]> git.ipfire.org Git - thirdparty/git.git/blob - hashmap.h
Merge branch 'en/strmap'
[thirdparty/git.git] / hashmap.h
1 #ifndef HASHMAP_H
2 #define HASHMAP_H
3
4 #include "hash.h"
5
6 /*
7 * Generic implementation of hash-based key-value mappings.
8 *
9 * An example that maps long to a string:
10 * For the sake of the example this allows to lookup exact values, too
11 * (i.e. it is operated as a set, the value is part of the key)
12 * -------------------------------------
13 *
14 * struct hashmap map;
15 * struct long2string {
16 * struct hashmap_entry ent;
17 * long key;
18 * char value[FLEX_ARRAY]; // be careful with allocating on stack!
19 * };
20 *
21 * #define COMPARE_VALUE 1
22 *
23 * static int long2string_cmp(const void *hashmap_cmp_fn_data,
24 * const struct hashmap_entry *eptr,
25 * const struct hashmap_entry *entry_or_key,
26 * const void *keydata)
27 * {
28 * const char *string = keydata;
29 * unsigned flags = *(unsigned *)hashmap_cmp_fn_data;
30 * const struct long2string *e1, *e2;
31 *
32 * e1 = container_of(eptr, const struct long2string, ent);
33 * e2 = container_of(entry_or_key, const struct long2string, ent);
34 *
35 * if (flags & COMPARE_VALUE)
36 * return e1->key != e2->key ||
37 * strcmp(e1->value, string ? string : e2->value);
38 * else
39 * return e1->key != e2->key;
40 * }
41 *
42 * int main(int argc, char **argv)
43 * {
44 * long key;
45 * char value[255], action[32];
46 * unsigned flags = 0;
47 *
48 * hashmap_init(&map, long2string_cmp, &flags, 0);
49 *
50 * while (scanf("%s %ld %s", action, &key, value)) {
51 *
52 * if (!strcmp("add", action)) {
53 * struct long2string *e;
54 * FLEX_ALLOC_STR(e, value, value);
55 * hashmap_entry_init(&e->ent, memhash(&key, sizeof(long)));
56 * e->key = key;
57 * hashmap_add(&map, &e->ent);
58 * }
59 *
60 * if (!strcmp("print_all_by_key", action)) {
61 * struct long2string k, *e;
62 * hashmap_entry_init(&k.ent, memhash(&key, sizeof(long)));
63 * k.key = key;
64 *
65 * flags &= ~COMPARE_VALUE;
66 * e = hashmap_get_entry(&map, &k, ent, NULL);
67 * if (e) {
68 * printf("first: %ld %s\n", e->key, e->value);
69 * while ((e = hashmap_get_next_entry(&map, e,
70 * struct long2string, ent))) {
71 * printf("found more: %ld %s\n", e->key, e->value);
72 * }
73 * }
74 * }
75 *
76 * if (!strcmp("has_exact_match", action)) {
77 * struct long2string *e;
78 * FLEX_ALLOC_STR(e, value, value);
79 * hashmap_entry_init(&e->ent, memhash(&key, sizeof(long)));
80 * e->key = key;
81 *
82 * flags |= COMPARE_VALUE;
83 * printf("%sfound\n",
84 * hashmap_get(&map, &e->ent, NULL) ? "" : "not ");
85 * free(e);
86 * }
87 *
88 * if (!strcmp("has_exact_match_no_heap_alloc", action)) {
89 * struct long2string k;
90 * hashmap_entry_init(&k.ent, memhash(&key, sizeof(long)));
91 * k.key = key;
92 *
93 * flags |= COMPARE_VALUE;
94 * printf("%sfound\n",
95 * hashmap_get(&map, &k.ent, value) ? "" : "not ");
96 * }
97 *
98 * if (!strcmp("end", action)) {
99 * hashmap_clear_and_free(&map, struct long2string, ent);
100 * break;
101 * }
102 * }
103 *
104 * return 0;
105 * }
106 */
107
108 /*
109 * Ready-to-use hash functions for strings, using the FNV-1 algorithm (see
110 * http://www.isthe.com/chongo/tech/comp/fnv).
111 * `strhash` and `strihash` take 0-terminated strings, while `memhash` and
112 * `memihash` operate on arbitrary-length memory.
113 * `strihash` and `memihash` are case insensitive versions.
114 * `memihash_cont` is a variant of `memihash` that allows a computation to be
115 * continued with another chunk of data.
116 */
117 unsigned int strhash(const char *buf);
118 unsigned int strihash(const char *buf);
119 unsigned int memhash(const void *buf, size_t len);
120 unsigned int memihash(const void *buf, size_t len);
121 unsigned int memihash_cont(unsigned int hash_seed, const void *buf, size_t len);
122
123 /*
124 * Converts a cryptographic hash (e.g. SHA-1) into an int-sized hash code
125 * for use in hash tables. Cryptographic hashes are supposed to have
126 * uniform distribution, so in contrast to `memhash()`, this just copies
127 * the first `sizeof(int)` bytes without shuffling any bits. Note that
128 * the results will be different on big-endian and little-endian
129 * platforms, so they should not be stored or transferred over the net.
130 */
131 static inline unsigned int oidhash(const struct object_id *oid)
132 {
133 /*
134 * Equivalent to 'return *(unsigned int *)oid->hash;', but safe on
135 * platforms that don't support unaligned reads.
136 */
137 unsigned int hash;
138 memcpy(&hash, oid->hash, sizeof(hash));
139 return hash;
140 }
141
142 /*
143 * struct hashmap_entry is an opaque structure representing an entry in the
144 * hash table.
145 * Ideally it should be followed by an int-sized member to prevent unused
146 * memory on 64-bit systems due to alignment.
147 */
148 struct hashmap_entry {
149 /*
150 * next points to the next entry in case of collisions (i.e. if
151 * multiple entries map to the same bucket)
152 */
153 struct hashmap_entry *next;
154
155 /* entry's hash code */
156 unsigned int hash;
157 };
158
159 /*
160 * User-supplied function to test two hashmap entries for equality. Shall
161 * return 0 if the entries are equal.
162 *
163 * This function is always called with non-NULL `entry` and `entry_or_key`
164 * parameters that have the same hash code.
165 *
166 * When looking up an entry, the `key` and `keydata` parameters to hashmap_get
167 * and hashmap_remove are always passed as second `entry_or_key` and third
168 * argument `keydata`, respectively. Otherwise, `keydata` is NULL.
169 *
170 * When it is too expensive to allocate a user entry (either because it is
171 * large or variable sized, such that it is not on the stack), then the
172 * relevant data to check for equality should be passed via `keydata`.
173 * In this case `key` can be a stripped down version of the user key data
174 * or even just a hashmap_entry having the correct hash.
175 *
176 * The `hashmap_cmp_fn_data` entry is the pointer given in the init function.
177 */
178 typedef int (*hashmap_cmp_fn)(const void *hashmap_cmp_fn_data,
179 const struct hashmap_entry *entry,
180 const struct hashmap_entry *entry_or_key,
181 const void *keydata);
182
183 /*
184 * struct hashmap is the hash table structure. Members can be used as follows,
185 * but should not be modified directly.
186 */
187 struct hashmap {
188 struct hashmap_entry **table;
189
190 /* Stores the comparison function specified in `hashmap_init()`. */
191 hashmap_cmp_fn cmpfn;
192 const void *cmpfn_data;
193
194 /* total number of entries (0 means the hashmap is empty) */
195 unsigned int private_size; /* use hashmap_get_size() */
196
197 /*
198 * tablesize is the allocated size of the hash table. A non-0 value
199 * indicates that the hashmap is initialized. It may also be useful
200 * for statistical purposes (i.e. `size / tablesize` is the current
201 * load factor).
202 */
203 unsigned int tablesize;
204
205 unsigned int grow_at;
206 unsigned int shrink_at;
207
208 unsigned int do_count_items : 1;
209 };
210
211 /* hashmap functions */
212
213 #define HASHMAP_INIT(fn, data) { .cmpfn = fn, .cmpfn_data = data, \
214 .do_count_items = 1 }
215
216 /*
217 * Initializes a hashmap structure.
218 *
219 * `map` is the hashmap to initialize.
220 *
221 * The `equals_function` can be specified to compare two entries for equality.
222 * If NULL, entries are considered equal if their hash codes are equal.
223 *
224 * The `equals_function_data` parameter can be used to provide additional data
225 * (a callback cookie) that will be passed to `equals_function` each time it
226 * is called. This allows a single `equals_function` to implement multiple
227 * comparison functions.
228 *
229 * If the total number of entries is known in advance, the `initial_size`
230 * parameter may be used to preallocate a sufficiently large table and thus
231 * prevent expensive resizing. If 0, the table is dynamically resized.
232 */
233 void hashmap_init(struct hashmap *map,
234 hashmap_cmp_fn equals_function,
235 const void *equals_function_data,
236 size_t initial_size);
237
238 /* internal functions for clearing or freeing hashmap */
239 void hashmap_partial_clear_(struct hashmap *map, ssize_t offset);
240 void hashmap_clear_(struct hashmap *map, ssize_t offset);
241
242 /*
243 * Frees a hashmap structure and allocated memory for the table, but does not
244 * free the entries nor anything they point to.
245 *
246 * Usage note:
247 *
248 * Many callers will need to iterate over all entries and free the data each
249 * entry points to; in such a case, they can free the entry itself while at it.
250 * Thus, you might see:
251 *
252 * hashmap_for_each_entry(map, hashmap_iter, e, hashmap_entry_name) {
253 * free(e->somefield);
254 * free(e);
255 * }
256 * hashmap_clear(map);
257 *
258 * instead of
259 *
260 * hashmap_for_each_entry(map, hashmap_iter, e, hashmap_entry_name) {
261 * free(e->somefield);
262 * }
263 * hashmap_clear_and_free(map, struct my_entry_struct, hashmap_entry_name);
264 *
265 * to avoid the implicit extra loop over the entries. However, if there are
266 * no special fields in your entry that need to be freed beyond the entry
267 * itself, it is probably simpler to avoid the explicit loop and just call
268 * hashmap_clear_and_free().
269 */
270 #define hashmap_clear(map) hashmap_clear_(map, -1)
271
272 /*
273 * Similar to hashmap_clear(), except that the table is no deallocated; it
274 * is merely zeroed out but left the same size as before. If the hashmap
275 * will be reused, this avoids the overhead of deallocating and
276 * reallocating map->table. As with hashmap_clear(), you may need to free
277 * the entries yourself before calling this function.
278 */
279 #define hashmap_partial_clear(map) hashmap_partial_clear_(map, -1)
280
281 /*
282 * Similar to hashmap_clear() but also frees all entries. @type is the
283 * struct type of the entry where @member is the hashmap_entry struct used
284 * to associate with @map.
285 *
286 * See usage note above hashmap_clear().
287 */
288 #define hashmap_clear_and_free(map, type, member) \
289 hashmap_clear_(map, offsetof(type, member))
290
291 /*
292 * Similar to hashmap_partial_clear() but also frees all entries. @type is
293 * the struct type of the entry where @member is the hashmap_entry struct
294 * used to associate with @map.
295 *
296 * See usage note above hashmap_clear().
297 */
298 #define hashmap_partial_clear_and_free(map, type, member) \
299 hashmap_partial_clear_(map, offsetof(type, member))
300
301 /* hashmap_entry functions */
302
303 /*
304 * Initializes a hashmap_entry structure.
305 *
306 * `entry` points to the entry to initialize.
307 * `hash` is the hash code of the entry.
308 *
309 * The hashmap_entry structure does not hold references to external resources,
310 * and it is safe to just discard it once you are done with it (i.e. if
311 * your structure was allocated with xmalloc(), you can just free(3) it,
312 * and if it is on stack, you can just let it go out of scope).
313 */
314 static inline void hashmap_entry_init(struct hashmap_entry *e,
315 unsigned int hash)
316 {
317 e->hash = hash;
318 e->next = NULL;
319 }
320
321 /*
322 * Return the number of items in the map.
323 */
324 static inline unsigned int hashmap_get_size(struct hashmap *map)
325 {
326 if (map->do_count_items)
327 return map->private_size;
328
329 BUG("hashmap_get_size: size not set");
330 return 0;
331 }
332
333 /*
334 * Returns the hashmap entry for the specified key, or NULL if not found.
335 *
336 * `map` is the hashmap structure.
337 *
338 * `key` is a user data structure that starts with hashmap_entry that has at
339 * least been initialized with the proper hash code (via `hashmap_entry_init`).
340 *
341 * `keydata` is a data structure that holds just enough information to check
342 * for equality to a given entry.
343 *
344 * If the key data is variable-sized (e.g. a FLEX_ARRAY string) or quite large,
345 * it is undesirable to create a full-fledged entry structure on the heap and
346 * copy all the key data into the structure.
347 *
348 * In this case, the `keydata` parameter can be used to pass
349 * variable-sized key data directly to the comparison function, and the `key`
350 * parameter can be a stripped-down, fixed size entry structure allocated on the
351 * stack.
352 *
353 * If an entry with matching hash code is found, `key` and `keydata` are passed
354 * to `hashmap_cmp_fn` to decide whether the entry matches the key.
355 */
356 struct hashmap_entry *hashmap_get(const struct hashmap *map,
357 const struct hashmap_entry *key,
358 const void *keydata);
359
360 /*
361 * Returns the hashmap entry for the specified hash code and key data,
362 * or NULL if not found.
363 *
364 * `map` is the hashmap structure.
365 * `hash` is the hash code of the entry to look up.
366 *
367 * If an entry with matching hash code is found, `keydata` is passed to
368 * `hashmap_cmp_fn` to decide whether the entry matches the key. The
369 * `entry_or_key` parameter of `hashmap_cmp_fn` points to a hashmap_entry
370 * structure that should not be used in the comparison.
371 */
372 static inline struct hashmap_entry *hashmap_get_from_hash(
373 const struct hashmap *map,
374 unsigned int hash,
375 const void *keydata)
376 {
377 struct hashmap_entry key;
378 hashmap_entry_init(&key, hash);
379 return hashmap_get(map, &key, keydata);
380 }
381
382 /*
383 * Returns the next equal hashmap entry, or NULL if not found. This can be
384 * used to iterate over duplicate entries (see `hashmap_add`).
385 *
386 * `map` is the hashmap structure.
387 * `entry` is the hashmap_entry to start the search from, obtained via a previous
388 * call to `hashmap_get` or `hashmap_get_next`.
389 */
390 struct hashmap_entry *hashmap_get_next(const struct hashmap *map,
391 const struct hashmap_entry *entry);
392
393 /*
394 * Adds a hashmap entry. This allows to add duplicate entries (i.e.
395 * separate values with the same key according to hashmap_cmp_fn).
396 *
397 * `map` is the hashmap structure.
398 * `entry` is the entry to add.
399 */
400 void hashmap_add(struct hashmap *map, struct hashmap_entry *entry);
401
402 /*
403 * Adds or replaces a hashmap entry. If the hashmap contains duplicate
404 * entries equal to the specified entry, only one of them will be replaced.
405 *
406 * `map` is the hashmap structure.
407 * `entry` is the entry to add or replace.
408 * Returns the replaced entry, or NULL if not found (i.e. the entry was added).
409 */
410 struct hashmap_entry *hashmap_put(struct hashmap *map,
411 struct hashmap_entry *entry);
412
413 /*
414 * Adds or replaces a hashmap entry contained within @keyvar,
415 * where @keyvar is a pointer to a struct containing a
416 * "struct hashmap_entry" @member.
417 *
418 * Returns the replaced pointer which is of the same type as @keyvar,
419 * or NULL if not found.
420 */
421 #define hashmap_put_entry(map, keyvar, member) \
422 container_of_or_null_offset(hashmap_put(map, &(keyvar)->member), \
423 OFFSETOF_VAR(keyvar, member))
424
425 /*
426 * Removes a hashmap entry matching the specified key. If the hashmap contains
427 * duplicate entries equal to the specified key, only one of them will be
428 * removed. Returns the removed entry, or NULL if not found.
429 *
430 * Argument explanation is the same as in `hashmap_get`.
431 */
432 struct hashmap_entry *hashmap_remove(struct hashmap *map,
433 const struct hashmap_entry *key,
434 const void *keydata);
435
436 /*
437 * Removes a hashmap entry contained within @keyvar,
438 * where @keyvar is a pointer to a struct containing a
439 * "struct hashmap_entry" @member.
440 *
441 * See `hashmap_get` for an explanation of @keydata
442 *
443 * Returns the replaced pointer which is of the same type as @keyvar,
444 * or NULL if not found.
445 */
446 #define hashmap_remove_entry(map, keyvar, member, keydata) \
447 container_of_or_null_offset( \
448 hashmap_remove(map, &(keyvar)->member, keydata), \
449 OFFSETOF_VAR(keyvar, member))
450
451 /*
452 * Returns the `bucket` an entry is stored in.
453 * Useful for multithreaded read access.
454 */
455 int hashmap_bucket(const struct hashmap *map, unsigned int hash);
456
457 /*
458 * Used to iterate over all entries of a hashmap. Note that it is
459 * not safe to add or remove entries to the hashmap while
460 * iterating.
461 */
462 struct hashmap_iter {
463 struct hashmap *map;
464 struct hashmap_entry *next;
465 unsigned int tablepos;
466 };
467
468 /* Initializes a `hashmap_iter` structure. */
469 void hashmap_iter_init(struct hashmap *map, struct hashmap_iter *iter);
470
471 /* Returns the next hashmap_entry, or NULL if there are no more entries. */
472 struct hashmap_entry *hashmap_iter_next(struct hashmap_iter *iter);
473
474 /* Initializes the iterator and returns the first entry, if any. */
475 static inline struct hashmap_entry *hashmap_iter_first(struct hashmap *map,
476 struct hashmap_iter *iter)
477 {
478 hashmap_iter_init(map, iter);
479 return hashmap_iter_next(iter);
480 }
481
482 /*
483 * returns the first entry in @map using @iter, where the entry is of
484 * @type (e.g. "struct foo") and @member is the name of the
485 * "struct hashmap_entry" in @type
486 */
487 #define hashmap_iter_first_entry(map, iter, type, member) \
488 container_of_or_null(hashmap_iter_first(map, iter), type, member)
489
490 /* internal macro for hashmap_for_each_entry */
491 #define hashmap_iter_next_entry_offset(iter, offset) \
492 container_of_or_null_offset(hashmap_iter_next(iter), offset)
493
494 /* internal macro for hashmap_for_each_entry */
495 #define hashmap_iter_first_entry_offset(map, iter, offset) \
496 container_of_or_null_offset(hashmap_iter_first(map, iter), offset)
497
498 /*
499 * iterate through @map using @iter, @var is a pointer to a type
500 * containing a @member which is a "struct hashmap_entry"
501 */
502 #define hashmap_for_each_entry(map, iter, var, member) \
503 for (var = NULL, /* for systems without typeof */ \
504 var = hashmap_iter_first_entry_offset(map, iter, \
505 OFFSETOF_VAR(var, member)); \
506 var; \
507 var = hashmap_iter_next_entry_offset(iter, \
508 OFFSETOF_VAR(var, member)))
509
510 /*
511 * returns a pointer of type matching @keyvar, or NULL if nothing found.
512 * @keyvar is a pointer to a struct containing a
513 * "struct hashmap_entry" @member.
514 */
515 #define hashmap_get_entry(map, keyvar, member, keydata) \
516 container_of_or_null_offset( \
517 hashmap_get(map, &(keyvar)->member, keydata), \
518 OFFSETOF_VAR(keyvar, member))
519
520 #define hashmap_get_entry_from_hash(map, hash, keydata, type, member) \
521 container_of_or_null(hashmap_get_from_hash(map, hash, keydata), \
522 type, member)
523 /*
524 * returns the next equal pointer to @var, or NULL if not found.
525 * @var is a pointer of any type containing "struct hashmap_entry"
526 * @member is the name of the "struct hashmap_entry" field
527 */
528 #define hashmap_get_next_entry(map, var, member) \
529 container_of_or_null_offset(hashmap_get_next(map, &(var)->member), \
530 OFFSETOF_VAR(var, member))
531
532 /*
533 * iterate @map starting from @var, where @var is a pointer of @type
534 * and @member is the name of the "struct hashmap_entry" field in @type
535 */
536 #define hashmap_for_each_entry_from(map, var, member) \
537 for (; \
538 var; \
539 var = hashmap_get_next_entry(map, var, member))
540
541 /*
542 * Disable item counting and automatic rehashing when adding/removing items.
543 *
544 * Normally, the hashmap keeps track of the number of items in the map
545 * and uses it to dynamically resize it. This (both the counting and
546 * the resizing) can cause problems when the map is being used by
547 * threaded callers (because the hashmap code does not know about the
548 * locking strategy used by the threaded callers and therefore, does
549 * not know how to protect the "private_size" counter).
550 */
551 static inline void hashmap_disable_item_counting(struct hashmap *map)
552 {
553 map->do_count_items = 0;
554 }
555
556 /*
557 * Re-enable item counting when adding/removing items.
558 * If counting is currently disabled, it will force count them.
559 * It WILL NOT automatically rehash them.
560 */
561 static inline void hashmap_enable_item_counting(struct hashmap *map)
562 {
563 unsigned int n = 0;
564 struct hashmap_iter iter;
565
566 if (map->do_count_items)
567 return;
568
569 hashmap_iter_init(map, &iter);
570 while (hashmap_iter_next(&iter))
571 n++;
572
573 map->do_count_items = 1;
574 map->private_size = n;
575 }
576
577 /* String interning */
578
579 /*
580 * Returns the unique, interned version of the specified string or data,
581 * similar to the `String.intern` API in Java and .NET, respectively.
582 * Interned strings remain valid for the entire lifetime of the process.
583 *
584 * Can be used as `[x]strdup()` or `xmemdupz` replacement, except that interned
585 * strings / data must not be modified or freed.
586 *
587 * Interned strings are best used for short strings with high probability of
588 * duplicates.
589 *
590 * Uses a hashmap to store the pool of interned strings.
591 */
592 const void *memintern(const void *data, size_t len);
593 static inline const char *strintern(const char *string)
594 {
595 return memintern(string, strlen(string));
596 }
597
598 #endif