 flexible array member can be initialized to have any number of
13954 elements. Otherwise, return zero because the flexible array
13955 member has no elements. */
13956 return (DECL_P (base)
13957 && DECL_EXTERNAL (base)
13958 && (!typematch
13959 || TREE_CODE (basetype) != ARRAY_TYPE)
13960 ? NULL_TREE : size_zero_node);
13961 }
13962
13963 /* Return the machine mode of T. For vectors, returns the mode of the
13964 inner type. The main use case is to feed the result to HONOR_NANS,
13965 avoiding the BLKmode that a direct TYPE_MODE (T) might return. */
13966
13967 machine_mode
13968 element_mode (const_tree t)
13969 {
13970 if (!TYPE_P (t))
13971 t = TREE_TYPE (t);
13972 if (VECTOR_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
13973 t = TREE_TYPE (t);
13974 return TYPE_MODE (t);
13975 }
13976
13977 /* Vector types need to re-check the target flags each time we report
13978 the machine mode. We need to do this because attribute target can
13979 change the result of vector_mode_supported_p and have_regs_of_mode
13980 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
13981 change on a per-function basis. */
13982 /* ??? Possibly a better solution is to run through all the types
13983 referenced by a function and re-compute the TYPE_MODE once, rather
13984 than make the TYPE_MODE macro call a function. */
13985
13986 machine_mode
13987 vector_type_mode (const_tree t)
13988 {
13989 machine_mode mode;
13990
13991 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
13992
13993 mode = t->type_common.mode;
13994 if (VECTOR_MODE_P (mode)
13995 && (!targetm.vector_mode_supported_p (mode)
13996 || !have_regs_of_mode[mode]))
13997 {
13998 scalar_int_mode innermode;
13999
14000 /* For integers, try mapping it to a same-sized scalar mode. */
14001 if (is_int_mode (TREE_TYPE (t)->type_common.mode, &innermode))
14002 {
14003 poly_int64 size = (TYPE_VECTOR_SUBPARTS (t)
14004 * GET_MODE_BITSIZE (innermode));
14005 scalar_int_mode mode;
14006 if (int_mode_for_size (size, 0).exists (&mode)
14007 && have_regs_of_mode[mode])
14008 return mode;
14009 }
14010
14011 return BLKmode;
14012 }
14013
14014 return mode;
14015 }
14016
14017 /* Return the size in bits of each element of vector type TYPE. */
14018
14019 unsigned int
14020 vector_element_bits (const_tree type)
14021 {
14022 gcc_checking_assert (VECTOR_TYPE_P (type));
14023 if (VECTOR_BOOLEAN_TYPE_P (type))
14024 return vector_element_size (tree_to_poly_uint64 (TYPE_SIZE (type)),
14025 TYPE_VECTOR_SUBPARTS (type));
14026 return tree_to_uhwi (TYPE_SIZE (TREE_TYPE (type)));
14027 }
14028
14029 /* Calculate the size in bits of each element of vector type TYPE
14030 and return the result as a tree of type bitsizetype. */
14031
14032 tree
14033 vector_element_bits_tree (const_tree type)
14034 {
14035 gcc_checking_assert (VECTOR_TYPE_P (type));
14036 if (VECTOR_BOOLEAN_TYPE_P (type))
14037 return bitsize_int (vector_element_bits (type));
14038 return TYPE_SIZE (TREE_TYPE (type));
14039 }
14040
14041 /* Verify that basic properties of T match TV and thus T can be a variant of
14042 TV. TV should be the more specified variant (i.e. the main variant). */
14043
14044 static bool
14045 verify_type_variant (const_tree t, tree tv)
14046 {
14047 /* Type variant can differ by:
14048
14049 - TYPE_QUALS: TYPE_READONLY, TYPE_VOLATILE, TYPE_ATOMIC, TYPE_RESTRICT,
14050 ENCODE_QUAL_ADDR_SPACE.
14051 - main variant may be TYPE_COMPLETE_P and variant types !TYPE_COMPLETE_P
14052 in this case some values may not be set in the variant types
14053 (see TYPE_COMPLETE_P checks).
14054 - it is possible to have TYPE_ARTIFICIAL variant of non-artifical type
14055 - by TYPE_NAME and attributes (i.e. when variant originate by typedef)
14056 - TYPE_CANONICAL (TYPE_ALIAS_SET is the same among variants)
14057 - by the alignment: TYPE_ALIGN and TYPE_USER_ALIGN
14058 - during LTO by TYPE_CONTEXT if type is TYPE_FILE_SCOPE_P
14059 this is necessary to make it possible to merge types form different TUs
14060 - arrays, pointers and references may have TREE_TYPE that is a variant
14061 of TREE_TYPE of their main variants.
14062 - aggregates may have new TYPE_FIELDS list that list variants of
14063 the main variant TYPE_FIELDS.
14064 - vector types may differ by TYPE_VECTOR_OPAQUE
14065 */
14066
14067 /* Convenience macro for matching individual fields. */
14068 #define verify_variant_match(flag) \
14069 do { \
14070 if (flag (tv) != flag (t)) \
14071 { \
14072 error ("type variant differs by %s", #flag); \
14073 debug_tree (tv); \
14074 return false; \
14075 } \
14076 } while (false)
14077
14078 /* tree_base checks. */
14079
14080 verify_variant_match (TREE_CODE);
14081 /* FIXME: Ada builds non-artificial variants of artificial types. */
14082 if (TYPE_ARTIFICIAL (tv) && 0)
14083 verify_variant_match (TYPE_ARTIFICIAL);
14084 if (POINTER_TYPE_P (tv))
14085 verify_variant_match (TYPE_REF_CAN_ALIAS_ALL);
14086 /* FIXME: TYPE_SIZES_GIMPLIFIED may differs for Ada build. */
14087 verify_variant_match (TYPE_UNSIGNED);
14088 verify_variant_match (TYPE_PACKED);
14089 if (TREE_CODE (t) == REFERENCE_TYPE)
14090 verify_variant_match (TYPE_REF_IS_RVALUE);
14091 if (AGGREGATE_TYPE_P (t))
14092 verify_variant_match (TYPE_REVERSE_STORAGE_ORDER);
14093 else
14094 verify_variant_match (TYPE_SATURATING);
14095 /* FIXME: This check trigger during libstdc++ build. */
14096 if (RECORD_OR_UNION_TYPE_P (t) && COMPLETE_TYPE_P (t) && 0)
14097 verify_variant_match (TYPE_FINAL_P);
14098
14099 /* tree_type_common checks. */
14100
14101 if (COMPLETE_TYPE_P (t))
14102 {
14103 verify_variant_match (TYPE_MODE);
14104 if (TREE_CODE (TYPE_SIZE (t)) != PLACEHOLDER_EXPR
14105 && TREE_CODE (TYPE_SIZE (tv)) != PLACEHOLDER_EXPR)
14106 verify_variant_match (TYPE_SIZE);
14107 if (TREE_CODE (TYPE_SIZE_UNIT (t)) != PLACEHOLDER_EXPR
14108 && TREE_CODE (TYPE_SIZE_UNIT (tv)) != PLACEHOLDER_EXPR
14109 && TYPE_SIZE_UNIT (t) != TYPE_SIZE_UNIT (tv))
14110 {
14111 gcc_assert (!operand_equal_p (TYPE_SIZE_UNIT (t),
14112 TYPE_SIZE_UNIT (tv), 0));
14113 error ("type variant has different %<TYPE_SIZE_UNIT%>");
14114 debug_tree (tv);
14115 error ("type variant%'s %<TYPE_SIZE_UNIT%>");
14116 debug_tree (TYPE_SIZE_UNIT (tv));
14117 error ("type%'s %<TYPE_SIZE_UNIT%>");
14118 debug_tree (TYPE_SIZE_UNIT (t));
14119 return false;
14120 }
14121 verify_variant_match (TYPE_NEEDS_CONSTRUCTING);
14122 }
14123 verify_variant_match (TYPE_PRECISION);
14124 if (RECORD_OR_UNION_TYPE_P (t))
14125 verify_variant_match (TYPE_TRANSPARENT_AGGR);
14126 else if (TREE_CODE (t) == ARRAY_TYPE)
14127 verify_variant_match (TYPE_NONALIASED_COMPONENT);
14128 /* During LTO we merge variant lists from diferent translation units
14129 that may differ BY TYPE_CONTEXT that in turn may point
14130 to TRANSLATION_UNIT_DECL.
14131 Ada also builds variants of types with different TYPE_CONTEXT. */
14132 if ((!in_lto_p || !TYPE_FILE_SCOPE_P (t)) && 0)
14133 verify_variant_match (TYPE_CONTEXT);
14134 if (TREE_CODE (t) == ARRAY_TYPE || TREE_CODE (t) == INTEGER_TYPE)
14135 verify_variant_match (TYPE_STRING_FLAG);
14136 if (TREE_CODE (t) == RECORD_TYPE || TREE_CODE (t) == UNION_TYPE)
14137 verify_variant_match (TYPE_CXX_ODR_P);
14138 if (TYPE_ALIAS_SET_KNOWN_P (t))
14139 {
14140 error ("type variant with %<TYPE_ALIAS_SET_KNOWN_P%>");
14141 debug_tree (tv);
14142 return false;
14143 }
14144
14145 /* tree_type_non_common checks. */
14146
14147 /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
14148 and dangle the pointer from time to time. */
14149 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_VFIELD (t) != TYPE_VFIELD (tv)
14150 && (in_lto_p || !TYPE_VFIELD (tv)
14151 || TREE_CODE (TYPE_VFIELD (tv)) != TREE_LIST))
14152 {
14153 error ("type variant has different %<TYPE_VFIELD%>");
14154 debug_tree (tv);
14155 return false;
14156 }
14157 if ((TREE_CODE (t) == ENUMERAL_TYPE && COMPLETE_TYPE_P (t))
14158 || TREE_CODE (t) == INTEGER_TYPE
14159 || TREE_CODE (t) == BOOLEAN_TYPE
14160 || TREE_CODE (t) == REAL_TYPE
14161 || TREE_CODE (t) == FIXED_POINT_TYPE)
14162 {
14163 verify_variant_match (TYPE_MAX_VALUE);
14164 verify_variant_match (TYPE_MIN_VALUE);
14165 }
14166 if (TREE_CODE (t) == METHOD_TYPE)
14167 verify_variant_match (TYPE_METHOD_BASETYPE);
14168 if (TREE_CODE (t) == OFFSET_TYPE)
14169 verify_variant_match (TYPE_OFFSET_BASETYPE);
14170 if (TREE_CODE (t) == ARRAY_TYPE)
14171 verify_variant_match (TYPE_ARRAY_MAX_SIZE);
14172 /* FIXME: Be lax and allow TYPE_BINFO to be missing in variant types
14173 or even type's main variant. This is needed to make bootstrap pass
14174 and the bug seems new in GCC 5.
14175 C++ FE should be updated to make this consistent and we should check
14176 that TYPE_BINFO is always NULL for !COMPLETE_TYPE_P and otherwise there
14177 is a match with main variant.
14178
14179 Also disable the check for Java for now because of parser hack that builds
14180 first an dummy BINFO and then sometimes replace it by real BINFO in some
14181 of the copies. */
14182 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t) && TYPE_BINFO (tv)
14183 && TYPE_BINFO (t) != TYPE_BINFO (tv)
14184 /* FIXME: Java sometimes keep dump TYPE_BINFOs on variant types.
14185 Since there is no cheap way to tell C++/Java type w/o LTO, do checking
14186 at LTO time only. */
14187 && (in_lto_p && odr_type_p (t)))
14188 {
14189 error ("type variant has different %<TYPE_BINFO%>");
14190 debug_tree (tv);
14191 error ("type variant%'s %<TYPE_BINFO%>");
14192 debug_tree (TYPE_BINFO (tv));
14193 error ("type%'s %<TYPE_BINFO%>");
14194 debug_tree (TYPE_BINFO (t));
14195 return false;
14196 }
14197
14198 /* Check various uses of TYPE_VALUES_RAW. */
14199 if (TREE_CODE (t) == ENUMERAL_TYPE
14200 && TYPE_VALUES (t))
14201 verify_variant_match (TYPE_VALUES);
14202 else if (TREE_CODE (t) == ARRAY_TYPE)
14203 verify_variant_match (TYPE_DOMAIN);
14204 /* Permit incomplete variants of complete type. While FEs may complete
14205 all variants, this does not happen for C++ templates in all cases. */
14206 else if (RECORD_OR_UNION_TYPE_P (t)
14207 && COMPLETE_TYPE_P (t)
14208 && TYPE_FIELDS (t) != TYPE_FIELDS (tv))
14209 {
14210 tree f1, f2;
14211
14212 /* Fortran builds qualified variants as new records with items of
14213 qualified type. Verify that they looks same. */
14214 for (f1 = TYPE_FIELDS (t), f2 = TYPE_FIELDS (tv);
14215 f1 && f2;
14216 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
14217 if (TREE_CODE (f1) != FIELD_DECL || TREE_CODE (f2) != FIELD_DECL
14218 || (TYPE_MAIN_VARIANT (TREE_TYPE (f1))
14219 != TYPE_MAIN_VARIANT (TREE_TYPE (f2))
14220 /* FIXME: gfc_nonrestricted_type builds all types as variants
14221 with exception of pointer types. It deeply copies the type
14222 which means that we may end up with a variant type
14223 referring non-variant pointer. We may change it to
14224 produce types as variants, too, like
14225 objc_get_protocol_qualified_type does. */
14226 && !POINTER_TYPE_P (TREE_TYPE (f1)))
14227 || DECL_FIELD_OFFSET (f1) != DECL_FIELD_OFFSET (f2)
14228 || DECL_FIELD_BIT_OFFSET (f1) != DECL_FIELD_BIT_OFFSET (f2))
14229 break;
14230 if (f1 || f2)
14231 {
14232 error ("type variant has different %<TYPE_FIELDS%>");
14233 debug_tree (tv);
14234 error ("first mismatch is field");
14235 debug_tree (f1);
14236 error ("and field");
14237 debug_tree (f2);
14238 return false;
14239 }
14240 }
14241 else if ((TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE))
14242 verify_variant_match (TYPE_ARG_TYPES);
14243 /* For C++ the qualified variant of array type is really an array type
14244 of qualified TREE_TYPE.
14245 objc builds variants of pointer where pointer to type is a variant, too
14246 in objc_get_protocol_qualified_type. */
14247 if (TREE_TYPE (t) != TREE_TYPE (tv)
14248 && ((TREE_CODE (t) != ARRAY_TYPE
14249 && !POINTER_TYPE_P (t))
14250 || TYPE_MAIN_VARIANT (TREE_TYPE (t))
14251 != TYPE_MAIN_VARIANT (TREE_TYPE (tv))))
14252 {
14253 error ("type variant has different %<TREE_TYPE%>");
14254 debug_tree (tv);
14255 error ("type variant%'s %<TREE_TYPE%>");
14256 debug_tree (TREE_TYPE (tv));
14257 error ("type%'s %<TREE_TYPE%>");
14258 debug_tree (TREE_TYPE (t));
14259 return false;
14260 }
14261 if (type_with_alias_set_p (t)
14262 && !gimple_canonical_types_compatible_p (t, tv, false))
14263 {
14264 error ("type is not compatible with its variant");
14265 debug_tree (tv);
14266 error ("type variant%'s %<TREE_TYPE%>");
14267 debug_tree (TREE_TYPE (tv));
14268 error ("type%'s %<TREE_TYPE%>");
14269 debug_tree (TREE_TYPE (t));
14270 return false;
14271 }
14272 return true;
14273 #undef verify_variant_match
14274 }
14275
14276
14277 /* The TYPE_CANONICAL merging machinery. It should closely resemble
14278 the middle-end types_compatible_p function. It needs to avoid
14279 claiming types are different for types that should be treated
14280 the same with respect to TBAA. Canonical types are also used
14281 for IL consistency checks via the useless_type_conversion_p
14282 predicate which does not handle all type kinds itself but falls
14283 back to pointer-comparison of TYPE_CANONICAL for aggregates
14284 for example. */
14285
14286 /* Return true if TYPE_UNSIGNED of TYPE should be ignored for canonical
14287 type calculation because we need to allow inter-operability between signed
14288 and unsigned variants. */
14289
14290 bool
14291 type_with_interoperable_signedness (const_tree type)
14292 {
14293 /* Fortran standard require C_SIGNED_CHAR to be interoperable with both
14294 signed char and unsigned char. Similarly fortran FE builds
14295 C_SIZE_T as signed type, while C defines it unsigned. */
14296
14297 return tree_code_for_canonical_type_merging (TREE_CODE (type))
14298 == INTEGER_TYPE
14299 && (TYPE_PRECISION (type) == TYPE_PRECISION (signed_char_type_node)
14300 || TYPE_PRECISION (type) == TYPE_PRECISION (size_type_node));
14301 }
14302
14303 /* Return true iff T1 and T2 are structurally identical for what
14304 TBAA is concerned.
14305 This function is used both by lto.c canonical type merging and by the
14306 verifier. If TRUST_TYPE_CANONICAL we do not look into structure of types
14307 that have TYPE_CANONICAL defined and assume them equivalent. This is useful
14308 only for LTO because only in these cases TYPE_CANONICAL equivalence
14309 correspond to one defined by gimple_canonical_types_compatible_p. */
14310
14311 bool
14312 gimple_canonical_types_compatible_p (const_tree t1, const_tree t2,
14313 bool trust_type_canonical)
14314 {
14315 /* Type variants should be same as the main variant. When not doing sanity
14316 checking to verify this fact, go to main variants and save some work. */
14317 if (trust_type_canonical)
14318 {
14319 t1 = TYPE_MAIN_VARIANT (t1);
14320 t2 = TYPE_MAIN_VARIANT (t2);
14321 }
14322
14323 /* Check first for the obvious case of pointer identity. */
14324 if (t1 == t2)
14325 return true;
14326
14327 /* Check that we have two types to compare. */
14328 if (t1 == NULL_TREE || t2 == NULL_TREE)
14329 return false;
14330
14331 /* We consider complete types always compatible with incomplete type.
14332 This does not make sense for canonical type calculation and thus we
14333 need to ensure that we are never called on it.
14334
14335 FIXME: For more correctness the function probably should have three modes
14336 1) mode assuming that types are complete mathcing their structure
14337 2) mode allowing incomplete types but producing equivalence classes
14338 and thus ignoring all info from complete types
14339 3) mode allowing incomplete types to match complete but checking
14340 compatibility between complete types.
14341
14342 1 and 2 can be used for canonical type calculation. 3 is the real
14343 definition of type compatibility that can be used i.e. for warnings during
14344 declaration merging. */
14345
14346 gcc_assert (!trust_type_canonical
14347 || (type_with_alias_set_p (t1) && type_with_alias_set_p (t2)));
14348
14349 /* If the types have been previously registered and found equal
14350 they still are. */
14351
14352 if (TYPE_CANONICAL (t1) && TYPE_CANONICAL (t2)
14353 && trust_type_canonical)
14354 {
14355 /* Do not use TYPE_CANONICAL of pointer types. For LTO streamed types
14356 they are always NULL, but they are set to non-NULL for types
14357 constructed by build_pointer_type and variants. In this case the
14358 TYPE_CANONICAL is more fine grained than the equivalnce we test (where
14359 all pointers are considered equal. Be sure to not return false
14360 negatives. */
14361 gcc_checking_assert (canonical_type_used_p (t1)
14362 && canonical_type_used_p (t2));
14363 return TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2);
14364 }
14365
14366 /* For types where we do ODR based TBAA the canonical type is always
14367 set correctly, so we know that types are different if their
14368 canonical types does not match. */
14369 if (trust_type_canonical
14370 && (odr_type_p (t1) && odr_based_tbaa_p (t1))
14371 != (odr_type_p (t2) && odr_based_tbaa_p (t2)))
14372 return false;
14373
14374 /* Can't be the same type if the types don't have the same code. */
14375 enum tree_code code = tree_code_for_canonical_type_merging (TREE_CODE (t1));
14376 if (code != tree_code_for_canonical_type_merging (TREE_CODE (t2)))
14377 return false;
14378
14379 /* Qualifiers do not matter for canonical type comparison purposes. */
14380
14381 /* Void types and nullptr types are always the same. */
14382 if (TREE_CODE (t1) == VOID_TYPE
14383 || TREE_CODE (t1) == NULLPTR_TYPE)
14384 return true;
14385
14386 /* Can't be the same type if they have different mode. */
14387 if (TYPE_MODE (t1) != TYPE_MODE (t2))
14388 return false;
14389
14390 /* Non-aggregate types can be handled cheaply. */
14391 if (INTEGRAL_TYPE_P (t1)
14392 || SCALAR_FLOAT_TYPE_P (t1)
14393 || FIXED_POINT_TYPE_P (t1)
14394 || TREE_CODE (t1) == VECTOR_TYPE
14395 || TREE_CODE (t1) == COMPLEX_TYPE
14396 || TREE_CODE (t1) == OFFSET_TYPE
14397 || POINTER_TYPE_P (t1))
14398 {
14399 /* Can't be the same type if they have different recision. */
14400 if (TYPE_PRECISION (t1) != TYPE_PRECISION (t2))
14401 return false;
14402
14403 /* In some cases the signed and unsigned types are required to be
14404 inter-operable. */
14405 if (TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2)
14406 && !type_with_interoperable_signedness (t1))
14407 return false;
14408
14409 /* Fortran's C_SIGNED_CHAR is !TYPE_STRING_FLAG but needs to be
14410 interoperable with "signed char". Unless all frontends are revisited
14411 to agree on these types, we must ignore the flag completely. */
14412
14413 /* Fortran standard define C_PTR type that is compatible with every
14414 C pointer. For this reason we need to glob all pointers into one.
14415 Still pointers in different address spaces are not compatible. */
14416 if (POINTER_TYPE_P (t1))
14417 {
14418 if (TYPE_ADDR_SPACE (TREE_TYPE (t1))
14419 != TYPE_ADDR_SPACE (TREE_TYPE (t2)))
14420 return false;
14421 }
14422
14423 /* Tail-recurse to components. */
14424 if (TREE_CODE (t1) == VECTOR_TYPE
14425 || TREE_CODE (t1) == COMPLEX_TYPE)
14426 return gimple_canonical_types_compatible_p (TREE_TYPE (t1),
14427 TREE_TYPE (t2),
14428 trust_type_canonical);
14429
14430 return true;
14431 }
14432
14433 /* Do type-specific comparisons. */
14434 switch (TREE_CODE (t1))
14435 {
14436 case ARRAY_TYPE:
14437 /* Array types are the same if the element types are the same and
14438 the number of elements are the same. */
14439 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2),
14440 trust_type_canonical)
14441 || TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
14442 || TYPE_REVERSE_STORAGE_ORDER (t1) != TYPE_REVERSE_STORAGE_ORDER (t2)
14443 || TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
14444 return false;
14445 else
14446 {
14447 tree i1 = TYPE_DOMAIN (t1);
14448 tree i2 = TYPE_DOMAIN (t2);
14449
14450 /* For an incomplete external array, the type domain can be
14451 NULL_TREE. Check this condition also. */
14452 if (i1 == NULL_TREE && i2 == NULL_TREE)
14453 return true;
14454 else if (i1 == NULL_TREE || i2 == NULL_TREE)
14455 return false;
14456 else
14457 {
14458 tree min1 = TYPE_MIN_VALUE (i1);
14459 tree min2 = TYPE_MIN_VALUE (i2);
14460 tree max1 = TYPE_MAX_VALUE (i1);
14461 tree max2 = TYPE_MAX_VALUE (i2);
14462
14463 /* The minimum/maximum values have to be the same. */
14464 if ((min1 == min2
14465 || (min1 && min2
14466 && ((TREE_CODE (min1) == PLACEHOLDER_EXPR
14467 && TREE_CODE (min2) == PLACEHOLDER_EXPR)
14468 || operand_equal_p (min1, min2, 0))))
14469 && (max1 == max2
14470 || (max1 && max2
14471 && ((TREE_CODE (max1) == PLACEHOLDER_EXPR
14472 && TREE_CODE (max2) == PLACEHOLDER_EXPR)
14473 || operand_equal_p (max1, max2, 0)))))
14474 return true;
14475 else
14476 return false;
14477 }
14478 }
14479
14480 case METHOD_TYPE:
14481 case FUNCTION_TYPE:
14482 /* Function types are the same if the return type and arguments types
14483 are the same. */
14484 if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2),
14485 trust_type_canonical))
14486 return false;
14487
14488 if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
14489 return true;
14490 else
14491 {
14492 tree parms1, parms2;
14493
14494 for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
14495 parms1 && parms2;
14496 parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
14497 {
14498 if (!gimple_canonical_types_compatible_p
14499 (TREE_VALUE (parms1), TREE_VALUE (parms2),
14500 trust_type_canonical))
14501 return false;
14502 }
14503
14504 if (parms1 || parms2)
14505 return false;
14506
14507 return true;
14508 }
14509
14510 case RECORD_TYPE:
14511 case UNION_TYPE:
14512 case QUAL_UNION_TYPE:
14513 {
14514 tree f1, f2;
14515
14516 /* Don't try to compare variants of an incomplete type, before
14517 TYPE_FIELDS has been copied around. */
14518 if (!COMPLETE_TYPE_P (t1) && !COMPLETE_TYPE_P (t2))
14519 return true;
14520
14521
14522 if (TYPE_REVERSE_STORAGE_ORDER (t1) != TYPE_REVERSE_STORAGE_ORDER (t2))
14523 return false;
14524
14525 /* For aggregate types, all the fields must be the same. */
14526 for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
14527 f1 || f2;
14528 f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
14529 {
14530 /* Skip non-fields and zero-sized fields. */
14531 while (f1 && (TREE_CODE (f1) != FIELD_DECL
14532 || (DECL_SIZE (f1)
14533 && integer_zerop (DECL_SIZE (f1)))))
14534 f1 = TREE_CHAIN (f1);
14535 while (f2 && (TREE_CODE (f2) != FIELD_DECL
14536 || (DECL_SIZE (f2)
14537 && integer_zerop (DECL_SIZE (f2)))))
14538 f2 = TREE_CHAIN (f2);
14539 if (!f1 || !f2)
14540 break;
14541 /* The fields must have the same name, offset and type. */
14542 if (DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
14543 || !gimple_compare_field_offset (f1, f2)
14544 || !gimple_canonical_types_compatible_p
14545 (TREE_TYPE (f1), TREE_TYPE (f2),
14546 trust_type_canonical))
14547 return false;
14548 }
14549
14550 /* If one aggregate has more fields than the other, they
14551 are not the same. */
14552 if (f1 || f2)
14553 return false;
14554
14555 return true;
14556 }
14557
14558 default:
14559 /* Consider all types with language specific trees in them mutually
14560 compatible. This is executed only from verify_type and false
14561 positives can be tolerated. */
14562 gcc_assert (!in_lto_p);
14563 return true;
14564 }
14565 }
14566
14567 /* Verify type T. */
14568
14569 void
14570 verify_type (const_tree t)
14571 {
14572 bool error_found = false;
14573 tree mv = TYPE_MAIN_VARIANT (t);
14574 if (!mv)
14575 {
14576 error ("main variant is not defined");
14577 error_found = true;
14578 }
14579 else if (mv != TYPE_MAIN_VARIANT (mv))
14580 {
14581 error ("%<TYPE_MAIN_VARIANT%> has different %<TYPE_MAIN_VARIANT%>");
14582 debug_tree (mv);
14583 error_found = true;
14584 }
14585 else if (t != mv && !verify_type_variant (t, mv))
14586 error_found = true;
14587
14588 tree ct = TYPE_CANONICAL (t);
14589 if (!ct)
14590 ;
14591 else if (TYPE_CANONICAL (t) != ct)
14592 {
14593 error ("%<TYPE_CANONICAL%> has different %<TYPE_CANONICAL%>");
14594 debug_tree (ct);
14595 error_found = true;
14596 }
14597 /* Method and function types cannot be used to address memory and thus
14598 TYPE_CANONICAL really matters only for determining useless conversions.
14599
14600 FIXME: C++ FE produce declarations of builtin functions that are not
14601 compatible with main variants. */
14602 else if (TREE_CODE (t) == FUNCTION_TYPE)
14603 ;
14604 else if (t != ct
14605 /* FIXME: gimple_canonical_types_compatible_p cannot compare types
14606 with variably sized arrays because their sizes possibly
14607 gimplified to different variables. */
14608 && !variably_modified_type_p (ct, NULL)
14609 && !gimple_canonical_types_compatible_p (t, ct, false)
14610 && COMPLETE_TYPE_P (t))
14611 {
14612 error ("%<TYPE_CANONICAL%> is not compatible");
14613 debug_tree (ct);
14614 error_found = true;
14615 }
14616
14617 if (COMPLETE_TYPE_P (t) && TYPE_CANONICAL (t)
14618 && TYPE_MODE (t) != TYPE_MODE (TYPE_CANONICAL (t)))
14619 {
14620 error ("%<TYPE_MODE%> of %<TYPE_CANONICAL%> is not compatible");
14621 debug_tree (ct);
14622 error_found = true;
14623 }
14624 if (TYPE_MAIN_VARIANT (t) == t && ct && TYPE_MAIN_VARIANT (ct) != ct)
14625 {
14626 error ("%<TYPE_CANONICAL%> of main variant is not main variant");
14627 debug_tree (ct);
14628 debug_tree (TYPE_MAIN_VARIANT (ct));
14629 error_found = true;
14630 }
14631
14632
14633 /* Check various uses of TYPE_MIN_VALUE_RAW. */
14634 if (RECORD_OR_UNION_TYPE_P (t))
14635 {
14636 /* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
14637 and danagle the pointer from time to time. */
14638 if (TYPE_VFIELD (t)
14639 && TREE_CODE (TYPE_VFIELD (t)) != FIELD_DECL
14640 && TREE_CODE (TYPE_VFIELD (t)) != TREE_LIST)
14641 {
14642 error ("%<TYPE_VFIELD%> is not %<FIELD_DECL%> nor %<TREE_LIST%>");
14643 debug_tree (TYPE_VFIELD (t));
14644 error_found = true;
14645 }
14646 }
14647 else if (TREE_CODE (t) == POINTER_TYPE)
14648 {
14649 if (TYPE_NEXT_PTR_TO (t)
14650 && TREE_CODE (TYPE_NEXT_PTR_TO (t)) != POINTER_TYPE)
14651 {
14652 error ("%<TYPE_NEXT_PTR_TO%> is not %<POINTER_TYPE%>");
14653 debug_tree (TYPE_NEXT_PTR_TO (t));
14654 error_found = true;
14655 }
14656 }
14657 else if (TREE_CODE (t) == REFERENCE_TYPE)
14658 {
14659 if (TYPE_NEXT_REF_TO (t)
14660 && TREE_CODE (TYPE_NEXT_REF_TO (t)) != REFERENCE_TYPE)
14661 {
14662 error ("%<TYPE_NEXT_REF_TO%> is not %<REFERENCE_TYPE%>");
14663 debug_tree (TYPE_NEXT_REF_TO (t));
14664 error_found = true;
14665 }
14666 }
14667 else if (INTEGRAL_TYPE_P (t) || TREE_CODE (t) == REAL_TYPE
14668 || TREE_CODE (t) == FIXED_POINT_TYPE)
14669 {
14670 /* FIXME: The following check should pass:
14671 useless_type_conversion_p (const_cast <tree> (t),
14672 TREE_TYPE (TYPE_MIN_VALUE (t))
14673 but does not for C sizetypes in LTO. */
14674 }
14675
14676 /* Check various uses of TYPE_MAXVAL_RAW. */
14677 if (RECORD_OR_UNION_TYPE_P (t))
14678 {
14679 if (!TYPE_BINFO (t))
14680 ;
14681 else if (TREE_CODE (TYPE_BINFO (t)) != TREE_BINFO)
14682 {
14683 error ("%<TYPE_BINFO%> is not %<TREE_BINFO%>");
14684 debug_tree (TYPE_BINFO (t));
14685 error_found = true;
14686 }
14687 else if (TREE_TYPE (TYPE_BINFO (t)) != TYPE_MAIN_VARIANT (t))
14688 {
14689 error ("%<TYPE_BINFO%> type is not %<TYPE_MAIN_VARIANT%>");
14690 debug_tree (TREE_TYPE (TYPE_BINFO (t)));
14691 error_found = true;
14692 }
14693 }
14694 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
14695 {
14696 if (TYPE_METHOD_BASETYPE (t)
14697 && TREE_CODE (TYPE_METHOD_BASETYPE (t)) != RECORD_TYPE
14698 && TREE_CODE (TYPE_METHOD_BASETYPE (t)) != UNION_TYPE)
14699 {
14700 error ("%<TYPE_METHOD_BASETYPE%> is not record nor union");
14701 debug_tree (TYPE_METHOD_BASETYPE (t));
14702 error_found = true;
14703 }
14704 }
14705 else if (TREE_CODE (t) == OFFSET_TYPE)
14706 {
14707 if (TYPE_OFFSET_BASETYPE (t)
14708 && TREE_CODE (TYPE_OFFSET_BASETYPE (t)) != RECORD_TYPE
14709 && TREE_CODE (TYPE_OFFSET_BASETYPE (t)) != UNION_TYPE)
14710 {
14711 error ("%<TYPE_OFFSET_BASETYPE%> is not record nor union");
14712 debug_tree (TYPE_OFFSET_BASETYPE (t));
14713 error_found = true;
14714 }
14715 }
14716 else if (INTEGRAL_TYPE_P (t) || TREE_CODE (t) == REAL_TYPE
14717 || TREE_CODE (t) == FIXED_POINT_TYPE)
14718 {
14719 /* FIXME: The following check should pass:
14720 useless_type_conversion_p (const_cast <tree> (t),
14721 TREE_TYPE (TYPE_MAX_VALUE (t))
14722 but does not for C sizetypes in LTO. */
14723 }
14724 else if (TREE_CODE (t) == ARRAY_TYPE)
14725 {
14726 if (TYPE_ARRAY_MAX_SIZE (t)
14727 && TREE_CODE (TYPE_ARRAY_MAX_SIZE (t)) != INTEGER_CST)
14728 {
14729 error ("%<TYPE_ARRAY_MAX_SIZE%> not %<INTEGER_CST%>");
14730 debug_tree (TYPE_ARRAY_MAX_SIZE (t));
14731 error_found = true;
14732 }
14733 }
14734 else if (TYPE_MAX_VALUE_RAW (t))
14735 {
14736 error ("%<TYPE_MAX_VALUE_RAW%> non-NULL");
14737 debug_tree (TYPE_MAX_VALUE_RAW (t));
14738 error_found = true;
14739 }
14740
14741 if (TYPE_LANG_SLOT_1 (t) && in_lto_p)
14742 {
14743 error ("%<TYPE_LANG_SLOT_1 (binfo)%> field is non-NULL");
14744 debug_tree (TYPE_LANG_SLOT_1 (t));
14745 error_found = true;
14746 }
14747
14748 /* Check various uses of TYPE_VALUES_RAW. */
14749 if (TREE_CODE (t) == ENUMERAL_TYPE)
14750 for (tree l = TYPE_VALUES (t); l; l = TREE_CHAIN (l))
14751 {
14752 tree value = TREE_VALUE (l);
14753 tree name = TREE_PURPOSE (l);
14754
14755 /* C FE porduce INTEGER_CST of INTEGER_TYPE, while C++ FE uses
14756 CONST_DECL of ENUMERAL TYPE. */
14757 if (TREE_CODE (value) != INTEGER_CST && TREE_CODE (value) != CONST_DECL)
14758 {
14759 error ("enum value is not %<CONST_DECL%> or %<INTEGER_CST%>");
14760 debug_tree (value);
14761 debug_tree (name);
14762 error_found = true;
14763 }
14764 if (TREE_CODE (TREE_TYPE (value)) != INTEGER_TYPE
14765 && !useless_type_conversion_p (const_cast <tree> (t), TREE_TYPE (value)))
14766 {
14767 error ("enum value type is not %<INTEGER_TYPE%> nor convertible "
14768 "to the enum");
14769 debug_tree (value);
14770 debug_tree (name);
14771 error_found = true;
14772 }
14773 if (TREE_CODE (name) != IDENTIFIER_NODE)
14774 {
14775 error ("enum value name is not %<IDENTIFIER_NODE%>");
14776 debug_tree (value);
14777 debug_tree (name);
14778 error_found = true;
14779 }
14780 }
14781 else if (TREE_CODE (t) == ARRAY_TYPE)
14782 {
14783 if (TYPE_DOMAIN (t) && TREE_CODE (TYPE_DOMAIN (t)) != INTEGER_TYPE)
14784 {
14785 error ("array %<TYPE_DOMAIN%> is not integer type");
14786 debug_tree (TYPE_DOMAIN (t));
14787 error_found = true;
14788 }
14789 }
14790 else if (RECORD_OR_UNION_TYPE_P (t))
14791 {
14792 if (TYPE_FIELDS (t) && !COMPLETE_TYPE_P (t) && in_lto_p)
14793 {
14794 error ("%<TYPE_FIELDS%> defined in incomplete type");
14795 error_found = true;
14796 }
14797 for (tree fld = TYPE_FIELDS (t); fld; fld = TREE_CHAIN (fld))
14798 {
14799 /* TODO: verify properties of decls. */
14800 if (TREE_CODE (fld) == FIELD_DECL)
14801 ;
14802 else if (TREE_CODE (fld) == TYPE_DECL)
14803 ;
14804 else if (TREE_CODE (fld) == CONST_DECL)
14805 ;
14806 else if (VAR_P (fld))
14807 ;
14808 else if (TREE_CODE (fld) == TEMPLATE_DECL)
14809 ;
14810 else if (TREE_CODE (fld) == USING_DECL)
14811 ;
14812 else if (TREE_CODE (fld) == FUNCTION_DECL)
14813 ;
14814 else
14815 {
14816 error ("wrong tree in %<TYPE_FIELDS%> list");
14817 debug_tree (fld);
14818 error_found = true;
14819 }
14820 }
14821 }
14822 else if (TREE_CODE (t) == INTEGER_TYPE
14823 || TREE_CODE (t) == BOOLEAN_TYPE
14824 || TREE_CODE (t) == OFFSET_TYPE
14825 || TREE_CODE (t) == REFERENCE_TYPE
14826 || TREE_CODE (t) == NULLPTR_TYPE
14827 || TREE_CODE (t) == POINTER_TYPE)
14828 {
14829 if (TYPE_CACHED_VALUES_P (t) != (TYPE_CACHED_VALUES (t) != NULL))
14830 {
14831 error ("%<TYPE_CACHED_VALUES_P%> is %i while %<TYPE_CACHED_VALUES%> "
14832 "is %p",
14833 TYPE_CACHED_VALUES_P (t), (void *)TYPE_CACHED_VALUES (t));
14834 error_found = true;
14835 }
14836 else if (TYPE_CACHED_VALUES_P (t) && TREE_CODE (TYPE_CACHED_VALUES (t)) != TREE_VEC)
14837 {
14838 error ("%<TYPE_CACHED_VALUES%> is not %<TREE_VEC%>");
14839 debug_tree (TYPE_CACHED_VALUES (t));
14840 error_found = true;
14841 }
14842 /* Verify just enough of cache to ensure that no one copied it to new type.
14843 All copying should go by copy_node that should clear it. */
14844 else if (TYPE_CACHED_VALUES_P (t))
14845 {
14846 int i;
14847 for (i = 0; i < TREE_VEC_LENGTH (TYPE_CACHED_VALUES (t)); i++)
14848 if (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i)
14849 && TREE_TYPE (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i)) != t)
14850 {
14851 error ("wrong %<TYPE_CACHED_VALUES%> entry");
14852 debug_tree (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i));
14853 error_found = true;
14854 break;
14855 }
14856 }
14857 }
14858 else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
14859 for (tree l = TYPE_ARG_TYPES (t); l; l = TREE_CHAIN (l))
14860 {
14861 /* C++ FE uses TREE_PURPOSE to store initial values. */
14862 if (TREE_PURPOSE (l) && in_lto_p)
14863 {
14864 error ("%<TREE_PURPOSE%> is non-NULL in %<TYPE_ARG_TYPES%> list");
14865 debug_tree (l);
14866 error_found = true;
14867 }
14868 if (!TYPE_P (TREE_VALUE (l)))
14869 {
14870 error ("wrong entry in %<TYPE_ARG_TYPES%> list");
14871 debug_tree (l);
14872 error_found = true;
14873 }
14874 }
14875 else if (!is_lang_specific (t) && TYPE_VALUES_RAW (t))
14876 {
14877 error ("%<TYPE_VALUES_RAW%> field is non-NULL");
14878 debug_tree (TYPE_VALUES_RAW (t));
14879 error_found = true;
14880 }
14881 if (TREE_CODE (t) != INTEGER_TYPE
14882 && TREE_CODE (t) != BOOLEAN_TYPE
14883 && TREE_CODE (t) != OFFSET_TYPE
14884 && TREE_CODE (t) != REFERENCE_TYPE
14885 && TREE_CODE (t) != NULLPTR_TYPE
14886 && TREE_CODE (t) != POINTER_TYPE
14887 && TYPE_CACHED_VALUES_P (t))
14888 {
14889 error ("%<TYPE_CACHED_VALUES_P%> is set while it should not be");
14890 error_found = true;
14891 }
14892
14893 /* ipa-devirt makes an assumption that TYPE_METHOD_BASETYPE is always
14894 TYPE_MAIN_VARIANT and it would be odd to add methods only to variatns
14895 of a type. */
14896 if (TREE_CODE (t) == METHOD_TYPE
14897 && TYPE_MAIN_VARIANT (TYPE_METHOD_BASETYPE (t)) != TYPE_METHOD_BASETYPE (t))
14898 {
14899 error ("%<TYPE_METHOD_BASETYPE%> is not main variant");
14900 error_found = true;
14901 }
14902
14903 if (error_found)
14904 {
14905 debug_tree (const_cast <tree> (t));
14906 internal_error ("%qs failed", __func__);
14907 }
14908 }
14909
14910
14911 /* Return 1 if ARG interpreted as signed in its precision is known to be
14912 always positive or 2 if ARG is known to be always negative, or 3 if
14913 ARG may be positive or negative. */
14914
14915 int
14916 get_range_pos_neg (tree arg)
14917 {
14918 if (arg == error_mark_node)
14919 return 3;
14920
14921 int prec = TYPE_PRECISION (TREE_TYPE (arg));
14922 int cnt = 0;
14923 if (TREE_CODE (arg) == INTEGER_CST)
14924 {
14925 wide_int w = wi::sext (wi::to_wide (arg), prec);
14926 if (wi::neg_p (w))
14927 return 2;
14928 else
14929 return 1;
14930 }
14931 while (CONVERT_EXPR_P (arg)
14932 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg, 0)))
14933 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg, 0))) <= prec)
14934 {
14935 arg = TREE_OPERAND (arg, 0);
14936 /* Narrower value zero extended into wider type
14937 will always result in positive values. */
14938 if (TYPE_UNSIGNED (TREE_TYPE (arg))
14939 && TYPE_PRECISION (TREE_TYPE (arg)) < prec)
14940 return 1;
14941 prec = TYPE_PRECISION (TREE_TYPE (arg));
14942 if (++cnt > 30)
14943 return 3;
14944 }
14945
14946 if (TREE_CODE (arg) != SSA_NAME)
14947 return 3;
14948 wide_int arg_min, arg_max;
14949 while (get_range_info (arg, &arg_min, &arg_max) != VR_RANGE)
14950 {
14951 gimple *g = SSA_NAME_DEF_STMT (arg);
14952 if (is_gimple_assign (g)
14953 && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (g)))
14954 {
14955 tree t = gimple_assign_rhs1 (g);
14956 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
14957 && TYPE_PRECISION (TREE_TYPE (t)) <= prec)
14958 {
14959 if (TYPE_UNSIGNED (TREE_TYPE (t))
14960 && TYPE_PRECISION (TREE_TYPE (t)) < prec)
14961 return 1;
14962 prec = TYPE_PRECISION (TREE_TYPE (t));
14963 arg = t;
14964 if (++cnt > 30)
14965 return 3;
14966 continue;
14967 }
14968 }
14969 return 3;
14970 }
14971 if (TYPE_UNSIGNED (TREE_TYPE (arg)))
14972 {
14973 /* For unsigned values, the "positive" range comes
14974 below the "negative" range. */
14975 if (!wi::neg_p (wi::sext (arg_max, prec), SIGNED))
14976 return 1;
14977 if (wi::neg_p (wi::sext (arg_min, prec), SIGNED))
14978 return 2;
14979 }
14980 else
14981 {
14982 if (!wi::neg_p (wi::sext (arg_min, prec), SIGNED))
14983 return 1;
14984 if (wi::neg_p (wi::sext (arg_max, prec), SIGNED))
14985 return 2;
14986 }
14987 return 3;
14988 }
14989
14990
14991
14992
14993 /* Return true if ARG is marked with the nonnull attribute in the
14994 current function signature. */
14995
14996 bool
14997 nonnull_arg_p (const_tree arg)
14998 {
14999 tree t, attrs, fntype;
15000 unsigned HOST_WIDE_INT arg_num;
15001
15002 gcc_assert (TREE_CODE (arg) == PARM_DECL
15003 && (POINTER_TYPE_P (TREE_TYPE (arg))
15004 || TREE_CODE (TREE_TYPE (arg)) == OFFSET_TYPE));
15005
15006 /* The static chain decl is always non null. */
15007 if (arg == cfun->static_chain_decl)
15008 return true;
15009
15010 /* THIS argument of method is always non-NULL. */
15011 if (TREE_CODE (TREE_TYPE (cfun->decl)) == METHOD_TYPE
15012 && arg == DECL_ARGUMENTS (cfun->decl)
15013 && flag_delete_null_pointer_checks)
15014 return true;
15015
15016 /* Values passed by reference are always non-NULL. */
15017 if (TREE_CODE (TREE_TYPE (arg)) == REFERENCE_TYPE
15018 && flag_delete_null_pointer_checks)
15019 return true;
15020
15021 fntype = TREE_TYPE (cfun->decl);
15022 for (attrs = TYPE_ATTRIBUTES (fntype); attrs; attrs = TREE_CHAIN (attrs))
15023 {
15024 attrs = lookup_attribute ("nonnull", attrs);
15025
15026 /* If "nonnull" wasn't specified, we know nothing about the argument. */
15027 if (attrs == NULL_TREE)
15028 return false;
15029
15030 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
15031 if (TREE_VALUE (attrs) == NULL_TREE)
15032 return true;
15033
15034 /* Get the position number for ARG in the function signature. */
15035 for (arg_num = 1, t = DECL_ARGUMENTS (cfun->decl);
15036 t;
15037 t = DECL_CHAIN (t), arg_num++)
15038 {
15039 if (t == arg)
15040 break;
15041 }
15042
15043 gcc_assert (t == arg);
15044
15045 /* Now see if ARG_NUM is mentioned in the nonnull list. */
15046 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
15047 {
15048 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
15049 return true;
15050 }
15051 }
15052
15053 return false;
15054 }
15055
15056 /* Combine LOC and BLOCK to a combined adhoc loc, retaining any range
15057 information. */
15058
15059 location_t
15060 set_block (location_t loc, tree block)
15061 {
15062 location_t pure_loc = get_pure_location (loc);
15063 source_range src_range = get_range_from_loc (line_table, loc);
15064 return COMBINE_LOCATION_DATA (line_table, pure_loc, src_range, block);
15065 }
15066
15067 location_t
15068 set_source_range (tree expr, location_t start, location_t finish)
15069 {
15070 source_range src_range;
15071 src_range.m_start = start;
15072 src_range.m_finish = finish;
15073 return set_source_range (expr, src_range);
15074 }
15075
15076 location_t
15077 set_source_range (tree expr, source_range src_range)
15078 {
15079 if (!EXPR_P (expr))
15080 return UNKNOWN_LOCATION;
15081
15082 location_t pure_loc = get_pure_location (EXPR_LOCATION (expr));
15083 location_t adhoc = COMBINE_LOCATION_DATA (line_table,
15084 pure_loc,
15085 src_range,
15086 NULL);
15087 SET_EXPR_LOCATION (expr, adhoc);
15088 return adhoc;
15089 }
15090
15091 /* Return EXPR, potentially wrapped with a node expression LOC,
15092 if !CAN_HAVE_LOCATION_P (expr).
15093
15094 NON_LVALUE_EXPR is used for wrapping constants, apart from STRING_CST.
15095 VIEW_CONVERT_EXPR is used for wrapping non-constants and STRING_CST.
15096
15097 Wrapper nodes can be identified using location_wrapper_p. */
15098
15099 tree
15100 maybe_wrap_with_location (tree expr, location_t loc)
15101 {
15102 if (expr == NULL)
15103 return NULL;
15104 if (loc == UNKNOWN_LOCATION)
15105 return expr;
15106 if (CAN_HAVE_LOCATION_P (expr))
15107 return expr;
15108 /* We should only be adding wrappers for constants and for decls,
15109 or for some exceptional tree nodes (e.g. BASELINK in the C++ FE). */
15110 gcc_assert (CONSTANT_CLASS_P (expr)
15111 || DECL_P (expr)
15112 || EXCEPTIONAL_CLASS_P (expr));
15113
15114 /* For now, don't add wrappers to exceptional tree nodes, to minimize
15115 any impact of the wrapper nodes. */
15116 if (EXCEPTIONAL_CLASS_P (expr))
15117 return expr;
15118
15119 /* Compiler-generated temporary variables don't need a wrapper. */
15120 if (DECL_P (expr) && DECL_ARTIFICIAL (expr) && DECL_IGNORED_P (expr))
15121 return expr;
15122
15123 /* If any auto_suppress_location_wrappers are active, don't create
15124 wrappers. */
15125 if (suppress_location_wrappers > 0)
15126 return expr;
15127
15128 tree_code code
15129 = (((CONSTANT_CLASS_P (expr) && TREE_CODE (expr) != STRING_CST)
15130 || (TREE_CODE (expr) == CONST_DECL && !TREE_STATIC (expr)))
15131 ? NON_LVALUE_EXPR : VIEW_CONVERT_EXPR);
15132 tree wrapper = build1_loc (loc, code, TREE_TYPE (expr), expr);
15133 /* Mark this node as being a wrapper. */
15134 EXPR_LOCATION_WRAPPER_P (wrapper) = 1;
15135 return wrapper;
15136 }
15137
15138 int suppress_location_wrappers;
15139
15140 /* Return the name of combined function FN, for debugging purposes. */
15141
15142 const char *
15143 combined_fn_name (combined_fn fn)
15144 {
15145 if (builtin_fn_p (fn))
15146 {
15147 tree fndecl = builtin_decl_explicit (as_builtin_fn (fn));
15148 return IDENTIFIER_POINTER (DECL_NAME (fndecl));
15149 }
15150 else
15151 return internal_fn_name (as_internal_fn (fn));
15152 }
15153
15154 /* Return a bitmap with a bit set corresponding to each argument in
15155 a function call type FNTYPE declared with attribute nonnull,
15156 or null if none of the function's argument are nonnull. The caller
15157 must free the bitmap. */
15158
15159 bitmap
15160 get_nonnull_args (const_tree fntype)
15161 {
15162 if (fntype == NULL_TREE)
15163 return NULL;
15164
15165 bitmap argmap = NULL;
15166 if (TREE_CODE (fntype) == METHOD_TYPE)
15167 {
15168 /* The this pointer in C++ non-static member functions is
15169 implicitly nonnull whether or not it's declared as such. */
15170 argmap = BITMAP_ALLOC (NULL);
15171 bitmap_set_bit (argmap, 0);
15172 }
15173
15174 tree attrs = TYPE_ATTRIBUTES (fntype);
15175 if (!attrs)
15176 return argmap;
15177
15178 /* A function declaration can specify multiple attribute nonnull,
15179 each with zero or more arguments. The loop below creates a bitmap
15180 representing a union of all the arguments. An empty (but non-null)
15181 bitmap means that all arguments have been declaraed nonnull. */
15182 for ( ; attrs; attrs = TREE_CHAIN (attrs))
15183 {
15184 attrs = lookup_attribute ("nonnull", attrs);
15185 if (!attrs)
15186 break;
15187
15188 if (!argmap)
15189 argmap = BITMAP_ALLOC (NULL);
15190
15191 if (!TREE_VALUE (attrs))
15192 {
15193 /* Clear the bitmap in case a previous attribute nonnull
15194 set it and this one overrides it for all arguments. */
15195 bitmap_clear (argmap);
15196 return argmap;
15197 }
15198
15199 /* Iterate over the indices of the format arguments declared nonnull
15200 and set a bit for each. */
15201 for (tree idx = TREE_VALUE (attrs); idx; idx = TREE_CHAIN (idx))
15202 {
15203 unsigned int val = TREE_INT_CST_LOW (TREE_VALUE (idx)) - 1;
15204 bitmap_set_bit (argmap, val);
15205 }
15206 }
15207
15208 return argmap;
15209 }
15210
15211 /* Returns true if TYPE is a type where it and all of its subobjects
15212 (recursively) are of structure, union, or array type. */
15213
15214 bool
15215 is_empty_type (const_tree type)
15216 {
15217 if (RECORD_OR_UNION_TYPE_P (type))
15218 {
15219 for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
15220 if (TREE_CODE (field) == FIELD_DECL
15221 && !DECL_PADDING_P (field)
15222 && !is_empty_type (TREE_TYPE (field)))
15223 return false;
15224 return true;
15225 }
15226 else if (TREE_CODE (type) == ARRAY_TYPE)
15227 return (integer_minus_onep (array_type_nelts (type))
15228 || TYPE_DOMAIN (type) == NULL_TREE
15229 || is_empty_type (TREE_TYPE (type)));
15230 return false;
15231 }
15232
15233 /* Implement TARGET_EMPTY_RECORD_P. Return true if TYPE is an empty type
15234 that shouldn't be passed via stack. */
15235
15236 bool
15237 default_is_empty_record (const_tree type)
15238 {
15239 if (!abi_version_at_least (12))
15240 return false;
15241
15242 if (type == error_mark_node)
15243 return false;
15244
15245 if (TREE_ADDRESSABLE (type))
15246 return false;
15247
15248 return is_empty_type (TYPE_MAIN_VARIANT (type));
15249 }
15250
15251 /* Determine whether TYPE is a structure with a flexible array member,
15252 or a union containing such a structure (possibly recursively). */
15253
15254 bool
15255 flexible_array_type_p (const_tree type)
15256 {
15257 tree x, last;
15258 switch (TREE_CODE (type))
15259 {
15260 case RECORD_TYPE:
15261 last = NULL_TREE;
15262 for (x = TYPE_FIELDS (type); x != NULL_TREE; x = DECL_CHAIN (x))
15263 if (TREE_CODE (x) == FIELD_DECL)
15264 last = x;
15265 if (last == NULL_TREE)
15266 return false;
15267 if (TREE_CODE (TREE_TYPE (last)) == ARRAY_TYPE
15268 && TYPE_SIZE (TREE_TYPE (last)) == NULL_TREE
15269 && TYPE_DOMAIN (TREE_TYPE (last)) != NULL_TREE
15270 && TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (last))) == NULL_TREE)
15271 return true;
15272 return false;
15273 case UNION_TYPE:
15274 for (x = TYPE_FIELDS (type); x != NULL_TREE; x = DECL_CHAIN (x))
15275 {
15276 if (TREE_CODE (x) == FIELD_DECL
15277 && flexible_array_type_p (TREE_TYPE (x)))
15278 return true;
15279 }
15280 return false;
15281 default:
15282 return false;
15283 }
15284 }
15285
15286 /* Like int_size_in_bytes, but handle empty records specially. */
15287
15288 HOST_WIDE_INT
15289 arg_int_size_in_bytes (const_tree type)
15290 {
15291 return TYPE_EMPTY_P (type) ? 0 : int_size_in_bytes (type);
15292 }
15293
15294 /* Like size_in_bytes, but handle empty records specially. */
15295
15296 tree
15297 arg_size_in_bytes (const_tree type)
15298 {
15299 return TYPE_EMPTY_P (type) ? size_zero_node : size_in_bytes (type);
15300 }
15301
15302 /* Return true if an expression with CODE has to have the same result type as
15303 its first operand. */
15304
15305 bool
15306 expr_type_first_operand_type_p (tree_code code)
15307 {
15308 switch (code)
15309 {
15310 case NEGATE_EXPR:
15311 case ABS_EXPR:
15312 case BIT_NOT_EXPR:
15313 case PAREN_EXPR:
15314 case CONJ_EXPR:
15315
15316 case PLUS_EXPR:
15317 case MINUS_EXPR:
15318 case MULT_EXPR:
15319 case TRUNC_DIV_EXPR:
15320 case CEIL_DIV_EXPR:
15321 case FLOOR_DIV_EXPR:
15322 case ROUND_DIV_EXPR:
15323 case TRUNC_MOD_EXPR:
15324 case CEIL_MOD_EXPR:
15325 case FLOOR_MOD_EXPR:
15326 case ROUND_MOD_EXPR:
15327 case RDIV_EXPR:
15328 case EXACT_DIV_EXPR:
15329 case MIN_EXPR:
15330 case MAX_EXPR:
15331 case BIT_IOR_EXPR:
15332 case BIT_XOR_EXPR:
15333 case BIT_AND_EXPR:
15334
15335 case LSHIFT_EXPR:
15336 case RSHIFT_EXPR:
15337 case LROTATE_EXPR:
15338 case RROTATE_EXPR:
15339 return true;
15340
15341 default:
15342 return false;
15343 }
15344 }
15345
15346 /* Return a typenode for the "standard" C type with a given name. */
15347 tree
15348 get_typenode_from_name (const char *name)
15349 {
15350 if (name == NULL || *name == '\0')
15351 return NULL_TREE;
15352
15353 if (strcmp (name, "char") == 0)
15354 return char_type_node;
15355 if (strcmp (name, "unsigned char") == 0)
15356 return unsigned_char_type_node;
15357 if (strcmp (name, "signed char") == 0)
15358 return signed_char_type_node;
15359
15360 if (strcmp (name, "short int") == 0)
15361 return short_integer_type_node;
15362 if (strcmp (name, "short unsigned int") == 0)
15363 return short_unsigned_type_node;
15364
15365 if (strcmp (name, "int") == 0)
15366 return integer_type_node;
15367 if (strcmp (name, "unsigned int") == 0)
15368 return unsigned_type_node;
15369
15370 if (strcmp (name, "long int") == 0)
15371 return long_integer_type_node;
15372 if (strcmp (name, "long unsigned int") == 0)
15373 return long_unsigned_type_node;
15374
15375 if (strcmp (name, "long long int") == 0)
15376 return long_long_integer_type_node;
15377 if (strcmp (name, "long long unsigned int") == 0)
15378 return long_long_unsigned_type_node;
15379
15380 gcc_unreachable ();
15381 }
15382
15383 /* List of pointer types used to declare builtins before we have seen their
15384 real declaration.
15385
15386 Keep the size up to date in tree.h ! */
15387 const builtin_structptr_type builtin_structptr_types[6] =
15388 {
15389 { fileptr_type_node, ptr_type_node, "FILE" },
15390 { const_tm_ptr_type_node, const_ptr_type_node, "tm" },
15391 { fenv_t_ptr_type_node, ptr_type_node, "fenv_t" },
15392 { const_fenv_t_ptr_type_node, const_ptr_type_node, "fenv_t" },
15393 { fexcept_t_ptr_type_node, ptr_type_node, "fexcept_t" },
15394 { const_fexcept_t_ptr_type_node, const_ptr_type_node, "fexcept_t" }
15395 };
15396
15397 /* Return the maximum object size. */
15398
15399 tree
15400 max_object_size (void)
15401 {
15402 /* To do: Make this a configurable parameter. */
15403 return TYPE_MAX_VALUE (ptrdiff_type_node);
15404 }
15405
15406 /* A wrapper around TARGET_VERIFY_TYPE_CONTEXT that makes the silent_p
15407 parameter default to false and that weeds out error_mark_node. */
15408
15409 bool
15410 verify_type_context (location_t loc, type_context_kind context,
15411 const_tree type, bool silent_p)
15412 {
15413 if (type == error_mark_node)
15414 return true;
15415
15416 gcc_assert (TYPE_P (type));
15417 return (!targetm.verify_type_context
15418 || targetm.verify_type_context (loc, context, type, silent_p));
15419 }
15420
15421 /* Return that NEW_ASM and DELETE_ASM name a valid pair of new and
15422 delete operators. */
15423
15424 bool
15425 valid_new_delete_pair_p (tree new_asm, tree delete_asm)
15426 {
15427 const char *new_name = IDENTIFIER_POINTER (new_asm);
15428 const char *delete_name = IDENTIFIER_POINTER (delete_asm);
15429 unsigned int new_len = IDENTIFIER_LENGTH (new_asm);
15430 unsigned int delete_len = IDENTIFIER_LENGTH (delete_asm);
15431
15432 if (new_len < 5 || delete_len < 6)
15433 return false;
15434 if (new_name[0] == '_')
15435 ++new_name, --new_len;
15436 if (new_name[0] == '_')
15437 ++new_name, --new_len;
15438 if (delete_name[0] == '_')
15439 ++delete_name, --delete_len;
15440 if (delete_name[0] == '_')
15441 ++delete_name, --delete_len;
15442 if (new_len < 4 || delete_len < 5)
15443 return false;
15444 /* *_len is now just the length after initial underscores. */
15445 if (new_name[0] != 'Z' || new_name[1] != 'n')
15446 return false;
15447 if (delete_name[0] != 'Z' || delete_name[1] != 'd')
15448 return false;
15449 /* _Znw must match _Zdl, _Zna must match _Zda. */
15450 if ((new_name[2] != 'w' || delete_name[2] != 'l')
15451 && (new_name[2] != 'a' || delete_name[2] != 'a'))
15452 return false;
15453 /* 'j', 'm' and 'y' correspond to size_t. */
15454 if (new_name[3] != 'j' && new_name[3] != 'm' && new_name[3] != 'y')
15455 return false;
15456 if (delete_name[3] != 'P' || delete_name[4] != 'v')
15457 return false;
15458 if (new_len == 4
15459 || (new_len == 18 && !memcmp (new_name + 4, "RKSt9nothrow_t", 14)))
15460 {
15461 /* _ZnXY or _ZnXYRKSt9nothrow_t matches
15462 _ZdXPv, _ZdXPvY and _ZdXPvRKSt9nothrow_t. */
15463 if (delete_len == 5)
15464 return true;
15465 if (delete_len == 6 && delete_name[5] == new_name[3])
15466 return true;
15467 if (delete_len == 19 && !memcmp (delete_name + 5, "RKSt9nothrow_t", 14))
15468 return true;
15469 }
15470 else if ((new_len == 19 && !memcmp (new_name + 4, "St11align_val_t", 15))
15471 || (new_len == 33
15472 && !memcmp (new_name + 4, "St11align_val_tRKSt9nothrow_t", 29)))
15473 {
15474 /* _ZnXYSt11align_val_t or _ZnXYSt11align_val_tRKSt9nothrow_t matches
15475 _ZdXPvSt11align_val_t or _ZdXPvYSt11align_val_t or or
15476 _ZdXPvSt11align_val_tRKSt9nothrow_t. */
15477 if (delete_len == 20 && !memcmp (delete_name + 5, "St11align_val_t", 15))
15478 return true;
15479 if (delete_len == 21
15480 && delete_name[5] == new_name[3]
15481 && !memcmp (delete_name + 6, "St11align_val_t", 15))
15482 return true;
15483 if (delete_len == 34
15484 && !memcmp (delete_name + 5, "St11align_val_tRKSt9nothrow_t", 29))
15485 return true;
15486 }
15487 return false;
15488 }
15489
15490 #if CHECKING_P
15491
15492 namespace selftest {
15493
15494 /* Selftests for tree. */
15495
15496 /* Verify that integer constants are sane. */
15497
15498 static void
15499 test_integer_constants ()
15500 {
15501 ASSERT_TRUE (integer_type_node != NULL);
15502 ASSERT_TRUE (build_int_cst (integer_type_node, 0) != NULL);
15503
15504 tree type = integer_type_node;
15505
15506 tree zero = build_zero_cst (type);
15507 ASSERT_EQ (INTEGER_CST, TREE_CODE (zero));
15508 ASSERT_EQ (type, TREE_TYPE (zero));
15509
15510 tree one = build_int_cst (type, 1);
15511 ASSERT_EQ (INTEGER_CST, TREE_CODE (one));
15512 ASSERT_EQ (type, TREE_TYPE (zero));
15513 }
15514
15515 /* Verify identifiers. */
15516
15517 static void
15518 test_identifiers ()
15519 {
15520 tree identifier = get_identifier ("foo");
15521 ASSERT_EQ (3, IDENTIFIER_LENGTH (identifier));
15522 ASSERT_STREQ ("foo", IDENTIFIER_POINTER (identifier));
15523 }
15524
15525 /* Verify LABEL_DECL. */
15526
15527 static void
15528 test_labels ()
15529 {
15530 tree identifier = get_identifier ("err");
15531 tree label_decl = build_decl (UNKNOWN_LOCATION, LABEL_DECL,
15532 identifier, void_type_node);
15533 ASSERT_EQ (-1, LABEL_DECL_UID (label_decl));
15534 ASSERT_FALSE (FORCED_LABEL (label_decl));
15535 }
15536
15537 /* Return a new VECTOR_CST node whose type is TYPE and whose values
15538 are given by VALS. */
15539
15540 static tree
15541 build_vector (tree type, vec<tree> vals MEM_STAT_DECL)
15542 {
15543 gcc_assert (known_eq (vals.length (), TYPE_VECTOR_SUBPARTS (type)));
15544 tree_vector_builder builder (type, vals.length (), 1);
15545 builder.splice (vals);
15546 return builder.build ();
15547 }
15548
15549 /* Check that VECTOR_CST ACTUAL contains the elements in EXPECTED. */
15550
15551 static void
15552 check_vector_cst (vec<tree> expected, tree actual)
15553 {
15554 ASSERT_KNOWN_EQ (expected.length (),
15555 TYPE_VECTOR_SUBPARTS (TREE_TYPE (actual)));
15556 for (unsigned int i = 0; i < expected.length (); ++i)
15557 ASSERT_EQ (wi::to_wide (expected[i]),
15558 wi::to_wide (vector_cst_elt (actual, i)));
15559 }
15560
15561 /* Check that VECTOR_CST ACTUAL contains NPATTERNS duplicated elements,
15562 and that its elements match EXPECTED. */
15563
15564 static void
15565 check_vector_cst_duplicate (vec<tree> expected, tree actual,
15566 unsigned int npatterns)
15567 {
15568 ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
15569 ASSERT_EQ (1, VECTOR_CST_NELTS_PER_PATTERN (actual));
15570 ASSERT_EQ (npatterns, vector_cst_encoded_nelts (actual));
15571 ASSERT_TRUE (VECTOR_CST_DUPLICATE_P (actual));
15572 ASSERT_FALSE (VECTOR_CST_STEPPED_P (actual));
15573 check_vector_cst (expected, actual);
15574 }
15575
15576 /* Check that VECTOR_CST ACTUAL contains NPATTERNS foreground elements
15577 and NPATTERNS background elements, and that its elements match
15578 EXPECTED. */
15579
15580 static void
15581 check_vector_cst_fill (vec<tree> expected, tree actual,
15582 unsigned int npatterns)
15583 {
15584 ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
15585 ASSERT_EQ (2, VECTOR_CST_NELTS_PER_PATTERN (actual));
15586 ASSERT_EQ (2 * npatterns, vector_cst_encoded_nelts (actual));
15587 ASSERT_FALSE (VECTOR_CST_DUPLICATE_P (actual));
15588 ASSERT_FALSE (VECTOR_CST_STEPPED_P (actual));
15589 check_vector_cst (expected, actual);
15590 }
15591
15592 /* Check that VECTOR_CST ACTUAL contains NPATTERNS stepped patterns,
15593 and that its elements match EXPECTED. */
15594
15595 static void
15596 check_vector_cst_stepped (vec<tree> expected, tree actual,
15597 unsigned int npatterns)
15598 {
15599 ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
15600 ASSERT_EQ (3, VECTOR_CST_NELTS_PER_PATTERN (actual));
15601 ASSERT_EQ (3 * npatterns, vector_cst_encoded_nelts (actual));
15602 ASSERT_FALSE (VECTOR_CST_DUPLICATE_P (actual));
15603 ASSERT_TRUE (VECTOR_CST_STEPPED_P (actual));
15604 check_vector_cst (expected, actual);
15605 }
15606
15607 /* Test the creation of VECTOR_CSTs. */
15608
15609 static void
15610 test_vector_cst_patterns (ALONE_CXX_MEM_STAT_INFO)
15611 {
15612 auto_vec<tree, 8> elements (8);
15613 elements.quick_grow (8);
15614 tree element_type = build_nonstandard_integer_type (16, true);
15615 tree vector_type = build_vector_type (element_type, 8);
15616
15617 /* Test a simple linear series with a base of 0 and a step of 1:
15618 { 0, 1, 2, 3, 4, 5, 6, 7 }. */
15619 for (unsigned int i = 0; i < 8; ++i)
15620 elements[i] = build_int_cst (element_type, i);
15621 tree vector = build_vector (vector_type, elements PASS_MEM_STAT);
15622 check_vector_cst_stepped (elements, vector, 1);
15623
15624 /* Try the same with the first element replaced by 100:
15625 { 100, 1, 2, 3, 4, 5, 6, 7 }. */
15626 elements[0] = build_int_cst (element_type, 100);
15627 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15628 check_vector_cst_stepped (elements, vector, 1);
15629
15630 /* Try a series that wraps around.
15631 { 100, 65531, 65532, 65533, 65534, 65535, 0, 1 }. */
15632 for (unsigned int i = 1; i < 8; ++i)
15633 elements[i] = build_int_cst (element_type, (65530 + i) & 0xffff);
15634 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15635 check_vector_cst_stepped (elements, vector, 1);
15636
15637 /* Try a downward series:
15638 { 100, 79, 78, 77, 76, 75, 75, 73 }. */
15639 for (unsigned int i = 1; i < 8; ++i)
15640 elements[i] = build_int_cst (element_type, 80 - i);
15641 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15642 check_vector_cst_stepped (elements, vector, 1);
15643
15644 /* Try two interleaved series with different bases and steps:
15645 { 100, 53, 66, 206, 62, 212, 58, 218 }. */
15646 elements[1] = build_int_cst (element_type, 53);
15647 for (unsigned int i = 2; i < 8; i += 2)
15648 {
15649 elements[i] = build_int_cst (element_type, 70 - i * 2);
15650 elements[i + 1] = build_int_cst (element_type, 200 + i * 3);
15651 }
15652 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15653 check_vector_cst_stepped (elements, vector, 2);
15654
15655 /* Try a duplicated value:
15656 { 100, 100, 100, 100, 100, 100, 100, 100 }. */
15657 for (unsigned int i = 1; i < 8; ++i)
15658 elements[i] = elements[0];
15659 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15660 check_vector_cst_duplicate (elements, vector, 1);
15661
15662 /* Try an interleaved duplicated value:
15663 { 100, 55, 100, 55, 100, 55, 100, 55 }. */
15664 elements[1] = build_int_cst (element_type, 55);
15665 for (unsigned int i = 2; i < 8; ++i)
15666 elements[i] = elements[i - 2];
15667 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15668 check_vector_cst_duplicate (elements, vector, 2);
15669
15670 /* Try a duplicated value with 2 exceptions
15671 { 41, 97, 100, 55, 100, 55, 100, 55 }. */
15672 elements[0] = build_int_cst (element_type, 41);
15673 elements[1] = build_int_cst (element_type, 97);
15674 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15675 check_vector_cst_fill (elements, vector, 2);
15676
15677 /* Try with and without a step
15678 { 41, 97, 100, 21, 100, 35, 100, 49 }. */
15679 for (unsigned int i = 3; i < 8; i += 2)
15680 elements[i] = build_int_cst (element_type, i * 7);
15681 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15682 check_vector_cst_stepped (elements, vector, 2);
15683
15684 /* Try a fully-general constant:
15685 { 41, 97, 100, 21, 100, 9990, 100, 49 }. */
15686 elements[5] = build_int_cst (element_type, 9990);
15687 vector = build_vector (vector_type, elements PASS_MEM_STAT);
15688 check_vector_cst_fill (elements, vector, 4);
15689 }
15690
15691 /* Verify that STRIP_NOPS (NODE) is EXPECTED.
15692 Helper function for test_location_wrappers, to deal with STRIP_NOPS
15693 modifying its argument in-place. */
15694
15695 static void
15696 check_strip_nops (tree node, tree expected)
15697 {
15698 STRIP_NOPS (node);
15699 ASSERT_EQ (expected, node);
15700 }
15701
15702 /* Verify location wrappers. */
15703
15704 static void
15705 test_location_wrappers ()
15706 {
15707 location_t loc = BUILTINS_LOCATION;
15708
15709 ASSERT_EQ (NULL_TREE, maybe_wrap_with_location (NULL_TREE, loc));
15710
15711 /* Wrapping a constant. */
15712 tree int_cst = build_int_cst (integer_type_node, 42);
15713 ASSERT_FALSE (CAN_HAVE_LOCATION_P (int_cst));
15714 ASSERT_FALSE (location_wrapper_p (int_cst));
15715
15716 tree wrapped_int_cst = maybe_wrap_with_location (int_cst, loc);
15717 ASSERT_TRUE (location_wrapper_p (wrapped_int_cst));
15718 ASSERT_EQ (loc, EXPR_LOCATION (wrapped_int_cst));
15719 ASSERT_EQ (int_cst, tree_strip_any_location_wrapper (wrapped_int_cst));
15720
15721 /* We shouldn't add wrapper nodes for UNKNOWN_LOCATION. */
15722 ASSERT_EQ (int_cst, maybe_wrap_with_location (int_cst, UNKNOWN_LOCATION));
15723
15724 /* We shouldn't add wrapper nodes for nodes that CAN_HAVE_LOCATION_P. */
15725 tree cast = build1 (NOP_EXPR, char_type_node, int_cst);
15726 ASSERT_TRUE (CAN_HAVE_LOCATION_P (cast));
15727 ASSERT_EQ (cast, maybe_wrap_with_location (cast, loc));
15728
15729 /* Wrapping a STRING_CST. */
15730 tree string_cst = build_string (4, "foo");
15731 ASSERT_FALSE (CAN_HAVE_LOCATION_P (string_cst));
15732 ASSERT_FALSE (location_wrapper_p (string_cst));
15733
15734 tree wrapped_string_cst = maybe_wrap_with_location (string_cst, loc);
15735 ASSERT_TRUE (location_wrapper_p (wrapped_string_cst));
15736 ASSERT_EQ (VIEW_CONVERT_EXPR, TREE_CODE (wrapped_string_cst));
15737 ASSERT_EQ (loc, EXPR_LOCATION (wrapped_string_cst));
15738 ASSERT_EQ (string_cst, tree_strip_any_location_wrapper (wrapped_string_cst));
15739
15740
15741 /* Wrapping a variable. */
15742 tree int_var = build_decl (UNKNOWN_LOCATION, VAR_DECL,
15743 get_identifier ("some_int_var"),
15744 integer_type_node);
15745 ASSERT_FALSE (CAN_HAVE_LOCATION_P (int_var));
15746 ASSERT_FALSE (location_wrapper_p (int_var));
15747
15748 tree wrapped_int_var = maybe_wrap_with_location (int_var, loc);
15749 ASSERT_TRUE (location_wrapper_p (wrapped_int_var));
15750 ASSERT_EQ (loc, EXPR_LOCATION (wrapped_int_var));
15751 ASSERT_EQ (int_var, tree_strip_any_location_wrapper (wrapped_int_var));
15752
15753 /* Verify that "reinterpret_cast<int>(some_int_var)" is not a location
15754 wrapper. */
15755 tree r_cast = build1 (NON_LVALUE_EXPR, integer_type_node, int_var);
15756 ASSERT_FALSE (location_wrapper_p (r_cast));
15757 ASSERT_EQ (r_cast, tree_strip_any_location_wrapper (r_cast));
15758
15759 /* Verify that STRIP_NOPS removes wrappers. */
15760 check_strip_nops (wrapped_int_cst, int_cst);
15761 check_strip_nops (wrapped_string_cst, string_cst);
15762 check_strip_nops (wrapped_int_var, int_var);
15763 }
15764
15765 /* Test various tree predicates. Verify that location wrappers don't
15766 affect the results. */
15767
15768 static void
15769 test_predicates ()
15770 {
15771 /* Build various constants and wrappers around them. */
15772
15773 location_t loc = BUILTINS_LOCATION;
15774
15775 tree i_0 = build_int_cst (integer_type_node, 0);
15776 tree wr_i_0 = maybe_wrap_with_location (i_0, loc);
15777
15778 tree i_1 = build_int_cst (integer_type_node, 1);
15779 tree wr_i_1 = maybe_wrap_with_location (i_1, loc);
15780
15781 tree i_m1 = build_int_cst (integer_type_node, -1);
15782 tree wr_i_m1 = maybe_wrap_with_location (i_m1, loc);
15783
15784 tree f_0 = build_real_from_int_cst (float_type_node, i_0);
15785 tree wr_f_0 = maybe_wrap_with_location (f_0, loc);
15786 tree f_1 = build_real_from_int_cst (float_type_node, i_1);
15787 tree wr_f_1 = maybe_wrap_with_location (f_1, loc);
15788 tree f_m1 = build_real_from_int_cst (float_type_node, i_m1);
15789 tree wr_f_m1 = maybe_wrap_with_location (f_m1, loc);
15790
15791 tree c_i_0 = build_complex (NULL_TREE, i_0, i_0);
15792 tree c_i_1 = build_complex (NULL_TREE, i_1, i_0);
15793 tree c_i_m1 = build_complex (NULL_TREE, i_m1, i_0);
15794
15795 tree c_f_0 = build_complex (NULL_TREE, f_0, f_0);
15796 tree c_f_1 = build_complex (NULL_TREE, f_1, f_0);
15797 tree c_f_m1 = build_complex (NULL_TREE, f_m1, f_0);
15798
15799 /* TODO: vector constants. */
15800
15801 /* Test integer_onep. */
15802 ASSERT_FALSE (integer_onep (i_0));
15803 ASSERT_FALSE (integer_onep (wr_i_0));
15804 ASSERT_TRUE (integer_onep (i_1));
15805 ASSERT_TRUE (integer_onep (wr_i_1));
15806 ASSERT_FALSE (integer_onep (i_m1));
15807 ASSERT_FALSE (integer_onep (wr_i_m1));
15808 ASSERT_FALSE (integer_onep (f_0));
15809 ASSERT_FALSE (integer_onep (wr_f_0));
15810 ASSERT_FALSE (integer_onep (f_1));
15811 ASSERT_FALSE (integer_onep (wr_f_1));
15812 ASSERT_FALSE (integer_onep (f_m1));
15813 ASSERT_FALSE (integer_onep (wr_f_m1));
15814 ASSERT_FALSE (integer_onep (c_i_0));
15815 ASSERT_TRUE (integer_onep (c_i_1));
15816 ASSERT_FALSE (integer_onep (c_i_m1));
15817 ASSERT_FALSE (integer_onep (c_f_0));
15818 ASSERT_FALSE (integer_onep (c_f_1));
15819 ASSERT_FALSE (integer_onep (c_f_m1));
15820
15821 /* Test integer_zerop. */
15822 ASSERT_TRUE (integer_zerop (i_0));
15823 ASSERT_TRUE (integer_zerop (wr_i_0));
15824 ASSERT_FALSE (integer_zerop (i_1));
15825 ASSERT_FALSE (integer_zerop (wr_i_1));
15826 ASSERT_FALSE (integer_zerop (i_m1));
15827 ASSERT_FALSE (integer_zerop (wr_i_m1));
15828 ASSERT_FALSE (integer_zerop (f_0));
15829 ASSERT_FALSE (integer_zerop (wr_f_0));
15830 ASSERT_FALSE (integer_zerop (f_1));
15831 ASSERT_FALSE (integer_zerop (wr_f_1));
15832 ASSERT_FALSE (integer_zerop (f_m1));
15833 ASSERT_FALSE (integer_zerop (wr_f_m1));
15834 ASSERT_TRUE (integer_zerop (c_i_0));
15835 ASSERT_FALSE (integer_zerop (c_i_1));
15836 ASSERT_FALSE (integer_zerop (c_i_m1));
15837 ASSERT_FALSE (integer_zerop (c_f_0));
15838 ASSERT_FALSE (integer_zerop (c_f_1));
15839 ASSERT_FALSE (integer_zerop (c_f_m1));
15840
15841 /* Test integer_all_onesp. */
15842 ASSERT_FALSE (integer_all_onesp (i_0));
15843 ASSERT_FALSE (integer_all_onesp (wr_i_0));
15844 ASSERT_FALSE (integer_all_onesp (i_1));
15845 ASSERT_FALSE (integer_all_onesp (wr_i_1));
15846 ASSERT_TRUE (integer_all_onesp (i_m1));
15847 ASSERT_TRUE (integer_all_onesp (wr_i_m1));
15848 ASSERT_FALSE (integer_all_onesp (f_0));
15849 ASSERT_FALSE (integer_all_onesp (wr_f_0));
15850 ASSERT_FALSE (integer_all_onesp (f_1));
15851 ASSERT_FALSE (integer_all_onesp (wr_f_1));
15852 ASSERT_FALSE (integer_all_onesp (f_m1));
15853 ASSERT_FALSE (integer_all_onesp (wr_f_m1));
15854 ASSERT_FALSE (integer_all_onesp (c_i_0));
15855 ASSERT_FALSE (integer_all_onesp (c_i_1));
15856 ASSERT_FALSE (integer_all_onesp (c_i_m1));
15857 ASSERT_FALSE (integer_all_onesp (c_f_0));
15858 ASSERT_FALSE (integer_all_onesp (c_f_1));
15859 ASSERT_FALSE (integer_all_onesp (c_f_m1));
15860
15861 /* Test integer_minus_onep. */
15862 ASSERT_FALSE (integer_minus_onep (i_0));
15863 ASSERT_FALSE (integer_minus_onep (wr_i_0));
15864 ASSERT_FALSE (integer_minus_onep (i_1));
15865 ASSERT_FALSE (integer_minus_onep (wr_i_1));
15866 ASSERT_TRUE (integer_minus_onep (i_m1));
15867 ASSERT_TRUE (integer_minus_onep (wr_i_m1));
15868 ASSERT_FALSE (integer_minus_onep (f_0));
15869 ASSERT_FALSE (integer_minus_onep (wr_f_0));
15870 ASSERT_FALSE (integer_minus_onep (f_1));
15871 ASSERT_FALSE (integer_minus_onep (wr_f_1));
15872 ASSERT_FALSE (integer_minus_onep (f_m1));
15873 ASSERT_FALSE (integer_minus_onep (wr_f_m1));
15874 ASSERT_FALSE (integer_minus_onep (c_i_0));
15875 ASSERT_FALSE (integer_minus_onep (c_i_1));
15876 ASSERT_TRUE (integer_minus_onep (c_i_m1));
15877 ASSERT_FALSE (integer_minus_onep (c_f_0));
15878 ASSERT_FALSE (integer_minus_onep (c_f_1));
15879 ASSERT_FALSE (integer_minus_onep (c_f_m1));
15880
15881 /* Test integer_each_onep. */
15882 ASSERT_FALSE (integer_each_onep (i_0));
15883 ASSERT_FALSE (integer_each_onep (wr_i_0));
15884 ASSERT_TRUE (integer_each_onep (i_1));
15885 ASSERT_TRUE (integer_each_onep (wr_i_1));
15886 ASSERT_FALSE (integer_each_onep (i_m1));
15887 ASSERT_FALSE (integer_each_onep (wr_i_m1));
15888 ASSERT_FALSE (integer_each_onep (f_0));
15889 ASSERT_FALSE (integer_each_onep (wr_f_0));
15890 ASSERT_FALSE (integer_each_onep (f_1));
15891 ASSERT_FALSE (integer_each_onep (wr_f_1));
15892 ASSERT_FALSE (integer_each_onep (f_m1));
15893 ASSERT_FALSE (integer_each_onep (wr_f_m1));
15894 ASSERT_FALSE (integer_each_onep (c_i_0));
15895 ASSERT_FALSE (integer_each_onep (c_i_1));
15896 ASSERT_FALSE (integer_each_onep (c_i_m1));
15897 ASSERT_FALSE (integer_each_onep (c_f_0));
15898 ASSERT_FALSE (integer_each_onep (c_f_1));
15899 ASSERT_FALSE (integer_each_onep (c_f_m1));
15900
15901 /* Test integer_truep. */
15902 ASSERT_FALSE (integer_truep (i_0));
15903 ASSERT_FALSE (integer_truep (wr_i_0));
15904 ASSERT_TRUE (integer_truep (i_1));
15905 ASSERT_TRUE (integer_truep (wr_i_1));
15906 ASSERT_FALSE (integer_truep (i_m1));
15907 ASSERT_FALSE (integer_truep (wr_i_m1));
15908 ASSERT_FALSE (integer_truep (f_0));
15909 ASSERT_FALSE (integer_truep (wr_f_0));
15910 ASSERT_FALSE (integer_truep (f_1));
15911 ASSERT_FALSE (integer_truep (wr_f_1));
15912 ASSERT_FALSE (integer_truep (f_m1));
15913 ASSERT_FALSE (integer_truep (wr_f_m1));
15914 ASSERT_FALSE (integer_truep (c_i_0));
15915 ASSERT_TRUE (integer_truep (c_i_1));
15916 ASSERT_FALSE (integer_truep (c_i_m1));
15917 ASSERT_FALSE (integer_truep (c_f_0));
15918 ASSERT_FALSE (integer_truep (c_f_1));
15919 ASSERT_FALSE (integer_truep (c_f_m1));
15920
15921 /* Test integer_nonzerop. */
15922 ASSERT_FALSE (integer_nonzerop (i_0));
15923 ASSERT_FALSE (integer_nonzerop (wr_i_0));
15924 ASSERT_TRUE (integer_nonzerop (i_1));
15925 ASSERT_TRUE (integer_nonzerop (wr_i_1));
15926 ASSERT_TRUE (integer_nonzerop (i_m1));
15927 ASSERT_TRUE (integer_nonzerop (wr_i_m1));
15928 ASSERT_FALSE (integer_nonzerop (f_0));
15929 ASSERT_FALSE (integer_nonzerop (wr_f_0));
15930 ASSERT_FALSE (integer_nonzerop (f_1));
15931 ASSERT_FALSE (integer_nonzerop (wr_f_1));
15932 ASSERT_FALSE (integer_nonzerop (f_m1));
15933 ASSERT_FALSE (integer_nonzerop (wr_f_m1));
15934 ASSERT_FALSE (integer_nonzerop (c_i_0));
15935 ASSERT_TRUE (integer_nonzerop (c_i_1));
15936 ASSERT_TRUE (integer_nonzerop (c_i_m1));
15937 ASSERT_FALSE (integer_nonzerop (c_f_0));
15938 ASSERT_FALSE (integer_nonzerop (c_f_1));
15939 ASSERT_FALSE (integer_nonzerop (c_f_m1));
15940
15941 /* Test real_zerop. */
15942 ASSERT_FALSE (real_zerop (i_0));
15943 ASSERT_FALSE (real_zerop (wr_i_0));
15944 ASSERT_FALSE (real_zerop (i_1));
15945 ASSERT_FALSE (real_zerop (wr_i_1));
15946 ASSERT_FALSE (real_zerop (i_m1));
15947 ASSERT_FALSE (real_zerop (wr_i_m1));
15948 ASSERT_TRUE (real_zerop (f_0));
15949 ASSERT_TRUE (real_zerop (wr_f_0));
15950 ASSERT_FALSE (real_zerop (f_1));
15951 ASSERT_FALSE (real_zerop (wr_f_1));
15952 ASSERT_FALSE (real_zerop (f_m1));
15953 ASSERT_FALSE (real_zerop (wr_f_m1));
15954 ASSERT_FALSE (real_zerop (c_i_0));
15955 ASSERT_FALSE (real_zerop (c_i_1));
15956 ASSERT_FALSE (real_zerop (c_i_m1));
15957 ASSERT_TRUE (real_zerop (c_f_0));
15958 ASSERT_FALSE (real_zerop (c_f_1));
15959 ASSERT_FALSE (real_zerop (c_f_m1));
15960
15961 /* Test real_onep. */
15962 ASSERT_FALSE (real_onep (i_0));
15963 ASSERT_FALSE (real_onep (wr_i_0));
15964 ASSERT_FALSE (real_onep (i_1));
15965 ASSERT_FALSE (real_onep (wr_i_1));
15966 ASSERT_FALSE (real_onep (i_m1));
15967 ASSERT_FALSE (real_onep (wr_i_m1));
15968 ASSERT_FALSE (real_onep (f_0));
15969 ASSERT_FALSE (real_onep (wr_f_0));
15970 ASSERT_TRUE (real_onep (f_1));
15971 ASSERT_TRUE (real_onep (wr_f_1));
15972 ASSERT_FALSE (real_onep (f_m1));
15973 ASSERT_FALSE (real_onep (wr_f_m1));
15974 ASSERT_FALSE (real_onep (c_i_0));
15975 ASSERT_FALSE (real_onep (c_i_1));
15976 ASSERT_FALSE (real_onep (c_i_m1));
15977 ASSERT_FALSE (real_onep (c_f_0));
15978 ASSERT_TRUE (real_onep (c_f_1));
15979 ASSERT_FALSE (real_onep (c_f_m1));
15980
15981 /* Test real_minus_onep. */
15982 ASSERT_FALSE (real_minus_onep (i_0));
15983 ASSERT_FALSE (real_minus_onep (wr_i_0));
15984 ASSERT_FALSE (real_minus_onep (i_1));
15985 ASSERT_FALSE (real_minus_onep (wr_i_1));
15986 ASSERT_FALSE (real_minus_onep (i_m1));
15987 ASSERT_FALSE (real_minus_onep (wr_i_m1));
15988 ASSERT_FALSE (real_minus_onep (f_0));
15989 ASSERT_FALSE (real_minus_onep (wr_f_0));
15990 ASSERT_FALSE (real_minus_onep (f_1));
15991 ASSERT_FALSE (real_minus_onep (wr_f_1));
15992 ASSERT_TRUE (real_minus_onep (f_m1));
15993 ASSERT_TRUE (real_minus_onep (wr_f_m1));
15994 ASSERT_FALSE (real_minus_onep (c_i_0));
15995 ASSERT_FALSE (real_minus_onep (c_i_1));
15996 ASSERT_FALSE (real_minus_onep (c_i_m1));
15997 ASSERT_FALSE (real_minus_onep (c_f_0));
15998 ASSERT_FALSE (real_minus_onep (c_f_1));
15999 ASSERT_TRUE (real_minus_onep (c_f_m1));
16000
16001 /* Test zerop. */
16002 ASSERT_TRUE (zerop (i_0));
16003 ASSERT_TRUE (zerop (wr_i_0));
16004 ASSERT_FALSE (zerop (i_1));
16005 ASSERT_FALSE (zerop (wr_i_1));
16006 ASSERT_FALSE (zerop (i_m1));
16007 ASSERT_FALSE (zerop (wr_i_m1));
16008 ASSERT_TRUE (zerop (f_0));
16009 ASSERT_TRUE (zerop (wr_f_0));
16010 ASSERT_FALSE (zerop (f_1));
16011 ASSERT_FALSE (zerop (wr_f_1));
16012 ASSERT_FALSE (zerop (f_m1));
16013 ASSERT_FALSE (zerop (wr_f_m1));
16014 ASSERT_TRUE (zerop (c_i_0));
16015 ASSERT_FALSE (zerop (c_i_1));
16016 ASSERT_FALSE (zerop (c_i_m1));
16017 ASSERT_TRUE (zerop (c_f_0));
16018 ASSERT_FALSE (zerop (c_f_1));
16019 ASSERT_FALSE (zerop (c_f_m1));
16020
16021 /* Test tree_expr_nonnegative_p. */
16022 ASSERT_TRUE (tree_expr_nonnegative_p (i_0));
16023 ASSERT_TRUE (tree_expr_nonnegative_p (wr_i_0));
16024 ASSERT_TRUE (tree_expr_nonnegative_p (i_1));
16025 ASSERT_TRUE (tree_expr_nonnegative_p (wr_i_1));
16026 ASSERT_FALSE (tree_expr_nonnegative_p (i_m1));
16027 ASSERT_FALSE (tree_expr_nonnegative_p (wr_i_m1));
16028 ASSERT_TRUE (tree_expr_nonnegative_p (f_0));
16029 ASSERT_TRUE (tree_expr_nonnegative_p (wr_f_0));
16030 ASSERT_TRUE (tree_expr_nonnegative_p (f_1));
16031 ASSERT_TRUE (tree_expr_nonnegative_p (wr_f_1));
16032 ASSERT_FALSE (tree_expr_nonnegative_p (f_m1));
16033 ASSERT_FALSE (tree_expr_nonnegative_p (wr_f_m1));
16034 ASSERT_FALSE (tree_expr_nonnegative_p (c_i_0));
16035 ASSERT_FALSE (tree_expr_nonnegative_p (c_i_1));
16036 ASSERT_FALSE (tree_expr_nonnegative_p (c_i_m1));
16037 ASSERT_FALSE (tree_expr_nonnegative_p (c_f_0));
16038 ASSERT_FALSE (tree_expr_nonnegative_p (c_f_1));
16039 ASSERT_FALSE (tree_expr_nonnegative_p (c_f_m1));
16040
16041 /* Test tree_expr_nonzero_p. */
16042 ASSERT_FALSE (tree_expr_nonzero_p (i_0));
16043 ASSERT_FALSE (tree_expr_nonzero_p (wr_i_0));
16044 ASSERT_TRUE (tree_expr_nonzero_p (i_1));
16045 ASSERT_TRUE (tree_expr_nonzero_p (wr_i_1));
16046 ASSERT_TRUE (tree_expr_nonzero_p (i_m1));
16047 ASSERT_TRUE (tree_expr_nonzero_p (wr_i_m1));
16048
16049 /* Test integer_valued_real_p. */
16050 ASSERT_FALSE (integer_valued_real_p (i_0));
16051 ASSERT_TRUE (integer_valued_real_p (f_0));
16052 ASSERT_TRUE (integer_valued_real_p (wr_f_0));
16053 ASSERT_TRUE (integer_valued_real_p (f_1));
16054 ASSERT_TRUE (integer_valued_real_p (wr_f_1));
16055
16056 /* Test integer_pow2p. */
16057 ASSERT_FALSE (integer_pow2p (i_0));
16058 ASSERT_TRUE (integer_pow2p (i_1));
16059 ASSERT_TRUE (integer_pow2p (wr_i_1));
16060
16061 /* Test uniform_integer_cst_p. */
16062 ASSERT_TRUE (uniform_integer_cst_p (i_0));
16063 ASSERT_TRUE (uniform_integer_cst_p (wr_i_0));
16064 ASSERT_TRUE (uniform_integer_cst_p (i_1));
16065 ASSERT_TRUE (uniform_integer_cst_p (wr_i_1));
16066 ASSERT_TRUE (uniform_integer_cst_p (i_m1));
16067 ASSERT_TRUE (uniform_integer_cst_p (wr_i_m1));
16068 ASSERT_FALSE (uniform_integer_cst_p (f_0));
16069 ASSERT_FALSE (uniform_integer_cst_p (wr_f_0));
16070 ASSERT_FALSE (uniform_integer_cst_p (f_1));
16071 ASSERT_FALSE (uniform_integer_cst_p (wr_f_1));
16072 ASSERT_FALSE (uniform_integer_cst_p (f_m1));
16073 ASSERT_FALSE (uniform_integer_cst_p (wr_f_m1));
16074 ASSERT_FALSE (uniform_integer_cst_p (c_i_0));
16075 ASSERT_FALSE (uniform_integer_cst_p (c_i_1));
16076 ASSERT_FALSE (uniform_integer_cst_p (c_i_m1));
16077 ASSERT_FALSE (uniform_integer_cst_p (c_f_0));
16078 ASSERT_FALSE (uniform_integer_cst_p (c_f_1));
16079 ASSERT_FALSE (uniform_integer_cst_p (c_f_m1));
16080 }
16081
16082 /* Check that string escaping works correctly. */
16083
16084 static void
16085 test_escaped_strings (void)
16086 {
16087 int saved_cutoff;
16088 escaped_string msg;
16089
16090 msg.escape (NULL);
16091 /* ASSERT_STREQ does not accept NULL as a valid test
16092 result, so we have to use ASSERT_EQ instead. */
16093 ASSERT_EQ (NULL, (const char *) msg);
16094
16095 msg.escape ("");
16096 ASSERT_STREQ ("", (const char *) msg);
16097
16098 msg.escape ("foobar");
16099 ASSERT_STREQ ("foobar", (const char *) msg);
16100
16101 /* Ensure that we have -fmessage-length set to 0. */
16102 saved_cutoff = pp_line_cutoff (global_dc->printer);
16103 pp_line_cutoff (global_dc->printer) = 0;
16104
16105 msg.escape ("foo\nbar");
16106 ASSERT_STREQ ("foo\\nbar", (const char *) msg);
16107
16108 msg.escape ("\a\b\f\n\r\t\v");
16109 ASSERT_STREQ ("\\a\\b\\f\\n\\r\\t\\v", (const char *) msg);
16110
16111 /* Now repeat the tests with -fmessage-length set to 5. */
16112 pp_line_cutoff (global_dc->printer) = 5;
16113
16114 /* Note that the newline is not translated into an escape. */
16115 msg.escape ("foo\nbar");
16116 ASSERT_STREQ ("foo\nbar", (const char *) msg);
16117
16118 msg.escape ("\a\b\f\n\r\t\v");
16119 ASSERT_STREQ ("\\a\\b\\f\n\\r\\t\\v", (const char *) msg);
16120
16121 /* Restore the original message length setting. */
16122 pp_line_cutoff (global_dc->printer) = saved_cutoff;
16123 }
16124
16125 /* Run all of the selftests within this file. */
16126
16127 void
16128 tree_c_tests ()
16129 {
16130 test_integer_constants ();
16131 test_identifiers ();
16132 test_labels ();
16133 test_vector_cst_patterns ();
16134 test_location_wrappers ();
16135 test_predicates ();
16136 test_escaped_strings ();
16137 }
16138
16139 } // namespace selftest
16140
16141 #endif /* CHECKING_P */
16142
16143 #include "gt-tree.h"