]> git.ipfire.org Git - thirdparty/mdadm.git/blob - monitor.c
cfe41787f0f2e596502c43b181e9924c9c511eb6
[thirdparty/mdadm.git] / monitor.c
1 /*
2 * mdmon - monitor external metadata arrays
3 *
4 * Copyright (C) 2007-2009 Neil Brown <neilb@suse.de>
5 * Copyright (C) 2007-2009 Intel Corporation
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program; if not, write to the Free Software Foundation, Inc.,
18 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 */
20
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include <sys/syscall.h>
24 #include <sys/select.h>
25 #include <signal.h>
26
27 static char *array_states[] = {
28 "clear", "inactive", "suspended", "readonly", "read-auto",
29 "clean", "active", "write-pending", "active-idle", NULL };
30 static char *sync_actions[] = {
31 "idle", "reshape", "resync", "recover", "check", "repair", NULL
32 };
33
34 static int write_attr(char *attr, int fd)
35 {
36 return write(fd, attr, strlen(attr));
37 }
38
39 static void add_fd(fd_set *fds, int *maxfd, int fd)
40 {
41 if (fd < 0)
42 return;
43 if (fd > *maxfd)
44 *maxfd = fd;
45 FD_SET(fd, fds);
46 }
47
48 static int read_attr(char *buf, int len, int fd)
49 {
50 int n;
51
52 if (fd < 0) {
53 buf[0] = 0;
54 return 0;
55 }
56 lseek(fd, 0, 0);
57 n = read(fd, buf, len - 1);
58
59 if (n <= 0) {
60 buf[0] = 0;
61 return 0;
62 }
63 buf[n] = 0;
64 if (buf[n-1] == '\n')
65 buf[n-1] = 0;
66 return n;
67 }
68
69 static unsigned long long read_resync_start(int fd)
70 {
71 char buf[30];
72 int n;
73
74 n = read_attr(buf, 30, fd);
75 if (n <= 0)
76 return 0;
77 if (strncmp(buf, "none", 4) == 0)
78 return MaxSector;
79 else
80 return strtoull(buf, NULL, 10);
81 }
82
83 static unsigned long long read_sync_completed(int fd)
84 {
85 unsigned long long val;
86 char buf[50];
87 int n;
88 char *ep;
89
90 n = read_attr(buf, 50, fd);
91
92 if (n <= 0)
93 return 0;
94 buf[n] = 0;
95 val = strtoull(buf, &ep, 0);
96 if (ep == buf || (*ep != 0 && *ep != '\n' && *ep != ' '))
97 return 0;
98 return val;
99 }
100
101 static enum array_state read_state(int fd)
102 {
103 char buf[20];
104 int n = read_attr(buf, 20, fd);
105
106 if (n <= 0)
107 return bad_word;
108 return (enum array_state) sysfs_match_word(buf, array_states);
109 }
110
111 static enum sync_action read_action( int fd)
112 {
113 char buf[20];
114 int n = read_attr(buf, 20, fd);
115
116 if (n <= 0)
117 return bad_action;
118 return (enum sync_action) sysfs_match_word(buf, sync_actions);
119 }
120
121 int read_dev_state(int fd)
122 {
123 char buf[60];
124 int n = read_attr(buf, 60, fd);
125 char *cp;
126 int rv = 0;
127
128 if (n <= 0)
129 return 0;
130
131 cp = buf;
132 while (cp) {
133 if (sysfs_attr_match(cp, "faulty"))
134 rv |= DS_FAULTY;
135 if (sysfs_attr_match(cp, "in_sync"))
136 rv |= DS_INSYNC;
137 if (sysfs_attr_match(cp, "write_mostly"))
138 rv |= DS_WRITE_MOSTLY;
139 if (sysfs_attr_match(cp, "spare"))
140 rv |= DS_SPARE;
141 if (sysfs_attr_match(cp, "blocked"))
142 rv |= DS_BLOCKED;
143 cp = strchr(cp, ',');
144 if (cp)
145 cp++;
146 }
147 return rv;
148 }
149
150 static void signal_manager(void)
151 {
152 /* tgkill(getpid(), mon_tid, SIGUSR1); */
153 int pid = getpid();
154 syscall(SYS_tgkill, pid, mgr_tid, SIGUSR1);
155 }
156
157 /* Monitor a set of active md arrays - all of which share the
158 * same metadata - and respond to events that require
159 * metadata update.
160 *
161 * New arrays are detected by another thread which allocates
162 * required memory and attaches the data structure to our list.
163 *
164 * Events:
165 * Array stops.
166 * This is detected by array_state going to 'clear' or 'inactive'.
167 * while we thought it was active.
168 * Response is to mark metadata as clean and 'clear' the array(??)
169 * write-pending
170 * array_state if 'write-pending'
171 * We mark metadata as 'dirty' then set array to 'active'.
172 * active_idle
173 * Either ignore, or mark clean, then mark metadata as clean.
174 *
175 * device fails
176 * detected by rd-N/state reporting "faulty"
177 * mark device as 'failed' in metadata, let the kernel release the
178 * device by writing '-blocked' to rd/state, and finally write 'remove' to
179 * rd/state. Before a disk can be replaced it must be failed and removed
180 * from all container members, this will be preemptive for the other
181 * arrays... safe?
182 *
183 * sync completes
184 * sync_action was 'resync' and becomes 'idle' and resync_start becomes
185 * MaxSector
186 * Notify metadata that sync is complete.
187 *
188 * recovery completes
189 * sync_action changes from 'recover' to 'idle'
190 * Check each device state and mark metadata if 'faulty' or 'in_sync'.
191 *
192 * deal with resync
193 * This only happens on finding a new array... mdadm will have set
194 * 'resync_start' to the correct value. If 'resync_start' indicates that an
195 * resync needs to occur set the array to the 'active' state rather than the
196 * initial read-auto state.
197 *
198 *
199 *
200 * We wait for a change (poll/select) on array_state, sync_action, and
201 * each rd-X/state file.
202 * When we get any change, we check everything. So read each state file,
203 * then decide what to do.
204 *
205 * The core action is to write new metadata to all devices in the array.
206 * This is done at most once on any wakeup.
207 * After that we might:
208 * - update the array_state
209 * - set the role of some devices.
210 * - request a sync_action
211 *
212 */
213
214 #define ARRAY_DIRTY 1
215 static int read_and_act(struct active_array *a)
216 {
217 unsigned long long sync_completed;
218 int check_degraded = 0;
219 int check_reshape = 0;
220 int deactivate = 0;
221 struct mdinfo *mdi;
222 int ret = 0;
223 int count = 0;
224
225 a->next_state = bad_word;
226 a->next_action = bad_action;
227
228 a->curr_state = read_state(a->info.state_fd);
229 a->curr_action = read_action(a->action_fd);
230 a->info.resync_start = read_resync_start(a->resync_start_fd);
231 sync_completed = read_sync_completed(a->sync_completed_fd);
232 for (mdi = a->info.devs; mdi ; mdi = mdi->next) {
233 mdi->next_state = 0;
234 mdi->curr_state = 0;
235 if (mdi->state_fd >= 0) {
236 mdi->recovery_start = read_resync_start(mdi->recovery_fd);
237 mdi->curr_state = read_dev_state(mdi->state_fd);
238 }
239 }
240
241 if (a->curr_state > inactive &&
242 a->prev_state == inactive) {
243 /* array has been started
244 * possible that container operation has to be completed
245 */
246 a->container->ss->set_array_state(a, 0);
247 }
248 if (a->curr_state <= inactive &&
249 a->prev_state > inactive) {
250 /* array has been stopped */
251 a->container->ss->set_array_state(a, 1);
252 a->next_state = clear;
253 deactivate = 1;
254 }
255 if (a->curr_state == write_pending) {
256 a->container->ss->set_array_state(a, 0);
257 a->next_state = active;
258 ret |= ARRAY_DIRTY;
259 }
260 if (a->curr_state == active_idle) {
261 /* Set array to 'clean' FIRST, then mark clean
262 * in the metadata
263 */
264 a->next_state = clean;
265 ret |= ARRAY_DIRTY;
266 }
267 if (a->curr_state == clean) {
268 a->container->ss->set_array_state(a, 1);
269 }
270 if (a->curr_state == active ||
271 a->curr_state == suspended ||
272 a->curr_state == bad_word)
273 ret |= ARRAY_DIRTY;
274 if (a->curr_state == readonly) {
275 /* Well, I'm ready to handle things. If readonly
276 * wasn't requested, transition to read-auto.
277 */
278 char buf[64];
279 read_attr(buf, sizeof(buf), a->metadata_fd);
280 if (strncmp(buf, "external:-", 10) == 0) {
281 /* explicit request for readonly array. Leave it alone */
282 ;
283 } else {
284 if (a->container->ss->set_array_state(a, 2))
285 a->next_state = read_auto; /* array is clean */
286 else {
287 a->next_state = active; /* Now active for recovery etc */
288 ret |= ARRAY_DIRTY;
289 }
290 }
291 }
292
293 if (!deactivate &&
294 a->curr_action == idle &&
295 a->prev_action == resync) {
296 /* A resync has finished. The endpoint is recorded in
297 * 'sync_start'. We don't update the metadata
298 * until the array goes inactive or readonly though.
299 * Just check if we need to fiddle spares.
300 */
301 a->container->ss->set_array_state(a, a->curr_state <= clean);
302 check_degraded = 1;
303 }
304
305 if (!deactivate &&
306 a->curr_action == idle &&
307 a->prev_action == recover) {
308 /* A recovery has finished. Some disks may be in sync now,
309 * and the array may no longer be degraded
310 */
311 for (mdi = a->info.devs ; mdi ; mdi = mdi->next) {
312 a->container->ss->set_disk(a, mdi->disk.raid_disk,
313 mdi->curr_state);
314 if (! (mdi->curr_state & DS_INSYNC))
315 check_degraded = 1;
316 count++;
317 }
318 if (count != a->info.array.raid_disks)
319 check_degraded = 1;
320 }
321
322 if (!deactivate &&
323 a->curr_action == reshape &&
324 a->prev_action != reshape)
325 /* reshape was requested by mdadm. Need to see if
326 * new devices have been added. Manager does that
327 * when it sees check_reshape
328 */
329 check_reshape = 1;
330
331 /* Check for failures and if found:
332 * 1/ Record the failure in the metadata and unblock the device.
333 * FIXME update the kernel to stop notifying on failed drives when
334 * the array is readonly and we have cleared 'blocked'
335 * 2/ Try to remove the device if the array is writable, or can be
336 * made writable.
337 */
338 for (mdi = a->info.devs ; mdi ; mdi = mdi->next) {
339 if (mdi->curr_state & DS_FAULTY) {
340 a->container->ss->set_disk(a, mdi->disk.raid_disk,
341 mdi->curr_state);
342 check_degraded = 1;
343 if (mdi->curr_state & DS_BLOCKED)
344 mdi->next_state |= DS_UNBLOCK;
345 if (a->curr_state == read_auto) {
346 a->container->ss->set_array_state(a, 0);
347 a->next_state = active;
348 }
349 if (a->curr_state > readonly)
350 mdi->next_state |= DS_REMOVE;
351 }
352 }
353
354 /* Check for recovery checkpoint notifications. We need to be a
355 * minimum distance away from the last checkpoint to prevent
356 * over checkpointing. Note reshape checkpointing is handled
357 * in the second branch.
358 */
359 if (sync_completed > a->last_checkpoint &&
360 sync_completed - a->last_checkpoint > a->info.component_size >> 4 &&
361 a->curr_action > reshape) {
362 /* A (non-reshape) sync_action has reached a checkpoint.
363 * Record the updated position in the metadata
364 */
365 a->last_checkpoint = sync_completed;
366 a->container->ss->set_array_state(a, a->curr_state <= clean);
367 } else if ((a->curr_action == idle && a->prev_action == reshape) ||
368 (a->curr_action == reshape
369 && sync_completed > a->last_checkpoint) ) {
370 /* Reshape has progressed or completed so we need to
371 * update the array state - and possibly the array size
372 */
373 if (sync_completed != 0)
374 a->last_checkpoint = sync_completed;
375 /* We might need to update last_checkpoint depending on
376 * the reason that reshape finished.
377 * if array reshape is really finished:
378 * set check point to the end, this allows
379 * set_array_state() to finalize reshape in metadata
380 * if reshape if broken: do not set checkpoint to the end
381 * this allows for reshape restart from checkpoint
382 */
383 if ((a->curr_action != reshape) &&
384 (a->prev_action == reshape)) {
385 char buf[40];
386 if ((sysfs_get_str(&a->info, NULL,
387 "reshape_position",
388 buf,
389 sizeof(buf)) >= 0) &&
390 strncmp(buf, "none", 4) == 0)
391 a->last_checkpoint = a->info.component_size;
392 }
393 a->container->ss->set_array_state(a, a->curr_state <= clean);
394 a->last_checkpoint = sync_completed;
395 }
396
397 if (sync_completed > a->last_checkpoint)
398 a->last_checkpoint = sync_completed;
399
400 a->container->ss->sync_metadata(a->container);
401 dprintf("%s(%d): state:%s action:%s next(", __func__, a->info.container_member,
402 array_states[a->curr_state], sync_actions[a->curr_action]);
403
404 /* Effect state changes in the array */
405 if (a->next_state != bad_word) {
406 dprintf(" state:%s", array_states[a->next_state]);
407 write_attr(array_states[a->next_state], a->info.state_fd);
408 }
409 if (a->next_action != bad_action) {
410 write_attr(sync_actions[a->next_action], a->action_fd);
411 dprintf(" action:%s", sync_actions[a->next_action]);
412 }
413 for (mdi = a->info.devs; mdi ; mdi = mdi->next) {
414 if (mdi->next_state & DS_UNBLOCK) {
415 dprintf(" %d:-blocked", mdi->disk.raid_disk);
416 write_attr("-blocked", mdi->state_fd);
417 }
418
419 if ((mdi->next_state & DS_REMOVE) && mdi->state_fd >= 0) {
420 int remove_result;
421
422 /* the kernel may not be able to immediately remove the
423 * disk, we can simply wait until the next event to try
424 * again.
425 */
426 remove_result = write_attr("remove", mdi->state_fd);
427 if (remove_result > 0) {
428 dprintf(" %d:removed", mdi->disk.raid_disk);
429 close(mdi->state_fd);
430 close(mdi->recovery_fd);
431 mdi->state_fd = -1;
432 }
433 }
434 if (mdi->next_state & DS_INSYNC) {
435 write_attr("+in_sync", mdi->state_fd);
436 dprintf(" %d:+in_sync", mdi->disk.raid_disk);
437 }
438 }
439 dprintf(" )\n");
440
441 /* move curr_ to prev_ */
442 a->prev_state = a->curr_state;
443
444 a->prev_action = a->curr_action;
445
446 for (mdi = a->info.devs; mdi ; mdi = mdi->next) {
447 mdi->prev_state = mdi->curr_state;
448 mdi->next_state = 0;
449 }
450
451 if (check_degraded || check_reshape) {
452 /* manager will do the actual check */
453 if (check_degraded)
454 a->check_degraded = 1;
455 if (check_reshape)
456 a->check_reshape = 1;
457 signal_manager();
458 }
459
460 if (deactivate)
461 a->container = NULL;
462
463 return ret;
464 }
465
466 static struct mdinfo *
467 find_device(struct active_array *a, int major, int minor)
468 {
469 struct mdinfo *mdi;
470
471 for (mdi = a->info.devs ; mdi ; mdi = mdi->next)
472 if (mdi->disk.major == major && mdi->disk.minor == minor)
473 return mdi;
474
475 return NULL;
476 }
477
478 static void reconcile_failed(struct active_array *aa, struct mdinfo *failed)
479 {
480 struct active_array *a;
481 struct mdinfo *victim;
482
483 for (a = aa; a; a = a->next) {
484 if (!a->container || a->to_remove)
485 continue;
486 victim = find_device(a, failed->disk.major, failed->disk.minor);
487 if (!victim)
488 continue;
489
490 if (!(victim->curr_state & DS_FAULTY))
491 write_attr("faulty", victim->state_fd);
492 }
493 }
494
495 #ifdef DEBUG
496 static void dprint_wake_reasons(fd_set *fds)
497 {
498 int i;
499 char proc_path[256];
500 char link[256];
501 char *basename;
502 int rv;
503
504 fprintf(stderr, "monitor: wake ( ");
505 for (i = 0; i < FD_SETSIZE; i++) {
506 if (FD_ISSET(i, fds)) {
507 sprintf(proc_path, "/proc/%d/fd/%d",
508 (int) getpid(), i);
509
510 rv = readlink(proc_path, link, sizeof(link) - 1);
511 if (rv < 0) {
512 fprintf(stderr, "%d:unknown ", i);
513 continue;
514 }
515 link[rv] = '\0';
516 basename = strrchr(link, '/');
517 fprintf(stderr, "%d:%s ",
518 i, basename ? ++basename : link);
519 }
520 }
521 fprintf(stderr, ")\n");
522 }
523 #endif
524
525 int monitor_loop_cnt;
526
527 static int wait_and_act(struct supertype *container, int nowait)
528 {
529 fd_set rfds;
530 int maxfd = 0;
531 struct active_array **aap = &container->arrays;
532 struct active_array *a, **ap;
533 int rv;
534 struct mdinfo *mdi;
535 static unsigned int dirty_arrays = ~0; /* start at some non-zero value */
536
537 FD_ZERO(&rfds);
538
539 for (ap = aap ; *ap ;) {
540 a = *ap;
541 /* once an array has been deactivated we want to
542 * ask the manager to discard it.
543 */
544 if (!a->container || a->to_remove) {
545 if (discard_this) {
546 ap = &(*ap)->next;
547 continue;
548 }
549 *ap = a->next;
550 a->next = NULL;
551 discard_this = a;
552 signal_manager();
553 continue;
554 }
555
556 add_fd(&rfds, &maxfd, a->info.state_fd);
557 add_fd(&rfds, &maxfd, a->action_fd);
558 add_fd(&rfds, &maxfd, a->sync_completed_fd);
559 for (mdi = a->info.devs ; mdi ; mdi = mdi->next)
560 add_fd(&rfds, &maxfd, mdi->state_fd);
561
562 ap = &(*ap)->next;
563 }
564
565 if (manager_ready && (*aap == NULL || (sigterm && !dirty_arrays))) {
566 /* No interesting arrays, or we have been told to
567 * terminate and everything is clean. Lets see about
568 * exiting. Note that blocking at this point is not a
569 * problem as there are no active arrays, there is
570 * nothing that we need to be ready to do.
571 */
572 int fd;
573 if (sigterm)
574 fd = open_dev_excl(container->devnum);
575 else
576 fd = open_dev_flags(container->devnum, O_RDONLY|O_EXCL);
577 if (fd >= 0 || errno != EBUSY) {
578 /* OK, we are safe to leave */
579 if (sigterm && !dirty_arrays)
580 dprintf("caught sigterm, all clean... exiting\n");
581 else
582 dprintf("no arrays to monitor... exiting\n");
583 if (!sigterm)
584 /* On SIGTERM, someone (the take-over mdmon) will
585 * clean up
586 */
587 remove_pidfile(container->devname);
588 exit_now = 1;
589 signal_manager();
590 close(fd);
591 exit(0);
592 }
593 }
594
595 if (!nowait) {
596 sigset_t set;
597 struct timespec ts;
598 ts.tv_sec = 24*3600;
599 ts.tv_nsec = 0;
600 if (*aap == NULL) {
601 /* just waiting to get O_EXCL access */
602 ts.tv_sec = 0;
603 ts.tv_nsec = 20000000ULL;
604 }
605 sigprocmask(SIG_UNBLOCK, NULL, &set);
606 sigdelset(&set, SIGUSR1);
607 monitor_loop_cnt |= 1;
608 rv = pselect(maxfd+1, NULL, NULL, &rfds, &ts, &set);
609 monitor_loop_cnt += 1;
610 if (rv == -1 && errno == EINTR)
611 rv = 0;
612 #ifdef DEBUG
613 dprint_wake_reasons(&rfds);
614 #endif
615
616 }
617
618 if (update_queue) {
619 struct metadata_update *this;
620
621 for (this = update_queue; this ; this = this->next)
622 container->ss->process_update(container, this);
623
624 update_queue_handled = update_queue;
625 update_queue = NULL;
626 signal_manager();
627 container->ss->sync_metadata(container);
628 }
629
630 rv = 0;
631 dirty_arrays = 0;
632 for (a = *aap; a ; a = a->next) {
633
634 if (a->replaces && !discard_this) {
635 struct active_array **ap;
636 for (ap = &a->next; *ap && *ap != a->replaces;
637 ap = & (*ap)->next)
638 ;
639 if (*ap)
640 *ap = (*ap)->next;
641 discard_this = a->replaces;
642 a->replaces = NULL;
643 /* FIXME check if device->state_fd need to be cleared?*/
644 signal_manager();
645 }
646 if (a->container && !a->to_remove) {
647 int ret = read_and_act(a);
648 rv |= 1;
649 dirty_arrays += !!(ret & ARRAY_DIRTY);
650 /* when terminating stop manipulating the array after it
651 * is clean, but make sure read_and_act() is given a
652 * chance to handle 'active_idle'
653 */
654 if (sigterm && !(ret & ARRAY_DIRTY))
655 a->container = NULL; /* stop touching this array */
656 }
657 }
658
659 /* propagate failures across container members */
660 for (a = *aap; a ; a = a->next) {
661 if (!a->container || a->to_remove)
662 continue;
663 for (mdi = a->info.devs ; mdi ; mdi = mdi->next)
664 if (mdi->curr_state & DS_FAULTY)
665 reconcile_failed(*aap, mdi);
666 }
667
668 return rv;
669 }
670
671 void do_monitor(struct supertype *container)
672 {
673 int rv;
674 int first = 1;
675 do {
676 rv = wait_and_act(container, first);
677 first = 0;
678 } while (rv >= 0);
679 }