]> git.ipfire.org Git - thirdparty/git.git/blame - refs/refs-internal.h
ref_transaction_prepare(): new optional step for reference updates
[thirdparty/git.git] / refs / refs-internal.h
CommitLineData
4cb77009
MH
1#ifndef REFS_REFS_INTERNAL_H
2#define REFS_REFS_INTERNAL_H
3
4/*
5 * Data structures and functions for the internal use of the refs
6 * module. Code outside of the refs module should use only the public
7 * functions defined in "refs.h", and should *not* include this file.
8 */
9
10/*
11 * Flag passed to lock_ref_sha1_basic() telling it to tolerate broken
12 * refs (i.e., because the reference is about to be deleted anyway).
13 */
14#define REF_DELETING 0x02
15
16/*
17 * Used as a flag in ref_update::flags when a loose ref is being
c52ce248 18 * pruned. This flag must only be used when REF_NODEREF is set.
4cb77009
MH
19 */
20#define REF_ISPRUNING 0x04
21
22/*
23 * Used as a flag in ref_update::flags when the reference should be
24 * updated to new_sha1.
25 */
26#define REF_HAVE_NEW 0x08
27
28/*
29 * Used as a flag in ref_update::flags when old_sha1 should be
30 * checked.
31 */
32#define REF_HAVE_OLD 0x10
33
34/*
35 * Used as a flag in ref_update::flags when the lockfile needs to be
36 * committed.
37 */
38#define REF_NEEDS_COMMIT 0x20
39
40/*
41 * 0x40 is REF_FORCE_CREATE_REFLOG, so skip it if you're adding a
42 * value to ref_update::flags
43 */
44
d99aa884
DT
45/*
46 * Used as a flag in ref_update::flags when we want to log a ref
47 * update but not actually perform it. This is used when a symbolic
48 * ref update is split up.
49 */
50#define REF_LOG_ONLY 0x80
51
92b1551b
MH
52/*
53 * Internal flag, meaning that the containing ref_update was via an
54 * update to HEAD.
55 */
56#define REF_UPDATE_VIA_HEAD 0x100
57
44639777
MH
58/*
59 * Used as a flag in ref_update::flags when the loose reference has
60 * been deleted.
61 */
62#define REF_DELETED_LOOSE 0x200
63
4cb77009
MH
64/*
65 * Return true iff refname is minimally safe. "Safe" here means that
66 * deleting a loose reference by this name will not do any damage, for
67 * example by causing a file that is not a reference to be deleted.
68 * This function does not check that the reference name is legal; for
69 * that, use check_refname_format().
70 *
15ee2c72
MH
71 * A refname that starts with "refs/" is considered safe iff it
72 * doesn't contain any "." or ".." components or consecutive '/'
73 * characters, end with '/', or (on Windows) contain any '\'
74 * characters. Names that do not start with "refs/" are considered
75 * safe iff they consist entirely of upper case characters and '_'
76 * (like "HEAD" and "MERGE_HEAD" but not "config" or "FOO/BAR").
4cb77009
MH
77 */
78int refname_is_safe(const char *refname);
79
80enum peel_status {
81 /* object was peeled successfully: */
82 PEEL_PEELED = 0,
83
84 /*
85 * object cannot be peeled because the named object (or an
86 * object referred to by a tag in the peel chain), does not
87 * exist.
88 */
89 PEEL_INVALID = -1,
90
91 /* object cannot be peeled because it is not a tag: */
92 PEEL_NON_TAG = -2,
93
94 /* ref_entry contains no peeled value because it is a symref: */
95 PEEL_IS_SYMREF = -3,
96
97 /*
98 * ref_entry cannot be peeled because it is broken (i.e., the
99 * symbolic reference cannot even be resolved to an object
100 * name):
101 */
102 PEEL_BROKEN = -4
103};
104
105/*
106 * Peel the named object; i.e., if the object is a tag, resolve the
107 * tag recursively until a non-tag is found. If successful, store the
108 * result to sha1 and return PEEL_PEELED. If the object is not a tag
109 * or is not valid, return PEEL_NON_TAG or PEEL_INVALID, respectively,
110 * and leave sha1 unchanged.
111 */
112enum peel_status peel_object(const unsigned char *name, unsigned char *sha1);
113
4cb77009
MH
114/*
115 * Copy the reflog message msg to buf, which has been allocated sufficiently
116 * large, while cleaning up the whitespaces. Especially, convert LF to space,
117 * because reflog file is one line per entry.
118 */
119int copy_reflog_msg(char *buf, const char *msg);
120
4cb77009
MH
121/**
122 * Information needed for a single ref update. Set new_sha1 to the new
123 * value or to null_sha1 to delete the ref. To check the old value
124 * while the ref is locked, set (flags & REF_HAVE_OLD) and set
125 * old_sha1 to the old value, or to null_sha1 to ensure the ref does
126 * not exist before update.
127 */
128struct ref_update {
6e30b2f6 129
4cb77009
MH
130 /*
131 * If (flags & REF_HAVE_NEW), set the reference to this value:
132 */
98491298 133 struct object_id new_oid;
6e30b2f6 134
4cb77009
MH
135 /*
136 * If (flags & REF_HAVE_OLD), check that the reference
137 * previously had this value:
138 */
98491298 139 struct object_id old_oid;
6e30b2f6 140
4cb77009
MH
141 /*
142 * One or more of REF_HAVE_NEW, REF_HAVE_OLD, REF_NODEREF,
44639777
MH
143 * REF_DELETING, REF_ISPRUNING, REF_LOG_ONLY,
144 * REF_UPDATE_VIA_HEAD, REF_NEEDS_COMMIT, and
145 * REF_DELETED_LOOSE:
4cb77009
MH
146 */
147 unsigned int flags;
6e30b2f6 148
7d618264 149 void *backend_data;
92b1551b 150 unsigned int type;
4cb77009 151 char *msg;
6e30b2f6
MH
152
153 /*
154 * If this ref_update was split off of a symref update via
155 * split_symref_update(), then this member points at that
156 * update. This is used for two purposes:
157 * 1. When reporting errors, we report the refname under which
158 * the update was originally requested.
159 * 2. When we read the old value of this reference, we
160 * propagate it back to its parent update for recording in
161 * the latter's reflog.
162 */
163 struct ref_update *parent_update;
164
4cb77009
MH
165 const char refname[FLEX_ARRAY];
166};
167
470be518
MH
168int refs_read_raw_ref(struct ref_store *ref_store,
169 const char *refname, unsigned char *sha1,
170 struct strbuf *referent, unsigned int *type);
171
71564516
MH
172/*
173 * Add a ref_update with the specified properties to transaction, and
174 * return a pointer to the new object. This function does not verify
175 * that refname is well-formed. new_sha1 and old_sha1 are only
176 * dereferenced if the REF_HAVE_NEW and REF_HAVE_OLD bits,
177 * respectively, are set in flags.
178 */
179struct ref_update *ref_transaction_add_update(
180 struct ref_transaction *transaction,
181 const char *refname, unsigned int flags,
182 const unsigned char *new_sha1,
183 const unsigned char *old_sha1,
184 const char *msg);
185
4cb77009
MH
186/*
187 * Transaction states.
30173b88
MH
188 *
189 * OPEN: The transaction is initialized and new updates can still be
190 * added to it. An OPEN transaction can be prepared,
191 * committed, freed, or aborted (freeing and aborting an open
192 * transaction are equivalent).
193 *
194 * PREPARED: ref_transaction_prepare(), which locks all of the
195 * references involved in the update and checks that the
196 * update has no errors, has been called successfully for the
197 * transaction. A PREPARED transaction can be committed or
198 * aborted.
199 *
200 * CLOSED: The transaction is no longer active. A transaction becomes
201 * CLOSED if there is a failure while building the transaction
202 * or if a transaction is committed or aborted. A CLOSED
203 * transaction can only be freed.
4cb77009
MH
204 */
205enum ref_transaction_state {
30173b88
MH
206 REF_TRANSACTION_OPEN = 0,
207 REF_TRANSACTION_PREPARED = 1,
208 REF_TRANSACTION_CLOSED = 2
4cb77009
MH
209};
210
211/*
212 * Data structure for holding a reference transaction, which can
213 * consist of checks and updates to multiple references, carried out
214 * as atomically as possible. This structure is opaque to callers.
215 */
216struct ref_transaction {
c0fe4e8b 217 struct ref_store *ref_store;
4cb77009
MH
218 struct ref_update **updates;
219 size_t alloc;
220 size_t nr;
221 enum ref_transaction_state state;
222};
223
0845122c
DT
224/*
225 * Check for entries in extras that are within the specified
226 * directory, where dirname is a reference directory name including
227 * the trailing slash (e.g., "refs/heads/foo/"). Ignore any
228 * conflicting references that are found in skip. If there is a
229 * conflicting reference, return its name.
230 *
231 * extras and skip must be sorted lists of reference names. Either one
232 * can be NULL, signifying the empty list.
233 */
234const char *find_descendant_ref(const char *dirname,
235 const struct string_list *extras,
236 const struct string_list *skip);
237
ff3a299c
DT
238/*
239 * Check whether an attempt to rename old_refname to new_refname would
240 * cause a D/F conflict with any existing reference (other than
241 * possibly old_refname). If there would be a conflict, emit an error
242 * message and return false; otherwise, return true.
243 *
244 * Note that this function is not safe against all races with other
245 * processes (though rename_ref() catches some races that might get by
246 * this check).
247 */
7d2df051
NTND
248int refs_rename_ref_available(struct ref_store *refs,
249 const char *old_refname,
250 const char *new_refname);
0845122c 251
2d0663b2
DT
252/* We allow "recursive" symbolic refs. Only within reason, though */
253#define SYMREF_MAXDEPTH 5
93770590
DT
254
255/* Include broken references in a do_for_each_ref*() iteration: */
256#define DO_FOR_EACH_INCLUDE_BROKEN 0x01
257
3bc581b9
MH
258/*
259 * Reference iterators
260 *
261 * A reference iterator encapsulates the state of an in-progress
262 * iteration over references. Create an instance of `struct
263 * ref_iterator` via one of the functions in this module.
264 *
265 * A freshly-created ref_iterator doesn't yet point at a reference. To
266 * advance the iterator, call ref_iterator_advance(). If successful,
267 * this sets the iterator's refname, oid, and flags fields to describe
268 * the next reference and returns ITER_OK. The data pointed at by
269 * refname and oid belong to the iterator; if you want to retain them
270 * after calling ref_iterator_advance() again or calling
271 * ref_iterator_abort(), you must make a copy. When the iteration has
272 * been exhausted, ref_iterator_advance() releases any resources
273 * assocated with the iteration, frees the ref_iterator object, and
274 * returns ITER_DONE. If you want to abort the iteration early, call
275 * ref_iterator_abort(), which also frees the ref_iterator object and
276 * any associated resources. If there was an internal error advancing
277 * to the next entry, ref_iterator_advance() aborts the iteration,
278 * frees the ref_iterator, and returns ITER_ERROR.
279 *
280 * The reference currently being looked at can be peeled by calling
281 * ref_iterator_peel(). This function is often faster than peel_ref(),
282 * so it should be preferred when iterating over references.
283 *
284 * Putting it all together, a typical iteration looks like this:
285 *
286 * int ok;
287 * struct ref_iterator *iter = ...;
288 *
289 * while ((ok = ref_iterator_advance(iter)) == ITER_OK) {
290 * if (want_to_stop_iteration()) {
291 * ok = ref_iterator_abort(iter);
292 * break;
293 * }
294 *
295 * // Access information about the current reference:
296 * if (!(iter->flags & REF_ISSYMREF))
297 * printf("%s is %s\n", iter->refname, oid_to_hex(&iter->oid));
298 *
299 * // If you need to peel the reference:
300 * ref_iterator_peel(iter, &oid);
301 * }
302 *
303 * if (ok != ITER_DONE)
304 * handle_error();
305 */
306struct ref_iterator {
307 struct ref_iterator_vtable *vtable;
308 const char *refname;
309 const struct object_id *oid;
310 unsigned int flags;
311};
312
313/*
314 * Advance the iterator to the first or next item and return ITER_OK.
315 * If the iteration is exhausted, free the resources associated with
316 * the ref_iterator and return ITER_DONE. On errors, free the iterator
317 * resources and return ITER_ERROR. It is a bug to use ref_iterator or
318 * call this function again after it has returned ITER_DONE or
319 * ITER_ERROR.
320 */
321int ref_iterator_advance(struct ref_iterator *ref_iterator);
322
323/*
324 * If possible, peel the reference currently being viewed by the
325 * iterator. Return 0 on success.
326 */
327int ref_iterator_peel(struct ref_iterator *ref_iterator,
328 struct object_id *peeled);
329
330/*
331 * End the iteration before it has been exhausted, freeing the
332 * reference iterator and any associated resources and returning
333 * ITER_DONE. If the abort itself failed, return ITER_ERROR.
334 */
335int ref_iterator_abort(struct ref_iterator *ref_iterator);
336
337/*
338 * An iterator over nothing (its first ref_iterator_advance() call
339 * returns ITER_DONE).
340 */
341struct ref_iterator *empty_ref_iterator_begin(void);
342
343/*
344 * Return true iff ref_iterator is an empty_ref_iterator.
345 */
346int is_empty_ref_iterator(struct ref_iterator *ref_iterator);
347
e121b9cb
MH
348/*
349 * Return an iterator that goes over each reference in `refs` for
350 * which the refname begins with prefix. If trim is non-zero, then
351 * trim that many characters off the beginning of each refname. flags
352 * can be DO_FOR_EACH_INCLUDE_BROKEN to include broken references in
353 * the iteration.
354 */
355struct ref_iterator *refs_ref_iterator_begin(
356 struct ref_store *refs,
357 const char *prefix, int trim, int flags);
358
3bc581b9
MH
359/*
360 * A callback function used to instruct merge_ref_iterator how to
361 * interleave the entries from iter0 and iter1. The function should
362 * return one of the constants defined in enum iterator_selection. It
363 * must not advance either of the iterators itself.
364 *
365 * The function must be prepared to handle the case that iter0 and/or
366 * iter1 is NULL, which indicates that the corresponding sub-iterator
367 * has been exhausted. Its return value must be consistent with the
368 * current states of the iterators; e.g., it must not return
369 * ITER_SKIP_1 if iter1 has already been exhausted.
370 */
371typedef enum iterator_selection ref_iterator_select_fn(
372 struct ref_iterator *iter0, struct ref_iterator *iter1,
373 void *cb_data);
374
375/*
376 * Iterate over the entries from iter0 and iter1, with the values
377 * interleaved as directed by the select function. The iterator takes
378 * ownership of iter0 and iter1 and frees them when the iteration is
379 * over.
380 */
381struct ref_iterator *merge_ref_iterator_begin(
382 struct ref_iterator *iter0, struct ref_iterator *iter1,
383 ref_iterator_select_fn *select, void *cb_data);
384
385/*
386 * An iterator consisting of the union of the entries from front and
387 * back. If there are entries common to the two sub-iterators, use the
388 * one from front. Each iterator must iterate over its entries in
389 * strcmp() order by refname for this to work.
390 *
391 * The new iterator takes ownership of its arguments and frees them
392 * when the iteration is over. As a convenience to callers, if front
393 * or back is an empty_ref_iterator, then abort that one immediately
394 * and return the other iterator directly, without wrapping it.
395 */
396struct ref_iterator *overlay_ref_iterator_begin(
397 struct ref_iterator *front, struct ref_iterator *back);
398
399/*
400 * Wrap iter0, only letting through the references whose names start
401 * with prefix. If trim is set, set iter->refname to the name of the
402 * reference with that many characters trimmed off the front;
403 * otherwise set it to the full refname. The new iterator takes over
404 * ownership of iter0 and frees it when iteration is over. It makes
405 * its own copy of prefix.
406 *
407 * As an convenience to callers, if prefix is the empty string and
408 * trim is zero, this function returns iter0 directly, without
409 * wrapping it.
410 */
411struct ref_iterator *prefix_ref_iterator_begin(struct ref_iterator *iter0,
412 const char *prefix,
413 int trim);
414
3bc581b9
MH
415/* Internal implementation of reference iteration: */
416
417/*
418 * Base class constructor for ref_iterators. Initialize the
419 * ref_iterator part of iter, setting its vtable pointer as specified.
420 * This is meant to be called only by the initializers of derived
421 * classes.
422 */
423void base_ref_iterator_init(struct ref_iterator *iter,
424 struct ref_iterator_vtable *vtable);
425
426/*
427 * Base class destructor for ref_iterators. Destroy the ref_iterator
428 * part of iter and shallow-free the object. This is meant to be
429 * called only by the destructors of derived classes.
430 */
431void base_ref_iterator_free(struct ref_iterator *iter);
432
433/* Virtual function declarations for ref_iterators: */
434
435typedef int ref_iterator_advance_fn(struct ref_iterator *ref_iterator);
436
437typedef int ref_iterator_peel_fn(struct ref_iterator *ref_iterator,
438 struct object_id *peeled);
439
440/*
441 * Implementations of this function should free any resources specific
442 * to the derived class, then call base_ref_iterator_free() to clean
443 * up and free the ref_iterator object.
444 */
445typedef int ref_iterator_abort_fn(struct ref_iterator *ref_iterator);
446
447struct ref_iterator_vtable {
448 ref_iterator_advance_fn *advance;
449 ref_iterator_peel_fn *peel;
450 ref_iterator_abort_fn *abort;
451};
452
93770590 453/*
4c4de895
MH
454 * current_ref_iter is a performance hack: when iterating over
455 * references using the for_each_ref*() functions, current_ref_iter is
456 * set to the reference iterator before calling the callback function.
457 * If the callback function calls peel_ref(), then peel_ref() first
458 * checks whether the reference to be peeled is the one referred to by
459 * the iterator (it usually is) and if so, asks the iterator for the
460 * peeled version of the reference if it is available. This avoids a
461 * refname lookup in a common case. current_ref_iter is set to NULL
462 * when the iteration is over.
463 */
464extern struct ref_iterator *current_ref_iter;
465
466/*
467 * The common backend for the for_each_*ref* functions. Call fn for
468 * each reference in iter. If the iterator itself ever returns
469 * ITER_ERROR, return -1. If fn ever returns a non-zero value, stop
470 * the iteration and return that value. Otherwise, return 0. In any
471 * case, free the iterator when done. This function is basically an
472 * adapter between the callback style of reference iteration and the
473 * iterator style.
474 */
475int do_for_each_ref_iterator(struct ref_iterator *iter,
476 each_ref_fn fn, void *cb_data);
2d0663b2 477
0c09ec07
DT
478/*
479 * Only include per-worktree refs in a do_for_each_ref*() iteration.
480 * Normally this will be used with a files ref_store, since that's
481 * where all reference backends will presumably store their
482 * per-worktree refs.
483 */
484#define DO_FOR_EACH_PER_WORKTREE_ONLY 0x02
e1e33b72 485
1a769003
MH
486struct ref_store;
487
0c09ec07
DT
488/* refs backends */
489
9e7ec634
NTND
490/* ref_store_init flags */
491#define REF_STORE_READ (1 << 0)
492#define REF_STORE_WRITE (1 << 1) /* can perform update operations */
493#define REF_STORE_ODB (1 << 2) /* has access to object database */
494#define REF_STORE_MAIN (1 << 3)
0d8a814d
NTND
495#define REF_STORE_ALL_CAPS (REF_STORE_READ | \
496 REF_STORE_WRITE | \
497 REF_STORE_ODB | \
498 REF_STORE_MAIN)
9e7ec634 499
e1e33b72 500/*
5d0bc90e
NTND
501 * Initialize the ref_store for the specified gitdir. These functions
502 * should call base_ref_store_init() to initialize the shared part of
503 * the ref_store and to record the ref_store for later lookup.
e1e33b72 504 */
9e7ec634
NTND
505typedef struct ref_store *ref_store_init_fn(const char *gitdir,
506 unsigned int flags);
e1e33b72 507
6fb5acfd
DT
508typedef int ref_init_db_fn(struct ref_store *refs, struct strbuf *err);
509
30173b88
MH
510typedef int ref_transaction_prepare_fn(struct ref_store *refs,
511 struct ref_transaction *transaction,
512 struct strbuf *err);
513
514typedef int ref_transaction_finish_fn(struct ref_store *refs,
515 struct ref_transaction *transaction,
516 struct strbuf *err);
517
518typedef int ref_transaction_abort_fn(struct ref_store *refs,
519 struct ref_transaction *transaction,
520 struct strbuf *err);
521
e1e33b72
MH
522typedef int ref_transaction_commit_fn(struct ref_store *refs,
523 struct ref_transaction *transaction,
524 struct strbuf *err);
525
8231527e 526typedef int pack_refs_fn(struct ref_store *ref_store, unsigned int flags);
bd427cf2
MH
527typedef int peel_ref_fn(struct ref_store *ref_store,
528 const char *refname, unsigned char *sha1);
284689ba
MH
529typedef int create_symref_fn(struct ref_store *ref_store,
530 const char *ref_target,
531 const char *refs_heads_master,
532 const char *logmsg);
64da4199 533typedef int delete_refs_fn(struct ref_store *ref_store, const char *msg,
a27dcf89 534 struct string_list *refnames, unsigned int flags);
9b6b40d9
DT
535typedef int rename_ref_fn(struct ref_store *ref_store,
536 const char *oldref, const char *newref,
537 const char *logmsg);
8231527e 538
1a769003 539/*
e1860571
MH
540 * Iterate over the references in `ref_store` whose names start with
541 * `prefix`. `prefix` is matched as a literal string, without regard
542 * for path separators. If prefix is NULL or the empty string, iterate
543 * over all references in `ref_store`.
1a769003
MH
544 */
545typedef struct ref_iterator *ref_iterator_begin_fn(
546 struct ref_store *ref_store,
547 const char *prefix, unsigned int flags);
548
e3688bd6
DT
549/* reflog functions */
550
551/*
552 * Iterate over the references in the specified ref_store that have a
553 * reflog. The refs are iterated over in arbitrary order.
554 */
555typedef struct ref_iterator *reflog_iterator_begin_fn(
556 struct ref_store *ref_store);
557
558typedef int for_each_reflog_ent_fn(struct ref_store *ref_store,
559 const char *refname,
560 each_reflog_ent_fn fn,
561 void *cb_data);
562typedef int for_each_reflog_ent_reverse_fn(struct ref_store *ref_store,
563 const char *refname,
564 each_reflog_ent_fn fn,
565 void *cb_data);
566typedef int reflog_exists_fn(struct ref_store *ref_store, const char *refname);
567typedef int create_reflog_fn(struct ref_store *ref_store, const char *refname,
568 int force_create, struct strbuf *err);
569typedef int delete_reflog_fn(struct ref_store *ref_store, const char *refname);
570typedef int reflog_expire_fn(struct ref_store *ref_store,
571 const char *refname, const unsigned char *sha1,
572 unsigned int flags,
573 reflog_expiry_prepare_fn prepare_fn,
574 reflog_expiry_should_prune_fn should_prune_fn,
575 reflog_expiry_cleanup_fn cleanup_fn,
576 void *policy_cb_data);
577
cf596442 578/*
34c7ad8f
MH
579 * Read a reference from the specified reference store, non-recursively.
580 * Set type to describe the reference, and:
cf596442
MH
581 *
582 * - If refname is the name of a normal reference, fill in sha1
583 * (leaving referent unchanged).
584 *
585 * - If refname is the name of a symbolic reference, write the full
586 * name of the reference to which it refers (e.g.
587 * "refs/heads/master") to referent and set the REF_ISSYMREF bit in
588 * type (leaving sha1 unchanged). The caller is responsible for
589 * validating that referent is a valid reference name.
590 *
591 * WARNING: refname might be used as part of a filename, so it is
592 * important from a security standpoint that it be safe in the sense
593 * of refname_is_safe(). Moreover, for symrefs this function sets
594 * referent to whatever the repository says, which might not be a
595 * properly-formatted or even safe reference name. NEITHER INPUT NOR
596 * OUTPUT REFERENCE NAMES ARE VALIDATED WITHIN THIS FUNCTION.
597 *
598 * Return 0 on success. If the ref doesn't exist, set errno to ENOENT
599 * and return -1. If the ref exists but is neither a symbolic ref nor
600 * a sha1, it is broken; set REF_ISBROKEN in type, set errno to
601 * EINVAL, and return -1. If there is another error reading the ref,
602 * set errno appropriately and return -1.
603 *
604 * Backend-specific flags might be set in type as well, regardless of
605 * outcome.
606 *
607 * It is OK for refname to point into referent. If so:
608 *
609 * - if the function succeeds with REF_ISSYMREF, referent will be
610 * overwritten and the memory formerly pointed to by it might be
611 * changed or even freed.
612 *
613 * - in all other cases, referent will be untouched, and therefore
614 * refname will still be valid and unchanged.
615 */
e1e33b72
MH
616typedef int read_raw_ref_fn(struct ref_store *ref_store,
617 const char *refname, unsigned char *sha1,
618 struct strbuf *referent, unsigned int *type);
127b42a1 619
3dce444f
RS
620struct ref_storage_be {
621 struct ref_storage_be *next;
622 const char *name;
00eebe35 623 ref_store_init_fn *init;
6fb5acfd 624 ref_init_db_fn *init_db;
30173b88
MH
625
626 ref_transaction_prepare_fn *transaction_prepare;
627 ref_transaction_finish_fn *transaction_finish;
628 ref_transaction_abort_fn *transaction_abort;
fc681463 629 ref_transaction_commit_fn *initial_transaction_commit;
e1e33b72 630
8231527e 631 pack_refs_fn *pack_refs;
bd427cf2 632 peel_ref_fn *peel_ref;
284689ba 633 create_symref_fn *create_symref;
a27dcf89 634 delete_refs_fn *delete_refs;
9b6b40d9 635 rename_ref_fn *rename_ref;
8231527e 636
1a769003 637 ref_iterator_begin_fn *iterator_begin;
e1e33b72 638 read_raw_ref_fn *read_raw_ref;
e3688bd6
DT
639
640 reflog_iterator_begin_fn *reflog_iterator_begin;
641 for_each_reflog_ent_fn *for_each_reflog_ent;
642 for_each_reflog_ent_reverse_fn *for_each_reflog_ent_reverse;
643 reflog_exists_fn *reflog_exists;
644 create_reflog_fn *create_reflog;
645 delete_reflog_fn *delete_reflog;
646 reflog_expire_fn *reflog_expire;
3dce444f
RS
647};
648
649extern struct ref_storage_be refs_be_files;
650
00eebe35
MH
651/*
652 * A representation of the reference store for the main repository or
653 * a submodule. The ref_store instances for submodules are kept in a
654 * linked list.
655 */
656struct ref_store {
657 /* The backend describing this ref_store's storage scheme: */
658 const struct ref_storage_be *be;
00eebe35
MH
659};
660
661/*
fbfd0a29
MH
662 * Fill in the generic part of refs and add it to our collection of
663 * reference stores.
00eebe35
MH
664 */
665void base_ref_store_init(struct ref_store *refs,
fbfd0a29 666 const struct ref_storage_be *be);
00eebe35 667
4cb77009 668#endif /* REFS_REFS_INTERNAL_H */