]> git.ipfire.org Git - thirdparty/mdadm.git/blame - super-intel.c
imsm: disambiguate family_num
[thirdparty/mdadm.git] / super-intel.c
CommitLineData
cdddbdbc
DW
1/*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
a54d5262 4 * Copyright (C) 2002-2008 Intel Corporation
cdddbdbc
DW
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
51006d85 20#define HAVE_STDINT_H 1
cdddbdbc 21#include "mdadm.h"
c2a1e7da 22#include "mdmon.h"
51006d85 23#include "sha1.h"
88c32bb1 24#include "platform-intel.h"
cdddbdbc
DW
25#include <values.h>
26#include <scsi/sg.h>
27#include <ctype.h>
d665cc31 28#include <dirent.h>
cdddbdbc
DW
29
30/* MPB == Metadata Parameter Block */
31#define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32#define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33#define MPB_VERSION_RAID0 "1.0.00"
34#define MPB_VERSION_RAID1 "1.1.00"
fe7ed8cb
DW
35#define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36#define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
cdddbdbc 37#define MPB_VERSION_RAID5 "1.2.02"
fe7ed8cb
DW
38#define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39#define MPB_VERSION_CNG "1.2.06"
40#define MPB_VERSION_ATTRIBS "1.3.00"
cdddbdbc
DW
41#define MAX_SIGNATURE_LENGTH 32
42#define MAX_RAID_SERIAL_LEN 16
fe7ed8cb
DW
43
44#define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
45#define MPB_ATTRIB_PM __cpu_to_le32(0x40000000)
46#define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
47#define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
48#define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
49#define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50#define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
51#define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
52#define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
53
c2c087e6
DW
54#define MPB_SECTOR_CNT 418
55#define IMSM_RESERVED_SECTORS 4096
979d38be 56#define SECT_PER_MB_SHIFT 11
cdddbdbc
DW
57
58/* Disk configuration info. */
59#define IMSM_MAX_DEVICES 255
60struct imsm_disk {
61 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
62 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
63 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
f2f27e63
DW
64#define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
65#define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
66#define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
cdddbdbc 67 __u32 status; /* 0xF0 - 0xF3 */
fe7ed8cb
DW
68 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
69#define IMSM_DISK_FILLERS 4
cdddbdbc
DW
70 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
71};
72
73/* RAID map configuration infos. */
74struct imsm_map {
75 __u32 pba_of_lba0; /* start address of partition */
76 __u32 blocks_per_member;/* blocks per member */
77 __u32 num_data_stripes; /* number of data stripes */
78 __u16 blocks_per_strip;
79 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
80#define IMSM_T_STATE_NORMAL 0
81#define IMSM_T_STATE_UNINITIALIZED 1
e3bba0e0
DW
82#define IMSM_T_STATE_DEGRADED 2
83#define IMSM_T_STATE_FAILED 3
cdddbdbc
DW
84 __u8 raid_level;
85#define IMSM_T_RAID0 0
86#define IMSM_T_RAID1 1
87#define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
88 __u8 num_members; /* number of member disks */
fe7ed8cb
DW
89 __u8 num_domains; /* number of parity domains */
90 __u8 failed_disk_num; /* valid only when state is degraded */
252d23c0 91 __u8 ddf;
cdddbdbc 92 __u32 filler[7]; /* expansion area */
7eef0453 93#define IMSM_ORD_REBUILD (1 << 24)
cdddbdbc 94 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
7eef0453
DW
95 * top byte contains some flags
96 */
cdddbdbc
DW
97} __attribute__ ((packed));
98
99struct imsm_vol {
f8f603f1 100 __u32 curr_migr_unit;
fe7ed8cb 101 __u32 checkpoint_id; /* id to access curr_migr_unit */
cdddbdbc 102 __u8 migr_state; /* Normal or Migrating */
e3bba0e0
DW
103#define MIGR_INIT 0
104#define MIGR_REBUILD 1
105#define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
106#define MIGR_GEN_MIGR 3
107#define MIGR_STATE_CHANGE 4
1484e727 108#define MIGR_REPAIR 5
cdddbdbc
DW
109 __u8 migr_type; /* Initializing, Rebuilding, ... */
110 __u8 dirty;
fe7ed8cb
DW
111 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
112 __u16 verify_errors; /* number of mismatches */
113 __u16 bad_blocks; /* number of bad blocks during verify */
114 __u32 filler[4];
cdddbdbc
DW
115 struct imsm_map map[1];
116 /* here comes another one if migr_state */
117} __attribute__ ((packed));
118
119struct imsm_dev {
fe7ed8cb 120 __u8 volume[MAX_RAID_SERIAL_LEN];
cdddbdbc
DW
121 __u32 size_low;
122 __u32 size_high;
fe7ed8cb
DW
123#define DEV_BOOTABLE __cpu_to_le32(0x01)
124#define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
125#define DEV_READ_COALESCING __cpu_to_le32(0x04)
126#define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
127#define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
128#define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
129#define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
130#define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
131#define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
132#define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
133#define DEV_CLONE_N_GO __cpu_to_le32(0x400)
134#define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
135#define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
cdddbdbc
DW
136 __u32 status; /* Persistent RaidDev status */
137 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
fe7ed8cb
DW
138 __u8 migr_priority;
139 __u8 num_sub_vols;
140 __u8 tid;
141 __u8 cng_master_disk;
142 __u16 cache_policy;
143 __u8 cng_state;
144 __u8 cng_sub_state;
145#define IMSM_DEV_FILLERS 10
cdddbdbc
DW
146 __u32 filler[IMSM_DEV_FILLERS];
147 struct imsm_vol vol;
148} __attribute__ ((packed));
149
150struct imsm_super {
151 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
152 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
153 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
154 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
155 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
604b746f
JD
156 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
157 __u32 attributes; /* 0x34 - 0x37 */
cdddbdbc
DW
158 __u8 num_disks; /* 0x38 Number of configured disks */
159 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
604b746f
JD
160 __u8 error_log_pos; /* 0x3A */
161 __u8 fill[1]; /* 0x3B */
162 __u32 cache_size; /* 0x3c - 0x40 in mb */
163 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
164 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
165 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
166#define IMSM_FILLERS 35
167 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
cdddbdbc
DW
168 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
169 /* here comes imsm_dev[num_raid_devs] */
604b746f 170 /* here comes BBM logs */
cdddbdbc
DW
171} __attribute__ ((packed));
172
604b746f
JD
173#define BBM_LOG_MAX_ENTRIES 254
174
175struct bbm_log_entry {
176 __u64 defective_block_start;
177#define UNREADABLE 0xFFFFFFFF
178 __u32 spare_block_offset;
179 __u16 remapped_marked_count;
180 __u16 disk_ordinal;
181} __attribute__ ((__packed__));
182
183struct bbm_log {
184 __u32 signature; /* 0xABADB10C */
185 __u32 entry_count;
186 __u32 reserved_spare_block_count; /* 0 */
187 __u32 reserved; /* 0xFFFF */
188 __u64 first_spare_lba;
189 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
190} __attribute__ ((__packed__));
191
192
cdddbdbc
DW
193#ifndef MDASSEMBLE
194static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
195#endif
196
1484e727
DW
197static __u8 migr_type(struct imsm_dev *dev)
198{
199 if (dev->vol.migr_type == MIGR_VERIFY &&
200 dev->status & DEV_VERIFY_AND_FIX)
201 return MIGR_REPAIR;
202 else
203 return dev->vol.migr_type;
204}
205
206static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
207{
208 /* for compatibility with older oroms convert MIGR_REPAIR, into
209 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
210 */
211 if (migr_type == MIGR_REPAIR) {
212 dev->vol.migr_type = MIGR_VERIFY;
213 dev->status |= DEV_VERIFY_AND_FIX;
214 } else {
215 dev->vol.migr_type = migr_type;
216 dev->status &= ~DEV_VERIFY_AND_FIX;
217 }
218}
219
87eb16df 220static unsigned int sector_count(__u32 bytes)
cdddbdbc 221{
87eb16df
DW
222 return ((bytes + (512-1)) & (~(512-1))) / 512;
223}
cdddbdbc 224
87eb16df
DW
225static unsigned int mpb_sectors(struct imsm_super *mpb)
226{
227 return sector_count(__le32_to_cpu(mpb->mpb_size));
cdddbdbc
DW
228}
229
ba2de7ba
DW
230struct intel_dev {
231 struct imsm_dev *dev;
232 struct intel_dev *next;
233 int index;
234};
235
cdddbdbc
DW
236/* internal representation of IMSM metadata */
237struct intel_super {
238 union {
949c47a0
DW
239 void *buf; /* O_DIRECT buffer for reading/writing metadata */
240 struct imsm_super *anchor; /* immovable parameters */
cdddbdbc 241 };
949c47a0 242 size_t len; /* size of the 'buf' allocation */
4d7b1503
DW
243 void *next_buf; /* for realloc'ing buf from the manager */
244 size_t next_len;
c2c087e6
DW
245 int updates_pending; /* count of pending updates for mdmon */
246 int creating_imsm; /* flag to indicate container creation */
bf5a934a 247 int current_vol; /* index of raid device undergoing creation */
0dcecb2e 248 __u32 create_offset; /* common start for 'current_vol' */
148acb7b 249 __u32 random; /* random data for seeding new family numbers */
ba2de7ba 250 struct intel_dev *devlist;
cdddbdbc
DW
251 struct dl {
252 struct dl *next;
253 int index;
254 __u8 serial[MAX_RAID_SERIAL_LEN];
255 int major, minor;
256 char *devname;
b9f594fe 257 struct imsm_disk disk;
cdddbdbc 258 int fd;
0dcecb2e
DW
259 int extent_cnt;
260 struct extent *e; /* for determining freespace @ create */
efb30e7f 261 int raiddisk; /* slot to fill in autolayout */
cdddbdbc 262 } *disks;
43dad3d6 263 struct dl *add; /* list of disks to add while mdmon active */
47ee5a45 264 struct dl *missing; /* disks removed while we weren't looking */
43dad3d6 265 struct bbm_log *bbm_log;
88c32bb1
DW
266 const char *hba; /* device path of the raid controller for this metadata */
267 const struct imsm_orom *orom; /* platform firmware support */
a2b97981
DW
268 struct intel_super *next; /* (temp) list for disambiguating family_num */
269};
270
271struct intel_disk {
272 struct imsm_disk disk;
273 #define IMSM_UNKNOWN_OWNER (-1)
274 int owner;
275 struct intel_disk *next;
cdddbdbc
DW
276};
277
c2c087e6
DW
278struct extent {
279 unsigned long long start, size;
280};
281
88758e9d
DW
282/* definition of messages passed to imsm_process_update */
283enum imsm_update_type {
284 update_activate_spare,
8273f55e 285 update_create_array,
43dad3d6 286 update_add_disk,
88758e9d
DW
287};
288
289struct imsm_update_activate_spare {
290 enum imsm_update_type type;
d23fe947 291 struct dl *dl;
88758e9d
DW
292 int slot;
293 int array;
294 struct imsm_update_activate_spare *next;
295};
296
54c2c1ea
DW
297struct disk_info {
298 __u8 serial[MAX_RAID_SERIAL_LEN];
299};
300
8273f55e
DW
301struct imsm_update_create_array {
302 enum imsm_update_type type;
8273f55e 303 int dev_idx;
6a3e913e 304 struct imsm_dev dev;
8273f55e
DW
305};
306
43dad3d6
DW
307struct imsm_update_add_disk {
308 enum imsm_update_type type;
309};
310
cdddbdbc
DW
311static struct supertype *match_metadata_desc_imsm(char *arg)
312{
313 struct supertype *st;
314
315 if (strcmp(arg, "imsm") != 0 &&
316 strcmp(arg, "default") != 0
317 )
318 return NULL;
319
320 st = malloc(sizeof(*st));
ef609477 321 memset(st, 0, sizeof(*st));
cdddbdbc
DW
322 st->ss = &super_imsm;
323 st->max_devs = IMSM_MAX_DEVICES;
324 st->minor_version = 0;
325 st->sb = NULL;
326 return st;
327}
328
0e600426 329#ifndef MDASSEMBLE
cdddbdbc
DW
330static __u8 *get_imsm_version(struct imsm_super *mpb)
331{
332 return &mpb->sig[MPB_SIG_LEN];
333}
0e600426 334#endif
cdddbdbc 335
949c47a0
DW
336/* retrieve a disk directly from the anchor when the anchor is known to be
337 * up-to-date, currently only at load time
338 */
339static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
cdddbdbc 340{
949c47a0 341 if (index >= mpb->num_disks)
cdddbdbc
DW
342 return NULL;
343 return &mpb->disk[index];
344}
345
0e600426 346#ifndef MDASSEMBLE
b9f594fe 347/* retrieve a disk from the parsed metadata */
949c47a0
DW
348static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
349{
b9f594fe
DW
350 struct dl *d;
351
352 for (d = super->disks; d; d = d->next)
353 if (d->index == index)
354 return &d->disk;
355
356 return NULL;
949c47a0 357}
0e600426 358#endif
949c47a0
DW
359
360/* generate a checksum directly from the anchor when the anchor is known to be
361 * up-to-date, currently only at load or write_super after coalescing
362 */
363static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
cdddbdbc
DW
364{
365 __u32 end = mpb->mpb_size / sizeof(end);
366 __u32 *p = (__u32 *) mpb;
367 __u32 sum = 0;
368
97f734fd
N
369 while (end--) {
370 sum += __le32_to_cpu(*p);
371 p++;
372 }
cdddbdbc
DW
373
374 return sum - __le32_to_cpu(mpb->check_sum);
375}
376
a965f303
DW
377static size_t sizeof_imsm_map(struct imsm_map *map)
378{
379 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
380}
381
382struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
cdddbdbc 383{
a965f303
DW
384 struct imsm_map *map = &dev->vol.map[0];
385
386 if (second_map && !dev->vol.migr_state)
387 return NULL;
388 else if (second_map) {
389 void *ptr = map;
390
391 return ptr + sizeof_imsm_map(map);
392 } else
393 return map;
394
395}
cdddbdbc 396
3393c6af
DW
397/* return the size of the device.
398 * migr_state increases the returned size if map[0] were to be duplicated
399 */
400static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
a965f303
DW
401{
402 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
403 sizeof_imsm_map(get_imsm_map(dev, 0));
cdddbdbc
DW
404
405 /* migrating means an additional map */
a965f303
DW
406 if (dev->vol.migr_state)
407 size += sizeof_imsm_map(get_imsm_map(dev, 1));
3393c6af
DW
408 else if (migr_state)
409 size += sizeof_imsm_map(get_imsm_map(dev, 0));
cdddbdbc
DW
410
411 return size;
412}
413
54c2c1ea
DW
414#ifndef MDASSEMBLE
415/* retrieve disk serial number list from a metadata update */
416static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
417{
418 void *u = update;
419 struct disk_info *inf;
420
421 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
422 sizeof_imsm_dev(&update->dev, 0);
423
424 return inf;
425}
426#endif
427
949c47a0 428static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
cdddbdbc
DW
429{
430 int offset;
431 int i;
432 void *_mpb = mpb;
433
949c47a0 434 if (index >= mpb->num_raid_devs)
cdddbdbc
DW
435 return NULL;
436
437 /* devices start after all disks */
438 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
439
440 for (i = 0; i <= index; i++)
441 if (i == index)
442 return _mpb + offset;
443 else
3393c6af 444 offset += sizeof_imsm_dev(_mpb + offset, 0);
cdddbdbc
DW
445
446 return NULL;
447}
448
949c47a0
DW
449static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
450{
ba2de7ba
DW
451 struct intel_dev *dv;
452
949c47a0
DW
453 if (index >= super->anchor->num_raid_devs)
454 return NULL;
ba2de7ba
DW
455 for (dv = super->devlist; dv; dv = dv->next)
456 if (dv->index == index)
457 return dv->dev;
458 return NULL;
949c47a0
DW
459}
460
7eef0453
DW
461static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev, int slot)
462{
463 struct imsm_map *map;
464
465 if (dev->vol.migr_state)
7eef0453 466 map = get_imsm_map(dev, 1);
fb9bf0d3
DW
467 else
468 map = get_imsm_map(dev, 0);
7eef0453 469
ff077194
DW
470 /* top byte identifies disk under rebuild */
471 return __le32_to_cpu(map->disk_ord_tbl[slot]);
472}
473
474#define ord_to_idx(ord) (((ord) << 8) >> 8)
475static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot)
476{
477 __u32 ord = get_imsm_ord_tbl_ent(dev, slot);
478
479 return ord_to_idx(ord);
7eef0453
DW
480}
481
be73972f
DW
482static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
483{
484 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
485}
486
620b1713
DW
487static int get_imsm_disk_slot(struct imsm_map *map, int idx)
488{
489 int slot;
490 __u32 ord;
491
492 for (slot = 0; slot < map->num_members; slot++) {
493 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
494 if (ord_to_idx(ord) == idx)
495 return slot;
496 }
497
498 return -1;
499}
500
cdddbdbc
DW
501static int get_imsm_raid_level(struct imsm_map *map)
502{
503 if (map->raid_level == 1) {
504 if (map->num_members == 2)
505 return 1;
506 else
507 return 10;
508 }
509
510 return map->raid_level;
511}
512
c2c087e6
DW
513static int cmp_extent(const void *av, const void *bv)
514{
515 const struct extent *a = av;
516 const struct extent *b = bv;
517 if (a->start < b->start)
518 return -1;
519 if (a->start > b->start)
520 return 1;
521 return 0;
522}
523
0dcecb2e 524static int count_memberships(struct dl *dl, struct intel_super *super)
c2c087e6 525{
c2c087e6 526 int memberships = 0;
620b1713 527 int i;
c2c087e6 528
949c47a0
DW
529 for (i = 0; i < super->anchor->num_raid_devs; i++) {
530 struct imsm_dev *dev = get_imsm_dev(super, i);
a965f303 531 struct imsm_map *map = get_imsm_map(dev, 0);
c2c087e6 532
620b1713
DW
533 if (get_imsm_disk_slot(map, dl->index) >= 0)
534 memberships++;
c2c087e6 535 }
0dcecb2e
DW
536
537 return memberships;
538}
539
540static struct extent *get_extents(struct intel_super *super, struct dl *dl)
541{
542 /* find a list of used extents on the given physical device */
543 struct extent *rv, *e;
620b1713 544 int i;
0dcecb2e
DW
545 int memberships = count_memberships(dl, super);
546 __u32 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
547
c2c087e6
DW
548 rv = malloc(sizeof(struct extent) * (memberships + 1));
549 if (!rv)
550 return NULL;
551 e = rv;
552
949c47a0
DW
553 for (i = 0; i < super->anchor->num_raid_devs; i++) {
554 struct imsm_dev *dev = get_imsm_dev(super, i);
a965f303 555 struct imsm_map *map = get_imsm_map(dev, 0);
c2c087e6 556
620b1713
DW
557 if (get_imsm_disk_slot(map, dl->index) >= 0) {
558 e->start = __le32_to_cpu(map->pba_of_lba0);
559 e->size = __le32_to_cpu(map->blocks_per_member);
560 e++;
c2c087e6
DW
561 }
562 }
563 qsort(rv, memberships, sizeof(*rv), cmp_extent);
564
14e8215b
DW
565 /* determine the start of the metadata
566 * when no raid devices are defined use the default
567 * ...otherwise allow the metadata to truncate the value
568 * as is the case with older versions of imsm
569 */
570 if (memberships) {
571 struct extent *last = &rv[memberships - 1];
572 __u32 remainder;
573
574 remainder = __le32_to_cpu(dl->disk.total_blocks) -
575 (last->start + last->size);
dda5855f
DW
576 /* round down to 1k block to satisfy precision of the kernel
577 * 'size' interface
578 */
579 remainder &= ~1UL;
580 /* make sure remainder is still sane */
581 if (remainder < ROUND_UP(super->len, 512) >> 9)
582 remainder = ROUND_UP(super->len, 512) >> 9;
14e8215b
DW
583 if (reservation > remainder)
584 reservation = remainder;
585 }
586 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
c2c087e6
DW
587 e->size = 0;
588 return rv;
589}
590
14e8215b
DW
591/* try to determine how much space is reserved for metadata from
592 * the last get_extents() entry, otherwise fallback to the
593 * default
594 */
595static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
596{
597 struct extent *e;
598 int i;
599 __u32 rv;
600
601 /* for spares just return a minimal reservation which will grow
602 * once the spare is picked up by an array
603 */
604 if (dl->index == -1)
605 return MPB_SECTOR_CNT;
606
607 e = get_extents(super, dl);
608 if (!e)
609 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
610
611 /* scroll to last entry */
612 for (i = 0; e[i].size; i++)
613 continue;
614
615 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
616
617 free(e);
618
619 return rv;
620}
621
622#ifndef MDASSEMBLE
25ed7e59
DW
623static int is_spare(struct imsm_disk *disk)
624{
625 return (disk->status & SPARE_DISK) == SPARE_DISK;
626}
627
628static int is_configured(struct imsm_disk *disk)
629{
630 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
631}
632
633static int is_failed(struct imsm_disk *disk)
634{
635 return (disk->status & FAILED_DISK) == FAILED_DISK;
636}
637
44470971 638static void print_imsm_dev(struct imsm_dev *dev, char *uuid, int disk_idx)
cdddbdbc
DW
639{
640 __u64 sz;
641 int slot;
a965f303 642 struct imsm_map *map = get_imsm_map(dev, 0);
b10b37b8 643 __u32 ord;
cdddbdbc
DW
644
645 printf("\n");
1e7bc0ed 646 printf("[%.16s]:\n", dev->volume);
44470971 647 printf(" UUID : %s\n", uuid);
cdddbdbc
DW
648 printf(" RAID Level : %d\n", get_imsm_raid_level(map));
649 printf(" Members : %d\n", map->num_members);
620b1713
DW
650 slot = get_imsm_disk_slot(map, disk_idx);
651 if (slot >= 0) {
b10b37b8
DW
652 ord = get_imsm_ord_tbl_ent(dev, slot);
653 printf(" This Slot : %d%s\n", slot,
654 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
655 } else
cdddbdbc
DW
656 printf(" This Slot : ?\n");
657 sz = __le32_to_cpu(dev->size_high);
658 sz <<= 32;
659 sz += __le32_to_cpu(dev->size_low);
660 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
661 human_size(sz * 512));
662 sz = __le32_to_cpu(map->blocks_per_member);
663 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
664 human_size(sz * 512));
665 printf(" Sector Offset : %u\n",
666 __le32_to_cpu(map->pba_of_lba0));
667 printf(" Num Stripes : %u\n",
668 __le32_to_cpu(map->num_data_stripes));
669 printf(" Chunk Size : %u KiB\n",
670 __le16_to_cpu(map->blocks_per_strip) / 2);
671 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
1484e727
DW
672 printf(" Migrate State : %s", dev->vol.migr_state ? "migrating" : "idle\n");
673 if (dev->vol.migr_state) {
674 if (migr_type(dev) == MIGR_INIT)
675 printf(": initializing\n");
676 else if (migr_type(dev) == MIGR_REBUILD)
677 printf(": rebuilding\n");
678 else if (migr_type(dev) == MIGR_VERIFY)
679 printf(": check\n");
680 else if (migr_type(dev) == MIGR_GEN_MIGR)
681 printf(": general migration\n");
682 else if (migr_type(dev) == MIGR_STATE_CHANGE)
683 printf(": state change\n");
684 else if (migr_type(dev) == MIGR_REPAIR)
685 printf(": repair\n");
686 else
687 printf(": <unknown:%d>\n", migr_type(dev));
688 }
3393c6af
DW
689 printf(" Map State : %s", map_state_str[map->map_state]);
690 if (dev->vol.migr_state) {
691 struct imsm_map *map = get_imsm_map(dev, 1);
b10b37b8 692 printf(" <-- %s", map_state_str[map->map_state]);
3393c6af
DW
693 }
694 printf("\n");
cdddbdbc 695 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
cdddbdbc
DW
696}
697
14e8215b 698static void print_imsm_disk(struct imsm_super *mpb, int index, __u32 reserved)
cdddbdbc 699{
949c47a0 700 struct imsm_disk *disk = __get_imsm_disk(mpb, index);
1f24f035 701 char str[MAX_RAID_SERIAL_LEN + 1];
cdddbdbc
DW
702 __u64 sz;
703
e9d82038
DW
704 if (index < 0)
705 return;
706
cdddbdbc 707 printf("\n");
1f24f035 708 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
cdddbdbc 709 printf(" Disk%02d Serial : %s\n", index, str);
25ed7e59
DW
710 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
711 is_configured(disk) ? " active" : "",
712 is_failed(disk) ? " failed" : "");
cdddbdbc 713 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
14e8215b 714 sz = __le32_to_cpu(disk->total_blocks) - reserved;
cdddbdbc
DW
715 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
716 human_size(sz * 512));
717}
718
44470971
DW
719static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info);
720
cdddbdbc
DW
721static void examine_super_imsm(struct supertype *st, char *homehost)
722{
723 struct intel_super *super = st->sb;
949c47a0 724 struct imsm_super *mpb = super->anchor;
cdddbdbc
DW
725 char str[MAX_SIGNATURE_LENGTH];
726 int i;
27fd6274
DW
727 struct mdinfo info;
728 char nbuf[64];
cdddbdbc 729 __u32 sum;
14e8215b 730 __u32 reserved = imsm_reserved_sectors(super, super->disks);
cdddbdbc 731
27fd6274 732
cdddbdbc
DW
733 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
734 printf(" Magic : %s\n", str);
735 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
736 printf(" Version : %s\n", get_imsm_version(mpb));
148acb7b 737 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
cdddbdbc
DW
738 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
739 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
27fd6274 740 getinfo_super_imsm(st, &info);
ae2bfd4e 741 fname_from_uuid(st, &info, nbuf, ':');
27fd6274 742 printf(" UUID : %s\n", nbuf + 5);
cdddbdbc
DW
743 sum = __le32_to_cpu(mpb->check_sum);
744 printf(" Checksum : %08x %s\n", sum,
949c47a0 745 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
87eb16df 746 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
cdddbdbc
DW
747 printf(" Disks : %d\n", mpb->num_disks);
748 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
14e8215b 749 print_imsm_disk(mpb, super->disks->index, reserved);
604b746f
JD
750 if (super->bbm_log) {
751 struct bbm_log *log = super->bbm_log;
752
753 printf("\n");
754 printf("Bad Block Management Log:\n");
755 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
756 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
757 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
758 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
13a3b65d
N
759 printf(" First Spare : %llx\n",
760 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
604b746f 761 }
44470971
DW
762 for (i = 0; i < mpb->num_raid_devs; i++) {
763 struct mdinfo info;
764 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
765
766 super->current_vol = i;
767 getinfo_super_imsm(st, &info);
ae2bfd4e 768 fname_from_uuid(st, &info, nbuf, ':');
44470971
DW
769 print_imsm_dev(dev, nbuf + 5, super->disks->index);
770 }
cdddbdbc
DW
771 for (i = 0; i < mpb->num_disks; i++) {
772 if (i == super->disks->index)
773 continue;
14e8215b 774 print_imsm_disk(mpb, i, reserved);
cdddbdbc
DW
775 }
776}
777
061f2c6a 778static void brief_examine_super_imsm(struct supertype *st, int verbose)
cdddbdbc 779{
27fd6274 780 /* We just write a generic IMSM ARRAY entry */
ff54de6e
N
781 struct mdinfo info;
782 char nbuf[64];
1e7bc0ed 783 struct intel_super *super = st->sb;
1e7bc0ed 784
0d5a423f
DW
785 if (!super->anchor->num_raid_devs) {
786 printf("ARRAY metadata=imsm\n");
1e7bc0ed 787 return;
0d5a423f 788 }
ff54de6e 789
4737ae25
N
790 getinfo_super_imsm(st, &info);
791 fname_from_uuid(st, &info, nbuf, ':');
792 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
793}
794
795static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
796{
797 /* We just write a generic IMSM ARRAY entry */
798 struct mdinfo info;
799 char nbuf[64];
800 char nbuf1[64];
801 struct intel_super *super = st->sb;
802 int i;
803
804 if (!super->anchor->num_raid_devs)
805 return;
806
ff54de6e 807 getinfo_super_imsm(st, &info);
ae2bfd4e 808 fname_from_uuid(st, &info, nbuf, ':');
1e7bc0ed
DW
809 for (i = 0; i < super->anchor->num_raid_devs; i++) {
810 struct imsm_dev *dev = get_imsm_dev(super, i);
811
812 super->current_vol = i;
813 getinfo_super_imsm(st, &info);
ae2bfd4e 814 fname_from_uuid(st, &info, nbuf1, ':');
1124b3cf 815 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
cf8de691 816 dev->volume, nbuf + 5, i, nbuf1 + 5);
1e7bc0ed 817 }
cdddbdbc
DW
818}
819
9d84c8ea
DW
820static void export_examine_super_imsm(struct supertype *st)
821{
822 struct intel_super *super = st->sb;
823 struct imsm_super *mpb = super->anchor;
824 struct mdinfo info;
825 char nbuf[64];
826
827 getinfo_super_imsm(st, &info);
828 fname_from_uuid(st, &info, nbuf, ':');
829 printf("MD_METADATA=imsm\n");
830 printf("MD_LEVEL=container\n");
831 printf("MD_UUID=%s\n", nbuf+5);
832 printf("MD_DEVICES=%u\n", mpb->num_disks);
833}
834
cdddbdbc
DW
835static void detail_super_imsm(struct supertype *st, char *homehost)
836{
3ebe00a1
DW
837 struct mdinfo info;
838 char nbuf[64];
839
840 getinfo_super_imsm(st, &info);
ae2bfd4e 841 fname_from_uuid(st, &info, nbuf, ':');
3ebe00a1 842 printf("\n UUID : %s\n", nbuf + 5);
cdddbdbc
DW
843}
844
845static void brief_detail_super_imsm(struct supertype *st)
846{
ff54de6e
N
847 struct mdinfo info;
848 char nbuf[64];
849 getinfo_super_imsm(st, &info);
ae2bfd4e 850 fname_from_uuid(st, &info, nbuf, ':');
ff54de6e 851 printf(" UUID=%s", nbuf + 5);
cdddbdbc 852}
d665cc31
DW
853
854static int imsm_read_serial(int fd, char *devname, __u8 *serial);
855static void fd2devname(int fd, char *name);
856
857static int imsm_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
858{
859 /* dump an unsorted list of devices attached to ahci, as well as
860 * non-connected ports
861 */
862 int hba_len = strlen(hba_path) + 1;
863 struct dirent *ent;
864 DIR *dir;
865 char *path = NULL;
866 int err = 0;
867 unsigned long port_mask = (1 << port_count) - 1;
868
869 if (port_count > sizeof(port_mask) * 8) {
870 if (verbose)
871 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
872 return 2;
873 }
874
875 /* scroll through /sys/dev/block looking for devices attached to
876 * this hba
877 */
878 dir = opendir("/sys/dev/block");
879 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
880 int fd;
881 char model[64];
882 char vendor[64];
883 char buf[1024];
884 int major, minor;
885 char *device;
886 char *c;
887 int port;
888 int type;
889
890 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
891 continue;
892 path = devt_to_devpath(makedev(major, minor));
893 if (!path)
894 continue;
895 if (!path_attached_to_hba(path, hba_path)) {
896 free(path);
897 path = NULL;
898 continue;
899 }
900
901 /* retrieve the scsi device type */
902 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
903 if (verbose)
904 fprintf(stderr, Name ": failed to allocate 'device'\n");
905 err = 2;
906 break;
907 }
908 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
909 if (load_sys(device, buf) != 0) {
910 if (verbose)
911 fprintf(stderr, Name ": failed to read device type for %s\n",
912 path);
913 err = 2;
914 free(device);
915 break;
916 }
917 type = strtoul(buf, NULL, 10);
918
919 /* if it's not a disk print the vendor and model */
920 if (!(type == 0 || type == 7 || type == 14)) {
921 vendor[0] = '\0';
922 model[0] = '\0';
923 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
924 if (load_sys(device, buf) == 0) {
925 strncpy(vendor, buf, sizeof(vendor));
926 vendor[sizeof(vendor) - 1] = '\0';
927 c = (char *) &vendor[sizeof(vendor) - 1];
928 while (isspace(*c) || *c == '\0')
929 *c-- = '\0';
930
931 }
932 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
933 if (load_sys(device, buf) == 0) {
934 strncpy(model, buf, sizeof(model));
935 model[sizeof(model) - 1] = '\0';
936 c = (char *) &model[sizeof(model) - 1];
937 while (isspace(*c) || *c == '\0')
938 *c-- = '\0';
939 }
940
941 if (vendor[0] && model[0])
942 sprintf(buf, "%.64s %.64s", vendor, model);
943 else
944 switch (type) { /* numbers from hald/linux/device.c */
945 case 1: sprintf(buf, "tape"); break;
946 case 2: sprintf(buf, "printer"); break;
947 case 3: sprintf(buf, "processor"); break;
948 case 4:
949 case 5: sprintf(buf, "cdrom"); break;
950 case 6: sprintf(buf, "scanner"); break;
951 case 8: sprintf(buf, "media_changer"); break;
952 case 9: sprintf(buf, "comm"); break;
953 case 12: sprintf(buf, "raid"); break;
954 default: sprintf(buf, "unknown");
955 }
956 } else
957 buf[0] = '\0';
958 free(device);
959
960 /* chop device path to 'host%d' and calculate the port number */
961 c = strchr(&path[hba_len], '/');
962 *c = '\0';
963 if (sscanf(&path[hba_len], "host%d", &port) == 1)
964 port -= host_base;
965 else {
966 if (verbose) {
967 *c = '/'; /* repair the full string */
968 fprintf(stderr, Name ": failed to determine port number for %s\n",
969 path);
970 }
971 err = 2;
972 break;
973 }
974
975 /* mark this port as used */
976 port_mask &= ~(1 << port);
977
978 /* print out the device information */
979 if (buf[0]) {
980 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
981 continue;
982 }
983
984 fd = dev_open(ent->d_name, O_RDONLY);
985 if (fd < 0)
986 printf(" Port%d : - disk info unavailable -\n", port);
987 else {
988 fd2devname(fd, buf);
989 printf(" Port%d : %s", port, buf);
990 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
991 printf(" (%s)\n", buf);
992 else
993 printf("()\n");
994 }
995 close(fd);
996 free(path);
997 path = NULL;
998 }
999 if (path)
1000 free(path);
1001 if (dir)
1002 closedir(dir);
1003 if (err == 0) {
1004 int i;
1005
1006 for (i = 0; i < port_count; i++)
1007 if (port_mask & (1 << i))
1008 printf(" Port%d : - no device attached -\n", i);
1009 }
1010
1011 return err;
1012}
1013
5615172f 1014static int detail_platform_imsm(int verbose, int enumerate_only)
d665cc31
DW
1015{
1016 /* There are two components to imsm platform support, the ahci SATA
1017 * controller and the option-rom. To find the SATA controller we
1018 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1019 * controller with the Intel vendor id is present. This approach
1020 * allows mdadm to leverage the kernel's ahci detection logic, with the
1021 * caveat that if ahci.ko is not loaded mdadm will not be able to
1022 * detect platform raid capabilities. The option-rom resides in a
1023 * platform "Adapter ROM". We scan for its signature to retrieve the
1024 * platform capabilities. If raid support is disabled in the BIOS the
1025 * option-rom capability structure will not be available.
1026 */
1027 const struct imsm_orom *orom;
1028 struct sys_dev *list, *hba;
1029 DIR *dir;
1030 struct dirent *ent;
1031 const char *hba_path;
1032 int host_base = 0;
1033 int port_count = 0;
1034
5615172f
DW
1035 if (enumerate_only) {
1036 if (check_env("IMSM_NO_PLATFORM") || find_imsm_orom())
1037 return 0;
1038 return 2;
1039 }
1040
d665cc31
DW
1041 list = find_driver_devices("pci", "ahci");
1042 for (hba = list; hba; hba = hba->next)
1043 if (devpath_to_vendor(hba->path) == 0x8086)
1044 break;
1045
1046 if (!hba) {
1047 if (verbose)
1048 fprintf(stderr, Name ": unable to find active ahci controller\n");
1049 free_sys_dev(&list);
1050 return 2;
1051 } else if (verbose)
1052 fprintf(stderr, Name ": found Intel SATA AHCI Controller\n");
1053 hba_path = hba->path;
1054 hba->path = NULL;
1055 free_sys_dev(&list);
1056
1057 orom = find_imsm_orom();
1058 if (!orom) {
1059 if (verbose)
1060 fprintf(stderr, Name ": imsm option-rom not found\n");
1061 return 2;
1062 }
1063
1064 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1065 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1066 orom->hotfix_ver, orom->build);
1067 printf(" RAID Levels :%s%s%s%s%s\n",
1068 imsm_orom_has_raid0(orom) ? " raid0" : "",
1069 imsm_orom_has_raid1(orom) ? " raid1" : "",
1070 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1071 imsm_orom_has_raid10(orom) ? " raid10" : "",
1072 imsm_orom_has_raid5(orom) ? " raid5" : "");
8be094f0
DW
1073 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1074 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1075 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1076 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1077 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1078 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1079 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1080 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1081 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1082 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1083 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1084 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1085 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1086 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1087 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1088 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1089 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
d665cc31
DW
1090 printf(" Max Disks : %d\n", orom->tds);
1091 printf(" Max Volumes : %d\n", orom->vpa);
1092 printf(" I/O Controller : %s\n", hba_path);
1093
1094 /* find the smallest scsi host number to determine a port number base */
1095 dir = opendir(hba_path);
1096 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1097 int host;
1098
1099 if (sscanf(ent->d_name, "host%d", &host) != 1)
1100 continue;
1101 if (port_count == 0)
1102 host_base = host;
1103 else if (host < host_base)
1104 host_base = host;
1105
1106 if (host + 1 > port_count + host_base)
1107 port_count = host + 1 - host_base;
1108
1109 }
1110 if (dir)
1111 closedir(dir);
1112
1113 if (!port_count || imsm_enumerate_ports(hba_path, port_count,
1114 host_base, verbose) != 0) {
1115 if (verbose)
1116 fprintf(stderr, Name ": failed to enumerate ports\n");
1117 return 2;
1118 }
1119
1120 return 0;
1121}
cdddbdbc
DW
1122#endif
1123
1124static int match_home_imsm(struct supertype *st, char *homehost)
1125{
5115ca67
DW
1126 /* the imsm metadata format does not specify any host
1127 * identification information. We return -1 since we can never
1128 * confirm nor deny whether a given array is "meant" for this
148acb7b 1129 * host. We rely on compare_super and the 'family_num' fields to
5115ca67
DW
1130 * exclude member disks that do not belong, and we rely on
1131 * mdadm.conf to specify the arrays that should be assembled.
1132 * Auto-assembly may still pick up "foreign" arrays.
1133 */
cdddbdbc 1134
9362c1c8 1135 return -1;
cdddbdbc
DW
1136}
1137
1138static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1139{
51006d85
N
1140 /* The uuid returned here is used for:
1141 * uuid to put into bitmap file (Create, Grow)
1142 * uuid for backup header when saving critical section (Grow)
1143 * comparing uuids when re-adding a device into an array
1144 * In these cases the uuid required is that of the data-array,
1145 * not the device-set.
1146 * uuid to recognise same set when adding a missing device back
1147 * to an array. This is a uuid for the device-set.
1148 *
1149 * For each of these we can make do with a truncated
1150 * or hashed uuid rather than the original, as long as
1151 * everyone agrees.
1152 * In each case the uuid required is that of the data-array,
1153 * not the device-set.
43dad3d6 1154 */
51006d85
N
1155 /* imsm does not track uuid's so we synthesis one using sha1 on
1156 * - The signature (Which is constant for all imsm array, but no matter)
148acb7b 1157 * - the orig_family_num of the container
51006d85
N
1158 * - the index number of the volume
1159 * - the 'serial' number of the volume.
1160 * Hopefully these are all constant.
1161 */
1162 struct intel_super *super = st->sb;
43dad3d6 1163
51006d85
N
1164 char buf[20];
1165 struct sha1_ctx ctx;
1166 struct imsm_dev *dev = NULL;
148acb7b 1167 __u32 family_num;
51006d85 1168
148acb7b
DW
1169 /* some mdadm versions failed to set ->orig_family_num, in which
1170 * case fall back to ->family_num. orig_family_num will be
1171 * fixed up with the first metadata update.
1172 */
1173 family_num = super->anchor->orig_family_num;
1174 if (family_num == 0)
1175 family_num = super->anchor->family_num;
51006d85 1176 sha1_init_ctx(&ctx);
92bd8f8d 1177 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
148acb7b 1178 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
51006d85
N
1179 if (super->current_vol >= 0)
1180 dev = get_imsm_dev(super, super->current_vol);
1181 if (dev) {
1182 __u32 vol = super->current_vol;
1183 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1184 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1185 }
1186 sha1_finish_ctx(&ctx, buf);
1187 memcpy(uuid, buf, 4*4);
cdddbdbc
DW
1188}
1189
0d481d37 1190#if 0
4f5bc454
DW
1191static void
1192get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
cdddbdbc 1193{
cdddbdbc
DW
1194 __u8 *v = get_imsm_version(mpb);
1195 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1196 char major[] = { 0, 0, 0 };
1197 char minor[] = { 0 ,0, 0 };
1198 char patch[] = { 0, 0, 0 };
1199 char *ver_parse[] = { major, minor, patch };
1200 int i, j;
1201
1202 i = j = 0;
1203 while (*v != '\0' && v < end) {
1204 if (*v != '.' && j < 2)
1205 ver_parse[i][j++] = *v;
1206 else {
1207 i++;
1208 j = 0;
1209 }
1210 v++;
1211 }
1212
4f5bc454
DW
1213 *m = strtol(minor, NULL, 0);
1214 *p = strtol(patch, NULL, 0);
1215}
0d481d37 1216#endif
4f5bc454 1217
c2c087e6
DW
1218static int imsm_level_to_layout(int level)
1219{
1220 switch (level) {
1221 case 0:
1222 case 1:
1223 return 0;
1224 case 5:
1225 case 6:
a380c027 1226 return ALGORITHM_LEFT_ASYMMETRIC;
c2c087e6 1227 case 10:
c92a2527 1228 return 0x102;
c2c087e6 1229 }
a18a888e 1230 return UnSet;
c2c087e6
DW
1231}
1232
bf5a934a
DW
1233static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info)
1234{
1235 struct intel_super *super = st->sb;
949c47a0 1236 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
a965f303 1237 struct imsm_map *map = get_imsm_map(dev, 0);
efb30e7f 1238 struct dl *dl;
bf5a934a 1239
efb30e7f
DW
1240 for (dl = super->disks; dl; dl = dl->next)
1241 if (dl->raiddisk == info->disk.raid_disk)
1242 break;
bf5a934a
DW
1243 info->container_member = super->current_vol;
1244 info->array.raid_disks = map->num_members;
1245 info->array.level = get_imsm_raid_level(map);
1246 info->array.layout = imsm_level_to_layout(info->array.level);
1247 info->array.md_minor = -1;
1248 info->array.ctime = 0;
1249 info->array.utime = 0;
301406c9
DW
1250 info->array.chunk_size = __le16_to_cpu(map->blocks_per_strip) << 9;
1251 info->array.state = !dev->vol.dirty;
da9b4a62
DW
1252 info->custom_array_size = __le32_to_cpu(dev->size_high);
1253 info->custom_array_size <<= 32;
1254 info->custom_array_size |= __le32_to_cpu(dev->size_low);
301406c9
DW
1255
1256 info->disk.major = 0;
1257 info->disk.minor = 0;
efb30e7f
DW
1258 if (dl) {
1259 info->disk.major = dl->major;
1260 info->disk.minor = dl->minor;
1261 }
bf5a934a
DW
1262
1263 info->data_offset = __le32_to_cpu(map->pba_of_lba0);
1264 info->component_size = __le32_to_cpu(map->blocks_per_member);
301406c9 1265 memset(info->uuid, 0, sizeof(info->uuid));
bf5a934a 1266
f8f603f1 1267 if (map->map_state == IMSM_T_STATE_UNINITIALIZED || dev->vol.dirty)
301406c9 1268 info->resync_start = 0;
f8f603f1 1269 else if (dev->vol.migr_state)
da188789
DW
1270 /* FIXME add curr_migr_unit to resync_start conversion */
1271 info->resync_start = 0;
301406c9
DW
1272 else
1273 info->resync_start = ~0ULL;
1274
1275 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
1276 info->name[MAX_RAID_SERIAL_LEN] = 0;
bf5a934a 1277
f35f2525
N
1278 info->array.major_version = -1;
1279 info->array.minor_version = -2;
bf5a934a
DW
1280 sprintf(info->text_version, "/%s/%d",
1281 devnum2devname(st->container_dev),
1282 info->container_member);
a67dd8cc 1283 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
51006d85 1284 uuid_from_super_imsm(st, info->uuid);
bf5a934a
DW
1285}
1286
7a70e8aa
DW
1287/* check the config file to see if we can return a real uuid for this spare */
1288static void fixup_container_spare_uuid(struct mdinfo *inf)
1289{
1290 struct mddev_ident_s *array_list;
1291
1292 if (inf->array.level != LEVEL_CONTAINER ||
1293 memcmp(inf->uuid, uuid_match_any, sizeof(int[4])) != 0)
1294 return;
1295
1296 array_list = conf_get_ident(NULL);
1297
1298 for (; array_list; array_list = array_list->next) {
1299 if (array_list->uuid_set) {
1300 struct supertype *_sst; /* spare supertype */
1301 struct supertype *_cst; /* container supertype */
1302
1303 _cst = array_list->st;
7e8545e9
DW
1304 if (_cst)
1305 _sst = _cst->ss->match_metadata_desc(inf->text_version);
1306 else
1307 _sst = NULL;
1308
7a70e8aa
DW
1309 if (_sst) {
1310 memcpy(inf->uuid, array_list->uuid, sizeof(int[4]));
1311 free(_sst);
1312 break;
1313 }
1314 }
1315 }
1316}
bf5a934a 1317
4f5bc454
DW
1318static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info)
1319{
1320 struct intel_super *super = st->sb;
4f5bc454 1321 struct imsm_disk *disk;
4f5bc454 1322
bf5a934a
DW
1323 if (super->current_vol >= 0) {
1324 getinfo_super_imsm_volume(st, info);
1325 return;
1326 }
d23fe947
DW
1327
1328 /* Set raid_disks to zero so that Assemble will always pull in valid
1329 * spares
1330 */
1331 info->array.raid_disks = 0;
cdddbdbc
DW
1332 info->array.level = LEVEL_CONTAINER;
1333 info->array.layout = 0;
1334 info->array.md_minor = -1;
c2c087e6 1335 info->array.ctime = 0; /* N/A for imsm */
cdddbdbc
DW
1336 info->array.utime = 0;
1337 info->array.chunk_size = 0;
1338
1339 info->disk.major = 0;
1340 info->disk.minor = 0;
cdddbdbc 1341 info->disk.raid_disk = -1;
c2c087e6 1342 info->reshape_active = 0;
f35f2525
N
1343 info->array.major_version = -1;
1344 info->array.minor_version = -2;
c2c087e6 1345 strcpy(info->text_version, "imsm");
a67dd8cc 1346 info->safe_mode_delay = 0;
c2c087e6
DW
1347 info->disk.number = -1;
1348 info->disk.state = 0;
c5afc314 1349 info->name[0] = 0;
c2c087e6 1350
4a04ec6c 1351 if (super->disks) {
14e8215b
DW
1352 __u32 reserved = imsm_reserved_sectors(super, super->disks);
1353
b9f594fe 1354 disk = &super->disks->disk;
14e8215b
DW
1355 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
1356 info->component_size = reserved;
25ed7e59 1357 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
df474657
DW
1358 /* we don't change info->disk.raid_disk here because
1359 * this state will be finalized in mdmon after we have
1360 * found the 'most fresh' version of the metadata
1361 */
25ed7e59
DW
1362 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
1363 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
cdddbdbc 1364 }
a575e2a7
DW
1365
1366 /* only call uuid_from_super_imsm when this disk is part of a populated container,
1367 * ->compare_super may have updated the 'num_raid_devs' field for spares
1368 */
1369 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
36ba7d48 1370 uuid_from_super_imsm(st, info->uuid);
7a70e8aa 1371 else {
032e9e29 1372 memcpy(info->uuid, uuid_match_any, sizeof(int[4]));
7a70e8aa
DW
1373 fixup_container_spare_uuid(info);
1374 }
cdddbdbc
DW
1375}
1376
cdddbdbc
DW
1377static int update_super_imsm(struct supertype *st, struct mdinfo *info,
1378 char *update, char *devname, int verbose,
1379 int uuid_set, char *homehost)
1380{
f352c545
DW
1381 /* FIXME */
1382
1383 /* For 'assemble' and 'force' we need to return non-zero if any
1384 * change was made. For others, the return value is ignored.
1385 * Update options are:
1386 * force-one : This device looks a bit old but needs to be included,
1387 * update age info appropriately.
1388 * assemble: clear any 'faulty' flag to allow this device to
1389 * be assembled.
1390 * force-array: Array is degraded but being forced, mark it clean
1391 * if that will be needed to assemble it.
1392 *
1393 * newdev: not used ????
1394 * grow: Array has gained a new device - this is currently for
1395 * linear only
1396 * resync: mark as dirty so a resync will happen.
1397 * name: update the name - preserving the homehost
1398 *
1399 * Following are not relevant for this imsm:
1400 * sparc2.2 : update from old dodgey metadata
1401 * super-minor: change the preferred_minor number
1402 * summaries: update redundant counters.
1403 * uuid: Change the uuid of the array to match watch is given
1404 * homehost: update the recorded homehost
1405 * _reshape_progress: record new reshape_progress position.
1406 */
1407 int rv = 0;
1408 //struct intel_super *super = st->sb;
1409 //struct imsm_super *mpb = super->mpb;
1410
1411 if (strcmp(update, "grow") == 0) {
1412 }
1413 if (strcmp(update, "resync") == 0) {
1414 /* dev->vol.dirty = 1; */
1415 }
1416
1417 /* IMSM has no concept of UUID or homehost */
1418
1419 return rv;
cdddbdbc
DW
1420}
1421
c2c087e6 1422static size_t disks_to_mpb_size(int disks)
cdddbdbc 1423{
c2c087e6 1424 size_t size;
cdddbdbc 1425
c2c087e6
DW
1426 size = sizeof(struct imsm_super);
1427 size += (disks - 1) * sizeof(struct imsm_disk);
1428 size += 2 * sizeof(struct imsm_dev);
1429 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
1430 size += (4 - 2) * sizeof(struct imsm_map);
1431 /* 4 possible disk_ord_tbl's */
1432 size += 4 * (disks - 1) * sizeof(__u32);
1433
1434 return size;
1435}
1436
1437static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
1438{
1439 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
1440 return 0;
1441
1442 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
cdddbdbc
DW
1443}
1444
ba2de7ba
DW
1445static void free_devlist(struct intel_super *super)
1446{
1447 struct intel_dev *dv;
1448
1449 while (super->devlist) {
1450 dv = super->devlist->next;
1451 free(super->devlist->dev);
1452 free(super->devlist);
1453 super->devlist = dv;
1454 }
1455}
1456
1457static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
1458{
1459 memcpy(dest, src, sizeof_imsm_dev(src, 0));
1460}
1461
cdddbdbc
DW
1462static int compare_super_imsm(struct supertype *st, struct supertype *tst)
1463{
1464 /*
1465 * return:
1466 * 0 same, or first was empty, and second was copied
1467 * 1 second had wrong number
1468 * 2 wrong uuid
1469 * 3 wrong other info
1470 */
1471 struct intel_super *first = st->sb;
1472 struct intel_super *sec = tst->sb;
1473
1474 if (!first) {
1475 st->sb = tst->sb;
1476 tst->sb = NULL;
1477 return 0;
1478 }
1479
949c47a0 1480 if (memcmp(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH) != 0)
cdddbdbc 1481 return 3;
d23fe947
DW
1482
1483 /* if an anchor does not have num_raid_devs set then it is a free
1484 * floating spare
1485 */
1486 if (first->anchor->num_raid_devs > 0 &&
1487 sec->anchor->num_raid_devs > 0) {
a2b97981
DW
1488 /* Determine if these disks might ever have been
1489 * related. Further disambiguation can only take place
1490 * in load_super_imsm_all
1491 */
1492 __u32 first_family = first->anchor->orig_family_num;
1493 __u32 sec_family = sec->anchor->orig_family_num;
1494
1495 if (first_family == 0)
1496 first_family = first->anchor->family_num;
1497 if (sec_family == 0)
1498 sec_family = sec->anchor->family_num;
1499
1500 if (first_family != sec_family)
d23fe947 1501 return 3;
d23fe947 1502 }
cdddbdbc 1503
3e372e5a
DW
1504 /* if 'first' is a spare promote it to a populated mpb with sec's
1505 * family number
1506 */
1507 if (first->anchor->num_raid_devs == 0 &&
1508 sec->anchor->num_raid_devs > 0) {
78d30f94 1509 int i;
ba2de7ba
DW
1510 struct intel_dev *dv;
1511 struct imsm_dev *dev;
78d30f94
DW
1512
1513 /* we need to copy raid device info from sec if an allocation
1514 * fails here we don't associate the spare
1515 */
1516 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
ba2de7ba
DW
1517 dv = malloc(sizeof(*dv));
1518 if (!dv)
1519 break;
1520 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
1521 if (!dev) {
1522 free(dv);
1523 break;
78d30f94 1524 }
ba2de7ba
DW
1525 dv->dev = dev;
1526 dv->index = i;
1527 dv->next = first->devlist;
1528 first->devlist = dv;
78d30f94 1529 }
709743c5 1530 if (i < sec->anchor->num_raid_devs) {
ba2de7ba
DW
1531 /* allocation failure */
1532 free_devlist(first);
1533 fprintf(stderr, "imsm: failed to associate spare\n");
1534 return 3;
78d30f94 1535 }
3e372e5a 1536 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
148acb7b 1537 first->anchor->orig_family_num = sec->anchor->orig_family_num;
3e372e5a 1538 first->anchor->family_num = sec->anchor->family_num;
709743c5
DW
1539 for (i = 0; i < sec->anchor->num_raid_devs; i++)
1540 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
3e372e5a
DW
1541 }
1542
cdddbdbc
DW
1543 return 0;
1544}
1545
0030e8d6
DW
1546static void fd2devname(int fd, char *name)
1547{
1548 struct stat st;
1549 char path[256];
1550 char dname[100];
1551 char *nm;
1552 int rv;
1553
1554 name[0] = '\0';
1555 if (fstat(fd, &st) != 0)
1556 return;
1557 sprintf(path, "/sys/dev/block/%d:%d",
1558 major(st.st_rdev), minor(st.st_rdev));
1559
1560 rv = readlink(path, dname, sizeof(dname));
1561 if (rv <= 0)
1562 return;
1563
1564 dname[rv] = '\0';
1565 nm = strrchr(dname, '/');
1566 nm++;
1567 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
1568}
1569
cdddbdbc
DW
1570extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
1571
1572static int imsm_read_serial(int fd, char *devname,
1573 __u8 serial[MAX_RAID_SERIAL_LEN])
1574{
1575 unsigned char scsi_serial[255];
cdddbdbc
DW
1576 int rv;
1577 int rsp_len;
1f24f035 1578 int len;
316e2bf4
DW
1579 char *dest;
1580 char *src;
1581 char *rsp_buf;
1582 int i;
cdddbdbc
DW
1583
1584 memset(scsi_serial, 0, sizeof(scsi_serial));
cdddbdbc 1585
f9ba0ff1
DW
1586 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
1587
40ebbb9c 1588 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
f9ba0ff1
DW
1589 memset(serial, 0, MAX_RAID_SERIAL_LEN);
1590 fd2devname(fd, (char *) serial);
0030e8d6
DW
1591 return 0;
1592 }
1593
cdddbdbc
DW
1594 if (rv != 0) {
1595 if (devname)
1596 fprintf(stderr,
1597 Name ": Failed to retrieve serial for %s\n",
1598 devname);
1599 return rv;
1600 }
1601
1602 rsp_len = scsi_serial[3];
03cd4cc8
DW
1603 if (!rsp_len) {
1604 if (devname)
1605 fprintf(stderr,
1606 Name ": Failed to retrieve serial for %s\n",
1607 devname);
1608 return 2;
1609 }
1f24f035 1610 rsp_buf = (char *) &scsi_serial[4];
5c3db629 1611
316e2bf4
DW
1612 /* trim all whitespace and non-printable characters and convert
1613 * ':' to ';'
1614 */
1615 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
1616 src = &rsp_buf[i];
1617 if (*src > 0x20) {
1618 /* ':' is reserved for use in placeholder serial
1619 * numbers for missing disks
1620 */
1621 if (*src == ':')
1622 *dest++ = ';';
1623 else
1624 *dest++ = *src;
1625 }
1626 }
1627 len = dest - rsp_buf;
1628 dest = rsp_buf;
1629
1630 /* truncate leading characters */
1631 if (len > MAX_RAID_SERIAL_LEN) {
1632 dest += len - MAX_RAID_SERIAL_LEN;
1f24f035 1633 len = MAX_RAID_SERIAL_LEN;
316e2bf4 1634 }
5c3db629 1635
5c3db629 1636 memset(serial, 0, MAX_RAID_SERIAL_LEN);
316e2bf4 1637 memcpy(serial, dest, len);
cdddbdbc
DW
1638
1639 return 0;
1640}
1641
1f24f035
DW
1642static int serialcmp(__u8 *s1, __u8 *s2)
1643{
1644 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
1645}
1646
1647static void serialcpy(__u8 *dest, __u8 *src)
1648{
1649 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
1650}
1651
54c2c1ea
DW
1652static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
1653{
1654 struct dl *dl;
1655
1656 for (dl = super->disks; dl; dl = dl->next)
1657 if (serialcmp(dl->serial, serial) == 0)
1658 break;
1659
1660 return dl;
1661}
1662
a2b97981
DW
1663static struct imsm_disk *
1664__serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
1665{
1666 int i;
1667
1668 for (i = 0; i < mpb->num_disks; i++) {
1669 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
1670
1671 if (serialcmp(disk->serial, serial) == 0) {
1672 if (idx)
1673 *idx = i;
1674 return disk;
1675 }
1676 }
1677
1678 return NULL;
1679}
1680
cdddbdbc
DW
1681static int
1682load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
1683{
a2b97981 1684 struct imsm_disk *disk;
cdddbdbc
DW
1685 struct dl *dl;
1686 struct stat stb;
cdddbdbc 1687 int rv;
a2b97981 1688 char name[40];
d23fe947
DW
1689 __u8 serial[MAX_RAID_SERIAL_LEN];
1690
1691 rv = imsm_read_serial(fd, devname, serial);
1692
1693 if (rv != 0)
1694 return 2;
1695
a2b97981 1696 dl = calloc(1, sizeof(*dl));
b9f594fe 1697 if (!dl) {
cdddbdbc
DW
1698 if (devname)
1699 fprintf(stderr,
1700 Name ": failed to allocate disk buffer for %s\n",
1701 devname);
1702 return 2;
1703 }
cdddbdbc 1704
a2b97981
DW
1705 fstat(fd, &stb);
1706 dl->major = major(stb.st_rdev);
1707 dl->minor = minor(stb.st_rdev);
1708 dl->next = super->disks;
1709 dl->fd = keep_fd ? fd : -1;
1710 assert(super->disks == NULL);
1711 super->disks = dl;
1712 serialcpy(dl->serial, serial);
1713 dl->index = -2;
1714 dl->e = NULL;
1715 fd2devname(fd, name);
1716 if (devname)
1717 dl->devname = strdup(devname);
1718 else
1719 dl->devname = strdup(name);
cdddbdbc 1720
d23fe947 1721 /* look up this disk's index in the current anchor */
a2b97981
DW
1722 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
1723 if (disk) {
1724 dl->disk = *disk;
1725 /* only set index on disks that are a member of a
1726 * populated contianer, i.e. one with raid_devs
1727 */
1728 if (is_failed(&dl->disk))
3f6efecc 1729 dl->index = -2;
a2b97981
DW
1730 else if (is_spare(&dl->disk))
1731 dl->index = -1;
3f6efecc
DW
1732 }
1733
949c47a0
DW
1734 return 0;
1735}
1736
0e600426 1737#ifndef MDASSEMBLE
0c046afd
DW
1738/* When migrating map0 contains the 'destination' state while map1
1739 * contains the current state. When not migrating map0 contains the
1740 * current state. This routine assumes that map[0].map_state is set to
1741 * the current array state before being called.
1742 *
1743 * Migration is indicated by one of the following states
1744 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
e3bba0e0 1745 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
0c046afd 1746 * map1state=unitialized)
1484e727 1747 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
0c046afd 1748 * map1state=normal)
e3bba0e0 1749 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
0c046afd
DW
1750 * map1state=degraded)
1751 */
0556e1a2 1752static void migrate(struct imsm_dev *dev, __u8 to_state, int migr_type)
3393c6af 1753{
0c046afd 1754 struct imsm_map *dest;
3393c6af
DW
1755 struct imsm_map *src = get_imsm_map(dev, 0);
1756
0c046afd 1757 dev->vol.migr_state = 1;
1484e727 1758 set_migr_type(dev, migr_type);
f8f603f1 1759 dev->vol.curr_migr_unit = 0;
0c046afd
DW
1760 dest = get_imsm_map(dev, 1);
1761
0556e1a2 1762 /* duplicate and then set the target end state in map[0] */
3393c6af 1763 memcpy(dest, src, sizeof_imsm_map(src));
0556e1a2
DW
1764 if (migr_type == MIGR_REBUILD) {
1765 __u32 ord;
1766 int i;
1767
1768 for (i = 0; i < src->num_members; i++) {
1769 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
1770 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
1771 }
1772 }
1773
0c046afd 1774 src->map_state = to_state;
949c47a0 1775}
f8f603f1
DW
1776
1777static void end_migration(struct imsm_dev *dev, __u8 map_state)
1778{
1779 struct imsm_map *map = get_imsm_map(dev, 0);
0556e1a2
DW
1780 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
1781 int i;
1782
1783 /* merge any IMSM_ORD_REBUILD bits that were not successfully
1784 * completed in the last migration.
1785 *
1786 * FIXME add support for online capacity expansion and
1787 * raid-level-migration
1788 */
1789 for (i = 0; i < prev->num_members; i++)
1790 map->disk_ord_tbl[i] |= prev->disk_ord_tbl[i];
f8f603f1
DW
1791
1792 dev->vol.migr_state = 0;
1793 dev->vol.curr_migr_unit = 0;
1794 map->map_state = map_state;
1795}
0e600426 1796#endif
949c47a0
DW
1797
1798static int parse_raid_devices(struct intel_super *super)
1799{
1800 int i;
1801 struct imsm_dev *dev_new;
4d7b1503
DW
1802 size_t len, len_migr;
1803 size_t space_needed = 0;
1804 struct imsm_super *mpb = super->anchor;
949c47a0
DW
1805
1806 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1807 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
ba2de7ba 1808 struct intel_dev *dv;
949c47a0 1809
4d7b1503
DW
1810 len = sizeof_imsm_dev(dev_iter, 0);
1811 len_migr = sizeof_imsm_dev(dev_iter, 1);
1812 if (len_migr > len)
1813 space_needed += len_migr - len;
1814
ba2de7ba
DW
1815 dv = malloc(sizeof(*dv));
1816 if (!dv)
1817 return 1;
4d7b1503 1818 dev_new = malloc(len_migr);
ba2de7ba
DW
1819 if (!dev_new) {
1820 free(dv);
949c47a0 1821 return 1;
ba2de7ba 1822 }
949c47a0 1823 imsm_copy_dev(dev_new, dev_iter);
ba2de7ba
DW
1824 dv->dev = dev_new;
1825 dv->index = i;
1826 dv->next = super->devlist;
1827 super->devlist = dv;
949c47a0 1828 }
cdddbdbc 1829
4d7b1503
DW
1830 /* ensure that super->buf is large enough when all raid devices
1831 * are migrating
1832 */
1833 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
1834 void *buf;
1835
1836 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
1837 if (posix_memalign(&buf, 512, len) != 0)
1838 return 1;
1839
1f45a8ad
DW
1840 memcpy(buf, super->buf, super->len);
1841 memset(buf + super->len, 0, len - super->len);
4d7b1503
DW
1842 free(super->buf);
1843 super->buf = buf;
1844 super->len = len;
1845 }
1846
cdddbdbc
DW
1847 return 0;
1848}
1849
604b746f
JD
1850/* retrieve a pointer to the bbm log which starts after all raid devices */
1851struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
1852{
1853 void *ptr = NULL;
1854
1855 if (__le32_to_cpu(mpb->bbm_log_size)) {
1856 ptr = mpb;
1857 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
1858 }
1859
1860 return ptr;
1861}
1862
d23fe947 1863static void __free_imsm(struct intel_super *super, int free_disks);
9ca2c81c 1864
cdddbdbc
DW
1865/* load_imsm_mpb - read matrix metadata
1866 * allocates super->mpb to be freed by free_super
1867 */
1868static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
1869{
1870 unsigned long long dsize;
cdddbdbc
DW
1871 unsigned long long sectors;
1872 struct stat;
6416d527 1873 struct imsm_super *anchor;
cdddbdbc
DW
1874 __u32 check_sum;
1875
cdddbdbc
DW
1876 get_dev_size(fd, NULL, &dsize);
1877
1878 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
1879 if (devname)
1880 fprintf(stderr,
1881 Name ": Cannot seek to anchor block on %s: %s\n",
1882 devname, strerror(errno));
1883 return 1;
1884 }
1885
949c47a0 1886 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
ad97895e
DW
1887 if (devname)
1888 fprintf(stderr,
1889 Name ": Failed to allocate imsm anchor buffer"
1890 " on %s\n", devname);
1891 return 1;
1892 }
949c47a0 1893 if (read(fd, anchor, 512) != 512) {
cdddbdbc
DW
1894 if (devname)
1895 fprintf(stderr,
1896 Name ": Cannot read anchor block on %s: %s\n",
1897 devname, strerror(errno));
6416d527 1898 free(anchor);
cdddbdbc
DW
1899 return 1;
1900 }
1901
6416d527 1902 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
cdddbdbc
DW
1903 if (devname)
1904 fprintf(stderr,
1905 Name ": no IMSM anchor on %s\n", devname);
6416d527 1906 free(anchor);
cdddbdbc
DW
1907 return 2;
1908 }
1909
d23fe947 1910 __free_imsm(super, 0);
949c47a0
DW
1911 super->len = ROUND_UP(anchor->mpb_size, 512);
1912 if (posix_memalign(&super->buf, 512, super->len) != 0) {
cdddbdbc
DW
1913 if (devname)
1914 fprintf(stderr,
1915 Name ": unable to allocate %zu byte mpb buffer\n",
949c47a0 1916 super->len);
6416d527 1917 free(anchor);
cdddbdbc
DW
1918 return 2;
1919 }
949c47a0 1920 memcpy(super->buf, anchor, 512);
cdddbdbc 1921
6416d527
NB
1922 sectors = mpb_sectors(anchor) - 1;
1923 free(anchor);
949c47a0 1924 if (!sectors) {
ecf45690
DW
1925 check_sum = __gen_imsm_checksum(super->anchor);
1926 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
1927 if (devname)
1928 fprintf(stderr,
1929 Name ": IMSM checksum %x != %x on %s\n",
1930 check_sum,
1931 __le32_to_cpu(super->anchor->check_sum),
1932 devname);
1933 return 2;
1934 }
1935
a2b97981 1936 return 0;
949c47a0 1937 }
cdddbdbc
DW
1938
1939 /* read the extended mpb */
1940 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
1941 if (devname)
1942 fprintf(stderr,
1943 Name ": Cannot seek to extended mpb on %s: %s\n",
1944 devname, strerror(errno));
1945 return 1;
1946 }
1947
949c47a0 1948 if (read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
cdddbdbc
DW
1949 if (devname)
1950 fprintf(stderr,
1951 Name ": Cannot read extended mpb on %s: %s\n",
1952 devname, strerror(errno));
1953 return 2;
1954 }
1955
949c47a0
DW
1956 check_sum = __gen_imsm_checksum(super->anchor);
1957 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
cdddbdbc
DW
1958 if (devname)
1959 fprintf(stderr,
1960 Name ": IMSM checksum %x != %x on %s\n",
949c47a0 1961 check_sum, __le32_to_cpu(super->anchor->check_sum),
cdddbdbc 1962 devname);
db575f3b 1963 return 3;
cdddbdbc
DW
1964 }
1965
604b746f
JD
1966 /* FIXME the BBM log is disk specific so we cannot use this global
1967 * buffer for all disks. Ok for now since we only look at the global
1968 * bbm_log_size parameter to gate assembly
1969 */
1970 super->bbm_log = __get_imsm_bbm_log(super->anchor);
1971
a2b97981
DW
1972 return 0;
1973}
1974
1975static int
1976load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
1977{
1978 int err;
1979
1980 err = load_imsm_mpb(fd, super, devname);
1981 if (err)
1982 return err;
1983 err = load_imsm_disk(fd, super, devname, keep_fd);
1984 if (err)
1985 return err;
1986 err = parse_raid_devices(super);
4d7b1503 1987
a2b97981 1988 return err;
cdddbdbc
DW
1989}
1990
ae6aad82
DW
1991static void __free_imsm_disk(struct dl *d)
1992{
1993 if (d->fd >= 0)
1994 close(d->fd);
1995 if (d->devname)
1996 free(d->devname);
0dcecb2e
DW
1997 if (d->e)
1998 free(d->e);
ae6aad82
DW
1999 free(d);
2000
2001}
cdddbdbc
DW
2002static void free_imsm_disks(struct intel_super *super)
2003{
47ee5a45 2004 struct dl *d;
cdddbdbc 2005
47ee5a45
DW
2006 while (super->disks) {
2007 d = super->disks;
cdddbdbc 2008 super->disks = d->next;
ae6aad82 2009 __free_imsm_disk(d);
cdddbdbc 2010 }
47ee5a45
DW
2011 while (super->missing) {
2012 d = super->missing;
2013 super->missing = d->next;
2014 __free_imsm_disk(d);
2015 }
2016
cdddbdbc
DW
2017}
2018
9ca2c81c 2019/* free all the pieces hanging off of a super pointer */
d23fe947 2020static void __free_imsm(struct intel_super *super, int free_disks)
cdddbdbc 2021{
9ca2c81c 2022 if (super->buf) {
949c47a0 2023 free(super->buf);
9ca2c81c
DW
2024 super->buf = NULL;
2025 }
d23fe947
DW
2026 if (free_disks)
2027 free_imsm_disks(super);
ba2de7ba 2028 free_devlist(super);
88c32bb1
DW
2029 if (super->hba) {
2030 free((void *) super->hba);
2031 super->hba = NULL;
2032 }
cdddbdbc
DW
2033}
2034
9ca2c81c
DW
2035static void free_imsm(struct intel_super *super)
2036{
d23fe947 2037 __free_imsm(super, 1);
9ca2c81c
DW
2038 free(super);
2039}
cdddbdbc
DW
2040
2041static void free_super_imsm(struct supertype *st)
2042{
2043 struct intel_super *super = st->sb;
2044
2045 if (!super)
2046 return;
2047
2048 free_imsm(super);
2049 st->sb = NULL;
2050}
2051
c2c087e6
DW
2052static struct intel_super *alloc_super(int creating_imsm)
2053{
2054 struct intel_super *super = malloc(sizeof(*super));
2055
2056 if (super) {
2057 memset(super, 0, sizeof(*super));
2058 super->creating_imsm = creating_imsm;
bf5a934a 2059 super->current_vol = -1;
0dcecb2e 2060 super->create_offset = ~((__u32 ) 0);
88c32bb1
DW
2061 if (!check_env("IMSM_NO_PLATFORM"))
2062 super->orom = find_imsm_orom();
cceebc67 2063 if (super->orom && !check_env("IMSM_TEST_OROM")) {
88c32bb1
DW
2064 struct sys_dev *list, *ent;
2065
2066 /* find the first intel ahci controller */
2067 list = find_driver_devices("pci", "ahci");
2068 for (ent = list; ent; ent = ent->next)
2069 if (devpath_to_vendor(ent->path) == 0x8086)
2070 break;
2071 if (ent) {
2072 super->hba = ent->path;
2073 ent->path = NULL;
2074 }
2075 free_sys_dev(&list);
2076 }
c2c087e6
DW
2077 }
2078
2079 return super;
2080}
2081
cdddbdbc 2082#ifndef MDASSEMBLE
47ee5a45
DW
2083/* find_missing - helper routine for load_super_imsm_all that identifies
2084 * disks that have disappeared from the system. This routine relies on
2085 * the mpb being uptodate, which it is at load time.
2086 */
2087static int find_missing(struct intel_super *super)
2088{
2089 int i;
2090 struct imsm_super *mpb = super->anchor;
2091 struct dl *dl;
2092 struct imsm_disk *disk;
47ee5a45
DW
2093
2094 for (i = 0; i < mpb->num_disks; i++) {
2095 disk = __get_imsm_disk(mpb, i);
54c2c1ea 2096 dl = serial_to_dl(disk->serial, super);
47ee5a45
DW
2097 if (dl)
2098 continue;
47ee5a45
DW
2099
2100 dl = malloc(sizeof(*dl));
2101 if (!dl)
2102 return 1;
2103 dl->major = 0;
2104 dl->minor = 0;
2105 dl->fd = -1;
2106 dl->devname = strdup("missing");
2107 dl->index = i;
2108 serialcpy(dl->serial, disk->serial);
2109 dl->disk = *disk;
689c9bf3 2110 dl->e = NULL;
47ee5a45
DW
2111 dl->next = super->missing;
2112 super->missing = dl;
2113 }
2114
2115 return 0;
2116}
2117
a2b97981
DW
2118static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
2119{
2120 struct intel_disk *idisk = disk_list;
2121
2122 while (idisk) {
2123 if (serialcmp(idisk->disk.serial, serial) == 0)
2124 break;
2125 idisk = idisk->next;
2126 }
2127
2128 return idisk;
2129}
2130
2131static int __prep_thunderdome(struct intel_super **table, int tbl_size,
2132 struct intel_super *super,
2133 struct intel_disk **disk_list)
2134{
2135 struct imsm_disk *d = &super->disks->disk;
2136 struct imsm_super *mpb = super->anchor;
2137 int i, j;
2138
2139 for (i = 0; i < tbl_size; i++) {
2140 struct imsm_super *tbl_mpb = table[i]->anchor;
2141 struct imsm_disk *tbl_d = &table[i]->disks->disk;
2142
2143 if (tbl_mpb->family_num == mpb->family_num) {
2144 if (tbl_mpb->check_sum == mpb->check_sum) {
2145 dprintf("%s: mpb from %d:%d matches %d:%d\n",
2146 __func__, super->disks->major,
2147 super->disks->minor,
2148 table[i]->disks->major,
2149 table[i]->disks->minor);
2150 break;
2151 }
2152
2153 if (((is_configured(d) && !is_configured(tbl_d)) ||
2154 is_configured(d) == is_configured(tbl_d)) &&
2155 tbl_mpb->generation_num < mpb->generation_num) {
2156 /* current version of the mpb is a
2157 * better candidate than the one in
2158 * super_table, but copy over "cross
2159 * generational" status
2160 */
2161 struct intel_disk *idisk;
2162
2163 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
2164 __func__, super->disks->major,
2165 super->disks->minor,
2166 table[i]->disks->major,
2167 table[i]->disks->minor);
2168
2169 idisk = disk_list_get(tbl_d->serial, *disk_list);
2170 if (idisk && is_failed(&idisk->disk))
2171 tbl_d->status |= FAILED_DISK;
2172 break;
2173 } else {
2174 struct intel_disk *idisk;
2175 struct imsm_disk *disk;
2176
2177 /* tbl_mpb is more up to date, but copy
2178 * over cross generational status before
2179 * returning
2180 */
2181 disk = __serial_to_disk(d->serial, mpb, NULL);
2182 if (disk && is_failed(disk))
2183 d->status |= FAILED_DISK;
2184
2185 idisk = disk_list_get(d->serial, *disk_list);
2186 if (idisk) {
2187 idisk->owner = i;
2188 if (disk && is_configured(disk))
2189 idisk->disk.status |= CONFIGURED_DISK;
2190 }
2191
2192 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
2193 __func__, super->disks->major,
2194 super->disks->minor,
2195 table[i]->disks->major,
2196 table[i]->disks->minor);
2197
2198 return tbl_size;
2199 }
2200 }
2201 }
2202
2203 if (i >= tbl_size)
2204 table[tbl_size++] = super;
2205 else
2206 table[i] = super;
2207
2208 /* update/extend the merged list of imsm_disk records */
2209 for (j = 0; j < mpb->num_disks; j++) {
2210 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
2211 struct intel_disk *idisk;
2212
2213 idisk = disk_list_get(disk->serial, *disk_list);
2214 if (idisk) {
2215 idisk->disk.status |= disk->status;
2216 if (is_configured(&idisk->disk) ||
2217 is_failed(&idisk->disk))
2218 idisk->disk.status &= ~(SPARE_DISK);
2219 } else {
2220 idisk = calloc(1, sizeof(*idisk));
2221 if (!idisk)
2222 return -1;
2223 idisk->owner = IMSM_UNKNOWN_OWNER;
2224 idisk->disk = *disk;
2225 idisk->next = *disk_list;
2226 *disk_list = idisk;
2227 }
2228
2229 if (serialcmp(idisk->disk.serial, d->serial) == 0)
2230 idisk->owner = i;
2231 }
2232
2233 return tbl_size;
2234}
2235
2236static struct intel_super *
2237validate_members(struct intel_super *super, struct intel_disk *disk_list,
2238 const int owner)
2239{
2240 struct imsm_super *mpb = super->anchor;
2241 int ok_count = 0;
2242 int i;
2243
2244 for (i = 0; i < mpb->num_disks; i++) {
2245 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
2246 struct intel_disk *idisk;
2247
2248 idisk = disk_list_get(disk->serial, disk_list);
2249 if (idisk) {
2250 if (idisk->owner == owner ||
2251 idisk->owner == IMSM_UNKNOWN_OWNER)
2252 ok_count++;
2253 else
2254 dprintf("%s: '%.16s' owner %d != %d\n",
2255 __func__, disk->serial, idisk->owner,
2256 owner);
2257 } else {
2258 dprintf("%s: unknown disk %x [%d]: %.16s\n",
2259 __func__, __le32_to_cpu(mpb->family_num), i,
2260 disk->serial);
2261 break;
2262 }
2263 }
2264
2265 if (ok_count == mpb->num_disks)
2266 return super;
2267 return NULL;
2268}
2269
2270static void show_conflicts(__u32 family_num, struct intel_super *super_list)
2271{
2272 struct intel_super *s;
2273
2274 for (s = super_list; s; s = s->next) {
2275 if (family_num != s->anchor->family_num)
2276 continue;
2277 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
2278 __le32_to_cpu(family_num), s->disks->devname);
2279 }
2280}
2281
2282static struct intel_super *
2283imsm_thunderdome(struct intel_super **super_list, int len)
2284{
2285 struct intel_super *super_table[len];
2286 struct intel_disk *disk_list = NULL;
2287 struct intel_super *champion, *spare;
2288 struct intel_super *s, **del;
2289 int tbl_size = 0;
2290 int conflict;
2291 int i;
2292
2293 memset(super_table, 0, sizeof(super_table));
2294 for (s = *super_list; s; s = s->next)
2295 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
2296
2297 for (i = 0; i < tbl_size; i++) {
2298 struct imsm_disk *d;
2299 struct intel_disk *idisk;
2300 struct imsm_super *mpb = super_table[i]->anchor;
2301
2302 s = super_table[i];
2303 d = &s->disks->disk;
2304
2305 /* 'd' must appear in merged disk list for its
2306 * configuration to be valid
2307 */
2308 idisk = disk_list_get(d->serial, disk_list);
2309 if (idisk && idisk->owner == i)
2310 s = validate_members(s, disk_list, i);
2311 else
2312 s = NULL;
2313
2314 if (!s)
2315 dprintf("%s: marking family: %#x from %d:%d offline\n",
2316 __func__, mpb->family_num,
2317 super_table[i]->disks->major,
2318 super_table[i]->disks->minor);
2319 super_table[i] = s;
2320 }
2321
2322 /* This is where the mdadm implementation differs from the Windows
2323 * driver which has no strict concept of a container. We can only
2324 * assemble one family from a container, so when returning a prodigal
2325 * array member to this system the code will not be able to disambiguate
2326 * the container contents that should be assembled ("foreign" versus
2327 * "local"). It requires user intervention to set the orig_family_num
2328 * to a new value to establish a new container. The Windows driver in
2329 * this situation fixes up the volume name in place and manages the
2330 * foreign array as an independent entity.
2331 */
2332 s = NULL;
2333 spare = NULL;
2334 conflict = 0;
2335 for (i = 0; i < tbl_size; i++) {
2336 struct intel_super *tbl_ent = super_table[i];
2337 int is_spare = 0;
2338
2339 if (!tbl_ent)
2340 continue;
2341
2342 if (tbl_ent->anchor->num_raid_devs == 0) {
2343 spare = tbl_ent;
2344 is_spare = 1;
2345 }
2346
2347 if (s && !is_spare) {
2348 show_conflicts(tbl_ent->anchor->family_num, *super_list);
2349 conflict++;
2350 } else if (!s && !is_spare)
2351 s = tbl_ent;
2352 }
2353
2354 if (!s)
2355 s = spare;
2356 if (!s) {
2357 champion = NULL;
2358 goto out;
2359 }
2360 champion = s;
2361
2362 if (conflict)
2363 fprintf(stderr, "Chose family %#x on '%s', "
2364 "assemble conflicts to new container with '--update=uuid'\n",
2365 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
2366
2367 /* collect all dl's onto 'champion', and update them to
2368 * champion's version of the status
2369 */
2370 for (s = *super_list; s; s = s->next) {
2371 struct imsm_super *mpb = champion->anchor;
2372 struct dl *dl = s->disks;
2373
2374 if (s == champion)
2375 continue;
2376
2377 for (i = 0; i < mpb->num_disks; i++) {
2378 struct imsm_disk *disk;
2379
2380 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
2381 if (disk) {
2382 dl->disk = *disk;
2383 /* only set index on disks that are a member of
2384 * a populated contianer, i.e. one with
2385 * raid_devs
2386 */
2387 if (is_failed(&dl->disk))
2388 dl->index = -2;
2389 else if (is_spare(&dl->disk))
2390 dl->index = -1;
2391 break;
2392 }
2393 }
2394
2395 if (i >= mpb->num_disks) {
2396 struct intel_disk *idisk;
2397
2398 idisk = disk_list_get(dl->serial, disk_list);
2399 if (is_spare(&idisk->disk) &&
2400 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
2401 dl->index = -1;
2402 else {
2403 dl->index = -2;
2404 continue;
2405 }
2406 }
2407
2408 dl->next = champion->disks;
2409 champion->disks = dl;
2410 s->disks = NULL;
2411 }
2412
2413 /* delete 'champion' from super_list */
2414 for (del = super_list; *del; ) {
2415 if (*del == champion) {
2416 *del = (*del)->next;
2417 break;
2418 } else
2419 del = &(*del)->next;
2420 }
2421 champion->next = NULL;
2422
2423 out:
2424 while (disk_list) {
2425 struct intel_disk *idisk = disk_list;
2426
2427 disk_list = disk_list->next;
2428 free(idisk);
2429 }
2430
2431 return champion;
2432}
2433
cdddbdbc
DW
2434static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
2435 char *devname, int keep_fd)
2436{
2437 struct mdinfo *sra;
a2b97981
DW
2438 struct intel_super *super_list = NULL;
2439 struct intel_super *super = NULL;
db575f3b 2440 int devnum = fd2devnum(fd);
a2b97981 2441 struct mdinfo *sd;
db575f3b 2442 int retry;
a2b97981
DW
2443 int err = 0;
2444 int i;
dab4a513 2445 enum sysfs_read_flags flags;
cdddbdbc 2446
dab4a513
DW
2447 flags = GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE;
2448 if (mdmon_running(devnum))
2449 flags |= SKIP_GONE_DEVS;
2450
2451 /* check if 'fd' an opened container */
2452 sra = sysfs_read(fd, 0, flags);
cdddbdbc
DW
2453 if (!sra)
2454 return 1;
2455
2456 if (sra->array.major_version != -1 ||
2457 sra->array.minor_version != -2 ||
2458 strcmp(sra->text_version, "imsm") != 0)
2459 return 1;
2460
a2b97981
DW
2461 /* load all mpbs */
2462 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
2463 struct intel_super *s = alloc_super(0);
2464 char nm[20];
2465 int dfd;
2466
2467 err = 1;
2468 if (!s)
2469 goto error;
2470 s->next = super_list;
2471 super_list = s;
cdddbdbc 2472
a2b97981 2473 err = 2;
cdddbdbc
DW
2474 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2475 dfd = dev_open(nm, keep_fd ? O_RDWR : O_RDONLY);
a2b97981
DW
2476 if (dfd < 0)
2477 goto error;
2478
2479 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
db575f3b
DW
2480
2481 /* retry the load if we might have raced against mdmon */
a2b97981 2482 if (err == 3 && mdmon_running(devnum))
db575f3b
DW
2483 for (retry = 0; retry < 3; retry++) {
2484 usleep(3000);
a2b97981
DW
2485 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
2486 if (err != 3)
db575f3b
DW
2487 break;
2488 }
cdddbdbc
DW
2489 if (!keep_fd)
2490 close(dfd);
a2b97981
DW
2491 if (err)
2492 goto error;
cdddbdbc
DW
2493 }
2494
a2b97981
DW
2495 /* all mpbs enter, maybe one leaves */
2496 super = imsm_thunderdome(&super_list, i);
2497 if (!super) {
2498 err = 1;
2499 goto error;
cdddbdbc
DW
2500 }
2501
47ee5a45
DW
2502 if (find_missing(super) != 0) {
2503 free_imsm(super);
a2b97981
DW
2504 err = 2;
2505 goto error;
47ee5a45
DW
2506 }
2507
f7e7067b 2508 if (st->subarray[0]) {
949c47a0 2509 if (atoi(st->subarray) <= super->anchor->num_raid_devs)
bf5a934a 2510 super->current_vol = atoi(st->subarray);
af99d9ca
DW
2511 else {
2512 free_imsm(super);
a2b97981
DW
2513 err = 1;
2514 goto error;
af99d9ca 2515 }
f7e7067b 2516 }
a2b97981
DW
2517 err = 0;
2518
2519 error:
2520 while (super_list) {
2521 struct intel_super *s = super_list;
2522
2523 super_list = super_list->next;
2524 free_imsm(s);
2525 }
2526
2527 if (err)
2528 return err;
f7e7067b 2529
cdddbdbc 2530 *sbp = super;
db575f3b 2531 st->container_dev = devnum;
a2b97981 2532 if (err == 0 && st->ss == NULL) {
bf5a934a 2533 st->ss = &super_imsm;
cdddbdbc
DW
2534 st->minor_version = 0;
2535 st->max_devs = IMSM_MAX_DEVICES;
2536 }
352452c3 2537 st->loaded_container = 1;
cdddbdbc
DW
2538
2539 return 0;
2540}
2541#endif
2542
2543static int load_super_imsm(struct supertype *st, int fd, char *devname)
2544{
2545 struct intel_super *super;
2546 int rv;
2547
2548#ifndef MDASSEMBLE
3dbccbcf 2549 if (load_super_imsm_all(st, fd, &st->sb, devname, 1) == 0)
cdddbdbc
DW
2550 return 0;
2551#endif
2552
37424f13
DW
2553 free_super_imsm(st);
2554
c2c087e6 2555 super = alloc_super(0);
cdddbdbc
DW
2556 if (!super) {
2557 fprintf(stderr,
2558 Name ": malloc of %zu failed.\n",
2559 sizeof(*super));
2560 return 1;
2561 }
2562
a2b97981 2563 rv = load_and_parse_mpb(fd, super, devname, 0);
cdddbdbc
DW
2564
2565 if (rv) {
2566 if (devname)
2567 fprintf(stderr,
2568 Name ": Failed to load all information "
2569 "sections on %s\n", devname);
2570 free_imsm(super);
2571 return rv;
2572 }
2573
af99d9ca
DW
2574 if (st->subarray[0]) {
2575 if (atoi(st->subarray) <= super->anchor->num_raid_devs)
2576 super->current_vol = atoi(st->subarray);
2577 else {
2578 free_imsm(super);
2579 return 1;
2580 }
2581 }
2582
cdddbdbc
DW
2583 st->sb = super;
2584 if (st->ss == NULL) {
2585 st->ss = &super_imsm;
2586 st->minor_version = 0;
2587 st->max_devs = IMSM_MAX_DEVICES;
2588 }
352452c3 2589 st->loaded_container = 0;
cdddbdbc
DW
2590
2591 return 0;
2592}
2593
ef6ffade
DW
2594static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
2595{
2596 if (info->level == 1)
2597 return 128;
2598 return info->chunk_size >> 9;
2599}
2600
ff596308 2601static __u32 info_to_num_data_stripes(mdu_array_info_t *info, int num_domains)
ef6ffade
DW
2602{
2603 __u32 num_stripes;
2604
2605 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
ff596308 2606 num_stripes /= num_domains;
ef6ffade
DW
2607
2608 return num_stripes;
2609}
2610
fcfd9599
DW
2611static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
2612{
4025c288
DW
2613 if (info->level == 1)
2614 return info->size * 2;
2615 else
2616 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
fcfd9599
DW
2617}
2618
4d1313e9
DW
2619static void imsm_update_version_info(struct intel_super *super)
2620{
2621 /* update the version and attributes */
2622 struct imsm_super *mpb = super->anchor;
2623 char *version;
2624 struct imsm_dev *dev;
2625 struct imsm_map *map;
2626 int i;
2627
2628 for (i = 0; i < mpb->num_raid_devs; i++) {
2629 dev = get_imsm_dev(super, i);
2630 map = get_imsm_map(dev, 0);
2631 if (__le32_to_cpu(dev->size_high) > 0)
2632 mpb->attributes |= MPB_ATTRIB_2TB;
2633
2634 /* FIXME detect when an array spans a port multiplier */
2635 #if 0
2636 mpb->attributes |= MPB_ATTRIB_PM;
2637 #endif
2638
2639 if (mpb->num_raid_devs > 1 ||
2640 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
2641 version = MPB_VERSION_ATTRIBS;
2642 switch (get_imsm_raid_level(map)) {
2643 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
2644 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
2645 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
2646 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
2647 }
2648 } else {
2649 if (map->num_members >= 5)
2650 version = MPB_VERSION_5OR6_DISK_ARRAY;
2651 else if (dev->status == DEV_CLONE_N_GO)
2652 version = MPB_VERSION_CNG;
2653 else if (get_imsm_raid_level(map) == 5)
2654 version = MPB_VERSION_RAID5;
2655 else if (map->num_members >= 3)
2656 version = MPB_VERSION_3OR4_DISK_ARRAY;
2657 else if (get_imsm_raid_level(map) == 1)
2658 version = MPB_VERSION_RAID1;
2659 else
2660 version = MPB_VERSION_RAID0;
2661 }
2662 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
2663 }
2664}
2665
8b353278
DW
2666static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
2667 unsigned long long size, char *name,
2668 char *homehost, int *uuid)
cdddbdbc 2669{
c2c087e6
DW
2670 /* We are creating a volume inside a pre-existing container.
2671 * so st->sb is already set.
2672 */
2673 struct intel_super *super = st->sb;
949c47a0 2674 struct imsm_super *mpb = super->anchor;
ba2de7ba 2675 struct intel_dev *dv;
c2c087e6
DW
2676 struct imsm_dev *dev;
2677 struct imsm_vol *vol;
2678 struct imsm_map *map;
2679 int idx = mpb->num_raid_devs;
2680 int i;
2681 unsigned long long array_blocks;
2c092cad 2682 size_t size_old, size_new;
ff596308 2683 __u32 num_data_stripes;
cdddbdbc 2684
88c32bb1 2685 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
c2c087e6 2686 fprintf(stderr, Name": This imsm-container already has the "
88c32bb1 2687 "maximum of %d volumes\n", super->orom->vpa);
c2c087e6
DW
2688 return 0;
2689 }
2690
2c092cad
DW
2691 /* ensure the mpb is large enough for the new data */
2692 size_old = __le32_to_cpu(mpb->mpb_size);
2693 size_new = disks_to_mpb_size(info->nr_disks);
2694 if (size_new > size_old) {
2695 void *mpb_new;
2696 size_t size_round = ROUND_UP(size_new, 512);
2697
2698 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
2699 fprintf(stderr, Name": could not allocate new mpb\n");
2700 return 0;
2701 }
2702 memcpy(mpb_new, mpb, size_old);
2703 free(mpb);
2704 mpb = mpb_new;
949c47a0 2705 super->anchor = mpb_new;
2c092cad
DW
2706 mpb->mpb_size = __cpu_to_le32(size_new);
2707 memset(mpb_new + size_old, 0, size_round - size_old);
2708 }
bf5a934a 2709 super->current_vol = idx;
d23fe947
DW
2710 /* when creating the first raid device in this container set num_disks
2711 * to zero, i.e. delete this spare and add raid member devices in
2712 * add_to_super_imsm_volume()
2713 */
2714 if (super->current_vol == 0)
2715 mpb->num_disks = 0;
5a038140
DW
2716
2717 for (i = 0; i < super->current_vol; i++) {
2718 dev = get_imsm_dev(super, i);
2719 if (strncmp((char *) dev->volume, name,
2720 MAX_RAID_SERIAL_LEN) == 0) {
2721 fprintf(stderr, Name": '%s' is already defined for this container\n",
2722 name);
2723 return 0;
2724 }
2725 }
2726
bf5a934a 2727 sprintf(st->subarray, "%d", idx);
ba2de7ba
DW
2728 dv = malloc(sizeof(*dv));
2729 if (!dv) {
2730 fprintf(stderr, Name ": failed to allocate device list entry\n");
2731 return 0;
2732 }
949c47a0
DW
2733 dev = malloc(sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
2734 if (!dev) {
ba2de7ba 2735 free(dv);
949c47a0
DW
2736 fprintf(stderr, Name": could not allocate raid device\n");
2737 return 0;
2738 }
c2c087e6 2739 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
03bcbc65
DW
2740 if (info->level == 1)
2741 array_blocks = info_to_blocks_per_member(info);
2742 else
2743 array_blocks = calc_array_size(info->level, info->raid_disks,
2744 info->layout, info->chunk_size,
2745 info->size*2);
979d38be
DW
2746 /* round array size down to closest MB */
2747 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
2748
c2c087e6
DW
2749 dev->size_low = __cpu_to_le32((__u32) array_blocks);
2750 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
2751 dev->status = __cpu_to_le32(0);
2752 dev->reserved_blocks = __cpu_to_le32(0);
2753 vol = &dev->vol;
2754 vol->migr_state = 0;
1484e727 2755 set_migr_type(dev, MIGR_INIT);
c2c087e6 2756 vol->dirty = 0;
f8f603f1 2757 vol->curr_migr_unit = 0;
a965f303 2758 map = get_imsm_map(dev, 0);
0dcecb2e 2759 map->pba_of_lba0 = __cpu_to_le32(super->create_offset);
fcfd9599 2760 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
ef6ffade 2761 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
0556e1a2 2762 map->failed_disk_num = ~0;
c2c087e6
DW
2763 map->map_state = info->level ? IMSM_T_STATE_UNINITIALIZED :
2764 IMSM_T_STATE_NORMAL;
252d23c0 2765 map->ddf = 1;
ef6ffade
DW
2766
2767 if (info->level == 1 && info->raid_disks > 2) {
2768 fprintf(stderr, Name": imsm does not support more than 2 disks"
2769 "in a raid1 volume\n");
2770 return 0;
2771 }
81062a36
DW
2772
2773 map->raid_level = info->level;
4d1313e9 2774 if (info->level == 10) {
c2c087e6 2775 map->raid_level = 1;
4d1313e9 2776 map->num_domains = info->raid_disks / 2;
81062a36
DW
2777 } else if (info->level == 1)
2778 map->num_domains = info->raid_disks;
2779 else
ff596308 2780 map->num_domains = 1;
81062a36 2781
ff596308
DW
2782 num_data_stripes = info_to_num_data_stripes(info, map->num_domains);
2783 map->num_data_stripes = __cpu_to_le32(num_data_stripes);
ef6ffade 2784
c2c087e6
DW
2785 map->num_members = info->raid_disks;
2786 for (i = 0; i < map->num_members; i++) {
2787 /* initialized in add_to_super */
be73972f 2788 set_imsm_ord_tbl_ent(map, i, 0);
c2c087e6 2789 }
949c47a0 2790 mpb->num_raid_devs++;
ba2de7ba
DW
2791
2792 dv->dev = dev;
2793 dv->index = super->current_vol;
2794 dv->next = super->devlist;
2795 super->devlist = dv;
c2c087e6 2796
4d1313e9
DW
2797 imsm_update_version_info(super);
2798
c2c087e6 2799 return 1;
cdddbdbc
DW
2800}
2801
bf5a934a
DW
2802static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
2803 unsigned long long size, char *name,
2804 char *homehost, int *uuid)
2805{
2806 /* This is primarily called by Create when creating a new array.
2807 * We will then get add_to_super called for each component, and then
2808 * write_init_super called to write it out to each device.
2809 * For IMSM, Create can create on fresh devices or on a pre-existing
2810 * array.
2811 * To create on a pre-existing array a different method will be called.
2812 * This one is just for fresh drives.
2813 */
2814 struct intel_super *super;
2815 struct imsm_super *mpb;
2816 size_t mpb_size;
4d1313e9 2817 char *version;
bf5a934a
DW
2818
2819 if (!info) {
2820 st->sb = NULL;
2821 return 0;
2822 }
2823 if (st->sb)
2824 return init_super_imsm_volume(st, info, size, name, homehost,
2825 uuid);
2826
2827 super = alloc_super(1);
2828 if (!super)
2829 return 0;
2830 mpb_size = disks_to_mpb_size(info->nr_disks);
ef649044 2831 if (posix_memalign(&super->buf, 512, mpb_size) != 0) {
bf5a934a
DW
2832 free(super);
2833 return 0;
2834 }
ef649044 2835 mpb = super->buf;
bf5a934a
DW
2836 memset(mpb, 0, mpb_size);
2837
4d1313e9
DW
2838 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
2839
2840 version = (char *) mpb->sig;
2841 strcpy(version, MPB_SIGNATURE);
2842 version += strlen(MPB_SIGNATURE);
2843 strcpy(version, MPB_VERSION_RAID0);
bf5a934a
DW
2844 mpb->mpb_size = mpb_size;
2845
bf5a934a
DW
2846 st->sb = super;
2847 return 1;
2848}
2849
0e600426 2850#ifndef MDASSEMBLE
f20c3968 2851static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
bf5a934a
DW
2852 int fd, char *devname)
2853{
2854 struct intel_super *super = st->sb;
d23fe947 2855 struct imsm_super *mpb = super->anchor;
bf5a934a
DW
2856 struct dl *dl;
2857 struct imsm_dev *dev;
2858 struct imsm_map *map;
bf5a934a 2859
949c47a0 2860 dev = get_imsm_dev(super, super->current_vol);
a965f303 2861 map = get_imsm_map(dev, 0);
bf5a934a 2862
208933a7
N
2863 if (! (dk->state & (1<<MD_DISK_SYNC))) {
2864 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
2865 devname);
2866 return 1;
2867 }
2868
efb30e7f
DW
2869 if (fd == -1) {
2870 /* we're doing autolayout so grab the pre-marked (in
2871 * validate_geometry) raid_disk
2872 */
2873 for (dl = super->disks; dl; dl = dl->next)
2874 if (dl->raiddisk == dk->raid_disk)
2875 break;
2876 } else {
2877 for (dl = super->disks; dl ; dl = dl->next)
2878 if (dl->major == dk->major &&
2879 dl->minor == dk->minor)
2880 break;
2881 }
d23fe947 2882
208933a7
N
2883 if (!dl) {
2884 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
f20c3968 2885 return 1;
208933a7 2886 }
bf5a934a 2887
d23fe947
DW
2888 /* add a pristine spare to the metadata */
2889 if (dl->index < 0) {
2890 dl->index = super->anchor->num_disks;
2891 super->anchor->num_disks++;
2892 }
be73972f 2893 set_imsm_ord_tbl_ent(map, dk->number, dl->index);
ee5aad5a 2894 dl->disk.status = CONFIGURED_DISK;
d23fe947
DW
2895
2896 /* if we are creating the first raid device update the family number */
2897 if (super->current_vol == 0) {
2898 __u32 sum;
2899 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
2900 struct imsm_disk *_disk = __get_imsm_disk(mpb, dl->index);
2901
2902 *_dev = *dev;
2903 *_disk = dl->disk;
148acb7b
DW
2904 sum = random32();
2905 sum += __gen_imsm_checksum(mpb);
d23fe947 2906 mpb->family_num = __cpu_to_le32(sum);
148acb7b 2907 mpb->orig_family_num = mpb->family_num;
d23fe947 2908 }
f20c3968
DW
2909
2910 return 0;
bf5a934a
DW
2911}
2912
f20c3968 2913static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
cdddbdbc
DW
2914 int fd, char *devname)
2915{
c2c087e6 2916 struct intel_super *super = st->sb;
c2c087e6
DW
2917 struct dl *dd;
2918 unsigned long long size;
f2f27e63 2919 __u32 id;
c2c087e6
DW
2920 int rv;
2921 struct stat stb;
2922
88c32bb1
DW
2923 /* if we are on an RAID enabled platform check that the disk is
2924 * attached to the raid controller
2925 */
2926 if (super->hba && !disk_attached_to_hba(fd, super->hba)) {
2927 fprintf(stderr,
2928 Name ": %s is not attached to the raid controller: %s\n",
2929 devname ? : "disk", super->hba);
2930 return 1;
2931 }
2932
f20c3968
DW
2933 if (super->current_vol >= 0)
2934 return add_to_super_imsm_volume(st, dk, fd, devname);
bf5a934a 2935
c2c087e6
DW
2936 fstat(fd, &stb);
2937 dd = malloc(sizeof(*dd));
b9f594fe 2938 if (!dd) {
c2c087e6
DW
2939 fprintf(stderr,
2940 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
f20c3968 2941 return 1;
c2c087e6
DW
2942 }
2943 memset(dd, 0, sizeof(*dd));
2944 dd->major = major(stb.st_rdev);
2945 dd->minor = minor(stb.st_rdev);
b9f594fe 2946 dd->index = -1;
c2c087e6 2947 dd->devname = devname ? strdup(devname) : NULL;
c2c087e6 2948 dd->fd = fd;
689c9bf3 2949 dd->e = NULL;
c2c087e6
DW
2950 rv = imsm_read_serial(fd, devname, dd->serial);
2951 if (rv) {
2952 fprintf(stderr,
0030e8d6 2953 Name ": failed to retrieve scsi serial, aborting\n");
949c47a0 2954 free(dd);
0030e8d6 2955 abort();
c2c087e6
DW
2956 }
2957
c2c087e6
DW
2958 get_dev_size(fd, NULL, &size);
2959 size /= 512;
1f24f035 2960 serialcpy(dd->disk.serial, dd->serial);
b9f594fe 2961 dd->disk.total_blocks = __cpu_to_le32(size);
ee5aad5a 2962 dd->disk.status = SPARE_DISK;
c2c087e6 2963 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
b9f594fe 2964 dd->disk.scsi_id = __cpu_to_le32(id);
c2c087e6 2965 else
b9f594fe 2966 dd->disk.scsi_id = __cpu_to_le32(0);
43dad3d6
DW
2967
2968 if (st->update_tail) {
2969 dd->next = super->add;
2970 super->add = dd;
2971 } else {
2972 dd->next = super->disks;
2973 super->disks = dd;
2974 }
f20c3968
DW
2975
2976 return 0;
cdddbdbc
DW
2977}
2978
c2c087e6
DW
2979static int store_imsm_mpb(int fd, struct intel_super *super);
2980
d23fe947
DW
2981/* spare records have their own family number and do not have any defined raid
2982 * devices
2983 */
2984static int write_super_imsm_spares(struct intel_super *super, int doclose)
2985{
2986 struct imsm_super mpb_save;
2987 struct imsm_super *mpb = super->anchor;
2988 __u32 sum;
2989 struct dl *d;
2990
2991 mpb_save = *mpb;
2992 mpb->num_raid_devs = 0;
2993 mpb->num_disks = 1;
2994 mpb->mpb_size = sizeof(struct imsm_super);
2995 mpb->generation_num = __cpu_to_le32(1UL);
2996
2997 for (d = super->disks; d; d = d->next) {
8796fdc4 2998 if (d->index != -1)
d23fe947
DW
2999 continue;
3000
3001 mpb->disk[0] = d->disk;
3002 sum = __gen_imsm_checksum(mpb);
3003 mpb->family_num = __cpu_to_le32(sum);
148acb7b 3004 mpb->orig_family_num = 0;
d23fe947
DW
3005 sum = __gen_imsm_checksum(mpb);
3006 mpb->check_sum = __cpu_to_le32(sum);
3007
3008 if (store_imsm_mpb(d->fd, super)) {
3009 fprintf(stderr, "%s: failed for device %d:%d %s\n",
3010 __func__, d->major, d->minor, strerror(errno));
3011 *mpb = mpb_save;
e74255d9 3012 return 1;
d23fe947
DW
3013 }
3014 if (doclose) {
3015 close(d->fd);
3016 d->fd = -1;
3017 }
3018 }
3019
3020 *mpb = mpb_save;
e74255d9 3021 return 0;
d23fe947
DW
3022}
3023
c2c087e6 3024static int write_super_imsm(struct intel_super *super, int doclose)
cdddbdbc 3025{
949c47a0 3026 struct imsm_super *mpb = super->anchor;
c2c087e6
DW
3027 struct dl *d;
3028 __u32 generation;
3029 __u32 sum;
d23fe947 3030 int spares = 0;
949c47a0 3031 int i;
a48ac0a8 3032 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
cdddbdbc 3033
c2c087e6
DW
3034 /* 'generation' is incremented everytime the metadata is written */
3035 generation = __le32_to_cpu(mpb->generation_num);
3036 generation++;
3037 mpb->generation_num = __cpu_to_le32(generation);
3038
148acb7b
DW
3039 /* fix up cases where previous mdadm releases failed to set
3040 * orig_family_num
3041 */
3042 if (mpb->orig_family_num == 0)
3043 mpb->orig_family_num = mpb->family_num;
3044
1ee1e9fc 3045 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
d23fe947 3046 for (d = super->disks; d; d = d->next) {
8796fdc4 3047 if (d->index == -1)
d23fe947 3048 spares++;
1ee1e9fc 3049 else
d23fe947 3050 mpb->disk[d->index] = d->disk;
d23fe947 3051 }
47ee5a45
DW
3052 for (d = super->missing; d; d = d->next)
3053 mpb->disk[d->index] = d->disk;
b9f594fe 3054
949c47a0
DW
3055 for (i = 0; i < mpb->num_raid_devs; i++) {
3056 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
3057
ba2de7ba 3058 imsm_copy_dev(dev, get_imsm_dev(super, i));
a48ac0a8 3059 mpb_size += sizeof_imsm_dev(dev, 0);
949c47a0 3060 }
a48ac0a8
DW
3061 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
3062 mpb->mpb_size = __cpu_to_le32(mpb_size);
949c47a0 3063
c2c087e6 3064 /* recalculate checksum */
949c47a0 3065 sum = __gen_imsm_checksum(mpb);
c2c087e6
DW
3066 mpb->check_sum = __cpu_to_le32(sum);
3067
d23fe947 3068 /* write the mpb for disks that compose raid devices */
c2c087e6 3069 for (d = super->disks; d ; d = d->next) {
d23fe947
DW
3070 if (d->index < 0)
3071 continue;
8796fdc4 3072 if (store_imsm_mpb(d->fd, super))
c2c087e6
DW
3073 fprintf(stderr, "%s: failed for device %d:%d %s\n",
3074 __func__, d->major, d->minor, strerror(errno));
c2c087e6
DW
3075 if (doclose) {
3076 close(d->fd);
3077 d->fd = -1;
3078 }
3079 }
3080
d23fe947
DW
3081 if (spares)
3082 return write_super_imsm_spares(super, doclose);
3083
e74255d9 3084 return 0;
c2c087e6
DW
3085}
3086
0e600426 3087
9b1fb677 3088static int create_array(struct supertype *st, int dev_idx)
43dad3d6
DW
3089{
3090 size_t len;
3091 struct imsm_update_create_array *u;
3092 struct intel_super *super = st->sb;
9b1fb677 3093 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
54c2c1ea
DW
3094 struct imsm_map *map = get_imsm_map(dev, 0);
3095 struct disk_info *inf;
3096 struct imsm_disk *disk;
3097 int i;
43dad3d6 3098
54c2c1ea
DW
3099 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
3100 sizeof(*inf) * map->num_members;
43dad3d6
DW
3101 u = malloc(len);
3102 if (!u) {
3103 fprintf(stderr, "%s: failed to allocate update buffer\n",
3104 __func__);
3105 return 1;
3106 }
3107
3108 u->type = update_create_array;
9b1fb677 3109 u->dev_idx = dev_idx;
43dad3d6 3110 imsm_copy_dev(&u->dev, dev);
54c2c1ea
DW
3111 inf = get_disk_info(u);
3112 for (i = 0; i < map->num_members; i++) {
9b1fb677
DW
3113 int idx = get_imsm_disk_idx(dev, i);
3114
54c2c1ea
DW
3115 disk = get_imsm_disk(super, idx);
3116 serialcpy(inf[i].serial, disk->serial);
3117 }
43dad3d6
DW
3118 append_metadata_update(st, u, len);
3119
3120 return 0;
3121}
3122
7801ac20 3123static int _add_disk(struct supertype *st)
43dad3d6
DW
3124{
3125 struct intel_super *super = st->sb;
3126 size_t len;
3127 struct imsm_update_add_disk *u;
3128
3129 if (!super->add)
3130 return 0;
3131
3132 len = sizeof(*u);
3133 u = malloc(len);
3134 if (!u) {
3135 fprintf(stderr, "%s: failed to allocate update buffer\n",
3136 __func__);
3137 return 1;
3138 }
3139
3140 u->type = update_add_disk;
3141 append_metadata_update(st, u, len);
3142
3143 return 0;
3144}
3145
c2c087e6
DW
3146static int write_init_super_imsm(struct supertype *st)
3147{
9b1fb677
DW
3148 struct intel_super *super = st->sb;
3149 int current_vol = super->current_vol;
3150
3151 /* we are done with current_vol reset it to point st at the container */
3152 super->current_vol = -1;
3153
8273f55e 3154 if (st->update_tail) {
43dad3d6
DW
3155 /* queue the recently created array / added disk
3156 * as a metadata update */
8273f55e 3157 struct dl *d;
43dad3d6 3158 int rv;
8273f55e 3159
43dad3d6 3160 /* determine if we are creating a volume or adding a disk */
9b1fb677 3161 if (current_vol < 0) {
43dad3d6
DW
3162 /* in the add disk case we are running in mdmon
3163 * context, so don't close fd's
3164 */
7801ac20 3165 return _add_disk(st);
43dad3d6 3166 } else
9b1fb677 3167 rv = create_array(st, current_vol);
8273f55e
DW
3168
3169 for (d = super->disks; d ; d = d->next) {
3170 close(d->fd);
3171 d->fd = -1;
3172 }
3173
43dad3d6 3174 return rv;
8273f55e
DW
3175 } else
3176 return write_super_imsm(st->sb, 1);
cdddbdbc 3177}
0e600426 3178#endif
cdddbdbc
DW
3179
3180static int store_zero_imsm(struct supertype *st, int fd)
3181{
551c80c1 3182 unsigned long long dsize;
6416d527 3183 void *buf;
551c80c1
DW
3184
3185 get_dev_size(fd, NULL, &dsize);
3186
3187 /* first block is stored on second to last sector of the disk */
3188 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
3189 return 1;
3190
ad97895e
DW
3191 if (posix_memalign(&buf, 512, 512) != 0)
3192 return 1;
3193
eb7ea463
DW
3194 memset(buf, 0, 512);
3195 if (write(fd, buf, 512) != 512)
551c80c1 3196 return 1;
cdddbdbc
DW
3197 return 0;
3198}
3199
0e600426
N
3200static int imsm_bbm_log_size(struct imsm_super *mpb)
3201{
3202 return __le32_to_cpu(mpb->bbm_log_size);
3203}
3204
3205#ifndef MDASSEMBLE
cdddbdbc
DW
3206static int validate_geometry_imsm_container(struct supertype *st, int level,
3207 int layout, int raiddisks, int chunk,
c2c087e6 3208 unsigned long long size, char *dev,
2c514b71
NB
3209 unsigned long long *freesize,
3210 int verbose)
cdddbdbc 3211{
c2c087e6
DW
3212 int fd;
3213 unsigned long long ldsize;
88c32bb1 3214 const struct imsm_orom *orom;
cdddbdbc 3215
c2c087e6
DW
3216 if (level != LEVEL_CONTAINER)
3217 return 0;
3218 if (!dev)
3219 return 1;
3220
88c32bb1
DW
3221 if (check_env("IMSM_NO_PLATFORM"))
3222 orom = NULL;
3223 else
3224 orom = find_imsm_orom();
3225 if (orom && raiddisks > orom->tds) {
3226 if (verbose)
3227 fprintf(stderr, Name ": %d exceeds maximum number of"
3228 " platform supported disks: %d\n",
3229 raiddisks, orom->tds);
3230 return 0;
3231 }
3232
c2c087e6
DW
3233 fd = open(dev, O_RDONLY|O_EXCL, 0);
3234 if (fd < 0) {
2c514b71
NB
3235 if (verbose)
3236 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
3237 dev, strerror(errno));
c2c087e6
DW
3238 return 0;
3239 }
3240 if (!get_dev_size(fd, dev, &ldsize)) {
3241 close(fd);
3242 return 0;
3243 }
3244 close(fd);
3245
3246 *freesize = avail_size_imsm(st, ldsize >> 9);
3247
3248 return 1;
cdddbdbc
DW
3249}
3250
0dcecb2e
DW
3251static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
3252{
3253 const unsigned long long base_start = e[*idx].start;
3254 unsigned long long end = base_start + e[*idx].size;
3255 int i;
3256
3257 if (base_start == end)
3258 return 0;
3259
3260 *idx = *idx + 1;
3261 for (i = *idx; i < num_extents; i++) {
3262 /* extend overlapping extents */
3263 if (e[i].start >= base_start &&
3264 e[i].start <= end) {
3265 if (e[i].size == 0)
3266 return 0;
3267 if (e[i].start + e[i].size > end)
3268 end = e[i].start + e[i].size;
3269 } else if (e[i].start > end) {
3270 *idx = i;
3271 break;
3272 }
3273 }
3274
3275 return end - base_start;
3276}
3277
3278static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
3279{
3280 /* build a composite disk with all known extents and generate a new
3281 * 'maxsize' given the "all disks in an array must share a common start
3282 * offset" constraint
3283 */
3284 struct extent *e = calloc(sum_extents, sizeof(*e));
3285 struct dl *dl;
3286 int i, j;
3287 int start_extent;
3288 unsigned long long pos;
b9d77223 3289 unsigned long long start = 0;
0dcecb2e
DW
3290 unsigned long long maxsize;
3291 unsigned long reserve;
3292
3293 if (!e)
3294 return ~0ULL; /* error */
3295
3296 /* coalesce and sort all extents. also, check to see if we need to
3297 * reserve space between member arrays
3298 */
3299 j = 0;
3300 for (dl = super->disks; dl; dl = dl->next) {
3301 if (!dl->e)
3302 continue;
3303 for (i = 0; i < dl->extent_cnt; i++)
3304 e[j++] = dl->e[i];
3305 }
3306 qsort(e, sum_extents, sizeof(*e), cmp_extent);
3307
3308 /* merge extents */
3309 i = 0;
3310 j = 0;
3311 while (i < sum_extents) {
3312 e[j].start = e[i].start;
3313 e[j].size = find_size(e, &i, sum_extents);
3314 j++;
3315 if (e[j-1].size == 0)
3316 break;
3317 }
3318
3319 pos = 0;
3320 maxsize = 0;
3321 start_extent = 0;
3322 i = 0;
3323 do {
3324 unsigned long long esize;
3325
3326 esize = e[i].start - pos;
3327 if (esize >= maxsize) {
3328 maxsize = esize;
3329 start = pos;
3330 start_extent = i;
3331 }
3332 pos = e[i].start + e[i].size;
3333 i++;
3334 } while (e[i-1].size);
3335 free(e);
3336
3337 if (start_extent > 0)
3338 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
3339 else
3340 reserve = 0;
3341
3342 if (maxsize < reserve)
3343 return ~0ULL;
3344
3345 super->create_offset = ~((__u32) 0);
3346 if (start + reserve > super->create_offset)
3347 return ~0ULL; /* start overflows create_offset */
3348 super->create_offset = start + reserve;
3349
3350 return maxsize - reserve;
3351}
3352
88c32bb1
DW
3353static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
3354{
3355 if (level < 0 || level == 6 || level == 4)
3356 return 0;
3357
3358 /* if we have an orom prevent invalid raid levels */
3359 if (orom)
3360 switch (level) {
3361 case 0: return imsm_orom_has_raid0(orom);
3362 case 1:
3363 if (raiddisks > 2)
3364 return imsm_orom_has_raid1e(orom);
1c556e92
DW
3365 return imsm_orom_has_raid1(orom) && raiddisks == 2;
3366 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
3367 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
88c32bb1
DW
3368 }
3369 else
3370 return 1; /* not on an Intel RAID platform so anything goes */
3371
3372 return 0;
3373}
3374
35f81cbb 3375#define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
c2c087e6
DW
3376/* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
3377 * FIX ME add ahci details
3378 */
8b353278
DW
3379static int validate_geometry_imsm_volume(struct supertype *st, int level,
3380 int layout, int raiddisks, int chunk,
c2c087e6 3381 unsigned long long size, char *dev,
2c514b71
NB
3382 unsigned long long *freesize,
3383 int verbose)
cdddbdbc 3384{
c2c087e6
DW
3385 struct stat stb;
3386 struct intel_super *super = st->sb;
a20d2ba5 3387 struct imsm_super *mpb = super->anchor;
c2c087e6
DW
3388 struct dl *dl;
3389 unsigned long long pos = 0;
3390 unsigned long long maxsize;
3391 struct extent *e;
3392 int i;
cdddbdbc 3393
88c32bb1
DW
3394 /* We must have the container info already read in. */
3395 if (!super)
c2c087e6
DW
3396 return 0;
3397
88c32bb1 3398 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
1c556e92
DW
3399 pr_vrb(": platform does not support raid%d with %d disk%s\n",
3400 level, raiddisks, raiddisks > 1 ? "s" : "");
c2c087e6
DW
3401 return 0;
3402 }
78757ce8
DW
3403 if (super->orom && level != 1 &&
3404 !imsm_orom_has_chunk(super->orom, chunk)) {
35f81cbb 3405 pr_vrb(": platform does not support a chunk size of: %d\n", chunk);
c2c087e6 3406 return 0;
88c32bb1
DW
3407 }
3408 if (layout != imsm_level_to_layout(level)) {
3409 if (level == 5)
35f81cbb 3410 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
88c32bb1 3411 else if (level == 10)
35f81cbb 3412 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
88c32bb1 3413 else
35f81cbb 3414 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
88c32bb1 3415 layout, level);
c2c087e6 3416 return 0;
88c32bb1 3417 }
c2c087e6
DW
3418
3419 if (!dev) {
3420 /* General test: make sure there is space for
2da8544a
DW
3421 * 'raiddisks' device extents of size 'size' at a given
3422 * offset
c2c087e6 3423 */
e46273eb 3424 unsigned long long minsize = size;
2da8544a 3425 unsigned long long start_offset = ~0ULL;
c2c087e6
DW
3426 int dcnt = 0;
3427 if (minsize == 0)
3428 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
3429 for (dl = super->disks; dl ; dl = dl->next) {
3430 int found = 0;
3431
bf5a934a 3432 pos = 0;
c2c087e6
DW
3433 i = 0;
3434 e = get_extents(super, dl);
3435 if (!e) continue;
3436 do {
3437 unsigned long long esize;
3438 esize = e[i].start - pos;
3439 if (esize >= minsize)
3440 found = 1;
2da8544a
DW
3441 if (found && start_offset == ~0ULL) {
3442 start_offset = pos;
3443 break;
3444 } else if (found && pos != start_offset) {
3445 found = 0;
3446 break;
3447 }
c2c087e6
DW
3448 pos = e[i].start + e[i].size;
3449 i++;
3450 } while (e[i-1].size);
3451 if (found)
3452 dcnt++;
3453 free(e);
3454 }
3455 if (dcnt < raiddisks) {
2c514b71
NB
3456 if (verbose)
3457 fprintf(stderr, Name ": imsm: Not enough "
3458 "devices with space for this array "
3459 "(%d < %d)\n",
3460 dcnt, raiddisks);
c2c087e6
DW
3461 return 0;
3462 }
3463 return 1;
3464 }
0dcecb2e 3465
c2c087e6
DW
3466 /* This device must be a member of the set */
3467 if (stat(dev, &stb) < 0)
3468 return 0;
3469 if ((S_IFMT & stb.st_mode) != S_IFBLK)
3470 return 0;
3471 for (dl = super->disks ; dl ; dl = dl->next) {
3472 if (dl->major == major(stb.st_rdev) &&
3473 dl->minor == minor(stb.st_rdev))
3474 break;
3475 }
3476 if (!dl) {
2c514b71
NB
3477 if (verbose)
3478 fprintf(stderr, Name ": %s is not in the "
3479 "same imsm set\n", dev);
c2c087e6 3480 return 0;
a20d2ba5
DW
3481 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
3482 /* If a volume is present then the current creation attempt
3483 * cannot incorporate new spares because the orom may not
3484 * understand this configuration (all member disks must be
3485 * members of each array in the container).
3486 */
3487 fprintf(stderr, Name ": %s is a spare and a volume"
3488 " is already defined for this container\n", dev);
3489 fprintf(stderr, Name ": The option-rom requires all member"
3490 " disks to be a member of all volumes\n");
3491 return 0;
c2c087e6 3492 }
0dcecb2e
DW
3493
3494 /* retrieve the largest free space block */
c2c087e6
DW
3495 e = get_extents(super, dl);
3496 maxsize = 0;
3497 i = 0;
0dcecb2e
DW
3498 if (e) {
3499 do {
3500 unsigned long long esize;
3501
3502 esize = e[i].start - pos;
3503 if (esize >= maxsize)
3504 maxsize = esize;
3505 pos = e[i].start + e[i].size;
3506 i++;
3507 } while (e[i-1].size);
3508 dl->e = e;
3509 dl->extent_cnt = i;
3510 } else {
3511 if (verbose)
3512 fprintf(stderr, Name ": unable to determine free space for: %s\n",
3513 dev);
3514 return 0;
3515 }
3516 if (maxsize < size) {
3517 if (verbose)
3518 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
3519 dev, maxsize, size);
3520 return 0;
3521 }
3522
3523 /* count total number of extents for merge */
3524 i = 0;
3525 for (dl = super->disks; dl; dl = dl->next)
3526 if (dl->e)
3527 i += dl->extent_cnt;
3528
3529 maxsize = merge_extents(super, i);
3530 if (maxsize < size) {
3531 if (verbose)
3532 fprintf(stderr, Name ": not enough space after merge (%llu < %llu)\n",
3533 maxsize, size);
3534 return 0;
3535 } else if (maxsize == ~0ULL) {
3536 if (verbose)
3537 fprintf(stderr, Name ": failed to merge %d extents\n", i);
3538 return 0;
3539 }
3540
c2c087e6
DW
3541 *freesize = maxsize;
3542
3543 return 1;
cdddbdbc
DW
3544}
3545
efb30e7f
DW
3546static int reserve_space(struct supertype *st, int raiddisks,
3547 unsigned long long size, int chunk,
3548 unsigned long long *freesize)
3549{
3550 struct intel_super *super = st->sb;
3551 struct imsm_super *mpb = super->anchor;
3552 struct dl *dl;
3553 int i;
3554 int extent_cnt;
3555 struct extent *e;
3556 unsigned long long maxsize;
3557 unsigned long long minsize;
3558 int cnt;
3559 int used;
3560
3561 /* find the largest common start free region of the possible disks */
3562 used = 0;
3563 extent_cnt = 0;
3564 cnt = 0;
3565 for (dl = super->disks; dl; dl = dl->next) {
3566 dl->raiddisk = -1;
3567
3568 if (dl->index >= 0)
3569 used++;
3570
3571 /* don't activate new spares if we are orom constrained
3572 * and there is already a volume active in the container
3573 */
3574 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
3575 continue;
3576
3577 e = get_extents(super, dl);
3578 if (!e)
3579 continue;
3580 for (i = 1; e[i-1].size; i++)
3581 ;
3582 dl->e = e;
3583 dl->extent_cnt = i;
3584 extent_cnt += i;
3585 cnt++;
3586 }
3587
3588 maxsize = merge_extents(super, extent_cnt);
3589 minsize = size;
3590 if (size == 0)
3591 minsize = chunk;
3592
3593 if (cnt < raiddisks ||
3594 (super->orom && used && used != raiddisks) ||
3595 maxsize < minsize) {
3596 fprintf(stderr, Name ": not enough devices with space to create array.\n");
3597 return 0; /* No enough free spaces large enough */
3598 }
3599
3600 if (size == 0) {
3601 size = maxsize;
3602 if (chunk) {
3603 size /= chunk;
3604 size *= chunk;
3605 }
3606 }
3607
3608 cnt = 0;
3609 for (dl = super->disks; dl; dl = dl->next)
3610 if (dl->e)
3611 dl->raiddisk = cnt++;
3612
3613 *freesize = size;
3614
3615 return 1;
3616}
3617
bf5a934a
DW
3618static int validate_geometry_imsm(struct supertype *st, int level, int layout,
3619 int raiddisks, int chunk, unsigned long long size,
3620 char *dev, unsigned long long *freesize,
3621 int verbose)
3622{
3623 int fd, cfd;
3624 struct mdinfo *sra;
3625
3626 /* if given unused devices create a container
3627 * if given given devices in a container create a member volume
3628 */
3629 if (level == LEVEL_CONTAINER) {
3630 /* Must be a fresh device to add to a container */
3631 return validate_geometry_imsm_container(st, level, layout,
3632 raiddisks, chunk, size,
3633 dev, freesize,
3634 verbose);
3635 }
3636
8592f29d
N
3637 if (!dev) {
3638 if (st->sb && freesize) {
efb30e7f
DW
3639 /* we are being asked to automatically layout a
3640 * new volume based on the current contents of
3641 * the container. If the the parameters can be
3642 * satisfied reserve_space will record the disks,
3643 * start offset, and size of the volume to be
3644 * created. add_to_super and getinfo_super
3645 * detect when autolayout is in progress.
3646 */
3647 return reserve_space(st, raiddisks, size, chunk, freesize);
8592f29d
N
3648 }
3649 return 1;
3650 }
bf5a934a
DW
3651 if (st->sb) {
3652 /* creating in a given container */
3653 return validate_geometry_imsm_volume(st, level, layout,
3654 raiddisks, chunk, size,
3655 dev, freesize, verbose);
3656 }
3657
3658 /* limit creation to the following levels */
3659 if (!dev)
3660 switch (level) {
3661 case 0:
3662 case 1:
3663 case 10:
3664 case 5:
3665 break;
3666 default:
3667 return 1;
3668 }
3669
3670 /* This device needs to be a device in an 'imsm' container */
3671 fd = open(dev, O_RDONLY|O_EXCL, 0);
3672 if (fd >= 0) {
3673 if (verbose)
3674 fprintf(stderr,
3675 Name ": Cannot create this array on device %s\n",
3676 dev);
3677 close(fd);
3678 return 0;
3679 }
3680 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
3681 if (verbose)
3682 fprintf(stderr, Name ": Cannot open %s: %s\n",
3683 dev, strerror(errno));
3684 return 0;
3685 }
3686 /* Well, it is in use by someone, maybe an 'imsm' container. */
3687 cfd = open_container(fd);
3688 if (cfd < 0) {
3689 close(fd);
3690 if (verbose)
3691 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
3692 dev);
3693 return 0;
3694 }
3695 sra = sysfs_read(cfd, 0, GET_VERSION);
3696 close(fd);
3697 if (sra && sra->array.major_version == -1 &&
3698 strcmp(sra->text_version, "imsm") == 0) {
3699 /* This is a member of a imsm container. Load the container
3700 * and try to create a volume
3701 */
3702 struct intel_super *super;
3703
3704 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, 1) == 0) {
3705 st->sb = super;
3706 st->container_dev = fd2devnum(cfd);
3707 close(cfd);
3708 return validate_geometry_imsm_volume(st, level, layout,
3709 raiddisks, chunk,
3710 size, dev,
3711 freesize, verbose);
3712 }
3713 close(cfd);
3714 } else /* may belong to another container */
3715 return 0;
3716
3717 return 1;
3718}
0e600426 3719#endif /* MDASSEMBLE */
bf5a934a 3720
cdddbdbc
DW
3721static struct mdinfo *container_content_imsm(struct supertype *st)
3722{
4f5bc454
DW
3723 /* Given a container loaded by load_super_imsm_all,
3724 * extract information about all the arrays into
3725 * an mdinfo tree.
3726 *
3727 * For each imsm_dev create an mdinfo, fill it in,
3728 * then look for matching devices in super->disks
3729 * and create appropriate device mdinfo.
3730 */
3731 struct intel_super *super = st->sb;
949c47a0 3732 struct imsm_super *mpb = super->anchor;
4f5bc454
DW
3733 struct mdinfo *rest = NULL;
3734 int i;
cdddbdbc 3735
604b746f
JD
3736 /* do not assemble arrays that might have bad blocks */
3737 if (imsm_bbm_log_size(super->anchor)) {
3738 fprintf(stderr, Name ": BBM log found in metadata. "
3739 "Cannot activate array(s).\n");
3740 return NULL;
3741 }
3742
4f5bc454 3743 for (i = 0; i < mpb->num_raid_devs; i++) {
949c47a0 3744 struct imsm_dev *dev = get_imsm_dev(super, i);
a965f303 3745 struct imsm_map *map = get_imsm_map(dev, 0);
4f5bc454 3746 struct mdinfo *this;
4f5bc454
DW
3747 int slot;
3748
1ce0101c
DW
3749 /* do not publish arrays that are in the middle of an
3750 * unsupported migration
3751 */
3752 if (dev->vol.migr_state &&
3753 (migr_type(dev) == MIGR_GEN_MIGR ||
3754 migr_type(dev) == MIGR_STATE_CHANGE)) {
3755 fprintf(stderr, Name ": cannot assemble volume '%.16s':"
3756 " unsupported migration in progress\n",
3757 dev->volume);
3758 continue;
3759 }
3760
4f5bc454
DW
3761 this = malloc(sizeof(*this));
3762 memset(this, 0, sizeof(*this));
3763 this->next = rest;
4f5bc454 3764
301406c9
DW
3765 super->current_vol = i;
3766 getinfo_super_imsm_volume(st, this);
4f5bc454 3767 for (slot = 0 ; slot < map->num_members; slot++) {
4f5bc454
DW
3768 struct mdinfo *info_d;
3769 struct dl *d;
3770 int idx;
9a1608e5 3771 int skip;
7eef0453 3772 __u32 ord;
4f5bc454 3773
9a1608e5 3774 skip = 0;
ff077194 3775 idx = get_imsm_disk_idx(dev, slot);
7eef0453 3776 ord = get_imsm_ord_tbl_ent(dev, slot);
4f5bc454
DW
3777 for (d = super->disks; d ; d = d->next)
3778 if (d->index == idx)
3779 break;
3780
3781 if (d == NULL)
9a1608e5 3782 skip = 1;
25ed7e59 3783 if (d && is_failed(&d->disk))
9a1608e5 3784 skip = 1;
7eef0453
DW
3785 if (ord & IMSM_ORD_REBUILD)
3786 skip = 1;
9a1608e5
DW
3787
3788 /*
3789 * if we skip some disks the array will be assmebled degraded;
3790 * reset resync start to avoid a dirty-degraded situation
3791 *
3792 * FIXME handle dirty degraded
3793 */
3794 if (skip && !dev->vol.dirty)
3795 this->resync_start = ~0ULL;
3796 if (skip)
3797 continue;
4f5bc454
DW
3798
3799 info_d = malloc(sizeof(*info_d));
9a1608e5
DW
3800 if (!info_d) {
3801 fprintf(stderr, Name ": failed to allocate disk"
1ce0101c 3802 " for volume %.16s\n", dev->volume);
9a1608e5
DW
3803 free(this);
3804 this = rest;
3805 break;
3806 }
4f5bc454
DW
3807 memset(info_d, 0, sizeof(*info_d));
3808 info_d->next = this->devs;
3809 this->devs = info_d;
3810
4f5bc454
DW
3811 info_d->disk.number = d->index;
3812 info_d->disk.major = d->major;
3813 info_d->disk.minor = d->minor;
3814 info_d->disk.raid_disk = slot;
4f5bc454
DW
3815
3816 this->array.working_disks++;
3817
3818 info_d->events = __le32_to_cpu(mpb->generation_num);
3819 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
3820 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
3821 if (d->devname)
3822 strcpy(info_d->name, d->devname);
3823 }
9a1608e5 3824 rest = this;
4f5bc454
DW
3825 }
3826
3827 return rest;
cdddbdbc
DW
3828}
3829
845dea95 3830
0e600426 3831#ifndef MDASSEMBLE
cba0191b
NB
3832static int imsm_open_new(struct supertype *c, struct active_array *a,
3833 char *inst)
845dea95 3834{
0372d5a2 3835 struct intel_super *super = c->sb;
949c47a0 3836 struct imsm_super *mpb = super->anchor;
0372d5a2 3837
949c47a0 3838 if (atoi(inst) >= mpb->num_raid_devs) {
0372d5a2
DW
3839 fprintf(stderr, "%s: subarry index %d, out of range\n",
3840 __func__, atoi(inst));
3841 return -ENODEV;
3842 }
3843
4e6e574a 3844 dprintf("imsm: open_new %s\n", inst);
cba0191b 3845 a->info.container_member = atoi(inst);
845dea95
NB
3846 return 0;
3847}
3848
fb49eef2 3849static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed)
c2a1e7da 3850{
a965f303 3851 struct imsm_map *map = get_imsm_map(dev, 0);
c2a1e7da
DW
3852
3853 if (!failed)
3393c6af
DW
3854 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
3855 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
c2a1e7da
DW
3856
3857 switch (get_imsm_raid_level(map)) {
3858 case 0:
3859 return IMSM_T_STATE_FAILED;
3860 break;
3861 case 1:
3862 if (failed < map->num_members)
3863 return IMSM_T_STATE_DEGRADED;
3864 else
3865 return IMSM_T_STATE_FAILED;
3866 break;
3867 case 10:
3868 {
3869 /**
c92a2527
DW
3870 * check to see if any mirrors have failed, otherwise we
3871 * are degraded. Even numbered slots are mirrored on
3872 * slot+1
c2a1e7da 3873 */
c2a1e7da 3874 int i;
d9b420a5
N
3875 /* gcc -Os complains that this is unused */
3876 int insync = insync;
c2a1e7da
DW
3877
3878 for (i = 0; i < map->num_members; i++) {
c92a2527
DW
3879 __u32 ord = get_imsm_ord_tbl_ent(dev, i);
3880 int idx = ord_to_idx(ord);
3881 struct imsm_disk *disk;
c2a1e7da 3882
c92a2527
DW
3883 /* reset the potential in-sync count on even-numbered
3884 * slots. num_copies is always 2 for imsm raid10
3885 */
3886 if ((i & 1) == 0)
3887 insync = 2;
c2a1e7da 3888
c92a2527 3889 disk = get_imsm_disk(super, idx);
25ed7e59 3890 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
c92a2527 3891 insync--;
c2a1e7da 3892
c92a2527
DW
3893 /* no in-sync disks left in this mirror the
3894 * array has failed
3895 */
3896 if (insync == 0)
3897 return IMSM_T_STATE_FAILED;
c2a1e7da
DW
3898 }
3899
3900 return IMSM_T_STATE_DEGRADED;
3901 }
3902 case 5:
3903 if (failed < 2)
3904 return IMSM_T_STATE_DEGRADED;
3905 else
3906 return IMSM_T_STATE_FAILED;
3907 break;
3908 default:
3909 break;
3910 }
3911
3912 return map->map_state;
3913}
3914
ff077194 3915static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev)
c2a1e7da
DW
3916{
3917 int i;
3918 int failed = 0;
3919 struct imsm_disk *disk;
ff077194 3920 struct imsm_map *map = get_imsm_map(dev, 0);
0556e1a2
DW
3921 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
3922 __u32 ord;
3923 int idx;
c2a1e7da 3924
0556e1a2
DW
3925 /* at the beginning of migration we set IMSM_ORD_REBUILD on
3926 * disks that are being rebuilt. New failures are recorded to
3927 * map[0]. So we look through all the disks we started with and
3928 * see if any failures are still present, or if any new ones
3929 * have arrived
3930 *
3931 * FIXME add support for online capacity expansion and
3932 * raid-level-migration
3933 */
3934 for (i = 0; i < prev->num_members; i++) {
3935 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
3936 ord |= __le32_to_cpu(map->disk_ord_tbl[i]);
3937 idx = ord_to_idx(ord);
c2a1e7da 3938
949c47a0 3939 disk = get_imsm_disk(super, idx);
25ed7e59 3940 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
fcb84475 3941 failed++;
c2a1e7da
DW
3942 }
3943
3944 return failed;
845dea95
NB
3945}
3946
0c046afd
DW
3947static int is_resyncing(struct imsm_dev *dev)
3948{
3949 struct imsm_map *migr_map;
3950
3951 if (!dev->vol.migr_state)
3952 return 0;
3953
1484e727
DW
3954 if (migr_type(dev) == MIGR_INIT ||
3955 migr_type(dev) == MIGR_REPAIR)
0c046afd
DW
3956 return 1;
3957
3958 migr_map = get_imsm_map(dev, 1);
3959
3960 if (migr_map->map_state == IMSM_T_STATE_NORMAL)
3961 return 1;
3962 else
3963 return 0;
3964}
3965
3966static int is_rebuilding(struct imsm_dev *dev)
3967{
3968 struct imsm_map *migr_map;
3969
3970 if (!dev->vol.migr_state)
3971 return 0;
3972
1484e727 3973 if (migr_type(dev) != MIGR_REBUILD)
0c046afd
DW
3974 return 0;
3975
3976 migr_map = get_imsm_map(dev, 1);
3977
3978 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
3979 return 1;
3980 else
3981 return 0;
3982}
3983
0556e1a2
DW
3984/* return true if we recorded new information */
3985static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
47ee5a45 3986{
0556e1a2
DW
3987 __u32 ord;
3988 int slot;
3989 struct imsm_map *map;
3990
3991 /* new failures are always set in map[0] */
3992 map = get_imsm_map(dev, 0);
3993
3994 slot = get_imsm_disk_slot(map, idx);
3995 if (slot < 0)
3996 return 0;
3997
3998 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
25ed7e59 3999 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
0556e1a2
DW
4000 return 0;
4001
f2f27e63 4002 disk->status |= FAILED_DISK;
cf53434e 4003 disk->status &= ~CONFIGURED_DISK;
0556e1a2 4004 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
4291d691 4005 if (~map->failed_disk_num == 0)
0556e1a2
DW
4006 map->failed_disk_num = slot;
4007 return 1;
4008}
4009
4010static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
4011{
4012 mark_failure(dev, disk, idx);
4013
4014 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
4015 return;
4016
47ee5a45
DW
4017 disk->scsi_id = __cpu_to_le32(~(__u32)0);
4018 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
4019}
4020
0c046afd
DW
4021/* Handle dirty -> clean transititions and resync. Degraded and rebuild
4022 * states are handled in imsm_set_disk() with one exception, when a
4023 * resync is stopped due to a new failure this routine will set the
4024 * 'degraded' state for the array.
4025 */
01f157d7 4026static int imsm_set_array_state(struct active_array *a, int consistent)
a862209d
DW
4027{
4028 int inst = a->info.container_member;
4029 struct intel_super *super = a->container->sb;
949c47a0 4030 struct imsm_dev *dev = get_imsm_dev(super, inst);
a965f303 4031 struct imsm_map *map = get_imsm_map(dev, 0);
0c046afd
DW
4032 int failed = imsm_count_failed(super, dev);
4033 __u8 map_state = imsm_check_degraded(super, dev, failed);
a862209d 4034
47ee5a45
DW
4035 /* before we activate this array handle any missing disks */
4036 if (consistent == 2 && super->missing) {
4037 struct dl *dl;
4038
4039 dprintf("imsm: mark missing\n");
4040 end_migration(dev, map_state);
4041 for (dl = super->missing; dl; dl = dl->next)
0556e1a2 4042 mark_missing(dev, &dl->disk, dl->index);
47ee5a45
DW
4043 super->updates_pending++;
4044 }
4045
0c046afd 4046 if (consistent == 2 &&
593add1b 4047 (!is_resync_complete(a) ||
0c046afd
DW
4048 map_state != IMSM_T_STATE_NORMAL ||
4049 dev->vol.migr_state))
01f157d7 4050 consistent = 0;
272906ef 4051
593add1b 4052 if (is_resync_complete(a)) {
0c046afd 4053 /* complete intialization / resync,
0556e1a2
DW
4054 * recovery and interrupted recovery is completed in
4055 * ->set_disk
0c046afd
DW
4056 */
4057 if (is_resyncing(dev)) {
4058 dprintf("imsm: mark resync done\n");
f8f603f1 4059 end_migration(dev, map_state);
115c3803 4060 super->updates_pending++;
115c3803 4061 }
0c046afd
DW
4062 } else if (!is_resyncing(dev) && !failed) {
4063 /* mark the start of the init process if nothing is failed */
4064 dprintf("imsm: mark resync start (%llu)\n", a->resync_start);
1484e727 4065 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
e3bba0e0 4066 migrate(dev, IMSM_T_STATE_NORMAL, MIGR_INIT);
1484e727
DW
4067 else
4068 migrate(dev, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
3393c6af 4069 super->updates_pending++;
115c3803 4070 }
a862209d 4071
da188789 4072 /* FIXME check if we can update curr_migr_unit from resync_start */
f8f603f1 4073
3393c6af 4074 /* mark dirty / clean */
0c046afd 4075 if (dev->vol.dirty != !consistent) {
3393c6af 4076 dprintf("imsm: mark '%s' (%llu)\n",
0c046afd
DW
4077 consistent ? "clean" : "dirty", a->resync_start);
4078 if (consistent)
4079 dev->vol.dirty = 0;
4080 else
4081 dev->vol.dirty = 1;
a862209d
DW
4082 super->updates_pending++;
4083 }
01f157d7 4084 return consistent;
a862209d
DW
4085}
4086
8d45d196 4087static void imsm_set_disk(struct active_array *a, int n, int state)
845dea95 4088{
8d45d196
DW
4089 int inst = a->info.container_member;
4090 struct intel_super *super = a->container->sb;
949c47a0 4091 struct imsm_dev *dev = get_imsm_dev(super, inst);
a965f303 4092 struct imsm_map *map = get_imsm_map(dev, 0);
8d45d196 4093 struct imsm_disk *disk;
0c046afd 4094 int failed;
b10b37b8 4095 __u32 ord;
0c046afd 4096 __u8 map_state;
8d45d196
DW
4097
4098 if (n > map->num_members)
4099 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
4100 n, map->num_members - 1);
4101
4102 if (n < 0)
4103 return;
4104
4e6e574a 4105 dprintf("imsm: set_disk %d:%x\n", n, state);
8d45d196 4106
b10b37b8
DW
4107 ord = get_imsm_ord_tbl_ent(dev, n);
4108 disk = get_imsm_disk(super, ord_to_idx(ord));
8d45d196 4109
5802a811 4110 /* check for new failures */
0556e1a2
DW
4111 if (state & DS_FAULTY) {
4112 if (mark_failure(dev, disk, ord_to_idx(ord)))
4113 super->updates_pending++;
8d45d196 4114 }
47ee5a45 4115
19859edc 4116 /* check if in_sync */
0556e1a2 4117 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
b10b37b8
DW
4118 struct imsm_map *migr_map = get_imsm_map(dev, 1);
4119
4120 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
19859edc
DW
4121 super->updates_pending++;
4122 }
8d45d196 4123
0c046afd
DW
4124 failed = imsm_count_failed(super, dev);
4125 map_state = imsm_check_degraded(super, dev, failed);
5802a811 4126
0c046afd
DW
4127 /* check if recovery complete, newly degraded, or failed */
4128 if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
f8f603f1 4129 end_migration(dev, map_state);
0556e1a2
DW
4130 map = get_imsm_map(dev, 0);
4131 map->failed_disk_num = ~0;
0c046afd
DW
4132 super->updates_pending++;
4133 } else if (map_state == IMSM_T_STATE_DEGRADED &&
4134 map->map_state != map_state &&
4135 !dev->vol.migr_state) {
4136 dprintf("imsm: mark degraded\n");
4137 map->map_state = map_state;
4138 super->updates_pending++;
4139 } else if (map_state == IMSM_T_STATE_FAILED &&
4140 map->map_state != map_state) {
4141 dprintf("imsm: mark failed\n");
f8f603f1 4142 end_migration(dev, map_state);
0c046afd 4143 super->updates_pending++;
5802a811 4144 }
845dea95
NB
4145}
4146
c2a1e7da
DW
4147static int store_imsm_mpb(int fd, struct intel_super *super)
4148{
949c47a0 4149 struct imsm_super *mpb = super->anchor;
c2a1e7da
DW
4150 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
4151 unsigned long long dsize;
4152 unsigned long long sectors;
4153
4154 get_dev_size(fd, NULL, &dsize);
4155
272f648f
DW
4156 if (mpb_size > 512) {
4157 /* -1 to account for anchor */
4158 sectors = mpb_sectors(mpb) - 1;
c2a1e7da 4159
272f648f
DW
4160 /* write the extended mpb to the sectors preceeding the anchor */
4161 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
4162 return 1;
c2a1e7da 4163
99e29264 4164 if (write(fd, super->buf + 512, 512 * sectors) != 512 * sectors)
272f648f
DW
4165 return 1;
4166 }
c2a1e7da 4167
272f648f
DW
4168 /* first block is stored on second to last sector of the disk */
4169 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
c2a1e7da
DW
4170 return 1;
4171
272f648f 4172 if (write(fd, super->buf, 512) != 512)
c2a1e7da
DW
4173 return 1;
4174
c2a1e7da
DW
4175 return 0;
4176}
4177
2e735d19 4178static void imsm_sync_metadata(struct supertype *container)
845dea95 4179{
2e735d19 4180 struct intel_super *super = container->sb;
c2a1e7da
DW
4181
4182 if (!super->updates_pending)
4183 return;
4184
c2c087e6 4185 write_super_imsm(super, 0);
c2a1e7da
DW
4186
4187 super->updates_pending = 0;
845dea95
NB
4188}
4189
272906ef
DW
4190static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
4191{
4192 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
ff077194 4193 int i = get_imsm_disk_idx(dev, idx);
272906ef
DW
4194 struct dl *dl;
4195
4196 for (dl = super->disks; dl; dl = dl->next)
4197 if (dl->index == i)
4198 break;
4199
25ed7e59 4200 if (dl && is_failed(&dl->disk))
272906ef
DW
4201 dl = NULL;
4202
4203 if (dl)
4204 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
4205
4206 return dl;
4207}
4208
a20d2ba5
DW
4209static struct dl *imsm_add_spare(struct intel_super *super, int slot,
4210 struct active_array *a, int activate_new)
272906ef
DW
4211{
4212 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
e553d2a4 4213 int idx = get_imsm_disk_idx(dev, slot);
a20d2ba5
DW
4214 struct imsm_super *mpb = super->anchor;
4215 struct imsm_map *map;
272906ef
DW
4216 unsigned long long pos;
4217 struct mdinfo *d;
4218 struct extent *ex;
a20d2ba5 4219 int i, j;
272906ef
DW
4220 int found;
4221 __u32 array_start;
329c8278 4222 __u32 array_end;
272906ef
DW
4223 struct dl *dl;
4224
4225 for (dl = super->disks; dl; dl = dl->next) {
4226 /* If in this array, skip */
4227 for (d = a->info.devs ; d ; d = d->next)
e553d2a4
DW
4228 if (d->state_fd >= 0 &&
4229 d->disk.major == dl->major &&
272906ef
DW
4230 d->disk.minor == dl->minor) {
4231 dprintf("%x:%x already in array\n", dl->major, dl->minor);
4232 break;
4233 }
4234 if (d)
4235 continue;
4236
e553d2a4 4237 /* skip in use or failed drives */
25ed7e59 4238 if (is_failed(&dl->disk) || idx == dl->index ||
df474657
DW
4239 dl->index == -2) {
4240 dprintf("%x:%x status (failed: %d index: %d)\n",
25ed7e59 4241 dl->major, dl->minor, is_failed(&dl->disk), idx);
9a1608e5
DW
4242 continue;
4243 }
4244
a20d2ba5
DW
4245 /* skip pure spares when we are looking for partially
4246 * assimilated drives
4247 */
4248 if (dl->index == -1 && !activate_new)
4249 continue;
4250
272906ef 4251 /* Does this unused device have the requisite free space?
a20d2ba5 4252 * It needs to be able to cover all member volumes
272906ef
DW
4253 */
4254 ex = get_extents(super, dl);
4255 if (!ex) {
4256 dprintf("cannot get extents\n");
4257 continue;
4258 }
a20d2ba5
DW
4259 for (i = 0; i < mpb->num_raid_devs; i++) {
4260 dev = get_imsm_dev(super, i);
4261 map = get_imsm_map(dev, 0);
272906ef 4262
a20d2ba5
DW
4263 /* check if this disk is already a member of
4264 * this array
272906ef 4265 */
620b1713 4266 if (get_imsm_disk_slot(map, dl->index) >= 0)
a20d2ba5
DW
4267 continue;
4268
4269 found = 0;
4270 j = 0;
4271 pos = 0;
4272 array_start = __le32_to_cpu(map->pba_of_lba0);
329c8278
DW
4273 array_end = array_start +
4274 __le32_to_cpu(map->blocks_per_member) - 1;
a20d2ba5
DW
4275
4276 do {
4277 /* check that we can start at pba_of_lba0 with
4278 * blocks_per_member of space
4279 */
329c8278 4280 if (array_start >= pos && array_end < ex[j].start) {
a20d2ba5
DW
4281 found = 1;
4282 break;
4283 }
4284 pos = ex[j].start + ex[j].size;
4285 j++;
4286 } while (ex[j-1].size);
4287
4288 if (!found)
272906ef 4289 break;
a20d2ba5 4290 }
272906ef
DW
4291
4292 free(ex);
a20d2ba5 4293 if (i < mpb->num_raid_devs) {
329c8278
DW
4294 dprintf("%x:%x does not have %u to %u available\n",
4295 dl->major, dl->minor, array_start, array_end);
272906ef
DW
4296 /* No room */
4297 continue;
a20d2ba5
DW
4298 }
4299 return dl;
272906ef
DW
4300 }
4301
4302 return dl;
4303}
4304
88758e9d
DW
4305static struct mdinfo *imsm_activate_spare(struct active_array *a,
4306 struct metadata_update **updates)
4307{
4308 /**
d23fe947
DW
4309 * Find a device with unused free space and use it to replace a
4310 * failed/vacant region in an array. We replace failed regions one a
4311 * array at a time. The result is that a new spare disk will be added
4312 * to the first failed array and after the monitor has finished
4313 * propagating failures the remainder will be consumed.
88758e9d 4314 *
d23fe947
DW
4315 * FIXME add a capability for mdmon to request spares from another
4316 * container.
88758e9d
DW
4317 */
4318
4319 struct intel_super *super = a->container->sb;
88758e9d 4320 int inst = a->info.container_member;
949c47a0 4321 struct imsm_dev *dev = get_imsm_dev(super, inst);
a965f303 4322 struct imsm_map *map = get_imsm_map(dev, 0);
88758e9d
DW
4323 int failed = a->info.array.raid_disks;
4324 struct mdinfo *rv = NULL;
4325 struct mdinfo *d;
4326 struct mdinfo *di;
4327 struct metadata_update *mu;
4328 struct dl *dl;
4329 struct imsm_update_activate_spare *u;
4330 int num_spares = 0;
4331 int i;
4332
4333 for (d = a->info.devs ; d ; d = d->next) {
4334 if ((d->curr_state & DS_FAULTY) &&
4335 d->state_fd >= 0)
4336 /* wait for Removal to happen */
4337 return NULL;
4338 if (d->state_fd >= 0)
4339 failed--;
4340 }
4341
4342 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
4343 inst, failed, a->info.array.raid_disks, a->info.array.level);
fb49eef2 4344 if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED)
88758e9d
DW
4345 return NULL;
4346
4347 /* For each slot, if it is not working, find a spare */
88758e9d
DW
4348 for (i = 0; i < a->info.array.raid_disks; i++) {
4349 for (d = a->info.devs ; d ; d = d->next)
4350 if (d->disk.raid_disk == i)
4351 break;
4352 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
4353 if (d && (d->state_fd >= 0))
4354 continue;
4355
272906ef 4356 /*
a20d2ba5
DW
4357 * OK, this device needs recovery. Try to re-add the
4358 * previous occupant of this slot, if this fails see if
4359 * we can continue the assimilation of a spare that was
4360 * partially assimilated, finally try to activate a new
4361 * spare.
272906ef
DW
4362 */
4363 dl = imsm_readd(super, i, a);
4364 if (!dl)
a20d2ba5
DW
4365 dl = imsm_add_spare(super, i, a, 0);
4366 if (!dl)
4367 dl = imsm_add_spare(super, i, a, 1);
272906ef
DW
4368 if (!dl)
4369 continue;
4370
4371 /* found a usable disk with enough space */
4372 di = malloc(sizeof(*di));
79244939
DW
4373 if (!di)
4374 continue;
272906ef
DW
4375 memset(di, 0, sizeof(*di));
4376
4377 /* dl->index will be -1 in the case we are activating a
4378 * pristine spare. imsm_process_update() will create a
4379 * new index in this case. Once a disk is found to be
4380 * failed in all member arrays it is kicked from the
4381 * metadata
4382 */
4383 di->disk.number = dl->index;
d23fe947 4384
272906ef
DW
4385 /* (ab)use di->devs to store a pointer to the device
4386 * we chose
4387 */
4388 di->devs = (struct mdinfo *) dl;
4389
4390 di->disk.raid_disk = i;
4391 di->disk.major = dl->major;
4392 di->disk.minor = dl->minor;
4393 di->disk.state = 0;
4394 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
4395 di->component_size = a->info.component_size;
4396 di->container_member = inst;
148acb7b 4397 super->random = random32();
272906ef
DW
4398 di->next = rv;
4399 rv = di;
4400 num_spares++;
4401 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
4402 i, di->data_offset);
88758e9d 4403
272906ef 4404 break;
88758e9d
DW
4405 }
4406
4407 if (!rv)
4408 /* No spares found */
4409 return rv;
4410 /* Now 'rv' has a list of devices to return.
4411 * Create a metadata_update record to update the
4412 * disk_ord_tbl for the array
4413 */
4414 mu = malloc(sizeof(*mu));
79244939
DW
4415 if (mu) {
4416 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
4417 if (mu->buf == NULL) {
4418 free(mu);
4419 mu = NULL;
4420 }
4421 }
4422 if (!mu) {
4423 while (rv) {
4424 struct mdinfo *n = rv->next;
4425
4426 free(rv);
4427 rv = n;
4428 }
4429 return NULL;
4430 }
4431
88758e9d
DW
4432 mu->space = NULL;
4433 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
4434 mu->next = *updates;
4435 u = (struct imsm_update_activate_spare *) mu->buf;
4436
4437 for (di = rv ; di ; di = di->next) {
4438 u->type = update_activate_spare;
d23fe947
DW
4439 u->dl = (struct dl *) di->devs;
4440 di->devs = NULL;
88758e9d
DW
4441 u->slot = di->disk.raid_disk;
4442 u->array = inst;
4443 u->next = u + 1;
4444 u++;
4445 }
4446 (u-1)->next = NULL;
4447 *updates = mu;
4448
4449 return rv;
4450}
4451
54c2c1ea 4452static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
8273f55e 4453{
54c2c1ea
DW
4454 struct imsm_dev *dev = get_imsm_dev(super, idx);
4455 struct imsm_map *map = get_imsm_map(dev, 0);
4456 struct imsm_map *new_map = get_imsm_map(&u->dev, 0);
4457 struct disk_info *inf = get_disk_info(u);
4458 struct imsm_disk *disk;
8273f55e
DW
4459 int i;
4460 int j;
8273f55e 4461
54c2c1ea
DW
4462 for (i = 0; i < map->num_members; i++) {
4463 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i));
4464 for (j = 0; j < new_map->num_members; j++)
4465 if (serialcmp(disk->serial, inf[j].serial) == 0)
8273f55e
DW
4466 return 1;
4467 }
4468
4469 return 0;
4470}
4471
24565c9a 4472static void imsm_delete(struct intel_super *super, struct dl **dlp, int index);
ae6aad82 4473
e8319a19
DW
4474static void imsm_process_update(struct supertype *st,
4475 struct metadata_update *update)
4476{
4477 /**
4478 * crack open the metadata_update envelope to find the update record
4479 * update can be one of:
4480 * update_activate_spare - a spare device has replaced a failed
4481 * device in an array, update the disk_ord_tbl. If this disk is
4482 * present in all member arrays then also clear the SPARE_DISK
4483 * flag
4484 */
4485 struct intel_super *super = st->sb;
4d7b1503 4486 struct imsm_super *mpb;
e8319a19
DW
4487 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
4488
4d7b1503
DW
4489 /* update requires a larger buf but the allocation failed */
4490 if (super->next_len && !super->next_buf) {
4491 super->next_len = 0;
4492 return;
4493 }
4494
4495 if (super->next_buf) {
4496 memcpy(super->next_buf, super->buf, super->len);
4497 free(super->buf);
4498 super->len = super->next_len;
4499 super->buf = super->next_buf;
4500
4501 super->next_len = 0;
4502 super->next_buf = NULL;
4503 }
4504
4505 mpb = super->anchor;
4506
e8319a19
DW
4507 switch (type) {
4508 case update_activate_spare: {
4509 struct imsm_update_activate_spare *u = (void *) update->buf;
949c47a0 4510 struct imsm_dev *dev = get_imsm_dev(super, u->array);
a965f303 4511 struct imsm_map *map = get_imsm_map(dev, 0);
0c046afd 4512 struct imsm_map *migr_map;
e8319a19
DW
4513 struct active_array *a;
4514 struct imsm_disk *disk;
0c046afd 4515 __u8 to_state;
e8319a19 4516 struct dl *dl;
e8319a19 4517 unsigned int found;
0c046afd
DW
4518 int failed;
4519 int victim = get_imsm_disk_idx(dev, u->slot);
e8319a19
DW
4520 int i;
4521
4522 for (dl = super->disks; dl; dl = dl->next)
d23fe947 4523 if (dl == u->dl)
e8319a19
DW
4524 break;
4525
4526 if (!dl) {
4527 fprintf(stderr, "error: imsm_activate_spare passed "
1f24f035
DW
4528 "an unknown disk (index: %d)\n",
4529 u->dl->index);
e8319a19
DW
4530 return;
4531 }
4532
4533 super->updates_pending++;
4534
0c046afd
DW
4535 /* count failures (excluding rebuilds and the victim)
4536 * to determine map[0] state
4537 */
4538 failed = 0;
4539 for (i = 0; i < map->num_members; i++) {
4540 if (i == u->slot)
4541 continue;
4542 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i));
25ed7e59 4543 if (!disk || is_failed(disk))
0c046afd
DW
4544 failed++;
4545 }
4546
d23fe947
DW
4547 /* adding a pristine spare, assign a new index */
4548 if (dl->index < 0) {
4549 dl->index = super->anchor->num_disks;
4550 super->anchor->num_disks++;
4551 }
d23fe947 4552 disk = &dl->disk;
f2f27e63
DW
4553 disk->status |= CONFIGURED_DISK;
4554 disk->status &= ~SPARE_DISK;
e8319a19 4555
0c046afd
DW
4556 /* mark rebuild */
4557 to_state = imsm_check_degraded(super, dev, failed);
4558 map->map_state = IMSM_T_STATE_DEGRADED;
e3bba0e0 4559 migrate(dev, to_state, MIGR_REBUILD);
0c046afd
DW
4560 migr_map = get_imsm_map(dev, 1);
4561 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
4562 set_imsm_ord_tbl_ent(migr_map, u->slot, dl->index | IMSM_ORD_REBUILD);
4563
148acb7b
DW
4564 /* update the family_num to mark a new container
4565 * generation, being careful to record the existing
4566 * family_num in orig_family_num to clean up after
4567 * earlier mdadm versions that neglected to set it.
4568 */
4569 if (mpb->orig_family_num == 0)
4570 mpb->orig_family_num = mpb->family_num;
4571 mpb->family_num += super->random;
4572
e8319a19
DW
4573 /* count arrays using the victim in the metadata */
4574 found = 0;
4575 for (a = st->arrays; a ; a = a->next) {
949c47a0 4576 dev = get_imsm_dev(super, a->info.container_member);
620b1713
DW
4577 map = get_imsm_map(dev, 0);
4578
4579 if (get_imsm_disk_slot(map, victim) >= 0)
4580 found++;
e8319a19
DW
4581 }
4582
24565c9a 4583 /* delete the victim if it is no longer being
e8319a19
DW
4584 * utilized anywhere
4585 */
e8319a19 4586 if (!found) {
ae6aad82 4587 struct dl **dlp;
24565c9a 4588
47ee5a45
DW
4589 /* We know that 'manager' isn't touching anything,
4590 * so it is safe to delete
4591 */
24565c9a 4592 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
ae6aad82
DW
4593 if ((*dlp)->index == victim)
4594 break;
47ee5a45
DW
4595
4596 /* victim may be on the missing list */
4597 if (!*dlp)
4598 for (dlp = &super->missing; *dlp; dlp = &(*dlp)->next)
4599 if ((*dlp)->index == victim)
4600 break;
24565c9a 4601 imsm_delete(super, dlp, victim);
e8319a19 4602 }
8273f55e
DW
4603 break;
4604 }
4605 case update_create_array: {
4606 /* someone wants to create a new array, we need to be aware of
4607 * a few races/collisions:
4608 * 1/ 'Create' called by two separate instances of mdadm
4609 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
4610 * devices that have since been assimilated via
4611 * activate_spare.
4612 * In the event this update can not be carried out mdadm will
4613 * (FIX ME) notice that its update did not take hold.
4614 */
4615 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 4616 struct intel_dev *dv;
8273f55e
DW
4617 struct imsm_dev *dev;
4618 struct imsm_map *map, *new_map;
4619 unsigned long long start, end;
4620 unsigned long long new_start, new_end;
4621 int i;
54c2c1ea
DW
4622 struct disk_info *inf;
4623 struct dl *dl;
8273f55e
DW
4624
4625 /* handle racing creates: first come first serve */
4626 if (u->dev_idx < mpb->num_raid_devs) {
4627 dprintf("%s: subarray %d already defined\n",
4628 __func__, u->dev_idx);
ba2de7ba 4629 goto create_error;
8273f55e
DW
4630 }
4631
4632 /* check update is next in sequence */
4633 if (u->dev_idx != mpb->num_raid_devs) {
6a3e913e
DW
4634 dprintf("%s: can not create array %d expected index %d\n",
4635 __func__, u->dev_idx, mpb->num_raid_devs);
ba2de7ba 4636 goto create_error;
8273f55e
DW
4637 }
4638
a965f303 4639 new_map = get_imsm_map(&u->dev, 0);
8273f55e
DW
4640 new_start = __le32_to_cpu(new_map->pba_of_lba0);
4641 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
54c2c1ea 4642 inf = get_disk_info(u);
8273f55e
DW
4643
4644 /* handle activate_spare versus create race:
4645 * check to make sure that overlapping arrays do not include
4646 * overalpping disks
4647 */
4648 for (i = 0; i < mpb->num_raid_devs; i++) {
949c47a0 4649 dev = get_imsm_dev(super, i);
a965f303 4650 map = get_imsm_map(dev, 0);
8273f55e
DW
4651 start = __le32_to_cpu(map->pba_of_lba0);
4652 end = start + __le32_to_cpu(map->blocks_per_member);
4653 if ((new_start >= start && new_start <= end) ||
4654 (start >= new_start && start <= new_end))
54c2c1ea
DW
4655 /* overlap */;
4656 else
4657 continue;
4658
4659 if (disks_overlap(super, i, u)) {
8273f55e 4660 dprintf("%s: arrays overlap\n", __func__);
ba2de7ba 4661 goto create_error;
8273f55e
DW
4662 }
4663 }
8273f55e 4664
949c47a0
DW
4665 /* check that prepare update was successful */
4666 if (!update->space) {
4667 dprintf("%s: prepare update failed\n", __func__);
ba2de7ba 4668 goto create_error;
949c47a0
DW
4669 }
4670
54c2c1ea
DW
4671 /* check that all disks are still active before committing
4672 * changes. FIXME: could we instead handle this by creating a
4673 * degraded array? That's probably not what the user expects,
4674 * so better to drop this update on the floor.
4675 */
4676 for (i = 0; i < new_map->num_members; i++) {
4677 dl = serial_to_dl(inf[i].serial, super);
4678 if (!dl) {
4679 dprintf("%s: disk disappeared\n", __func__);
ba2de7ba 4680 goto create_error;
54c2c1ea 4681 }
949c47a0
DW
4682 }
4683
8273f55e 4684 super->updates_pending++;
54c2c1ea
DW
4685
4686 /* convert spares to members and fixup ord_tbl */
4687 for (i = 0; i < new_map->num_members; i++) {
4688 dl = serial_to_dl(inf[i].serial, super);
4689 if (dl->index == -1) {
4690 dl->index = mpb->num_disks;
4691 mpb->num_disks++;
4692 dl->disk.status |= CONFIGURED_DISK;
4693 dl->disk.status &= ~SPARE_DISK;
4694 }
4695 set_imsm_ord_tbl_ent(new_map, i, dl->index);
4696 }
4697
ba2de7ba
DW
4698 dv = update->space;
4699 dev = dv->dev;
949c47a0
DW
4700 update->space = NULL;
4701 imsm_copy_dev(dev, &u->dev);
ba2de7ba
DW
4702 dv->index = u->dev_idx;
4703 dv->next = super->devlist;
4704 super->devlist = dv;
8273f55e 4705 mpb->num_raid_devs++;
8273f55e 4706
4d1313e9 4707 imsm_update_version_info(super);
8273f55e 4708 break;
ba2de7ba
DW
4709 create_error:
4710 /* mdmon knows how to release update->space, but not
4711 * ((struct intel_dev *) update->space)->dev
4712 */
4713 if (update->space) {
4714 dv = update->space;
4715 free(dv->dev);
4716 }
8273f55e 4717 break;
e8319a19 4718 }
43dad3d6
DW
4719 case update_add_disk:
4720
4721 /* we may be able to repair some arrays if disks are
4722 * being added */
4723 if (super->add) {
4724 struct active_array *a;
072b727f
DW
4725
4726 super->updates_pending++;
43dad3d6
DW
4727 for (a = st->arrays; a; a = a->next)
4728 a->check_degraded = 1;
4729 }
e553d2a4 4730 /* add some spares to the metadata */
43dad3d6 4731 while (super->add) {
e553d2a4
DW
4732 struct dl *al;
4733
43dad3d6
DW
4734 al = super->add;
4735 super->add = al->next;
43dad3d6
DW
4736 al->next = super->disks;
4737 super->disks = al;
e553d2a4
DW
4738 dprintf("%s: added %x:%x\n",
4739 __func__, al->major, al->minor);
43dad3d6
DW
4740 }
4741
4742 break;
e8319a19
DW
4743 }
4744}
88758e9d 4745
8273f55e
DW
4746static void imsm_prepare_update(struct supertype *st,
4747 struct metadata_update *update)
4748{
949c47a0 4749 /**
4d7b1503
DW
4750 * Allocate space to hold new disk entries, raid-device entries or a new
4751 * mpb if necessary. The manager synchronously waits for updates to
4752 * complete in the monitor, so new mpb buffers allocated here can be
4753 * integrated by the monitor thread without worrying about live pointers
4754 * in the manager thread.
8273f55e 4755 */
949c47a0 4756 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
4d7b1503
DW
4757 struct intel_super *super = st->sb;
4758 struct imsm_super *mpb = super->anchor;
4759 size_t buf_len;
4760 size_t len = 0;
949c47a0
DW
4761
4762 switch (type) {
4763 case update_create_array: {
4764 struct imsm_update_create_array *u = (void *) update->buf;
ba2de7ba 4765 struct intel_dev *dv;
54c2c1ea
DW
4766 struct imsm_dev *dev = &u->dev;
4767 struct imsm_map *map = get_imsm_map(dev, 0);
4768 struct dl *dl;
4769 struct disk_info *inf;
4770 int i;
4771 int activate = 0;
949c47a0 4772
54c2c1ea
DW
4773 inf = get_disk_info(u);
4774 len = sizeof_imsm_dev(dev, 1);
ba2de7ba
DW
4775 /* allocate a new super->devlist entry */
4776 dv = malloc(sizeof(*dv));
4777 if (dv) {
4778 dv->dev = malloc(len);
4779 if (dv->dev)
4780 update->space = dv;
4781 else {
4782 free(dv);
4783 update->space = NULL;
4784 }
4785 }
949c47a0 4786
54c2c1ea
DW
4787 /* count how many spares will be converted to members */
4788 for (i = 0; i < map->num_members; i++) {
4789 dl = serial_to_dl(inf[i].serial, super);
4790 if (!dl) {
4791 /* hmm maybe it failed?, nothing we can do about
4792 * it here
4793 */
4794 continue;
4795 }
4796 if (count_memberships(dl, super) == 0)
4797 activate++;
4798 }
4799 len += activate * sizeof(struct imsm_disk);
949c47a0
DW
4800 break;
4801 default:
4802 break;
4803 }
4804 }
8273f55e 4805
4d7b1503
DW
4806 /* check if we need a larger metadata buffer */
4807 if (super->next_buf)
4808 buf_len = super->next_len;
4809 else
4810 buf_len = super->len;
4811
4812 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
4813 /* ok we need a larger buf than what is currently allocated
4814 * if this allocation fails process_update will notice that
4815 * ->next_len is set and ->next_buf is NULL
4816 */
4817 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
4818 if (super->next_buf)
4819 free(super->next_buf);
4820
4821 super->next_len = buf_len;
1f45a8ad
DW
4822 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
4823 memset(super->next_buf, 0, buf_len);
4824 else
4d7b1503
DW
4825 super->next_buf = NULL;
4826 }
8273f55e
DW
4827}
4828
ae6aad82 4829/* must be called while manager is quiesced */
24565c9a 4830static void imsm_delete(struct intel_super *super, struct dl **dlp, int index)
ae6aad82
DW
4831{
4832 struct imsm_super *mpb = super->anchor;
ae6aad82
DW
4833 struct dl *iter;
4834 struct imsm_dev *dev;
4835 struct imsm_map *map;
24565c9a
DW
4836 int i, j, num_members;
4837 __u32 ord;
ae6aad82 4838
24565c9a
DW
4839 dprintf("%s: deleting device[%d] from imsm_super\n",
4840 __func__, index);
ae6aad82
DW
4841
4842 /* shift all indexes down one */
4843 for (iter = super->disks; iter; iter = iter->next)
24565c9a 4844 if (iter->index > index)
ae6aad82 4845 iter->index--;
47ee5a45
DW
4846 for (iter = super->missing; iter; iter = iter->next)
4847 if (iter->index > index)
4848 iter->index--;
ae6aad82
DW
4849
4850 for (i = 0; i < mpb->num_raid_devs; i++) {
4851 dev = get_imsm_dev(super, i);
4852 map = get_imsm_map(dev, 0);
24565c9a
DW
4853 num_members = map->num_members;
4854 for (j = 0; j < num_members; j++) {
4855 /* update ord entries being careful not to propagate
4856 * ord-flags to the first map
4857 */
4858 ord = get_imsm_ord_tbl_ent(dev, j);
ae6aad82 4859
24565c9a
DW
4860 if (ord_to_idx(ord) <= index)
4861 continue;
ae6aad82 4862
24565c9a
DW
4863 map = get_imsm_map(dev, 0);
4864 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
4865 map = get_imsm_map(dev, 1);
4866 if (map)
4867 set_imsm_ord_tbl_ent(map, j, ord - 1);
ae6aad82
DW
4868 }
4869 }
4870
4871 mpb->num_disks--;
4872 super->updates_pending++;
24565c9a
DW
4873 if (*dlp) {
4874 struct dl *dl = *dlp;
4875
4876 *dlp = (*dlp)->next;
4877 __free_imsm_disk(dl);
4878 }
ae6aad82 4879}
0e600426 4880#endif /* MDASSEMBLE */
ae6aad82 4881
cdddbdbc
DW
4882struct superswitch super_imsm = {
4883#ifndef MDASSEMBLE
4884 .examine_super = examine_super_imsm,
4885 .brief_examine_super = brief_examine_super_imsm,
4737ae25 4886 .brief_examine_subarrays = brief_examine_subarrays_imsm,
9d84c8ea 4887 .export_examine_super = export_examine_super_imsm,
cdddbdbc
DW
4888 .detail_super = detail_super_imsm,
4889 .brief_detail_super = brief_detail_super_imsm,
bf5a934a 4890 .write_init_super = write_init_super_imsm,
0e600426
N
4891 .validate_geometry = validate_geometry_imsm,
4892 .add_to_super = add_to_super_imsm,
d665cc31 4893 .detail_platform = detail_platform_imsm,
cdddbdbc
DW
4894#endif
4895 .match_home = match_home_imsm,
4896 .uuid_from_super= uuid_from_super_imsm,
4897 .getinfo_super = getinfo_super_imsm,
4898 .update_super = update_super_imsm,
4899
4900 .avail_size = avail_size_imsm,
4901
4902 .compare_super = compare_super_imsm,
4903
4904 .load_super = load_super_imsm,
bf5a934a 4905 .init_super = init_super_imsm,
cdddbdbc
DW
4906 .store_super = store_zero_imsm,
4907 .free_super = free_super_imsm,
4908 .match_metadata_desc = match_metadata_desc_imsm,
bf5a934a 4909 .container_content = container_content_imsm,
a18a888e 4910 .default_layout = imsm_level_to_layout,
cdddbdbc 4911
cdddbdbc 4912 .external = 1,
4cce4069 4913 .name = "imsm",
845dea95 4914
0e600426 4915#ifndef MDASSEMBLE
845dea95
NB
4916/* for mdmon */
4917 .open_new = imsm_open_new,
4918 .load_super = load_super_imsm,
ed9d66aa 4919 .set_array_state= imsm_set_array_state,
845dea95
NB
4920 .set_disk = imsm_set_disk,
4921 .sync_metadata = imsm_sync_metadata,
88758e9d 4922 .activate_spare = imsm_activate_spare,
e8319a19 4923 .process_update = imsm_process_update,
8273f55e 4924 .prepare_update = imsm_prepare_update,
0e600426 4925#endif /* MDASSEMBLE */
cdddbdbc 4926};