]> git.ipfire.org Git - thirdparty/git.git/blob - refs.c
use xstrdup_or_null to replace ternary conditionals
[thirdparty/git.git] / refs.c
1 #include "cache.h"
2 #include "refs.h"
3 #include "object.h"
4 #include "tag.h"
5 #include "dir.h"
6 #include "string-list.h"
7
8 /*
9 * How to handle various characters in refnames:
10 * 0: An acceptable character for refs
11 * 1: End-of-component
12 * 2: ., look for a preceding . to reject .. in refs
13 * 3: {, look for a preceding @ to reject @{ in refs
14 * 4: A bad character: ASCII control characters, "~", "^", ":" or SP
15 */
16 static unsigned char refname_disposition[256] = {
17 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
18 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
19 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 2, 1,
20 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 4,
21 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
22 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 0, 4, 0,
23 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
24 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 4, 4
25 };
26
27 /*
28 * Used as a flag to ref_transaction_delete when a loose ref is being
29 * pruned.
30 */
31 #define REF_ISPRUNING 0x0100
32 /*
33 * Try to read one refname component from the front of refname.
34 * Return the length of the component found, or -1 if the component is
35 * not legal. It is legal if it is something reasonable to have under
36 * ".git/refs/"; We do not like it if:
37 *
38 * - any path component of it begins with ".", or
39 * - it has double dots "..", or
40 * - it has ASCII control character, "~", "^", ":" or SP, anywhere, or
41 * - it ends with a "/".
42 * - it ends with ".lock"
43 * - it contains a "\" (backslash)
44 */
45 static int check_refname_component(const char *refname, int flags)
46 {
47 const char *cp;
48 char last = '\0';
49
50 for (cp = refname; ; cp++) {
51 int ch = *cp & 255;
52 unsigned char disp = refname_disposition[ch];
53 switch (disp) {
54 case 1:
55 goto out;
56 case 2:
57 if (last == '.')
58 return -1; /* Refname contains "..". */
59 break;
60 case 3:
61 if (last == '@')
62 return -1; /* Refname contains "@{". */
63 break;
64 case 4:
65 return -1;
66 }
67 last = ch;
68 }
69 out:
70 if (cp == refname)
71 return 0; /* Component has zero length. */
72 if (refname[0] == '.') {
73 if (!(flags & REFNAME_DOT_COMPONENT))
74 return -1; /* Component starts with '.'. */
75 /*
76 * Even if leading dots are allowed, don't allow "."
77 * as a component (".." is prevented by a rule above).
78 */
79 if (refname[1] == '\0')
80 return -1; /* Component equals ".". */
81 }
82 if (cp - refname >= 5 && !memcmp(cp - 5, ".lock", 5))
83 return -1; /* Refname ends with ".lock". */
84 return cp - refname;
85 }
86
87 int check_refname_format(const char *refname, int flags)
88 {
89 int component_len, component_count = 0;
90
91 if (!strcmp(refname, "@"))
92 /* Refname is a single character '@'. */
93 return -1;
94
95 while (1) {
96 /* We are at the start of a path component. */
97 component_len = check_refname_component(refname, flags);
98 if (component_len <= 0) {
99 if ((flags & REFNAME_REFSPEC_PATTERN) &&
100 refname[0] == '*' &&
101 (refname[1] == '\0' || refname[1] == '/')) {
102 /* Accept one wildcard as a full refname component. */
103 flags &= ~REFNAME_REFSPEC_PATTERN;
104 component_len = 1;
105 } else {
106 return -1;
107 }
108 }
109 component_count++;
110 if (refname[component_len] == '\0')
111 break;
112 /* Skip to next component. */
113 refname += component_len + 1;
114 }
115
116 if (refname[component_len - 1] == '.')
117 return -1; /* Refname ends with '.'. */
118 if (!(flags & REFNAME_ALLOW_ONELEVEL) && component_count < 2)
119 return -1; /* Refname has only one component. */
120 return 0;
121 }
122
123 struct ref_entry;
124
125 /*
126 * Information used (along with the information in ref_entry) to
127 * describe a single cached reference. This data structure only
128 * occurs embedded in a union in struct ref_entry, and only when
129 * (ref_entry->flag & REF_DIR) is zero.
130 */
131 struct ref_value {
132 /*
133 * The name of the object to which this reference resolves
134 * (which may be a tag object). If REF_ISBROKEN, this is
135 * null. If REF_ISSYMREF, then this is the name of the object
136 * referred to by the last reference in the symlink chain.
137 */
138 unsigned char sha1[20];
139
140 /*
141 * If REF_KNOWS_PEELED, then this field holds the peeled value
142 * of this reference, or null if the reference is known not to
143 * be peelable. See the documentation for peel_ref() for an
144 * exact definition of "peelable".
145 */
146 unsigned char peeled[20];
147 };
148
149 struct ref_cache;
150
151 /*
152 * Information used (along with the information in ref_entry) to
153 * describe a level in the hierarchy of references. This data
154 * structure only occurs embedded in a union in struct ref_entry, and
155 * only when (ref_entry.flag & REF_DIR) is set. In that case,
156 * (ref_entry.flag & REF_INCOMPLETE) determines whether the references
157 * in the directory have already been read:
158 *
159 * (ref_entry.flag & REF_INCOMPLETE) unset -- a directory of loose
160 * or packed references, already read.
161 *
162 * (ref_entry.flag & REF_INCOMPLETE) set -- a directory of loose
163 * references that hasn't been read yet (nor has any of its
164 * subdirectories).
165 *
166 * Entries within a directory are stored within a growable array of
167 * pointers to ref_entries (entries, nr, alloc). Entries 0 <= i <
168 * sorted are sorted by their component name in strcmp() order and the
169 * remaining entries are unsorted.
170 *
171 * Loose references are read lazily, one directory at a time. When a
172 * directory of loose references is read, then all of the references
173 * in that directory are stored, and REF_INCOMPLETE stubs are created
174 * for any subdirectories, but the subdirectories themselves are not
175 * read. The reading is triggered by get_ref_dir().
176 */
177 struct ref_dir {
178 int nr, alloc;
179
180 /*
181 * Entries with index 0 <= i < sorted are sorted by name. New
182 * entries are appended to the list unsorted, and are sorted
183 * only when required; thus we avoid the need to sort the list
184 * after the addition of every reference.
185 */
186 int sorted;
187
188 /* A pointer to the ref_cache that contains this ref_dir. */
189 struct ref_cache *ref_cache;
190
191 struct ref_entry **entries;
192 };
193
194 /*
195 * Bit values for ref_entry::flag. REF_ISSYMREF=0x01,
196 * REF_ISPACKED=0x02, and REF_ISBROKEN=0x04 are public values; see
197 * refs.h.
198 */
199
200 /*
201 * The field ref_entry->u.value.peeled of this value entry contains
202 * the correct peeled value for the reference, which might be
203 * null_sha1 if the reference is not a tag or if it is broken.
204 */
205 #define REF_KNOWS_PEELED 0x08
206
207 /* ref_entry represents a directory of references */
208 #define REF_DIR 0x10
209
210 /*
211 * Entry has not yet been read from disk (used only for REF_DIR
212 * entries representing loose references)
213 */
214 #define REF_INCOMPLETE 0x20
215
216 /*
217 * A ref_entry represents either a reference or a "subdirectory" of
218 * references.
219 *
220 * Each directory in the reference namespace is represented by a
221 * ref_entry with (flags & REF_DIR) set and containing a subdir member
222 * that holds the entries in that directory that have been read so
223 * far. If (flags & REF_INCOMPLETE) is set, then the directory and
224 * its subdirectories haven't been read yet. REF_INCOMPLETE is only
225 * used for loose reference directories.
226 *
227 * References are represented by a ref_entry with (flags & REF_DIR)
228 * unset and a value member that describes the reference's value. The
229 * flag member is at the ref_entry level, but it is also needed to
230 * interpret the contents of the value field (in other words, a
231 * ref_value object is not very much use without the enclosing
232 * ref_entry).
233 *
234 * Reference names cannot end with slash and directories' names are
235 * always stored with a trailing slash (except for the top-level
236 * directory, which is always denoted by ""). This has two nice
237 * consequences: (1) when the entries in each subdir are sorted
238 * lexicographically by name (as they usually are), the references in
239 * a whole tree can be generated in lexicographic order by traversing
240 * the tree in left-to-right, depth-first order; (2) the names of
241 * references and subdirectories cannot conflict, and therefore the
242 * presence of an empty subdirectory does not block the creation of a
243 * similarly-named reference. (The fact that reference names with the
244 * same leading components can conflict *with each other* is a
245 * separate issue that is regulated by is_refname_available().)
246 *
247 * Please note that the name field contains the fully-qualified
248 * reference (or subdirectory) name. Space could be saved by only
249 * storing the relative names. But that would require the full names
250 * to be generated on the fly when iterating in do_for_each_ref(), and
251 * would break callback functions, who have always been able to assume
252 * that the name strings that they are passed will not be freed during
253 * the iteration.
254 */
255 struct ref_entry {
256 unsigned char flag; /* ISSYMREF? ISPACKED? */
257 union {
258 struct ref_value value; /* if not (flags&REF_DIR) */
259 struct ref_dir subdir; /* if (flags&REF_DIR) */
260 } u;
261 /*
262 * The full name of the reference (e.g., "refs/heads/master")
263 * or the full name of the directory with a trailing slash
264 * (e.g., "refs/heads/"):
265 */
266 char name[FLEX_ARRAY];
267 };
268
269 static void read_loose_refs(const char *dirname, struct ref_dir *dir);
270
271 static struct ref_dir *get_ref_dir(struct ref_entry *entry)
272 {
273 struct ref_dir *dir;
274 assert(entry->flag & REF_DIR);
275 dir = &entry->u.subdir;
276 if (entry->flag & REF_INCOMPLETE) {
277 read_loose_refs(entry->name, dir);
278 entry->flag &= ~REF_INCOMPLETE;
279 }
280 return dir;
281 }
282
283 static struct ref_entry *create_ref_entry(const char *refname,
284 const unsigned char *sha1, int flag,
285 int check_name)
286 {
287 int len;
288 struct ref_entry *ref;
289
290 if (check_name &&
291 check_refname_format(refname, REFNAME_ALLOW_ONELEVEL|REFNAME_DOT_COMPONENT))
292 die("Reference has invalid format: '%s'", refname);
293 len = strlen(refname) + 1;
294 ref = xmalloc(sizeof(struct ref_entry) + len);
295 hashcpy(ref->u.value.sha1, sha1);
296 hashclr(ref->u.value.peeled);
297 memcpy(ref->name, refname, len);
298 ref->flag = flag;
299 return ref;
300 }
301
302 static void clear_ref_dir(struct ref_dir *dir);
303
304 static void free_ref_entry(struct ref_entry *entry)
305 {
306 if (entry->flag & REF_DIR) {
307 /*
308 * Do not use get_ref_dir() here, as that might
309 * trigger the reading of loose refs.
310 */
311 clear_ref_dir(&entry->u.subdir);
312 }
313 free(entry);
314 }
315
316 /*
317 * Add a ref_entry to the end of dir (unsorted). Entry is always
318 * stored directly in dir; no recursion into subdirectories is
319 * done.
320 */
321 static void add_entry_to_dir(struct ref_dir *dir, struct ref_entry *entry)
322 {
323 ALLOC_GROW(dir->entries, dir->nr + 1, dir->alloc);
324 dir->entries[dir->nr++] = entry;
325 /* optimize for the case that entries are added in order */
326 if (dir->nr == 1 ||
327 (dir->nr == dir->sorted + 1 &&
328 strcmp(dir->entries[dir->nr - 2]->name,
329 dir->entries[dir->nr - 1]->name) < 0))
330 dir->sorted = dir->nr;
331 }
332
333 /*
334 * Clear and free all entries in dir, recursively.
335 */
336 static void clear_ref_dir(struct ref_dir *dir)
337 {
338 int i;
339 for (i = 0; i < dir->nr; i++)
340 free_ref_entry(dir->entries[i]);
341 free(dir->entries);
342 dir->sorted = dir->nr = dir->alloc = 0;
343 dir->entries = NULL;
344 }
345
346 /*
347 * Create a struct ref_entry object for the specified dirname.
348 * dirname is the name of the directory with a trailing slash (e.g.,
349 * "refs/heads/") or "" for the top-level directory.
350 */
351 static struct ref_entry *create_dir_entry(struct ref_cache *ref_cache,
352 const char *dirname, size_t len,
353 int incomplete)
354 {
355 struct ref_entry *direntry;
356 direntry = xcalloc(1, sizeof(struct ref_entry) + len + 1);
357 memcpy(direntry->name, dirname, len);
358 direntry->name[len] = '\0';
359 direntry->u.subdir.ref_cache = ref_cache;
360 direntry->flag = REF_DIR | (incomplete ? REF_INCOMPLETE : 0);
361 return direntry;
362 }
363
364 static int ref_entry_cmp(const void *a, const void *b)
365 {
366 struct ref_entry *one = *(struct ref_entry **)a;
367 struct ref_entry *two = *(struct ref_entry **)b;
368 return strcmp(one->name, two->name);
369 }
370
371 static void sort_ref_dir(struct ref_dir *dir);
372
373 struct string_slice {
374 size_t len;
375 const char *str;
376 };
377
378 static int ref_entry_cmp_sslice(const void *key_, const void *ent_)
379 {
380 const struct string_slice *key = key_;
381 const struct ref_entry *ent = *(const struct ref_entry * const *)ent_;
382 int cmp = strncmp(key->str, ent->name, key->len);
383 if (cmp)
384 return cmp;
385 return '\0' - (unsigned char)ent->name[key->len];
386 }
387
388 /*
389 * Return the index of the entry with the given refname from the
390 * ref_dir (non-recursively), sorting dir if necessary. Return -1 if
391 * no such entry is found. dir must already be complete.
392 */
393 static int search_ref_dir(struct ref_dir *dir, const char *refname, size_t len)
394 {
395 struct ref_entry **r;
396 struct string_slice key;
397
398 if (refname == NULL || !dir->nr)
399 return -1;
400
401 sort_ref_dir(dir);
402 key.len = len;
403 key.str = refname;
404 r = bsearch(&key, dir->entries, dir->nr, sizeof(*dir->entries),
405 ref_entry_cmp_sslice);
406
407 if (r == NULL)
408 return -1;
409
410 return r - dir->entries;
411 }
412
413 /*
414 * Search for a directory entry directly within dir (without
415 * recursing). Sort dir if necessary. subdirname must be a directory
416 * name (i.e., end in '/'). If mkdir is set, then create the
417 * directory if it is missing; otherwise, return NULL if the desired
418 * directory cannot be found. dir must already be complete.
419 */
420 static struct ref_dir *search_for_subdir(struct ref_dir *dir,
421 const char *subdirname, size_t len,
422 int mkdir)
423 {
424 int entry_index = search_ref_dir(dir, subdirname, len);
425 struct ref_entry *entry;
426 if (entry_index == -1) {
427 if (!mkdir)
428 return NULL;
429 /*
430 * Since dir is complete, the absence of a subdir
431 * means that the subdir really doesn't exist;
432 * therefore, create an empty record for it but mark
433 * the record complete.
434 */
435 entry = create_dir_entry(dir->ref_cache, subdirname, len, 0);
436 add_entry_to_dir(dir, entry);
437 } else {
438 entry = dir->entries[entry_index];
439 }
440 return get_ref_dir(entry);
441 }
442
443 /*
444 * If refname is a reference name, find the ref_dir within the dir
445 * tree that should hold refname. If refname is a directory name
446 * (i.e., ends in '/'), then return that ref_dir itself. dir must
447 * represent the top-level directory and must already be complete.
448 * Sort ref_dirs and recurse into subdirectories as necessary. If
449 * mkdir is set, then create any missing directories; otherwise,
450 * return NULL if the desired directory cannot be found.
451 */
452 static struct ref_dir *find_containing_dir(struct ref_dir *dir,
453 const char *refname, int mkdir)
454 {
455 const char *slash;
456 for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
457 size_t dirnamelen = slash - refname + 1;
458 struct ref_dir *subdir;
459 subdir = search_for_subdir(dir, refname, dirnamelen, mkdir);
460 if (!subdir) {
461 dir = NULL;
462 break;
463 }
464 dir = subdir;
465 }
466
467 return dir;
468 }
469
470 /*
471 * Find the value entry with the given name in dir, sorting ref_dirs
472 * and recursing into subdirectories as necessary. If the name is not
473 * found or it corresponds to a directory entry, return NULL.
474 */
475 static struct ref_entry *find_ref(struct ref_dir *dir, const char *refname)
476 {
477 int entry_index;
478 struct ref_entry *entry;
479 dir = find_containing_dir(dir, refname, 0);
480 if (!dir)
481 return NULL;
482 entry_index = search_ref_dir(dir, refname, strlen(refname));
483 if (entry_index == -1)
484 return NULL;
485 entry = dir->entries[entry_index];
486 return (entry->flag & REF_DIR) ? NULL : entry;
487 }
488
489 /*
490 * Remove the entry with the given name from dir, recursing into
491 * subdirectories as necessary. If refname is the name of a directory
492 * (i.e., ends with '/'), then remove the directory and its contents.
493 * If the removal was successful, return the number of entries
494 * remaining in the directory entry that contained the deleted entry.
495 * If the name was not found, return -1. Please note that this
496 * function only deletes the entry from the cache; it does not delete
497 * it from the filesystem or ensure that other cache entries (which
498 * might be symbolic references to the removed entry) are updated.
499 * Nor does it remove any containing dir entries that might be made
500 * empty by the removal. dir must represent the top-level directory
501 * and must already be complete.
502 */
503 static int remove_entry(struct ref_dir *dir, const char *refname)
504 {
505 int refname_len = strlen(refname);
506 int entry_index;
507 struct ref_entry *entry;
508 int is_dir = refname[refname_len - 1] == '/';
509 if (is_dir) {
510 /*
511 * refname represents a reference directory. Remove
512 * the trailing slash; otherwise we will get the
513 * directory *representing* refname rather than the
514 * one *containing* it.
515 */
516 char *dirname = xmemdupz(refname, refname_len - 1);
517 dir = find_containing_dir(dir, dirname, 0);
518 free(dirname);
519 } else {
520 dir = find_containing_dir(dir, refname, 0);
521 }
522 if (!dir)
523 return -1;
524 entry_index = search_ref_dir(dir, refname, refname_len);
525 if (entry_index == -1)
526 return -1;
527 entry = dir->entries[entry_index];
528
529 memmove(&dir->entries[entry_index],
530 &dir->entries[entry_index + 1],
531 (dir->nr - entry_index - 1) * sizeof(*dir->entries)
532 );
533 dir->nr--;
534 if (dir->sorted > entry_index)
535 dir->sorted--;
536 free_ref_entry(entry);
537 return dir->nr;
538 }
539
540 /*
541 * Add a ref_entry to the ref_dir (unsorted), recursing into
542 * subdirectories as necessary. dir must represent the top-level
543 * directory. Return 0 on success.
544 */
545 static int add_ref(struct ref_dir *dir, struct ref_entry *ref)
546 {
547 dir = find_containing_dir(dir, ref->name, 1);
548 if (!dir)
549 return -1;
550 add_entry_to_dir(dir, ref);
551 return 0;
552 }
553
554 /*
555 * Emit a warning and return true iff ref1 and ref2 have the same name
556 * and the same sha1. Die if they have the same name but different
557 * sha1s.
558 */
559 static int is_dup_ref(const struct ref_entry *ref1, const struct ref_entry *ref2)
560 {
561 if (strcmp(ref1->name, ref2->name))
562 return 0;
563
564 /* Duplicate name; make sure that they don't conflict: */
565
566 if ((ref1->flag & REF_DIR) || (ref2->flag & REF_DIR))
567 /* This is impossible by construction */
568 die("Reference directory conflict: %s", ref1->name);
569
570 if (hashcmp(ref1->u.value.sha1, ref2->u.value.sha1))
571 die("Duplicated ref, and SHA1s don't match: %s", ref1->name);
572
573 warning("Duplicated ref: %s", ref1->name);
574 return 1;
575 }
576
577 /*
578 * Sort the entries in dir non-recursively (if they are not already
579 * sorted) and remove any duplicate entries.
580 */
581 static void sort_ref_dir(struct ref_dir *dir)
582 {
583 int i, j;
584 struct ref_entry *last = NULL;
585
586 /*
587 * This check also prevents passing a zero-length array to qsort(),
588 * which is a problem on some platforms.
589 */
590 if (dir->sorted == dir->nr)
591 return;
592
593 qsort(dir->entries, dir->nr, sizeof(*dir->entries), ref_entry_cmp);
594
595 /* Remove any duplicates: */
596 for (i = 0, j = 0; j < dir->nr; j++) {
597 struct ref_entry *entry = dir->entries[j];
598 if (last && is_dup_ref(last, entry))
599 free_ref_entry(entry);
600 else
601 last = dir->entries[i++] = entry;
602 }
603 dir->sorted = dir->nr = i;
604 }
605
606 /* Include broken references in a do_for_each_ref*() iteration: */
607 #define DO_FOR_EACH_INCLUDE_BROKEN 0x01
608
609 /*
610 * Return true iff the reference described by entry can be resolved to
611 * an object in the database. Emit a warning if the referred-to
612 * object does not exist.
613 */
614 static int ref_resolves_to_object(struct ref_entry *entry)
615 {
616 if (entry->flag & REF_ISBROKEN)
617 return 0;
618 if (!has_sha1_file(entry->u.value.sha1)) {
619 error("%s does not point to a valid object!", entry->name);
620 return 0;
621 }
622 return 1;
623 }
624
625 /*
626 * current_ref is a performance hack: when iterating over references
627 * using the for_each_ref*() functions, current_ref is set to the
628 * current reference's entry before calling the callback function. If
629 * the callback function calls peel_ref(), then peel_ref() first
630 * checks whether the reference to be peeled is the current reference
631 * (it usually is) and if so, returns that reference's peeled version
632 * if it is available. This avoids a refname lookup in a common case.
633 */
634 static struct ref_entry *current_ref;
635
636 typedef int each_ref_entry_fn(struct ref_entry *entry, void *cb_data);
637
638 struct ref_entry_cb {
639 const char *base;
640 int trim;
641 int flags;
642 each_ref_fn *fn;
643 void *cb_data;
644 };
645
646 /*
647 * Handle one reference in a do_for_each_ref*()-style iteration,
648 * calling an each_ref_fn for each entry.
649 */
650 static int do_one_ref(struct ref_entry *entry, void *cb_data)
651 {
652 struct ref_entry_cb *data = cb_data;
653 struct ref_entry *old_current_ref;
654 int retval;
655
656 if (!starts_with(entry->name, data->base))
657 return 0;
658
659 if (!(data->flags & DO_FOR_EACH_INCLUDE_BROKEN) &&
660 !ref_resolves_to_object(entry))
661 return 0;
662
663 /* Store the old value, in case this is a recursive call: */
664 old_current_ref = current_ref;
665 current_ref = entry;
666 retval = data->fn(entry->name + data->trim, entry->u.value.sha1,
667 entry->flag, data->cb_data);
668 current_ref = old_current_ref;
669 return retval;
670 }
671
672 /*
673 * Call fn for each reference in dir that has index in the range
674 * offset <= index < dir->nr. Recurse into subdirectories that are in
675 * that index range, sorting them before iterating. This function
676 * does not sort dir itself; it should be sorted beforehand. fn is
677 * called for all references, including broken ones.
678 */
679 static int do_for_each_entry_in_dir(struct ref_dir *dir, int offset,
680 each_ref_entry_fn fn, void *cb_data)
681 {
682 int i;
683 assert(dir->sorted == dir->nr);
684 for (i = offset; i < dir->nr; i++) {
685 struct ref_entry *entry = dir->entries[i];
686 int retval;
687 if (entry->flag & REF_DIR) {
688 struct ref_dir *subdir = get_ref_dir(entry);
689 sort_ref_dir(subdir);
690 retval = do_for_each_entry_in_dir(subdir, 0, fn, cb_data);
691 } else {
692 retval = fn(entry, cb_data);
693 }
694 if (retval)
695 return retval;
696 }
697 return 0;
698 }
699
700 /*
701 * Call fn for each reference in the union of dir1 and dir2, in order
702 * by refname. Recurse into subdirectories. If a value entry appears
703 * in both dir1 and dir2, then only process the version that is in
704 * dir2. The input dirs must already be sorted, but subdirs will be
705 * sorted as needed. fn is called for all references, including
706 * broken ones.
707 */
708 static int do_for_each_entry_in_dirs(struct ref_dir *dir1,
709 struct ref_dir *dir2,
710 each_ref_entry_fn fn, void *cb_data)
711 {
712 int retval;
713 int i1 = 0, i2 = 0;
714
715 assert(dir1->sorted == dir1->nr);
716 assert(dir2->sorted == dir2->nr);
717 while (1) {
718 struct ref_entry *e1, *e2;
719 int cmp;
720 if (i1 == dir1->nr) {
721 return do_for_each_entry_in_dir(dir2, i2, fn, cb_data);
722 }
723 if (i2 == dir2->nr) {
724 return do_for_each_entry_in_dir(dir1, i1, fn, cb_data);
725 }
726 e1 = dir1->entries[i1];
727 e2 = dir2->entries[i2];
728 cmp = strcmp(e1->name, e2->name);
729 if (cmp == 0) {
730 if ((e1->flag & REF_DIR) && (e2->flag & REF_DIR)) {
731 /* Both are directories; descend them in parallel. */
732 struct ref_dir *subdir1 = get_ref_dir(e1);
733 struct ref_dir *subdir2 = get_ref_dir(e2);
734 sort_ref_dir(subdir1);
735 sort_ref_dir(subdir2);
736 retval = do_for_each_entry_in_dirs(
737 subdir1, subdir2, fn, cb_data);
738 i1++;
739 i2++;
740 } else if (!(e1->flag & REF_DIR) && !(e2->flag & REF_DIR)) {
741 /* Both are references; ignore the one from dir1. */
742 retval = fn(e2, cb_data);
743 i1++;
744 i2++;
745 } else {
746 die("conflict between reference and directory: %s",
747 e1->name);
748 }
749 } else {
750 struct ref_entry *e;
751 if (cmp < 0) {
752 e = e1;
753 i1++;
754 } else {
755 e = e2;
756 i2++;
757 }
758 if (e->flag & REF_DIR) {
759 struct ref_dir *subdir = get_ref_dir(e);
760 sort_ref_dir(subdir);
761 retval = do_for_each_entry_in_dir(
762 subdir, 0, fn, cb_data);
763 } else {
764 retval = fn(e, cb_data);
765 }
766 }
767 if (retval)
768 return retval;
769 }
770 }
771
772 /*
773 * Load all of the refs from the dir into our in-memory cache. The hard work
774 * of loading loose refs is done by get_ref_dir(), so we just need to recurse
775 * through all of the sub-directories. We do not even need to care about
776 * sorting, as traversal order does not matter to us.
777 */
778 static void prime_ref_dir(struct ref_dir *dir)
779 {
780 int i;
781 for (i = 0; i < dir->nr; i++) {
782 struct ref_entry *entry = dir->entries[i];
783 if (entry->flag & REF_DIR)
784 prime_ref_dir(get_ref_dir(entry));
785 }
786 }
787
788 static int entry_matches(struct ref_entry *entry, const char *refname)
789 {
790 return refname && !strcmp(entry->name, refname);
791 }
792
793 struct nonmatching_ref_data {
794 const char *skip;
795 struct ref_entry *found;
796 };
797
798 static int nonmatching_ref_fn(struct ref_entry *entry, void *vdata)
799 {
800 struct nonmatching_ref_data *data = vdata;
801
802 if (entry_matches(entry, data->skip))
803 return 0;
804
805 data->found = entry;
806 return 1;
807 }
808
809 static void report_refname_conflict(struct ref_entry *entry,
810 const char *refname)
811 {
812 error("'%s' exists; cannot create '%s'", entry->name, refname);
813 }
814
815 /*
816 * Return true iff a reference named refname could be created without
817 * conflicting with the name of an existing reference in dir. If
818 * oldrefname is non-NULL, ignore potential conflicts with oldrefname
819 * (e.g., because oldrefname is scheduled for deletion in the same
820 * operation).
821 *
822 * Two reference names conflict if one of them exactly matches the
823 * leading components of the other; e.g., "foo/bar" conflicts with
824 * both "foo" and with "foo/bar/baz" but not with "foo/bar" or
825 * "foo/barbados".
826 */
827 static int is_refname_available(const char *refname, const char *oldrefname,
828 struct ref_dir *dir)
829 {
830 const char *slash;
831 size_t len;
832 int pos;
833 char *dirname;
834
835 for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
836 /*
837 * We are still at a leading dir of the refname; we are
838 * looking for a conflict with a leaf entry.
839 *
840 * If we find one, we still must make sure it is
841 * not "oldrefname".
842 */
843 pos = search_ref_dir(dir, refname, slash - refname);
844 if (pos >= 0) {
845 struct ref_entry *entry = dir->entries[pos];
846 if (entry_matches(entry, oldrefname))
847 return 1;
848 report_refname_conflict(entry, refname);
849 return 0;
850 }
851
852
853 /*
854 * Otherwise, we can try to continue our search with
855 * the next component; if we come up empty, we know
856 * there is nothing under this whole prefix.
857 */
858 pos = search_ref_dir(dir, refname, slash + 1 - refname);
859 if (pos < 0)
860 return 1;
861
862 dir = get_ref_dir(dir->entries[pos]);
863 }
864
865 /*
866 * We are at the leaf of our refname; we want to
867 * make sure there are no directories which match it.
868 */
869 len = strlen(refname);
870 dirname = xmallocz(len + 1);
871 sprintf(dirname, "%s/", refname);
872 pos = search_ref_dir(dir, dirname, len + 1);
873 free(dirname);
874
875 if (pos >= 0) {
876 /*
877 * We found a directory named "refname". It is a
878 * problem iff it contains any ref that is not
879 * "oldrefname".
880 */
881 struct ref_entry *entry = dir->entries[pos];
882 struct ref_dir *dir = get_ref_dir(entry);
883 struct nonmatching_ref_data data;
884
885 data.skip = oldrefname;
886 sort_ref_dir(dir);
887 if (!do_for_each_entry_in_dir(dir, 0, nonmatching_ref_fn, &data))
888 return 1;
889
890 report_refname_conflict(data.found, refname);
891 return 0;
892 }
893
894 /*
895 * There is no point in searching for another leaf
896 * node which matches it; such an entry would be the
897 * ref we are looking for, not a conflict.
898 */
899 return 1;
900 }
901
902 struct packed_ref_cache {
903 struct ref_entry *root;
904
905 /*
906 * Count of references to the data structure in this instance,
907 * including the pointer from ref_cache::packed if any. The
908 * data will not be freed as long as the reference count is
909 * nonzero.
910 */
911 unsigned int referrers;
912
913 /*
914 * Iff the packed-refs file associated with this instance is
915 * currently locked for writing, this points at the associated
916 * lock (which is owned by somebody else). The referrer count
917 * is also incremented when the file is locked and decremented
918 * when it is unlocked.
919 */
920 struct lock_file *lock;
921
922 /* The metadata from when this packed-refs cache was read */
923 struct stat_validity validity;
924 };
925
926 /*
927 * Future: need to be in "struct repository"
928 * when doing a full libification.
929 */
930 static struct ref_cache {
931 struct ref_cache *next;
932 struct ref_entry *loose;
933 struct packed_ref_cache *packed;
934 /*
935 * The submodule name, or "" for the main repo. We allocate
936 * length 1 rather than FLEX_ARRAY so that the main ref_cache
937 * is initialized correctly.
938 */
939 char name[1];
940 } ref_cache, *submodule_ref_caches;
941
942 /* Lock used for the main packed-refs file: */
943 static struct lock_file packlock;
944
945 /*
946 * Increment the reference count of *packed_refs.
947 */
948 static void acquire_packed_ref_cache(struct packed_ref_cache *packed_refs)
949 {
950 packed_refs->referrers++;
951 }
952
953 /*
954 * Decrease the reference count of *packed_refs. If it goes to zero,
955 * free *packed_refs and return true; otherwise return false.
956 */
957 static int release_packed_ref_cache(struct packed_ref_cache *packed_refs)
958 {
959 if (!--packed_refs->referrers) {
960 free_ref_entry(packed_refs->root);
961 stat_validity_clear(&packed_refs->validity);
962 free(packed_refs);
963 return 1;
964 } else {
965 return 0;
966 }
967 }
968
969 static void clear_packed_ref_cache(struct ref_cache *refs)
970 {
971 if (refs->packed) {
972 struct packed_ref_cache *packed_refs = refs->packed;
973
974 if (packed_refs->lock)
975 die("internal error: packed-ref cache cleared while locked");
976 refs->packed = NULL;
977 release_packed_ref_cache(packed_refs);
978 }
979 }
980
981 static void clear_loose_ref_cache(struct ref_cache *refs)
982 {
983 if (refs->loose) {
984 free_ref_entry(refs->loose);
985 refs->loose = NULL;
986 }
987 }
988
989 static struct ref_cache *create_ref_cache(const char *submodule)
990 {
991 int len;
992 struct ref_cache *refs;
993 if (!submodule)
994 submodule = "";
995 len = strlen(submodule) + 1;
996 refs = xcalloc(1, sizeof(struct ref_cache) + len);
997 memcpy(refs->name, submodule, len);
998 return refs;
999 }
1000
1001 /*
1002 * Return a pointer to a ref_cache for the specified submodule. For
1003 * the main repository, use submodule==NULL. The returned structure
1004 * will be allocated and initialized but not necessarily populated; it
1005 * should not be freed.
1006 */
1007 static struct ref_cache *get_ref_cache(const char *submodule)
1008 {
1009 struct ref_cache *refs;
1010
1011 if (!submodule || !*submodule)
1012 return &ref_cache;
1013
1014 for (refs = submodule_ref_caches; refs; refs = refs->next)
1015 if (!strcmp(submodule, refs->name))
1016 return refs;
1017
1018 refs = create_ref_cache(submodule);
1019 refs->next = submodule_ref_caches;
1020 submodule_ref_caches = refs;
1021 return refs;
1022 }
1023
1024 /* The length of a peeled reference line in packed-refs, including EOL: */
1025 #define PEELED_LINE_LENGTH 42
1026
1027 /*
1028 * The packed-refs header line that we write out. Perhaps other
1029 * traits will be added later. The trailing space is required.
1030 */
1031 static const char PACKED_REFS_HEADER[] =
1032 "# pack-refs with: peeled fully-peeled \n";
1033
1034 /*
1035 * Parse one line from a packed-refs file. Write the SHA1 to sha1.
1036 * Return a pointer to the refname within the line (null-terminated),
1037 * or NULL if there was a problem.
1038 */
1039 static const char *parse_ref_line(char *line, unsigned char *sha1)
1040 {
1041 /*
1042 * 42: the answer to everything.
1043 *
1044 * In this case, it happens to be the answer to
1045 * 40 (length of sha1 hex representation)
1046 * +1 (space in between hex and name)
1047 * +1 (newline at the end of the line)
1048 */
1049 int len = strlen(line) - 42;
1050
1051 if (len <= 0)
1052 return NULL;
1053 if (get_sha1_hex(line, sha1) < 0)
1054 return NULL;
1055 if (!isspace(line[40]))
1056 return NULL;
1057 line += 41;
1058 if (isspace(*line))
1059 return NULL;
1060 if (line[len] != '\n')
1061 return NULL;
1062 line[len] = 0;
1063
1064 return line;
1065 }
1066
1067 /*
1068 * Read f, which is a packed-refs file, into dir.
1069 *
1070 * A comment line of the form "# pack-refs with: " may contain zero or
1071 * more traits. We interpret the traits as follows:
1072 *
1073 * No traits:
1074 *
1075 * Probably no references are peeled. But if the file contains a
1076 * peeled value for a reference, we will use it.
1077 *
1078 * peeled:
1079 *
1080 * References under "refs/tags/", if they *can* be peeled, *are*
1081 * peeled in this file. References outside of "refs/tags/" are
1082 * probably not peeled even if they could have been, but if we find
1083 * a peeled value for such a reference we will use it.
1084 *
1085 * fully-peeled:
1086 *
1087 * All references in the file that can be peeled are peeled.
1088 * Inversely (and this is more important), any references in the
1089 * file for which no peeled value is recorded is not peelable. This
1090 * trait should typically be written alongside "peeled" for
1091 * compatibility with older clients, but we do not require it
1092 * (i.e., "peeled" is a no-op if "fully-peeled" is set).
1093 */
1094 static void read_packed_refs(FILE *f, struct ref_dir *dir)
1095 {
1096 struct ref_entry *last = NULL;
1097 char refline[PATH_MAX];
1098 enum { PEELED_NONE, PEELED_TAGS, PEELED_FULLY } peeled = PEELED_NONE;
1099
1100 while (fgets(refline, sizeof(refline), f)) {
1101 unsigned char sha1[20];
1102 const char *refname;
1103 static const char header[] = "# pack-refs with:";
1104
1105 if (!strncmp(refline, header, sizeof(header)-1)) {
1106 const char *traits = refline + sizeof(header) - 1;
1107 if (strstr(traits, " fully-peeled "))
1108 peeled = PEELED_FULLY;
1109 else if (strstr(traits, " peeled "))
1110 peeled = PEELED_TAGS;
1111 /* perhaps other traits later as well */
1112 continue;
1113 }
1114
1115 refname = parse_ref_line(refline, sha1);
1116 if (refname) {
1117 last = create_ref_entry(refname, sha1, REF_ISPACKED, 1);
1118 if (peeled == PEELED_FULLY ||
1119 (peeled == PEELED_TAGS && starts_with(refname, "refs/tags/")))
1120 last->flag |= REF_KNOWS_PEELED;
1121 add_ref(dir, last);
1122 continue;
1123 }
1124 if (last &&
1125 refline[0] == '^' &&
1126 strlen(refline) == PEELED_LINE_LENGTH &&
1127 refline[PEELED_LINE_LENGTH - 1] == '\n' &&
1128 !get_sha1_hex(refline + 1, sha1)) {
1129 hashcpy(last->u.value.peeled, sha1);
1130 /*
1131 * Regardless of what the file header said,
1132 * we definitely know the value of *this*
1133 * reference:
1134 */
1135 last->flag |= REF_KNOWS_PEELED;
1136 }
1137 }
1138 }
1139
1140 /*
1141 * Get the packed_ref_cache for the specified ref_cache, creating it
1142 * if necessary.
1143 */
1144 static struct packed_ref_cache *get_packed_ref_cache(struct ref_cache *refs)
1145 {
1146 const char *packed_refs_file;
1147
1148 if (*refs->name)
1149 packed_refs_file = git_path_submodule(refs->name, "packed-refs");
1150 else
1151 packed_refs_file = git_path("packed-refs");
1152
1153 if (refs->packed &&
1154 !stat_validity_check(&refs->packed->validity, packed_refs_file))
1155 clear_packed_ref_cache(refs);
1156
1157 if (!refs->packed) {
1158 FILE *f;
1159
1160 refs->packed = xcalloc(1, sizeof(*refs->packed));
1161 acquire_packed_ref_cache(refs->packed);
1162 refs->packed->root = create_dir_entry(refs, "", 0, 0);
1163 f = fopen(packed_refs_file, "r");
1164 if (f) {
1165 stat_validity_update(&refs->packed->validity, fileno(f));
1166 read_packed_refs(f, get_ref_dir(refs->packed->root));
1167 fclose(f);
1168 }
1169 }
1170 return refs->packed;
1171 }
1172
1173 static struct ref_dir *get_packed_ref_dir(struct packed_ref_cache *packed_ref_cache)
1174 {
1175 return get_ref_dir(packed_ref_cache->root);
1176 }
1177
1178 static struct ref_dir *get_packed_refs(struct ref_cache *refs)
1179 {
1180 return get_packed_ref_dir(get_packed_ref_cache(refs));
1181 }
1182
1183 void add_packed_ref(const char *refname, const unsigned char *sha1)
1184 {
1185 struct packed_ref_cache *packed_ref_cache =
1186 get_packed_ref_cache(&ref_cache);
1187
1188 if (!packed_ref_cache->lock)
1189 die("internal error: packed refs not locked");
1190 add_ref(get_packed_ref_dir(packed_ref_cache),
1191 create_ref_entry(refname, sha1, REF_ISPACKED, 1));
1192 }
1193
1194 /*
1195 * Read the loose references from the namespace dirname into dir
1196 * (without recursing). dirname must end with '/'. dir must be the
1197 * directory entry corresponding to dirname.
1198 */
1199 static void read_loose_refs(const char *dirname, struct ref_dir *dir)
1200 {
1201 struct ref_cache *refs = dir->ref_cache;
1202 DIR *d;
1203 const char *path;
1204 struct dirent *de;
1205 int dirnamelen = strlen(dirname);
1206 struct strbuf refname;
1207
1208 if (*refs->name)
1209 path = git_path_submodule(refs->name, "%s", dirname);
1210 else
1211 path = git_path("%s", dirname);
1212
1213 d = opendir(path);
1214 if (!d)
1215 return;
1216
1217 strbuf_init(&refname, dirnamelen + 257);
1218 strbuf_add(&refname, dirname, dirnamelen);
1219
1220 while ((de = readdir(d)) != NULL) {
1221 unsigned char sha1[20];
1222 struct stat st;
1223 int flag;
1224 const char *refdir;
1225
1226 if (de->d_name[0] == '.')
1227 continue;
1228 if (ends_with(de->d_name, ".lock"))
1229 continue;
1230 strbuf_addstr(&refname, de->d_name);
1231 refdir = *refs->name
1232 ? git_path_submodule(refs->name, "%s", refname.buf)
1233 : git_path("%s", refname.buf);
1234 if (stat(refdir, &st) < 0) {
1235 ; /* silently ignore */
1236 } else if (S_ISDIR(st.st_mode)) {
1237 strbuf_addch(&refname, '/');
1238 add_entry_to_dir(dir,
1239 create_dir_entry(refs, refname.buf,
1240 refname.len, 1));
1241 } else {
1242 if (*refs->name) {
1243 hashclr(sha1);
1244 flag = 0;
1245 if (resolve_gitlink_ref(refs->name, refname.buf, sha1) < 0) {
1246 hashclr(sha1);
1247 flag |= REF_ISBROKEN;
1248 }
1249 } else if (read_ref_full(refname.buf, sha1, 1, &flag)) {
1250 hashclr(sha1);
1251 flag |= REF_ISBROKEN;
1252 }
1253 add_entry_to_dir(dir,
1254 create_ref_entry(refname.buf, sha1, flag, 1));
1255 }
1256 strbuf_setlen(&refname, dirnamelen);
1257 }
1258 strbuf_release(&refname);
1259 closedir(d);
1260 }
1261
1262 static struct ref_dir *get_loose_refs(struct ref_cache *refs)
1263 {
1264 if (!refs->loose) {
1265 /*
1266 * Mark the top-level directory complete because we
1267 * are about to read the only subdirectory that can
1268 * hold references:
1269 */
1270 refs->loose = create_dir_entry(refs, "", 0, 0);
1271 /*
1272 * Create an incomplete entry for "refs/":
1273 */
1274 add_entry_to_dir(get_ref_dir(refs->loose),
1275 create_dir_entry(refs, "refs/", 5, 1));
1276 }
1277 return get_ref_dir(refs->loose);
1278 }
1279
1280 /* We allow "recursive" symbolic refs. Only within reason, though */
1281 #define MAXDEPTH 5
1282 #define MAXREFLEN (1024)
1283
1284 /*
1285 * Called by resolve_gitlink_ref_recursive() after it failed to read
1286 * from the loose refs in ref_cache refs. Find <refname> in the
1287 * packed-refs file for the submodule.
1288 */
1289 static int resolve_gitlink_packed_ref(struct ref_cache *refs,
1290 const char *refname, unsigned char *sha1)
1291 {
1292 struct ref_entry *ref;
1293 struct ref_dir *dir = get_packed_refs(refs);
1294
1295 ref = find_ref(dir, refname);
1296 if (ref == NULL)
1297 return -1;
1298
1299 hashcpy(sha1, ref->u.value.sha1);
1300 return 0;
1301 }
1302
1303 static int resolve_gitlink_ref_recursive(struct ref_cache *refs,
1304 const char *refname, unsigned char *sha1,
1305 int recursion)
1306 {
1307 int fd, len;
1308 char buffer[128], *p;
1309 char *path;
1310
1311 if (recursion > MAXDEPTH || strlen(refname) > MAXREFLEN)
1312 return -1;
1313 path = *refs->name
1314 ? git_path_submodule(refs->name, "%s", refname)
1315 : git_path("%s", refname);
1316 fd = open(path, O_RDONLY);
1317 if (fd < 0)
1318 return resolve_gitlink_packed_ref(refs, refname, sha1);
1319
1320 len = read(fd, buffer, sizeof(buffer)-1);
1321 close(fd);
1322 if (len < 0)
1323 return -1;
1324 while (len && isspace(buffer[len-1]))
1325 len--;
1326 buffer[len] = 0;
1327
1328 /* Was it a detached head or an old-fashioned symlink? */
1329 if (!get_sha1_hex(buffer, sha1))
1330 return 0;
1331
1332 /* Symref? */
1333 if (strncmp(buffer, "ref:", 4))
1334 return -1;
1335 p = buffer + 4;
1336 while (isspace(*p))
1337 p++;
1338
1339 return resolve_gitlink_ref_recursive(refs, p, sha1, recursion+1);
1340 }
1341
1342 int resolve_gitlink_ref(const char *path, const char *refname, unsigned char *sha1)
1343 {
1344 int len = strlen(path), retval;
1345 char *submodule;
1346 struct ref_cache *refs;
1347
1348 while (len && path[len-1] == '/')
1349 len--;
1350 if (!len)
1351 return -1;
1352 submodule = xstrndup(path, len);
1353 refs = get_ref_cache(submodule);
1354 free(submodule);
1355
1356 retval = resolve_gitlink_ref_recursive(refs, refname, sha1, 0);
1357 return retval;
1358 }
1359
1360 /*
1361 * Return the ref_entry for the given refname from the packed
1362 * references. If it does not exist, return NULL.
1363 */
1364 static struct ref_entry *get_packed_ref(const char *refname)
1365 {
1366 return find_ref(get_packed_refs(&ref_cache), refname);
1367 }
1368
1369 /*
1370 * A loose ref file doesn't exist; check for a packed ref. The
1371 * options are forwarded from resolve_safe_unsafe().
1372 */
1373 static const char *handle_missing_loose_ref(const char *refname,
1374 unsigned char *sha1,
1375 int reading,
1376 int *flag)
1377 {
1378 struct ref_entry *entry;
1379
1380 /*
1381 * The loose reference file does not exist; check for a packed
1382 * reference.
1383 */
1384 entry = get_packed_ref(refname);
1385 if (entry) {
1386 hashcpy(sha1, entry->u.value.sha1);
1387 if (flag)
1388 *flag |= REF_ISPACKED;
1389 return refname;
1390 }
1391 /* The reference is not a packed reference, either. */
1392 if (reading) {
1393 return NULL;
1394 } else {
1395 hashclr(sha1);
1396 return refname;
1397 }
1398 }
1399
1400 /* This function needs to return a meaningful errno on failure */
1401 const char *resolve_ref_unsafe(const char *refname, unsigned char *sha1, int reading, int *flag)
1402 {
1403 int depth = MAXDEPTH;
1404 ssize_t len;
1405 char buffer[256];
1406 static char refname_buffer[256];
1407
1408 if (flag)
1409 *flag = 0;
1410
1411 if (check_refname_format(refname, REFNAME_ALLOW_ONELEVEL)) {
1412 errno = EINVAL;
1413 return NULL;
1414 }
1415
1416 for (;;) {
1417 char path[PATH_MAX];
1418 struct stat st;
1419 char *buf;
1420 int fd;
1421
1422 if (--depth < 0) {
1423 errno = ELOOP;
1424 return NULL;
1425 }
1426
1427 git_snpath(path, sizeof(path), "%s", refname);
1428
1429 /*
1430 * We might have to loop back here to avoid a race
1431 * condition: first we lstat() the file, then we try
1432 * to read it as a link or as a file. But if somebody
1433 * changes the type of the file (file <-> directory
1434 * <-> symlink) between the lstat() and reading, then
1435 * we don't want to report that as an error but rather
1436 * try again starting with the lstat().
1437 */
1438 stat_ref:
1439 if (lstat(path, &st) < 0) {
1440 if (errno == ENOENT)
1441 return handle_missing_loose_ref(refname, sha1,
1442 reading, flag);
1443 else
1444 return NULL;
1445 }
1446
1447 /* Follow "normalized" - ie "refs/.." symlinks by hand */
1448 if (S_ISLNK(st.st_mode)) {
1449 len = readlink(path, buffer, sizeof(buffer)-1);
1450 if (len < 0) {
1451 if (errno == ENOENT || errno == EINVAL)
1452 /* inconsistent with lstat; retry */
1453 goto stat_ref;
1454 else
1455 return NULL;
1456 }
1457 buffer[len] = 0;
1458 if (starts_with(buffer, "refs/") &&
1459 !check_refname_format(buffer, 0)) {
1460 strcpy(refname_buffer, buffer);
1461 refname = refname_buffer;
1462 if (flag)
1463 *flag |= REF_ISSYMREF;
1464 continue;
1465 }
1466 }
1467
1468 /* Is it a directory? */
1469 if (S_ISDIR(st.st_mode)) {
1470 errno = EISDIR;
1471 return NULL;
1472 }
1473
1474 /*
1475 * Anything else, just open it and try to use it as
1476 * a ref
1477 */
1478 fd = open(path, O_RDONLY);
1479 if (fd < 0) {
1480 if (errno == ENOENT)
1481 /* inconsistent with lstat; retry */
1482 goto stat_ref;
1483 else
1484 return NULL;
1485 }
1486 len = read_in_full(fd, buffer, sizeof(buffer)-1);
1487 if (len < 0) {
1488 int save_errno = errno;
1489 close(fd);
1490 errno = save_errno;
1491 return NULL;
1492 }
1493 close(fd);
1494 while (len && isspace(buffer[len-1]))
1495 len--;
1496 buffer[len] = '\0';
1497
1498 /*
1499 * Is it a symbolic ref?
1500 */
1501 if (!starts_with(buffer, "ref:")) {
1502 /*
1503 * Please note that FETCH_HEAD has a second
1504 * line containing other data.
1505 */
1506 if (get_sha1_hex(buffer, sha1) ||
1507 (buffer[40] != '\0' && !isspace(buffer[40]))) {
1508 if (flag)
1509 *flag |= REF_ISBROKEN;
1510 errno = EINVAL;
1511 return NULL;
1512 }
1513 return refname;
1514 }
1515 if (flag)
1516 *flag |= REF_ISSYMREF;
1517 buf = buffer + 4;
1518 while (isspace(*buf))
1519 buf++;
1520 if (check_refname_format(buf, REFNAME_ALLOW_ONELEVEL)) {
1521 if (flag)
1522 *flag |= REF_ISBROKEN;
1523 errno = EINVAL;
1524 return NULL;
1525 }
1526 refname = strcpy(refname_buffer, buf);
1527 }
1528 }
1529
1530 char *resolve_refdup(const char *ref, unsigned char *sha1, int reading, int *flag)
1531 {
1532 return xstrdup_or_null(resolve_ref_unsafe(ref, sha1, reading, flag));
1533 }
1534
1535 /* The argument to filter_refs */
1536 struct ref_filter {
1537 const char *pattern;
1538 each_ref_fn *fn;
1539 void *cb_data;
1540 };
1541
1542 int read_ref_full(const char *refname, unsigned char *sha1, int reading, int *flags)
1543 {
1544 if (resolve_ref_unsafe(refname, sha1, reading, flags))
1545 return 0;
1546 return -1;
1547 }
1548
1549 int read_ref(const char *refname, unsigned char *sha1)
1550 {
1551 return read_ref_full(refname, sha1, 1, NULL);
1552 }
1553
1554 int ref_exists(const char *refname)
1555 {
1556 unsigned char sha1[20];
1557 return !!resolve_ref_unsafe(refname, sha1, 1, NULL);
1558 }
1559
1560 static int filter_refs(const char *refname, const unsigned char *sha1, int flags,
1561 void *data)
1562 {
1563 struct ref_filter *filter = (struct ref_filter *)data;
1564 if (wildmatch(filter->pattern, refname, 0, NULL))
1565 return 0;
1566 return filter->fn(refname, sha1, flags, filter->cb_data);
1567 }
1568
1569 enum peel_status {
1570 /* object was peeled successfully: */
1571 PEEL_PEELED = 0,
1572
1573 /*
1574 * object cannot be peeled because the named object (or an
1575 * object referred to by a tag in the peel chain), does not
1576 * exist.
1577 */
1578 PEEL_INVALID = -1,
1579
1580 /* object cannot be peeled because it is not a tag: */
1581 PEEL_NON_TAG = -2,
1582
1583 /* ref_entry contains no peeled value because it is a symref: */
1584 PEEL_IS_SYMREF = -3,
1585
1586 /*
1587 * ref_entry cannot be peeled because it is broken (i.e., the
1588 * symbolic reference cannot even be resolved to an object
1589 * name):
1590 */
1591 PEEL_BROKEN = -4
1592 };
1593
1594 /*
1595 * Peel the named object; i.e., if the object is a tag, resolve the
1596 * tag recursively until a non-tag is found. If successful, store the
1597 * result to sha1 and return PEEL_PEELED. If the object is not a tag
1598 * or is not valid, return PEEL_NON_TAG or PEEL_INVALID, respectively,
1599 * and leave sha1 unchanged.
1600 */
1601 static enum peel_status peel_object(const unsigned char *name, unsigned char *sha1)
1602 {
1603 struct object *o = lookup_unknown_object(name);
1604
1605 if (o->type == OBJ_NONE) {
1606 int type = sha1_object_info(name, NULL);
1607 if (type < 0 || !object_as_type(o, type, 0))
1608 return PEEL_INVALID;
1609 }
1610
1611 if (o->type != OBJ_TAG)
1612 return PEEL_NON_TAG;
1613
1614 o = deref_tag_noverify(o);
1615 if (!o)
1616 return PEEL_INVALID;
1617
1618 hashcpy(sha1, o->sha1);
1619 return PEEL_PEELED;
1620 }
1621
1622 /*
1623 * Peel the entry (if possible) and return its new peel_status. If
1624 * repeel is true, re-peel the entry even if there is an old peeled
1625 * value that is already stored in it.
1626 *
1627 * It is OK to call this function with a packed reference entry that
1628 * might be stale and might even refer to an object that has since
1629 * been garbage-collected. In such a case, if the entry has
1630 * REF_KNOWS_PEELED then leave the status unchanged and return
1631 * PEEL_PEELED or PEEL_NON_TAG; otherwise, return PEEL_INVALID.
1632 */
1633 static enum peel_status peel_entry(struct ref_entry *entry, int repeel)
1634 {
1635 enum peel_status status;
1636
1637 if (entry->flag & REF_KNOWS_PEELED) {
1638 if (repeel) {
1639 entry->flag &= ~REF_KNOWS_PEELED;
1640 hashclr(entry->u.value.peeled);
1641 } else {
1642 return is_null_sha1(entry->u.value.peeled) ?
1643 PEEL_NON_TAG : PEEL_PEELED;
1644 }
1645 }
1646 if (entry->flag & REF_ISBROKEN)
1647 return PEEL_BROKEN;
1648 if (entry->flag & REF_ISSYMREF)
1649 return PEEL_IS_SYMREF;
1650
1651 status = peel_object(entry->u.value.sha1, entry->u.value.peeled);
1652 if (status == PEEL_PEELED || status == PEEL_NON_TAG)
1653 entry->flag |= REF_KNOWS_PEELED;
1654 return status;
1655 }
1656
1657 int peel_ref(const char *refname, unsigned char *sha1)
1658 {
1659 int flag;
1660 unsigned char base[20];
1661
1662 if (current_ref && (current_ref->name == refname
1663 || !strcmp(current_ref->name, refname))) {
1664 if (peel_entry(current_ref, 0))
1665 return -1;
1666 hashcpy(sha1, current_ref->u.value.peeled);
1667 return 0;
1668 }
1669
1670 if (read_ref_full(refname, base, 1, &flag))
1671 return -1;
1672
1673 /*
1674 * If the reference is packed, read its ref_entry from the
1675 * cache in the hope that we already know its peeled value.
1676 * We only try this optimization on packed references because
1677 * (a) forcing the filling of the loose reference cache could
1678 * be expensive and (b) loose references anyway usually do not
1679 * have REF_KNOWS_PEELED.
1680 */
1681 if (flag & REF_ISPACKED) {
1682 struct ref_entry *r = get_packed_ref(refname);
1683 if (r) {
1684 if (peel_entry(r, 0))
1685 return -1;
1686 hashcpy(sha1, r->u.value.peeled);
1687 return 0;
1688 }
1689 }
1690
1691 return peel_object(base, sha1);
1692 }
1693
1694 struct warn_if_dangling_data {
1695 FILE *fp;
1696 const char *refname;
1697 const struct string_list *refnames;
1698 const char *msg_fmt;
1699 };
1700
1701 static int warn_if_dangling_symref(const char *refname, const unsigned char *sha1,
1702 int flags, void *cb_data)
1703 {
1704 struct warn_if_dangling_data *d = cb_data;
1705 const char *resolves_to;
1706 unsigned char junk[20];
1707
1708 if (!(flags & REF_ISSYMREF))
1709 return 0;
1710
1711 resolves_to = resolve_ref_unsafe(refname, junk, 0, NULL);
1712 if (!resolves_to
1713 || (d->refname
1714 ? strcmp(resolves_to, d->refname)
1715 : !string_list_has_string(d->refnames, resolves_to))) {
1716 return 0;
1717 }
1718
1719 fprintf(d->fp, d->msg_fmt, refname);
1720 fputc('\n', d->fp);
1721 return 0;
1722 }
1723
1724 void warn_dangling_symref(FILE *fp, const char *msg_fmt, const char *refname)
1725 {
1726 struct warn_if_dangling_data data;
1727
1728 data.fp = fp;
1729 data.refname = refname;
1730 data.refnames = NULL;
1731 data.msg_fmt = msg_fmt;
1732 for_each_rawref(warn_if_dangling_symref, &data);
1733 }
1734
1735 void warn_dangling_symrefs(FILE *fp, const char *msg_fmt, const struct string_list *refnames)
1736 {
1737 struct warn_if_dangling_data data;
1738
1739 data.fp = fp;
1740 data.refname = NULL;
1741 data.refnames = refnames;
1742 data.msg_fmt = msg_fmt;
1743 for_each_rawref(warn_if_dangling_symref, &data);
1744 }
1745
1746 /*
1747 * Call fn for each reference in the specified ref_cache, omitting
1748 * references not in the containing_dir of base. fn is called for all
1749 * references, including broken ones. If fn ever returns a non-zero
1750 * value, stop the iteration and return that value; otherwise, return
1751 * 0.
1752 */
1753 static int do_for_each_entry(struct ref_cache *refs, const char *base,
1754 each_ref_entry_fn fn, void *cb_data)
1755 {
1756 struct packed_ref_cache *packed_ref_cache;
1757 struct ref_dir *loose_dir;
1758 struct ref_dir *packed_dir;
1759 int retval = 0;
1760
1761 /*
1762 * We must make sure that all loose refs are read before accessing the
1763 * packed-refs file; this avoids a race condition in which loose refs
1764 * are migrated to the packed-refs file by a simultaneous process, but
1765 * our in-memory view is from before the migration. get_packed_ref_cache()
1766 * takes care of making sure our view is up to date with what is on
1767 * disk.
1768 */
1769 loose_dir = get_loose_refs(refs);
1770 if (base && *base) {
1771 loose_dir = find_containing_dir(loose_dir, base, 0);
1772 }
1773 if (loose_dir)
1774 prime_ref_dir(loose_dir);
1775
1776 packed_ref_cache = get_packed_ref_cache(refs);
1777 acquire_packed_ref_cache(packed_ref_cache);
1778 packed_dir = get_packed_ref_dir(packed_ref_cache);
1779 if (base && *base) {
1780 packed_dir = find_containing_dir(packed_dir, base, 0);
1781 }
1782
1783 if (packed_dir && loose_dir) {
1784 sort_ref_dir(packed_dir);
1785 sort_ref_dir(loose_dir);
1786 retval = do_for_each_entry_in_dirs(
1787 packed_dir, loose_dir, fn, cb_data);
1788 } else if (packed_dir) {
1789 sort_ref_dir(packed_dir);
1790 retval = do_for_each_entry_in_dir(
1791 packed_dir, 0, fn, cb_data);
1792 } else if (loose_dir) {
1793 sort_ref_dir(loose_dir);
1794 retval = do_for_each_entry_in_dir(
1795 loose_dir, 0, fn, cb_data);
1796 }
1797
1798 release_packed_ref_cache(packed_ref_cache);
1799 return retval;
1800 }
1801
1802 /*
1803 * Call fn for each reference in the specified ref_cache for which the
1804 * refname begins with base. If trim is non-zero, then trim that many
1805 * characters off the beginning of each refname before passing the
1806 * refname to fn. flags can be DO_FOR_EACH_INCLUDE_BROKEN to include
1807 * broken references in the iteration. If fn ever returns a non-zero
1808 * value, stop the iteration and return that value; otherwise, return
1809 * 0.
1810 */
1811 static int do_for_each_ref(struct ref_cache *refs, const char *base,
1812 each_ref_fn fn, int trim, int flags, void *cb_data)
1813 {
1814 struct ref_entry_cb data;
1815 data.base = base;
1816 data.trim = trim;
1817 data.flags = flags;
1818 data.fn = fn;
1819 data.cb_data = cb_data;
1820
1821 return do_for_each_entry(refs, base, do_one_ref, &data);
1822 }
1823
1824 static int do_head_ref(const char *submodule, each_ref_fn fn, void *cb_data)
1825 {
1826 unsigned char sha1[20];
1827 int flag;
1828
1829 if (submodule) {
1830 if (resolve_gitlink_ref(submodule, "HEAD", sha1) == 0)
1831 return fn("HEAD", sha1, 0, cb_data);
1832
1833 return 0;
1834 }
1835
1836 if (!read_ref_full("HEAD", sha1, 1, &flag))
1837 return fn("HEAD", sha1, flag, cb_data);
1838
1839 return 0;
1840 }
1841
1842 int head_ref(each_ref_fn fn, void *cb_data)
1843 {
1844 return do_head_ref(NULL, fn, cb_data);
1845 }
1846
1847 int head_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
1848 {
1849 return do_head_ref(submodule, fn, cb_data);
1850 }
1851
1852 int for_each_ref(each_ref_fn fn, void *cb_data)
1853 {
1854 return do_for_each_ref(&ref_cache, "", fn, 0, 0, cb_data);
1855 }
1856
1857 int for_each_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
1858 {
1859 return do_for_each_ref(get_ref_cache(submodule), "", fn, 0, 0, cb_data);
1860 }
1861
1862 int for_each_ref_in(const char *prefix, each_ref_fn fn, void *cb_data)
1863 {
1864 return do_for_each_ref(&ref_cache, prefix, fn, strlen(prefix), 0, cb_data);
1865 }
1866
1867 int for_each_ref_in_submodule(const char *submodule, const char *prefix,
1868 each_ref_fn fn, void *cb_data)
1869 {
1870 return do_for_each_ref(get_ref_cache(submodule), prefix, fn, strlen(prefix), 0, cb_data);
1871 }
1872
1873 int for_each_tag_ref(each_ref_fn fn, void *cb_data)
1874 {
1875 return for_each_ref_in("refs/tags/", fn, cb_data);
1876 }
1877
1878 int for_each_tag_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
1879 {
1880 return for_each_ref_in_submodule(submodule, "refs/tags/", fn, cb_data);
1881 }
1882
1883 int for_each_branch_ref(each_ref_fn fn, void *cb_data)
1884 {
1885 return for_each_ref_in("refs/heads/", fn, cb_data);
1886 }
1887
1888 int for_each_branch_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
1889 {
1890 return for_each_ref_in_submodule(submodule, "refs/heads/", fn, cb_data);
1891 }
1892
1893 int for_each_remote_ref(each_ref_fn fn, void *cb_data)
1894 {
1895 return for_each_ref_in("refs/remotes/", fn, cb_data);
1896 }
1897
1898 int for_each_remote_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
1899 {
1900 return for_each_ref_in_submodule(submodule, "refs/remotes/", fn, cb_data);
1901 }
1902
1903 int for_each_replace_ref(each_ref_fn fn, void *cb_data)
1904 {
1905 return do_for_each_ref(&ref_cache, "refs/replace/", fn, 13, 0, cb_data);
1906 }
1907
1908 int head_ref_namespaced(each_ref_fn fn, void *cb_data)
1909 {
1910 struct strbuf buf = STRBUF_INIT;
1911 int ret = 0;
1912 unsigned char sha1[20];
1913 int flag;
1914
1915 strbuf_addf(&buf, "%sHEAD", get_git_namespace());
1916 if (!read_ref_full(buf.buf, sha1, 1, &flag))
1917 ret = fn(buf.buf, sha1, flag, cb_data);
1918 strbuf_release(&buf);
1919
1920 return ret;
1921 }
1922
1923 int for_each_namespaced_ref(each_ref_fn fn, void *cb_data)
1924 {
1925 struct strbuf buf = STRBUF_INIT;
1926 int ret;
1927 strbuf_addf(&buf, "%srefs/", get_git_namespace());
1928 ret = do_for_each_ref(&ref_cache, buf.buf, fn, 0, 0, cb_data);
1929 strbuf_release(&buf);
1930 return ret;
1931 }
1932
1933 int for_each_glob_ref_in(each_ref_fn fn, const char *pattern,
1934 const char *prefix, void *cb_data)
1935 {
1936 struct strbuf real_pattern = STRBUF_INIT;
1937 struct ref_filter filter;
1938 int ret;
1939
1940 if (!prefix && !starts_with(pattern, "refs/"))
1941 strbuf_addstr(&real_pattern, "refs/");
1942 else if (prefix)
1943 strbuf_addstr(&real_pattern, prefix);
1944 strbuf_addstr(&real_pattern, pattern);
1945
1946 if (!has_glob_specials(pattern)) {
1947 /* Append implied '/' '*' if not present. */
1948 if (real_pattern.buf[real_pattern.len - 1] != '/')
1949 strbuf_addch(&real_pattern, '/');
1950 /* No need to check for '*', there is none. */
1951 strbuf_addch(&real_pattern, '*');
1952 }
1953
1954 filter.pattern = real_pattern.buf;
1955 filter.fn = fn;
1956 filter.cb_data = cb_data;
1957 ret = for_each_ref(filter_refs, &filter);
1958
1959 strbuf_release(&real_pattern);
1960 return ret;
1961 }
1962
1963 int for_each_glob_ref(each_ref_fn fn, const char *pattern, void *cb_data)
1964 {
1965 return for_each_glob_ref_in(fn, pattern, NULL, cb_data);
1966 }
1967
1968 int for_each_rawref(each_ref_fn fn, void *cb_data)
1969 {
1970 return do_for_each_ref(&ref_cache, "", fn, 0,
1971 DO_FOR_EACH_INCLUDE_BROKEN, cb_data);
1972 }
1973
1974 const char *prettify_refname(const char *name)
1975 {
1976 return name + (
1977 starts_with(name, "refs/heads/") ? 11 :
1978 starts_with(name, "refs/tags/") ? 10 :
1979 starts_with(name, "refs/remotes/") ? 13 :
1980 0);
1981 }
1982
1983 static const char *ref_rev_parse_rules[] = {
1984 "%.*s",
1985 "refs/%.*s",
1986 "refs/tags/%.*s",
1987 "refs/heads/%.*s",
1988 "refs/remotes/%.*s",
1989 "refs/remotes/%.*s/HEAD",
1990 NULL
1991 };
1992
1993 int refname_match(const char *abbrev_name, const char *full_name)
1994 {
1995 const char **p;
1996 const int abbrev_name_len = strlen(abbrev_name);
1997
1998 for (p = ref_rev_parse_rules; *p; p++) {
1999 if (!strcmp(full_name, mkpath(*p, abbrev_name_len, abbrev_name))) {
2000 return 1;
2001 }
2002 }
2003
2004 return 0;
2005 }
2006
2007 /* This function should make sure errno is meaningful on error */
2008 static struct ref_lock *verify_lock(struct ref_lock *lock,
2009 const unsigned char *old_sha1, int mustexist)
2010 {
2011 if (read_ref_full(lock->ref_name, lock->old_sha1, mustexist, NULL)) {
2012 int save_errno = errno;
2013 error("Can't verify ref %s", lock->ref_name);
2014 unlock_ref(lock);
2015 errno = save_errno;
2016 return NULL;
2017 }
2018 if (hashcmp(lock->old_sha1, old_sha1)) {
2019 error("Ref %s is at %s but expected %s", lock->ref_name,
2020 sha1_to_hex(lock->old_sha1), sha1_to_hex(old_sha1));
2021 unlock_ref(lock);
2022 errno = EBUSY;
2023 return NULL;
2024 }
2025 return lock;
2026 }
2027
2028 static int remove_empty_directories(const char *file)
2029 {
2030 /* we want to create a file but there is a directory there;
2031 * if that is an empty directory (or a directory that contains
2032 * only empty directories), remove them.
2033 */
2034 struct strbuf path;
2035 int result, save_errno;
2036
2037 strbuf_init(&path, 20);
2038 strbuf_addstr(&path, file);
2039
2040 result = remove_dir_recursively(&path, REMOVE_DIR_EMPTY_ONLY);
2041 save_errno = errno;
2042
2043 strbuf_release(&path);
2044 errno = save_errno;
2045
2046 return result;
2047 }
2048
2049 /*
2050 * *string and *len will only be substituted, and *string returned (for
2051 * later free()ing) if the string passed in is a magic short-hand form
2052 * to name a branch.
2053 */
2054 static char *substitute_branch_name(const char **string, int *len)
2055 {
2056 struct strbuf buf = STRBUF_INIT;
2057 int ret = interpret_branch_name(*string, *len, &buf);
2058
2059 if (ret == *len) {
2060 size_t size;
2061 *string = strbuf_detach(&buf, &size);
2062 *len = size;
2063 return (char *)*string;
2064 }
2065
2066 return NULL;
2067 }
2068
2069 int dwim_ref(const char *str, int len, unsigned char *sha1, char **ref)
2070 {
2071 char *last_branch = substitute_branch_name(&str, &len);
2072 const char **p, *r;
2073 int refs_found = 0;
2074
2075 *ref = NULL;
2076 for (p = ref_rev_parse_rules; *p; p++) {
2077 char fullref[PATH_MAX];
2078 unsigned char sha1_from_ref[20];
2079 unsigned char *this_result;
2080 int flag;
2081
2082 this_result = refs_found ? sha1_from_ref : sha1;
2083 mksnpath(fullref, sizeof(fullref), *p, len, str);
2084 r = resolve_ref_unsafe(fullref, this_result, 1, &flag);
2085 if (r) {
2086 if (!refs_found++)
2087 *ref = xstrdup(r);
2088 if (!warn_ambiguous_refs)
2089 break;
2090 } else if ((flag & REF_ISSYMREF) && strcmp(fullref, "HEAD")) {
2091 warning("ignoring dangling symref %s.", fullref);
2092 } else if ((flag & REF_ISBROKEN) && strchr(fullref, '/')) {
2093 warning("ignoring broken ref %s.", fullref);
2094 }
2095 }
2096 free(last_branch);
2097 return refs_found;
2098 }
2099
2100 int dwim_log(const char *str, int len, unsigned char *sha1, char **log)
2101 {
2102 char *last_branch = substitute_branch_name(&str, &len);
2103 const char **p;
2104 int logs_found = 0;
2105
2106 *log = NULL;
2107 for (p = ref_rev_parse_rules; *p; p++) {
2108 unsigned char hash[20];
2109 char path[PATH_MAX];
2110 const char *ref, *it;
2111
2112 mksnpath(path, sizeof(path), *p, len, str);
2113 ref = resolve_ref_unsafe(path, hash, 1, NULL);
2114 if (!ref)
2115 continue;
2116 if (reflog_exists(path))
2117 it = path;
2118 else if (strcmp(ref, path) && reflog_exists(ref))
2119 it = ref;
2120 else
2121 continue;
2122 if (!logs_found++) {
2123 *log = xstrdup(it);
2124 hashcpy(sha1, hash);
2125 }
2126 if (!warn_ambiguous_refs)
2127 break;
2128 }
2129 free(last_branch);
2130 return logs_found;
2131 }
2132
2133 /*
2134 * Locks a "refs/" ref returning the lock on success and NULL on failure.
2135 * On failure errno is set to something meaningful.
2136 */
2137 static struct ref_lock *lock_ref_sha1_basic(const char *refname,
2138 const unsigned char *old_sha1,
2139 int flags, int *type_p)
2140 {
2141 char *ref_file;
2142 const char *orig_refname = refname;
2143 struct ref_lock *lock;
2144 int last_errno = 0;
2145 int type, lflags;
2146 int mustexist = (old_sha1 && !is_null_sha1(old_sha1));
2147 int missing = 0;
2148 int attempts_remaining = 3;
2149
2150 lock = xcalloc(1, sizeof(struct ref_lock));
2151 lock->lock_fd = -1;
2152
2153 refname = resolve_ref_unsafe(refname, lock->old_sha1, mustexist, &type);
2154 if (!refname && errno == EISDIR) {
2155 /* we are trying to lock foo but we used to
2156 * have foo/bar which now does not exist;
2157 * it is normal for the empty directory 'foo'
2158 * to remain.
2159 */
2160 ref_file = git_path("%s", orig_refname);
2161 if (remove_empty_directories(ref_file)) {
2162 last_errno = errno;
2163 error("there are still refs under '%s'", orig_refname);
2164 goto error_return;
2165 }
2166 refname = resolve_ref_unsafe(orig_refname, lock->old_sha1, mustexist, &type);
2167 }
2168 if (type_p)
2169 *type_p = type;
2170 if (!refname) {
2171 last_errno = errno;
2172 error("unable to resolve reference %s: %s",
2173 orig_refname, strerror(errno));
2174 goto error_return;
2175 }
2176 missing = is_null_sha1(lock->old_sha1);
2177 /* When the ref did not exist and we are creating it,
2178 * make sure there is no existing ref that is packed
2179 * whose name begins with our refname, nor a ref whose
2180 * name is a proper prefix of our refname.
2181 */
2182 if (missing &&
2183 !is_refname_available(refname, NULL, get_packed_refs(&ref_cache))) {
2184 last_errno = ENOTDIR;
2185 goto error_return;
2186 }
2187
2188 lock->lk = xcalloc(1, sizeof(struct lock_file));
2189
2190 lflags = 0;
2191 if (flags & REF_NODEREF) {
2192 refname = orig_refname;
2193 lflags |= LOCK_NODEREF;
2194 }
2195 lock->ref_name = xstrdup(refname);
2196 lock->orig_ref_name = xstrdup(orig_refname);
2197 ref_file = git_path("%s", refname);
2198 if (missing)
2199 lock->force_write = 1;
2200 if ((flags & REF_NODEREF) && (type & REF_ISSYMREF))
2201 lock->force_write = 1;
2202
2203 retry:
2204 switch (safe_create_leading_directories(ref_file)) {
2205 case SCLD_OK:
2206 break; /* success */
2207 case SCLD_VANISHED:
2208 if (--attempts_remaining > 0)
2209 goto retry;
2210 /* fall through */
2211 default:
2212 last_errno = errno;
2213 error("unable to create directory for %s", ref_file);
2214 goto error_return;
2215 }
2216
2217 lock->lock_fd = hold_lock_file_for_update(lock->lk, ref_file, lflags);
2218 if (lock->lock_fd < 0) {
2219 if (errno == ENOENT && --attempts_remaining > 0)
2220 /*
2221 * Maybe somebody just deleted one of the
2222 * directories leading to ref_file. Try
2223 * again:
2224 */
2225 goto retry;
2226 else
2227 unable_to_lock_index_die(ref_file, errno);
2228 }
2229 return old_sha1 ? verify_lock(lock, old_sha1, mustexist) : lock;
2230
2231 error_return:
2232 unlock_ref(lock);
2233 errno = last_errno;
2234 return NULL;
2235 }
2236
2237 struct ref_lock *lock_any_ref_for_update(const char *refname,
2238 const unsigned char *old_sha1,
2239 int flags, int *type_p)
2240 {
2241 if (check_refname_format(refname, REFNAME_ALLOW_ONELEVEL))
2242 return NULL;
2243 return lock_ref_sha1_basic(refname, old_sha1, flags, type_p);
2244 }
2245
2246 /*
2247 * Write an entry to the packed-refs file for the specified refname.
2248 * If peeled is non-NULL, write it as the entry's peeled value.
2249 */
2250 static void write_packed_entry(FILE *fh, char *refname, unsigned char *sha1,
2251 unsigned char *peeled)
2252 {
2253 fprintf_or_die(fh, "%s %s\n", sha1_to_hex(sha1), refname);
2254 if (peeled)
2255 fprintf_or_die(fh, "^%s\n", sha1_to_hex(peeled));
2256 }
2257
2258 /*
2259 * An each_ref_entry_fn that writes the entry to a packed-refs file.
2260 */
2261 static int write_packed_entry_fn(struct ref_entry *entry, void *cb_data)
2262 {
2263 enum peel_status peel_status = peel_entry(entry, 0);
2264
2265 if (peel_status != PEEL_PEELED && peel_status != PEEL_NON_TAG)
2266 error("internal error: %s is not a valid packed reference!",
2267 entry->name);
2268 write_packed_entry(cb_data, entry->name, entry->u.value.sha1,
2269 peel_status == PEEL_PEELED ?
2270 entry->u.value.peeled : NULL);
2271 return 0;
2272 }
2273
2274 /* This should return a meaningful errno on failure */
2275 int lock_packed_refs(int flags)
2276 {
2277 struct packed_ref_cache *packed_ref_cache;
2278
2279 if (hold_lock_file_for_update(&packlock, git_path("packed-refs"), flags) < 0)
2280 return -1;
2281 /*
2282 * Get the current packed-refs while holding the lock. If the
2283 * packed-refs file has been modified since we last read it,
2284 * this will automatically invalidate the cache and re-read
2285 * the packed-refs file.
2286 */
2287 packed_ref_cache = get_packed_ref_cache(&ref_cache);
2288 packed_ref_cache->lock = &packlock;
2289 /* Increment the reference count to prevent it from being freed: */
2290 acquire_packed_ref_cache(packed_ref_cache);
2291 return 0;
2292 }
2293
2294 /*
2295 * Commit the packed refs changes.
2296 * On error we must make sure that errno contains a meaningful value.
2297 */
2298 int commit_packed_refs(void)
2299 {
2300 struct packed_ref_cache *packed_ref_cache =
2301 get_packed_ref_cache(&ref_cache);
2302 int error = 0;
2303 int save_errno = 0;
2304 FILE *out;
2305
2306 if (!packed_ref_cache->lock)
2307 die("internal error: packed-refs not locked");
2308
2309 out = fdopen(packed_ref_cache->lock->fd, "w");
2310 if (!out)
2311 die_errno("unable to fdopen packed-refs descriptor");
2312
2313 fprintf_or_die(out, "%s", PACKED_REFS_HEADER);
2314 do_for_each_entry_in_dir(get_packed_ref_dir(packed_ref_cache),
2315 0, write_packed_entry_fn, out);
2316 if (fclose(out))
2317 die_errno("write error");
2318 packed_ref_cache->lock->fd = -1;
2319
2320 if (commit_lock_file(packed_ref_cache->lock)) {
2321 save_errno = errno;
2322 error = -1;
2323 }
2324 packed_ref_cache->lock = NULL;
2325 release_packed_ref_cache(packed_ref_cache);
2326 errno = save_errno;
2327 return error;
2328 }
2329
2330 void rollback_packed_refs(void)
2331 {
2332 struct packed_ref_cache *packed_ref_cache =
2333 get_packed_ref_cache(&ref_cache);
2334
2335 if (!packed_ref_cache->lock)
2336 die("internal error: packed-refs not locked");
2337 rollback_lock_file(packed_ref_cache->lock);
2338 packed_ref_cache->lock = NULL;
2339 release_packed_ref_cache(packed_ref_cache);
2340 clear_packed_ref_cache(&ref_cache);
2341 }
2342
2343 struct ref_to_prune {
2344 struct ref_to_prune *next;
2345 unsigned char sha1[20];
2346 char name[FLEX_ARRAY];
2347 };
2348
2349 struct pack_refs_cb_data {
2350 unsigned int flags;
2351 struct ref_dir *packed_refs;
2352 struct ref_to_prune *ref_to_prune;
2353 };
2354
2355 /*
2356 * An each_ref_entry_fn that is run over loose references only. If
2357 * the loose reference can be packed, add an entry in the packed ref
2358 * cache. If the reference should be pruned, also add it to
2359 * ref_to_prune in the pack_refs_cb_data.
2360 */
2361 static int pack_if_possible_fn(struct ref_entry *entry, void *cb_data)
2362 {
2363 struct pack_refs_cb_data *cb = cb_data;
2364 enum peel_status peel_status;
2365 struct ref_entry *packed_entry;
2366 int is_tag_ref = starts_with(entry->name, "refs/tags/");
2367
2368 /* ALWAYS pack tags */
2369 if (!(cb->flags & PACK_REFS_ALL) && !is_tag_ref)
2370 return 0;
2371
2372 /* Do not pack symbolic or broken refs: */
2373 if ((entry->flag & REF_ISSYMREF) || !ref_resolves_to_object(entry))
2374 return 0;
2375
2376 /* Add a packed ref cache entry equivalent to the loose entry. */
2377 peel_status = peel_entry(entry, 1);
2378 if (peel_status != PEEL_PEELED && peel_status != PEEL_NON_TAG)
2379 die("internal error peeling reference %s (%s)",
2380 entry->name, sha1_to_hex(entry->u.value.sha1));
2381 packed_entry = find_ref(cb->packed_refs, entry->name);
2382 if (packed_entry) {
2383 /* Overwrite existing packed entry with info from loose entry */
2384 packed_entry->flag = REF_ISPACKED | REF_KNOWS_PEELED;
2385 hashcpy(packed_entry->u.value.sha1, entry->u.value.sha1);
2386 } else {
2387 packed_entry = create_ref_entry(entry->name, entry->u.value.sha1,
2388 REF_ISPACKED | REF_KNOWS_PEELED, 0);
2389 add_ref(cb->packed_refs, packed_entry);
2390 }
2391 hashcpy(packed_entry->u.value.peeled, entry->u.value.peeled);
2392
2393 /* Schedule the loose reference for pruning if requested. */
2394 if ((cb->flags & PACK_REFS_PRUNE)) {
2395 int namelen = strlen(entry->name) + 1;
2396 struct ref_to_prune *n = xcalloc(1, sizeof(*n) + namelen);
2397 hashcpy(n->sha1, entry->u.value.sha1);
2398 strcpy(n->name, entry->name);
2399 n->next = cb->ref_to_prune;
2400 cb->ref_to_prune = n;
2401 }
2402 return 0;
2403 }
2404
2405 /*
2406 * Remove empty parents, but spare refs/ and immediate subdirs.
2407 * Note: munges *name.
2408 */
2409 static void try_remove_empty_parents(char *name)
2410 {
2411 char *p, *q;
2412 int i;
2413 p = name;
2414 for (i = 0; i < 2; i++) { /* refs/{heads,tags,...}/ */
2415 while (*p && *p != '/')
2416 p++;
2417 /* tolerate duplicate slashes; see check_refname_format() */
2418 while (*p == '/')
2419 p++;
2420 }
2421 for (q = p; *q; q++)
2422 ;
2423 while (1) {
2424 while (q > p && *q != '/')
2425 q--;
2426 while (q > p && *(q-1) == '/')
2427 q--;
2428 if (q == p)
2429 break;
2430 *q = '\0';
2431 if (rmdir(git_path("%s", name)))
2432 break;
2433 }
2434 }
2435
2436 /* make sure nobody touched the ref, and unlink */
2437 static void prune_ref(struct ref_to_prune *r)
2438 {
2439 struct ref_transaction *transaction;
2440 struct strbuf err = STRBUF_INIT;
2441
2442 if (check_refname_format(r->name, 0))
2443 return;
2444
2445 transaction = ref_transaction_begin(&err);
2446 if (!transaction ||
2447 ref_transaction_delete(transaction, r->name, r->sha1,
2448 REF_ISPRUNING, 1, &err) ||
2449 ref_transaction_commit(transaction, NULL, &err)) {
2450 ref_transaction_free(transaction);
2451 error("%s", err.buf);
2452 strbuf_release(&err);
2453 return;
2454 }
2455 ref_transaction_free(transaction);
2456 strbuf_release(&err);
2457 try_remove_empty_parents(r->name);
2458 }
2459
2460 static void prune_refs(struct ref_to_prune *r)
2461 {
2462 while (r) {
2463 prune_ref(r);
2464 r = r->next;
2465 }
2466 }
2467
2468 int pack_refs(unsigned int flags)
2469 {
2470 struct pack_refs_cb_data cbdata;
2471
2472 memset(&cbdata, 0, sizeof(cbdata));
2473 cbdata.flags = flags;
2474
2475 lock_packed_refs(LOCK_DIE_ON_ERROR);
2476 cbdata.packed_refs = get_packed_refs(&ref_cache);
2477
2478 do_for_each_entry_in_dir(get_loose_refs(&ref_cache), 0,
2479 pack_if_possible_fn, &cbdata);
2480
2481 if (commit_packed_refs())
2482 die_errno("unable to overwrite old ref-pack file");
2483
2484 prune_refs(cbdata.ref_to_prune);
2485 return 0;
2486 }
2487
2488 /*
2489 * If entry is no longer needed in packed-refs, add it to the string
2490 * list pointed to by cb_data. Reasons for deleting entries:
2491 *
2492 * - Entry is broken.
2493 * - Entry is overridden by a loose ref.
2494 * - Entry does not point at a valid object.
2495 *
2496 * In the first and third cases, also emit an error message because these
2497 * are indications of repository corruption.
2498 */
2499 static int curate_packed_ref_fn(struct ref_entry *entry, void *cb_data)
2500 {
2501 struct string_list *refs_to_delete = cb_data;
2502
2503 if (entry->flag & REF_ISBROKEN) {
2504 /* This shouldn't happen to packed refs. */
2505 error("%s is broken!", entry->name);
2506 string_list_append(refs_to_delete, entry->name);
2507 return 0;
2508 }
2509 if (!has_sha1_file(entry->u.value.sha1)) {
2510 unsigned char sha1[20];
2511 int flags;
2512
2513 if (read_ref_full(entry->name, sha1, 0, &flags))
2514 /* We should at least have found the packed ref. */
2515 die("Internal error");
2516 if ((flags & REF_ISSYMREF) || !(flags & REF_ISPACKED)) {
2517 /*
2518 * This packed reference is overridden by a
2519 * loose reference, so it is OK that its value
2520 * is no longer valid; for example, it might
2521 * refer to an object that has been garbage
2522 * collected. For this purpose we don't even
2523 * care whether the loose reference itself is
2524 * invalid, broken, symbolic, etc. Silently
2525 * remove the packed reference.
2526 */
2527 string_list_append(refs_to_delete, entry->name);
2528 return 0;
2529 }
2530 /*
2531 * There is no overriding loose reference, so the fact
2532 * that this reference doesn't refer to a valid object
2533 * indicates some kind of repository corruption.
2534 * Report the problem, then omit the reference from
2535 * the output.
2536 */
2537 error("%s does not point to a valid object!", entry->name);
2538 string_list_append(refs_to_delete, entry->name);
2539 return 0;
2540 }
2541
2542 return 0;
2543 }
2544
2545 int repack_without_refs(const char **refnames, int n, struct strbuf *err)
2546 {
2547 struct ref_dir *packed;
2548 struct string_list refs_to_delete = STRING_LIST_INIT_DUP;
2549 struct string_list_item *ref_to_delete;
2550 int i, ret, removed = 0;
2551
2552 /* Look for a packed ref */
2553 for (i = 0; i < n; i++)
2554 if (get_packed_ref(refnames[i]))
2555 break;
2556
2557 /* Avoid locking if we have nothing to do */
2558 if (i == n)
2559 return 0; /* no refname exists in packed refs */
2560
2561 if (lock_packed_refs(0)) {
2562 if (err) {
2563 unable_to_lock_message(git_path("packed-refs"), errno,
2564 err);
2565 return -1;
2566 }
2567 unable_to_lock_error(git_path("packed-refs"), errno);
2568 return error("cannot delete '%s' from packed refs", refnames[i]);
2569 }
2570 packed = get_packed_refs(&ref_cache);
2571
2572 /* Remove refnames from the cache */
2573 for (i = 0; i < n; i++)
2574 if (remove_entry(packed, refnames[i]) != -1)
2575 removed = 1;
2576 if (!removed) {
2577 /*
2578 * All packed entries disappeared while we were
2579 * acquiring the lock.
2580 */
2581 rollback_packed_refs();
2582 return 0;
2583 }
2584
2585 /* Remove any other accumulated cruft */
2586 do_for_each_entry_in_dir(packed, 0, curate_packed_ref_fn, &refs_to_delete);
2587 for_each_string_list_item(ref_to_delete, &refs_to_delete) {
2588 if (remove_entry(packed, ref_to_delete->string) == -1)
2589 die("internal error");
2590 }
2591
2592 /* Write what remains */
2593 ret = commit_packed_refs();
2594 if (ret && err)
2595 strbuf_addf(err, "unable to overwrite old ref-pack file: %s",
2596 strerror(errno));
2597 return ret;
2598 }
2599
2600 static int delete_ref_loose(struct ref_lock *lock, int flag)
2601 {
2602 if (!(flag & REF_ISPACKED) || flag & REF_ISSYMREF) {
2603 /* loose */
2604 int err, i = strlen(lock->lk->filename) - 5; /* .lock */
2605
2606 lock->lk->filename[i] = 0;
2607 err = unlink_or_warn(lock->lk->filename);
2608 lock->lk->filename[i] = '.';
2609 if (err && errno != ENOENT)
2610 return 1;
2611 }
2612 return 0;
2613 }
2614
2615 int delete_ref(const char *refname, const unsigned char *sha1, int delopt)
2616 {
2617 struct ref_transaction *transaction;
2618 struct strbuf err = STRBUF_INIT;
2619
2620 transaction = ref_transaction_begin(&err);
2621 if (!transaction ||
2622 ref_transaction_delete(transaction, refname, sha1, delopt,
2623 sha1 && !is_null_sha1(sha1), &err) ||
2624 ref_transaction_commit(transaction, NULL, &err)) {
2625 error("%s", err.buf);
2626 ref_transaction_free(transaction);
2627 strbuf_release(&err);
2628 return 1;
2629 }
2630 ref_transaction_free(transaction);
2631 strbuf_release(&err);
2632 return 0;
2633 }
2634
2635 /*
2636 * People using contrib's git-new-workdir have .git/logs/refs ->
2637 * /some/other/path/.git/logs/refs, and that may live on another device.
2638 *
2639 * IOW, to avoid cross device rename errors, the temporary renamed log must
2640 * live into logs/refs.
2641 */
2642 #define TMP_RENAMED_LOG "logs/refs/.tmp-renamed-log"
2643
2644 static int rename_tmp_log(const char *newrefname)
2645 {
2646 int attempts_remaining = 4;
2647
2648 retry:
2649 switch (safe_create_leading_directories(git_path("logs/%s", newrefname))) {
2650 case SCLD_OK:
2651 break; /* success */
2652 case SCLD_VANISHED:
2653 if (--attempts_remaining > 0)
2654 goto retry;
2655 /* fall through */
2656 default:
2657 error("unable to create directory for %s", newrefname);
2658 return -1;
2659 }
2660
2661 if (rename(git_path(TMP_RENAMED_LOG), git_path("logs/%s", newrefname))) {
2662 if ((errno==EISDIR || errno==ENOTDIR) && --attempts_remaining > 0) {
2663 /*
2664 * rename(a, b) when b is an existing
2665 * directory ought to result in ISDIR, but
2666 * Solaris 5.8 gives ENOTDIR. Sheesh.
2667 */
2668 if (remove_empty_directories(git_path("logs/%s", newrefname))) {
2669 error("Directory not empty: logs/%s", newrefname);
2670 return -1;
2671 }
2672 goto retry;
2673 } else if (errno == ENOENT && --attempts_remaining > 0) {
2674 /*
2675 * Maybe another process just deleted one of
2676 * the directories in the path to newrefname.
2677 * Try again from the beginning.
2678 */
2679 goto retry;
2680 } else {
2681 error("unable to move logfile "TMP_RENAMED_LOG" to logs/%s: %s",
2682 newrefname, strerror(errno));
2683 return -1;
2684 }
2685 }
2686 return 0;
2687 }
2688
2689 int rename_ref(const char *oldrefname, const char *newrefname, const char *logmsg)
2690 {
2691 unsigned char sha1[20], orig_sha1[20];
2692 int flag = 0, logmoved = 0;
2693 struct ref_lock *lock;
2694 struct stat loginfo;
2695 int log = !lstat(git_path("logs/%s", oldrefname), &loginfo);
2696 const char *symref = NULL;
2697
2698 if (log && S_ISLNK(loginfo.st_mode))
2699 return error("reflog for %s is a symlink", oldrefname);
2700
2701 symref = resolve_ref_unsafe(oldrefname, orig_sha1, 1, &flag);
2702 if (flag & REF_ISSYMREF)
2703 return error("refname %s is a symbolic ref, renaming it is not supported",
2704 oldrefname);
2705 if (!symref)
2706 return error("refname %s not found", oldrefname);
2707
2708 if (!is_refname_available(newrefname, oldrefname, get_packed_refs(&ref_cache)))
2709 return 1;
2710
2711 if (!is_refname_available(newrefname, oldrefname, get_loose_refs(&ref_cache)))
2712 return 1;
2713
2714 if (log && rename(git_path("logs/%s", oldrefname), git_path(TMP_RENAMED_LOG)))
2715 return error("unable to move logfile logs/%s to "TMP_RENAMED_LOG": %s",
2716 oldrefname, strerror(errno));
2717
2718 if (delete_ref(oldrefname, orig_sha1, REF_NODEREF)) {
2719 error("unable to delete old %s", oldrefname);
2720 goto rollback;
2721 }
2722
2723 if (!read_ref_full(newrefname, sha1, 1, &flag) &&
2724 delete_ref(newrefname, sha1, REF_NODEREF)) {
2725 if (errno==EISDIR) {
2726 if (remove_empty_directories(git_path("%s", newrefname))) {
2727 error("Directory not empty: %s", newrefname);
2728 goto rollback;
2729 }
2730 } else {
2731 error("unable to delete existing %s", newrefname);
2732 goto rollback;
2733 }
2734 }
2735
2736 if (log && rename_tmp_log(newrefname))
2737 goto rollback;
2738
2739 logmoved = log;
2740
2741 lock = lock_ref_sha1_basic(newrefname, NULL, 0, NULL);
2742 if (!lock) {
2743 error("unable to lock %s for update", newrefname);
2744 goto rollback;
2745 }
2746 lock->force_write = 1;
2747 hashcpy(lock->old_sha1, orig_sha1);
2748 if (write_ref_sha1(lock, orig_sha1, logmsg)) {
2749 error("unable to write current sha1 into %s", newrefname);
2750 goto rollback;
2751 }
2752
2753 return 0;
2754
2755 rollback:
2756 lock = lock_ref_sha1_basic(oldrefname, NULL, 0, NULL);
2757 if (!lock) {
2758 error("unable to lock %s for rollback", oldrefname);
2759 goto rollbacklog;
2760 }
2761
2762 lock->force_write = 1;
2763 flag = log_all_ref_updates;
2764 log_all_ref_updates = 0;
2765 if (write_ref_sha1(lock, orig_sha1, NULL))
2766 error("unable to write current sha1 into %s", oldrefname);
2767 log_all_ref_updates = flag;
2768
2769 rollbacklog:
2770 if (logmoved && rename(git_path("logs/%s", newrefname), git_path("logs/%s", oldrefname)))
2771 error("unable to restore logfile %s from %s: %s",
2772 oldrefname, newrefname, strerror(errno));
2773 if (!logmoved && log &&
2774 rename(git_path(TMP_RENAMED_LOG), git_path("logs/%s", oldrefname)))
2775 error("unable to restore logfile %s from "TMP_RENAMED_LOG": %s",
2776 oldrefname, strerror(errno));
2777
2778 return 1;
2779 }
2780
2781 int close_ref(struct ref_lock *lock)
2782 {
2783 if (close_lock_file(lock->lk))
2784 return -1;
2785 lock->lock_fd = -1;
2786 return 0;
2787 }
2788
2789 int commit_ref(struct ref_lock *lock)
2790 {
2791 if (commit_lock_file(lock->lk))
2792 return -1;
2793 lock->lock_fd = -1;
2794 return 0;
2795 }
2796
2797 void unlock_ref(struct ref_lock *lock)
2798 {
2799 /* Do not free lock->lk -- atexit() still looks at them */
2800 if (lock->lk)
2801 rollback_lock_file(lock->lk);
2802 free(lock->ref_name);
2803 free(lock->orig_ref_name);
2804 free(lock);
2805 }
2806
2807 /*
2808 * copy the reflog message msg to buf, which has been allocated sufficiently
2809 * large, while cleaning up the whitespaces. Especially, convert LF to space,
2810 * because reflog file is one line per entry.
2811 */
2812 static int copy_msg(char *buf, const char *msg)
2813 {
2814 char *cp = buf;
2815 char c;
2816 int wasspace = 1;
2817
2818 *cp++ = '\t';
2819 while ((c = *msg++)) {
2820 if (wasspace && isspace(c))
2821 continue;
2822 wasspace = isspace(c);
2823 if (wasspace)
2824 c = ' ';
2825 *cp++ = c;
2826 }
2827 while (buf < cp && isspace(cp[-1]))
2828 cp--;
2829 *cp++ = '\n';
2830 return cp - buf;
2831 }
2832
2833 /* This function must set a meaningful errno on failure */
2834 int log_ref_setup(const char *refname, char *logfile, int bufsize)
2835 {
2836 int logfd, oflags = O_APPEND | O_WRONLY;
2837
2838 git_snpath(logfile, bufsize, "logs/%s", refname);
2839 if (log_all_ref_updates &&
2840 (starts_with(refname, "refs/heads/") ||
2841 starts_with(refname, "refs/remotes/") ||
2842 starts_with(refname, "refs/notes/") ||
2843 !strcmp(refname, "HEAD"))) {
2844 if (safe_create_leading_directories(logfile) < 0) {
2845 int save_errno = errno;
2846 error("unable to create directory for %s", logfile);
2847 errno = save_errno;
2848 return -1;
2849 }
2850 oflags |= O_CREAT;
2851 }
2852
2853 logfd = open(logfile, oflags, 0666);
2854 if (logfd < 0) {
2855 if (!(oflags & O_CREAT) && errno == ENOENT)
2856 return 0;
2857
2858 if ((oflags & O_CREAT) && errno == EISDIR) {
2859 if (remove_empty_directories(logfile)) {
2860 int save_errno = errno;
2861 error("There are still logs under '%s'",
2862 logfile);
2863 errno = save_errno;
2864 return -1;
2865 }
2866 logfd = open(logfile, oflags, 0666);
2867 }
2868
2869 if (logfd < 0) {
2870 int save_errno = errno;
2871 error("Unable to append to %s: %s", logfile,
2872 strerror(errno));
2873 errno = save_errno;
2874 return -1;
2875 }
2876 }
2877
2878 adjust_shared_perm(logfile);
2879 close(logfd);
2880 return 0;
2881 }
2882
2883 static int log_ref_write(const char *refname, const unsigned char *old_sha1,
2884 const unsigned char *new_sha1, const char *msg)
2885 {
2886 int logfd, result, written, oflags = O_APPEND | O_WRONLY;
2887 unsigned maxlen, len;
2888 int msglen;
2889 char log_file[PATH_MAX];
2890 char *logrec;
2891 const char *committer;
2892
2893 if (log_all_ref_updates < 0)
2894 log_all_ref_updates = !is_bare_repository();
2895
2896 result = log_ref_setup(refname, log_file, sizeof(log_file));
2897 if (result)
2898 return result;
2899
2900 logfd = open(log_file, oflags);
2901 if (logfd < 0)
2902 return 0;
2903 msglen = msg ? strlen(msg) : 0;
2904 committer = git_committer_info(0);
2905 maxlen = strlen(committer) + msglen + 100;
2906 logrec = xmalloc(maxlen);
2907 len = sprintf(logrec, "%s %s %s\n",
2908 sha1_to_hex(old_sha1),
2909 sha1_to_hex(new_sha1),
2910 committer);
2911 if (msglen)
2912 len += copy_msg(logrec + len - 1, msg) - 1;
2913 written = len <= maxlen ? write_in_full(logfd, logrec, len) : -1;
2914 free(logrec);
2915 if (written != len) {
2916 int save_errno = errno;
2917 close(logfd);
2918 error("Unable to append to %s", log_file);
2919 errno = save_errno;
2920 return -1;
2921 }
2922 if (close(logfd)) {
2923 int save_errno = errno;
2924 error("Unable to append to %s", log_file);
2925 errno = save_errno;
2926 return -1;
2927 }
2928 return 0;
2929 }
2930
2931 int is_branch(const char *refname)
2932 {
2933 return !strcmp(refname, "HEAD") || starts_with(refname, "refs/heads/");
2934 }
2935
2936 /* This function must return a meaningful errno */
2937 int write_ref_sha1(struct ref_lock *lock,
2938 const unsigned char *sha1, const char *logmsg)
2939 {
2940 static char term = '\n';
2941 struct object *o;
2942
2943 if (!lock) {
2944 errno = EINVAL;
2945 return -1;
2946 }
2947 if (!lock->force_write && !hashcmp(lock->old_sha1, sha1)) {
2948 unlock_ref(lock);
2949 return 0;
2950 }
2951 o = parse_object(sha1);
2952 if (!o) {
2953 error("Trying to write ref %s with nonexistent object %s",
2954 lock->ref_name, sha1_to_hex(sha1));
2955 unlock_ref(lock);
2956 errno = EINVAL;
2957 return -1;
2958 }
2959 if (o->type != OBJ_COMMIT && is_branch(lock->ref_name)) {
2960 error("Trying to write non-commit object %s to branch %s",
2961 sha1_to_hex(sha1), lock->ref_name);
2962 unlock_ref(lock);
2963 errno = EINVAL;
2964 return -1;
2965 }
2966 if (write_in_full(lock->lock_fd, sha1_to_hex(sha1), 40) != 40 ||
2967 write_in_full(lock->lock_fd, &term, 1) != 1 ||
2968 close_ref(lock) < 0) {
2969 int save_errno = errno;
2970 error("Couldn't write %s", lock->lk->filename);
2971 unlock_ref(lock);
2972 errno = save_errno;
2973 return -1;
2974 }
2975 clear_loose_ref_cache(&ref_cache);
2976 if (log_ref_write(lock->ref_name, lock->old_sha1, sha1, logmsg) < 0 ||
2977 (strcmp(lock->ref_name, lock->orig_ref_name) &&
2978 log_ref_write(lock->orig_ref_name, lock->old_sha1, sha1, logmsg) < 0)) {
2979 unlock_ref(lock);
2980 return -1;
2981 }
2982 if (strcmp(lock->orig_ref_name, "HEAD") != 0) {
2983 /*
2984 * Special hack: If a branch is updated directly and HEAD
2985 * points to it (may happen on the remote side of a push
2986 * for example) then logically the HEAD reflog should be
2987 * updated too.
2988 * A generic solution implies reverse symref information,
2989 * but finding all symrefs pointing to the given branch
2990 * would be rather costly for this rare event (the direct
2991 * update of a branch) to be worth it. So let's cheat and
2992 * check with HEAD only which should cover 99% of all usage
2993 * scenarios (even 100% of the default ones).
2994 */
2995 unsigned char head_sha1[20];
2996 int head_flag;
2997 const char *head_ref;
2998 head_ref = resolve_ref_unsafe("HEAD", head_sha1, 1, &head_flag);
2999 if (head_ref && (head_flag & REF_ISSYMREF) &&
3000 !strcmp(head_ref, lock->ref_name))
3001 log_ref_write("HEAD", lock->old_sha1, sha1, logmsg);
3002 }
3003 if (commit_ref(lock)) {
3004 error("Couldn't set %s", lock->ref_name);
3005 unlock_ref(lock);
3006 return -1;
3007 }
3008 unlock_ref(lock);
3009 return 0;
3010 }
3011
3012 int create_symref(const char *ref_target, const char *refs_heads_master,
3013 const char *logmsg)
3014 {
3015 const char *lockpath;
3016 char ref[1000];
3017 int fd, len, written;
3018 char *git_HEAD = git_pathdup("%s", ref_target);
3019 unsigned char old_sha1[20], new_sha1[20];
3020
3021 if (logmsg && read_ref(ref_target, old_sha1))
3022 hashclr(old_sha1);
3023
3024 if (safe_create_leading_directories(git_HEAD) < 0)
3025 return error("unable to create directory for %s", git_HEAD);
3026
3027 #ifndef NO_SYMLINK_HEAD
3028 if (prefer_symlink_refs) {
3029 unlink(git_HEAD);
3030 if (!symlink(refs_heads_master, git_HEAD))
3031 goto done;
3032 fprintf(stderr, "no symlink - falling back to symbolic ref\n");
3033 }
3034 #endif
3035
3036 len = snprintf(ref, sizeof(ref), "ref: %s\n", refs_heads_master);
3037 if (sizeof(ref) <= len) {
3038 error("refname too long: %s", refs_heads_master);
3039 goto error_free_return;
3040 }
3041 lockpath = mkpath("%s.lock", git_HEAD);
3042 fd = open(lockpath, O_CREAT | O_EXCL | O_WRONLY, 0666);
3043 if (fd < 0) {
3044 error("Unable to open %s for writing", lockpath);
3045 goto error_free_return;
3046 }
3047 written = write_in_full(fd, ref, len);
3048 if (close(fd) != 0 || written != len) {
3049 error("Unable to write to %s", lockpath);
3050 goto error_unlink_return;
3051 }
3052 if (rename(lockpath, git_HEAD) < 0) {
3053 error("Unable to create %s", git_HEAD);
3054 goto error_unlink_return;
3055 }
3056 if (adjust_shared_perm(git_HEAD)) {
3057 error("Unable to fix permissions on %s", lockpath);
3058 error_unlink_return:
3059 unlink_or_warn(lockpath);
3060 error_free_return:
3061 free(git_HEAD);
3062 return -1;
3063 }
3064
3065 #ifndef NO_SYMLINK_HEAD
3066 done:
3067 #endif
3068 if (logmsg && !read_ref(refs_heads_master, new_sha1))
3069 log_ref_write(ref_target, old_sha1, new_sha1, logmsg);
3070
3071 free(git_HEAD);
3072 return 0;
3073 }
3074
3075 struct read_ref_at_cb {
3076 const char *refname;
3077 unsigned long at_time;
3078 int cnt;
3079 int reccnt;
3080 unsigned char *sha1;
3081 int found_it;
3082
3083 unsigned char osha1[20];
3084 unsigned char nsha1[20];
3085 int tz;
3086 unsigned long date;
3087 char **msg;
3088 unsigned long *cutoff_time;
3089 int *cutoff_tz;
3090 int *cutoff_cnt;
3091 };
3092
3093 static int read_ref_at_ent(unsigned char *osha1, unsigned char *nsha1,
3094 const char *email, unsigned long timestamp, int tz,
3095 const char *message, void *cb_data)
3096 {
3097 struct read_ref_at_cb *cb = cb_data;
3098
3099 cb->reccnt++;
3100 cb->tz = tz;
3101 cb->date = timestamp;
3102
3103 if (timestamp <= cb->at_time || cb->cnt == 0) {
3104 if (cb->msg)
3105 *cb->msg = xstrdup(message);
3106 if (cb->cutoff_time)
3107 *cb->cutoff_time = timestamp;
3108 if (cb->cutoff_tz)
3109 *cb->cutoff_tz = tz;
3110 if (cb->cutoff_cnt)
3111 *cb->cutoff_cnt = cb->reccnt - 1;
3112 /*
3113 * we have not yet updated cb->[n|o]sha1 so they still
3114 * hold the values for the previous record.
3115 */
3116 if (!is_null_sha1(cb->osha1)) {
3117 hashcpy(cb->sha1, nsha1);
3118 if (hashcmp(cb->osha1, nsha1))
3119 warning("Log for ref %s has gap after %s.",
3120 cb->refname, show_date(cb->date, cb->tz, DATE_RFC2822));
3121 }
3122 else if (cb->date == cb->at_time)
3123 hashcpy(cb->sha1, nsha1);
3124 else if (hashcmp(nsha1, cb->sha1))
3125 warning("Log for ref %s unexpectedly ended on %s.",
3126 cb->refname, show_date(cb->date, cb->tz,
3127 DATE_RFC2822));
3128 hashcpy(cb->osha1, osha1);
3129 hashcpy(cb->nsha1, nsha1);
3130 cb->found_it = 1;
3131 return 1;
3132 }
3133 hashcpy(cb->osha1, osha1);
3134 hashcpy(cb->nsha1, nsha1);
3135 if (cb->cnt > 0)
3136 cb->cnt--;
3137 return 0;
3138 }
3139
3140 static int read_ref_at_ent_oldest(unsigned char *osha1, unsigned char *nsha1,
3141 const char *email, unsigned long timestamp,
3142 int tz, const char *message, void *cb_data)
3143 {
3144 struct read_ref_at_cb *cb = cb_data;
3145
3146 if (cb->msg)
3147 *cb->msg = xstrdup(message);
3148 if (cb->cutoff_time)
3149 *cb->cutoff_time = timestamp;
3150 if (cb->cutoff_tz)
3151 *cb->cutoff_tz = tz;
3152 if (cb->cutoff_cnt)
3153 *cb->cutoff_cnt = cb->reccnt;
3154 hashcpy(cb->sha1, osha1);
3155 if (is_null_sha1(cb->sha1))
3156 hashcpy(cb->sha1, nsha1);
3157 /* We just want the first entry */
3158 return 1;
3159 }
3160
3161 int read_ref_at(const char *refname, unsigned int flags, unsigned long at_time, int cnt,
3162 unsigned char *sha1, char **msg,
3163 unsigned long *cutoff_time, int *cutoff_tz, int *cutoff_cnt)
3164 {
3165 struct read_ref_at_cb cb;
3166
3167 memset(&cb, 0, sizeof(cb));
3168 cb.refname = refname;
3169 cb.at_time = at_time;
3170 cb.cnt = cnt;
3171 cb.msg = msg;
3172 cb.cutoff_time = cutoff_time;
3173 cb.cutoff_tz = cutoff_tz;
3174 cb.cutoff_cnt = cutoff_cnt;
3175 cb.sha1 = sha1;
3176
3177 for_each_reflog_ent_reverse(refname, read_ref_at_ent, &cb);
3178
3179 if (!cb.reccnt) {
3180 if (flags & GET_SHA1_QUIETLY)
3181 exit(128);
3182 else
3183 die("Log for %s is empty.", refname);
3184 }
3185 if (cb.found_it)
3186 return 0;
3187
3188 for_each_reflog_ent(refname, read_ref_at_ent_oldest, &cb);
3189
3190 return 1;
3191 }
3192
3193 int reflog_exists(const char *refname)
3194 {
3195 struct stat st;
3196
3197 return !lstat(git_path("logs/%s", refname), &st) &&
3198 S_ISREG(st.st_mode);
3199 }
3200
3201 int delete_reflog(const char *refname)
3202 {
3203 return remove_path(git_path("logs/%s", refname));
3204 }
3205
3206 static int show_one_reflog_ent(struct strbuf *sb, each_reflog_ent_fn fn, void *cb_data)
3207 {
3208 unsigned char osha1[20], nsha1[20];
3209 char *email_end, *message;
3210 unsigned long timestamp;
3211 int tz;
3212
3213 /* old SP new SP name <email> SP time TAB msg LF */
3214 if (sb->len < 83 || sb->buf[sb->len - 1] != '\n' ||
3215 get_sha1_hex(sb->buf, osha1) || sb->buf[40] != ' ' ||
3216 get_sha1_hex(sb->buf + 41, nsha1) || sb->buf[81] != ' ' ||
3217 !(email_end = strchr(sb->buf + 82, '>')) ||
3218 email_end[1] != ' ' ||
3219 !(timestamp = strtoul(email_end + 2, &message, 10)) ||
3220 !message || message[0] != ' ' ||
3221 (message[1] != '+' && message[1] != '-') ||
3222 !isdigit(message[2]) || !isdigit(message[3]) ||
3223 !isdigit(message[4]) || !isdigit(message[5]))
3224 return 0; /* corrupt? */
3225 email_end[1] = '\0';
3226 tz = strtol(message + 1, NULL, 10);
3227 if (message[6] != '\t')
3228 message += 6;
3229 else
3230 message += 7;
3231 return fn(osha1, nsha1, sb->buf + 82, timestamp, tz, message, cb_data);
3232 }
3233
3234 static char *find_beginning_of_line(char *bob, char *scan)
3235 {
3236 while (bob < scan && *(--scan) != '\n')
3237 ; /* keep scanning backwards */
3238 /*
3239 * Return either beginning of the buffer, or LF at the end of
3240 * the previous line.
3241 */
3242 return scan;
3243 }
3244
3245 int for_each_reflog_ent_reverse(const char *refname, each_reflog_ent_fn fn, void *cb_data)
3246 {
3247 struct strbuf sb = STRBUF_INIT;
3248 FILE *logfp;
3249 long pos;
3250 int ret = 0, at_tail = 1;
3251
3252 logfp = fopen(git_path("logs/%s", refname), "r");
3253 if (!logfp)
3254 return -1;
3255
3256 /* Jump to the end */
3257 if (fseek(logfp, 0, SEEK_END) < 0)
3258 return error("cannot seek back reflog for %s: %s",
3259 refname, strerror(errno));
3260 pos = ftell(logfp);
3261 while (!ret && 0 < pos) {
3262 int cnt;
3263 size_t nread;
3264 char buf[BUFSIZ];
3265 char *endp, *scanp;
3266
3267 /* Fill next block from the end */
3268 cnt = (sizeof(buf) < pos) ? sizeof(buf) : pos;
3269 if (fseek(logfp, pos - cnt, SEEK_SET))
3270 return error("cannot seek back reflog for %s: %s",
3271 refname, strerror(errno));
3272 nread = fread(buf, cnt, 1, logfp);
3273 if (nread != 1)
3274 return error("cannot read %d bytes from reflog for %s: %s",
3275 cnt, refname, strerror(errno));
3276 pos -= cnt;
3277
3278 scanp = endp = buf + cnt;
3279 if (at_tail && scanp[-1] == '\n')
3280 /* Looking at the final LF at the end of the file */
3281 scanp--;
3282 at_tail = 0;
3283
3284 while (buf < scanp) {
3285 /*
3286 * terminating LF of the previous line, or the beginning
3287 * of the buffer.
3288 */
3289 char *bp;
3290
3291 bp = find_beginning_of_line(buf, scanp);
3292
3293 if (*bp != '\n') {
3294 strbuf_splice(&sb, 0, 0, buf, endp - buf);
3295 if (pos)
3296 break; /* need to fill another block */
3297 scanp = buf - 1; /* leave loop */
3298 } else {
3299 /*
3300 * (bp + 1) thru endp is the beginning of the
3301 * current line we have in sb
3302 */
3303 strbuf_splice(&sb, 0, 0, bp + 1, endp - (bp + 1));
3304 scanp = bp;
3305 endp = bp + 1;
3306 }
3307 ret = show_one_reflog_ent(&sb, fn, cb_data);
3308 strbuf_reset(&sb);
3309 if (ret)
3310 break;
3311 }
3312
3313 }
3314 if (!ret && sb.len)
3315 ret = show_one_reflog_ent(&sb, fn, cb_data);
3316
3317 fclose(logfp);
3318 strbuf_release(&sb);
3319 return ret;
3320 }
3321
3322 int for_each_reflog_ent(const char *refname, each_reflog_ent_fn fn, void *cb_data)
3323 {
3324 FILE *logfp;
3325 struct strbuf sb = STRBUF_INIT;
3326 int ret = 0;
3327
3328 logfp = fopen(git_path("logs/%s", refname), "r");
3329 if (!logfp)
3330 return -1;
3331
3332 while (!ret && !strbuf_getwholeline(&sb, logfp, '\n'))
3333 ret = show_one_reflog_ent(&sb, fn, cb_data);
3334 fclose(logfp);
3335 strbuf_release(&sb);
3336 return ret;
3337 }
3338 /*
3339 * Call fn for each reflog in the namespace indicated by name. name
3340 * must be empty or end with '/'. Name will be used as a scratch
3341 * space, but its contents will be restored before return.
3342 */
3343 static int do_for_each_reflog(struct strbuf *name, each_ref_fn fn, void *cb_data)
3344 {
3345 DIR *d = opendir(git_path("logs/%s", name->buf));
3346 int retval = 0;
3347 struct dirent *de;
3348 int oldlen = name->len;
3349
3350 if (!d)
3351 return name->len ? errno : 0;
3352
3353 while ((de = readdir(d)) != NULL) {
3354 struct stat st;
3355
3356 if (de->d_name[0] == '.')
3357 continue;
3358 if (ends_with(de->d_name, ".lock"))
3359 continue;
3360 strbuf_addstr(name, de->d_name);
3361 if (stat(git_path("logs/%s", name->buf), &st) < 0) {
3362 ; /* silently ignore */
3363 } else {
3364 if (S_ISDIR(st.st_mode)) {
3365 strbuf_addch(name, '/');
3366 retval = do_for_each_reflog(name, fn, cb_data);
3367 } else {
3368 unsigned char sha1[20];
3369 if (read_ref_full(name->buf, sha1, 0, NULL))
3370 retval = error("bad ref for %s", name->buf);
3371 else
3372 retval = fn(name->buf, sha1, 0, cb_data);
3373 }
3374 if (retval)
3375 break;
3376 }
3377 strbuf_setlen(name, oldlen);
3378 }
3379 closedir(d);
3380 return retval;
3381 }
3382
3383 int for_each_reflog(each_ref_fn fn, void *cb_data)
3384 {
3385 int retval;
3386 struct strbuf name;
3387 strbuf_init(&name, PATH_MAX);
3388 retval = do_for_each_reflog(&name, fn, cb_data);
3389 strbuf_release(&name);
3390 return retval;
3391 }
3392
3393 /**
3394 * Information needed for a single ref update. Set new_sha1 to the
3395 * new value or to zero to delete the ref. To check the old value
3396 * while locking the ref, set have_old to 1 and set old_sha1 to the
3397 * value or to zero to ensure the ref does not exist before update.
3398 */
3399 struct ref_update {
3400 unsigned char new_sha1[20];
3401 unsigned char old_sha1[20];
3402 int flags; /* REF_NODEREF? */
3403 int have_old; /* 1 if old_sha1 is valid, 0 otherwise */
3404 struct ref_lock *lock;
3405 int type;
3406 const char refname[FLEX_ARRAY];
3407 };
3408
3409 /*
3410 * Transaction states.
3411 * OPEN: The transaction is in a valid state and can accept new updates.
3412 * An OPEN transaction can be committed.
3413 * CLOSED: A closed transaction is no longer active and no other operations
3414 * than free can be used on it in this state.
3415 * A transaction can either become closed by successfully committing
3416 * an active transaction or if there is a failure while building
3417 * the transaction thus rendering it failed/inactive.
3418 */
3419 enum ref_transaction_state {
3420 REF_TRANSACTION_OPEN = 0,
3421 REF_TRANSACTION_CLOSED = 1
3422 };
3423
3424 /*
3425 * Data structure for holding a reference transaction, which can
3426 * consist of checks and updates to multiple references, carried out
3427 * as atomically as possible. This structure is opaque to callers.
3428 */
3429 struct ref_transaction {
3430 struct ref_update **updates;
3431 size_t alloc;
3432 size_t nr;
3433 enum ref_transaction_state state;
3434 };
3435
3436 struct ref_transaction *ref_transaction_begin(struct strbuf *err)
3437 {
3438 return xcalloc(1, sizeof(struct ref_transaction));
3439 }
3440
3441 void ref_transaction_free(struct ref_transaction *transaction)
3442 {
3443 int i;
3444
3445 if (!transaction)
3446 return;
3447
3448 for (i = 0; i < transaction->nr; i++)
3449 free(transaction->updates[i]);
3450
3451 free(transaction->updates);
3452 free(transaction);
3453 }
3454
3455 static struct ref_update *add_update(struct ref_transaction *transaction,
3456 const char *refname)
3457 {
3458 size_t len = strlen(refname);
3459 struct ref_update *update = xcalloc(1, sizeof(*update) + len + 1);
3460
3461 strcpy((char *)update->refname, refname);
3462 ALLOC_GROW(transaction->updates, transaction->nr + 1, transaction->alloc);
3463 transaction->updates[transaction->nr++] = update;
3464 return update;
3465 }
3466
3467 int ref_transaction_update(struct ref_transaction *transaction,
3468 const char *refname,
3469 const unsigned char *new_sha1,
3470 const unsigned char *old_sha1,
3471 int flags, int have_old,
3472 struct strbuf *err)
3473 {
3474 struct ref_update *update;
3475
3476 if (transaction->state != REF_TRANSACTION_OPEN)
3477 die("BUG: update called for transaction that is not open");
3478
3479 if (have_old && !old_sha1)
3480 die("BUG: have_old is true but old_sha1 is NULL");
3481
3482 update = add_update(transaction, refname);
3483 hashcpy(update->new_sha1, new_sha1);
3484 update->flags = flags;
3485 update->have_old = have_old;
3486 if (have_old)
3487 hashcpy(update->old_sha1, old_sha1);
3488 return 0;
3489 }
3490
3491 int ref_transaction_create(struct ref_transaction *transaction,
3492 const char *refname,
3493 const unsigned char *new_sha1,
3494 int flags,
3495 struct strbuf *err)
3496 {
3497 struct ref_update *update;
3498
3499 if (transaction->state != REF_TRANSACTION_OPEN)
3500 die("BUG: create called for transaction that is not open");
3501
3502 if (!new_sha1 || is_null_sha1(new_sha1))
3503 die("BUG: create ref with null new_sha1");
3504
3505 update = add_update(transaction, refname);
3506
3507 hashcpy(update->new_sha1, new_sha1);
3508 hashclr(update->old_sha1);
3509 update->flags = flags;
3510 update->have_old = 1;
3511 return 0;
3512 }
3513
3514 int ref_transaction_delete(struct ref_transaction *transaction,
3515 const char *refname,
3516 const unsigned char *old_sha1,
3517 int flags, int have_old,
3518 struct strbuf *err)
3519 {
3520 struct ref_update *update;
3521
3522 if (transaction->state != REF_TRANSACTION_OPEN)
3523 die("BUG: delete called for transaction that is not open");
3524
3525 if (have_old && !old_sha1)
3526 die("BUG: have_old is true but old_sha1 is NULL");
3527
3528 update = add_update(transaction, refname);
3529 update->flags = flags;
3530 update->have_old = have_old;
3531 if (have_old) {
3532 assert(!is_null_sha1(old_sha1));
3533 hashcpy(update->old_sha1, old_sha1);
3534 }
3535 return 0;
3536 }
3537
3538 int update_ref(const char *action, const char *refname,
3539 const unsigned char *sha1, const unsigned char *oldval,
3540 int flags, enum action_on_err onerr)
3541 {
3542 struct ref_transaction *t;
3543 struct strbuf err = STRBUF_INIT;
3544
3545 t = ref_transaction_begin(&err);
3546 if (!t ||
3547 ref_transaction_update(t, refname, sha1, oldval, flags,
3548 !!oldval, &err) ||
3549 ref_transaction_commit(t, action, &err)) {
3550 const char *str = "update_ref failed for ref '%s': %s";
3551
3552 ref_transaction_free(t);
3553 switch (onerr) {
3554 case UPDATE_REFS_MSG_ON_ERR:
3555 error(str, refname, err.buf);
3556 break;
3557 case UPDATE_REFS_DIE_ON_ERR:
3558 die(str, refname, err.buf);
3559 break;
3560 case UPDATE_REFS_QUIET_ON_ERR:
3561 break;
3562 }
3563 strbuf_release(&err);
3564 return 1;
3565 }
3566 strbuf_release(&err);
3567 ref_transaction_free(t);
3568 return 0;
3569 }
3570
3571 static int ref_update_compare(const void *r1, const void *r2)
3572 {
3573 const struct ref_update * const *u1 = r1;
3574 const struct ref_update * const *u2 = r2;
3575 return strcmp((*u1)->refname, (*u2)->refname);
3576 }
3577
3578 static int ref_update_reject_duplicates(struct ref_update **updates, int n,
3579 struct strbuf *err)
3580 {
3581 int i;
3582 for (i = 1; i < n; i++)
3583 if (!strcmp(updates[i - 1]->refname, updates[i]->refname)) {
3584 const char *str =
3585 "Multiple updates for ref '%s' not allowed.";
3586 if (err)
3587 strbuf_addf(err, str, updates[i]->refname);
3588
3589 return 1;
3590 }
3591 return 0;
3592 }
3593
3594 int ref_transaction_commit(struct ref_transaction *transaction,
3595 const char *msg, struct strbuf *err)
3596 {
3597 int ret = 0, delnum = 0, i;
3598 const char **delnames;
3599 int n = transaction->nr;
3600 struct ref_update **updates = transaction->updates;
3601
3602 if (transaction->state != REF_TRANSACTION_OPEN)
3603 die("BUG: commit called for transaction that is not open");
3604
3605 if (!n) {
3606 transaction->state = REF_TRANSACTION_CLOSED;
3607 return 0;
3608 }
3609
3610 /* Allocate work space */
3611 delnames = xmalloc(sizeof(*delnames) * n);
3612
3613 /* Copy, sort, and reject duplicate refs */
3614 qsort(updates, n, sizeof(*updates), ref_update_compare);
3615 ret = ref_update_reject_duplicates(updates, n, err);
3616 if (ret)
3617 goto cleanup;
3618
3619 /* Acquire all locks while verifying old values */
3620 for (i = 0; i < n; i++) {
3621 struct ref_update *update = updates[i];
3622
3623 update->lock = lock_any_ref_for_update(update->refname,
3624 (update->have_old ?
3625 update->old_sha1 :
3626 NULL),
3627 update->flags,
3628 &update->type);
3629 if (!update->lock) {
3630 if (err)
3631 strbuf_addf(err, "Cannot lock the ref '%s'.",
3632 update->refname);
3633 ret = 1;
3634 goto cleanup;
3635 }
3636 }
3637
3638 /* Perform updates first so live commits remain referenced */
3639 for (i = 0; i < n; i++) {
3640 struct ref_update *update = updates[i];
3641
3642 if (!is_null_sha1(update->new_sha1)) {
3643 ret = write_ref_sha1(update->lock, update->new_sha1,
3644 msg);
3645 update->lock = NULL; /* freed by write_ref_sha1 */
3646 if (ret) {
3647 if (err)
3648 strbuf_addf(err, "Cannot update the ref '%s'.",
3649 update->refname);
3650 goto cleanup;
3651 }
3652 }
3653 }
3654
3655 /* Perform deletes now that updates are safely completed */
3656 for (i = 0; i < n; i++) {
3657 struct ref_update *update = updates[i];
3658
3659 if (update->lock) {
3660 ret |= delete_ref_loose(update->lock, update->type);
3661 if (!(update->flags & REF_ISPRUNING))
3662 delnames[delnum++] = update->lock->ref_name;
3663 }
3664 }
3665
3666 ret |= repack_without_refs(delnames, delnum, err);
3667 for (i = 0; i < delnum; i++)
3668 unlink_or_warn(git_path("logs/%s", delnames[i]));
3669 clear_loose_ref_cache(&ref_cache);
3670
3671 cleanup:
3672 transaction->state = REF_TRANSACTION_CLOSED;
3673
3674 for (i = 0; i < n; i++)
3675 if (updates[i]->lock)
3676 unlock_ref(updates[i]->lock);
3677 free(delnames);
3678 return ret;
3679 }
3680
3681 char *shorten_unambiguous_ref(const char *refname, int strict)
3682 {
3683 int i;
3684 static char **scanf_fmts;
3685 static int nr_rules;
3686 char *short_name;
3687
3688 if (!nr_rules) {
3689 /*
3690 * Pre-generate scanf formats from ref_rev_parse_rules[].
3691 * Generate a format suitable for scanf from a
3692 * ref_rev_parse_rules rule by interpolating "%s" at the
3693 * location of the "%.*s".
3694 */
3695 size_t total_len = 0;
3696 size_t offset = 0;
3697
3698 /* the rule list is NULL terminated, count them first */
3699 for (nr_rules = 0; ref_rev_parse_rules[nr_rules]; nr_rules++)
3700 /* -2 for strlen("%.*s") - strlen("%s"); +1 for NUL */
3701 total_len += strlen(ref_rev_parse_rules[nr_rules]) - 2 + 1;
3702
3703 scanf_fmts = xmalloc(nr_rules * sizeof(char *) + total_len);
3704
3705 offset = 0;
3706 for (i = 0; i < nr_rules; i++) {
3707 assert(offset < total_len);
3708 scanf_fmts[i] = (char *)&scanf_fmts[nr_rules] + offset;
3709 offset += snprintf(scanf_fmts[i], total_len - offset,
3710 ref_rev_parse_rules[i], 2, "%s") + 1;
3711 }
3712 }
3713
3714 /* bail out if there are no rules */
3715 if (!nr_rules)
3716 return xstrdup(refname);
3717
3718 /* buffer for scanf result, at most refname must fit */
3719 short_name = xstrdup(refname);
3720
3721 /* skip first rule, it will always match */
3722 for (i = nr_rules - 1; i > 0 ; --i) {
3723 int j;
3724 int rules_to_fail = i;
3725 int short_name_len;
3726
3727 if (1 != sscanf(refname, scanf_fmts[i], short_name))
3728 continue;
3729
3730 short_name_len = strlen(short_name);
3731
3732 /*
3733 * in strict mode, all (except the matched one) rules
3734 * must fail to resolve to a valid non-ambiguous ref
3735 */
3736 if (strict)
3737 rules_to_fail = nr_rules;
3738
3739 /*
3740 * check if the short name resolves to a valid ref,
3741 * but use only rules prior to the matched one
3742 */
3743 for (j = 0; j < rules_to_fail; j++) {
3744 const char *rule = ref_rev_parse_rules[j];
3745 char refname[PATH_MAX];
3746
3747 /* skip matched rule */
3748 if (i == j)
3749 continue;
3750
3751 /*
3752 * the short name is ambiguous, if it resolves
3753 * (with this previous rule) to a valid ref
3754 * read_ref() returns 0 on success
3755 */
3756 mksnpath(refname, sizeof(refname),
3757 rule, short_name_len, short_name);
3758 if (ref_exists(refname))
3759 break;
3760 }
3761
3762 /*
3763 * short name is non-ambiguous if all previous rules
3764 * haven't resolved to a valid ref
3765 */
3766 if (j == rules_to_fail)
3767 return short_name;
3768 }
3769
3770 free(short_name);
3771 return xstrdup(refname);
3772 }
3773
3774 static struct string_list *hide_refs;
3775
3776 int parse_hide_refs_config(const char *var, const char *value, const char *section)
3777 {
3778 if (!strcmp("transfer.hiderefs", var) ||
3779 /* NEEDSWORK: use parse_config_key() once both are merged */
3780 (starts_with(var, section) && var[strlen(section)] == '.' &&
3781 !strcmp(var + strlen(section), ".hiderefs"))) {
3782 char *ref;
3783 int len;
3784
3785 if (!value)
3786 return config_error_nonbool(var);
3787 ref = xstrdup(value);
3788 len = strlen(ref);
3789 while (len && ref[len - 1] == '/')
3790 ref[--len] = '\0';
3791 if (!hide_refs) {
3792 hide_refs = xcalloc(1, sizeof(*hide_refs));
3793 hide_refs->strdup_strings = 1;
3794 }
3795 string_list_append(hide_refs, ref);
3796 }
3797 return 0;
3798 }
3799
3800 int ref_is_hidden(const char *refname)
3801 {
3802 struct string_list_item *item;
3803
3804 if (!hide_refs)
3805 return 0;
3806 for_each_string_list_item(item, hide_refs) {
3807 int len;
3808 if (!starts_with(refname, item->string))
3809 continue;
3810 len = strlen(item->string);
3811 if (!refname[len] || refname[len] == '/')
3812 return 1;
3813 }
3814 return 0;
3815 }