]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
6a664a2e58d3232581225178030fc87d1a783600
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2008 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "dlink.h"
24 #include "sha1.h"
25 #include "platform-intel.h"
26 #include <values.h>
27 #include <scsi/sg.h>
28 #include <ctype.h>
29 #include <dirent.h>
30
31 /* MPB == Metadata Parameter Block */
32 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
33 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
34 #define MPB_VERSION_RAID0 "1.0.00"
35 #define MPB_VERSION_RAID1 "1.1.00"
36 #define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
37 #define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
38 #define MPB_VERSION_RAID5 "1.2.02"
39 #define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
40 #define MPB_VERSION_CNG "1.2.06"
41 #define MPB_VERSION_ATTRIBS "1.3.00"
42 #define MAX_SIGNATURE_LENGTH 32
43 #define MAX_RAID_SERIAL_LEN 16
44
45 /* supports RAID0 */
46 #define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
47 /* supports RAID1 */
48 #define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
49 /* supports RAID10 */
50 #define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
51 /* supports RAID1E */
52 #define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
53 /* supports RAID5 */
54 #define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
55 /* supports RAID CNG */
56 #define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
57 /* supports expanded stripe sizes of 256K, 512K and 1MB */
58 #define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
59
60 /* The OROM Support RST Caching of Volumes */
61 #define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
62 /* The OROM supports creating disks greater than 2TB */
63 #define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
64 /* The OROM supports Bad Block Management */
65 #define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
66
67 /* THe OROM Supports NVM Caching of Volumes */
68 #define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
69 /* The OROM supports creating volumes greater than 2TB */
70 #define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
71 /* originally for PMP, now it's wasted b/c. Never use this bit! */
72 #define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
73 /* Verify MPB contents against checksum after reading MPB */
74 #define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
75
76 /* Define all supported attributes that have to be accepted by mdadm
77 */
78 #define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
79 MPB_ATTRIB_2TB | \
80 MPB_ATTRIB_2TB_DISK | \
81 MPB_ATTRIB_RAID0 | \
82 MPB_ATTRIB_RAID1 | \
83 MPB_ATTRIB_RAID10 | \
84 MPB_ATTRIB_RAID5 | \
85 MPB_ATTRIB_EXP_STRIPE_SIZE | \
86 MPB_ATTRIB_BBM)
87
88 /* Define attributes that are unused but not harmful */
89 #define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
90
91 #define MPB_SECTOR_CNT 2210
92 #define IMSM_RESERVED_SECTORS 8192
93 #define NUM_BLOCKS_DIRTY_STRIPE_REGION 2048
94 #define SECT_PER_MB_SHIFT 11
95 #define MAX_SECTOR_SIZE 4096
96 #define MULTIPLE_PPL_AREA_SIZE_IMSM (1024 * 1024) /* Size of the whole
97 * mutliple PPL area
98 */
99
100 /*
101 * Internal Write-intent bitmap is stored in the same area where PPL.
102 * Both features are mutually exclusive, so it is not an issue.
103 * The first 8KiB of the area are reserved and shall not be used.
104 */
105 #define IMSM_BITMAP_AREA_RESERVED_SIZE 8192
106
107 #define IMSM_BITMAP_HEADER_OFFSET (IMSM_BITMAP_AREA_RESERVED_SIZE)
108 #define IMSM_BITMAP_HEADER_SIZE MAX_SECTOR_SIZE
109
110 #define IMSM_BITMAP_START_OFFSET (IMSM_BITMAP_HEADER_OFFSET + IMSM_BITMAP_HEADER_SIZE)
111 #define IMSM_BITMAP_AREA_SIZE (MULTIPLE_PPL_AREA_SIZE_IMSM - IMSM_BITMAP_START_OFFSET)
112 #define IMSM_BITMAP_AND_HEADER_SIZE (IMSM_BITMAP_AREA_SIZE + IMSM_BITMAP_HEADER_SIZE)
113
114 #define IMSM_DEFAULT_BITMAP_CHUNKSIZE (64 * 1024 * 1024)
115 #define IMSM_DEFAULT_BITMAP_DAEMON_SLEEP 5
116
117 /*
118 * This macro let's us ensure that no-one accidentally
119 * changes the size of a struct
120 */
121 #define ASSERT_SIZE(_struct, size) \
122 static inline void __assert_size_##_struct(void) \
123 { \
124 switch (0) { \
125 case 0: break; \
126 case (sizeof(struct _struct) == size): break; \
127 } \
128 }
129
130 /* Disk configuration info. */
131 #define IMSM_MAX_DEVICES 255
132 struct imsm_disk {
133 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
134 __u32 total_blocks_lo; /* 0xE8 - 0xEB total blocks lo */
135 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
136 #define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
137 #define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
138 #define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
139 #define JOURNAL_DISK __cpu_to_le32(0x2000000) /* Device marked as Journaling Drive */
140 __u32 status; /* 0xF0 - 0xF3 */
141 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
142 __u32 total_blocks_hi; /* 0xF4 - 0xF5 total blocks hi */
143 #define IMSM_DISK_FILLERS 3
144 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF5 - 0x107 MPB_DISK_FILLERS for future expansion */
145 };
146 ASSERT_SIZE(imsm_disk, 48)
147
148 /* map selector for map managment
149 */
150 #define MAP_0 0
151 #define MAP_1 1
152 #define MAP_X -1
153
154 /* RAID map configuration infos. */
155 struct imsm_map {
156 __u32 pba_of_lba0_lo; /* start address of partition */
157 __u32 blocks_per_member_lo;/* blocks per member */
158 __u32 num_data_stripes_lo; /* number of data stripes */
159 __u16 blocks_per_strip;
160 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
161 #define IMSM_T_STATE_NORMAL 0
162 #define IMSM_T_STATE_UNINITIALIZED 1
163 #define IMSM_T_STATE_DEGRADED 2
164 #define IMSM_T_STATE_FAILED 3
165 __u8 raid_level;
166 #define IMSM_T_RAID0 0
167 #define IMSM_T_RAID1 1
168 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
169 __u8 num_members; /* number of member disks */
170 __u8 num_domains; /* number of parity domains */
171 __u8 failed_disk_num; /* valid only when state is degraded */
172 __u8 ddf;
173 __u32 pba_of_lba0_hi;
174 __u32 blocks_per_member_hi;
175 __u32 num_data_stripes_hi;
176 __u32 filler[4]; /* expansion area */
177 #define IMSM_ORD_REBUILD (1 << 24)
178 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
179 * top byte contains some flags
180 */
181 };
182 ASSERT_SIZE(imsm_map, 52)
183
184 struct imsm_vol {
185 __u32 curr_migr_unit_lo;
186 __u32 checkpoint_id; /* id to access curr_migr_unit */
187 __u8 migr_state; /* Normal or Migrating */
188 #define MIGR_INIT 0
189 #define MIGR_REBUILD 1
190 #define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
191 #define MIGR_GEN_MIGR 3
192 #define MIGR_STATE_CHANGE 4
193 #define MIGR_REPAIR 5
194 __u8 migr_type; /* Initializing, Rebuilding, ... */
195 #define RAIDVOL_CLEAN 0
196 #define RAIDVOL_DIRTY 1
197 #define RAIDVOL_DSRECORD_VALID 2
198 __u8 dirty;
199 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
200 __u16 verify_errors; /* number of mismatches */
201 __u16 bad_blocks; /* number of bad blocks during verify */
202 __u32 curr_migr_unit_hi;
203 __u32 filler[3];
204 struct imsm_map map[1];
205 /* here comes another one if migr_state */
206 };
207 ASSERT_SIZE(imsm_vol, 84)
208
209 struct imsm_dev {
210 __u8 volume[MAX_RAID_SERIAL_LEN];
211 __u32 size_low;
212 __u32 size_high;
213 #define DEV_BOOTABLE __cpu_to_le32(0x01)
214 #define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
215 #define DEV_READ_COALESCING __cpu_to_le32(0x04)
216 #define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
217 #define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
218 #define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
219 #define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
220 #define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
221 #define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
222 #define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
223 #define DEV_CLONE_N_GO __cpu_to_le32(0x400)
224 #define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
225 #define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
226 __u32 status; /* Persistent RaidDev status */
227 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
228 __u8 migr_priority;
229 __u8 num_sub_vols;
230 __u8 tid;
231 __u8 cng_master_disk;
232 __u16 cache_policy;
233 __u8 cng_state;
234 __u8 cng_sub_state;
235 __u16 my_vol_raid_dev_num; /* Used in Unique volume Id for this RaidDev */
236
237 /* NVM_EN */
238 __u8 nv_cache_mode;
239 __u8 nv_cache_flags;
240
241 /* Unique Volume Id of the NvCache Volume associated with this volume */
242 __u32 nvc_vol_orig_family_num;
243 __u16 nvc_vol_raid_dev_num;
244
245 #define RWH_OFF 0
246 #define RWH_DISTRIBUTED 1
247 #define RWH_JOURNALING_DRIVE 2
248 #define RWH_MULTIPLE_DISTRIBUTED 3
249 #define RWH_MULTIPLE_PPLS_JOURNALING_DRIVE 4
250 #define RWH_MULTIPLE_OFF 5
251 #define RWH_BITMAP 6
252 __u8 rwh_policy; /* Raid Write Hole Policy */
253 __u8 jd_serial[MAX_RAID_SERIAL_LEN]; /* Journal Drive serial number */
254 __u8 filler1;
255
256 #define IMSM_DEV_FILLERS 3
257 __u32 filler[IMSM_DEV_FILLERS];
258 struct imsm_vol vol;
259 };
260 ASSERT_SIZE(imsm_dev, 164)
261
262 struct imsm_super {
263 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
264 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
265 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
266 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
267 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
268 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
269 __u32 attributes; /* 0x34 - 0x37 */
270 __u8 num_disks; /* 0x38 Number of configured disks */
271 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
272 __u8 error_log_pos; /* 0x3A */
273 __u8 fill[1]; /* 0x3B */
274 __u32 cache_size; /* 0x3c - 0x40 in mb */
275 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
276 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
277 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
278 __u16 num_raid_devs_created; /* 0x4C - 0x4D Used for generating unique
279 * volume IDs for raid_dev created in this array
280 * (starts at 1)
281 */
282 __u16 filler1; /* 0x4E - 0x4F */
283 __u64 creation_time; /* 0x50 - 0x57 Array creation time */
284 #define IMSM_FILLERS 32
285 __u32 filler[IMSM_FILLERS]; /* 0x58 - 0xD7 RAID_MPB_FILLERS */
286 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
287 /* here comes imsm_dev[num_raid_devs] */
288 /* here comes BBM logs */
289 };
290 ASSERT_SIZE(imsm_super, 264)
291
292 #define BBM_LOG_MAX_ENTRIES 254
293 #define BBM_LOG_MAX_LBA_ENTRY_VAL 256 /* Represents 256 LBAs */
294 #define BBM_LOG_SIGNATURE 0xabadb10c
295
296 struct bbm_log_block_addr {
297 __u16 w1;
298 __u32 dw1;
299 } __attribute__ ((__packed__));
300
301 struct bbm_log_entry {
302 __u8 marked_count; /* Number of blocks marked - 1 */
303 __u8 disk_ordinal; /* Disk entry within the imsm_super */
304 struct bbm_log_block_addr defective_block_start;
305 } __attribute__ ((__packed__));
306
307 struct bbm_log {
308 __u32 signature; /* 0xABADB10C */
309 __u32 entry_count;
310 struct bbm_log_entry marked_block_entries[BBM_LOG_MAX_ENTRIES];
311 };
312 ASSERT_SIZE(bbm_log, 2040)
313
314 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
315
316 #define BLOCKS_PER_KB (1024/512)
317
318 #define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
319
320 #define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
321
322 #define MIGR_REC_BUF_SECTORS 1 /* size of migr_record i/o buffer in sectors */
323 #define MIGR_REC_SECTOR_POSITION 1 /* migr_record position offset on disk,
324 * MIGR_REC_BUF_SECTORS <= MIGR_REC_SECTOR_POS
325 */
326
327 #define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
328 * be recovered using srcMap */
329 #define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
330 * already been migrated and must
331 * be recovered from checkpoint area */
332
333 #define PPL_ENTRY_SPACE (128 * 1024) /* Size of single PPL, without the header */
334
335 struct migr_record {
336 __u32 rec_status; /* Status used to determine how to restart
337 * migration in case it aborts
338 * in some fashion */
339 __u32 curr_migr_unit_lo; /* 0..numMigrUnits-1 */
340 __u32 family_num; /* Family number of MPB
341 * containing the RaidDev
342 * that is migrating */
343 __u32 ascending_migr; /* True if migrating in increasing
344 * order of lbas */
345 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
346 __u32 dest_depth_per_unit; /* Num member blocks each destMap
347 * member disk
348 * advances per unit-of-operation */
349 __u32 ckpt_area_pba_lo; /* Pba of first block of ckpt copy area */
350 __u32 dest_1st_member_lba_lo; /* First member lba on first
351 * stripe of destination */
352 __u32 num_migr_units_lo; /* Total num migration units-of-op */
353 __u32 post_migr_vol_cap; /* Size of volume after
354 * migration completes */
355 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
356 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
357 * migration ckpt record was read from
358 * (for recovered migrations) */
359 __u32 curr_migr_unit_hi; /* 0..numMigrUnits-1 high order 32 bits */
360 __u32 ckpt_area_pba_hi; /* Pba of first block of ckpt copy area
361 * high order 32 bits */
362 __u32 dest_1st_member_lba_hi; /* First member lba on first stripe of
363 * destination - high order 32 bits */
364 __u32 num_migr_units_hi; /* Total num migration units-of-op
365 * high order 32 bits */
366 __u32 filler[16];
367 };
368 ASSERT_SIZE(migr_record, 128)
369
370 /**
371 * enum imsm_status - internal IMSM return values representation.
372 * @STATUS_OK: function succeeded.
373 * @STATUS_ERROR: General error ocurred (not specified).
374 *
375 * Typedefed to imsm_status_t.
376 */
377 typedef enum imsm_status {
378 IMSM_STATUS_ERROR = -1,
379 IMSM_STATUS_OK = 0,
380 } imsm_status_t;
381
382 struct md_list {
383 /* usage marker:
384 * 1: load metadata
385 * 2: metadata does not match
386 * 4: already checked
387 */
388 int used;
389 char *devname;
390 int found;
391 int container;
392 dev_t st_rdev;
393 struct md_list *next;
394 };
395
396 #define pr_vrb(fmt, arg...) (void) (verbose && pr_err(fmt, ##arg))
397
398 static __u8 migr_type(struct imsm_dev *dev)
399 {
400 if (dev->vol.migr_type == MIGR_VERIFY &&
401 dev->status & DEV_VERIFY_AND_FIX)
402 return MIGR_REPAIR;
403 else
404 return dev->vol.migr_type;
405 }
406
407 static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
408 {
409 /* for compatibility with older oroms convert MIGR_REPAIR, into
410 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
411 */
412 if (migr_type == MIGR_REPAIR) {
413 dev->vol.migr_type = MIGR_VERIFY;
414 dev->status |= DEV_VERIFY_AND_FIX;
415 } else {
416 dev->vol.migr_type = migr_type;
417 dev->status &= ~DEV_VERIFY_AND_FIX;
418 }
419 }
420
421 static unsigned int sector_count(__u32 bytes, unsigned int sector_size)
422 {
423 return ROUND_UP(bytes, sector_size) / sector_size;
424 }
425
426 static unsigned int mpb_sectors(struct imsm_super *mpb,
427 unsigned int sector_size)
428 {
429 return sector_count(__le32_to_cpu(mpb->mpb_size), sector_size);
430 }
431
432 struct intel_dev {
433 struct imsm_dev *dev;
434 struct intel_dev *next;
435 unsigned index;
436 };
437
438 struct intel_hba {
439 enum sys_dev_type type;
440 char *path;
441 char *pci_id;
442 struct intel_hba *next;
443 };
444
445 enum action {
446 DISK_REMOVE = 1,
447 DISK_ADD
448 };
449 /* internal representation of IMSM metadata */
450 struct intel_super {
451 union {
452 void *buf; /* O_DIRECT buffer for reading/writing metadata */
453 struct imsm_super *anchor; /* immovable parameters */
454 };
455 union {
456 void *migr_rec_buf; /* buffer for I/O operations */
457 struct migr_record *migr_rec; /* migration record */
458 };
459 int clean_migration_record_by_mdmon; /* when reshape is switched to next
460 array, it indicates that mdmon is allowed to clean migration
461 record */
462 size_t len; /* size of the 'buf' allocation */
463 size_t extra_space; /* extra space in 'buf' that is not used yet */
464 void *next_buf; /* for realloc'ing buf from the manager */
465 size_t next_len;
466 int updates_pending; /* count of pending updates for mdmon */
467 int current_vol; /* index of raid device undergoing creation */
468 unsigned long long create_offset; /* common start for 'current_vol' */
469 __u32 random; /* random data for seeding new family numbers */
470 struct intel_dev *devlist;
471 unsigned int sector_size; /* sector size of used member drives */
472 struct dl {
473 struct dl *next;
474 int index;
475 __u8 serial[MAX_RAID_SERIAL_LEN];
476 int major, minor;
477 char *devname;
478 struct imsm_disk disk;
479 int fd;
480 int extent_cnt;
481 struct extent *e; /* for determining freespace @ create */
482 int raiddisk; /* slot to fill in autolayout */
483 enum action action;
484 } *disks, *current_disk;
485 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
486 active */
487 struct dl *missing; /* disks removed while we weren't looking */
488 struct bbm_log *bbm_log;
489 struct intel_hba *hba; /* device path of the raid controller for this metadata */
490 const struct imsm_orom *orom; /* platform firmware support */
491 struct intel_super *next; /* (temp) list for disambiguating family_num */
492 struct md_bb bb; /* memory for get_bad_blocks call */
493 };
494
495 struct intel_disk {
496 struct imsm_disk disk;
497 #define IMSM_UNKNOWN_OWNER (-1)
498 int owner;
499 struct intel_disk *next;
500 };
501
502 /**
503 * struct extent - reserved space details.
504 * @start: start offset.
505 * @size: size of reservation, set to 0 for metadata reservation.
506 * @vol: index of the volume, meaningful if &size is set.
507 */
508 struct extent {
509 unsigned long long start, size;
510 int vol;
511 };
512
513 /* definitions of reshape process types */
514 enum imsm_reshape_type {
515 CH_TAKEOVER,
516 CH_MIGRATION,
517 CH_ARRAY_SIZE,
518 };
519
520 /* definition of messages passed to imsm_process_update */
521 enum imsm_update_type {
522 update_activate_spare,
523 update_create_array,
524 update_kill_array,
525 update_rename_array,
526 update_add_remove_disk,
527 update_reshape_container_disks,
528 update_reshape_migration,
529 update_takeover,
530 update_general_migration_checkpoint,
531 update_size_change,
532 update_prealloc_badblocks_mem,
533 update_rwh_policy,
534 };
535
536 struct imsm_update_activate_spare {
537 enum imsm_update_type type;
538 struct dl *dl;
539 int slot;
540 int array;
541 struct imsm_update_activate_spare *next;
542 };
543
544 struct geo_params {
545 char devnm[32];
546 char *dev_name;
547 unsigned long long size;
548 int level;
549 int layout;
550 int chunksize;
551 int raid_disks;
552 };
553
554 enum takeover_direction {
555 R10_TO_R0,
556 R0_TO_R10
557 };
558 struct imsm_update_takeover {
559 enum imsm_update_type type;
560 int subarray;
561 enum takeover_direction direction;
562 };
563
564 struct imsm_update_reshape {
565 enum imsm_update_type type;
566 int old_raid_disks;
567 int new_raid_disks;
568
569 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
570 };
571
572 struct imsm_update_reshape_migration {
573 enum imsm_update_type type;
574 int old_raid_disks;
575 int new_raid_disks;
576 /* fields for array migration changes
577 */
578 int subdev;
579 int new_level;
580 int new_layout;
581 int new_chunksize;
582
583 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
584 };
585
586 struct imsm_update_size_change {
587 enum imsm_update_type type;
588 int subdev;
589 long long new_size;
590 };
591
592 struct imsm_update_general_migration_checkpoint {
593 enum imsm_update_type type;
594 __u64 curr_migr_unit;
595 };
596
597 struct disk_info {
598 __u8 serial[MAX_RAID_SERIAL_LEN];
599 };
600
601 struct imsm_update_create_array {
602 enum imsm_update_type type;
603 int dev_idx;
604 struct imsm_dev dev;
605 };
606
607 struct imsm_update_kill_array {
608 enum imsm_update_type type;
609 int dev_idx;
610 };
611
612 struct imsm_update_rename_array {
613 enum imsm_update_type type;
614 __u8 name[MAX_RAID_SERIAL_LEN];
615 int dev_idx;
616 };
617
618 struct imsm_update_add_remove_disk {
619 enum imsm_update_type type;
620 };
621
622 struct imsm_update_prealloc_bb_mem {
623 enum imsm_update_type type;
624 };
625
626 struct imsm_update_rwh_policy {
627 enum imsm_update_type type;
628 int new_policy;
629 int dev_idx;
630 };
631
632 static const char *_sys_dev_type[] = {
633 [SYS_DEV_UNKNOWN] = "Unknown",
634 [SYS_DEV_SAS] = "SAS",
635 [SYS_DEV_SATA] = "SATA",
636 [SYS_DEV_NVME] = "NVMe",
637 [SYS_DEV_VMD] = "VMD",
638 [SYS_DEV_SATA_VMD] = "SATA VMD"
639 };
640
641 static int no_platform = -1;
642
643 static int check_no_platform(void)
644 {
645 static const char search[] = "mdadm.imsm.test=1";
646 FILE *fp;
647
648 if (no_platform >= 0)
649 return no_platform;
650
651 if (check_env("IMSM_NO_PLATFORM")) {
652 no_platform = 1;
653 return 1;
654 }
655 fp = fopen("/proc/cmdline", "r");
656 if (fp) {
657 char *l = conf_line(fp);
658 char *w = l;
659
660 if (l == NULL) {
661 fclose(fp);
662 return 0;
663 }
664
665 do {
666 if (strcmp(w, search) == 0)
667 no_platform = 1;
668 w = dl_next(w);
669 } while (w != l);
670 free_line(l);
671 fclose(fp);
672 if (no_platform >= 0)
673 return no_platform;
674 }
675 no_platform = 0;
676 return 0;
677 }
678
679 void imsm_set_no_platform(int v)
680 {
681 no_platform = v;
682 }
683
684 const char *get_sys_dev_type(enum sys_dev_type type)
685 {
686 if (type >= SYS_DEV_MAX)
687 type = SYS_DEV_UNKNOWN;
688
689 return _sys_dev_type[type];
690 }
691
692 static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
693 {
694 struct intel_hba *result = xmalloc(sizeof(*result));
695
696 result->type = device->type;
697 result->path = xstrdup(device->path);
698 result->next = NULL;
699 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
700 result->pci_id++;
701
702 return result;
703 }
704
705 static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
706 {
707 struct intel_hba *result;
708
709 for (result = hba; result; result = result->next) {
710 if (result->type == device->type && strcmp(result->path, device->path) == 0)
711 break;
712 }
713 return result;
714 }
715
716 static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
717 {
718 struct intel_hba *hba;
719
720 /* check if disk attached to Intel HBA */
721 hba = find_intel_hba(super->hba, device);
722 if (hba != NULL)
723 return 1;
724 /* Check if HBA is already attached to super */
725 if (super->hba == NULL) {
726 super->hba = alloc_intel_hba(device);
727 return 1;
728 }
729
730 hba = super->hba;
731 /* Intel metadata allows for all disks attached to the same type HBA.
732 * Do not support HBA types mixing
733 */
734 if (device->type != hba->type)
735 return 2;
736
737 /* Multiple same type HBAs can be used if they share the same OROM */
738 const struct imsm_orom *device_orom = get_orom_by_device_id(device->dev_id);
739
740 if (device_orom != super->orom)
741 return 2;
742
743 while (hba->next)
744 hba = hba->next;
745
746 hba->next = alloc_intel_hba(device);
747 return 1;
748 }
749
750 static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
751 {
752 struct sys_dev *list, *elem;
753 char *disk_path;
754
755 if ((list = find_intel_devices()) == NULL)
756 return 0;
757
758 if (!is_fd_valid(fd))
759 disk_path = (char *) devname;
760 else
761 disk_path = diskfd_to_devpath(fd, 1, NULL);
762
763 if (!disk_path)
764 return 0;
765
766 for (elem = list; elem; elem = elem->next)
767 if (path_attached_to_hba(disk_path, elem->path))
768 break;
769
770 if (disk_path != devname)
771 free(disk_path);
772
773 return elem;
774 }
775
776 static int find_intel_hba_capability(int fd, struct intel_super *super,
777 char *devname);
778
779 static struct supertype *match_metadata_desc_imsm(char *arg)
780 {
781 struct supertype *st;
782
783 if (strcmp(arg, "imsm") != 0 &&
784 strcmp(arg, "default") != 0
785 )
786 return NULL;
787
788 st = xcalloc(1, sizeof(*st));
789 st->ss = &super_imsm;
790 st->max_devs = IMSM_MAX_DEVICES;
791 st->minor_version = 0;
792 st->sb = NULL;
793 return st;
794 }
795
796 static __u8 *get_imsm_version(struct imsm_super *mpb)
797 {
798 return &mpb->sig[MPB_SIG_LEN];
799 }
800
801 /* retrieve a disk directly from the anchor when the anchor is known to be
802 * up-to-date, currently only at load time
803 */
804 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
805 {
806 if (index >= mpb->num_disks)
807 return NULL;
808 return &mpb->disk[index];
809 }
810
811 /* retrieve the disk description based on a index of the disk
812 * in the sub-array
813 */
814 static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
815 {
816 struct dl *d;
817
818 for (d = super->disks; d; d = d->next)
819 if (d->index == index)
820 return d;
821
822 return NULL;
823 }
824 /* retrieve a disk from the parsed metadata */
825 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
826 {
827 struct dl *dl;
828
829 dl = get_imsm_dl_disk(super, index);
830 if (dl)
831 return &dl->disk;
832
833 return NULL;
834 }
835
836 /* generate a checksum directly from the anchor when the anchor is known to be
837 * up-to-date, currently only at load or write_super after coalescing
838 */
839 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
840 {
841 __u32 end = mpb->mpb_size / sizeof(end);
842 __u32 *p = (__u32 *) mpb;
843 __u32 sum = 0;
844
845 while (end--) {
846 sum += __le32_to_cpu(*p);
847 p++;
848 }
849
850 return sum - __le32_to_cpu(mpb->check_sum);
851 }
852
853 static size_t sizeof_imsm_map(struct imsm_map *map)
854 {
855 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
856 }
857
858 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
859 {
860 /* A device can have 2 maps if it is in the middle of a migration.
861 * If second_map is:
862 * MAP_0 - we return the first map
863 * MAP_1 - we return the second map if it exists, else NULL
864 * MAP_X - we return the second map if it exists, else the first
865 */
866 struct imsm_map *map = &dev->vol.map[0];
867 struct imsm_map *map2 = NULL;
868
869 if (dev->vol.migr_state)
870 map2 = (void *)map + sizeof_imsm_map(map);
871
872 switch (second_map) {
873 case MAP_0:
874 break;
875 case MAP_1:
876 map = map2;
877 break;
878 case MAP_X:
879 if (map2)
880 map = map2;
881 break;
882 default:
883 map = NULL;
884 }
885 return map;
886
887 }
888
889 /* return the size of the device.
890 * migr_state increases the returned size if map[0] were to be duplicated
891 */
892 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
893 {
894 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
895 sizeof_imsm_map(get_imsm_map(dev, MAP_0));
896
897 /* migrating means an additional map */
898 if (dev->vol.migr_state)
899 size += sizeof_imsm_map(get_imsm_map(dev, MAP_1));
900 else if (migr_state)
901 size += sizeof_imsm_map(get_imsm_map(dev, MAP_0));
902
903 return size;
904 }
905
906 /* retrieve disk serial number list from a metadata update */
907 static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
908 {
909 void *u = update;
910 struct disk_info *inf;
911
912 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
913 sizeof_imsm_dev(&update->dev, 0);
914
915 return inf;
916 }
917
918 /**
919 * __get_imsm_dev() - Get device with index from imsm_super.
920 * @mpb: &imsm_super pointer, not NULL.
921 * @index: Device index.
922 *
923 * Function works as non-NULL, aborting in such a case,
924 * when NULL would be returned.
925 *
926 * Device index should be in range 0 up to num_raid_devs.
927 * Function assumes the index was already verified.
928 * Index must be valid, otherwise abort() is called.
929 *
930 * Return: Pointer to corresponding imsm_dev.
931 *
932 */
933 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
934 {
935 int offset;
936 int i;
937 void *_mpb = mpb;
938
939 if (index >= mpb->num_raid_devs)
940 goto error;
941
942 /* devices start after all disks */
943 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
944
945 for (i = 0; i <= index; i++, offset += sizeof_imsm_dev(_mpb + offset, 0))
946 if (i == index)
947 return _mpb + offset;
948 error:
949 pr_err("cannot find imsm_dev with index %u in imsm_super\n", index);
950 abort();
951 }
952
953 /**
954 * get_imsm_dev() - Get device with index from intel_super.
955 * @super: &intel_super pointer, not NULL.
956 * @index: Device index.
957 *
958 * Function works as non-NULL, aborting in such a case,
959 * when NULL would be returned.
960 *
961 * Device index should be in range 0 up to num_raid_devs.
962 * Function assumes the index was already verified.
963 * Index must be valid, otherwise abort() is called.
964 *
965 * Return: Pointer to corresponding imsm_dev.
966 *
967 */
968 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
969 {
970 struct intel_dev *dv;
971
972 if (index >= super->anchor->num_raid_devs)
973 goto error;
974
975 for (dv = super->devlist; dv; dv = dv->next)
976 if (dv->index == index)
977 return dv->dev;
978 error:
979 pr_err("cannot find imsm_dev with index %u in intel_super\n", index);
980 abort();
981 }
982
983 static inline unsigned long long __le48_to_cpu(const struct bbm_log_block_addr
984 *addr)
985 {
986 return ((((__u64)__le32_to_cpu(addr->dw1)) << 16) |
987 __le16_to_cpu(addr->w1));
988 }
989
990 static inline struct bbm_log_block_addr __cpu_to_le48(unsigned long long sec)
991 {
992 struct bbm_log_block_addr addr;
993
994 addr.w1 = __cpu_to_le16((__u16)(sec & 0xffff));
995 addr.dw1 = __cpu_to_le32((__u32)(sec >> 16) & 0xffffffff);
996 return addr;
997 }
998
999 /* get size of the bbm log */
1000 static __u32 get_imsm_bbm_log_size(struct bbm_log *log)
1001 {
1002 if (!log || log->entry_count == 0)
1003 return 0;
1004
1005 return sizeof(log->signature) +
1006 sizeof(log->entry_count) +
1007 log->entry_count * sizeof(struct bbm_log_entry);
1008 }
1009
1010 /* check if bad block is not partially stored in bbm log */
1011 static int is_stored_in_bbm(struct bbm_log *log, const __u8 idx, const unsigned
1012 long long sector, const int length, __u32 *pos)
1013 {
1014 __u32 i;
1015
1016 for (i = *pos; i < log->entry_count; i++) {
1017 struct bbm_log_entry *entry = &log->marked_block_entries[i];
1018 unsigned long long bb_start;
1019 unsigned long long bb_end;
1020
1021 bb_start = __le48_to_cpu(&entry->defective_block_start);
1022 bb_end = bb_start + (entry->marked_count + 1);
1023
1024 if ((entry->disk_ordinal == idx) && (bb_start >= sector) &&
1025 (bb_end <= sector + length)) {
1026 *pos = i;
1027 return 1;
1028 }
1029 }
1030 return 0;
1031 }
1032
1033 /* record new bad block in bbm log */
1034 static int record_new_badblock(struct bbm_log *log, const __u8 idx, unsigned
1035 long long sector, int length)
1036 {
1037 int new_bb = 0;
1038 __u32 pos = 0;
1039 struct bbm_log_entry *entry = NULL;
1040
1041 while (is_stored_in_bbm(log, idx, sector, length, &pos)) {
1042 struct bbm_log_entry *e = &log->marked_block_entries[pos];
1043
1044 if ((e->marked_count + 1 == BBM_LOG_MAX_LBA_ENTRY_VAL) &&
1045 (__le48_to_cpu(&e->defective_block_start) == sector)) {
1046 sector += BBM_LOG_MAX_LBA_ENTRY_VAL;
1047 length -= BBM_LOG_MAX_LBA_ENTRY_VAL;
1048 pos = pos + 1;
1049 continue;
1050 }
1051 entry = e;
1052 break;
1053 }
1054
1055 if (entry) {
1056 int cnt = (length <= BBM_LOG_MAX_LBA_ENTRY_VAL) ? length :
1057 BBM_LOG_MAX_LBA_ENTRY_VAL;
1058 entry->defective_block_start = __cpu_to_le48(sector);
1059 entry->marked_count = cnt - 1;
1060 if (cnt == length)
1061 return 1;
1062 sector += cnt;
1063 length -= cnt;
1064 }
1065
1066 new_bb = ROUND_UP(length, BBM_LOG_MAX_LBA_ENTRY_VAL) /
1067 BBM_LOG_MAX_LBA_ENTRY_VAL;
1068 if (log->entry_count + new_bb > BBM_LOG_MAX_ENTRIES)
1069 return 0;
1070
1071 while (length > 0) {
1072 int cnt = (length <= BBM_LOG_MAX_LBA_ENTRY_VAL) ? length :
1073 BBM_LOG_MAX_LBA_ENTRY_VAL;
1074 struct bbm_log_entry *entry =
1075 &log->marked_block_entries[log->entry_count];
1076
1077 entry->defective_block_start = __cpu_to_le48(sector);
1078 entry->marked_count = cnt - 1;
1079 entry->disk_ordinal = idx;
1080
1081 sector += cnt;
1082 length -= cnt;
1083
1084 log->entry_count++;
1085 }
1086
1087 return new_bb;
1088 }
1089
1090 /* clear all bad blocks for given disk */
1091 static void clear_disk_badblocks(struct bbm_log *log, const __u8 idx)
1092 {
1093 __u32 i = 0;
1094
1095 while (i < log->entry_count) {
1096 struct bbm_log_entry *entries = log->marked_block_entries;
1097
1098 if (entries[i].disk_ordinal == idx) {
1099 if (i < log->entry_count - 1)
1100 entries[i] = entries[log->entry_count - 1];
1101 log->entry_count--;
1102 } else {
1103 i++;
1104 }
1105 }
1106 }
1107
1108 /* clear given bad block */
1109 static int clear_badblock(struct bbm_log *log, const __u8 idx, const unsigned
1110 long long sector, const int length) {
1111 __u32 i = 0;
1112
1113 while (i < log->entry_count) {
1114 struct bbm_log_entry *entries = log->marked_block_entries;
1115
1116 if ((entries[i].disk_ordinal == idx) &&
1117 (__le48_to_cpu(&entries[i].defective_block_start) ==
1118 sector) && (entries[i].marked_count + 1 == length)) {
1119 if (i < log->entry_count - 1)
1120 entries[i] = entries[log->entry_count - 1];
1121 log->entry_count--;
1122 break;
1123 }
1124 i++;
1125 }
1126
1127 return 1;
1128 }
1129
1130 /* allocate and load BBM log from metadata */
1131 static int load_bbm_log(struct intel_super *super)
1132 {
1133 struct imsm_super *mpb = super->anchor;
1134 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
1135
1136 super->bbm_log = xcalloc(1, sizeof(struct bbm_log));
1137 if (!super->bbm_log)
1138 return 1;
1139
1140 if (bbm_log_size) {
1141 struct bbm_log *log = (void *)mpb +
1142 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
1143
1144 __u32 entry_count;
1145
1146 if (bbm_log_size < sizeof(log->signature) +
1147 sizeof(log->entry_count))
1148 return 2;
1149
1150 entry_count = __le32_to_cpu(log->entry_count);
1151 if ((__le32_to_cpu(log->signature) != BBM_LOG_SIGNATURE) ||
1152 (entry_count > BBM_LOG_MAX_ENTRIES))
1153 return 3;
1154
1155 if (bbm_log_size !=
1156 sizeof(log->signature) + sizeof(log->entry_count) +
1157 entry_count * sizeof(struct bbm_log_entry))
1158 return 4;
1159
1160 memcpy(super->bbm_log, log, bbm_log_size);
1161 } else {
1162 super->bbm_log->signature = __cpu_to_le32(BBM_LOG_SIGNATURE);
1163 super->bbm_log->entry_count = 0;
1164 }
1165
1166 return 0;
1167 }
1168
1169 /* checks if bad block is within volume boundaries */
1170 static int is_bad_block_in_volume(const struct bbm_log_entry *entry,
1171 const unsigned long long start_sector,
1172 const unsigned long long size)
1173 {
1174 unsigned long long bb_start;
1175 unsigned long long bb_end;
1176
1177 bb_start = __le48_to_cpu(&entry->defective_block_start);
1178 bb_end = bb_start + (entry->marked_count + 1);
1179
1180 if (((bb_start >= start_sector) && (bb_start < start_sector + size)) ||
1181 ((bb_end >= start_sector) && (bb_end <= start_sector + size)))
1182 return 1;
1183
1184 return 0;
1185 }
1186
1187 /* get list of bad blocks on a drive for a volume */
1188 static void get_volume_badblocks(const struct bbm_log *log, const __u8 idx,
1189 const unsigned long long start_sector,
1190 const unsigned long long size,
1191 struct md_bb *bbs)
1192 {
1193 __u32 count = 0;
1194 __u32 i;
1195
1196 for (i = 0; i < log->entry_count; i++) {
1197 const struct bbm_log_entry *ent =
1198 &log->marked_block_entries[i];
1199 struct md_bb_entry *bb;
1200
1201 if ((ent->disk_ordinal == idx) &&
1202 is_bad_block_in_volume(ent, start_sector, size)) {
1203
1204 if (!bbs->entries) {
1205 bbs->entries = xmalloc(BBM_LOG_MAX_ENTRIES *
1206 sizeof(*bb));
1207 if (!bbs->entries)
1208 break;
1209 }
1210
1211 bb = &bbs->entries[count++];
1212 bb->sector = __le48_to_cpu(&ent->defective_block_start);
1213 bb->length = ent->marked_count + 1;
1214 }
1215 }
1216 bbs->count = count;
1217 }
1218
1219 /*
1220 * for second_map:
1221 * == MAP_0 get first map
1222 * == MAP_1 get second map
1223 * == MAP_X than get map according to the current migr_state
1224 */
1225 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
1226 int slot,
1227 int second_map)
1228 {
1229 struct imsm_map *map;
1230
1231 map = get_imsm_map(dev, second_map);
1232
1233 /* top byte identifies disk under rebuild */
1234 return __le32_to_cpu(map->disk_ord_tbl[slot]);
1235 }
1236
1237 #define ord_to_idx(ord) (((ord) << 8) >> 8)
1238 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
1239 {
1240 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
1241
1242 return ord_to_idx(ord);
1243 }
1244
1245 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
1246 {
1247 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
1248 }
1249
1250 static int get_imsm_disk_slot(struct imsm_map *map, const unsigned int idx)
1251 {
1252 int slot;
1253 __u32 ord;
1254
1255 for (slot = 0; slot < map->num_members; slot++) {
1256 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
1257 if (ord_to_idx(ord) == idx)
1258 return slot;
1259 }
1260
1261 return IMSM_STATUS_ERROR;
1262 }
1263
1264 static int get_imsm_raid_level(struct imsm_map *map)
1265 {
1266 if (map->raid_level == 1) {
1267 if (map->num_members == 2)
1268 return 1;
1269 else
1270 return 10;
1271 }
1272
1273 return map->raid_level;
1274 }
1275
1276 /**
1277 * get_disk_slot_in_dev() - retrieve disk slot from &imsm_dev.
1278 * @super: &intel_super pointer, not NULL.
1279 * @dev_idx: imsm device index.
1280 * @idx: disk index.
1281 *
1282 * Return: Slot on success, IMSM_STATUS_ERROR otherwise.
1283 */
1284 static int get_disk_slot_in_dev(struct intel_super *super, const __u8 dev_idx,
1285 const unsigned int idx)
1286 {
1287 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
1288 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1289
1290 return get_imsm_disk_slot(map, idx);
1291 }
1292
1293 static int cmp_extent(const void *av, const void *bv)
1294 {
1295 const struct extent *a = av;
1296 const struct extent *b = bv;
1297 if (a->start < b->start)
1298 return -1;
1299 if (a->start > b->start)
1300 return 1;
1301 return 0;
1302 }
1303
1304 static int count_memberships(struct dl *dl, struct intel_super *super)
1305 {
1306 int memberships = 0;
1307 int i;
1308
1309 for (i = 0; i < super->anchor->num_raid_devs; i++)
1310 if (get_disk_slot_in_dev(super, i, dl->index) >= 0)
1311 memberships++;
1312
1313 return memberships;
1314 }
1315
1316 static __u32 imsm_min_reserved_sectors(struct intel_super *super);
1317
1318 static int split_ull(unsigned long long n, void *lo, void *hi)
1319 {
1320 if (lo == 0 || hi == 0)
1321 return 1;
1322 __put_unaligned32(__cpu_to_le32((__u32)n), lo);
1323 __put_unaligned32(__cpu_to_le32((n >> 32)), hi);
1324 return 0;
1325 }
1326
1327 static unsigned long long join_u32(__u32 lo, __u32 hi)
1328 {
1329 return (unsigned long long)__le32_to_cpu(lo) |
1330 (((unsigned long long)__le32_to_cpu(hi)) << 32);
1331 }
1332
1333 static unsigned long long total_blocks(struct imsm_disk *disk)
1334 {
1335 if (disk == NULL)
1336 return 0;
1337 return join_u32(disk->total_blocks_lo, disk->total_blocks_hi);
1338 }
1339
1340 /**
1341 * imsm_num_data_members() - get data drives count for an array.
1342 * @map: Map to analyze.
1343 *
1344 * num_data_members value represents minimal count of drives for level.
1345 * The name of the property could be misleading for RAID5 with asymmetric layout
1346 * because some data required to be calculated from parity.
1347 * The property is extracted from level and num_members value.
1348 *
1349 * Return: num_data_members value on success, zero otherwise.
1350 */
1351 static __u8 imsm_num_data_members(struct imsm_map *map)
1352 {
1353 switch (get_imsm_raid_level(map)) {
1354 case 0:
1355 return map->num_members;
1356 case 1:
1357 case 10:
1358 return map->num_members / 2;
1359 case 5:
1360 return map->num_members - 1;
1361 default:
1362 dprintf("unsupported raid level\n");
1363 return 0;
1364 }
1365 }
1366
1367 static unsigned long long pba_of_lba0(struct imsm_map *map)
1368 {
1369 if (map == NULL)
1370 return 0;
1371 return join_u32(map->pba_of_lba0_lo, map->pba_of_lba0_hi);
1372 }
1373
1374 static unsigned long long blocks_per_member(struct imsm_map *map)
1375 {
1376 if (map == NULL)
1377 return 0;
1378 return join_u32(map->blocks_per_member_lo, map->blocks_per_member_hi);
1379 }
1380
1381 static unsigned long long num_data_stripes(struct imsm_map *map)
1382 {
1383 if (map == NULL)
1384 return 0;
1385 return join_u32(map->num_data_stripes_lo, map->num_data_stripes_hi);
1386 }
1387
1388 static unsigned long long vol_curr_migr_unit(struct imsm_dev *dev)
1389 {
1390 if (dev == NULL)
1391 return 0;
1392
1393 return join_u32(dev->vol.curr_migr_unit_lo, dev->vol.curr_migr_unit_hi);
1394 }
1395
1396 static unsigned long long imsm_dev_size(struct imsm_dev *dev)
1397 {
1398 if (dev == NULL)
1399 return 0;
1400 return join_u32(dev->size_low, dev->size_high);
1401 }
1402
1403 static unsigned long long migr_chkp_area_pba(struct migr_record *migr_rec)
1404 {
1405 if (migr_rec == NULL)
1406 return 0;
1407 return join_u32(migr_rec->ckpt_area_pba_lo,
1408 migr_rec->ckpt_area_pba_hi);
1409 }
1410
1411 static unsigned long long current_migr_unit(struct migr_record *migr_rec)
1412 {
1413 if (migr_rec == NULL)
1414 return 0;
1415 return join_u32(migr_rec->curr_migr_unit_lo,
1416 migr_rec->curr_migr_unit_hi);
1417 }
1418
1419 static unsigned long long migr_dest_1st_member_lba(struct migr_record *migr_rec)
1420 {
1421 if (migr_rec == NULL)
1422 return 0;
1423 return join_u32(migr_rec->dest_1st_member_lba_lo,
1424 migr_rec->dest_1st_member_lba_hi);
1425 }
1426
1427 static unsigned long long get_num_migr_units(struct migr_record *migr_rec)
1428 {
1429 if (migr_rec == NULL)
1430 return 0;
1431 return join_u32(migr_rec->num_migr_units_lo,
1432 migr_rec->num_migr_units_hi);
1433 }
1434
1435 static void set_total_blocks(struct imsm_disk *disk, unsigned long long n)
1436 {
1437 split_ull(n, &disk->total_blocks_lo, &disk->total_blocks_hi);
1438 }
1439
1440 /**
1441 * set_num_domains() - Set number of domains for an array.
1442 * @map: Map to be updated.
1443 *
1444 * num_domains property represents copies count of each data drive, thus make
1445 * it meaningful only for RAID1 and RAID10. IMSM supports two domains for
1446 * raid1 and raid10.
1447 */
1448 static void set_num_domains(struct imsm_map *map)
1449 {
1450 int level = get_imsm_raid_level(map);
1451
1452 if (level == 1 || level == 10)
1453 map->num_domains = 2;
1454 else
1455 map->num_domains = 1;
1456 }
1457
1458 static void set_pba_of_lba0(struct imsm_map *map, unsigned long long n)
1459 {
1460 split_ull(n, &map->pba_of_lba0_lo, &map->pba_of_lba0_hi);
1461 }
1462
1463 static void set_blocks_per_member(struct imsm_map *map, unsigned long long n)
1464 {
1465 split_ull(n, &map->blocks_per_member_lo, &map->blocks_per_member_hi);
1466 }
1467
1468 static void set_num_data_stripes(struct imsm_map *map, unsigned long long n)
1469 {
1470 split_ull(n, &map->num_data_stripes_lo, &map->num_data_stripes_hi);
1471 }
1472
1473 /**
1474 * update_num_data_stripes() - Calculate and update num_data_stripes value.
1475 * @map: map to be updated.
1476 * @dev_size: size of volume.
1477 *
1478 * num_data_stripes value is addictionally divided by num_domains, therefore for
1479 * levels where num_domains is not 1, nds is a part of real value.
1480 */
1481 static void update_num_data_stripes(struct imsm_map *map,
1482 unsigned long long dev_size)
1483 {
1484 unsigned long long nds = dev_size / imsm_num_data_members(map);
1485
1486 nds /= map->num_domains;
1487 nds /= map->blocks_per_strip;
1488 set_num_data_stripes(map, nds);
1489 }
1490
1491 static void set_vol_curr_migr_unit(struct imsm_dev *dev, unsigned long long n)
1492 {
1493 if (dev == NULL)
1494 return;
1495
1496 split_ull(n, &dev->vol.curr_migr_unit_lo, &dev->vol.curr_migr_unit_hi);
1497 }
1498
1499 static void set_imsm_dev_size(struct imsm_dev *dev, unsigned long long n)
1500 {
1501 split_ull(n, &dev->size_low, &dev->size_high);
1502 }
1503
1504 static void set_migr_chkp_area_pba(struct migr_record *migr_rec,
1505 unsigned long long n)
1506 {
1507 split_ull(n, &migr_rec->ckpt_area_pba_lo, &migr_rec->ckpt_area_pba_hi);
1508 }
1509
1510 static void set_current_migr_unit(struct migr_record *migr_rec,
1511 unsigned long long n)
1512 {
1513 split_ull(n, &migr_rec->curr_migr_unit_lo,
1514 &migr_rec->curr_migr_unit_hi);
1515 }
1516
1517 static void set_migr_dest_1st_member_lba(struct migr_record *migr_rec,
1518 unsigned long long n)
1519 {
1520 split_ull(n, &migr_rec->dest_1st_member_lba_lo,
1521 &migr_rec->dest_1st_member_lba_hi);
1522 }
1523
1524 static void set_num_migr_units(struct migr_record *migr_rec,
1525 unsigned long long n)
1526 {
1527 split_ull(n, &migr_rec->num_migr_units_lo,
1528 &migr_rec->num_migr_units_hi);
1529 }
1530
1531 static unsigned long long per_dev_array_size(struct imsm_map *map)
1532 {
1533 unsigned long long array_size = 0;
1534
1535 if (map == NULL)
1536 return array_size;
1537
1538 array_size = num_data_stripes(map) * map->blocks_per_strip;
1539 if (get_imsm_raid_level(map) == 1 || get_imsm_raid_level(map) == 10)
1540 array_size *= 2;
1541
1542 return array_size;
1543 }
1544
1545 static struct extent *get_extents(struct intel_super *super, struct dl *dl,
1546 int get_minimal_reservation)
1547 {
1548 /* find a list of used extents on the given physical device */
1549 int memberships = count_memberships(dl, super);
1550 struct extent *rv = xcalloc(memberships + 1, sizeof(struct extent));
1551 struct extent *e = rv;
1552 int i;
1553 __u32 reservation;
1554
1555 /* trim the reserved area for spares, so they can join any array
1556 * regardless of whether the OROM has assigned sectors from the
1557 * IMSM_RESERVED_SECTORS region
1558 */
1559 if (dl->index == -1 || get_minimal_reservation)
1560 reservation = imsm_min_reserved_sectors(super);
1561 else
1562 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1563
1564 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1565 struct imsm_dev *dev = get_imsm_dev(super, i);
1566 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1567
1568 if (get_imsm_disk_slot(map, dl->index) >= 0) {
1569 e->start = pba_of_lba0(map);
1570 e->size = per_dev_array_size(map);
1571 e->vol = i;
1572 e++;
1573 }
1574 }
1575 qsort(rv, memberships, sizeof(*rv), cmp_extent);
1576
1577 /* determine the start of the metadata
1578 * when no raid devices are defined use the default
1579 * ...otherwise allow the metadata to truncate the value
1580 * as is the case with older versions of imsm
1581 */
1582 if (memberships) {
1583 struct extent *last = &rv[memberships - 1];
1584 unsigned long long remainder;
1585
1586 remainder = total_blocks(&dl->disk) - (last->start + last->size);
1587 /* round down to 1k block to satisfy precision of the kernel
1588 * 'size' interface
1589 */
1590 remainder &= ~1UL;
1591 /* make sure remainder is still sane */
1592 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
1593 remainder = ROUND_UP(super->len, 512) >> 9;
1594 if (reservation > remainder)
1595 reservation = remainder;
1596 }
1597 e->start = total_blocks(&dl->disk) - reservation;
1598 e->size = 0;
1599 return rv;
1600 }
1601
1602 /* try to determine how much space is reserved for metadata from
1603 * the last get_extents() entry, otherwise fallback to the
1604 * default
1605 */
1606 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
1607 {
1608 struct extent *e;
1609 int i;
1610 __u32 rv;
1611
1612 /* for spares just return a minimal reservation which will grow
1613 * once the spare is picked up by an array
1614 */
1615 if (dl->index == -1)
1616 return MPB_SECTOR_CNT;
1617
1618 e = get_extents(super, dl, 0);
1619 if (!e)
1620 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1621
1622 /* scroll to last entry */
1623 for (i = 0; e[i].size; i++)
1624 continue;
1625
1626 rv = total_blocks(&dl->disk) - e[i].start;
1627
1628 free(e);
1629
1630 return rv;
1631 }
1632
1633 static int is_spare(struct imsm_disk *disk)
1634 {
1635 return (disk->status & SPARE_DISK) == SPARE_DISK;
1636 }
1637
1638 static int is_configured(struct imsm_disk *disk)
1639 {
1640 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
1641 }
1642
1643 static int is_failed(struct imsm_disk *disk)
1644 {
1645 return (disk->status & FAILED_DISK) == FAILED_DISK;
1646 }
1647
1648 static int is_journal(struct imsm_disk *disk)
1649 {
1650 return (disk->status & JOURNAL_DISK) == JOURNAL_DISK;
1651 }
1652
1653 /**
1654 * round_member_size_to_mb()- Round given size to closest MiB.
1655 * @size: size to round in sectors.
1656 */
1657 static inline unsigned long long round_member_size_to_mb(unsigned long long size)
1658 {
1659 return (size >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
1660 }
1661
1662 /**
1663 * round_size_to_mb()- Round given size.
1664 * @array_size: size to round in sectors.
1665 * @disk_count: count of data members.
1666 *
1667 * Get size per each data member and round it to closest MiB to ensure that data
1668 * splits evenly between members.
1669 *
1670 * Return: Array size, rounded down.
1671 */
1672 static inline unsigned long long round_size_to_mb(unsigned long long array_size,
1673 unsigned int disk_count)
1674 {
1675 return round_member_size_to_mb(array_size / disk_count) * disk_count;
1676 }
1677
1678 static int able_to_resync(int raid_level, int missing_disks)
1679 {
1680 int max_missing_disks = 0;
1681
1682 switch (raid_level) {
1683 case 10:
1684 max_missing_disks = 1;
1685 break;
1686 default:
1687 max_missing_disks = 0;
1688 }
1689 return missing_disks <= max_missing_disks;
1690 }
1691
1692 /* try to determine how much space is reserved for metadata from
1693 * the last get_extents() entry on the smallest active disk,
1694 * otherwise fallback to the default
1695 */
1696 static __u32 imsm_min_reserved_sectors(struct intel_super *super)
1697 {
1698 struct extent *e;
1699 int i;
1700 unsigned long long min_active;
1701 __u32 remainder;
1702 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
1703 struct dl *dl, *dl_min = NULL;
1704
1705 if (!super)
1706 return rv;
1707
1708 min_active = 0;
1709 for (dl = super->disks; dl; dl = dl->next) {
1710 if (dl->index < 0)
1711 continue;
1712 unsigned long long blocks = total_blocks(&dl->disk);
1713 if (blocks < min_active || min_active == 0) {
1714 dl_min = dl;
1715 min_active = blocks;
1716 }
1717 }
1718 if (!dl_min)
1719 return rv;
1720
1721 /* find last lba used by subarrays on the smallest active disk */
1722 e = get_extents(super, dl_min, 0);
1723 if (!e)
1724 return rv;
1725 for (i = 0; e[i].size; i++)
1726 continue;
1727
1728 remainder = min_active - e[i].start;
1729 free(e);
1730
1731 /* to give priority to recovery we should not require full
1732 IMSM_RESERVED_SECTORS from the spare */
1733 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
1734
1735 /* if real reservation is smaller use that value */
1736 return (remainder < rv) ? remainder : rv;
1737 }
1738
1739 /*
1740 * Return minimum size of a spare and sector size
1741 * that can be used in this array
1742 */
1743 int get_spare_criteria_imsm(struct supertype *st, struct spare_criteria *c)
1744 {
1745 struct intel_super *super = st->sb;
1746 struct dl *dl;
1747 struct extent *e;
1748 int i;
1749 unsigned long long size = 0;
1750
1751 c->min_size = 0;
1752 c->sector_size = 0;
1753
1754 if (!super)
1755 return -EINVAL;
1756 /* find first active disk in array */
1757 dl = super->disks;
1758 while (dl && (is_failed(&dl->disk) || dl->index == -1))
1759 dl = dl->next;
1760 if (!dl)
1761 return -EINVAL;
1762 /* find last lba used by subarrays */
1763 e = get_extents(super, dl, 0);
1764 if (!e)
1765 return -EINVAL;
1766 for (i = 0; e[i].size; i++)
1767 continue;
1768 if (i > 0)
1769 size = e[i-1].start + e[i-1].size;
1770 free(e);
1771
1772 /* add the amount of space needed for metadata */
1773 size += imsm_min_reserved_sectors(super);
1774
1775 c->min_size = size * 512;
1776 c->sector_size = super->sector_size;
1777
1778 return 0;
1779 }
1780
1781 static bool is_gen_migration(struct imsm_dev *dev);
1782
1783 #define IMSM_4K_DIV 8
1784
1785 static __u64 blocks_per_migr_unit(struct intel_super *super,
1786 struct imsm_dev *dev);
1787
1788 static void print_imsm_dev(struct intel_super *super,
1789 struct imsm_dev *dev,
1790 char *uuid,
1791 int disk_idx)
1792 {
1793 __u64 sz;
1794 int slot, i;
1795 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1796 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
1797 __u32 ord;
1798
1799 printf("\n");
1800 printf("[%.16s]:\n", dev->volume);
1801 printf(" Subarray : %d\n", super->current_vol);
1802 printf(" UUID : %s\n", uuid);
1803 printf(" RAID Level : %d", get_imsm_raid_level(map));
1804 if (map2)
1805 printf(" <-- %d", get_imsm_raid_level(map2));
1806 printf("\n");
1807 printf(" Members : %d", map->num_members);
1808 if (map2)
1809 printf(" <-- %d", map2->num_members);
1810 printf("\n");
1811 printf(" Slots : [");
1812 for (i = 0; i < map->num_members; i++) {
1813 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
1814 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1815 }
1816 printf("]");
1817 if (map2) {
1818 printf(" <-- [");
1819 for (i = 0; i < map2->num_members; i++) {
1820 ord = get_imsm_ord_tbl_ent(dev, i, MAP_1);
1821 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1822 }
1823 printf("]");
1824 }
1825 printf("\n");
1826 printf(" Failed disk : ");
1827 if (map->failed_disk_num == 0xff)
1828 printf(STR_COMMON_NONE);
1829 else
1830 printf("%i", map->failed_disk_num);
1831 printf("\n");
1832 slot = get_imsm_disk_slot(map, disk_idx);
1833 if (slot >= 0) {
1834 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
1835 printf(" This Slot : %d%s\n", slot,
1836 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1837 } else
1838 printf(" This Slot : ?\n");
1839 printf(" Sector Size : %u\n", super->sector_size);
1840 sz = imsm_dev_size(dev);
1841 printf(" Array Size : %llu%s\n",
1842 (unsigned long long)sz * 512 / super->sector_size,
1843 human_size(sz * 512));
1844 sz = blocks_per_member(map);
1845 printf(" Per Dev Size : %llu%s\n",
1846 (unsigned long long)sz * 512 / super->sector_size,
1847 human_size(sz * 512));
1848 printf(" Sector Offset : %llu\n",
1849 pba_of_lba0(map) * 512 / super->sector_size);
1850 printf(" Num Stripes : %llu\n",
1851 num_data_stripes(map));
1852 printf(" Chunk Size : %u KiB",
1853 __le16_to_cpu(map->blocks_per_strip) / 2);
1854 if (map2)
1855 printf(" <-- %u KiB",
1856 __le16_to_cpu(map2->blocks_per_strip) / 2);
1857 printf("\n");
1858 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
1859 printf(" Migrate State : ");
1860 if (dev->vol.migr_state) {
1861 if (migr_type(dev) == MIGR_INIT)
1862 printf("initialize\n");
1863 else if (migr_type(dev) == MIGR_REBUILD)
1864 printf("rebuild\n");
1865 else if (migr_type(dev) == MIGR_VERIFY)
1866 printf("check\n");
1867 else if (migr_type(dev) == MIGR_GEN_MIGR)
1868 printf("general migration\n");
1869 else if (migr_type(dev) == MIGR_STATE_CHANGE)
1870 printf("state change\n");
1871 else if (migr_type(dev) == MIGR_REPAIR)
1872 printf("repair\n");
1873 else
1874 printf("<unknown:%d>\n", migr_type(dev));
1875 } else
1876 printf("idle\n");
1877 printf(" Map State : %s", map_state_str[map->map_state]);
1878 if (dev->vol.migr_state) {
1879 struct imsm_map *map = get_imsm_map(dev, MAP_1);
1880
1881 printf(" <-- %s", map_state_str[map->map_state]);
1882 printf("\n Checkpoint : %llu ", vol_curr_migr_unit(dev));
1883 if (is_gen_migration(dev) && (slot > 1 || slot < 0))
1884 printf("(N/A)");
1885 else
1886 printf("(%llu)", (unsigned long long)
1887 blocks_per_migr_unit(super, dev));
1888 }
1889 printf("\n");
1890 printf(" Dirty State : %s\n", (dev->vol.dirty & RAIDVOL_DIRTY) ?
1891 "dirty" : "clean");
1892 printf(" RWH Policy : ");
1893 if (dev->rwh_policy == RWH_OFF || dev->rwh_policy == RWH_MULTIPLE_OFF)
1894 printf("off\n");
1895 else if (dev->rwh_policy == RWH_DISTRIBUTED)
1896 printf("PPL distributed\n");
1897 else if (dev->rwh_policy == RWH_JOURNALING_DRIVE)
1898 printf("PPL journaling drive\n");
1899 else if (dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)
1900 printf("Multiple distributed PPLs\n");
1901 else if (dev->rwh_policy == RWH_MULTIPLE_PPLS_JOURNALING_DRIVE)
1902 printf("Multiple PPLs on journaling drive\n");
1903 else if (dev->rwh_policy == RWH_BITMAP)
1904 printf("Write-intent bitmap\n");
1905 else
1906 printf("<unknown:%d>\n", dev->rwh_policy);
1907
1908 printf(" Volume ID : %u\n", dev->my_vol_raid_dev_num);
1909 }
1910
1911 static void print_imsm_disk(struct imsm_disk *disk,
1912 int index,
1913 __u32 reserved,
1914 unsigned int sector_size) {
1915 char str[MAX_RAID_SERIAL_LEN + 1];
1916 __u64 sz;
1917
1918 if (index < -1 || !disk)
1919 return;
1920
1921 printf("\n");
1922 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
1923 if (index >= 0)
1924 printf(" Disk%02d Serial : %s\n", index, str);
1925 else
1926 printf(" Disk Serial : %s\n", str);
1927 printf(" State :%s%s%s%s\n", is_spare(disk) ? " spare" : "",
1928 is_configured(disk) ? " active" : "",
1929 is_failed(disk) ? " failed" : "",
1930 is_journal(disk) ? " journal" : "");
1931 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
1932 sz = total_blocks(disk) - reserved;
1933 printf(" Usable Size : %llu%s\n",
1934 (unsigned long long)sz * 512 / sector_size,
1935 human_size(sz * 512));
1936 }
1937
1938 void convert_to_4k_imsm_migr_rec(struct intel_super *super)
1939 {
1940 struct migr_record *migr_rec = super->migr_rec;
1941
1942 migr_rec->blocks_per_unit /= IMSM_4K_DIV;
1943 migr_rec->dest_depth_per_unit /= IMSM_4K_DIV;
1944 split_ull((join_u32(migr_rec->post_migr_vol_cap,
1945 migr_rec->post_migr_vol_cap_hi) / IMSM_4K_DIV),
1946 &migr_rec->post_migr_vol_cap, &migr_rec->post_migr_vol_cap_hi);
1947 set_migr_chkp_area_pba(migr_rec,
1948 migr_chkp_area_pba(migr_rec) / IMSM_4K_DIV);
1949 set_migr_dest_1st_member_lba(migr_rec,
1950 migr_dest_1st_member_lba(migr_rec) / IMSM_4K_DIV);
1951 }
1952
1953 void convert_to_4k_imsm_disk(struct imsm_disk *disk)
1954 {
1955 set_total_blocks(disk, (total_blocks(disk)/IMSM_4K_DIV));
1956 }
1957
1958 void convert_to_4k(struct intel_super *super)
1959 {
1960 struct imsm_super *mpb = super->anchor;
1961 struct imsm_disk *disk;
1962 int i;
1963 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
1964
1965 for (i = 0; i < mpb->num_disks ; i++) {
1966 disk = __get_imsm_disk(mpb, i);
1967 /* disk */
1968 convert_to_4k_imsm_disk(disk);
1969 }
1970 for (i = 0; i < mpb->num_raid_devs; i++) {
1971 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1972 struct imsm_map *map = get_imsm_map(dev, MAP_0);
1973 /* dev */
1974 set_imsm_dev_size(dev, imsm_dev_size(dev)/IMSM_4K_DIV);
1975 set_vol_curr_migr_unit(dev,
1976 vol_curr_migr_unit(dev) / IMSM_4K_DIV);
1977
1978 /* map0 */
1979 set_blocks_per_member(map, blocks_per_member(map)/IMSM_4K_DIV);
1980 map->blocks_per_strip /= IMSM_4K_DIV;
1981 set_pba_of_lba0(map, pba_of_lba0(map)/IMSM_4K_DIV);
1982
1983 if (dev->vol.migr_state) {
1984 /* map1 */
1985 map = get_imsm_map(dev, MAP_1);
1986 set_blocks_per_member(map,
1987 blocks_per_member(map)/IMSM_4K_DIV);
1988 map->blocks_per_strip /= IMSM_4K_DIV;
1989 set_pba_of_lba0(map, pba_of_lba0(map)/IMSM_4K_DIV);
1990 }
1991 }
1992 if (bbm_log_size) {
1993 struct bbm_log *log = (void *)mpb +
1994 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
1995 __u32 i;
1996
1997 for (i = 0; i < log->entry_count; i++) {
1998 struct bbm_log_entry *entry =
1999 &log->marked_block_entries[i];
2000
2001 __u8 count = entry->marked_count + 1;
2002 unsigned long long sector =
2003 __le48_to_cpu(&entry->defective_block_start);
2004
2005 entry->defective_block_start =
2006 __cpu_to_le48(sector/IMSM_4K_DIV);
2007 entry->marked_count = max(count/IMSM_4K_DIV, 1) - 1;
2008 }
2009 }
2010
2011 mpb->check_sum = __gen_imsm_checksum(mpb);
2012 }
2013
2014 void examine_migr_rec_imsm(struct intel_super *super)
2015 {
2016 struct migr_record *migr_rec = super->migr_rec;
2017 struct imsm_super *mpb = super->anchor;
2018 int i;
2019
2020 for (i = 0; i < mpb->num_raid_devs; i++) {
2021 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
2022 struct imsm_map *map;
2023 int slot = -1;
2024
2025 if (is_gen_migration(dev) == false)
2026 continue;
2027
2028 printf("\nMigration Record Information:");
2029
2030 /* first map under migration */
2031 map = get_imsm_map(dev, MAP_0);
2032
2033 if (map)
2034 slot = get_imsm_disk_slot(map, super->disks->index);
2035 if (map == NULL || slot > 1 || slot < 0) {
2036 printf(" Empty\n ");
2037 printf("Examine one of first two disks in array\n");
2038 break;
2039 }
2040 printf("\n Status : ");
2041 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
2042 printf("Normal\n");
2043 else
2044 printf("Contains Data\n");
2045 printf(" Current Unit : %llu\n",
2046 current_migr_unit(migr_rec));
2047 printf(" Family : %u\n",
2048 __le32_to_cpu(migr_rec->family_num));
2049 printf(" Ascending : %u\n",
2050 __le32_to_cpu(migr_rec->ascending_migr));
2051 printf(" Blocks Per Unit : %u\n",
2052 __le32_to_cpu(migr_rec->blocks_per_unit));
2053 printf(" Dest. Depth Per Unit : %u\n",
2054 __le32_to_cpu(migr_rec->dest_depth_per_unit));
2055 printf(" Checkpoint Area pba : %llu\n",
2056 migr_chkp_area_pba(migr_rec));
2057 printf(" First member lba : %llu\n",
2058 migr_dest_1st_member_lba(migr_rec));
2059 printf(" Total Number of Units : %llu\n",
2060 get_num_migr_units(migr_rec));
2061 printf(" Size of volume : %llu\n",
2062 join_u32(migr_rec->post_migr_vol_cap,
2063 migr_rec->post_migr_vol_cap_hi));
2064 printf(" Record was read from : %u\n",
2065 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
2066
2067 break;
2068 }
2069 }
2070
2071 void convert_from_4k_imsm_migr_rec(struct intel_super *super)
2072 {
2073 struct migr_record *migr_rec = super->migr_rec;
2074
2075 migr_rec->blocks_per_unit *= IMSM_4K_DIV;
2076 migr_rec->dest_depth_per_unit *= IMSM_4K_DIV;
2077 split_ull((join_u32(migr_rec->post_migr_vol_cap,
2078 migr_rec->post_migr_vol_cap_hi) * IMSM_4K_DIV),
2079 &migr_rec->post_migr_vol_cap,
2080 &migr_rec->post_migr_vol_cap_hi);
2081 set_migr_chkp_area_pba(migr_rec,
2082 migr_chkp_area_pba(migr_rec) * IMSM_4K_DIV);
2083 set_migr_dest_1st_member_lba(migr_rec,
2084 migr_dest_1st_member_lba(migr_rec) * IMSM_4K_DIV);
2085 }
2086
2087 void convert_from_4k(struct intel_super *super)
2088 {
2089 struct imsm_super *mpb = super->anchor;
2090 struct imsm_disk *disk;
2091 int i;
2092 __u32 bbm_log_size = __le32_to_cpu(mpb->bbm_log_size);
2093
2094 for (i = 0; i < mpb->num_disks ; i++) {
2095 disk = __get_imsm_disk(mpb, i);
2096 /* disk */
2097 set_total_blocks(disk, (total_blocks(disk)*IMSM_4K_DIV));
2098 }
2099
2100 for (i = 0; i < mpb->num_raid_devs; i++) {
2101 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
2102 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2103 /* dev */
2104 set_imsm_dev_size(dev, imsm_dev_size(dev)*IMSM_4K_DIV);
2105 set_vol_curr_migr_unit(dev,
2106 vol_curr_migr_unit(dev) * IMSM_4K_DIV);
2107
2108 /* map0 */
2109 set_blocks_per_member(map, blocks_per_member(map)*IMSM_4K_DIV);
2110 map->blocks_per_strip *= IMSM_4K_DIV;
2111 set_pba_of_lba0(map, pba_of_lba0(map)*IMSM_4K_DIV);
2112
2113 if (dev->vol.migr_state) {
2114 /* map1 */
2115 map = get_imsm_map(dev, MAP_1);
2116 set_blocks_per_member(map,
2117 blocks_per_member(map)*IMSM_4K_DIV);
2118 map->blocks_per_strip *= IMSM_4K_DIV;
2119 set_pba_of_lba0(map, pba_of_lba0(map)*IMSM_4K_DIV);
2120 }
2121 }
2122 if (bbm_log_size) {
2123 struct bbm_log *log = (void *)mpb +
2124 __le32_to_cpu(mpb->mpb_size) - bbm_log_size;
2125 __u32 i;
2126
2127 for (i = 0; i < log->entry_count; i++) {
2128 struct bbm_log_entry *entry =
2129 &log->marked_block_entries[i];
2130
2131 __u8 count = entry->marked_count + 1;
2132 unsigned long long sector =
2133 __le48_to_cpu(&entry->defective_block_start);
2134
2135 entry->defective_block_start =
2136 __cpu_to_le48(sector*IMSM_4K_DIV);
2137 entry->marked_count = count*IMSM_4K_DIV - 1;
2138 }
2139 }
2140
2141 mpb->check_sum = __gen_imsm_checksum(mpb);
2142 }
2143
2144 /*******************************************************************************
2145 * function: imsm_check_attributes
2146 * Description: Function checks if features represented by attributes flags
2147 * are supported by mdadm.
2148 * Parameters:
2149 * attributes - Attributes read from metadata
2150 * Returns:
2151 * 0 - passed attributes contains unsupported features flags
2152 * 1 - all features are supported
2153 ******************************************************************************/
2154 static int imsm_check_attributes(__u32 attributes)
2155 {
2156 int ret_val = 1;
2157 __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
2158
2159 not_supported &= ~MPB_ATTRIB_IGNORED;
2160
2161 not_supported &= attributes;
2162 if (not_supported) {
2163 pr_err("(IMSM): Unsupported attributes : %x\n",
2164 (unsigned)__le32_to_cpu(not_supported));
2165 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
2166 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
2167 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
2168 }
2169 if (not_supported & MPB_ATTRIB_2TB) {
2170 dprintf("\t\tMPB_ATTRIB_2TB\n");
2171 not_supported ^= MPB_ATTRIB_2TB;
2172 }
2173 if (not_supported & MPB_ATTRIB_RAID0) {
2174 dprintf("\t\tMPB_ATTRIB_RAID0\n");
2175 not_supported ^= MPB_ATTRIB_RAID0;
2176 }
2177 if (not_supported & MPB_ATTRIB_RAID1) {
2178 dprintf("\t\tMPB_ATTRIB_RAID1\n");
2179 not_supported ^= MPB_ATTRIB_RAID1;
2180 }
2181 if (not_supported & MPB_ATTRIB_RAID10) {
2182 dprintf("\t\tMPB_ATTRIB_RAID10\n");
2183 not_supported ^= MPB_ATTRIB_RAID10;
2184 }
2185 if (not_supported & MPB_ATTRIB_RAID1E) {
2186 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
2187 not_supported ^= MPB_ATTRIB_RAID1E;
2188 }
2189 if (not_supported & MPB_ATTRIB_RAID5) {
2190 dprintf("\t\tMPB_ATTRIB_RAID5\n");
2191 not_supported ^= MPB_ATTRIB_RAID5;
2192 }
2193 if (not_supported & MPB_ATTRIB_RAIDCNG) {
2194 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
2195 not_supported ^= MPB_ATTRIB_RAIDCNG;
2196 }
2197 if (not_supported & MPB_ATTRIB_BBM) {
2198 dprintf("\t\tMPB_ATTRIB_BBM\n");
2199 not_supported ^= MPB_ATTRIB_BBM;
2200 }
2201 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
2202 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
2203 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
2204 }
2205 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
2206 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
2207 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
2208 }
2209 if (not_supported & MPB_ATTRIB_2TB_DISK) {
2210 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
2211 not_supported ^= MPB_ATTRIB_2TB_DISK;
2212 }
2213 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
2214 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
2215 not_supported ^= MPB_ATTRIB_NEVER_USE2;
2216 }
2217 if (not_supported & MPB_ATTRIB_NEVER_USE) {
2218 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
2219 not_supported ^= MPB_ATTRIB_NEVER_USE;
2220 }
2221
2222 if (not_supported)
2223 dprintf("(IMSM): Unknown attributes : %x\n", not_supported);
2224
2225 ret_val = 0;
2226 }
2227
2228 return ret_val;
2229 }
2230
2231 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
2232
2233 static void examine_super_imsm(struct supertype *st, char *homehost)
2234 {
2235 struct intel_super *super = st->sb;
2236 struct imsm_super *mpb = super->anchor;
2237 char str[MAX_SIGNATURE_LENGTH];
2238 int i;
2239 struct mdinfo info;
2240 char nbuf[64];
2241 __u32 sum;
2242 __u32 reserved = imsm_reserved_sectors(super, super->disks);
2243 struct dl *dl;
2244 time_t creation_time;
2245
2246 strncpy(str, (char *)mpb->sig, MPB_SIG_LEN);
2247 str[MPB_SIG_LEN-1] = '\0';
2248 printf(" Magic : %s\n", str);
2249 printf(" Version : %s\n", get_imsm_version(mpb));
2250 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
2251 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
2252 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
2253 creation_time = __le64_to_cpu(mpb->creation_time);
2254 printf(" Creation Time : %.24s\n",
2255 creation_time ? ctime(&creation_time) : "Unknown");
2256 printf(" Attributes : ");
2257 if (imsm_check_attributes(mpb->attributes))
2258 printf("All supported\n");
2259 else
2260 printf("not supported\n");
2261 getinfo_super_imsm(st, &info, NULL);
2262 fname_from_uuid(st, &info, nbuf, ':');
2263 printf(" UUID : %s\n", nbuf + 5);
2264 sum = __le32_to_cpu(mpb->check_sum);
2265 printf(" Checksum : %08x %s\n", sum,
2266 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
2267 printf(" MPB Sectors : %d\n", mpb_sectors(mpb, super->sector_size));
2268 printf(" Disks : %d\n", mpb->num_disks);
2269 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
2270 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index),
2271 super->disks->index, reserved, super->sector_size);
2272 if (get_imsm_bbm_log_size(super->bbm_log)) {
2273 struct bbm_log *log = super->bbm_log;
2274
2275 printf("\n");
2276 printf("Bad Block Management Log:\n");
2277 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
2278 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
2279 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
2280 }
2281 for (i = 0; i < mpb->num_raid_devs; i++) {
2282 struct mdinfo info;
2283 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
2284
2285 super->current_vol = i;
2286 getinfo_super_imsm(st, &info, NULL);
2287 fname_from_uuid(st, &info, nbuf, ':');
2288 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
2289 }
2290 for (i = 0; i < mpb->num_disks; i++) {
2291 if (i == super->disks->index)
2292 continue;
2293 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved,
2294 super->sector_size);
2295 }
2296
2297 for (dl = super->disks; dl; dl = dl->next)
2298 if (dl->index == -1)
2299 print_imsm_disk(&dl->disk, -1, reserved,
2300 super->sector_size);
2301
2302 examine_migr_rec_imsm(super);
2303 }
2304
2305 static void brief_examine_super_imsm(struct supertype *st, int verbose)
2306 {
2307 /* We just write a generic IMSM ARRAY entry */
2308 struct mdinfo info;
2309 char nbuf[64];
2310
2311 getinfo_super_imsm(st, &info, NULL);
2312 fname_from_uuid(st, &info, nbuf, ':');
2313 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
2314 }
2315
2316 static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
2317 {
2318 /* We just write a generic IMSM ARRAY entry */
2319 struct mdinfo info;
2320 char nbuf[64];
2321 char nbuf1[64];
2322 struct intel_super *super = st->sb;
2323 int i;
2324
2325 if (!super->anchor->num_raid_devs)
2326 return;
2327
2328 getinfo_super_imsm(st, &info, NULL);
2329 fname_from_uuid(st, &info, nbuf, ':');
2330 for (i = 0; i < super->anchor->num_raid_devs; i++) {
2331 struct imsm_dev *dev = get_imsm_dev(super, i);
2332
2333 super->current_vol = i;
2334 getinfo_super_imsm(st, &info, NULL);
2335 fname_from_uuid(st, &info, nbuf1, ':');
2336 printf("ARRAY " DEV_MD_DIR "%.16s container=%s member=%d UUID=%s\n",
2337 dev->volume, nbuf + 5, i, nbuf1 + 5);
2338 }
2339 }
2340
2341 static void export_examine_super_imsm(struct supertype *st)
2342 {
2343 struct intel_super *super = st->sb;
2344 struct imsm_super *mpb = super->anchor;
2345 struct mdinfo info;
2346 char nbuf[64];
2347
2348 getinfo_super_imsm(st, &info, NULL);
2349 fname_from_uuid(st, &info, nbuf, ':');
2350 printf("MD_METADATA=imsm\n");
2351 printf("MD_LEVEL=container\n");
2352 printf("MD_UUID=%s\n", nbuf+5);
2353 printf("MD_DEVICES=%u\n", mpb->num_disks);
2354 printf("MD_CREATION_TIME=%llu\n", __le64_to_cpu(mpb->creation_time));
2355 }
2356
2357 static void detail_super_imsm(struct supertype *st, char *homehost,
2358 char *subarray)
2359 {
2360 struct mdinfo info;
2361 char nbuf[64];
2362 struct intel_super *super = st->sb;
2363 int temp_vol = super->current_vol;
2364
2365 if (subarray)
2366 super->current_vol = strtoul(subarray, NULL, 10);
2367
2368 getinfo_super_imsm(st, &info, NULL);
2369 fname_from_uuid(st, &info, nbuf, ':');
2370 printf("\n UUID : %s\n", nbuf + 5);
2371
2372 super->current_vol = temp_vol;
2373 }
2374
2375 static void brief_detail_super_imsm(struct supertype *st, char *subarray)
2376 {
2377 struct mdinfo info;
2378 char nbuf[64];
2379 struct intel_super *super = st->sb;
2380 int temp_vol = super->current_vol;
2381
2382 if (subarray)
2383 super->current_vol = strtoul(subarray, NULL, 10);
2384
2385 getinfo_super_imsm(st, &info, NULL);
2386 fname_from_uuid(st, &info, nbuf, ':');
2387 printf(" UUID=%s", nbuf + 5);
2388
2389 super->current_vol = temp_vol;
2390 }
2391
2392 static int imsm_read_serial(int fd, char *devname, __u8 *serial,
2393 size_t serial_buf_len);
2394 static void fd2devname(int fd, char *name);
2395
2396 static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
2397 {
2398 /* dump an unsorted list of devices attached to AHCI Intel storage
2399 * controller, as well as non-connected ports
2400 */
2401 int hba_len = strlen(hba_path) + 1;
2402 struct dirent *ent;
2403 DIR *dir;
2404 char *path = NULL;
2405 int err = 0;
2406 unsigned long port_mask = (1 << port_count) - 1;
2407
2408 if (port_count > (int)sizeof(port_mask) * 8) {
2409 if (verbose > 0)
2410 pr_err("port_count %d out of range\n", port_count);
2411 return 2;
2412 }
2413
2414 /* scroll through /sys/dev/block looking for devices attached to
2415 * this hba
2416 */
2417 dir = opendir("/sys/dev/block");
2418 if (!dir)
2419 return 1;
2420
2421 for (ent = readdir(dir); ent; ent = readdir(dir)) {
2422 int fd;
2423 char model[64];
2424 char vendor[64];
2425 char buf[1024];
2426 int major, minor;
2427 char device[PATH_MAX];
2428 char *c;
2429 int port;
2430 int type;
2431
2432 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
2433 continue;
2434 path = devt_to_devpath(makedev(major, minor), 1, NULL);
2435 if (!path)
2436 continue;
2437 if (!path_attached_to_hba(path, hba_path)) {
2438 free(path);
2439 path = NULL;
2440 continue;
2441 }
2442
2443 /* retrieve the scsi device */
2444 if (!devt_to_devpath(makedev(major, minor), 1, device)) {
2445 if (verbose > 0)
2446 pr_err("failed to get device\n");
2447 err = 2;
2448 break;
2449 }
2450 if (devpath_to_char(device, "type", buf, sizeof(buf), 0)) {
2451 err = 2;
2452 break;
2453 }
2454 type = strtoul(buf, NULL, 10);
2455
2456 /* if it's not a disk print the vendor and model */
2457 if (!(type == 0 || type == 7 || type == 14)) {
2458 vendor[0] = '\0';
2459 model[0] = '\0';
2460
2461 if (devpath_to_char(device, "vendor", buf,
2462 sizeof(buf), 0) == 0) {
2463 strncpy(vendor, buf, sizeof(vendor));
2464 vendor[sizeof(vendor) - 1] = '\0';
2465 c = (char *) &vendor[sizeof(vendor) - 1];
2466 while (isspace(*c) || *c == '\0')
2467 *c-- = '\0';
2468
2469 }
2470
2471 if (devpath_to_char(device, "model", buf,
2472 sizeof(buf), 0) == 0) {
2473 strncpy(model, buf, sizeof(model));
2474 model[sizeof(model) - 1] = '\0';
2475 c = (char *) &model[sizeof(model) - 1];
2476 while (isspace(*c) || *c == '\0')
2477 *c-- = '\0';
2478 }
2479
2480 if (vendor[0] && model[0])
2481 sprintf(buf, "%.64s %.64s", vendor, model);
2482 else
2483 switch (type) { /* numbers from hald/linux/device.c */
2484 case 1: sprintf(buf, "tape"); break;
2485 case 2: sprintf(buf, "printer"); break;
2486 case 3: sprintf(buf, "processor"); break;
2487 case 4:
2488 case 5: sprintf(buf, "cdrom"); break;
2489 case 6: sprintf(buf, "scanner"); break;
2490 case 8: sprintf(buf, "media_changer"); break;
2491 case 9: sprintf(buf, "comm"); break;
2492 case 12: sprintf(buf, "raid"); break;
2493 default: sprintf(buf, "unknown");
2494 }
2495 } else
2496 buf[0] = '\0';
2497
2498 /* chop device path to 'host%d' and calculate the port number */
2499 c = strchr(&path[hba_len], '/');
2500 if (!c) {
2501 if (verbose > 0)
2502 pr_err("%s - invalid path name\n", path + hba_len);
2503 err = 2;
2504 break;
2505 }
2506 *c = '\0';
2507 if ((sscanf(&path[hba_len], "ata%d", &port) == 1) ||
2508 ((sscanf(&path[hba_len], "host%d", &port) == 1)))
2509 port -= host_base;
2510 else {
2511 if (verbose > 0) {
2512 *c = '/'; /* repair the full string */
2513 pr_err("failed to determine port number for %s\n",
2514 path);
2515 }
2516 err = 2;
2517 break;
2518 }
2519
2520 /* mark this port as used */
2521 port_mask &= ~(1 << port);
2522
2523 /* print out the device information */
2524 if (buf[0]) {
2525 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
2526 continue;
2527 }
2528
2529 fd = dev_open(ent->d_name, O_RDONLY);
2530 if (!is_fd_valid(fd))
2531 printf(" Port%d : - disk info unavailable -\n", port);
2532 else {
2533 fd2devname(fd, buf);
2534 printf(" Port%d : %s", port, buf);
2535 if (imsm_read_serial(fd, NULL, (__u8 *)buf,
2536 sizeof(buf)) == 0)
2537 printf(" (%s)\n", buf);
2538 else
2539 printf(" ()\n");
2540 close(fd);
2541 }
2542 free(path);
2543 path = NULL;
2544 }
2545 if (path)
2546 free(path);
2547 if (dir)
2548 closedir(dir);
2549 if (err == 0) {
2550 int i;
2551
2552 for (i = 0; i < port_count; i++)
2553 if (port_mask & (1 << i))
2554 printf(" Port%d : - no device attached -\n", i);
2555 }
2556
2557 return err;
2558 }
2559
2560 static int print_nvme_info(struct sys_dev *hba)
2561 {
2562 struct dirent *ent;
2563 DIR *dir;
2564
2565 dir = opendir("/sys/block/");
2566 if (!dir)
2567 return 1;
2568
2569 for (ent = readdir(dir); ent; ent = readdir(dir)) {
2570 char ns_path[PATH_MAX];
2571 char cntrl_path[PATH_MAX];
2572 char buf[PATH_MAX];
2573 int fd = -1;
2574
2575 if (!strstr(ent->d_name, "nvme"))
2576 goto skip;
2577
2578 fd = open_dev(ent->d_name);
2579 if (!is_fd_valid(fd))
2580 goto skip;
2581
2582 if (!diskfd_to_devpath(fd, 0, ns_path) ||
2583 !diskfd_to_devpath(fd, 1, cntrl_path))
2584 goto skip;
2585
2586 if (!path_attached_to_hba(cntrl_path, hba->path))
2587 goto skip;
2588
2589 if (!imsm_is_nvme_namespace_supported(fd, 0))
2590 goto skip;
2591
2592 fd2devname(fd, buf);
2593 if (hba->type == SYS_DEV_VMD)
2594 printf(" NVMe under VMD : %s", buf);
2595 else if (hba->type == SYS_DEV_NVME)
2596 printf(" NVMe Device : %s", buf);
2597
2598 if (!imsm_read_serial(fd, NULL, (__u8 *)buf,
2599 sizeof(buf)))
2600 printf(" (%s)\n", buf);
2601 else
2602 printf("()\n");
2603
2604 skip:
2605 close_fd(&fd);
2606 }
2607
2608 closedir(dir);
2609 return 0;
2610 }
2611
2612 static void print_found_intel_controllers(struct sys_dev *elem)
2613 {
2614 for (; elem; elem = elem->next) {
2615 pr_err("found Intel(R) ");
2616 if (elem->type == SYS_DEV_SATA)
2617 fprintf(stderr, "SATA ");
2618 else if (elem->type == SYS_DEV_SAS)
2619 fprintf(stderr, "SAS ");
2620 else if (elem->type == SYS_DEV_NVME)
2621 fprintf(stderr, "NVMe ");
2622
2623 if (elem->type == SYS_DEV_VMD)
2624 fprintf(stderr, "VMD domain");
2625 else if (elem->type == SYS_DEV_SATA_VMD)
2626 fprintf(stderr, "SATA VMD domain");
2627 else
2628 fprintf(stderr, "RAID controller");
2629
2630 if (elem->pci_id)
2631 fprintf(stderr, " at %s", elem->pci_id);
2632 fprintf(stderr, ".\n");
2633 }
2634 fflush(stderr);
2635 }
2636
2637 static int ahci_get_port_count(const char *hba_path, int *port_count)
2638 {
2639 struct dirent *ent;
2640 DIR *dir;
2641 int host_base = -1;
2642
2643 *port_count = 0;
2644 if ((dir = opendir(hba_path)) == NULL)
2645 return -1;
2646
2647 for (ent = readdir(dir); ent; ent = readdir(dir)) {
2648 int host;
2649
2650 if ((sscanf(ent->d_name, "ata%d", &host) != 1) &&
2651 ((sscanf(ent->d_name, "host%d", &host) != 1)))
2652 continue;
2653 if (*port_count == 0)
2654 host_base = host;
2655 else if (host < host_base)
2656 host_base = host;
2657
2658 if (host + 1 > *port_count + host_base)
2659 *port_count = host + 1 - host_base;
2660 }
2661 closedir(dir);
2662 return host_base;
2663 }
2664
2665 static void print_imsm_capability(const struct imsm_orom *orom)
2666 {
2667 printf(" Platform : Intel(R) ");
2668 if (orom->capabilities == 0 && orom->driver_features == 0)
2669 printf("Matrix Storage Manager\n");
2670 else if (imsm_orom_is_enterprise(orom) && orom->major_ver >= 6)
2671 printf("Virtual RAID on CPU\n");
2672 else
2673 printf("Rapid Storage Technology%s\n",
2674 imsm_orom_is_enterprise(orom) ? " enterprise" : "");
2675 if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build) {
2676 if (imsm_orom_is_vmd_without_efi(orom))
2677 printf(" Version : %d.%d\n", orom->major_ver,
2678 orom->minor_ver);
2679 else
2680 printf(" Version : %d.%d.%d.%d\n", orom->major_ver,
2681 orom->minor_ver, orom->hotfix_ver, orom->build);
2682 }
2683 printf(" RAID Levels :%s%s%s%s%s\n",
2684 imsm_orom_has_raid0(orom) ? " raid0" : "",
2685 imsm_orom_has_raid1(orom) ? " raid1" : "",
2686 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
2687 imsm_orom_has_raid10(orom) ? " raid10" : "",
2688 imsm_orom_has_raid5(orom) ? " raid5" : "");
2689 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
2690 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
2691 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
2692 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
2693 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
2694 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
2695 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
2696 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
2697 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
2698 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
2699 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
2700 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
2701 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
2702 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
2703 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
2704 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
2705 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
2706 printf(" 2TB volumes :%s supported\n",
2707 (orom->attr & IMSM_OROM_ATTR_2TB)?"":" not");
2708 printf(" 2TB disks :%s supported\n",
2709 (orom->attr & IMSM_OROM_ATTR_2TB_DISK)?"":" not");
2710 printf(" Max Disks : %d\n", orom->tds);
2711 printf(" Max Volumes : %d per array, %d per %s\n",
2712 orom->vpa, orom->vphba,
2713 imsm_orom_is_nvme(orom) ? "platform" : "controller");
2714 return;
2715 }
2716
2717 static void print_imsm_capability_export(const struct imsm_orom *orom)
2718 {
2719 printf("MD_FIRMWARE_TYPE=imsm\n");
2720 if (orom->major_ver || orom->minor_ver || orom->hotfix_ver || orom->build)
2721 printf("IMSM_VERSION=%d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
2722 orom->hotfix_ver, orom->build);
2723 printf("IMSM_SUPPORTED_RAID_LEVELS=%s%s%s%s%s\n",
2724 imsm_orom_has_raid0(orom) ? "raid0 " : "",
2725 imsm_orom_has_raid1(orom) ? "raid1 " : "",
2726 imsm_orom_has_raid1e(orom) ? "raid1e " : "",
2727 imsm_orom_has_raid5(orom) ? "raid10 " : "",
2728 imsm_orom_has_raid10(orom) ? "raid5 " : "");
2729 printf("IMSM_SUPPORTED_CHUNK_SIZES=%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
2730 imsm_orom_has_chunk(orom, 2) ? "2k " : "",
2731 imsm_orom_has_chunk(orom, 4) ? "4k " : "",
2732 imsm_orom_has_chunk(orom, 8) ? "8k " : "",
2733 imsm_orom_has_chunk(orom, 16) ? "16k " : "",
2734 imsm_orom_has_chunk(orom, 32) ? "32k " : "",
2735 imsm_orom_has_chunk(orom, 64) ? "64k " : "",
2736 imsm_orom_has_chunk(orom, 128) ? "128k " : "",
2737 imsm_orom_has_chunk(orom, 256) ? "256k " : "",
2738 imsm_orom_has_chunk(orom, 512) ? "512k " : "",
2739 imsm_orom_has_chunk(orom, 1024*1) ? "1M " : "",
2740 imsm_orom_has_chunk(orom, 1024*2) ? "2M " : "",
2741 imsm_orom_has_chunk(orom, 1024*4) ? "4M " : "",
2742 imsm_orom_has_chunk(orom, 1024*8) ? "8M " : "",
2743 imsm_orom_has_chunk(orom, 1024*16) ? "16M " : "",
2744 imsm_orom_has_chunk(orom, 1024*32) ? "32M " : "",
2745 imsm_orom_has_chunk(orom, 1024*64) ? "64M " : "");
2746 printf("IMSM_2TB_VOLUMES=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB) ? "yes" : "no");
2747 printf("IMSM_2TB_DISKS=%s\n",(orom->attr & IMSM_OROM_ATTR_2TB_DISK) ? "yes" : "no");
2748 printf("IMSM_MAX_DISKS=%d\n",orom->tds);
2749 printf("IMSM_MAX_VOLUMES_PER_ARRAY=%d\n",orom->vpa);
2750 printf("IMSM_MAX_VOLUMES_PER_CONTROLLER=%d\n",orom->vphba);
2751 }
2752
2753 static int detail_platform_imsm(int verbose, int enumerate_only, char *controller_path)
2754 {
2755 /* There are two components to imsm platform support, the ahci SATA
2756 * controller and the option-rom. To find the SATA controller we
2757 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
2758 * controller with the Intel vendor id is present. This approach
2759 * allows mdadm to leverage the kernel's ahci detection logic, with the
2760 * caveat that if ahci.ko is not loaded mdadm will not be able to
2761 * detect platform raid capabilities. The option-rom resides in a
2762 * platform "Adapter ROM". We scan for its signature to retrieve the
2763 * platform capabilities. If raid support is disabled in the BIOS the
2764 * option-rom capability structure will not be available.
2765 */
2766 struct sys_dev *list, *hba;
2767 int host_base = 0;
2768 int port_count = 0;
2769 int result=1;
2770
2771 if (enumerate_only) {
2772 if (check_no_platform())
2773 return 0;
2774 list = find_intel_devices();
2775 if (!list)
2776 return 2;
2777 for (hba = list; hba; hba = hba->next) {
2778 if (find_imsm_capability(hba)) {
2779 result = 0;
2780 break;
2781 }
2782 else
2783 result = 2;
2784 }
2785 return result;
2786 }
2787
2788 list = find_intel_devices();
2789 if (!list) {
2790 if (verbose > 0)
2791 pr_err("no active Intel(R) RAID controller found.\n");
2792 return 2;
2793 } else if (verbose > 0)
2794 print_found_intel_controllers(list);
2795
2796 for (hba = list; hba; hba = hba->next) {
2797 if (controller_path && (compare_paths(hba->path, controller_path) != 0))
2798 continue;
2799 if (!find_imsm_capability(hba)) {
2800 char buf[PATH_MAX];
2801 pr_err("imsm capabilities not found for controller: %s (type %s)\n",
2802 hba->type == SYS_DEV_VMD || hba->type == SYS_DEV_SATA_VMD ?
2803 vmd_domain_to_controller(hba, buf) :
2804 hba->path, get_sys_dev_type(hba->type));
2805 continue;
2806 }
2807 result = 0;
2808 }
2809
2810 if (controller_path && result == 1) {
2811 pr_err("no active Intel(R) RAID controller found under %s\n",
2812 controller_path);
2813 return result;
2814 }
2815
2816 const struct orom_entry *entry;
2817
2818 for (entry = orom_entries; entry; entry = entry->next) {
2819 if (entry->type == SYS_DEV_VMD) {
2820 print_imsm_capability(&entry->orom);
2821 printf(" 3rd party NVMe :%s supported\n",
2822 imsm_orom_has_tpv_support(&entry->orom)?"":" not");
2823 for (hba = list; hba; hba = hba->next) {
2824 if (hba->type == SYS_DEV_VMD) {
2825 char buf[PATH_MAX];
2826 printf(" I/O Controller : %s (%s)\n",
2827 vmd_domain_to_controller(hba, buf), get_sys_dev_type(hba->type));
2828 if (print_nvme_info(hba)) {
2829 if (verbose > 0)
2830 pr_err("failed to get devices attached to VMD domain.\n");
2831 result |= 2;
2832 }
2833 }
2834 }
2835 printf("\n");
2836 continue;
2837 }
2838
2839 print_imsm_capability(&entry->orom);
2840 if (entry->type == SYS_DEV_NVME) {
2841 for (hba = list; hba; hba = hba->next) {
2842 if (hba->type == SYS_DEV_NVME)
2843 print_nvme_info(hba);
2844 }
2845 printf("\n");
2846 continue;
2847 }
2848
2849 struct devid_list *devid;
2850 for (devid = entry->devid_list; devid; devid = devid->next) {
2851 hba = device_by_id(devid->devid);
2852 if (!hba)
2853 continue;
2854
2855 printf(" I/O Controller : %s (%s)\n",
2856 hba->path, get_sys_dev_type(hba->type));
2857 if (hba->type == SYS_DEV_SATA || hba->type == SYS_DEV_SATA_VMD) {
2858 host_base = ahci_get_port_count(hba->path, &port_count);
2859 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
2860 if (verbose > 0)
2861 pr_err("failed to enumerate ports on %s controller at %s.\n",
2862 get_sys_dev_type(hba->type), hba->pci_id);
2863 result |= 2;
2864 }
2865 }
2866 }
2867 printf("\n");
2868 }
2869
2870 return result;
2871 }
2872
2873 static int export_detail_platform_imsm(int verbose, char *controller_path)
2874 {
2875 struct sys_dev *list, *hba;
2876 int result=1;
2877
2878 list = find_intel_devices();
2879 if (!list) {
2880 if (verbose > 0)
2881 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_INTEL_DEVICES\n");
2882 result = 2;
2883 return result;
2884 }
2885
2886 for (hba = list; hba; hba = hba->next) {
2887 if (controller_path && (compare_paths(hba->path,controller_path) != 0))
2888 continue;
2889 if (!find_imsm_capability(hba) && verbose > 0) {
2890 char buf[PATH_MAX];
2891 pr_err("IMSM_DETAIL_PLATFORM_ERROR=NO_IMSM_CAPABLE_DEVICE_UNDER_%s\n",
2892 hba->type == SYS_DEV_VMD || hba->type == SYS_DEV_SATA_VMD ?
2893 vmd_domain_to_controller(hba, buf) : hba->path);
2894 }
2895 else
2896 result = 0;
2897 }
2898
2899 const struct orom_entry *entry;
2900
2901 for (entry = orom_entries; entry; entry = entry->next) {
2902 if (entry->type == SYS_DEV_VMD || entry->type == SYS_DEV_SATA_VMD) {
2903 for (hba = list; hba; hba = hba->next)
2904 print_imsm_capability_export(&entry->orom);
2905 continue;
2906 }
2907 print_imsm_capability_export(&entry->orom);
2908 }
2909
2910 return result;
2911 }
2912
2913 static int match_home_imsm(struct supertype *st, char *homehost)
2914 {
2915 /* the imsm metadata format does not specify any host
2916 * identification information. We return -1 since we can never
2917 * confirm nor deny whether a given array is "meant" for this
2918 * host. We rely on compare_super and the 'family_num' fields to
2919 * exclude member disks that do not belong, and we rely on
2920 * mdadm.conf to specify the arrays that should be assembled.
2921 * Auto-assembly may still pick up "foreign" arrays.
2922 */
2923
2924 return -1;
2925 }
2926
2927 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
2928 {
2929 /* The uuid returned here is used for:
2930 * uuid to put into bitmap file (Create, Grow)
2931 * uuid for backup header when saving critical section (Grow)
2932 * comparing uuids when re-adding a device into an array
2933 * In these cases the uuid required is that of the data-array,
2934 * not the device-set.
2935 * uuid to recognise same set when adding a missing device back
2936 * to an array. This is a uuid for the device-set.
2937 *
2938 * For each of these we can make do with a truncated
2939 * or hashed uuid rather than the original, as long as
2940 * everyone agrees.
2941 * In each case the uuid required is that of the data-array,
2942 * not the device-set.
2943 */
2944 /* imsm does not track uuid's so we synthesis one using sha1 on
2945 * - The signature (Which is constant for all imsm array, but no matter)
2946 * - the orig_family_num of the container
2947 * - the index number of the volume
2948 * - the 'serial' number of the volume.
2949 * Hopefully these are all constant.
2950 */
2951 struct intel_super *super = st->sb;
2952
2953 char buf[20];
2954 struct sha1_ctx ctx;
2955 struct imsm_dev *dev = NULL;
2956 __u32 family_num;
2957
2958 /* some mdadm versions failed to set ->orig_family_num, in which
2959 * case fall back to ->family_num. orig_family_num will be
2960 * fixed up with the first metadata update.
2961 */
2962 family_num = super->anchor->orig_family_num;
2963 if (family_num == 0)
2964 family_num = super->anchor->family_num;
2965 sha1_init_ctx(&ctx);
2966 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
2967 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
2968 if (super->current_vol >= 0)
2969 dev = get_imsm_dev(super, super->current_vol);
2970 if (dev) {
2971 __u32 vol = super->current_vol;
2972 sha1_process_bytes(&vol, sizeof(vol), &ctx);
2973 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
2974 }
2975 sha1_finish_ctx(&ctx, buf);
2976 memcpy(uuid, buf, 4*4);
2977 }
2978
2979 static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
2980 {
2981 /* migr_strip_size when repairing or initializing parity */
2982 struct imsm_map *map = get_imsm_map(dev, MAP_0);
2983 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
2984
2985 switch (get_imsm_raid_level(map)) {
2986 case 5:
2987 case 10:
2988 return chunk;
2989 default:
2990 return 128*1024 >> 9;
2991 }
2992 }
2993
2994 static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
2995 {
2996 /* migr_strip_size when rebuilding a degraded disk, no idea why
2997 * this is different than migr_strip_size_resync(), but it's good
2998 * to be compatible
2999 */
3000 struct imsm_map *map = get_imsm_map(dev, MAP_1);
3001 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
3002
3003 switch (get_imsm_raid_level(map)) {
3004 case 1:
3005 case 10:
3006 if (map->num_members % map->num_domains == 0)
3007 return 128*1024 >> 9;
3008 else
3009 return chunk;
3010 case 5:
3011 return max((__u32) 64*1024 >> 9, chunk);
3012 default:
3013 return 128*1024 >> 9;
3014 }
3015 }
3016
3017 static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
3018 {
3019 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
3020 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
3021 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
3022 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
3023
3024 return max((__u32) 1, hi_chunk / lo_chunk);
3025 }
3026
3027 static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
3028 {
3029 struct imsm_map *lo = get_imsm_map(dev, MAP_0);
3030 int level = get_imsm_raid_level(lo);
3031
3032 if (level == 1 || level == 10) {
3033 struct imsm_map *hi = get_imsm_map(dev, MAP_1);
3034
3035 return hi->num_domains;
3036 } else
3037 return num_stripes_per_unit_resync(dev);
3038 }
3039
3040 static unsigned long long calc_component_size(struct imsm_map *map,
3041 struct imsm_dev *dev)
3042 {
3043 unsigned long long component_size;
3044 unsigned long long dev_size = imsm_dev_size(dev);
3045 long long calc_dev_size = 0;
3046 unsigned int member_disks = imsm_num_data_members(map);
3047
3048 if (member_disks == 0)
3049 return 0;
3050
3051 component_size = per_dev_array_size(map);
3052 calc_dev_size = component_size * member_disks;
3053
3054 /* Component size is rounded to 1MB so difference between size from
3055 * metadata and size calculated from num_data_stripes equals up to
3056 * 2048 blocks per each device. If the difference is higher it means
3057 * that array size was expanded and num_data_stripes was not updated.
3058 */
3059 if (llabs(calc_dev_size - (long long)dev_size) >
3060 (1 << SECT_PER_MB_SHIFT) * member_disks) {
3061 component_size = dev_size / member_disks;
3062 dprintf("Invalid num_data_stripes in metadata; expected=%llu, found=%llu\n",
3063 component_size / map->blocks_per_strip,
3064 num_data_stripes(map));
3065 }
3066
3067 return component_size;
3068 }
3069
3070 static __u32 parity_segment_depth(struct imsm_dev *dev)
3071 {
3072 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3073 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
3074
3075 switch(get_imsm_raid_level(map)) {
3076 case 1:
3077 case 10:
3078 return chunk * map->num_domains;
3079 case 5:
3080 return chunk * map->num_members;
3081 default:
3082 return chunk;
3083 }
3084 }
3085
3086 static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
3087 {
3088 struct imsm_map *map = get_imsm_map(dev, MAP_1);
3089 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
3090 __u32 strip = block / chunk;
3091
3092 switch (get_imsm_raid_level(map)) {
3093 case 1:
3094 case 10: {
3095 __u32 vol_strip = (strip * map->num_domains) + 1;
3096 __u32 vol_stripe = vol_strip / map->num_members;
3097
3098 return vol_stripe * chunk + block % chunk;
3099 } case 5: {
3100 __u32 stripe = strip / (map->num_members - 1);
3101
3102 return stripe * chunk + block % chunk;
3103 }
3104 default:
3105 return 0;
3106 }
3107 }
3108
3109 static __u64 blocks_per_migr_unit(struct intel_super *super,
3110 struct imsm_dev *dev)
3111 {
3112 /* calculate the conversion factor between per member 'blocks'
3113 * (md/{resync,rebuild}_start) and imsm migration units, return
3114 * 0 for the 'not migrating' and 'unsupported migration' cases
3115 */
3116 if (!dev->vol.migr_state)
3117 return 0;
3118
3119 switch (migr_type(dev)) {
3120 case MIGR_GEN_MIGR: {
3121 struct migr_record *migr_rec = super->migr_rec;
3122 return __le32_to_cpu(migr_rec->blocks_per_unit);
3123 }
3124 case MIGR_VERIFY:
3125 case MIGR_REPAIR:
3126 case MIGR_INIT: {
3127 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3128 __u32 stripes_per_unit;
3129 __u32 blocks_per_unit;
3130 __u32 parity_depth;
3131 __u32 migr_chunk;
3132 __u32 block_map;
3133 __u32 block_rel;
3134 __u32 segment;
3135 __u32 stripe;
3136 __u8 disks;
3137
3138 /* yes, this is really the translation of migr_units to
3139 * per-member blocks in the 'resync' case
3140 */
3141 stripes_per_unit = num_stripes_per_unit_resync(dev);
3142 migr_chunk = migr_strip_blocks_resync(dev);
3143 disks = imsm_num_data_members(map);
3144 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
3145 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
3146 segment = blocks_per_unit / stripe;
3147 block_rel = blocks_per_unit - segment * stripe;
3148 parity_depth = parity_segment_depth(dev);
3149 block_map = map_migr_block(dev, block_rel);
3150 return block_map + parity_depth * segment;
3151 }
3152 case MIGR_REBUILD: {
3153 __u32 stripes_per_unit;
3154 __u32 migr_chunk;
3155
3156 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
3157 migr_chunk = migr_strip_blocks_rebuild(dev);
3158 return migr_chunk * stripes_per_unit;
3159 }
3160 case MIGR_STATE_CHANGE:
3161 default:
3162 return 0;
3163 }
3164 }
3165
3166 static int imsm_level_to_layout(int level)
3167 {
3168 switch (level) {
3169 case 0:
3170 case 1:
3171 return 0;
3172 case 5:
3173 case 6:
3174 return ALGORITHM_LEFT_ASYMMETRIC;
3175 case 10:
3176 return 0x102;
3177 }
3178 return UnSet;
3179 }
3180
3181 /*******************************************************************************
3182 * Function: read_imsm_migr_rec
3183 * Description: Function reads imsm migration record from last sector of disk
3184 * Parameters:
3185 * fd : disk descriptor
3186 * super : metadata info
3187 * Returns:
3188 * 0 : success,
3189 * -1 : fail
3190 ******************************************************************************/
3191 static int read_imsm_migr_rec(int fd, struct intel_super *super)
3192 {
3193 int ret_val = -1;
3194 unsigned int sector_size = super->sector_size;
3195 unsigned long long dsize;
3196
3197 get_dev_size(fd, NULL, &dsize);
3198 if (lseek64(fd, dsize - (sector_size*MIGR_REC_SECTOR_POSITION),
3199 SEEK_SET) < 0) {
3200 pr_err("Cannot seek to anchor block: %s\n",
3201 strerror(errno));
3202 goto out;
3203 }
3204 if ((unsigned int)read(fd, super->migr_rec_buf,
3205 MIGR_REC_BUF_SECTORS*sector_size) !=
3206 MIGR_REC_BUF_SECTORS*sector_size) {
3207 pr_err("Cannot read migr record block: %s\n",
3208 strerror(errno));
3209 goto out;
3210 }
3211 ret_val = 0;
3212 if (sector_size == 4096)
3213 convert_from_4k_imsm_migr_rec(super);
3214
3215 out:
3216 return ret_val;
3217 }
3218
3219 static struct imsm_dev *imsm_get_device_during_migration(
3220 struct intel_super *super)
3221 {
3222
3223 struct intel_dev *dv;
3224
3225 for (dv = super->devlist; dv; dv = dv->next) {
3226 if (is_gen_migration(dv->dev))
3227 return dv->dev;
3228 }
3229 return NULL;
3230 }
3231
3232 /*******************************************************************************
3233 * Function: load_imsm_migr_rec
3234 * Description: Function reads imsm migration record (it is stored at the last
3235 * sector of disk)
3236 * Parameters:
3237 * super : imsm internal array info
3238 * Returns:
3239 * 0 : success
3240 * -1 : fail
3241 * -2 : no migration in progress
3242 ******************************************************************************/
3243 static int load_imsm_migr_rec(struct intel_super *super)
3244 {
3245 struct dl *dl;
3246 char nm[30];
3247 int retval = -1;
3248 int fd = -1;
3249 struct imsm_dev *dev;
3250 struct imsm_map *map;
3251 int slot = -1;
3252 int keep_fd = 1;
3253
3254 /* find map under migration */
3255 dev = imsm_get_device_during_migration(super);
3256 /* nothing to load,no migration in progress?
3257 */
3258 if (dev == NULL)
3259 return -2;
3260
3261 map = get_imsm_map(dev, MAP_0);
3262 if (!map)
3263 return -1;
3264
3265 for (dl = super->disks; dl; dl = dl->next) {
3266 /* skip spare and failed disks
3267 */
3268 if (dl->index < 0)
3269 continue;
3270 /* read only from one of the first two slots
3271 */
3272 slot = get_imsm_disk_slot(map, dl->index);
3273 if (slot > 1 || slot < 0)
3274 continue;
3275
3276 if (!is_fd_valid(dl->fd)) {
3277 sprintf(nm, "%d:%d", dl->major, dl->minor);
3278 fd = dev_open(nm, O_RDONLY);
3279
3280 if (is_fd_valid(fd)) {
3281 keep_fd = 0;
3282 break;
3283 }
3284 } else {
3285 fd = dl->fd;
3286 break;
3287 }
3288 }
3289
3290 if (!is_fd_valid(fd))
3291 return retval;
3292 retval = read_imsm_migr_rec(fd, super);
3293 if (!keep_fd)
3294 close(fd);
3295
3296 return retval;
3297 }
3298
3299 /*******************************************************************************
3300 * function: imsm_create_metadata_checkpoint_update
3301 * Description: It creates update for checkpoint change.
3302 * Parameters:
3303 * super : imsm internal array info
3304 * u : pointer to prepared update
3305 * Returns:
3306 * Uptate length.
3307 * If length is equal to 0, input pointer u contains no update
3308 ******************************************************************************/
3309 static int imsm_create_metadata_checkpoint_update(
3310 struct intel_super *super,
3311 struct imsm_update_general_migration_checkpoint **u)
3312 {
3313
3314 int update_memory_size = 0;
3315
3316 dprintf("(enter)\n");
3317
3318 if (u == NULL)
3319 return 0;
3320 *u = NULL;
3321
3322 /* size of all update data without anchor */
3323 update_memory_size =
3324 sizeof(struct imsm_update_general_migration_checkpoint);
3325
3326 *u = xcalloc(1, update_memory_size);
3327 if (*u == NULL) {
3328 dprintf("error: cannot get memory\n");
3329 return 0;
3330 }
3331 (*u)->type = update_general_migration_checkpoint;
3332 (*u)->curr_migr_unit = current_migr_unit(super->migr_rec);
3333 dprintf("prepared for %llu\n", (unsigned long long)(*u)->curr_migr_unit);
3334
3335 return update_memory_size;
3336 }
3337
3338 static void imsm_update_metadata_locally(struct supertype *st,
3339 void *buf, int len);
3340
3341 /*******************************************************************************
3342 * Function: write_imsm_migr_rec
3343 * Description: Function writes imsm migration record
3344 * (at the last sector of disk)
3345 * Parameters:
3346 * super : imsm internal array info
3347 * Returns:
3348 * 0 : success
3349 * -1 : if fail
3350 ******************************************************************************/
3351 static int write_imsm_migr_rec(struct supertype *st)
3352 {
3353 struct intel_super *super = st->sb;
3354 unsigned int sector_size = super->sector_size;
3355 unsigned long long dsize;
3356 int retval = -1;
3357 struct dl *sd;
3358 int len;
3359 struct imsm_update_general_migration_checkpoint *u;
3360 struct imsm_dev *dev;
3361 struct imsm_map *map;
3362
3363 /* find map under migration */
3364 dev = imsm_get_device_during_migration(super);
3365 /* if no migration, write buffer anyway to clear migr_record
3366 * on disk based on first available device
3367 */
3368 if (dev == NULL)
3369 dev = get_imsm_dev(super, super->current_vol < 0 ? 0 :
3370 super->current_vol);
3371
3372 map = get_imsm_map(dev, MAP_0);
3373
3374 if (sector_size == 4096)
3375 convert_to_4k_imsm_migr_rec(super);
3376 for (sd = super->disks ; sd ; sd = sd->next) {
3377 int slot = -1;
3378
3379 /* skip failed and spare devices */
3380 if (sd->index < 0)
3381 continue;
3382 /* write to 2 first slots only */
3383 if (map)
3384 slot = get_imsm_disk_slot(map, sd->index);
3385 if (map == NULL || slot > 1 || slot < 0)
3386 continue;
3387
3388 get_dev_size(sd->fd, NULL, &dsize);
3389 if (lseek64(sd->fd, dsize - (MIGR_REC_SECTOR_POSITION *
3390 sector_size),
3391 SEEK_SET) < 0) {
3392 pr_err("Cannot seek to anchor block: %s\n",
3393 strerror(errno));
3394 goto out;
3395 }
3396 if ((unsigned int)write(sd->fd, super->migr_rec_buf,
3397 MIGR_REC_BUF_SECTORS*sector_size) !=
3398 MIGR_REC_BUF_SECTORS*sector_size) {
3399 pr_err("Cannot write migr record block: %s\n",
3400 strerror(errno));
3401 goto out;
3402 }
3403 }
3404 if (sector_size == 4096)
3405 convert_from_4k_imsm_migr_rec(super);
3406 /* update checkpoint information in metadata */
3407 len = imsm_create_metadata_checkpoint_update(super, &u);
3408 if (len <= 0) {
3409 dprintf("imsm: Cannot prepare update\n");
3410 goto out;
3411 }
3412 /* update metadata locally */
3413 imsm_update_metadata_locally(st, u, len);
3414 /* and possibly remotely */
3415 if (st->update_tail) {
3416 append_metadata_update(st, u, len);
3417 /* during reshape we do all work inside metadata handler
3418 * manage_reshape(), so metadata update has to be triggered
3419 * insida it
3420 */
3421 flush_metadata_updates(st);
3422 st->update_tail = &st->updates;
3423 } else
3424 free(u);
3425
3426 retval = 0;
3427 out:
3428 return retval;
3429 }
3430
3431 /* spare/missing disks activations are not allowe when
3432 * array/container performs reshape operation, because
3433 * all arrays in container works on the same disks set
3434 */
3435 int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
3436 {
3437 int rv = 0;
3438 struct intel_dev *i_dev;
3439 struct imsm_dev *dev;
3440
3441 /* check whole container
3442 */
3443 for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
3444 dev = i_dev->dev;
3445 if (is_gen_migration(dev)) {
3446 /* No repair during any migration in container
3447 */
3448 rv = 1;
3449 break;
3450 }
3451 }
3452 return rv;
3453 }
3454 static unsigned long long imsm_component_size_alignment_check(int level,
3455 int chunk_size,
3456 unsigned int sector_size,
3457 unsigned long long component_size)
3458 {
3459 unsigned int component_size_alignment;
3460
3461 /* check component size alignment
3462 */
3463 component_size_alignment = component_size % (chunk_size/sector_size);
3464
3465 dprintf("(Level: %i, chunk_size = %i, component_size = %llu), component_size_alignment = %u\n",
3466 level, chunk_size, component_size,
3467 component_size_alignment);
3468
3469 if (component_size_alignment && (level != 1) && (level != UnSet)) {
3470 dprintf("imsm: reported component size aligned from %llu ",
3471 component_size);
3472 component_size -= component_size_alignment;
3473 dprintf_cont("to %llu (%i).\n",
3474 component_size, component_size_alignment);
3475 }
3476
3477 return component_size;
3478 }
3479
3480 /*******************************************************************************
3481 * Function: get_bitmap_header_sector
3482 * Description: Returns the sector where the bitmap header is placed.
3483 * Parameters:
3484 * st : supertype information
3485 * dev_idx : index of the device with bitmap
3486 *
3487 * Returns:
3488 * The sector where the bitmap header is placed
3489 ******************************************************************************/
3490 static unsigned long long get_bitmap_header_sector(struct intel_super *super,
3491 int dev_idx)
3492 {
3493 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
3494 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3495
3496 if (!super->sector_size) {
3497 dprintf("sector size is not set\n");
3498 return 0;
3499 }
3500
3501 return pba_of_lba0(map) + calc_component_size(map, dev) +
3502 (IMSM_BITMAP_HEADER_OFFSET / super->sector_size);
3503 }
3504
3505 /*******************************************************************************
3506 * Function: get_bitmap_sector
3507 * Description: Returns the sector where the bitmap is placed.
3508 * Parameters:
3509 * st : supertype information
3510 * dev_idx : index of the device with bitmap
3511 *
3512 * Returns:
3513 * The sector where the bitmap is placed
3514 ******************************************************************************/
3515 static unsigned long long get_bitmap_sector(struct intel_super *super,
3516 int dev_idx)
3517 {
3518 if (!super->sector_size) {
3519 dprintf("sector size is not set\n");
3520 return 0;
3521 }
3522
3523 return get_bitmap_header_sector(super, dev_idx) +
3524 (IMSM_BITMAP_HEADER_SIZE / super->sector_size);
3525 }
3526
3527 static unsigned long long get_ppl_sector(struct intel_super *super, int dev_idx)
3528 {
3529 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
3530 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3531
3532 return pba_of_lba0(map) +
3533 (num_data_stripes(map) * map->blocks_per_strip);
3534 }
3535
3536 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
3537 {
3538 struct intel_super *super = st->sb;
3539 struct migr_record *migr_rec = super->migr_rec;
3540 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
3541 struct imsm_map *map = get_imsm_map(dev, MAP_0);
3542 struct imsm_map *prev_map = get_imsm_map(dev, MAP_1);
3543 struct imsm_map *map_to_analyse = map;
3544 struct dl *dl;
3545 int map_disks = info->array.raid_disks;
3546
3547 memset(info, 0, sizeof(*info));
3548 if (prev_map)
3549 map_to_analyse = prev_map;
3550
3551 dl = super->current_disk;
3552
3553 info->container_member = super->current_vol;
3554 info->array.raid_disks = map->num_members;
3555 info->array.level = get_imsm_raid_level(map_to_analyse);
3556 info->array.layout = imsm_level_to_layout(info->array.level);
3557 info->array.md_minor = -1;
3558 info->array.ctime = 0;
3559 info->array.utime = 0;
3560 info->array.chunk_size =
3561 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
3562 info->array.state = !(dev->vol.dirty & RAIDVOL_DIRTY);
3563 info->custom_array_size = imsm_dev_size(dev);
3564 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
3565
3566 if (is_gen_migration(dev)) {
3567 /*
3568 * device prev_map should be added if it is in the middle
3569 * of migration
3570 */
3571 assert(prev_map);
3572
3573 info->reshape_active = 1;
3574 info->new_level = get_imsm_raid_level(map);
3575 info->new_layout = imsm_level_to_layout(info->new_level);
3576 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
3577 info->delta_disks = map->num_members - prev_map->num_members;
3578 if (info->delta_disks) {
3579 /* this needs to be applied to every array
3580 * in the container.
3581 */
3582 info->reshape_active = CONTAINER_RESHAPE;
3583 }
3584 /* We shape information that we give to md might have to be
3585 * modify to cope with md's requirement for reshaping arrays.
3586 * For example, when reshaping a RAID0, md requires it to be
3587 * presented as a degraded RAID4.
3588 * Also if a RAID0 is migrating to a RAID5 we need to specify
3589 * the array as already being RAID5, but the 'before' layout
3590 * is a RAID4-like layout.
3591 */
3592 switch (info->array.level) {
3593 case 0:
3594 switch(info->new_level) {
3595 case 0:
3596 /* conversion is happening as RAID4 */
3597 info->array.level = 4;
3598 info->array.raid_disks += 1;
3599 break;
3600 case 5:
3601 /* conversion is happening as RAID5 */
3602 info->array.level = 5;
3603 info->array.layout = ALGORITHM_PARITY_N;
3604 info->delta_disks -= 1;
3605 break;
3606 default:
3607 /* FIXME error message */
3608 info->array.level = UnSet;
3609 break;
3610 }
3611 break;
3612 }
3613 } else {
3614 info->new_level = UnSet;
3615 info->new_layout = UnSet;
3616 info->new_chunk = info->array.chunk_size;
3617 info->delta_disks = 0;
3618 }
3619
3620 if (dl) {
3621 info->disk.major = dl->major;
3622 info->disk.minor = dl->minor;
3623 info->disk.number = dl->index;
3624 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
3625 dl->index);
3626 }
3627
3628 info->data_offset = pba_of_lba0(map_to_analyse);
3629 info->component_size = calc_component_size(map, dev);
3630 info->component_size = imsm_component_size_alignment_check(
3631 info->array.level,
3632 info->array.chunk_size,
3633 super->sector_size,
3634 info->component_size);
3635 info->bb.supported = 1;
3636
3637 memset(info->uuid, 0, sizeof(info->uuid));
3638 info->recovery_start = MaxSector;
3639
3640 if (info->array.level == 5 &&
3641 (dev->rwh_policy == RWH_DISTRIBUTED ||
3642 dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)) {
3643 info->consistency_policy = CONSISTENCY_POLICY_PPL;
3644 info->ppl_sector = get_ppl_sector(super, super->current_vol);
3645 if (dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)
3646 info->ppl_size = MULTIPLE_PPL_AREA_SIZE_IMSM >> 9;
3647 else
3648 info->ppl_size = (PPL_HEADER_SIZE + PPL_ENTRY_SPACE)
3649 >> 9;
3650 } else if (info->array.level <= 0) {
3651 info->consistency_policy = CONSISTENCY_POLICY_NONE;
3652 } else {
3653 if (dev->rwh_policy == RWH_BITMAP) {
3654 info->bitmap_offset = get_bitmap_sector(super, super->current_vol);
3655 info->consistency_policy = CONSISTENCY_POLICY_BITMAP;
3656 } else {
3657 info->consistency_policy = CONSISTENCY_POLICY_RESYNC;
3658 }
3659 }
3660
3661 info->reshape_progress = 0;
3662 info->resync_start = MaxSector;
3663 if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
3664 !(info->array.state & 1)) &&
3665 imsm_reshape_blocks_arrays_changes(super) == 0) {
3666 info->resync_start = 0;
3667 }
3668 if (dev->vol.migr_state) {
3669 switch (migr_type(dev)) {
3670 case MIGR_REPAIR:
3671 case MIGR_INIT: {
3672 __u64 blocks_per_unit = blocks_per_migr_unit(super,
3673 dev);
3674 __u64 units = vol_curr_migr_unit(dev);
3675
3676 info->resync_start = blocks_per_unit * units;
3677 break;
3678 }
3679 case MIGR_GEN_MIGR: {
3680 __u64 blocks_per_unit = blocks_per_migr_unit(super,
3681 dev);
3682 __u64 units = current_migr_unit(migr_rec);
3683 int used_disks;
3684
3685 if (__le32_to_cpu(migr_rec->ascending_migr) &&
3686 (units <
3687 (get_num_migr_units(migr_rec)-1)) &&
3688 (super->migr_rec->rec_status ==
3689 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
3690 units++;
3691
3692 info->reshape_progress = blocks_per_unit * units;
3693
3694 dprintf("IMSM: General Migration checkpoint : %llu (%llu) -> read reshape progress : %llu\n",
3695 (unsigned long long)units,
3696 (unsigned long long)blocks_per_unit,
3697 info->reshape_progress);
3698
3699 used_disks = imsm_num_data_members(prev_map);
3700 if (used_disks > 0) {
3701 info->custom_array_size = per_dev_array_size(map) *
3702 used_disks;
3703 }
3704 }
3705 case MIGR_VERIFY:
3706 /* we could emulate the checkpointing of
3707 * 'sync_action=check' migrations, but for now
3708 * we just immediately complete them
3709 */
3710 case MIGR_REBUILD:
3711 /* this is handled by container_content_imsm() */
3712 case MIGR_STATE_CHANGE:
3713 /* FIXME handle other migrations */
3714 default:
3715 /* we are not dirty, so... */
3716 info->resync_start = MaxSector;
3717 }
3718 }
3719
3720 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
3721 info->name[MAX_RAID_SERIAL_LEN] = 0;
3722
3723 info->array.major_version = -1;
3724 info->array.minor_version = -2;
3725 sprintf(info->text_version, "/%s/%d", st->container_devnm, info->container_member);
3726 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
3727 uuid_from_super_imsm(st, info->uuid);
3728
3729 if (dmap) {
3730 int i, j;
3731 for (i=0; i<map_disks; i++) {
3732 dmap[i] = 0;
3733 if (i < info->array.raid_disks) {
3734 struct imsm_disk *dsk;
3735 j = get_imsm_disk_idx(dev, i, MAP_X);
3736 dsk = get_imsm_disk(super, j);
3737 if (dsk && (dsk->status & CONFIGURED_DISK))
3738 dmap[i] = 1;
3739 }
3740 }
3741 }
3742 }
3743
3744 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
3745 int failed, int look_in_map);
3746
3747 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
3748 int look_in_map);
3749
3750 static void manage_second_map(struct intel_super *super, struct imsm_dev *dev)
3751 {
3752 if (is_gen_migration(dev)) {
3753 int failed;
3754 __u8 map_state;
3755 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
3756
3757 failed = imsm_count_failed(super, dev, MAP_1);
3758 map_state = imsm_check_degraded(super, dev, failed, MAP_1);
3759 if (map2->map_state != map_state) {
3760 map2->map_state = map_state;
3761 super->updates_pending++;
3762 }
3763 }
3764 }
3765
3766 static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
3767 {
3768 struct dl *d;
3769
3770 for (d = super->missing; d; d = d->next)
3771 if (d->index == index)
3772 return &d->disk;
3773 return NULL;
3774 }
3775
3776 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
3777 {
3778 struct intel_super *super = st->sb;
3779 struct imsm_disk *disk;
3780 int map_disks = info->array.raid_disks;
3781 int i;
3782 struct imsm_super *mpb;
3783
3784 if (super->current_vol >= 0) {
3785 getinfo_super_imsm_volume(st, info, map);
3786 return;
3787 }
3788 memset(info, 0, sizeof(*info));
3789
3790 /* Set raid_disks to zero so that Assemble will always pull in valid
3791 * spares
3792 */
3793 info->array.raid_disks = 0;
3794 info->array.level = LEVEL_CONTAINER;
3795 info->array.layout = 0;
3796 info->array.md_minor = -1;
3797 info->array.ctime = 0; /* N/A for imsm */
3798 info->array.utime = 0;
3799 info->array.chunk_size = 0;
3800
3801 info->disk.major = 0;
3802 info->disk.minor = 0;
3803 info->disk.raid_disk = -1;
3804 info->reshape_active = 0;
3805 info->array.major_version = -1;
3806 info->array.minor_version = -2;
3807 strcpy(info->text_version, "imsm");
3808 info->safe_mode_delay = 0;
3809 info->disk.number = -1;
3810 info->disk.state = 0;
3811 info->name[0] = 0;
3812 info->recovery_start = MaxSector;
3813 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
3814 info->bb.supported = 1;
3815
3816 /* do we have the all the insync disks that we expect? */
3817 mpb = super->anchor;
3818 info->events = __le32_to_cpu(mpb->generation_num);
3819
3820 for (i = 0; i < mpb->num_raid_devs; i++) {
3821 struct imsm_dev *dev = get_imsm_dev(super, i);
3822 int j = 0;
3823 struct imsm_map *map;
3824
3825 map = get_imsm_map(dev, MAP_0);
3826
3827 /* any newly missing disks?
3828 * (catches single-degraded vs double-degraded)
3829 */
3830 for (j = 0; j < map->num_members; j++) {
3831 __u32 ord = get_imsm_ord_tbl_ent(dev, j, MAP_0);
3832 __u32 idx = ord_to_idx(ord);
3833
3834 if (super->disks && super->disks->index == (int)idx)
3835 info->disk.raid_disk = j;
3836
3837 if (!(ord & IMSM_ORD_REBUILD) &&
3838 get_imsm_missing(super, idx)) {
3839 break;
3840 }
3841 }
3842 }
3843
3844 if (super->disks) {
3845 __u32 reserved = imsm_reserved_sectors(super, super->disks);
3846
3847 disk = &super->disks->disk;
3848 info->data_offset = total_blocks(&super->disks->disk) - reserved;
3849 info->component_size = reserved;
3850 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
3851 /* we don't change info->disk.raid_disk here because
3852 * this state will be finalized in mdmon after we have
3853 * found the 'most fresh' version of the metadata
3854 */
3855 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
3856 info->disk.state |= (is_spare(disk) || is_journal(disk)) ?
3857 0 : (1 << MD_DISK_SYNC);
3858 }
3859
3860 /* only call uuid_from_super_imsm when this disk is part of a populated container,
3861 * ->compare_super may have updated the 'num_raid_devs' field for spares
3862 */
3863 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
3864 uuid_from_super_imsm(st, info->uuid);
3865 else
3866 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
3867
3868 /* I don't know how to compute 'map' on imsm, so use safe default */
3869 if (map) {
3870 int i;
3871 for (i = 0; i < map_disks; i++)
3872 map[i] = 1;
3873 }
3874
3875 }
3876
3877 /* allocates memory and fills disk in mdinfo structure
3878 * for each disk in array */
3879 struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
3880 {
3881 struct mdinfo *mddev;
3882 struct intel_super *super = st->sb;
3883 struct imsm_disk *disk;
3884 int count = 0;
3885 struct dl *dl;
3886 if (!super || !super->disks)
3887 return NULL;
3888 dl = super->disks;
3889 mddev = xcalloc(1, sizeof(*mddev));
3890 while (dl) {
3891 struct mdinfo *tmp;
3892 disk = &dl->disk;
3893 tmp = xcalloc(1, sizeof(*tmp));
3894 if (mddev->devs)
3895 tmp->next = mddev->devs;
3896 mddev->devs = tmp;
3897 tmp->disk.number = count++;
3898 tmp->disk.major = dl->major;
3899 tmp->disk.minor = dl->minor;
3900 tmp->disk.state = is_configured(disk) ?
3901 (1 << MD_DISK_ACTIVE) : 0;
3902 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
3903 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
3904 tmp->disk.raid_disk = -1;
3905 dl = dl->next;
3906 }
3907 return mddev;
3908 }
3909
3910 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
3911 enum update_opt update, char *devname,
3912 int verbose, int uuid_set, char *homehost)
3913 {
3914 /* For 'assemble' and 'force' we need to return non-zero if any
3915 * change was made. For others, the return value is ignored.
3916 * Update options are:
3917 * force-one : This device looks a bit old but needs to be included,
3918 * update age info appropriately.
3919 * assemble: clear any 'faulty' flag to allow this device to
3920 * be assembled.
3921 * force-array: Array is degraded but being forced, mark it clean
3922 * if that will be needed to assemble it.
3923 *
3924 * newdev: not used ????
3925 * grow: Array has gained a new device - this is currently for
3926 * linear only
3927 * resync: mark as dirty so a resync will happen.
3928 * name: update the name - preserving the homehost
3929 * uuid: Change the uuid of the array to match watch is given
3930 *
3931 * Following are not relevant for this imsm:
3932 * sparc2.2 : update from old dodgey metadata
3933 * super-minor: change the preferred_minor number
3934 * summaries: update redundant counters.
3935 * homehost: update the recorded homehost
3936 * _reshape_progress: record new reshape_progress position.
3937 */
3938 int rv = 1;
3939 struct intel_super *super = st->sb;
3940 struct imsm_super *mpb;
3941
3942 /* we can only update container info */
3943 if (!super || super->current_vol >= 0 || !super->anchor)
3944 return 1;
3945
3946 mpb = super->anchor;
3947
3948 switch (update) {
3949 case UOPT_UUID:
3950 /* We take this to mean that the family_num should be updated.
3951 * However that is much smaller than the uuid so we cannot really
3952 * allow an explicit uuid to be given. And it is hard to reliably
3953 * know if one was.
3954 * So if !uuid_set we know the current uuid is random and just used
3955 * the first 'int' and copy it to the other 3 positions.
3956 * Otherwise we require the 4 'int's to be the same as would be the
3957 * case if we are using a random uuid. So an explicit uuid will be
3958 * accepted as long as all for ints are the same... which shouldn't hurt
3959 */
3960 if (!uuid_set) {
3961 info->uuid[1] = info->uuid[2] = info->uuid[3] = info->uuid[0];
3962 rv = 0;
3963 } else {
3964 if (info->uuid[0] != info->uuid[1] ||
3965 info->uuid[1] != info->uuid[2] ||
3966 info->uuid[2] != info->uuid[3])
3967 rv = -1;
3968 else
3969 rv = 0;
3970 }
3971 if (rv == 0)
3972 mpb->orig_family_num = info->uuid[0];
3973 break;
3974 case UOPT_SPEC_ASSEMBLE:
3975 rv = 0;
3976 break;
3977 default:
3978 rv = -1;
3979 break;
3980 }
3981
3982 /* successful update? recompute checksum */
3983 if (rv == 0)
3984 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
3985
3986 return rv;
3987 }
3988
3989 static size_t disks_to_mpb_size(int disks)
3990 {
3991 size_t size;
3992
3993 size = sizeof(struct imsm_super);
3994 size += (disks - 1) * sizeof(struct imsm_disk);
3995 size += 2 * sizeof(struct imsm_dev);
3996 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
3997 size += (4 - 2) * sizeof(struct imsm_map);
3998 /* 4 possible disk_ord_tbl's */
3999 size += 4 * (disks - 1) * sizeof(__u32);
4000 /* maximum bbm log */
4001 size += sizeof(struct bbm_log);
4002
4003 return size;
4004 }
4005
4006 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize,
4007 unsigned long long data_offset)
4008 {
4009 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
4010 return 0;
4011
4012 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
4013 }
4014
4015 static void free_devlist(struct intel_super *super)
4016 {
4017 struct intel_dev *dv;
4018
4019 while (super->devlist) {
4020 dv = super->devlist->next;
4021 free(super->devlist->dev);
4022 free(super->devlist);
4023 super->devlist = dv;
4024 }
4025 }
4026
4027 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
4028 {
4029 memcpy(dest, src, sizeof_imsm_dev(src, 0));
4030 }
4031
4032 static int compare_super_imsm(struct supertype *st, struct supertype *tst,
4033 int verbose)
4034 {
4035 /* return:
4036 * 0 same, or first was empty, and second was copied
4037 * 1 sb are different
4038 */
4039 struct intel_super *first = st->sb;
4040 struct intel_super *sec = tst->sb;
4041
4042 if (!first) {
4043 st->sb = tst->sb;
4044 tst->sb = NULL;
4045 return 0;
4046 }
4047
4048 /* in platform dependent environment test if the disks
4049 * use the same Intel hba
4050 * if not on Intel hba at all, allow anything.
4051 * doesn't check HBAs if num_raid_devs is not set, as it means
4052 * it is a free floating spare, and all spares regardless of HBA type
4053 * will fall into separate container during the assembly
4054 */
4055 if (first->hba && sec->hba && first->anchor->num_raid_devs != 0) {
4056 if (first->hba->type != sec->hba->type) {
4057 if (verbose)
4058 pr_err("HBAs of devices do not match %s != %s\n",
4059 get_sys_dev_type(first->hba->type),
4060 get_sys_dev_type(sec->hba->type));
4061 return 1;
4062 }
4063 if (first->orom != sec->orom) {
4064 if (verbose)
4065 pr_err("HBAs of devices do not match %s != %s\n",
4066 first->hba->pci_id, sec->hba->pci_id);
4067 return 1;
4068 }
4069 }
4070
4071 if (first->anchor->num_raid_devs > 0 &&
4072 sec->anchor->num_raid_devs > 0) {
4073 /* Determine if these disks might ever have been
4074 * related. Further disambiguation can only take place
4075 * in load_super_imsm_all
4076 */
4077 __u32 first_family = first->anchor->orig_family_num;
4078 __u32 sec_family = sec->anchor->orig_family_num;
4079
4080 if (memcmp(first->anchor->sig, sec->anchor->sig,
4081 MAX_SIGNATURE_LENGTH) != 0)
4082 return 1;
4083
4084 if (first_family == 0)
4085 first_family = first->anchor->family_num;
4086 if (sec_family == 0)
4087 sec_family = sec->anchor->family_num;
4088
4089 if (first_family != sec_family)
4090 return 1;
4091
4092 }
4093
4094 /* if an anchor does not have num_raid_devs set then it is a free
4095 * floating spare. don't assosiate spare with any array, as during assembly
4096 * spares shall fall into separate container, from which they can be moved
4097 * when necessary
4098 */
4099 if (first->anchor->num_raid_devs ^ sec->anchor->num_raid_devs)
4100 return 1;
4101
4102 return 0;
4103 }
4104
4105 static void fd2devname(int fd, char *name)
4106 {
4107 char *nm;
4108
4109 nm = fd2kname(fd);
4110 if (!nm)
4111 return;
4112
4113 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
4114 }
4115
4116 static int nvme_get_serial(int fd, void *buf, size_t buf_len)
4117 {
4118 char path[PATH_MAX];
4119 char *name = fd2kname(fd);
4120
4121 if (!name)
4122 return 1;
4123
4124 if (strncmp(name, "nvme", 4) != 0)
4125 return 1;
4126
4127 if (!diskfd_to_devpath(fd, 1, path))
4128 return 1;
4129
4130 return devpath_to_char(path, "serial", buf, buf_len, 0);
4131 }
4132
4133 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
4134
4135 static int imsm_read_serial(int fd, char *devname,
4136 __u8 *serial, size_t serial_buf_len)
4137 {
4138 char buf[50];
4139 int rv;
4140 size_t len;
4141 char *dest;
4142 char *src;
4143 unsigned int i;
4144
4145 memset(buf, 0, sizeof(buf));
4146
4147 rv = nvme_get_serial(fd, buf, sizeof(buf));
4148
4149 if (rv)
4150 rv = scsi_get_serial(fd, buf, sizeof(buf));
4151
4152 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
4153 memset(serial, 0, MAX_RAID_SERIAL_LEN);
4154 fd2devname(fd, (char *) serial);
4155 return 0;
4156 }
4157
4158 if (rv != 0) {
4159 if (devname)
4160 pr_err("Failed to retrieve serial for %s\n",
4161 devname);
4162 return rv;
4163 }
4164
4165 /* trim all whitespace and non-printable characters and convert
4166 * ':' to ';'
4167 */
4168 for (i = 0, dest = buf; i < sizeof(buf) && buf[i]; i++) {
4169 src = &buf[i];
4170 if (*src > 0x20) {
4171 /* ':' is reserved for use in placeholder serial
4172 * numbers for missing disks
4173 */
4174 if (*src == ':')
4175 *dest++ = ';';
4176 else
4177 *dest++ = *src;
4178 }
4179 }
4180 len = dest - buf;
4181 dest = buf;
4182
4183 if (len > serial_buf_len) {
4184 /* truncate leading characters */
4185 dest += len - serial_buf_len;
4186 len = serial_buf_len;
4187 }
4188
4189 memset(serial, 0, serial_buf_len);
4190 memcpy(serial, dest, len);
4191
4192 return 0;
4193 }
4194
4195 static int serialcmp(__u8 *s1, __u8 *s2)
4196 {
4197 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
4198 }
4199
4200 static void serialcpy(__u8 *dest, __u8 *src)
4201 {
4202 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
4203 }
4204
4205 static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
4206 {
4207 struct dl *dl;
4208
4209 for (dl = super->disks; dl; dl = dl->next)
4210 if (serialcmp(dl->serial, serial) == 0)
4211 break;
4212
4213 return dl;
4214 }
4215
4216 static struct imsm_disk *
4217 __serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
4218 {
4219 int i;
4220
4221 for (i = 0; i < mpb->num_disks; i++) {
4222 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
4223
4224 if (serialcmp(disk->serial, serial) == 0) {
4225 if (idx)
4226 *idx = i;
4227 return disk;
4228 }
4229 }
4230
4231 return NULL;
4232 }
4233
4234 static int
4235 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
4236 {
4237 struct imsm_disk *disk;
4238 struct dl *dl;
4239 struct stat stb;
4240 int rv;
4241 char name[40];
4242 __u8 serial[MAX_RAID_SERIAL_LEN];
4243
4244 rv = imsm_read_serial(fd, devname, serial, MAX_RAID_SERIAL_LEN);
4245
4246 if (rv != 0)
4247 return 2;
4248
4249 dl = xcalloc(1, sizeof(*dl));
4250
4251 fstat(fd, &stb);
4252 dl->major = major(stb.st_rdev);
4253 dl->minor = minor(stb.st_rdev);
4254 dl->next = super->disks;
4255 dl->fd = keep_fd ? fd : -1;
4256 assert(super->disks == NULL);
4257 super->disks = dl;
4258 serialcpy(dl->serial, serial);
4259 dl->index = -2;
4260 dl->e = NULL;
4261 fd2devname(fd, name);
4262 if (devname)
4263 dl->devname = xstrdup(devname);
4264 else
4265 dl->devname = xstrdup(name);
4266
4267 /* look up this disk's index in the current anchor */
4268 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
4269 if (disk) {
4270 dl->disk = *disk;
4271 /* only set index on disks that are a member of a
4272 * populated contianer, i.e. one with raid_devs
4273 */
4274 if (is_failed(&dl->disk))
4275 dl->index = -2;
4276 else if (is_spare(&dl->disk) || is_journal(&dl->disk))
4277 dl->index = -1;
4278 }
4279
4280 return 0;
4281 }
4282
4283 /* When migrating map0 contains the 'destination' state while map1
4284 * contains the current state. When not migrating map0 contains the
4285 * current state. This routine assumes that map[0].map_state is set to
4286 * the current array state before being called.
4287 *
4288 * Migration is indicated by one of the following states
4289 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
4290 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
4291 * map1state=unitialized)
4292 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
4293 * map1state=normal)
4294 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
4295 * map1state=degraded)
4296 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
4297 * map1state=normal)
4298 */
4299 static void migrate(struct imsm_dev *dev, struct intel_super *super,
4300 __u8 to_state, int migr_type)
4301 {
4302 struct imsm_map *dest;
4303 struct imsm_map *src = get_imsm_map(dev, MAP_0);
4304
4305 dev->vol.migr_state = 1;
4306 set_migr_type(dev, migr_type);
4307 set_vol_curr_migr_unit(dev, 0);
4308 dest = get_imsm_map(dev, MAP_1);
4309
4310 /* duplicate and then set the target end state in map[0] */
4311 memcpy(dest, src, sizeof_imsm_map(src));
4312 if (migr_type == MIGR_GEN_MIGR) {
4313 __u32 ord;
4314 int i;
4315
4316 for (i = 0; i < src->num_members; i++) {
4317 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
4318 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
4319 }
4320 }
4321
4322 if (migr_type == MIGR_GEN_MIGR)
4323 /* Clear migration record */
4324 memset(super->migr_rec, 0, sizeof(struct migr_record));
4325
4326 src->map_state = to_state;
4327 }
4328
4329 static void end_migration(struct imsm_dev *dev, struct intel_super *super,
4330 __u8 map_state)
4331 {
4332 struct imsm_map *map = get_imsm_map(dev, MAP_0);
4333 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state == 0 ?
4334 MAP_0 : MAP_1);
4335 int i, j;
4336
4337 /* merge any IMSM_ORD_REBUILD bits that were not successfully
4338 * completed in the last migration.
4339 *
4340 * FIXME add support for raid-level-migration
4341 */
4342 if (map_state != map->map_state && (is_gen_migration(dev) == false) &&
4343 prev->map_state != IMSM_T_STATE_UNINITIALIZED) {
4344 /* when final map state is other than expected
4345 * merge maps (not for migration)
4346 */
4347 int failed;
4348
4349 for (i = 0; i < prev->num_members; i++)
4350 for (j = 0; j < map->num_members; j++)
4351 /* during online capacity expansion
4352 * disks position can be changed
4353 * if takeover is used
4354 */
4355 if (ord_to_idx(map->disk_ord_tbl[j]) ==
4356 ord_to_idx(prev->disk_ord_tbl[i])) {
4357 map->disk_ord_tbl[j] |=
4358 prev->disk_ord_tbl[i];
4359 break;
4360 }
4361 failed = imsm_count_failed(super, dev, MAP_0);
4362 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
4363 }
4364
4365 dev->vol.migr_state = 0;
4366 set_migr_type(dev, 0);
4367 set_vol_curr_migr_unit(dev, 0);
4368 map->map_state = map_state;
4369 }
4370
4371 static int parse_raid_devices(struct intel_super *super)
4372 {
4373 int i;
4374 struct imsm_dev *dev_new;
4375 size_t len, len_migr;
4376 size_t max_len = 0;
4377 size_t space_needed = 0;
4378 struct imsm_super *mpb = super->anchor;
4379
4380 for (i = 0; i < super->anchor->num_raid_devs; i++) {
4381 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
4382 struct intel_dev *dv;
4383
4384 len = sizeof_imsm_dev(dev_iter, 0);
4385 len_migr = sizeof_imsm_dev(dev_iter, 1);
4386 if (len_migr > len)
4387 space_needed += len_migr - len;
4388
4389 dv = xmalloc(sizeof(*dv));
4390 if (max_len < len_migr)
4391 max_len = len_migr;
4392 if (max_len > len_migr)
4393 space_needed += max_len - len_migr;
4394 dev_new = xmalloc(max_len);
4395 imsm_copy_dev(dev_new, dev_iter);
4396 dv->dev = dev_new;
4397 dv->index = i;
4398 dv->next = super->devlist;
4399 super->devlist = dv;
4400 }
4401
4402 /* ensure that super->buf is large enough when all raid devices
4403 * are migrating
4404 */
4405 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
4406 void *buf;
4407
4408 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed,
4409 super->sector_size);
4410 if (posix_memalign(&buf, MAX_SECTOR_SIZE, len) != 0)
4411 return 1;
4412
4413 memcpy(buf, super->buf, super->len);
4414 memset(buf + super->len, 0, len - super->len);
4415 free(super->buf);
4416 super->buf = buf;
4417 super->len = len;
4418 }
4419
4420 super->extra_space += space_needed;
4421
4422 return 0;
4423 }
4424
4425 /*******************************************************************************
4426 * Function: check_mpb_migr_compatibility
4427 * Description: Function checks for unsupported migration features:
4428 * - migration optimization area (pba_of_lba0)
4429 * - descending reshape (ascending_migr)
4430 * Parameters:
4431 * super : imsm metadata information
4432 * Returns:
4433 * 0 : migration is compatible
4434 * -1 : migration is not compatible
4435 ******************************************************************************/
4436 int check_mpb_migr_compatibility(struct intel_super *super)
4437 {
4438 struct imsm_map *map0, *map1;
4439 struct migr_record *migr_rec = super->migr_rec;
4440 int i;
4441
4442 for (i = 0; i < super->anchor->num_raid_devs; i++) {
4443 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
4444
4445 if (dev_iter->vol.migr_state == 1 &&
4446 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
4447 /* This device is migrating */
4448 map0 = get_imsm_map(dev_iter, MAP_0);
4449 map1 = get_imsm_map(dev_iter, MAP_1);
4450 if (pba_of_lba0(map0) != pba_of_lba0(map1))
4451 /* migration optimization area was used */
4452 return -1;
4453 if (migr_rec->ascending_migr == 0 &&
4454 migr_rec->dest_depth_per_unit > 0)
4455 /* descending reshape not supported yet */
4456 return -1;
4457 }
4458 }
4459 return 0;
4460 }
4461
4462 static void __free_imsm(struct intel_super *super, int free_disks);
4463
4464 /* load_imsm_mpb - read matrix metadata
4465 * allocates super->mpb to be freed by free_imsm
4466 */
4467 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
4468 {
4469 unsigned long long dsize;
4470 unsigned long long sectors;
4471 unsigned int sector_size = super->sector_size;
4472 struct stat;
4473 struct imsm_super *anchor;
4474 __u32 check_sum;
4475
4476 get_dev_size(fd, NULL, &dsize);
4477 if (dsize < 2*sector_size) {
4478 if (devname)
4479 pr_err("%s: device to small for imsm\n",
4480 devname);
4481 return 1;
4482 }
4483
4484 if (lseek64(fd, dsize - (sector_size * 2), SEEK_SET) < 0) {
4485 if (devname)
4486 pr_err("Cannot seek to anchor block on %s: %s\n",
4487 devname, strerror(errno));
4488 return 1;
4489 }
4490
4491 if (posix_memalign((void **)&anchor, sector_size, sector_size) != 0) {
4492 if (devname)
4493 pr_err("Failed to allocate imsm anchor buffer on %s\n", devname);
4494 return 1;
4495 }
4496 if ((unsigned int)read(fd, anchor, sector_size) != sector_size) {
4497 if (devname)
4498 pr_err("Cannot read anchor block on %s: %s\n",
4499 devname, strerror(errno));
4500 free(anchor);
4501 return 1;
4502 }
4503
4504 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
4505 if (devname)
4506 pr_err("no IMSM anchor on %s\n", devname);
4507 free(anchor);
4508 return 2;
4509 }
4510
4511 __free_imsm(super, 0);
4512 /* reload capability and hba */
4513
4514 /* capability and hba must be updated with new super allocation */
4515 find_intel_hba_capability(fd, super, devname);
4516 super->len = ROUND_UP(anchor->mpb_size, sector_size);
4517 if (posix_memalign(&super->buf, MAX_SECTOR_SIZE, super->len) != 0) {
4518 if (devname)
4519 pr_err("unable to allocate %zu byte mpb buffer\n",
4520 super->len);
4521 free(anchor);
4522 return 2;
4523 }
4524 memcpy(super->buf, anchor, sector_size);
4525
4526 sectors = mpb_sectors(anchor, sector_size) - 1;
4527 free(anchor);
4528
4529 if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
4530 MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE) != 0) {
4531 pr_err("could not allocate migr_rec buffer\n");
4532 free(super->buf);
4533 super->buf = NULL;
4534 return 2;
4535 }
4536 super->clean_migration_record_by_mdmon = 0;
4537
4538 if (!sectors) {
4539 check_sum = __gen_imsm_checksum(super->anchor);
4540 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
4541 if (devname)
4542 pr_err("IMSM checksum %x != %x on %s\n",
4543 check_sum,
4544 __le32_to_cpu(super->anchor->check_sum),
4545 devname);
4546 return 2;
4547 }
4548
4549 return 0;
4550 }
4551
4552 /* read the extended mpb */
4553 if (lseek64(fd, dsize - (sector_size * (2 + sectors)), SEEK_SET) < 0) {
4554 if (devname)
4555 pr_err("Cannot seek to extended mpb on %s: %s\n",
4556 devname, strerror(errno));
4557 return 1;
4558 }
4559
4560 if ((unsigned int)read(fd, super->buf + sector_size,
4561 super->len - sector_size) != super->len - sector_size) {
4562 if (devname)
4563 pr_err("Cannot read extended mpb on %s: %s\n",
4564 devname, strerror(errno));
4565 return 2;
4566 }
4567
4568 check_sum = __gen_imsm_checksum(super->anchor);
4569 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
4570 if (devname)
4571 pr_err("IMSM checksum %x != %x on %s\n",
4572 check_sum, __le32_to_cpu(super->anchor->check_sum),
4573 devname);
4574 return 3;
4575 }
4576
4577 return 0;
4578 }
4579
4580 static int read_imsm_migr_rec(int fd, struct intel_super *super);
4581
4582 /* clears hi bits in metadata if MPB_ATTRIB_2TB_DISK not set */
4583 static void clear_hi(struct intel_super *super)
4584 {
4585 struct imsm_super *mpb = super->anchor;
4586 int i, n;
4587 if (mpb->attributes & MPB_ATTRIB_2TB_DISK)
4588 return;
4589 for (i = 0; i < mpb->num_disks; ++i) {
4590 struct imsm_disk *disk = &mpb->disk[i];
4591 disk->total_blocks_hi = 0;
4592 }
4593 for (i = 0; i < mpb->num_raid_devs; ++i) {
4594 struct imsm_dev *dev = get_imsm_dev(super, i);
4595 for (n = 0; n < 2; ++n) {
4596 struct imsm_map *map = get_imsm_map(dev, n);
4597 if (!map)
4598 continue;
4599 map->pba_of_lba0_hi = 0;
4600 map->blocks_per_member_hi = 0;
4601 map->num_data_stripes_hi = 0;
4602 }
4603 }
4604 }
4605
4606 static int
4607 load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
4608 {
4609 int err;
4610
4611 err = load_imsm_mpb(fd, super, devname);
4612 if (err)
4613 return err;
4614 if (super->sector_size == 4096)
4615 convert_from_4k(super);
4616 err = load_imsm_disk(fd, super, devname, keep_fd);
4617 if (err)
4618 return err;
4619 err = parse_raid_devices(super);
4620 if (err)
4621 return err;
4622 err = load_bbm_log(super);
4623 clear_hi(super);
4624 return err;
4625 }
4626
4627 static void __free_imsm_disk(struct dl *d, int do_close)
4628 {
4629 if (do_close)
4630 close_fd(&d->fd);
4631 if (d->devname)
4632 free(d->devname);
4633 if (d->e)
4634 free(d->e);
4635 free(d);
4636
4637 }
4638
4639 static void free_imsm_disks(struct intel_super *super)
4640 {
4641 struct dl *d;
4642
4643 while (super->disks) {
4644 d = super->disks;
4645 super->disks = d->next;
4646 __free_imsm_disk(d, 1);
4647 }
4648 while (super->disk_mgmt_list) {
4649 d = super->disk_mgmt_list;
4650 super->disk_mgmt_list = d->next;
4651 __free_imsm_disk(d, 1);
4652 }
4653 while (super->missing) {
4654 d = super->missing;
4655 super->missing = d->next;
4656 __free_imsm_disk(d, 1);
4657 }
4658
4659 }
4660
4661 /* free all the pieces hanging off of a super pointer */
4662 static void __free_imsm(struct intel_super *super, int free_disks)
4663 {
4664 struct intel_hba *elem, *next;
4665
4666 if (super->buf) {
4667 free(super->buf);
4668 super->buf = NULL;
4669 }
4670 /* unlink capability description */
4671 super->orom = NULL;
4672 if (super->migr_rec_buf) {
4673 free(super->migr_rec_buf);
4674 super->migr_rec_buf = NULL;
4675 }
4676 if (free_disks)
4677 free_imsm_disks(super);
4678 free_devlist(super);
4679 elem = super->hba;
4680 while (elem) {
4681 if (elem->path)
4682 free((void *)elem->path);
4683 next = elem->next;
4684 free(elem);
4685 elem = next;
4686 }
4687 if (super->bbm_log)
4688 free(super->bbm_log);
4689 super->hba = NULL;
4690 }
4691
4692 static void free_imsm(struct intel_super *super)
4693 {
4694 __free_imsm(super, 1);
4695 free(super->bb.entries);
4696 free(super);
4697 }
4698
4699 static void free_super_imsm(struct supertype *st)
4700 {
4701 struct intel_super *super = st->sb;
4702
4703 if (!super)
4704 return;
4705
4706 free_imsm(super);
4707 st->sb = NULL;
4708 }
4709
4710 static struct intel_super *alloc_super(void)
4711 {
4712 struct intel_super *super = xcalloc(1, sizeof(*super));
4713
4714 super->current_vol = -1;
4715 super->create_offset = ~((unsigned long long) 0);
4716
4717 super->bb.entries = xmalloc(BBM_LOG_MAX_ENTRIES *
4718 sizeof(struct md_bb_entry));
4719 if (!super->bb.entries) {
4720 free(super);
4721 return NULL;
4722 }
4723
4724 return super;
4725 }
4726
4727 /*
4728 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
4729 */
4730 static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
4731 {
4732 struct sys_dev *hba_name;
4733 int rv = 0;
4734
4735 if (is_fd_valid(fd) && test_partition(fd)) {
4736 pr_err("imsm: %s is a partition, cannot be used in IMSM\n",
4737 devname);
4738 return 1;
4739 }
4740 if (!is_fd_valid(fd) || check_no_platform()) {
4741 super->orom = NULL;
4742 super->hba = NULL;
4743 return 0;
4744 }
4745 hba_name = find_disk_attached_hba(fd, NULL);
4746 if (!hba_name) {
4747 if (devname)
4748 pr_err("%s is not attached to Intel(R) RAID controller.\n",
4749 devname);
4750 return 1;
4751 }
4752 rv = attach_hba_to_super(super, hba_name);
4753 if (rv == 2) {
4754 if (devname) {
4755 struct intel_hba *hba = super->hba;
4756
4757 pr_err("%s is attached to Intel(R) %s %s (%s),\n"
4758 " but the container is assigned to Intel(R) %s %s (",
4759 devname,
4760 get_sys_dev_type(hba_name->type),
4761 hba_name->type == SYS_DEV_VMD || hba_name->type == SYS_DEV_SATA_VMD ?
4762 "domain" : "RAID controller",
4763 hba_name->pci_id ? : "Err!",
4764 get_sys_dev_type(super->hba->type),
4765 hba->type == SYS_DEV_VMD || hba_name->type == SYS_DEV_SATA_VMD ?
4766 "domain" : "RAID controller");
4767
4768 while (hba) {
4769 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
4770 if (hba->next)
4771 fprintf(stderr, ", ");
4772 hba = hba->next;
4773 }
4774 fprintf(stderr, ").\n"
4775 " Mixing devices attached to different controllers is not allowed.\n");
4776 }
4777 return 2;
4778 }
4779 super->orom = find_imsm_capability(hba_name);
4780 if (!super->orom)
4781 return 3;
4782
4783 return 0;
4784 }
4785
4786 /* find_missing - helper routine for load_super_imsm_all that identifies
4787 * disks that have disappeared from the system. This routine relies on
4788 * the mpb being uptodate, which it is at load time.
4789 */
4790 static int find_missing(struct intel_super *super)
4791 {
4792 int i;
4793 struct imsm_super *mpb = super->anchor;
4794 struct dl *dl;
4795 struct imsm_disk *disk;
4796
4797 for (i = 0; i < mpb->num_disks; i++) {
4798 disk = __get_imsm_disk(mpb, i);
4799 dl = serial_to_dl(disk->serial, super);
4800 if (dl)
4801 continue;
4802
4803 dl = xmalloc(sizeof(*dl));
4804 dl->major = 0;
4805 dl->minor = 0;
4806 dl->fd = -1;
4807 dl->devname = xstrdup("missing");
4808 dl->index = i;
4809 serialcpy(dl->serial, disk->serial);
4810 dl->disk = *disk;
4811 dl->e = NULL;
4812 dl->next = super->missing;
4813 super->missing = dl;
4814 }
4815
4816 return 0;
4817 }
4818
4819 static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
4820 {
4821 struct intel_disk *idisk = disk_list;
4822
4823 while (idisk) {
4824 if (serialcmp(idisk->disk.serial, serial) == 0)
4825 break;
4826 idisk = idisk->next;
4827 }
4828
4829 return idisk;
4830 }
4831
4832 static int __prep_thunderdome(struct intel_super **table, int tbl_size,
4833 struct intel_super *super,
4834 struct intel_disk **disk_list)
4835 {
4836 struct imsm_disk *d = &super->disks->disk;
4837 struct imsm_super *mpb = super->anchor;
4838 int i, j;
4839
4840 for (i = 0; i < tbl_size; i++) {
4841 struct imsm_super *tbl_mpb = table[i]->anchor;
4842 struct imsm_disk *tbl_d = &table[i]->disks->disk;
4843
4844 if (tbl_mpb->family_num == mpb->family_num) {
4845 if (tbl_mpb->check_sum == mpb->check_sum) {
4846 dprintf("mpb from %d:%d matches %d:%d\n",
4847 super->disks->major,
4848 super->disks->minor,
4849 table[i]->disks->major,
4850 table[i]->disks->minor);
4851 break;
4852 }
4853
4854 if (((is_configured(d) && !is_configured(tbl_d)) ||
4855 is_configured(d) == is_configured(tbl_d)) &&
4856 tbl_mpb->generation_num < mpb->generation_num) {
4857 /* current version of the mpb is a
4858 * better candidate than the one in
4859 * super_table, but copy over "cross
4860 * generational" status
4861 */
4862 struct intel_disk *idisk;
4863
4864 dprintf("mpb from %d:%d replaces %d:%d\n",
4865 super->disks->major,
4866 super->disks->minor,
4867 table[i]->disks->major,
4868 table[i]->disks->minor);
4869
4870 idisk = disk_list_get(tbl_d->serial, *disk_list);
4871 if (idisk && is_failed(&idisk->disk))
4872 tbl_d->status |= FAILED_DISK;
4873 break;
4874 } else {
4875 struct intel_disk *idisk;
4876 struct imsm_disk *disk;
4877
4878 /* tbl_mpb is more up to date, but copy
4879 * over cross generational status before
4880 * returning
4881 */
4882 disk = __serial_to_disk(d->serial, mpb, NULL);
4883 if (disk && is_failed(disk))
4884 d->status |= FAILED_DISK;
4885
4886 idisk = disk_list_get(d->serial, *disk_list);
4887 if (idisk) {
4888 idisk->owner = i;
4889 if (disk && is_configured(disk))
4890 idisk->disk.status |= CONFIGURED_DISK;
4891 }
4892
4893 dprintf("mpb from %d:%d prefer %d:%d\n",
4894 super->disks->major,
4895 super->disks->minor,
4896 table[i]->disks->major,
4897 table[i]->disks->minor);
4898
4899 return tbl_size;
4900 }
4901 }
4902 }
4903
4904 if (i >= tbl_size)
4905 table[tbl_size++] = super;
4906 else
4907 table[i] = super;
4908
4909 /* update/extend the merged list of imsm_disk records */
4910 for (j = 0; j < mpb->num_disks; j++) {
4911 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
4912 struct intel_disk *idisk;
4913
4914 idisk = disk_list_get(disk->serial, *disk_list);
4915 if (idisk) {
4916 idisk->disk.status |= disk->status;
4917 if (is_configured(&idisk->disk) ||
4918 is_failed(&idisk->disk))
4919 idisk->disk.status &= ~(SPARE_DISK);
4920 } else {
4921 idisk = xcalloc(1, sizeof(*idisk));
4922 idisk->owner = IMSM_UNKNOWN_OWNER;
4923 idisk->disk = *disk;
4924 idisk->next = *disk_list;
4925 *disk_list = idisk;
4926 }
4927
4928 if (serialcmp(idisk->disk.serial, d->serial) == 0)
4929 idisk->owner = i;
4930 }
4931
4932 return tbl_size;
4933 }
4934
4935 static struct intel_super *
4936 validate_members(struct intel_super *super, struct intel_disk *disk_list,
4937 const int owner)
4938 {
4939 struct imsm_super *mpb = super->anchor;
4940 int ok_count = 0;
4941 int i;
4942
4943 for (i = 0; i < mpb->num_disks; i++) {
4944 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
4945 struct intel_disk *idisk;
4946
4947 idisk = disk_list_get(disk->serial, disk_list);
4948 if (idisk) {
4949 if (idisk->owner == owner ||
4950 idisk->owner == IMSM_UNKNOWN_OWNER)
4951 ok_count++;
4952 else
4953 dprintf("'%.16s' owner %d != %d\n",
4954 disk->serial, idisk->owner,
4955 owner);
4956 } else {
4957 dprintf("unknown disk %x [%d]: %.16s\n",
4958 __le32_to_cpu(mpb->family_num), i,
4959 disk->serial);
4960 break;
4961 }
4962 }
4963
4964 if (ok_count == mpb->num_disks)
4965 return super;
4966 return NULL;
4967 }
4968
4969 static void show_conflicts(__u32 family_num, struct intel_super *super_list)
4970 {
4971 struct intel_super *s;
4972
4973 for (s = super_list; s; s = s->next) {
4974 if (family_num != s->anchor->family_num)
4975 continue;
4976 pr_err("Conflict, offlining family %#x on '%s'\n",
4977 __le32_to_cpu(family_num), s->disks->devname);
4978 }
4979 }
4980
4981 static struct intel_super *
4982 imsm_thunderdome(struct intel_super **super_list, int len)
4983 {
4984 struct intel_super *super_table[len];
4985 struct intel_disk *disk_list = NULL;
4986 struct intel_super *champion, *spare;
4987 struct intel_super *s, **del;
4988 int tbl_size = 0;
4989 int conflict;
4990 int i;
4991
4992 memset(super_table, 0, sizeof(super_table));
4993 for (s = *super_list; s; s = s->next)
4994 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
4995
4996 for (i = 0; i < tbl_size; i++) {
4997 struct imsm_disk *d;
4998 struct intel_disk *idisk;
4999 struct imsm_super *mpb = super_table[i]->anchor;
5000
5001 s = super_table[i];
5002 d = &s->disks->disk;
5003
5004 /* 'd' must appear in merged disk list for its
5005 * configuration to be valid
5006 */
5007 idisk = disk_list_get(d->serial, disk_list);
5008 if (idisk && idisk->owner == i)
5009 s = validate_members(s, disk_list, i);
5010 else
5011 s = NULL;
5012
5013 if (!s)
5014 dprintf("marking family: %#x from %d:%d offline\n",
5015 mpb->family_num,
5016 super_table[i]->disks->major,
5017 super_table[i]->disks->minor);
5018 super_table[i] = s;
5019 }
5020
5021 /* This is where the mdadm implementation differs from the Windows
5022 * driver which has no strict concept of a container. We can only
5023 * assemble one family from a container, so when returning a prodigal
5024 * array member to this system the code will not be able to disambiguate
5025 * the container contents that should be assembled ("foreign" versus
5026 * "local"). It requires user intervention to set the orig_family_num
5027 * to a new value to establish a new container. The Windows driver in
5028 * this situation fixes up the volume name in place and manages the
5029 * foreign array as an independent entity.
5030 */
5031 s = NULL;
5032 spare = NULL;
5033 conflict = 0;
5034 for (i = 0; i < tbl_size; i++) {
5035 struct intel_super *tbl_ent = super_table[i];
5036 int is_spare = 0;
5037
5038 if (!tbl_ent)
5039 continue;
5040
5041 if (tbl_ent->anchor->num_raid_devs == 0) {
5042 spare = tbl_ent;
5043 is_spare = 1;
5044 }
5045
5046 if (s && !is_spare) {
5047 show_conflicts(tbl_ent->anchor->family_num, *super_list);
5048 conflict++;
5049 } else if (!s && !is_spare)
5050 s = tbl_ent;
5051 }
5052
5053 if (!s)
5054 s = spare;
5055 if (!s) {
5056 champion = NULL;
5057 goto out;
5058 }
5059 champion = s;
5060
5061 if (conflict)
5062 pr_err("Chose family %#x on '%s', assemble conflicts to new container with '--update=uuid'\n",
5063 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
5064
5065 /* collect all dl's onto 'champion', and update them to
5066 * champion's version of the status
5067 */
5068 for (s = *super_list; s; s = s->next) {
5069 struct imsm_super *mpb = champion->anchor;
5070 struct dl *dl = s->disks;
5071
5072 if (s == champion)
5073 continue;
5074
5075 mpb->attributes |= s->anchor->attributes & MPB_ATTRIB_2TB_DISK;
5076
5077 for (i = 0; i < mpb->num_disks; i++) {
5078 struct imsm_disk *disk;
5079
5080 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
5081 if (disk) {
5082 dl->disk = *disk;
5083 /* only set index on disks that are a member of
5084 * a populated contianer, i.e. one with
5085 * raid_devs
5086 */
5087 if (is_failed(&dl->disk))
5088 dl->index = -2;
5089 else if (is_spare(&dl->disk))
5090 dl->index = -1;
5091 break;
5092 }
5093 }
5094
5095 if (i >= mpb->num_disks) {
5096 struct intel_disk *idisk;
5097
5098 idisk = disk_list_get(dl->serial, disk_list);
5099 if (idisk && is_spare(&idisk->disk) &&
5100 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
5101 dl->index = -1;
5102 else {
5103 dl->index = -2;
5104 continue;
5105 }
5106 }
5107
5108 dl->next = champion->disks;
5109 champion->disks = dl;
5110 s->disks = NULL;
5111 }
5112
5113 /* delete 'champion' from super_list */
5114 for (del = super_list; *del; ) {
5115 if (*del == champion) {
5116 *del = (*del)->next;
5117 break;
5118 } else
5119 del = &(*del)->next;
5120 }
5121 champion->next = NULL;
5122
5123 out:
5124 while (disk_list) {
5125 struct intel_disk *idisk = disk_list;
5126
5127 disk_list = disk_list->next;
5128 free(idisk);
5129 }
5130
5131 return champion;
5132 }
5133
5134 static int
5135 get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd);
5136 static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
5137 int major, int minor, int keep_fd);
5138 static int
5139 get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
5140 int *max, int keep_fd);
5141
5142 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
5143 char *devname, struct md_list *devlist,
5144 int keep_fd)
5145 {
5146 struct intel_super *super_list = NULL;
5147 struct intel_super *super = NULL;
5148 int err = 0;
5149 int i = 0;
5150
5151 if (is_fd_valid(fd))
5152 /* 'fd' is an opened container */
5153 err = get_sra_super_block(fd, &super_list, devname, &i, keep_fd);
5154 else
5155 /* get super block from devlist devices */
5156 err = get_devlist_super_block(devlist, &super_list, &i, keep_fd);
5157 if (err)
5158 goto error;
5159 /* all mpbs enter, maybe one leaves */
5160 super = imsm_thunderdome(&super_list, i);
5161 if (!super) {
5162 err = 1;
5163 goto error;
5164 }
5165
5166 if (find_missing(super) != 0) {
5167 free_imsm(super);
5168 err = 2;
5169 goto error;
5170 }
5171
5172 /* load migration record */
5173 err = load_imsm_migr_rec(super);
5174 if (err == -1) {
5175 /* migration is in progress,
5176 * but migr_rec cannot be loaded,
5177 */
5178 err = 4;
5179 goto error;
5180 }
5181
5182 /* Check migration compatibility */
5183 if (err == 0 && check_mpb_migr_compatibility(super) != 0) {
5184 pr_err("Unsupported migration detected");
5185 if (devname)
5186 fprintf(stderr, " on %s\n", devname);
5187 else
5188 fprintf(stderr, " (IMSM).\n");
5189
5190 err = 5;
5191 goto error;
5192 }
5193
5194 err = 0;
5195
5196 error:
5197 while (super_list) {
5198 struct intel_super *s = super_list;
5199
5200 super_list = super_list->next;
5201 free_imsm(s);
5202 }
5203
5204 if (err)
5205 return err;
5206
5207 *sbp = super;
5208 if (is_fd_valid(fd))
5209 strcpy(st->container_devnm, fd2devnm(fd));
5210 else
5211 st->container_devnm[0] = 0;
5212 if (err == 0 && st->ss == NULL) {
5213 st->ss = &super_imsm;
5214 st->minor_version = 0;
5215 st->max_devs = IMSM_MAX_DEVICES;
5216 }
5217 return 0;
5218 }
5219
5220 static int
5221 get_devlist_super_block(struct md_list *devlist, struct intel_super **super_list,
5222 int *max, int keep_fd)
5223 {
5224 struct md_list *tmpdev;
5225 int err = 0;
5226 int i = 0;
5227
5228 for (i = 0, tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
5229 if (tmpdev->used != 1)
5230 continue;
5231 if (tmpdev->container == 1) {
5232 int lmax = 0;
5233 int fd = dev_open(tmpdev->devname, O_RDONLY|O_EXCL);
5234 if (!is_fd_valid(fd)) {
5235 pr_err("cannot open device %s: %s\n",
5236 tmpdev->devname, strerror(errno));
5237 err = 8;
5238 goto error;
5239 }
5240 err = get_sra_super_block(fd, super_list,
5241 tmpdev->devname, &lmax,
5242 keep_fd);
5243 i += lmax;
5244 close(fd);
5245 if (err) {
5246 err = 7;
5247 goto error;
5248 }
5249 } else {
5250 int major = major(tmpdev->st_rdev);
5251 int minor = minor(tmpdev->st_rdev);
5252 err = get_super_block(super_list,
5253 NULL,
5254 tmpdev->devname,
5255 major, minor,
5256 keep_fd);
5257 i++;
5258 if (err) {
5259 err = 6;
5260 goto error;
5261 }
5262 }
5263 }
5264 error:
5265 *max = i;
5266 return err;
5267 }
5268
5269 static int get_super_block(struct intel_super **super_list, char *devnm, char *devname,
5270 int major, int minor, int keep_fd)
5271 {
5272 struct intel_super *s;
5273 char nm[32];
5274 int dfd = -1;
5275 int err = 0;
5276 int retry;
5277
5278 s = alloc_super();
5279 if (!s) {
5280 err = 1;
5281 goto error;
5282 }
5283
5284 sprintf(nm, "%d:%d", major, minor);
5285 dfd = dev_open(nm, O_RDWR);
5286 if (!is_fd_valid(dfd)) {
5287 err = 2;
5288 goto error;
5289 }
5290
5291 if (!get_dev_sector_size(dfd, NULL, &s->sector_size)) {
5292 err = 2;
5293 goto error;
5294 }
5295 find_intel_hba_capability(dfd, s, devname);
5296 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
5297
5298 /* retry the load if we might have raced against mdmon */
5299 if (err == 3 && devnm && mdmon_running(devnm))
5300 for (retry = 0; retry < 3; retry++) {
5301 sleep_for(0, MSEC_TO_NSEC(3), true);
5302 err = load_and_parse_mpb(dfd, s, NULL, keep_fd);
5303 if (err != 3)
5304 break;
5305 }
5306 error:
5307 if (!err) {
5308 s->next = *super_list;
5309 *super_list = s;
5310 } else {
5311 if (s)
5312 free_imsm(s);
5313 close_fd(&dfd);
5314 }
5315 if (!keep_fd)
5316 close_fd(&dfd);
5317 return err;
5318
5319 }
5320
5321 static int
5322 get_sra_super_block(int fd, struct intel_super **super_list, char *devname, int *max, int keep_fd)
5323 {
5324 struct mdinfo *sra;
5325 char *devnm;
5326 struct mdinfo *sd;
5327 int err = 0;
5328 int i = 0;
5329 sra = sysfs_read(fd, NULL, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
5330 if (!sra)
5331 return 1;
5332
5333 if (sra->array.major_version != -1 ||
5334 sra->array.minor_version != -2 ||
5335 strcmp(sra->text_version, "imsm") != 0) {
5336 err = 1;
5337 goto error;
5338 }
5339 /* load all mpbs */
5340 devnm = fd2devnm(fd);
5341 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
5342 if (get_super_block(super_list, devnm, devname,
5343 sd->disk.major, sd->disk.minor, keep_fd) != 0) {
5344 err = 7;
5345 goto error;
5346 }
5347 }
5348 error:
5349 sysfs_free(sra);
5350 *max = i;
5351 return err;
5352 }
5353
5354 static int load_container_imsm(struct supertype *st, int fd, char *devname)
5355 {
5356 return load_super_imsm_all(st, fd, &st->sb, devname, NULL, 1);
5357 }
5358
5359 static int load_super_imsm(struct supertype *st, int fd, char *devname)
5360 {
5361 struct intel_super *super;
5362 int rv;
5363 int retry;
5364
5365 if (test_partition(fd))
5366 /* IMSM not allowed on partitions */
5367 return 1;
5368
5369 free_super_imsm(st);
5370
5371 super = alloc_super();
5372 if (!super)
5373 return 1;
5374
5375 if (!get_dev_sector_size(fd, NULL, &super->sector_size)) {
5376 free_imsm(super);
5377 return 1;
5378 }
5379 /* Load hba and capabilities if they exist.
5380 * But do not preclude loading metadata in case capabilities or hba are
5381 * non-compliant and ignore_hw_compat is set.
5382 */
5383 rv = find_intel_hba_capability(fd, super, devname);
5384 /* no orom/efi or non-intel hba of the disk */
5385 if (rv != 0 && st->ignore_hw_compat == 0) {
5386 if (devname)
5387 pr_err("No OROM/EFI properties for %s\n", devname);
5388 free_imsm(super);
5389 return 2;
5390 }
5391 rv = load_and_parse_mpb(fd, super, devname, 0);
5392
5393 /* retry the load if we might have raced against mdmon */
5394 if (rv == 3) {
5395 struct mdstat_ent *mdstat = NULL;
5396 char *name = fd2kname(fd);
5397
5398 if (name)
5399 mdstat = mdstat_by_component(name);
5400
5401 if (mdstat && mdmon_running(mdstat->devnm) && getpid() != mdmon_pid(mdstat->devnm)) {
5402 for (retry = 0; retry < 3; retry++) {
5403 sleep_for(0, MSEC_TO_NSEC(3), true);
5404 rv = load_and_parse_mpb(fd, super, devname, 0);
5405 if (rv != 3)
5406 break;
5407 }
5408 }
5409
5410 free_mdstat(mdstat);
5411 }
5412
5413 if (rv) {
5414 if (devname)
5415 pr_err("Failed to load all information sections on %s\n", devname);
5416 free_imsm(super);
5417 return rv;
5418 }
5419
5420 st->sb = super;
5421 if (st->ss == NULL) {
5422 st->ss = &super_imsm;
5423 st->minor_version = 0;
5424 st->max_devs = IMSM_MAX_DEVICES;
5425 }
5426
5427 /* load migration record */
5428 if (load_imsm_migr_rec(super) == 0) {
5429 /* Check for unsupported migration features */
5430 if (check_mpb_migr_compatibility(super) != 0) {
5431 pr_err("Unsupported migration detected");
5432 if (devname)
5433 fprintf(stderr, " on %s\n", devname);
5434 else
5435 fprintf(stderr, " (IMSM).\n");
5436 return 3;
5437 }
5438 }
5439
5440 return 0;
5441 }
5442
5443 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
5444 {
5445 if (info->level == 1)
5446 return 128;
5447 return info->chunk_size >> 9;
5448 }
5449
5450 static unsigned long long info_to_blocks_per_member(mdu_array_info_t *info,
5451 unsigned long long size)
5452 {
5453 if (info->level == 1)
5454 return size * 2;
5455 else
5456 return (size * 2) & ~(info_to_blocks_per_strip(info) - 1);
5457 }
5458
5459 static void imsm_update_version_info(struct intel_super *super)
5460 {
5461 /* update the version and attributes */
5462 struct imsm_super *mpb = super->anchor;
5463 char *version;
5464 struct imsm_dev *dev;
5465 struct imsm_map *map;
5466 int i;
5467
5468 for (i = 0; i < mpb->num_raid_devs; i++) {
5469 dev = get_imsm_dev(super, i);
5470 map = get_imsm_map(dev, MAP_0);
5471 if (__le32_to_cpu(dev->size_high) > 0)
5472 mpb->attributes |= MPB_ATTRIB_2TB;
5473
5474 /* FIXME detect when an array spans a port multiplier */
5475 #if 0
5476 mpb->attributes |= MPB_ATTRIB_PM;
5477 #endif
5478
5479 if (mpb->num_raid_devs > 1 ||
5480 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
5481 version = MPB_VERSION_ATTRIBS;
5482 switch (get_imsm_raid_level(map)) {
5483 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
5484 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
5485 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
5486 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
5487 }
5488 } else {
5489 if (map->num_members >= 5)
5490 version = MPB_VERSION_5OR6_DISK_ARRAY;
5491 else if (dev->status == DEV_CLONE_N_GO)
5492 version = MPB_VERSION_CNG;
5493 else if (get_imsm_raid_level(map) == 5)
5494 version = MPB_VERSION_RAID5;
5495 else if (map->num_members >= 3)
5496 version = MPB_VERSION_3OR4_DISK_ARRAY;
5497 else if (get_imsm_raid_level(map) == 1)
5498 version = MPB_VERSION_RAID1;
5499 else
5500 version = MPB_VERSION_RAID0;
5501 }
5502 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
5503 }
5504 }
5505
5506 /**
5507 * imsm_check_name() - check imsm naming criteria.
5508 * @super: &intel_super pointer, not NULL.
5509 * @name: name to check.
5510 * @verbose: verbose level.
5511 *
5512 * Name must be no longer than &MAX_RAID_SERIAL_LEN and must be unique across volumes.
5513 *
5514 * Returns: &true if @name matches, &false otherwise.
5515 */
5516 static bool imsm_is_name_allowed(struct intel_super *super, const char * const name,
5517 const int verbose)
5518 {
5519 struct imsm_super *mpb = super->anchor;
5520 int i;
5521
5522 if (is_string_lq(name, MAX_RAID_SERIAL_LEN + 1) == false) {
5523 pr_vrb("imsm: Name \"%s\" is too long\n", name);
5524 return false;
5525 }
5526
5527 for (i = 0; i < mpb->num_raid_devs; i++) {
5528 struct imsm_dev *dev = get_imsm_dev(super, i);
5529
5530 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
5531 pr_vrb("imsm: Name \"%s\" already exists\n", name);
5532 return false;
5533 }
5534 }
5535
5536 return true;
5537 }
5538
5539 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
5540 struct shape *s, char *name,
5541 char *homehost, int *uuid,
5542 long long data_offset)
5543 {
5544 /* We are creating a volume inside a pre-existing container.
5545 * so st->sb is already set.
5546 */
5547 struct intel_super *super = st->sb;
5548 unsigned int sector_size = super->sector_size;
5549 struct imsm_super *mpb = super->anchor;
5550 struct intel_dev *dv;
5551 struct imsm_dev *dev;
5552 struct imsm_vol *vol;
5553 struct imsm_map *map;
5554 int idx = mpb->num_raid_devs;
5555 int i;
5556 int namelen;
5557 unsigned long long array_blocks;
5558 size_t size_old, size_new;
5559 unsigned int data_disks;
5560 unsigned long long size_per_member;
5561
5562 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
5563 pr_err("This imsm-container already has the maximum of %d volumes\n", super->orom->vpa);
5564 return 0;
5565 }
5566
5567 /* ensure the mpb is large enough for the new data */
5568 size_old = __le32_to_cpu(mpb->mpb_size);
5569 size_new = disks_to_mpb_size(info->nr_disks);
5570 if (size_new > size_old) {
5571 void *mpb_new;
5572 size_t size_round = ROUND_UP(size_new, sector_size);
5573
5574 if (posix_memalign(&mpb_new, sector_size, size_round) != 0) {
5575 pr_err("could not allocate new mpb\n");
5576 return 0;
5577 }
5578 if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
5579 MIGR_REC_BUF_SECTORS*
5580 MAX_SECTOR_SIZE) != 0) {
5581 pr_err("could not allocate migr_rec buffer\n");
5582 free(super->buf);
5583 free(super);
5584 free(mpb_new);
5585 return 0;
5586 }
5587 memcpy(mpb_new, mpb, size_old);
5588 free(mpb);
5589 mpb = mpb_new;
5590 super->anchor = mpb_new;
5591 mpb->mpb_size = __cpu_to_le32(size_new);
5592 memset(mpb_new + size_old, 0, size_round - size_old);
5593 super->len = size_round;
5594 }
5595 super->current_vol = idx;
5596
5597 /* handle 'failed_disks' by either:
5598 * a) create dummy disk entries in the table if this the first
5599 * volume in the array. We add them here as this is the only
5600 * opportunity to add them. add_to_super_imsm_volume()
5601 * handles the non-failed disks and continues incrementing
5602 * mpb->num_disks.
5603 * b) validate that 'failed_disks' matches the current number
5604 * of missing disks if the container is populated
5605 */
5606 if (super->current_vol == 0) {
5607 mpb->num_disks = 0;
5608 for (i = 0; i < info->failed_disks; i++) {
5609 struct imsm_disk *disk;
5610
5611 mpb->num_disks++;
5612 disk = __get_imsm_disk(mpb, i);
5613 disk->status = CONFIGURED_DISK | FAILED_DISK;
5614 disk->scsi_id = __cpu_to_le32(~(__u32)0);
5615 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
5616 "missing:%d", (__u8)i);
5617 }
5618 find_missing(super);
5619 } else {
5620 int missing = 0;
5621 struct dl *d;
5622
5623 for (d = super->missing; d; d = d->next)
5624 missing++;
5625 if (info->failed_disks > missing) {
5626 pr_err("unable to add 'missing' disk to container\n");
5627 return 0;
5628 }
5629 }
5630
5631 if (imsm_is_name_allowed(super, name, 1) == false)
5632 return 0;
5633
5634 dv = xmalloc(sizeof(*dv));
5635 dev = xcalloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
5636 /*
5637 * Explicitly allow truncating to not confuse gcc's
5638 * -Werror=stringop-truncation
5639 */
5640 namelen = min((int) strlen(name), MAX_RAID_SERIAL_LEN);
5641 memcpy(dev->volume, name, namelen);
5642 array_blocks = calc_array_size(info->level, info->raid_disks,
5643 info->layout, info->chunk_size,
5644 s->size * BLOCKS_PER_KB);
5645 data_disks = get_data_disks(info->level, info->layout,
5646 info->raid_disks);
5647 array_blocks = round_size_to_mb(array_blocks, data_disks);
5648 size_per_member = array_blocks / data_disks;
5649
5650 set_imsm_dev_size(dev, array_blocks);
5651 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
5652 vol = &dev->vol;
5653 vol->migr_state = 0;
5654 set_migr_type(dev, MIGR_INIT);
5655 vol->dirty = !info->state;
5656 set_vol_curr_migr_unit(dev, 0);
5657 map = get_imsm_map(dev, MAP_0);
5658 set_pba_of_lba0(map, super->create_offset);
5659 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
5660 map->failed_disk_num = ~0;
5661 if (info->level > 0)
5662 map->map_state = (info->state ? IMSM_T_STATE_NORMAL
5663 : IMSM_T_STATE_UNINITIALIZED);
5664 else
5665 map->map_state = info->failed_disks ? IMSM_T_STATE_FAILED :
5666 IMSM_T_STATE_NORMAL;
5667 map->ddf = 1;
5668
5669 if (info->level == 1 && info->raid_disks > 2) {
5670 free(dev);
5671 free(dv);
5672 pr_err("imsm does not support more than 2 disksin a raid1 volume\n");
5673 return 0;
5674 }
5675
5676 map->raid_level = info->level;
5677 if (info->level == 10)
5678 map->raid_level = 1;
5679 set_num_domains(map);
5680
5681 size_per_member += NUM_BLOCKS_DIRTY_STRIPE_REGION;
5682 set_blocks_per_member(map, info_to_blocks_per_member(info,
5683 size_per_member /
5684 BLOCKS_PER_KB));
5685
5686 map->num_members = info->raid_disks;
5687 update_num_data_stripes(map, array_blocks);
5688 for (i = 0; i < map->num_members; i++) {
5689 /* initialized in add_to_super */
5690 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
5691 }
5692 mpb->num_raid_devs++;
5693 mpb->num_raid_devs_created++;
5694 dev->my_vol_raid_dev_num = mpb->num_raid_devs_created;
5695
5696 if (s->consistency_policy <= CONSISTENCY_POLICY_RESYNC) {
5697 dev->rwh_policy = RWH_MULTIPLE_OFF;
5698 } else if (s->consistency_policy == CONSISTENCY_POLICY_PPL) {
5699 dev->rwh_policy = RWH_MULTIPLE_DISTRIBUTED;
5700 } else {
5701 free(dev);
5702 free(dv);
5703 pr_err("imsm does not support consistency policy %s\n",
5704 map_num_s(consistency_policies, s->consistency_policy));
5705 return 0;
5706 }
5707
5708 dv->dev = dev;
5709 dv->index = super->current_vol;
5710 dv->next = super->devlist;
5711 super->devlist = dv;
5712
5713 imsm_update_version_info(super);
5714
5715 return 1;
5716 }
5717
5718 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
5719 struct shape *s, char *name,
5720 char *homehost, int *uuid,
5721 unsigned long long data_offset)
5722 {
5723 /* This is primarily called by Create when creating a new array.
5724 * We will then get add_to_super called for each component, and then
5725 * write_init_super called to write it out to each device.
5726 * For IMSM, Create can create on fresh devices or on a pre-existing
5727 * array.
5728 * To create on a pre-existing array a different method will be called.
5729 * This one is just for fresh drives.
5730 */
5731 struct intel_super *super;
5732 struct imsm_super *mpb;
5733 size_t mpb_size;
5734 char *version;
5735
5736 if (data_offset != INVALID_SECTORS) {
5737 pr_err("data-offset not supported by imsm\n");
5738 return 0;
5739 }
5740
5741 if (st->sb)
5742 return init_super_imsm_volume(st, info, s, name, homehost, uuid,
5743 data_offset);
5744
5745 if (info)
5746 mpb_size = disks_to_mpb_size(info->nr_disks);
5747 else
5748 mpb_size = MAX_SECTOR_SIZE;
5749
5750 super = alloc_super();
5751 if (super &&
5752 posix_memalign(&super->buf, MAX_SECTOR_SIZE, mpb_size) != 0) {
5753 free_imsm(super);
5754 super = NULL;
5755 }
5756 if (!super) {
5757 pr_err("could not allocate superblock\n");
5758 return 0;
5759 }
5760 if (posix_memalign(&super->migr_rec_buf, MAX_SECTOR_SIZE,
5761 MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE) != 0) {
5762 pr_err("could not allocate migr_rec buffer\n");
5763 free(super->buf);
5764 free_imsm(super);
5765 return 0;
5766 }
5767 memset(super->buf, 0, mpb_size);
5768 mpb = super->buf;
5769 mpb->mpb_size = __cpu_to_le32(mpb_size);
5770 st->sb = super;
5771
5772 if (info == NULL) {
5773 /* zeroing superblock */
5774 return 0;
5775 }
5776
5777 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
5778
5779 version = (char *) mpb->sig;
5780 strcpy(version, MPB_SIGNATURE);
5781 version += strlen(MPB_SIGNATURE);
5782 strcpy(version, MPB_VERSION_RAID0);
5783
5784 return 1;
5785 }
5786
5787 static int drive_validate_sector_size(struct intel_super *super, struct dl *dl)
5788 {
5789 unsigned int member_sector_size;
5790
5791 if (!is_fd_valid(dl->fd)) {
5792 pr_err("Invalid file descriptor for %s\n", dl->devname);
5793 return 0;
5794 }
5795
5796 if (!get_dev_sector_size(dl->fd, dl->devname, &member_sector_size))
5797 return 0;
5798 if (member_sector_size != super->sector_size)
5799 return 0;
5800 return 1;
5801 }
5802
5803 static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
5804 int fd, char *devname)
5805 {
5806 struct intel_super *super = st->sb;
5807 struct imsm_super *mpb = super->anchor;
5808 struct imsm_disk *_disk;
5809 struct imsm_dev *dev;
5810 struct imsm_map *map;
5811 struct dl *dl, *df;
5812 int slot;
5813 int autolayout = 0;
5814
5815 if (!is_fd_valid(fd))
5816 autolayout = 1;
5817
5818 dev = get_imsm_dev(super, super->current_vol);
5819 map = get_imsm_map(dev, MAP_0);
5820
5821 if (! (dk->state & (1<<MD_DISK_SYNC))) {
5822 pr_err("%s: Cannot add spare devices to IMSM volume\n",
5823 devname);
5824 return 1;
5825 }
5826
5827 for (dl = super->disks; dl ; dl = dl->next) {
5828 if (autolayout) {
5829 if (dl->raiddisk == dk->raid_disk)
5830 break;
5831 } else if (dl->major == dk->major && dl->minor == dk->minor)
5832 break;
5833 }
5834
5835 if (!dl) {
5836 if (!autolayout)
5837 pr_err("%s is not a member of the same container.\n",
5838 devname);
5839 return 1;
5840 }
5841
5842 if (!autolayout && super->current_vol > 0) {
5843 int _slot = get_disk_slot_in_dev(super, 0, dl->index);
5844
5845 if (_slot != dk->raid_disk) {
5846 pr_err("Member %s is in %d slot for the first volume, but is in %d slot for a new volume.\n",
5847 dl->devname, _slot, dk->raid_disk);
5848 pr_err("Raid members are in different order than for the first volume, aborting.\n");
5849 return 1;
5850 }
5851 }
5852
5853 if (mpb->num_disks == 0)
5854 if (!get_dev_sector_size(dl->fd, dl->devname,
5855 &super->sector_size))
5856 return 1;
5857
5858 if (!drive_validate_sector_size(super, dl)) {
5859 pr_err("Combining drives of different sector size in one volume is not allowed\n");
5860 return 1;
5861 }
5862
5863 /* add a pristine spare to the metadata */
5864 if (dl->index < 0) {
5865 dl->index = super->anchor->num_disks;
5866 super->anchor->num_disks++;
5867 }
5868 /* Check the device has not already been added */
5869 slot = get_imsm_disk_slot(map, dl->index);
5870 if (slot >= 0 &&
5871 (get_imsm_ord_tbl_ent(dev, slot, MAP_X) & IMSM_ORD_REBUILD) == 0) {
5872 pr_err("%s has been included in this array twice\n",
5873 devname);
5874 return 1;
5875 }
5876 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
5877 dl->disk.status = CONFIGURED_DISK;
5878
5879 /* update size of 'missing' disks to be at least as large as the
5880 * largest acitve member (we only have dummy missing disks when
5881 * creating the first volume)
5882 */
5883 if (super->current_vol == 0) {
5884 for (df = super->missing; df; df = df->next) {
5885 if (total_blocks(&dl->disk) > total_blocks(&df->disk))
5886 set_total_blocks(&df->disk, total_blocks(&dl->disk));
5887 _disk = __get_imsm_disk(mpb, df->index);
5888 *_disk = df->disk;
5889 }
5890 }
5891
5892 /* refresh unset/failed slots to point to valid 'missing' entries */
5893 for (df = super->missing; df; df = df->next)
5894 for (slot = 0; slot < mpb->num_disks; slot++) {
5895 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
5896
5897 if ((ord & IMSM_ORD_REBUILD) == 0)
5898 continue;
5899 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
5900 if (is_gen_migration(dev)) {
5901 struct imsm_map *map2 = get_imsm_map(dev,
5902 MAP_1);
5903 int slot2 = get_imsm_disk_slot(map2, df->index);
5904 if (slot2 < map2->num_members && slot2 >= 0) {
5905 __u32 ord2 = get_imsm_ord_tbl_ent(dev,
5906 slot2,
5907 MAP_1);
5908 if ((unsigned)df->index ==
5909 ord_to_idx(ord2))
5910 set_imsm_ord_tbl_ent(map2,
5911 slot2,
5912 df->index |
5913 IMSM_ORD_REBUILD);
5914 }
5915 }
5916 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
5917 break;
5918 }
5919
5920 /* if we are creating the first raid device update the family number */
5921 if (super->current_vol == 0) {
5922 __u32 sum;
5923 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
5924
5925 _disk = __get_imsm_disk(mpb, dl->index);
5926 if (!_disk) {
5927 pr_err("BUG mpb setup error\n");
5928 return 1;
5929 }
5930 *_dev = *dev;
5931 *_disk = dl->disk;
5932 sum = random32();
5933 sum += __gen_imsm_checksum(mpb);
5934 mpb->family_num = __cpu_to_le32(sum);
5935 mpb->orig_family_num = mpb->family_num;
5936 mpb->creation_time = __cpu_to_le64((__u64)time(NULL));
5937 }
5938 super->current_disk = dl;
5939 return 0;
5940 }
5941
5942 /* mark_spare()
5943 * Function marks disk as spare and restores disk serial
5944 * in case it was previously marked as failed by takeover operation
5945 * reruns:
5946 * -1 : critical error
5947 * 0 : disk is marked as spare but serial is not set
5948 * 1 : success
5949 */
5950 int mark_spare(struct dl *disk)
5951 {
5952 __u8 serial[MAX_RAID_SERIAL_LEN];
5953 int ret_val = -1;
5954
5955 if (!disk)
5956 return ret_val;
5957
5958 ret_val = 0;
5959 if (!imsm_read_serial(disk->fd, NULL, serial, MAX_RAID_SERIAL_LEN)) {
5960 /* Restore disk serial number, because takeover marks disk
5961 * as failed and adds to serial ':0' before it becomes
5962 * a spare disk.
5963 */
5964 serialcpy(disk->serial, serial);
5965 serialcpy(disk->disk.serial, serial);
5966 ret_val = 1;
5967 }
5968 disk->disk.status = SPARE_DISK;
5969 disk->index = -1;
5970
5971 return ret_val;
5972 }
5973
5974
5975 static int write_super_imsm_spare(struct intel_super *super, struct dl *d);
5976
5977 static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
5978 int fd, char *devname,
5979 unsigned long long data_offset)
5980 {
5981 struct intel_super *super = st->sb;
5982 struct dl *dd;
5983 unsigned long long size;
5984 unsigned int member_sector_size;
5985 __u32 id;
5986 int rv;
5987 struct stat stb;
5988
5989 /* If we are on an RAID enabled platform check that the disk is
5990 * attached to the raid controller.
5991 * We do not need to test disks attachment for container based additions,
5992 * they shall be already tested when container was created/assembled.
5993 */
5994 rv = find_intel_hba_capability(fd, super, devname);
5995 /* no orom/efi or non-intel hba of the disk */
5996 if (rv != 0) {
5997 dprintf("capability: %p fd: %d ret: %d\n",
5998 super->orom, fd, rv);
5999 return 1;
6000 }
6001
6002 if (super->current_vol >= 0)
6003 return add_to_super_imsm_volume(st, dk, fd, devname);
6004
6005 fstat(fd, &stb);
6006 dd = xcalloc(sizeof(*dd), 1);
6007 dd->major = major(stb.st_rdev);
6008 dd->minor = minor(stb.st_rdev);
6009 dd->devname = devname ? xstrdup(devname) : NULL;
6010 dd->fd = fd;
6011 dd->e = NULL;
6012 dd->action = DISK_ADD;
6013 rv = imsm_read_serial(fd, devname, dd->serial, MAX_RAID_SERIAL_LEN);
6014 if (rv) {
6015 pr_err("failed to retrieve scsi serial, aborting\n");
6016 __free_imsm_disk(dd, 0);
6017 abort();
6018 }
6019
6020 if (super->hba && ((super->hba->type == SYS_DEV_NVME) ||
6021 (super->hba->type == SYS_DEV_VMD))) {
6022 int i;
6023 char cntrl_path[PATH_MAX];
6024 char *cntrl_name;
6025 char pci_dev_path[PATH_MAX];
6026
6027 if (!diskfd_to_devpath(fd, 2, pci_dev_path) ||
6028 !diskfd_to_devpath(fd, 1, cntrl_path)) {
6029 pr_err("failed to get dev paths, aborting\n");
6030 __free_imsm_disk(dd, 0);
6031 return 1;
6032 }
6033
6034 cntrl_name = basename(cntrl_path);
6035 if (is_multipath_nvme(fd))
6036 pr_err("%s controller supports Multi-Path I/O, Intel (R) VROC does not support multipathing\n",
6037 cntrl_name);
6038
6039 if (devpath_to_vendor(pci_dev_path) == 0x8086) {
6040 /*
6041 * If Intel's NVMe drive has serial ended with
6042 * "-A","-B","-1" or "-2" it means that this is "x8"
6043 * device (double drive on single PCIe card).
6044 * User should be warned about potential data loss.
6045 */
6046 for (i = MAX_RAID_SERIAL_LEN-1; i > 0; i--) {
6047 /* Skip empty character at the end */
6048 if (dd->serial[i] == 0)
6049 continue;
6050
6051 if (((dd->serial[i] == 'A') ||
6052 (dd->serial[i] == 'B') ||
6053 (dd->serial[i] == '1') ||
6054 (dd->serial[i] == '2')) &&
6055 (dd->serial[i-1] == '-'))
6056 pr_err("\tThe action you are about to take may put your data at risk.\n"
6057 "\tPlease note that x8 devices may consist of two separate x4 devices "
6058 "located on a single PCIe port.\n"
6059 "\tRAID 0 is the only supported configuration for this type of x8 device.\n");
6060 break;
6061 }
6062 } else if (super->hba->type == SYS_DEV_VMD && super->orom &&
6063 !imsm_orom_has_tpv_support(super->orom)) {
6064 pr_err("\tPlatform configuration does not support non-Intel NVMe drives.\n"
6065 "\tPlease refer to Intel(R) RSTe/VROC user guide.\n");
6066 __free_imsm_disk(dd, 0);
6067 return 1;
6068 }
6069 }
6070
6071 get_dev_size(fd, NULL, &size);
6072 if (!get_dev_sector_size(fd, NULL, &member_sector_size)) {
6073 __free_imsm_disk(dd, 0);
6074 return 1;
6075 }
6076
6077 if (super->sector_size == 0) {
6078 /* this a first device, so sector_size is not set yet */
6079 super->sector_size = member_sector_size;
6080 }
6081
6082 /* clear migr_rec when adding disk to container */
6083 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE);
6084 if (lseek64(fd, size - MIGR_REC_SECTOR_POSITION*member_sector_size,
6085 SEEK_SET) >= 0) {
6086 if ((unsigned int)write(fd, super->migr_rec_buf,
6087 MIGR_REC_BUF_SECTORS*member_sector_size) !=
6088 MIGR_REC_BUF_SECTORS*member_sector_size)
6089 perror("Write migr_rec failed");
6090 }
6091
6092 size /= 512;
6093 serialcpy(dd->disk.serial, dd->serial);
6094 set_total_blocks(&dd->disk, size);
6095 if (__le32_to_cpu(dd->disk.total_blocks_hi) > 0) {
6096 struct imsm_super *mpb = super->anchor;
6097 mpb->attributes |= MPB_ATTRIB_2TB_DISK;
6098 }
6099 mark_spare(dd);
6100 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
6101 dd->disk.scsi_id = __cpu_to_le32(id);
6102 else
6103 dd->disk.scsi_id = __cpu_to_le32(0);
6104
6105 if (st->update_tail) {
6106 dd->next = super->disk_mgmt_list;
6107 super->disk_mgmt_list = dd;
6108 } else {
6109 /* this is called outside of mdmon
6110 * write initial spare metadata
6111 * mdmon will overwrite it.
6112 */
6113 dd->next = super->disks;
6114 super->disks = dd;
6115 write_super_imsm_spare(super, dd);
6116 }
6117
6118 return 0;
6119 }
6120
6121 static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
6122 {
6123 struct intel_super *super = st->sb;
6124 struct dl *dd;
6125
6126 /* remove from super works only in mdmon - for communication
6127 * manager - monitor. Check if communication memory buffer
6128 * is prepared.
6129 */
6130 if (!st->update_tail) {
6131 pr_err("shall be used in mdmon context only\n");
6132 return 1;
6133 }
6134 dd = xcalloc(1, sizeof(*dd));
6135 dd->major = dk->major;
6136 dd->minor = dk->minor;
6137 dd->fd = -1;
6138 mark_spare(dd);
6139 dd->action = DISK_REMOVE;
6140
6141 dd->next = super->disk_mgmt_list;
6142 super->disk_mgmt_list = dd;
6143
6144 return 0;
6145 }
6146
6147 static int store_imsm_mpb(int fd, struct imsm_super *mpb);
6148
6149 static union {
6150 char buf[MAX_SECTOR_SIZE];
6151 struct imsm_super anchor;
6152 } spare_record __attribute__ ((aligned(MAX_SECTOR_SIZE)));
6153
6154
6155 static int write_super_imsm_spare(struct intel_super *super, struct dl *d)
6156 {
6157 struct imsm_super *mpb = super->anchor;
6158 struct imsm_super *spare = &spare_record.anchor;
6159 __u32 sum;
6160
6161 if (d->index != -1)
6162 return 1;
6163
6164 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super));
6165 spare->generation_num = __cpu_to_le32(1UL);
6166 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
6167 spare->num_disks = 1;
6168 spare->num_raid_devs = 0;
6169 spare->cache_size = mpb->cache_size;
6170 spare->pwr_cycle_count = __cpu_to_le32(1);
6171
6172 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
6173 MPB_SIGNATURE MPB_VERSION_RAID0);
6174
6175 spare->disk[0] = d->disk;
6176 if (__le32_to_cpu(d->disk.total_blocks_hi) > 0)
6177 spare->attributes |= MPB_ATTRIB_2TB_DISK;
6178
6179 if (super->sector_size == 4096)
6180 convert_to_4k_imsm_disk(&spare->disk[0]);
6181
6182 sum = __gen_imsm_checksum(spare);
6183 spare->family_num = __cpu_to_le32(sum);
6184 spare->orig_family_num = 0;
6185 sum = __gen_imsm_checksum(spare);
6186 spare->check_sum = __cpu_to_le32(sum);
6187
6188 if (store_imsm_mpb(d->fd, spare)) {
6189 pr_err("failed for device %d:%d %s\n",
6190 d->major, d->minor, strerror(errno));
6191 return 1;
6192 }
6193
6194 return 0;
6195 }
6196 /* spare records have their own family number and do not have any defined raid
6197 * devices
6198 */
6199 static int write_super_imsm_spares(struct intel_super *super, int doclose)
6200 {
6201 struct dl *d;
6202
6203 for (d = super->disks; d; d = d->next) {
6204 if (d->index != -1)
6205 continue;
6206
6207 if (write_super_imsm_spare(super, d))
6208 return 1;
6209
6210 if (doclose)
6211 close_fd(&d->fd);
6212 }
6213
6214 return 0;
6215 }
6216
6217 static int write_super_imsm(struct supertype *st, int doclose)
6218 {
6219 struct intel_super *super = st->sb;
6220 unsigned int sector_size = super->sector_size;
6221 struct imsm_super *mpb = super->anchor;
6222 struct dl *d;
6223 __u32 generation;
6224 __u32 sum;
6225 int spares = 0;
6226 int i;
6227 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
6228 int num_disks = 0;
6229 int clear_migration_record = 1;
6230 __u32 bbm_log_size;
6231
6232 /* 'generation' is incremented everytime the metadata is written */
6233 generation = __le32_to_cpu(mpb->generation_num);
6234 generation++;
6235 mpb->generation_num = __cpu_to_le32(generation);
6236
6237 /* fix up cases where previous mdadm releases failed to set
6238 * orig_family_num
6239 */
6240 if (mpb->orig_family_num == 0)
6241 mpb->orig_family_num = mpb->family_num;
6242
6243 for (d = super->disks; d; d = d->next) {
6244 if (d->index == -1)
6245 spares++;
6246 else {
6247 mpb->disk[d->index] = d->disk;
6248 num_disks++;
6249 }
6250 }
6251 for (d = super->missing; d; d = d->next) {
6252 mpb->disk[d->index] = d->disk;
6253 num_disks++;
6254 }
6255 mpb->num_disks = num_disks;
6256 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
6257
6258 for (i = 0; i < mpb->num_raid_devs; i++) {
6259 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
6260 struct imsm_dev *dev2 = get_imsm_dev(super, i);
6261
6262 imsm_copy_dev(dev, dev2);
6263 mpb_size += sizeof_imsm_dev(dev, 0);
6264
6265 if (is_gen_migration(dev2))
6266 clear_migration_record = 0;
6267 }
6268
6269 bbm_log_size = get_imsm_bbm_log_size(super->bbm_log);
6270
6271 if (bbm_log_size) {
6272 memcpy((void *)mpb + mpb_size, super->bbm_log, bbm_log_size);
6273 mpb->attributes |= MPB_ATTRIB_BBM;
6274 } else
6275 mpb->attributes &= ~MPB_ATTRIB_BBM;
6276
6277 super->anchor->bbm_log_size = __cpu_to_le32(bbm_log_size);
6278 mpb_size += bbm_log_size;
6279 mpb->mpb_size = __cpu_to_le32(mpb_size);
6280
6281 #ifdef DEBUG
6282 assert(super->len == 0 || mpb_size <= super->len);
6283 #endif
6284
6285 /* recalculate checksum */
6286 sum = __gen_imsm_checksum(mpb);
6287 mpb->check_sum = __cpu_to_le32(sum);
6288
6289 if (super->clean_migration_record_by_mdmon) {
6290 clear_migration_record = 1;
6291 super->clean_migration_record_by_mdmon = 0;
6292 }
6293 if (clear_migration_record)
6294 memset(super->migr_rec_buf, 0,
6295 MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE);
6296
6297 if (sector_size == 4096)
6298 convert_to_4k(super);
6299
6300 /* write the mpb for disks that compose raid devices */
6301 for (d = super->disks; d ; d = d->next) {
6302 if (d->index < 0 || is_failed(&d->disk))
6303 continue;
6304
6305 if (clear_migration_record) {
6306 unsigned long long dsize;
6307
6308 get_dev_size(d->fd, NULL, &dsize);
6309 if (lseek64(d->fd, dsize - sector_size,
6310 SEEK_SET) >= 0) {
6311 if ((unsigned int)write(d->fd,
6312 super->migr_rec_buf,
6313 MIGR_REC_BUF_SECTORS*sector_size) !=
6314 MIGR_REC_BUF_SECTORS*sector_size)
6315 perror("Write migr_rec failed");
6316 }
6317 }
6318
6319 if (store_imsm_mpb(d->fd, mpb))
6320 fprintf(stderr,
6321 "failed for device %d:%d (fd: %d)%s\n",
6322 d->major, d->minor,
6323 d->fd, strerror(errno));
6324
6325 if (doclose)
6326 close_fd(&d->fd);
6327 }
6328
6329 if (spares)
6330 return write_super_imsm_spares(super, doclose);
6331
6332 return 0;
6333 }
6334
6335 static int create_array(struct supertype *st, int dev_idx)
6336 {
6337 size_t len;
6338 struct imsm_update_create_array *u;
6339 struct intel_super *super = st->sb;
6340 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
6341 struct imsm_map *map = get_imsm_map(dev, MAP_0);
6342 struct disk_info *inf;
6343 struct imsm_disk *disk;
6344 int i;
6345
6346 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
6347 sizeof(*inf) * map->num_members;
6348 u = xmalloc(len);
6349 u->type = update_create_array;
6350 u->dev_idx = dev_idx;
6351 imsm_copy_dev(&u->dev, dev);
6352 inf = get_disk_info(u);
6353 for (i = 0; i < map->num_members; i++) {
6354 int idx = get_imsm_disk_idx(dev, i, MAP_X);
6355
6356 disk = get_imsm_disk(super, idx);
6357 if (!disk)
6358 disk = get_imsm_missing(super, idx);
6359 serialcpy(inf[i].serial, disk->serial);
6360 }
6361 append_metadata_update(st, u, len);
6362
6363 return 0;
6364 }
6365
6366 static int mgmt_disk(struct supertype *st)
6367 {
6368 struct intel_super *super = st->sb;
6369 size_t len;
6370 struct imsm_update_add_remove_disk *u;
6371
6372 if (!super->disk_mgmt_list)
6373 return 0;
6374
6375 len = sizeof(*u);
6376 u = xmalloc(len);
6377 u->type = update_add_remove_disk;
6378 append_metadata_update(st, u, len);
6379
6380 return 0;
6381 }
6382
6383 __u32 crc32c_le(__u32 crc, unsigned char const *p, size_t len);
6384
6385 static int write_ppl_header(unsigned long long ppl_sector, int fd, void *buf)
6386 {
6387 struct ppl_header *ppl_hdr = buf;
6388 int ret;
6389
6390 ppl_hdr->checksum = __cpu_to_le32(~crc32c_le(~0, buf, PPL_HEADER_SIZE));
6391
6392 if (lseek64(fd, ppl_sector * 512, SEEK_SET) < 0) {
6393 ret = -errno;
6394 perror("Failed to seek to PPL header location");
6395 return ret;
6396 }
6397
6398 if (write(fd, buf, PPL_HEADER_SIZE) != PPL_HEADER_SIZE) {
6399 ret = -errno;
6400 perror("Write PPL header failed");
6401 return ret;
6402 }
6403
6404 fsync(fd);
6405
6406 return 0;
6407 }
6408
6409 static int write_init_ppl_imsm(struct supertype *st, struct mdinfo *info, int fd)
6410 {
6411 struct intel_super *super = st->sb;
6412 void *buf;
6413 struct ppl_header *ppl_hdr;
6414 int ret;
6415
6416 /* first clear entire ppl space */
6417 ret = zero_disk_range(fd, info->ppl_sector, info->ppl_size);
6418 if (ret)
6419 return ret;
6420
6421 ret = posix_memalign(&buf, MAX_SECTOR_SIZE, PPL_HEADER_SIZE);
6422 if (ret) {
6423 pr_err("Failed to allocate PPL header buffer\n");
6424 return -ret;
6425 }
6426
6427 memset(buf, 0, PPL_HEADER_SIZE);
6428 ppl_hdr = buf;
6429 memset(ppl_hdr->reserved, 0xff, PPL_HDR_RESERVED);
6430 ppl_hdr->signature = __cpu_to_le32(super->anchor->orig_family_num);
6431
6432 if (info->mismatch_cnt) {
6433 /*
6434 * We are overwriting an invalid ppl. Make one entry with wrong
6435 * checksum to prevent the kernel from skipping resync.
6436 */
6437 ppl_hdr->entries_count = __cpu_to_le32(1);
6438 ppl_hdr->entries[0].checksum = ~0;
6439 }
6440
6441 ret = write_ppl_header(info->ppl_sector, fd, buf);
6442
6443 free(buf);
6444 return ret;
6445 }
6446
6447 static int is_rebuilding(struct imsm_dev *dev);
6448
6449 static int validate_ppl_imsm(struct supertype *st, struct mdinfo *info,
6450 struct mdinfo *disk)
6451 {
6452 struct intel_super *super = st->sb;
6453 struct dl *d;
6454 void *buf_orig, *buf, *buf_prev = NULL;
6455 int ret = 0;
6456 struct ppl_header *ppl_hdr = NULL;
6457 __u32 crc;
6458 struct imsm_dev *dev;
6459 __u32 idx;
6460 unsigned int i;
6461 unsigned long long ppl_offset = 0;
6462 unsigned long long prev_gen_num = 0;
6463
6464 if (disk->disk.raid_disk < 0)
6465 return 0;
6466
6467 dev = get_imsm_dev(super, info->container_member);
6468 idx = get_imsm_disk_idx(dev, disk->disk.raid_disk, MAP_0);
6469 d = get_imsm_dl_disk(super, idx);
6470
6471 if (!d || d->index < 0 || is_failed(&d->disk))
6472 return 0;
6473
6474 if (posix_memalign(&buf_orig, MAX_SECTOR_SIZE, PPL_HEADER_SIZE * 2)) {
6475 pr_err("Failed to allocate PPL header buffer\n");
6476 return -1;
6477 }
6478 buf = buf_orig;
6479
6480 ret = 1;
6481 while (ppl_offset < MULTIPLE_PPL_AREA_SIZE_IMSM) {
6482 void *tmp;
6483
6484 dprintf("Checking potential PPL at offset: %llu\n", ppl_offset);
6485
6486 if (lseek64(d->fd, info->ppl_sector * 512 + ppl_offset,
6487 SEEK_SET) < 0) {
6488 perror("Failed to seek to PPL header location");
6489 ret = -1;
6490 break;
6491 }
6492
6493 if (read(d->fd, buf, PPL_HEADER_SIZE) != PPL_HEADER_SIZE) {
6494 perror("Read PPL header failed");
6495 ret = -1;
6496 break;
6497 }
6498
6499 ppl_hdr = buf;
6500
6501 crc = __le32_to_cpu(ppl_hdr->checksum);
6502 ppl_hdr->checksum = 0;
6503
6504 if (crc != ~crc32c_le(~0, buf, PPL_HEADER_SIZE)) {
6505 dprintf("Wrong PPL header checksum on %s\n",
6506 d->devname);
6507 break;
6508 }
6509
6510 if (prev_gen_num > __le64_to_cpu(ppl_hdr->generation)) {
6511 /* previous was newest, it was already checked */
6512 break;
6513 }
6514
6515 if ((__le32_to_cpu(ppl_hdr->signature) !=
6516 super->anchor->orig_family_num)) {
6517 dprintf("Wrong PPL header signature on %s\n",
6518 d->devname);
6519 ret = 1;
6520 break;
6521 }
6522
6523 ret = 0;
6524 prev_gen_num = __le64_to_cpu(ppl_hdr->generation);
6525
6526 ppl_offset += PPL_HEADER_SIZE;
6527 for (i = 0; i < __le32_to_cpu(ppl_hdr->entries_count); i++)
6528 ppl_offset +=
6529 __le32_to_cpu(ppl_hdr->entries[i].pp_size);
6530
6531 if (!buf_prev)
6532 buf_prev = buf + PPL_HEADER_SIZE;
6533 tmp = buf_prev;
6534 buf_prev = buf;
6535 buf = tmp;
6536 }
6537
6538 if (buf_prev) {
6539 buf = buf_prev;
6540 ppl_hdr = buf_prev;
6541 }
6542
6543 /*
6544 * Update metadata to use mutliple PPLs area (1MB).
6545 * This is done once for all RAID members
6546 */
6547 if (info->consistency_policy == CONSISTENCY_POLICY_PPL &&
6548 info->ppl_size != (MULTIPLE_PPL_AREA_SIZE_IMSM >> 9)) {
6549 char subarray[20];
6550 struct mdinfo *member_dev;
6551
6552 sprintf(subarray, "%d", info->container_member);
6553
6554 if (mdmon_running(st->container_devnm))
6555 st->update_tail = &st->updates;
6556
6557 if (st->ss->update_subarray(st, subarray, UOPT_PPL, NULL)) {
6558 pr_err("Failed to update subarray %s\n",
6559 subarray);
6560 } else {
6561 if (st->update_tail)
6562 flush_metadata_updates(st);
6563 else
6564 st->ss->sync_metadata(st);
6565 info->ppl_size = (MULTIPLE_PPL_AREA_SIZE_IMSM >> 9);
6566 for (member_dev = info->devs; member_dev;
6567 member_dev = member_dev->next)
6568 member_dev->ppl_size =
6569 (MULTIPLE_PPL_AREA_SIZE_IMSM >> 9);
6570 }
6571 }
6572
6573 if (ret == 1) {
6574 struct imsm_map *map = get_imsm_map(dev, MAP_X);
6575
6576 if (map->map_state == IMSM_T_STATE_UNINITIALIZED ||
6577 (map->map_state == IMSM_T_STATE_NORMAL &&
6578 !(dev->vol.dirty & RAIDVOL_DIRTY)) ||
6579 (is_rebuilding(dev) &&
6580 vol_curr_migr_unit(dev) == 0 &&
6581 get_imsm_disk_idx(dev, disk->disk.raid_disk, MAP_1) != idx))
6582 ret = st->ss->write_init_ppl(st, info, d->fd);
6583 else
6584 info->mismatch_cnt++;
6585 } else if (ret == 0 &&
6586 ppl_hdr->entries_count == 0 &&
6587 is_rebuilding(dev) &&
6588 info->resync_start == 0) {
6589 /*
6590 * The header has no entries - add a single empty entry and
6591 * rewrite the header to prevent the kernel from going into
6592 * resync after an interrupted rebuild.
6593 */
6594 ppl_hdr->entries_count = __cpu_to_le32(1);
6595 ret = write_ppl_header(info->ppl_sector, d->fd, buf);
6596 }
6597
6598 free(buf_orig);
6599
6600 return ret;
6601 }
6602
6603 static int write_init_ppl_imsm_all(struct supertype *st, struct mdinfo *info)
6604 {
6605 struct intel_super *super = st->sb;
6606 struct dl *d;
6607 int ret = 0;
6608
6609 if (info->consistency_policy != CONSISTENCY_POLICY_PPL ||
6610 info->array.level != 5)
6611 return 0;
6612
6613 for (d = super->disks; d ; d = d->next) {
6614 if (d->index < 0 || is_failed(&d->disk))
6615 continue;
6616
6617 ret = st->ss->write_init_ppl(st, info, d->fd);
6618 if (ret)
6619 break;
6620 }
6621
6622 return ret;
6623 }
6624
6625 /*******************************************************************************
6626 * Function: write_init_bitmap_imsm_vol
6627 * Description: Write a bitmap header and prepares the area for the bitmap.
6628 * Parameters:
6629 * st : supertype information
6630 * vol_idx : the volume index to use
6631 *
6632 * Returns:
6633 * 0 : success
6634 * -1 : fail
6635 ******************************************************************************/
6636 static int write_init_bitmap_imsm_vol(struct supertype *st, int vol_idx)
6637 {
6638 struct intel_super *super = st->sb;
6639 int prev_current_vol = super->current_vol;
6640 struct dl *d;
6641 int ret = 0;
6642
6643 super->current_vol = vol_idx;
6644 for (d = super->disks; d; d = d->next) {
6645 if (d->index < 0 || is_failed(&d->disk))
6646 continue;
6647 ret = st->ss->write_bitmap(st, d->fd, NoUpdate);
6648 if (ret)
6649 break;
6650 }
6651 super->current_vol = prev_current_vol;
6652 return ret;
6653 }
6654
6655 /*******************************************************************************
6656 * Function: write_init_bitmap_imsm_all
6657 * Description: Write a bitmap header and prepares the area for the bitmap.
6658 * Operation is executed for volumes with CONSISTENCY_POLICY_BITMAP.
6659 * Parameters:
6660 * st : supertype information
6661 * info : info about the volume where the bitmap should be written
6662 * vol_idx : the volume index to use
6663 *
6664 * Returns:
6665 * 0 : success
6666 * -1 : fail
6667 ******************************************************************************/
6668 static int write_init_bitmap_imsm_all(struct supertype *st, struct mdinfo *info,
6669 int vol_idx)
6670 {
6671 int ret = 0;
6672
6673 if (info && (info->consistency_policy == CONSISTENCY_POLICY_BITMAP))
6674 ret = write_init_bitmap_imsm_vol(st, vol_idx);
6675
6676 return ret;
6677 }
6678
6679 static int write_init_super_imsm(struct supertype *st)
6680 {
6681 struct intel_super *super = st->sb;
6682 int current_vol = super->current_vol;
6683 int rv = 0;
6684 struct mdinfo info;
6685
6686 getinfo_super_imsm(st, &info, NULL);
6687
6688 /* we are done with current_vol reset it to point st at the container */
6689 super->current_vol = -1;
6690
6691 if (st->update_tail) {
6692 /* queue the recently created array / added disk
6693 * as a metadata update */
6694
6695 /* determine if we are creating a volume or adding a disk */
6696 if (current_vol < 0) {
6697 /* in the mgmt (add/remove) disk case we are running
6698 * in mdmon context, so don't close fd's
6699 */
6700 rv = mgmt_disk(st);
6701 } else {
6702 /* adding the second volume to the array */
6703 rv = write_init_ppl_imsm_all(st, &info);
6704 if (!rv)
6705 rv = write_init_bitmap_imsm_all(st, &info, current_vol);
6706 if (!rv)
6707 rv = create_array(st, current_vol);
6708 }
6709 } else {
6710 struct dl *d;
6711 for (d = super->disks; d; d = d->next)
6712 Kill(d->devname, NULL, 0, -1, 1);
6713 if (current_vol >= 0) {
6714 rv = write_init_ppl_imsm_all(st, &info);
6715 if (!rv)
6716 rv = write_init_bitmap_imsm_all(st, &info, current_vol);
6717 }
6718
6719 if (!rv)
6720 rv = write_super_imsm(st, 1);
6721 }
6722
6723 return rv;
6724 }
6725
6726 static int store_super_imsm(struct supertype *st, int fd)
6727 {
6728 struct intel_super *super = st->sb;
6729 struct imsm_super *mpb = super ? super->anchor : NULL;
6730
6731 if (!mpb)
6732 return 1;
6733
6734 if (super->sector_size == 4096)
6735 convert_to_4k(super);
6736 return store_imsm_mpb(fd, mpb);
6737 }
6738
6739 static int validate_geometry_imsm_container(struct supertype *st, int level,
6740 int raiddisks,
6741 unsigned long long data_offset,
6742 char *dev,
6743 unsigned long long *freesize,
6744 int verbose)
6745 {
6746 int fd;
6747 unsigned long long ldsize;
6748 struct intel_super *super = NULL;
6749 int rv = 0;
6750
6751 if (!is_container(level))
6752 return 0;
6753 if (!dev)
6754 return 1;
6755
6756 fd = dev_open(dev, O_RDONLY|O_EXCL);
6757 if (!is_fd_valid(fd)) {
6758 pr_vrb("imsm: Cannot open %s: %s\n", dev, strerror(errno));
6759 return 0;
6760 }
6761 if (!get_dev_size(fd, dev, &ldsize))
6762 goto exit;
6763
6764 /* capabilities retrieve could be possible
6765 * note that there is no fd for the disks in array.
6766 */
6767 super = alloc_super();
6768 if (!super)
6769 goto exit;
6770
6771 if (!get_dev_sector_size(fd, NULL, &super->sector_size))
6772 goto exit;
6773
6774 rv = find_intel_hba_capability(fd, super, verbose > 0 ? dev : NULL);
6775 if (rv != 0) {
6776 #if DEBUG
6777 char str[256];
6778 fd2devname(fd, str);
6779 dprintf("fd: %d %s orom: %p rv: %d raiddisk: %d\n",
6780 fd, str, super->orom, rv, raiddisks);
6781 #endif
6782 /* no orom/efi or non-intel hba of the disk */
6783 rv = 0;
6784 goto exit;
6785 }
6786 if (super->orom) {
6787 if (raiddisks > super->orom->tds) {
6788 if (verbose)
6789 pr_err("%d exceeds maximum number of platform supported disks: %d\n",
6790 raiddisks, super->orom->tds);
6791 goto exit;
6792 }
6793 if ((super->orom->attr & IMSM_OROM_ATTR_2TB_DISK) == 0 &&
6794 (ldsize >> 9) >> 32 > 0) {
6795 if (verbose)
6796 pr_err("%s exceeds maximum platform supported size\n", dev);
6797 goto exit;
6798 }
6799
6800 if (super->hba->type == SYS_DEV_VMD ||
6801 super->hba->type == SYS_DEV_NVME) {
6802 if (!imsm_is_nvme_namespace_supported(fd, 1)) {
6803 if (verbose)
6804 pr_err("NVMe namespace %s is not supported by IMSM\n",
6805 basename(dev));
6806 goto exit;
6807 }
6808 }
6809 }
6810 if (freesize)
6811 *freesize = avail_size_imsm(st, ldsize >> 9, data_offset);
6812 rv = 1;
6813 exit:
6814 if (super)
6815 free_imsm(super);
6816 close(fd);
6817
6818 return rv;
6819 }
6820
6821 static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
6822 {
6823 const unsigned long long base_start = e[*idx].start;
6824 unsigned long long end = base_start + e[*idx].size;
6825 int i;
6826
6827 if (base_start == end)
6828 return 0;
6829
6830 *idx = *idx + 1;
6831 for (i = *idx; i < num_extents; i++) {
6832 /* extend overlapping extents */
6833 if (e[i].start >= base_start &&
6834 e[i].start <= end) {
6835 if (e[i].size == 0)
6836 return 0;
6837 if (e[i].start + e[i].size > end)
6838 end = e[i].start + e[i].size;
6839 } else if (e[i].start > end) {
6840 *idx = i;
6841 break;
6842 }
6843 }
6844
6845 return end - base_start;
6846 }
6847
6848 /** merge_extents() - analyze extents and get free size.
6849 * @super: Intel metadata, not NULL.
6850 * @expanding: if set, we are expanding &super->current_vol.
6851 *
6852 * Build a composite disk with all known extents and generate a size given the
6853 * "all disks in an array must share a common start offset" constraint.
6854 * If a volume is expanded, then return free space after the volume.
6855 *
6856 * Return: Free space or 0 on failure.
6857 */
6858 static unsigned long long merge_extents(struct intel_super *super, const bool expanding)
6859 {
6860 struct extent *e;
6861 struct dl *dl;
6862 int i, j, pos_vol_idx = -1;
6863 int extent_idx = 0;
6864 int sum_extents = 0;
6865 unsigned long long pos = 0;
6866 unsigned long long start = 0;
6867 unsigned long long free_size = 0;
6868
6869 unsigned long pre_reservation = 0;
6870 unsigned long post_reservation = IMSM_RESERVED_SECTORS;
6871 unsigned long reservation_size;
6872
6873 for (dl = super->disks; dl; dl = dl->next)
6874 if (dl->e)
6875 sum_extents += dl->extent_cnt;
6876 e = xcalloc(sum_extents, sizeof(struct extent));
6877
6878 /* coalesce and sort all extents. also, check to see if we need to
6879 * reserve space between member arrays
6880 */
6881 j = 0;
6882 for (dl = super->disks; dl; dl = dl->next) {
6883 if (!dl->e)
6884 continue;
6885 for (i = 0; i < dl->extent_cnt; i++)
6886 e[j++] = dl->e[i];
6887 }
6888 qsort(e, sum_extents, sizeof(*e), cmp_extent);
6889
6890 /* merge extents */
6891 i = 0;
6892 j = 0;
6893 while (i < sum_extents) {
6894 e[j].start = e[i].start;
6895 e[j].vol = e[i].vol;
6896 e[j].size = find_size(e, &i, sum_extents);
6897 j++;
6898 if (e[j-1].size == 0)
6899 break;
6900 }
6901
6902 i = 0;
6903 do {
6904 unsigned long long esize = e[i].start - pos;
6905
6906 if (expanding ? pos_vol_idx == super->current_vol : esize >= free_size) {
6907 free_size = esize;
6908 start = pos;
6909 extent_idx = i;
6910 }
6911
6912 pos = e[i].start + e[i].size;
6913 pos_vol_idx = e[i].vol;
6914
6915 i++;
6916 } while (e[i-1].size);
6917
6918 if (free_size == 0) {
6919 dprintf("imsm: Cannot find free size.\n");
6920 free(e);
6921 return 0;
6922 }
6923
6924 if (!expanding && extent_idx != 0)
6925 /*
6926 * Not a real first volume in a container is created, pre_reservation is needed.
6927 */
6928 pre_reservation = IMSM_RESERVED_SECTORS;
6929
6930 if (e[extent_idx].size == 0)
6931 /*
6932 * extent_idx points to the metadata, post_reservation is allready done.
6933 */
6934 post_reservation = 0;
6935 free(e);
6936
6937 reservation_size = pre_reservation + post_reservation;
6938
6939 if (free_size < reservation_size) {
6940 dprintf("imsm: Reservation size is greater than free space.\n");
6941 return 0;
6942 }
6943
6944 super->create_offset = start + pre_reservation;
6945 return free_size - reservation_size;
6946 }
6947
6948 static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
6949 {
6950 if (level < 0 || level == 6 || level == 4)
6951 return 0;
6952
6953 /* if we have an orom prevent invalid raid levels */
6954 if (orom)
6955 switch (level) {
6956 case 0: return imsm_orom_has_raid0(orom);
6957 case 1:
6958 if (raiddisks > 2)
6959 return imsm_orom_has_raid1e(orom);
6960 return imsm_orom_has_raid1(orom) && raiddisks == 2;
6961 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
6962 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
6963 }
6964 else
6965 return 1; /* not on an Intel RAID platform so anything goes */
6966
6967 return 0;
6968 }
6969
6970 static int
6971 active_arrays_by_format(char *name, char* hba, struct md_list **devlist,
6972 int dpa, int verbose)
6973 {
6974 struct mdstat_ent *mdstat = mdstat_read(0, 0);
6975 struct mdstat_ent *memb;
6976 int count = 0;
6977 int num = 0;
6978 struct md_list *dv;
6979 int found;
6980
6981 for (memb = mdstat ; memb ; memb = memb->next) {
6982 if (memb->metadata_version &&
6983 (strncmp(memb->metadata_version, "external:", 9) == 0) &&
6984 (strcmp(&memb->metadata_version[9], name) == 0) &&
6985 !is_subarray(memb->metadata_version+9) &&
6986 memb->members) {
6987 struct dev_member *dev = memb->members;
6988 int fd = -1;
6989 while (dev && !is_fd_valid(fd)) {
6990 char *path = xmalloc(strlen(dev->name) + strlen("/dev/") + 1);
6991 num = snprintf(path, PATH_MAX, "%s%s", "/dev/", dev->name);
6992 if (num > 0)
6993 fd = open(path, O_RDONLY, 0);
6994 if (num <= 0 || !is_fd_valid(fd)) {
6995 pr_vrb("Cannot open %s: %s\n",
6996 dev->name, strerror(errno));
6997 }
6998 free(path);
6999 dev = dev->next;
7000 }
7001 found = 0;
7002 if (is_fd_valid(fd) && disk_attached_to_hba(fd, hba)) {
7003 struct mdstat_ent *vol;
7004 for (vol = mdstat ; vol ; vol = vol->next) {
7005 if (vol->active > 0 &&
7006 vol->metadata_version &&
7007 is_container_member(vol, memb->devnm)) {
7008 found++;
7009 count++;
7010 }
7011 }
7012 if (*devlist && (found < dpa)) {
7013 dv = xcalloc(1, sizeof(*dv));
7014 dv->devname = xmalloc(strlen(memb->devnm) + strlen("/dev/") + 1);
7015 sprintf(dv->devname, "%s%s", "/dev/", memb->devnm);
7016 dv->found = found;
7017 dv->used = 0;
7018 dv->next = *devlist;
7019 *devlist = dv;
7020 }
7021 }
7022 close_fd(&fd);
7023 }
7024 }
7025 free_mdstat(mdstat);
7026 return count;
7027 }
7028
7029 #ifdef DEBUG_LOOP
7030 static struct md_list*
7031 get_loop_devices(void)
7032 {
7033 int i;
7034 struct md_list *devlist = NULL;
7035 struct md_list *dv;
7036
7037 for(i = 0; i < 12; i++) {
7038 dv = xcalloc(1, sizeof(*dv));
7039 dv->devname = xmalloc(40);
7040 sprintf(dv->devname, "/dev/loop%d", i);
7041 dv->next = devlist;
7042 devlist = dv;
7043 }
7044 return devlist;
7045 }
7046 #endif
7047
7048 static struct md_list*
7049 get_devices(const char *hba_path)
7050 {
7051 struct md_list *devlist = NULL;
7052 struct md_list *dv;
7053 struct dirent *ent;
7054 DIR *dir;
7055 int err = 0;
7056
7057 #if DEBUG_LOOP
7058 devlist = get_loop_devices();
7059 return devlist;
7060 #endif
7061 /* scroll through /sys/dev/block looking for devices attached to
7062 * this hba
7063 */
7064 dir = opendir("/sys/dev/block");
7065 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
7066 int fd;
7067 char buf[1024];
7068 int major, minor;
7069 char *path = NULL;
7070 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
7071 continue;
7072 path = devt_to_devpath(makedev(major, minor), 1, NULL);
7073 if (!path)
7074 continue;
7075 if (!path_attached_to_hba(path, hba_path)) {
7076 free(path);
7077 path = NULL;
7078 continue;
7079 }
7080 free(path);
7081 path = NULL;
7082 fd = dev_open(ent->d_name, O_RDONLY);
7083 if (is_fd_valid(fd)) {
7084 fd2devname(fd, buf);
7085 close(fd);
7086 } else {
7087 pr_err("cannot open device: %s\n",
7088 ent->d_name);
7089 continue;
7090 }
7091
7092 dv = xcalloc(1, sizeof(*dv));
7093 dv->devname = xstrdup(buf);
7094 dv->next = devlist;
7095 devlist = dv;
7096 }
7097 if (err) {
7098 while(devlist) {
7099 dv = devlist;
7100 devlist = devlist->next;
7101 free(dv->devname);
7102 free(dv);
7103 }
7104 }
7105 closedir(dir);
7106 return devlist;
7107 }
7108
7109 static int
7110 count_volumes_list(struct md_list *devlist, char *homehost,
7111 int verbose, int *found)
7112 {
7113 struct md_list *tmpdev;
7114 int count = 0;
7115 struct supertype *st;
7116
7117 /* first walk the list of devices to find a consistent set
7118 * that match the criterea, if that is possible.
7119 * We flag the ones we like with 'used'.
7120 */
7121 *found = 0;
7122 st = match_metadata_desc_imsm("imsm");
7123 if (st == NULL) {
7124 pr_vrb("cannot allocate memory for imsm supertype\n");
7125 return 0;
7126 }
7127
7128 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
7129 char *devname = tmpdev->devname;
7130 dev_t rdev;
7131 struct supertype *tst;
7132 int dfd;
7133 if (tmpdev->used > 1)
7134 continue;
7135 tst = dup_super(st);
7136 if (tst == NULL) {
7137 pr_vrb("cannot allocate memory for imsm supertype\n");
7138 goto err_1;
7139 }
7140 tmpdev->container = 0;
7141 dfd = dev_open(devname, O_RDONLY|O_EXCL);
7142 if (!is_fd_valid(dfd)) {
7143 dprintf("cannot open device %s: %s\n",
7144 devname, strerror(errno));
7145 tmpdev->used = 2;
7146 } else if (!fstat_is_blkdev(dfd, devname, &rdev)) {
7147 tmpdev->used = 2;
7148 } else if (must_be_container(dfd)) {
7149 struct supertype *cst;
7150 cst = super_by_fd(dfd, NULL);
7151 if (cst == NULL) {
7152 dprintf("cannot recognize container type %s\n",
7153 devname);
7154 tmpdev->used = 2;
7155 } else if (tst->ss != st->ss) {
7156 dprintf("non-imsm container - ignore it: %s\n",
7157 devname);
7158 tmpdev->used = 2;
7159 } else if (!tst->ss->load_container ||
7160 tst->ss->load_container(tst, dfd, NULL))
7161 tmpdev->used = 2;
7162 else {
7163 tmpdev->container = 1;
7164 }
7165 if (cst)
7166 cst->ss->free_super(cst);
7167 } else {
7168 tmpdev->st_rdev = rdev;
7169 if (tst->ss->load_super(tst,dfd, NULL)) {
7170 dprintf("no RAID superblock on %s\n",
7171 devname);
7172 tmpdev->used = 2;
7173 } else if (tst->ss->compare_super == NULL) {
7174 dprintf("Cannot assemble %s metadata on %s\n",
7175 tst->ss->name, devname);
7176 tmpdev->used = 2;
7177 }
7178 }
7179 close_fd(&dfd);
7180
7181 if (tmpdev->used == 2 || tmpdev->used == 4) {
7182 /* Ignore unrecognised devices during auto-assembly */
7183 goto loop;
7184 }
7185 else {
7186 struct mdinfo info;
7187 tst->ss->getinfo_super(tst, &info, NULL);
7188
7189 if (st->minor_version == -1)
7190 st->minor_version = tst->minor_version;
7191
7192 if (memcmp(info.uuid, uuid_zero,
7193 sizeof(int[4])) == 0) {
7194 /* this is a floating spare. It cannot define
7195 * an array unless there are no more arrays of
7196 * this type to be found. It can be included
7197 * in an array of this type though.
7198 */
7199 tmpdev->used = 3;
7200 goto loop;
7201 }
7202
7203 if (st->ss != tst->ss ||
7204 st->minor_version != tst->minor_version ||
7205 st->ss->compare_super(st, tst, 1) != 0) {
7206 /* Some mismatch. If exactly one array matches this host,
7207 * we can resolve on that one.
7208 * Or, if we are auto assembling, we just ignore the second
7209 * for now.
7210 */
7211 dprintf("superblock on %s doesn't match others - assembly aborted\n",
7212 devname);
7213 goto loop;
7214 }
7215 tmpdev->used = 1;
7216 *found = 1;
7217 dprintf("found: devname: %s\n", devname);
7218 }
7219 loop:
7220 if (tst)
7221 tst->ss->free_super(tst);
7222 }
7223 if (*found != 0) {
7224 int err;
7225 if ((err = load_super_imsm_all(st, -1, &st->sb, NULL, devlist, 0)) == 0) {
7226 struct mdinfo *iter, *head = st->ss->container_content(st, NULL);
7227 for (iter = head; iter; iter = iter->next) {
7228 dprintf("content->text_version: %s vol\n",
7229 iter->text_version);
7230 if (iter->array.state & (1<<MD_SB_BLOCK_VOLUME)) {
7231 /* do not assemble arrays with unsupported
7232 configurations */
7233 dprintf("Cannot activate member %s.\n",
7234 iter->text_version);
7235 } else
7236 count++;
7237 }
7238 sysfs_free(head);
7239
7240 } else {
7241 dprintf("No valid super block on device list: err: %d %p\n",
7242 err, st->sb);
7243 }
7244 } else {
7245 dprintf("no more devices to examine\n");
7246 }
7247
7248 for (tmpdev = devlist; tmpdev; tmpdev = tmpdev->next) {
7249 if (tmpdev->used == 1 && tmpdev->found) {
7250 if (count) {
7251 if (count < tmpdev->found)
7252 count = 0;
7253 else
7254 count -= tmpdev->found;
7255 }
7256 }
7257 if (tmpdev->used == 1)
7258 tmpdev->used = 4;
7259 }
7260 err_1:
7261 if (st)
7262 st->ss->free_super(st);
7263 return count;
7264 }
7265
7266 static int __count_volumes(char *hba_path, int dpa, int verbose,
7267 int cmp_hba_path)
7268 {
7269 struct sys_dev *idev, *intel_devices = find_intel_devices();
7270 int count = 0;
7271 const struct orom_entry *entry;
7272 struct devid_list *dv, *devid_list;
7273
7274 if (!hba_path)
7275 return 0;
7276
7277 for (idev = intel_devices; idev; idev = idev->next) {
7278 if (strstr(idev->path, hba_path))
7279 break;
7280 }
7281
7282 if (!idev || !idev->dev_id)
7283 return 0;
7284
7285 entry = get_orom_entry_by_device_id(idev->dev_id);
7286
7287 if (!entry || !entry->devid_list)
7288 return 0;
7289
7290 devid_list = entry->devid_list;
7291 for (dv = devid_list; dv; dv = dv->next) {
7292 struct md_list *devlist;
7293 struct sys_dev *device = NULL;
7294 char *hpath;
7295 int found = 0;
7296
7297 if (cmp_hba_path)
7298 device = device_by_id_and_path(dv->devid, hba_path);
7299 else
7300 device = device_by_id(dv->devid);
7301
7302 if (device)
7303 hpath = device->path;
7304 else
7305 return 0;
7306
7307 devlist = get_devices(hpath);
7308 /* if no intel devices return zero volumes */
7309 if (devlist == NULL)
7310 return 0;
7311
7312 count += active_arrays_by_format("imsm", hpath, &devlist, dpa,
7313 verbose);
7314 dprintf("path: %s active arrays: %d\n", hpath, count);
7315 if (devlist == NULL)
7316 return 0;
7317 do {
7318 found = 0;
7319 count += count_volumes_list(devlist,
7320 NULL,
7321 verbose,
7322 &found);
7323 dprintf("found %d count: %d\n", found, count);
7324 } while (found);
7325
7326 dprintf("path: %s total number of volumes: %d\n", hpath, count);
7327
7328 while (devlist) {
7329 struct md_list *dv = devlist;
7330 devlist = devlist->next;
7331 free(dv->devname);
7332 free(dv);
7333 }
7334 }
7335 return count;
7336 }
7337
7338 static int count_volumes(struct intel_hba *hba, int dpa, int verbose)
7339 {
7340 if (!hba)
7341 return 0;
7342 if (hba->type == SYS_DEV_VMD) {
7343 struct sys_dev *dev;
7344 int count = 0;
7345
7346 for (dev = find_intel_devices(); dev; dev = dev->next) {
7347 if (dev->type == SYS_DEV_VMD)
7348 count += __count_volumes(dev->path, dpa,
7349 verbose, 1);
7350 }
7351 return count;
7352 }
7353 return __count_volumes(hba->path, dpa, verbose, 0);
7354 }
7355
7356 static int imsm_default_chunk(const struct imsm_orom *orom)
7357 {
7358 /* up to 512 if the plaform supports it, otherwise the platform max.
7359 * 128 if no platform detected
7360 */
7361 int fs = max(7, orom ? fls(orom->sss) : 0);
7362
7363 return min(512, (1 << fs));
7364 }
7365
7366 static int
7367 validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
7368 int raiddisks, int *chunk, unsigned long long size, int verbose)
7369 {
7370 /* check/set platform and metadata limits/defaults */
7371 if (super->orom && raiddisks > super->orom->dpa) {
7372 pr_vrb("platform supports a maximum of %d disks per array\n",
7373 super->orom->dpa);
7374 return 0;
7375 }
7376
7377 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
7378 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
7379 pr_vrb("platform does not support raid%d with %d disk%s\n",
7380 level, raiddisks, raiddisks > 1 ? "s" : "");
7381 return 0;
7382 }
7383
7384 if (*chunk == 0 || *chunk == UnSet)
7385 *chunk = imsm_default_chunk(super->orom);
7386
7387 if (super->orom && !imsm_orom_has_chunk(super->orom, *chunk)) {
7388 pr_vrb("platform does not support a chunk size of: %d\n", *chunk);
7389 return 0;
7390 }
7391
7392 if (layout != imsm_level_to_layout(level)) {
7393 if (level == 5)
7394 pr_vrb("imsm raid 5 only supports the left-asymmetric layout\n");
7395 else if (level == 10)
7396 pr_vrb("imsm raid 10 only supports the n2 layout\n");
7397 else
7398 pr_vrb("imsm unknown layout %#x for this raid level %d\n",
7399 layout, level);
7400 return 0;
7401 }
7402
7403 if (super->orom && (super->orom->attr & IMSM_OROM_ATTR_2TB) == 0 &&
7404 (calc_array_size(level, raiddisks, layout, *chunk, size) >> 32) > 0) {
7405 pr_vrb("platform does not support a volume size over 2TB\n");
7406 return 0;
7407 }
7408
7409 return 1;
7410 }
7411
7412 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
7413 * FIX ME add ahci details
7414 */
7415 static int validate_geometry_imsm_volume(struct supertype *st, int level,
7416 int layout, int raiddisks, int *chunk,
7417 unsigned long long size,
7418 unsigned long long data_offset,
7419 char *dev,
7420 unsigned long long *freesize,
7421 int verbose)
7422 {
7423 dev_t rdev;
7424 struct intel_super *super = st->sb;
7425 struct imsm_super *mpb;
7426 struct dl *dl;
7427 unsigned long long pos = 0;
7428 unsigned long long maxsize;
7429 struct extent *e;
7430 int i;
7431
7432 /* We must have the container info already read in. */
7433 if (!super)
7434 return 0;
7435
7436 mpb = super->anchor;
7437
7438 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, size, verbose)) {
7439 pr_err("RAID geometry validation failed. Cannot proceed with the action(s).\n");
7440 return 0;
7441 }
7442 if (!dev) {
7443 /* General test: make sure there is space for
7444 * 'raiddisks' device extents of size 'size' at a given
7445 * offset
7446 */
7447 unsigned long long minsize = size;
7448 unsigned long long start_offset = MaxSector;
7449 int dcnt = 0;
7450 if (minsize == 0)
7451 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
7452 for (dl = super->disks; dl ; dl = dl->next) {
7453 int found = 0;
7454
7455 pos = 0;
7456 i = 0;
7457 e = get_extents(super, dl, 0);
7458 if (!e) continue;
7459 do {
7460 unsigned long long esize;
7461 esize = e[i].start - pos;
7462 if (esize >= minsize)
7463 found = 1;
7464 if (found && start_offset == MaxSector) {
7465 start_offset = pos;
7466 break;
7467 } else if (found && pos != start_offset) {
7468 found = 0;
7469 break;
7470 }
7471 pos = e[i].start + e[i].size;
7472 i++;
7473 } while (e[i-1].size);
7474 if (found)
7475 dcnt++;
7476 free(e);
7477 }
7478 if (dcnt < raiddisks) {
7479 if (verbose)
7480 pr_err("imsm: Not enough devices with space for this array (%d < %d)\n",
7481 dcnt, raiddisks);
7482 return 0;
7483 }
7484 return 1;
7485 }
7486
7487 /* This device must be a member of the set */
7488 if (!stat_is_blkdev(dev, &rdev))
7489 return 0;
7490 for (dl = super->disks ; dl ; dl = dl->next) {
7491 if (dl->major == (int)major(rdev) &&
7492 dl->minor == (int)minor(rdev))
7493 break;
7494 }
7495 if (!dl) {
7496 if (verbose)
7497 pr_err("%s is not in the same imsm set\n", dev);
7498 return 0;
7499 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
7500 /* If a volume is present then the current creation attempt
7501 * cannot incorporate new spares because the orom may not
7502 * understand this configuration (all member disks must be
7503 * members of each array in the container).
7504 */
7505 pr_err("%s is a spare and a volume is already defined for this container\n", dev);
7506 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
7507 return 0;
7508 } else if (super->orom && mpb->num_raid_devs > 0 &&
7509 mpb->num_disks != raiddisks) {
7510 pr_err("The option-rom requires all member disks to be a member of all volumes\n");
7511 return 0;
7512 }
7513
7514 /* retrieve the largest free space block */
7515 e = get_extents(super, dl, 0);
7516 maxsize = 0;
7517 i = 0;
7518 if (e) {
7519 do {
7520 unsigned long long esize;
7521
7522 esize = e[i].start - pos;
7523 if (esize >= maxsize)
7524 maxsize = esize;
7525 pos = e[i].start + e[i].size;
7526 i++;
7527 } while (e[i-1].size);
7528 dl->e = e;
7529 dl->extent_cnt = i;
7530 } else {
7531 if (verbose)
7532 pr_err("unable to determine free space for: %s\n",
7533 dev);
7534 return 0;
7535 }
7536 if (maxsize < size) {
7537 if (verbose)
7538 pr_err("%s not enough space (%llu < %llu)\n",
7539 dev, maxsize, size);
7540 return 0;
7541 }
7542
7543 maxsize = merge_extents(super, false);
7544
7545 if (mpb->num_raid_devs > 0 && size && size != maxsize)
7546 pr_err("attempting to create a second volume with size less then remaining space.\n");
7547
7548 if (maxsize < size || maxsize == 0) {
7549 if (verbose) {
7550 if (maxsize == 0)
7551 pr_err("no free space left on device. Aborting...\n");
7552 else
7553 pr_err("not enough space to create volume of given size (%llu < %llu). Aborting...\n",
7554 maxsize, size);
7555 }
7556 return 0;
7557 }
7558
7559 *freesize = maxsize;
7560
7561 if (super->orom) {
7562 int count = count_volumes(super->hba,
7563 super->orom->dpa, verbose);
7564 if (super->orom->vphba <= count) {
7565 pr_vrb("platform does not support more than %d raid volumes.\n",
7566 super->orom->vphba);
7567 return 0;
7568 }
7569 }
7570 return 1;
7571 }
7572
7573 /**
7574 * imsm_get_free_size() - get the biggest, common free space from members.
7575 * @super: &intel_super pointer, not NULL.
7576 * @raiddisks: number of raid disks.
7577 * @size: requested size, could be 0 (means max size).
7578 * @chunk: requested chunk size in KiB.
7579 * @freesize: pointer for returned size value.
7580 *
7581 * Return: &IMSM_STATUS_OK or &IMSM_STATUS_ERROR.
7582 *
7583 * @freesize is set to meaningful value, this can be @size, or calculated
7584 * max free size.
7585 * super->create_offset value is modified and set appropriately in
7586 * merge_extends() for further creation.
7587 */
7588 static imsm_status_t imsm_get_free_size(struct intel_super *super,
7589 const int raiddisks,
7590 unsigned long long size,
7591 const int chunk,
7592 unsigned long long *freesize,
7593 bool expanding)
7594 {
7595 struct imsm_super *mpb = super->anchor;
7596 struct dl *dl;
7597 int i;
7598 struct extent *e;
7599 int cnt = 0;
7600 int used = 0;
7601 unsigned long long maxsize;
7602 unsigned long long minsize = size;
7603
7604 if (minsize == 0)
7605 minsize = chunk * 2;
7606
7607 /* find the largest common start free region of the possible disks */
7608 for (dl = super->disks; dl; dl = dl->next) {
7609 dl->raiddisk = -1;
7610
7611 if (dl->index >= 0)
7612 used++;
7613
7614 /* don't activate new spares if we are orom constrained
7615 * and there is already a volume active in the container
7616 */
7617 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
7618 continue;
7619
7620 e = get_extents(super, dl, 0);
7621 if (!e)
7622 continue;
7623 for (i = 1; e[i-1].size; i++)
7624 ;
7625 dl->e = e;
7626 dl->extent_cnt = i;
7627 cnt++;
7628 }
7629
7630 maxsize = merge_extents(super, expanding);
7631 if (maxsize < minsize) {
7632 pr_err("imsm: Free space is %llu but must be equal or larger than %llu.\n",
7633 maxsize, minsize);
7634 return IMSM_STATUS_ERROR;
7635 }
7636
7637 if (cnt < raiddisks || (super->orom && used && used != raiddisks)) {
7638 pr_err("imsm: Not enough devices with space to create array.\n");
7639 return IMSM_STATUS_ERROR;
7640 }
7641
7642 if (size == 0) {
7643 size = maxsize;
7644 if (chunk) {
7645 size /= 2 * chunk;
7646 size *= 2 * chunk;
7647 }
7648 maxsize = size;
7649 }
7650 if (mpb->num_raid_devs > 0 && size && size != maxsize)
7651 pr_err("attempting to create a second volume with size less then remaining space.\n");
7652 *freesize = size;
7653
7654 dprintf("imsm: imsm_get_free_size() returns : %llu\n", size);
7655
7656 return IMSM_STATUS_OK;
7657 }
7658
7659 /**
7660 * autolayout_imsm() - automatically layout a new volume.
7661 * @super: &intel_super pointer, not NULL.
7662 * @raiddisks: number of raid disks.
7663 * @size: requested size, could be 0 (means max size).
7664 * @chunk: requested chunk.
7665 * @freesize: pointer for returned size value.
7666 *
7667 * We are being asked to automatically layout a new volume based on the current
7668 * contents of the container. If the parameters can be satisfied autolayout_imsm
7669 * will record the disks, start offset, and will return size of the volume to
7670 * be created. See imsm_get_free_size() for details.
7671 * add_to_super() and getinfo_super() detect when autolayout is in progress.
7672 * If first volume exists, slots are set consistently to it.
7673 *
7674 * Return: &IMSM_STATUS_OK on success, &IMSM_STATUS_ERROR otherwise.
7675 *
7676 * Disks are marked for creation via dl->raiddisk.
7677 */
7678 static imsm_status_t autolayout_imsm(struct intel_super *super,
7679 const int raiddisks,
7680 unsigned long long size, const int chunk,
7681 unsigned long long *freesize)
7682 {
7683 int curr_slot = 0;
7684 struct dl *disk;
7685 int vol_cnt = super->anchor->num_raid_devs;
7686 imsm_status_t rv;
7687
7688 rv = imsm_get_free_size(super, raiddisks, size, chunk, freesize, false);
7689 if (rv != IMSM_STATUS_OK)
7690 return IMSM_STATUS_ERROR;
7691
7692 for (disk = super->disks; disk; disk = disk->next) {
7693 if (!disk->e)
7694 continue;
7695
7696 if (curr_slot == raiddisks)
7697 break;
7698
7699 if (vol_cnt == 0) {
7700 disk->raiddisk = curr_slot;
7701 } else {
7702 int _slot = get_disk_slot_in_dev(super, 0, disk->index);
7703
7704 if (_slot == -1) {
7705 pr_err("Disk %s is not used in first volume, aborting\n",
7706 disk->devname);
7707 return IMSM_STATUS_ERROR;
7708 }
7709 disk->raiddisk = _slot;
7710 }
7711 curr_slot++;
7712 }
7713
7714 return IMSM_STATUS_OK;
7715 }
7716
7717 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
7718 int raiddisks, int *chunk, unsigned long long size,
7719 unsigned long long data_offset,
7720 char *dev, unsigned long long *freesize,
7721 int consistency_policy, int verbose)
7722 {
7723 int fd, cfd;
7724 struct mdinfo *sra;
7725 int is_member = 0;
7726
7727 /* load capability
7728 * if given unused devices create a container
7729 * if given given devices in a container create a member volume
7730 */
7731 if (is_container(level))
7732 /* Must be a fresh device to add to a container */
7733 return validate_geometry_imsm_container(st, level, raiddisks,
7734 data_offset, dev,
7735 freesize, verbose);
7736
7737 /*
7738 * Size is given in sectors.
7739 */
7740 if (size && (size < 2048)) {
7741 pr_err("Given size must be greater than 1M.\n");
7742 /* Depends on algorithm in Create.c :
7743 * if container was given (dev == NULL) return -1,
7744 * if block device was given ( dev != NULL) return 0.
7745 */
7746 return dev ? -1 : 0;
7747 }
7748
7749 if (!dev) {
7750 struct intel_super *super = st->sb;
7751
7752 /*
7753 * Autolayout mode, st->sb must be set.
7754 */
7755 if (!super) {
7756 pr_vrb("superblock must be set for autolayout, aborting\n");
7757 return 0;
7758 }
7759
7760 if (!validate_geometry_imsm_orom(st->sb, level, layout,
7761 raiddisks, chunk, size,
7762 verbose))
7763 return 0;
7764
7765 if (super->orom && freesize) {
7766 imsm_status_t rv;
7767 int count = count_volumes(super->hba, super->orom->dpa,
7768 verbose);
7769 if (super->orom->vphba <= count) {
7770 pr_vrb("platform does not support more than %d raid volumes.\n",
7771 super->orom->vphba);
7772 return 0;
7773 }
7774
7775 rv = autolayout_imsm(super, raiddisks, size, *chunk,
7776 freesize);
7777 if (rv != IMSM_STATUS_OK)
7778 return 0;
7779 }
7780 return 1;
7781 }
7782 if (st->sb) {
7783 /* creating in a given container */
7784 return validate_geometry_imsm_volume(st, level, layout,
7785 raiddisks, chunk, size,
7786 data_offset,
7787 dev, freesize, verbose);
7788 }
7789
7790 /* This device needs to be a device in an 'imsm' container */
7791 fd = open(dev, O_RDONLY|O_EXCL, 0);
7792
7793 if (is_fd_valid(fd)) {
7794 pr_vrb("Cannot create this array on device %s\n", dev);
7795 close(fd);
7796 return 0;
7797 }
7798 if (errno == EBUSY)
7799 fd = open(dev, O_RDONLY, 0);
7800
7801 if (!is_fd_valid(fd)) {
7802 pr_vrb("Cannot open %s: %s\n", dev, strerror(errno));
7803 return 0;
7804 }
7805
7806 /* Well, it is in use by someone, maybe an 'imsm' container. */
7807 cfd = open_container(fd);
7808 close_fd(&fd);
7809
7810 if (!is_fd_valid(cfd)) {
7811 pr_vrb("Cannot use %s: It is busy\n", dev);
7812 return 0;
7813 }
7814 sra = sysfs_read(cfd, NULL, GET_VERSION);
7815 if (sra && sra->array.major_version == -1 &&
7816 strcmp(sra->text_version, "imsm") == 0)
7817 is_member = 1;
7818 sysfs_free(sra);
7819 if (is_member) {
7820 /* This is a member of a imsm container. Load the container
7821 * and try to create a volume
7822 */
7823 struct intel_super *super;
7824
7825 if (load_super_imsm_all(st, cfd, (void **) &super, NULL, NULL, 1) == 0) {
7826 st->sb = super;
7827 strcpy(st->container_devnm, fd2devnm(cfd));
7828 close(cfd);
7829 return validate_geometry_imsm_volume(st, level, layout,
7830 raiddisks, chunk,
7831 size, data_offset, dev,
7832 freesize, 1)
7833 ? 1 : -1;
7834 }
7835 }
7836
7837 if (verbose)
7838 pr_err("failed container membership check\n");
7839
7840 close(cfd);
7841 return 0;
7842 }
7843
7844 static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
7845 {
7846 struct intel_super *super = st->sb;
7847
7848 if (level && *level == UnSet)
7849 *level = LEVEL_CONTAINER;
7850
7851 if (level && layout && *layout == UnSet)
7852 *layout = imsm_level_to_layout(*level);
7853
7854 if (chunk && (*chunk == UnSet || *chunk == 0))
7855 *chunk = imsm_default_chunk(super->orom);
7856 }
7857
7858 static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
7859
7860 static int kill_subarray_imsm(struct supertype *st, char *subarray_id)
7861 {
7862 /* remove the subarray currently referenced by subarray_id */
7863 __u8 i;
7864 struct intel_dev **dp;
7865 struct intel_super *super = st->sb;
7866 __u8 current_vol = strtoul(subarray_id, NULL, 10);
7867 struct imsm_super *mpb = super->anchor;
7868
7869 if (mpb->num_raid_devs == 0)
7870 return 2;
7871
7872 /* block deletions that would change the uuid of active subarrays
7873 *
7874 * FIXME when immutable ids are available, but note that we'll
7875 * also need to fixup the invalidated/active subarray indexes in
7876 * mdstat
7877 */
7878 for (i = 0; i < mpb->num_raid_devs; i++) {
7879 char subarray[4];
7880
7881 if (i < current_vol)
7882 continue;
7883 snprintf(subarray, sizeof(subarray), "%u", i);
7884 if (is_subarray_active(subarray, st->devnm)) {
7885 pr_err("deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
7886 current_vol, i);
7887
7888 return 2;
7889 }
7890 }
7891
7892 if (st->update_tail) {
7893 struct imsm_update_kill_array *u = xmalloc(sizeof(*u));
7894
7895 u->type = update_kill_array;
7896 u->dev_idx = current_vol;
7897 append_metadata_update(st, u, sizeof(*u));
7898
7899 return 0;
7900 }
7901
7902 for (dp = &super->devlist; *dp;)
7903 if ((*dp)->index == current_vol) {
7904 *dp = (*dp)->next;
7905 } else {
7906 handle_missing(super, (*dp)->dev);
7907 if ((*dp)->index > current_vol)
7908 (*dp)->index--;
7909 dp = &(*dp)->next;
7910 }
7911
7912 /* no more raid devices, all active components are now spares,
7913 * but of course failed are still failed
7914 */
7915 if (--mpb->num_raid_devs == 0) {
7916 struct dl *d;
7917
7918 for (d = super->disks; d; d = d->next)
7919 if (d->index > -2)
7920 mark_spare(d);
7921 }
7922
7923 super->updates_pending++;
7924
7925 return 0;
7926 }
7927
7928 /**
7929 * get_rwh_policy_from_update() - Get the rwh policy for update option.
7930 * @update: Update option.
7931 */
7932 static int get_rwh_policy_from_update(enum update_opt update)
7933 {
7934 switch (update) {
7935 case UOPT_PPL:
7936 return RWH_MULTIPLE_DISTRIBUTED;
7937 case UOPT_NO_PPL:
7938 return RWH_MULTIPLE_OFF;
7939 case UOPT_BITMAP:
7940 return RWH_BITMAP;
7941 case UOPT_NO_BITMAP:
7942 return RWH_OFF;
7943 default:
7944 break;
7945 }
7946 return UOPT_UNDEFINED;
7947 }
7948
7949 static int update_subarray_imsm(struct supertype *st, char *subarray,
7950 enum update_opt update, struct mddev_ident *ident)
7951 {
7952 /* update the subarray currently referenced by ->current_vol */
7953 struct intel_super *super = st->sb;
7954 struct imsm_super *mpb = super->anchor;
7955
7956 if (update == UOPT_NAME) {
7957 char *name = ident->name;
7958 char *ep;
7959 int vol;
7960
7961 if (imsm_is_name_allowed(super, name, 1) == false)
7962 return 2;
7963
7964 vol = strtoul(subarray, &ep, 10);
7965 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
7966 return 2;
7967
7968 if (st->update_tail) {
7969 struct imsm_update_rename_array *u = xmalloc(sizeof(*u));
7970
7971 u->type = update_rename_array;
7972 u->dev_idx = vol;
7973 strncpy((char *) u->name, name, MAX_RAID_SERIAL_LEN);
7974 u->name[MAX_RAID_SERIAL_LEN-1] = '\0';
7975 append_metadata_update(st, u, sizeof(*u));
7976 } else {
7977 struct imsm_dev *dev;
7978 int i, namelen;
7979
7980 dev = get_imsm_dev(super, vol);
7981 memset(dev->volume, '\0', MAX_RAID_SERIAL_LEN);
7982 namelen = min((int)strlen(name), MAX_RAID_SERIAL_LEN);
7983 memcpy(dev->volume, name, namelen);
7984 for (i = 0; i < mpb->num_raid_devs; i++) {
7985 dev = get_imsm_dev(super, i);
7986 handle_missing(super, dev);
7987 }
7988 super->updates_pending++;
7989 }
7990 } else if (get_rwh_policy_from_update(update) != UOPT_UNDEFINED) {
7991 int new_policy;
7992 char *ep;
7993 int vol = strtoul(subarray, &ep, 10);
7994
7995 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
7996 return 2;
7997
7998 new_policy = get_rwh_policy_from_update(update);
7999
8000 if (st->update_tail) {
8001 struct imsm_update_rwh_policy *u = xmalloc(sizeof(*u));
8002
8003 u->type = update_rwh_policy;
8004 u->dev_idx = vol;
8005 u->new_policy = new_policy;
8006 append_metadata_update(st, u, sizeof(*u));
8007 } else {
8008 struct imsm_dev *dev;
8009
8010 dev = get_imsm_dev(super, vol);
8011 dev->rwh_policy = new_policy;
8012 super->updates_pending++;
8013 }
8014 if (new_policy == RWH_BITMAP)
8015 return write_init_bitmap_imsm_vol(st, vol);
8016 } else
8017 return 2;
8018
8019 return 0;
8020 }
8021
8022 static bool is_gen_migration(struct imsm_dev *dev)
8023 {
8024 if (dev && dev->vol.migr_state &&
8025 migr_type(dev) == MIGR_GEN_MIGR)
8026 return true;
8027
8028 return false;
8029 }
8030
8031 static int is_rebuilding(struct imsm_dev *dev)
8032 {
8033 struct imsm_map *migr_map;
8034
8035 if (!dev->vol.migr_state)
8036 return 0;
8037
8038 if (migr_type(dev) != MIGR_REBUILD)
8039 return 0;
8040
8041 migr_map = get_imsm_map(dev, MAP_1);
8042
8043 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
8044 return 1;
8045 else
8046 return 0;
8047 }
8048
8049 static int is_initializing(struct imsm_dev *dev)
8050 {
8051 struct imsm_map *migr_map;
8052
8053 if (!dev->vol.migr_state)
8054 return 0;
8055
8056 if (migr_type(dev) != MIGR_INIT)
8057 return 0;
8058
8059 migr_map = get_imsm_map(dev, MAP_1);
8060
8061 if (migr_map->map_state == IMSM_T_STATE_UNINITIALIZED)
8062 return 1;
8063
8064 return 0;
8065 }
8066
8067 static void update_recovery_start(struct intel_super *super,
8068 struct imsm_dev *dev,
8069 struct mdinfo *array)
8070 {
8071 struct mdinfo *rebuild = NULL;
8072 struct mdinfo *d;
8073 __u32 units;
8074
8075 if (!is_rebuilding(dev))
8076 return;
8077
8078 /* Find the rebuild target, but punt on the dual rebuild case */
8079 for (d = array->devs; d; d = d->next)
8080 if (d->recovery_start == 0) {
8081 if (rebuild)
8082 return;
8083 rebuild = d;
8084 }
8085
8086 if (!rebuild) {
8087 /* (?) none of the disks are marked with
8088 * IMSM_ORD_REBUILD, so assume they are missing and the
8089 * disk_ord_tbl was not correctly updated
8090 */
8091 dprintf("failed to locate out-of-sync disk\n");
8092 return;
8093 }
8094
8095 units = vol_curr_migr_unit(dev);
8096 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
8097 }
8098
8099 static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
8100
8101 static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
8102 {
8103 /* Given a container loaded by load_super_imsm_all,
8104 * extract information about all the arrays into
8105 * an mdinfo tree.
8106 * If 'subarray' is given, just extract info about that array.
8107 *
8108 * For each imsm_dev create an mdinfo, fill it in,
8109 * then look for matching devices in super->disks
8110 * and create appropriate device mdinfo.
8111 */
8112 struct intel_super *super = st->sb;
8113 struct imsm_super *mpb = super->anchor;
8114 struct mdinfo *rest = NULL;
8115 unsigned int i;
8116 int sb_errors = 0;
8117 struct dl *d;
8118 int spare_disks = 0;
8119 int current_vol = super->current_vol;
8120
8121 /* do not assemble arrays when not all attributes are supported */
8122 if (imsm_check_attributes(mpb->attributes) == 0) {
8123 sb_errors = 1;
8124 pr_err("Unsupported attributes in IMSM metadata.Arrays activation is blocked.\n");
8125 }
8126
8127 /* count spare devices, not used in maps
8128 */
8129 for (d = super->disks; d; d = d->next)
8130 if (d->index == -1)
8131 spare_disks++;
8132
8133 for (i = 0; i < mpb->num_raid_devs; i++) {
8134 struct imsm_dev *dev;
8135 struct imsm_map *map;
8136 struct imsm_map *map2;
8137 struct mdinfo *this;
8138 int slot;
8139 int chunk;
8140 char *ep;
8141 int level;
8142
8143 if (subarray &&
8144 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
8145 continue;
8146
8147 dev = get_imsm_dev(super, i);
8148 map = get_imsm_map(dev, MAP_0);
8149 map2 = get_imsm_map(dev, MAP_1);
8150 level = get_imsm_raid_level(map);
8151
8152 /* do not publish arrays that are in the middle of an
8153 * unsupported migration
8154 */
8155 if (dev->vol.migr_state &&
8156 (migr_type(dev) == MIGR_STATE_CHANGE)) {
8157 pr_err("cannot assemble volume '%.16s': unsupported migration in progress\n",
8158 dev->volume);
8159 continue;
8160 }
8161 /* do not publish arrays that are not support by controller's
8162 * OROM/EFI
8163 */
8164
8165 this = xmalloc(sizeof(*this));
8166
8167 super->current_vol = i;
8168 getinfo_super_imsm_volume(st, this, NULL);
8169 this->next = rest;
8170 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
8171 /* mdadm does not support all metadata features- set the bit in all arrays state */
8172 if (!validate_geometry_imsm_orom(super,
8173 level, /* RAID level */
8174 imsm_level_to_layout(level),
8175 map->num_members, /* raid disks */
8176 &chunk, imsm_dev_size(dev),
8177 1 /* verbose */)) {
8178 pr_err("IMSM RAID geometry validation failed. Array %s activation is blocked.\n",
8179 dev->volume);
8180 this->array.state |=
8181 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
8182 (1<<MD_SB_BLOCK_VOLUME);
8183 }
8184
8185 /* if array has bad blocks, set suitable bit in all arrays state */
8186 if (sb_errors)
8187 this->array.state |=
8188 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
8189 (1<<MD_SB_BLOCK_VOLUME);
8190
8191 for (slot = 0 ; slot < map->num_members; slot++) {
8192 unsigned long long recovery_start;
8193 struct mdinfo *info_d;
8194 struct dl *d;
8195 int idx;
8196 int skip;
8197 __u32 ord;
8198 int missing = 0;
8199
8200 skip = 0;
8201 idx = get_imsm_disk_idx(dev, slot, MAP_0);
8202 ord = get_imsm_ord_tbl_ent(dev, slot, MAP_X);
8203 for (d = super->disks; d ; d = d->next)
8204 if (d->index == idx)
8205 break;
8206
8207 recovery_start = MaxSector;
8208 if (d == NULL)
8209 skip = 1;
8210 if (d && is_failed(&d->disk))
8211 skip = 1;
8212 if (!skip && (ord & IMSM_ORD_REBUILD))
8213 recovery_start = 0;
8214 if (!(ord & IMSM_ORD_REBUILD))
8215 this->array.working_disks++;
8216 /*
8217 * if we skip some disks the array will be assmebled degraded;
8218 * reset resync start to avoid a dirty-degraded
8219 * situation when performing the intial sync
8220 */
8221 if (skip)
8222 missing++;
8223
8224 if (!(dev->vol.dirty & RAIDVOL_DIRTY)) {
8225 if ((!able_to_resync(level, missing) ||
8226 recovery_start == 0))
8227 this->resync_start = MaxSector;
8228 }
8229
8230 if (skip)
8231 continue;
8232
8233 info_d = xcalloc(1, sizeof(*info_d));
8234 info_d->next = this->devs;
8235 this->devs = info_d;
8236
8237 info_d->disk.number = d->index;
8238 info_d->disk.major = d->major;
8239 info_d->disk.minor = d->minor;
8240 info_d->disk.raid_disk = slot;
8241 info_d->recovery_start = recovery_start;
8242 if (map2) {
8243 if (slot < map2->num_members)
8244 info_d->disk.state = (1 << MD_DISK_ACTIVE);
8245 else
8246 this->array.spare_disks++;
8247 } else {
8248 if (slot < map->num_members)
8249 info_d->disk.state = (1 << MD_DISK_ACTIVE);
8250 else
8251 this->array.spare_disks++;
8252 }
8253
8254 info_d->events = __le32_to_cpu(mpb->generation_num);
8255 info_d->data_offset = pba_of_lba0(map);
8256 info_d->component_size = calc_component_size(map, dev);
8257
8258 if (map->raid_level == 5) {
8259 info_d->ppl_sector = this->ppl_sector;
8260 info_d->ppl_size = this->ppl_size;
8261 if (this->consistency_policy == CONSISTENCY_POLICY_PPL &&
8262 recovery_start == 0)
8263 this->resync_start = 0;
8264 }
8265
8266 info_d->bb.supported = 1;
8267 get_volume_badblocks(super->bbm_log, ord_to_idx(ord),
8268 info_d->data_offset,
8269 info_d->component_size,
8270 &info_d->bb);
8271 }
8272 /* now that the disk list is up-to-date fixup recovery_start */
8273 update_recovery_start(super, dev, this);
8274 this->array.spare_disks += spare_disks;
8275
8276 /* check for reshape */
8277 if (this->reshape_active == 1)
8278 recover_backup_imsm(st, this);
8279 rest = this;
8280 }
8281
8282 super->current_vol = current_vol;
8283 return rest;
8284 }
8285
8286 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
8287 int failed, int look_in_map)
8288 {
8289 struct imsm_map *map;
8290
8291 map = get_imsm_map(dev, look_in_map);
8292
8293 if (!failed)
8294 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
8295 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
8296
8297 switch (get_imsm_raid_level(map)) {
8298 case 0:
8299 return IMSM_T_STATE_FAILED;
8300 break;
8301 case 1:
8302 if (failed < map->num_members)
8303 return IMSM_T_STATE_DEGRADED;
8304 else
8305 return IMSM_T_STATE_FAILED;
8306 break;
8307 case 10:
8308 {
8309 /**
8310 * check to see if any mirrors have failed, otherwise we
8311 * are degraded. Even numbered slots are mirrored on
8312 * slot+1
8313 */
8314 int i;
8315 /* gcc -Os complains that this is unused */
8316 int insync = insync;
8317
8318 for (i = 0; i < map->num_members; i++) {
8319 __u32 ord = get_imsm_ord_tbl_ent(dev, i, MAP_X);
8320 int idx = ord_to_idx(ord);
8321 struct imsm_disk *disk;
8322
8323 /* reset the potential in-sync count on even-numbered
8324 * slots. num_copies is always 2 for imsm raid10
8325 */
8326 if ((i & 1) == 0)
8327 insync = 2;
8328
8329 disk = get_imsm_disk(super, idx);
8330 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
8331 insync--;
8332
8333 /* no in-sync disks left in this mirror the
8334 * array has failed
8335 */
8336 if (insync == 0)
8337 return IMSM_T_STATE_FAILED;
8338 }
8339
8340 return IMSM_T_STATE_DEGRADED;
8341 }
8342 case 5:
8343 if (failed < 2)
8344 return IMSM_T_STATE_DEGRADED;
8345 else
8346 return IMSM_T_STATE_FAILED;
8347 break;
8348 default:
8349 break;
8350 }
8351
8352 return map->map_state;
8353 }
8354
8355 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
8356 int look_in_map)
8357 {
8358 int i;
8359 int failed = 0;
8360 struct imsm_disk *disk;
8361 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8362 struct imsm_map *prev = get_imsm_map(dev, MAP_1);
8363 struct imsm_map *map_for_loop;
8364 __u32 ord;
8365 int idx;
8366 int idx_1;
8367
8368 /* at the beginning of migration we set IMSM_ORD_REBUILD on
8369 * disks that are being rebuilt. New failures are recorded to
8370 * map[0]. So we look through all the disks we started with and
8371 * see if any failures are still present, or if any new ones
8372 * have arrived
8373 */
8374 map_for_loop = map;
8375 if (prev && (map->num_members < prev->num_members))
8376 map_for_loop = prev;
8377
8378 for (i = 0; i < map_for_loop->num_members; i++) {
8379 idx_1 = -255;
8380 /* when MAP_X is passed both maps failures are counted
8381 */
8382 if (prev &&
8383 (look_in_map == MAP_1 || look_in_map == MAP_X) &&
8384 i < prev->num_members) {
8385 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
8386 idx_1 = ord_to_idx(ord);
8387
8388 disk = get_imsm_disk(super, idx_1);
8389 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
8390 failed++;
8391 }
8392 if ((look_in_map == MAP_0 || look_in_map == MAP_X) &&
8393 i < map->num_members) {
8394 ord = __le32_to_cpu(map->disk_ord_tbl[i]);
8395 idx = ord_to_idx(ord);
8396
8397 if (idx != idx_1) {
8398 disk = get_imsm_disk(super, idx);
8399 if (!disk || is_failed(disk) ||
8400 ord & IMSM_ORD_REBUILD)
8401 failed++;
8402 }
8403 }
8404 }
8405
8406 return failed;
8407 }
8408
8409 static int imsm_open_new(struct supertype *c, struct active_array *a,
8410 int inst)
8411 {
8412 struct intel_super *super = c->sb;
8413 struct imsm_super *mpb = super->anchor;
8414 struct imsm_update_prealloc_bb_mem u;
8415
8416 if (inst >= mpb->num_raid_devs) {
8417 pr_err("subarry index %d, out of range\n", inst);
8418 return -ENODEV;
8419 }
8420
8421 dprintf("imsm: open_new %d\n", inst);
8422 a->info.container_member = inst;
8423
8424 u.type = update_prealloc_badblocks_mem;
8425 imsm_update_metadata_locally(c, &u, sizeof(u));
8426
8427 return 0;
8428 }
8429
8430 static int is_resyncing(struct imsm_dev *dev)
8431 {
8432 struct imsm_map *migr_map;
8433
8434 if (!dev->vol.migr_state)
8435 return 0;
8436
8437 if (migr_type(dev) == MIGR_INIT ||
8438 migr_type(dev) == MIGR_REPAIR)
8439 return 1;
8440
8441 if (migr_type(dev) == MIGR_GEN_MIGR)
8442 return 0;
8443
8444 migr_map = get_imsm_map(dev, MAP_1);
8445
8446 if (migr_map->map_state == IMSM_T_STATE_NORMAL &&
8447 dev->vol.migr_type != MIGR_GEN_MIGR)
8448 return 1;
8449 else
8450 return 0;
8451 }
8452
8453 /* return true if we recorded new information */
8454 static int mark_failure(struct intel_super *super,
8455 struct imsm_dev *dev, struct imsm_disk *disk, int idx)
8456 {
8457 __u32 ord;
8458 int slot;
8459 struct imsm_map *map;
8460 char buf[MAX_RAID_SERIAL_LEN+3];
8461 unsigned int len, shift = 0;
8462
8463 /* new failures are always set in map[0] */
8464 map = get_imsm_map(dev, MAP_0);
8465
8466 slot = get_imsm_disk_slot(map, idx);
8467 if (slot < 0)
8468 return 0;
8469
8470 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
8471 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
8472 return 0;
8473
8474 memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
8475 buf[MAX_RAID_SERIAL_LEN] = '\000';
8476 strcat(buf, ":0");
8477 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
8478 shift = len - MAX_RAID_SERIAL_LEN + 1;
8479 memcpy(disk->serial, &buf[shift], len + 1 - shift);
8480
8481 disk->status |= FAILED_DISK;
8482 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
8483 /* mark failures in second map if second map exists and this disk
8484 * in this slot.
8485 * This is valid for migration, initialization and rebuild
8486 */
8487 if (dev->vol.migr_state) {
8488 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
8489 int slot2 = get_imsm_disk_slot(map2, idx);
8490
8491 if (slot2 < map2->num_members && slot2 >= 0)
8492 set_imsm_ord_tbl_ent(map2, slot2,
8493 idx | IMSM_ORD_REBUILD);
8494 }
8495 if (map->failed_disk_num == 0xff ||
8496 (!is_rebuilding(dev) && map->failed_disk_num > slot))
8497 map->failed_disk_num = slot;
8498
8499 clear_disk_badblocks(super->bbm_log, ord_to_idx(ord));
8500
8501 return 1;
8502 }
8503
8504 static void mark_missing(struct intel_super *super,
8505 struct imsm_dev *dev, struct imsm_disk *disk, int idx)
8506 {
8507 mark_failure(super, dev, disk, idx);
8508
8509 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
8510 return;
8511
8512 disk->scsi_id = __cpu_to_le32(~(__u32)0);
8513 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
8514 }
8515
8516 static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
8517 {
8518 struct dl *dl;
8519
8520 if (!super->missing)
8521 return;
8522
8523 /* When orom adds replacement for missing disk it does
8524 * not remove entry of missing disk, but just updates map with
8525 * new added disk. So it is not enough just to test if there is
8526 * any missing disk, we have to look if there are any failed disks
8527 * in map to stop migration */
8528
8529 dprintf("imsm: mark missing\n");
8530 /* end process for initialization and rebuild only
8531 */
8532 if (is_gen_migration(dev) == false) {
8533 int failed = imsm_count_failed(super, dev, MAP_0);
8534
8535 if (failed) {
8536 __u8 map_state;
8537 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8538 struct imsm_map *map1;
8539 int i, ord, ord_map1;
8540 int rebuilt = 1;
8541
8542 for (i = 0; i < map->num_members; i++) {
8543 ord = get_imsm_ord_tbl_ent(dev, i, MAP_0);
8544 if (!(ord & IMSM_ORD_REBUILD))
8545 continue;
8546
8547 map1 = get_imsm_map(dev, MAP_1);
8548 if (!map1)
8549 continue;
8550
8551 ord_map1 = __le32_to_cpu(map1->disk_ord_tbl[i]);
8552 if (ord_map1 & IMSM_ORD_REBUILD)
8553 rebuilt = 0;
8554 }
8555
8556 if (rebuilt) {
8557 map_state = imsm_check_degraded(super, dev,
8558 failed, MAP_0);
8559 end_migration(dev, super, map_state);
8560 }
8561 }
8562 }
8563 for (dl = super->missing; dl; dl = dl->next)
8564 mark_missing(super, dev, &dl->disk, dl->index);
8565 super->updates_pending++;
8566 }
8567
8568 static unsigned long long imsm_set_array_size(struct imsm_dev *dev,
8569 long long new_size)
8570 {
8571 unsigned long long array_blocks;
8572 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8573 int used_disks = imsm_num_data_members(map);
8574
8575 if (used_disks == 0) {
8576 /* when problems occures
8577 * return current array_blocks value
8578 */
8579 array_blocks = imsm_dev_size(dev);
8580
8581 return array_blocks;
8582 }
8583
8584 /* set array size in metadata
8585 */
8586 if (new_size <= 0)
8587 /* OLCE size change is caused by added disks
8588 */
8589 array_blocks = per_dev_array_size(map) * used_disks;
8590 else
8591 /* Online Volume Size Change
8592 * Using available free space
8593 */
8594 array_blocks = new_size;
8595
8596 array_blocks = round_size_to_mb(array_blocks, used_disks);
8597 set_imsm_dev_size(dev, array_blocks);
8598
8599 return array_blocks;
8600 }
8601
8602 static void imsm_set_disk(struct active_array *a, int n, int state);
8603
8604 static void imsm_progress_container_reshape(struct intel_super *super)
8605 {
8606 /* if no device has a migr_state, but some device has a
8607 * different number of members than the previous device, start
8608 * changing the number of devices in this device to match
8609 * previous.
8610 */
8611 struct imsm_super *mpb = super->anchor;
8612 int prev_disks = -1;
8613 int i;
8614 int copy_map_size;
8615
8616 for (i = 0; i < mpb->num_raid_devs; i++) {
8617 struct imsm_dev *dev = get_imsm_dev(super, i);
8618 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8619 struct imsm_map *map2;
8620 int prev_num_members;
8621
8622 if (dev->vol.migr_state)
8623 return;
8624
8625 if (prev_disks == -1)
8626 prev_disks = map->num_members;
8627 if (prev_disks == map->num_members)
8628 continue;
8629
8630 /* OK, this array needs to enter reshape mode.
8631 * i.e it needs a migr_state
8632 */
8633
8634 copy_map_size = sizeof_imsm_map(map);
8635 prev_num_members = map->num_members;
8636 map->num_members = prev_disks;
8637 dev->vol.migr_state = 1;
8638 set_vol_curr_migr_unit(dev, 0);
8639 set_migr_type(dev, MIGR_GEN_MIGR);
8640 for (i = prev_num_members;
8641 i < map->num_members; i++)
8642 set_imsm_ord_tbl_ent(map, i, i);
8643 map2 = get_imsm_map(dev, MAP_1);
8644 /* Copy the current map */
8645 memcpy(map2, map, copy_map_size);
8646 map2->num_members = prev_num_members;
8647
8648 imsm_set_array_size(dev, -1);
8649 super->clean_migration_record_by_mdmon = 1;
8650 super->updates_pending++;
8651 }
8652 }
8653
8654 /* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
8655 * states are handled in imsm_set_disk() with one exception, when a
8656 * resync is stopped due to a new failure this routine will set the
8657 * 'degraded' state for the array.
8658 */
8659 static int imsm_set_array_state(struct active_array *a, int consistent)
8660 {
8661 int inst = a->info.container_member;
8662 struct intel_super *super = a->container->sb;
8663 struct imsm_dev *dev = get_imsm_dev(super, inst);
8664 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8665 int failed = imsm_count_failed(super, dev, MAP_0);
8666 __u8 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
8667 __u32 blocks_per_unit;
8668
8669 if (dev->vol.migr_state &&
8670 dev->vol.migr_type == MIGR_GEN_MIGR) {
8671 /* array state change is blocked due to reshape action
8672 * We might need to
8673 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
8674 * - finish the reshape (if last_checkpoint is big and action != reshape)
8675 * - update vol_curr_migr_unit
8676 */
8677 if (a->curr_action == reshape) {
8678 /* still reshaping, maybe update vol_curr_migr_unit */
8679 goto mark_checkpoint;
8680 } else {
8681 if (a->last_checkpoint >= a->info.component_size) {
8682 unsigned long long array_blocks;
8683 int used_disks;
8684 struct mdinfo *mdi;
8685
8686 used_disks = imsm_num_data_members(map);
8687 if (used_disks > 0) {
8688 array_blocks =
8689 per_dev_array_size(map) *
8690 used_disks;
8691 array_blocks =
8692 round_size_to_mb(array_blocks,
8693 used_disks);
8694 a->info.custom_array_size = array_blocks;
8695 /* encourage manager to update array
8696 * size
8697 */
8698
8699 a->check_reshape = 1;
8700 }
8701 /* finalize online capacity expansion/reshape */
8702 for (mdi = a->info.devs; mdi; mdi = mdi->next)
8703 imsm_set_disk(a,
8704 mdi->disk.raid_disk,
8705 mdi->curr_state);
8706
8707 imsm_progress_container_reshape(super);
8708 }
8709 }
8710 }
8711
8712 /* before we activate this array handle any missing disks */
8713 if (consistent == 2)
8714 handle_missing(super, dev);
8715
8716 if (consistent == 2 &&
8717 (!is_resync_complete(&a->info) ||
8718 map_state != IMSM_T_STATE_NORMAL ||
8719 dev->vol.migr_state))
8720 consistent = 0;
8721
8722 if (is_resync_complete(&a->info)) {
8723 /* complete intialization / resync,
8724 * recovery and interrupted recovery is completed in
8725 * ->set_disk
8726 */
8727 if (is_resyncing(dev)) {
8728 dprintf("imsm: mark resync done\n");
8729 end_migration(dev, super, map_state);
8730 super->updates_pending++;
8731 a->last_checkpoint = 0;
8732 }
8733 } else if ((!is_resyncing(dev) && !failed) &&
8734 (imsm_reshape_blocks_arrays_changes(super) == 0)) {
8735 /* mark the start of the init process if nothing is failed */
8736 dprintf("imsm: mark resync start\n");
8737 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
8738 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
8739 else
8740 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
8741 super->updates_pending++;
8742 }
8743
8744 mark_checkpoint:
8745 /* skip checkpointing for general migration,
8746 * it is controlled in mdadm
8747 */
8748 if (is_gen_migration(dev))
8749 goto skip_mark_checkpoint;
8750
8751 /* check if we can update vol_curr_migr_unit from resync_start,
8752 * recovery_start
8753 */
8754 blocks_per_unit = blocks_per_migr_unit(super, dev);
8755 if (blocks_per_unit) {
8756 set_vol_curr_migr_unit(dev,
8757 a->last_checkpoint / blocks_per_unit);
8758 dprintf("imsm: mark checkpoint (%llu)\n",
8759 vol_curr_migr_unit(dev));
8760 super->updates_pending++;
8761 }
8762
8763 skip_mark_checkpoint:
8764 /* mark dirty / clean */
8765 if (((dev->vol.dirty & RAIDVOL_DIRTY) && consistent) ||
8766 (!(dev->vol.dirty & RAIDVOL_DIRTY) && !consistent)) {
8767 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
8768 if (consistent) {
8769 dev->vol.dirty = RAIDVOL_CLEAN;
8770 } else {
8771 dev->vol.dirty = RAIDVOL_DIRTY;
8772 if (dev->rwh_policy == RWH_DISTRIBUTED ||
8773 dev->rwh_policy == RWH_MULTIPLE_DISTRIBUTED)
8774 dev->vol.dirty |= RAIDVOL_DSRECORD_VALID;
8775 }
8776 super->updates_pending++;
8777 }
8778
8779 return consistent;
8780 }
8781
8782 static int imsm_disk_slot_to_ord(struct active_array *a, int slot)
8783 {
8784 int inst = a->info.container_member;
8785 struct intel_super *super = a->container->sb;
8786 struct imsm_dev *dev = get_imsm_dev(super, inst);
8787 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8788
8789 if (slot > map->num_members) {
8790 pr_err("imsm: imsm_disk_slot_to_ord %d out of range 0..%d\n",
8791 slot, map->num_members - 1);
8792 return -1;
8793 }
8794
8795 if (slot < 0)
8796 return -1;
8797
8798 return get_imsm_ord_tbl_ent(dev, slot, MAP_0);
8799 }
8800
8801 static void imsm_set_disk(struct active_array *a, int n, int state)
8802 {
8803 int inst = a->info.container_member;
8804 struct intel_super *super = a->container->sb;
8805 struct imsm_dev *dev = get_imsm_dev(super, inst);
8806 struct imsm_map *map = get_imsm_map(dev, MAP_0);
8807 struct imsm_disk *disk;
8808 struct mdinfo *mdi;
8809 int recovery_not_finished = 0;
8810 int failed;
8811 int ord;
8812 __u8 map_state;
8813 int rebuild_done = 0;
8814 int i;
8815
8816 ord = get_imsm_ord_tbl_ent(dev, n, MAP_X);
8817 if (ord < 0)
8818 return;
8819
8820 dprintf("imsm: set_disk %d:%x\n", n, state);
8821 disk = get_imsm_disk(super, ord_to_idx(ord));
8822
8823 /* check for new failures */
8824 if (disk && (state & DS_FAULTY)) {
8825 if (mark_failure(super, dev, disk, ord_to_idx(ord)))
8826 super->updates_pending++;
8827 }
8828
8829 /* check if in_sync */
8830 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
8831 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
8832
8833 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
8834 rebuild_done = 1;
8835 super->updates_pending++;
8836 }
8837
8838 failed = imsm_count_failed(super, dev, MAP_0);
8839 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
8840
8841 /* check if recovery complete, newly degraded, or failed */
8842 dprintf("imsm: Detected transition to state ");
8843 switch (map_state) {
8844 case IMSM_T_STATE_NORMAL: /* transition to normal state */
8845 dprintf("normal: ");
8846 if (is_rebuilding(dev)) {
8847 dprintf_cont("while rebuilding");
8848 /* check if recovery is really finished */
8849 for (mdi = a->info.devs; mdi ; mdi = mdi->next)
8850 if (mdi->recovery_start != MaxSector) {
8851 recovery_not_finished = 1;
8852 break;
8853 }
8854 if (recovery_not_finished) {
8855 dprintf_cont("\n");
8856 dprintf("Rebuild has not finished yet, state not changed");
8857 if (a->last_checkpoint < mdi->recovery_start) {
8858 a->last_checkpoint = mdi->recovery_start;
8859 super->updates_pending++;
8860 }
8861 break;
8862 }
8863 end_migration(dev, super, map_state);
8864 map->failed_disk_num = ~0;
8865 super->updates_pending++;
8866 a->last_checkpoint = 0;
8867 break;
8868 }
8869 if (is_gen_migration(dev)) {
8870 dprintf_cont("while general migration");
8871 if (a->last_checkpoint >= a->info.component_size)
8872 end_migration(dev, super, map_state);
8873 else
8874 map->map_state = map_state;
8875 map->failed_disk_num = ~0;
8876 super->updates_pending++;
8877 break;
8878 }
8879 break;
8880 case IMSM_T_STATE_DEGRADED: /* transition to degraded state */
8881 dprintf_cont("degraded: ");
8882 if (map->map_state != map_state && !dev->vol.migr_state) {
8883 dprintf_cont("mark degraded");
8884 map->map_state = map_state;
8885 super->updates_pending++;
8886 a->last_checkpoint = 0;
8887 break;
8888 }
8889 if (is_rebuilding(dev)) {
8890 dprintf_cont("while rebuilding ");
8891 if (state & DS_FAULTY) {
8892 dprintf_cont("removing failed drive ");
8893 if (n == map->failed_disk_num) {
8894 dprintf_cont("end migration");
8895 end_migration(dev, super, map_state);
8896 a->last_checkpoint = 0;
8897 } else {
8898 dprintf_cont("fail detected during rebuild, changing map state");
8899 map->map_state = map_state;
8900 }
8901 super->updates_pending++;
8902 }
8903
8904 if (!rebuild_done)
8905 break;
8906
8907 /* check if recovery is really finished */
8908 for (mdi = a->info.devs; mdi ; mdi = mdi->next)
8909 if (mdi->recovery_start != MaxSector) {
8910 recovery_not_finished = 1;
8911 break;
8912 }
8913 if (recovery_not_finished) {
8914 dprintf_cont("\n");
8915 dprintf_cont("Rebuild has not finished yet");
8916 if (a->last_checkpoint < mdi->recovery_start) {
8917 a->last_checkpoint =
8918 mdi->recovery_start;
8919 super->updates_pending++;
8920 }
8921 break;
8922 }
8923
8924 dprintf_cont(" Rebuild done, still degraded");
8925 end_migration(dev, super, map_state);
8926 a->last_checkpoint = 0;
8927 super->updates_pending++;
8928
8929 for (i = 0; i < map->num_members; i++) {
8930 int idx = get_imsm_ord_tbl_ent(dev, i, MAP_0);
8931
8932 if (idx & IMSM_ORD_REBUILD)
8933 map->failed_disk_num = i;
8934 }
8935 super->updates_pending++;
8936 break;
8937 }
8938 if (is_gen_migration(dev)) {
8939 dprintf_cont("while general migration");
8940 if (a->last_checkpoint >= a->info.component_size)
8941 end_migration(dev, super, map_state);
8942 else {
8943 map->map_state = map_state;
8944 manage_second_map(super, dev);
8945 }
8946 super->updates_pending++;
8947 break;
8948 }
8949 if (is_initializing(dev)) {
8950 dprintf_cont("while initialization.");
8951 map->map_state = map_state;
8952 super->updates_pending++;
8953 break;
8954 }
8955 break;
8956 case IMSM_T_STATE_FAILED: /* transition to failed state */
8957 dprintf_cont("failed: ");
8958 if (is_gen_migration(dev)) {
8959 dprintf_cont("while general migration");
8960 map->map_state = map_state;
8961 super->updates_pending++;
8962 break;
8963 }
8964 if (map->map_state != map_state) {
8965 dprintf_cont("mark failed");
8966 end_migration(dev, super, map_state);
8967 super->updates_pending++;
8968 a->last_checkpoint = 0;
8969 break;
8970 }
8971 break;
8972 default:
8973 dprintf_cont("state %i\n", map_state);
8974 }
8975 dprintf_cont("\n");
8976 }
8977
8978 static int store_imsm_mpb(int fd, struct imsm_super *mpb)
8979 {
8980 void *buf = mpb;
8981 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
8982 unsigned long long dsize;
8983 unsigned long long sectors;
8984 unsigned int sector_size;
8985
8986 if (!get_dev_sector_size(fd, NULL, &sector_size))
8987 return 1;
8988 get_dev_size(fd, NULL, &dsize);
8989
8990 if (mpb_size > sector_size) {
8991 /* -1 to account for anchor */
8992 sectors = mpb_sectors(mpb, sector_size) - 1;
8993
8994 /* write the extended mpb to the sectors preceeding the anchor */
8995 if (lseek64(fd, dsize - (sector_size * (2 + sectors)),
8996 SEEK_SET) < 0)
8997 return 1;
8998
8999 if ((unsigned long long)write(fd, buf + sector_size,
9000 sector_size * sectors) != sector_size * sectors)
9001 return 1;
9002 }
9003
9004 /* first block is stored on second to last sector of the disk */
9005 if (lseek64(fd, dsize - (sector_size * 2), SEEK_SET) < 0)
9006 return 1;
9007
9008 if ((unsigned int)write(fd, buf, sector_size) != sector_size)
9009 return 1;
9010
9011 return 0;
9012 }
9013
9014 static void imsm_sync_metadata(struct supertype *container)
9015 {
9016 struct intel_super *super = container->sb;
9017
9018 dprintf("sync metadata: %d\n", super->updates_pending);
9019 if (!super->updates_pending)
9020 return;
9021
9022 write_super_imsm(container, 0);
9023
9024 super->updates_pending = 0;
9025 }
9026
9027 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
9028 {
9029 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
9030 int i = get_imsm_disk_idx(dev, idx, MAP_X);
9031 struct dl *dl;
9032
9033 for (dl = super->disks; dl; dl = dl->next)
9034 if (dl->index == i)
9035 break;
9036
9037 if (dl && is_failed(&dl->disk))
9038 dl = NULL;
9039
9040 if (dl)
9041 dprintf("found %x:%x\n", dl->major, dl->minor);
9042
9043 return dl;
9044 }
9045
9046 static struct dl *imsm_add_spare(struct intel_super *super, int slot,
9047 struct active_array *a, int activate_new,
9048 struct mdinfo *additional_test_list)
9049 {
9050 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
9051 int idx = get_imsm_disk_idx(dev, slot, MAP_X);
9052 struct imsm_super *mpb = super->anchor;
9053 struct imsm_map *map;
9054 unsigned long long pos;
9055 struct mdinfo *d;
9056 struct extent *ex;
9057 int i, j;
9058 int found;
9059 __u32 array_start = 0;
9060 __u32 array_end = 0;
9061 struct dl *dl;
9062 struct mdinfo *test_list;
9063
9064 for (dl = super->disks; dl; dl = dl->next) {
9065 /* If in this array, skip */
9066 for (d = a->info.devs ; d ; d = d->next)
9067 if (is_fd_valid(d->state_fd) &&
9068 d->disk.major == dl->major &&
9069 d->disk.minor == dl->minor) {
9070 dprintf("%x:%x already in array\n",
9071 dl->major, dl->minor);
9072 break;
9073 }
9074 if (d)
9075 continue;
9076 test_list = additional_test_list;
9077 while (test_list) {
9078 if (test_list->disk.major == dl->major &&
9079 test_list->disk.minor == dl->minor) {
9080 dprintf("%x:%x already in additional test list\n",
9081 dl->major, dl->minor);
9082 break;
9083 }
9084 test_list = test_list->next;
9085 }
9086 if (test_list)
9087 continue;
9088
9089 /* skip in use or failed drives */
9090 if (is_failed(&dl->disk) || idx == dl->index ||
9091 dl->index == -2) {
9092 dprintf("%x:%x status (failed: %d index: %d)\n",
9093 dl->major, dl->minor, is_failed(&dl->disk), idx);
9094 continue;
9095 }
9096
9097 /* skip pure spares when we are looking for partially
9098 * assimilated drives
9099 */
9100 if (dl->index == -1 && !activate_new)
9101 continue;
9102
9103 if (!drive_validate_sector_size(super, dl))
9104 continue;
9105
9106 /* Does this unused device have the requisite free space?
9107 * It needs to be able to cover all member volumes
9108 */
9109 ex = get_extents(super, dl, 1);
9110 if (!ex) {
9111 dprintf("cannot get extents\n");
9112 continue;
9113 }
9114 for (i = 0; i < mpb->num_raid_devs; i++) {
9115 dev = get_imsm_dev(super, i);
9116 map = get_imsm_map(dev, MAP_0);
9117
9118 /* check if this disk is already a member of
9119 * this array
9120 */
9121 if (get_imsm_disk_slot(map, dl->index) >= 0)
9122 continue;
9123
9124 found = 0;
9125 j = 0;
9126 pos = 0;
9127 array_start = pba_of_lba0(map);
9128 array_end = array_start +
9129 per_dev_array_size(map) - 1;
9130
9131 do {
9132 /* check that we can start at pba_of_lba0 with
9133 * num_data_stripes*blocks_per_stripe of space
9134 */
9135 if (array_start >= pos && array_end < ex[j].start) {
9136 found = 1;
9137 break;
9138 }
9139 pos = ex[j].start + ex[j].size;
9140 j++;
9141 } while (ex[j-1].size);
9142
9143 if (!found)
9144 break;
9145 }
9146
9147 free(ex);
9148 if (i < mpb->num_raid_devs) {
9149 dprintf("%x:%x does not have %u to %u available\n",
9150 dl->major, dl->minor, array_start, array_end);
9151 /* No room */
9152 continue;
9153 }
9154 return dl;
9155 }
9156
9157 return dl;
9158 }
9159
9160 static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
9161 {
9162 struct imsm_dev *dev2;
9163 struct imsm_map *map;
9164 struct dl *idisk;
9165 int slot;
9166 int idx;
9167 __u8 state;
9168
9169 dev2 = get_imsm_dev(cont->sb, dev_idx);
9170
9171 state = imsm_check_degraded(cont->sb, dev2, failed, MAP_0);
9172 if (state == IMSM_T_STATE_FAILED) {
9173 map = get_imsm_map(dev2, MAP_0);
9174 for (slot = 0; slot < map->num_members; slot++) {
9175 /*
9176 * Check if failed disks are deleted from intel
9177 * disk list or are marked to be deleted
9178 */
9179 idx = get_imsm_disk_idx(dev2, slot, MAP_X);
9180 idisk = get_imsm_dl_disk(cont->sb, idx);
9181 /*
9182 * Do not rebuild the array if failed disks
9183 * from failed sub-array are not removed from
9184 * container.
9185 */
9186 if (idisk &&
9187 is_failed(&idisk->disk) &&
9188 (idisk->action != DISK_REMOVE))
9189 return 0;
9190 }
9191 }
9192 return 1;
9193 }
9194
9195 static struct mdinfo *imsm_activate_spare(struct active_array *a,
9196 struct metadata_update **updates)
9197 {
9198 /**
9199 * Find a device with unused free space and use it to replace a
9200 * failed/vacant region in an array. We replace failed regions one a
9201 * array at a time. The result is that a new spare disk will be added
9202 * to the first failed array and after the monitor has finished
9203 * propagating failures the remainder will be consumed.
9204 *
9205 * FIXME add a capability for mdmon to request spares from another
9206 * container.
9207 */
9208
9209 struct intel_super *super = a->container->sb;
9210 int inst = a->info.container_member;
9211 struct imsm_dev *dev = get_imsm_dev(super, inst);
9212 struct imsm_map *map = get_imsm_map(dev, MAP_0);
9213 int failed = a->info.array.raid_disks;
9214 struct mdinfo *rv = NULL;
9215 struct mdinfo *d;
9216 struct mdinfo *di;
9217 struct metadata_update *mu;
9218 struct dl *dl;
9219 struct imsm_update_activate_spare *u;
9220 int num_spares = 0;
9221 int i;
9222 int allowed;
9223
9224 for (d = a->info.devs ; d; d = d->next) {
9225 if (!is_fd_valid(d->state_fd))
9226 continue;
9227
9228 if (d->curr_state & DS_FAULTY)
9229 /* wait for Removal to happen */
9230 return NULL;
9231
9232 failed--;
9233 }
9234
9235 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
9236 inst, failed, a->info.array.raid_disks, a->info.array.level);
9237
9238 if (imsm_reshape_blocks_arrays_changes(super))
9239 return NULL;
9240
9241 /* Cannot activate another spare if rebuild is in progress already
9242 */
9243 if (is_rebuilding(dev)) {
9244 dprintf("imsm: No spare activation allowed. Rebuild in progress already.\n");
9245 return NULL;
9246 }
9247
9248 if (a->info.array.level == 4)
9249 /* No repair for takeovered array
9250 * imsm doesn't support raid4
9251 */
9252 return NULL;
9253
9254 if (imsm_check_degraded(super, dev, failed, MAP_0) !=
9255 IMSM_T_STATE_DEGRADED)
9256 return NULL;
9257
9258 if (get_imsm_map(dev, MAP_0)->map_state == IMSM_T_STATE_UNINITIALIZED) {
9259 dprintf("imsm: No spare activation allowed. Volume is not initialized.\n");
9260 return NULL;
9261 }
9262
9263 /*
9264 * If there are any failed disks check state of the other volume.
9265 * Block rebuild if the another one is failed until failed disks
9266 * are removed from container.
9267 */
9268 if (failed) {
9269 dprintf("found failed disks in %.*s, check if there anotherfailed sub-array.\n",
9270 MAX_RAID_SERIAL_LEN, dev->volume);
9271 /* check if states of the other volumes allow for rebuild */
9272 for (i = 0; i < super->anchor->num_raid_devs; i++) {
9273 if (i != inst) {
9274 allowed = imsm_rebuild_allowed(a->container,
9275 i, failed);
9276 if (!allowed)
9277 return NULL;
9278 }
9279 }
9280 }
9281
9282 /* For each slot, if it is not working, find a spare */
9283 for (i = 0; i < a->info.array.raid_disks; i++) {
9284 for (d = a->info.devs ; d ; d = d->next)
9285 if (d->disk.raid_disk == i)
9286 break;
9287 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
9288 if (d && is_fd_valid(d->state_fd))
9289 continue;
9290
9291 /*
9292 * OK, this device needs recovery. Try to re-add the
9293 * previous occupant of this slot, if this fails see if
9294 * we can continue the assimilation of a spare that was
9295 * partially assimilated, finally try to activate a new
9296 * spare.
9297 */
9298 dl = imsm_readd(super, i, a);
9299 if (!dl)
9300 dl = imsm_add_spare(super, i, a, 0, rv);
9301 if (!dl)
9302 dl = imsm_add_spare(super, i, a, 1, rv);
9303 if (!dl)
9304 continue;
9305
9306 /* found a usable disk with enough space */
9307 di = xcalloc(1, sizeof(*di));
9308
9309 /* dl->index will be -1 in the case we are activating a
9310 * pristine spare. imsm_process_update() will create a
9311 * new index in this case. Once a disk is found to be
9312 * failed in all member arrays it is kicked from the
9313 * metadata
9314 */
9315 di->disk.number = dl->index;
9316
9317 /* (ab)use di->devs to store a pointer to the device
9318 * we chose
9319 */
9320 di->devs = (struct mdinfo *) dl;
9321
9322 di->disk.raid_disk = i;
9323 di->disk.major = dl->major;
9324 di->disk.minor = dl->minor;
9325 di->disk.state = 0;
9326 di->recovery_start = 0;
9327 di->data_offset = pba_of_lba0(map);
9328 di->component_size = a->info.component_size;
9329 di->container_member = inst;
9330 di->bb.supported = 1;
9331 if (a->info.consistency_policy == CONSISTENCY_POLICY_PPL) {
9332 di->ppl_sector = get_ppl_sector(super, inst);
9333 di->ppl_size = MULTIPLE_PPL_AREA_SIZE_IMSM >> 9;
9334 }
9335 super->random = random32();
9336 di->next = rv;
9337 rv = di;
9338 num_spares++;
9339 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
9340 i, di->data_offset);
9341 }
9342
9343 if (!rv)
9344 /* No spares found */
9345 return rv;
9346 /* Now 'rv' has a list of devices to return.
9347 * Create a metadata_update record to update the
9348 * disk_ord_tbl for the array
9349 */
9350 mu = xmalloc(sizeof(*mu));
9351 mu->buf = xcalloc(num_spares,
9352 sizeof(struct imsm_update_activate_spare));
9353 mu->space = NULL;
9354 mu->space_list = NULL;
9355 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
9356 mu->next = *updates;
9357 u = (struct imsm_update_activate_spare *) mu->buf;
9358
9359 for (di = rv ; di ; di = di->next) {
9360 u->type = update_activate_spare;
9361 u->dl = (struct dl *) di->devs;
9362 di->devs = NULL;
9363 u->slot = di->disk.raid_disk;
9364 u->array = inst;
9365 u->next = u + 1;
9366 u++;
9367 }
9368 (u-1)->next = NULL;
9369 *updates = mu;
9370
9371 return rv;
9372 }
9373
9374 static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
9375 {
9376 struct imsm_dev *dev = get_imsm_dev(super, idx);
9377 struct imsm_map *map = get_imsm_map(dev, MAP_0);
9378 struct imsm_map *new_map = get_imsm_map(&u->dev, MAP_0);
9379 struct disk_info *inf = get_disk_info(u);
9380 struct imsm_disk *disk;
9381 int i;
9382 int j;
9383
9384 for (i = 0; i < map->num_members; i++) {
9385 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, MAP_X));
9386 for (j = 0; j < new_map->num_members; j++)
9387 if (serialcmp(disk->serial, inf[j].serial) == 0)
9388 return 1;
9389 }
9390
9391 return 0;
9392 }
9393
9394 static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
9395 {
9396 struct dl *dl;
9397
9398 for (dl = super->disks; dl; dl = dl->next)
9399 if (dl->major == major && dl->minor == minor)
9400 return dl;
9401 return NULL;
9402 }
9403
9404 static int remove_disk_super(struct intel_super *super, int major, int minor)
9405 {
9406 struct dl *prev;
9407 struct dl *dl;
9408
9409 prev = NULL;
9410 for (dl = super->disks; dl; dl = dl->next) {
9411 if (dl->major == major && dl->minor == minor) {
9412 /* remove */
9413 if (prev)
9414 prev->next = dl->next;
9415 else
9416 super->disks = dl->next;
9417 dl->next = NULL;
9418 __free_imsm_disk(dl, 1);
9419 dprintf("removed %x:%x\n", major, minor);
9420 break;
9421 }
9422 prev = dl;
9423 }
9424 return 0;
9425 }
9426
9427 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
9428
9429 static int add_remove_disk_update(struct intel_super *super)
9430 {
9431 int check_degraded = 0;
9432 struct dl *disk;
9433
9434 /* add/remove some spares to/from the metadata/contrainer */
9435 while (super->disk_mgmt_list) {
9436 struct dl *disk_cfg;
9437
9438 disk_cfg = super->disk_mgmt_list;
9439 super->disk_mgmt_list = disk_cfg->next;
9440 disk_cfg->next = NULL;
9441
9442 if (disk_cfg->action == DISK_ADD) {
9443 disk_cfg->next = super->disks;
9444 super->disks = disk_cfg;
9445 check_degraded = 1;
9446 dprintf("added %x:%x\n",
9447 disk_cfg->major, disk_cfg->minor);
9448 } else if (disk_cfg->action == DISK_REMOVE) {
9449 dprintf("Disk remove action processed: %x.%x\n",
9450 disk_cfg->major, disk_cfg->minor);
9451 disk = get_disk_super(super,
9452 disk_cfg->major,
9453 disk_cfg->minor);
9454 if (disk) {
9455 /* store action status */
9456 disk->action = DISK_REMOVE;
9457 /* remove spare disks only */
9458 if (disk->index == -1) {
9459 remove_disk_super(super,
9460 disk_cfg->major,
9461 disk_cfg->minor);
9462 } else {
9463 disk_cfg->fd = disk->fd;
9464 disk->fd = -1;
9465 }
9466 }
9467 /* release allocate disk structure */
9468 __free_imsm_disk(disk_cfg, 1);
9469 }
9470 }
9471 return check_degraded;
9472 }
9473
9474 static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
9475 struct intel_super *super,
9476 void ***space_list)
9477 {
9478 struct intel_dev *id;
9479 void **tofree = NULL;
9480 int ret_val = 0;
9481
9482 dprintf("(enter)\n");
9483 if (u->subdev < 0 || u->subdev > 1) {
9484 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
9485 return ret_val;
9486 }
9487 if (space_list == NULL || *space_list == NULL) {
9488 dprintf("imsm: Error: Memory is not allocated\n");
9489 return ret_val;
9490 }
9491
9492 for (id = super->devlist ; id; id = id->next) {
9493 if (id->index == (unsigned)u->subdev) {
9494 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
9495 struct imsm_map *map;
9496 struct imsm_dev *new_dev =
9497 (struct imsm_dev *)*space_list;
9498 struct imsm_map *migr_map = get_imsm_map(dev, MAP_1);
9499 int to_state;
9500 struct dl *new_disk;
9501
9502 if (new_dev == NULL)
9503 return ret_val;
9504 *space_list = **space_list;
9505 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
9506 map = get_imsm_map(new_dev, MAP_0);
9507 if (migr_map) {
9508 dprintf("imsm: Error: migration in progress");
9509 return ret_val;
9510 }
9511
9512 to_state = map->map_state;
9513 if ((u->new_level == 5) && (map->raid_level == 0)) {
9514 map->num_members++;
9515 /* this should not happen */
9516 if (u->new_disks[0] < 0) {
9517 map->failed_disk_num =
9518 map->num_members - 1;
9519 to_state = IMSM_T_STATE_DEGRADED;
9520 } else
9521 to_state = IMSM_T_STATE_NORMAL;
9522 }
9523 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
9524 if (u->new_level > -1)
9525 map->raid_level = u->new_level;
9526 migr_map = get_imsm_map(new_dev, MAP_1);
9527 if ((u->new_level == 5) &&
9528 (migr_map->raid_level == 0)) {
9529 int ord = map->num_members - 1;
9530 migr_map->num_members--;
9531 if (u->new_disks[0] < 0)
9532 ord |= IMSM_ORD_REBUILD;
9533 set_imsm_ord_tbl_ent(map,
9534 map->num_members - 1,
9535 ord);
9536 }
9537 id->dev = new_dev;
9538 tofree = (void **)dev;
9539
9540 /* update chunk size
9541 */
9542 if (u->new_chunksize > 0) {
9543 struct imsm_map *dest_map =
9544 get_imsm_map(dev, MAP_0);
9545 int used_disks =
9546 imsm_num_data_members(dest_map);
9547
9548 if (used_disks == 0)
9549 return ret_val;
9550
9551 map->blocks_per_strip =
9552 __cpu_to_le16(u->new_chunksize * 2);
9553 update_num_data_stripes(map, imsm_dev_size(dev));
9554 }
9555
9556 /* ensure blocks_per_member has valid value
9557 */
9558 set_blocks_per_member(map,
9559 per_dev_array_size(map) +
9560 NUM_BLOCKS_DIRTY_STRIPE_REGION);
9561
9562 /* add disk
9563 */
9564 if (u->new_level != 5 || migr_map->raid_level != 0 ||
9565 migr_map->raid_level == map->raid_level)
9566 goto skip_disk_add;
9567
9568 if (u->new_disks[0] >= 0) {
9569 /* use passes spare
9570 */
9571 new_disk = get_disk_super(super,
9572 major(u->new_disks[0]),
9573 minor(u->new_disks[0]));
9574 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
9575 major(u->new_disks[0]),
9576 minor(u->new_disks[0]),
9577 new_disk, new_disk->index);
9578 if (new_disk == NULL)
9579 goto error_disk_add;
9580
9581 new_disk->index = map->num_members - 1;
9582 /* slot to fill in autolayout
9583 */
9584 new_disk->raiddisk = new_disk->index;
9585 new_disk->disk.status |= CONFIGURED_DISK;
9586 new_disk->disk.status &= ~SPARE_DISK;
9587 } else
9588 goto error_disk_add;
9589
9590 skip_disk_add:
9591 *tofree = *space_list;
9592 /* calculate new size
9593 */
9594 imsm_set_array_size(new_dev, -1);
9595
9596 ret_val = 1;
9597 }
9598 }
9599
9600 if (tofree)
9601 *space_list = tofree;
9602 return ret_val;
9603
9604 error_disk_add:
9605 dprintf("Error: imsm: Cannot find disk.\n");
9606 return ret_val;
9607 }
9608
9609 static int apply_size_change_update(struct imsm_update_size_change *u,
9610 struct intel_super *super)
9611 {
9612 struct intel_dev *id;
9613 int ret_val = 0;
9614
9615 dprintf("(enter)\n");
9616 if (u->subdev < 0 || u->subdev > 1) {
9617 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
9618 return ret_val;
9619 }
9620
9621 for (id = super->devlist ; id; id = id->next) {
9622 if (id->index == (unsigned)u->subdev) {
9623 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
9624 struct imsm_map *map = get_imsm_map(dev, MAP_0);
9625 int used_disks = imsm_num_data_members(map);
9626 unsigned long long blocks_per_member;
9627 unsigned long long new_size_per_disk;
9628
9629 if (used_disks == 0)
9630 return 0;
9631
9632 /* calculate new size
9633 */
9634 new_size_per_disk = u->new_size / used_disks;
9635 blocks_per_member = new_size_per_disk +
9636 NUM_BLOCKS_DIRTY_STRIPE_REGION;
9637
9638 imsm_set_array_size(dev, u->new_size);
9639 set_blocks_per_member(map, blocks_per_member);
9640 update_num_data_stripes(map, u->new_size);
9641 ret_val = 1;
9642 break;
9643 }
9644 }
9645
9646 return ret_val;
9647 }
9648
9649 static int prepare_spare_to_activate(struct supertype *st,
9650 struct imsm_update_activate_spare *u)
9651 {
9652 struct intel_super *super = st->sb;
9653 int prev_current_vol = super->current_vol;
9654 struct active_array *a;
9655 int ret = 1;
9656
9657 for (a = st->arrays; a; a = a->next)
9658 /*
9659 * Additional initialization (adding bitmap header, filling
9660 * the bitmap area with '1's to force initial rebuild for a whole
9661 * data-area) is required when adding the spare to the volume
9662 * with write-intent bitmap.
9663 */
9664 if (a->info.container_member == u->array &&
9665 a->info.consistency_policy == CONSISTENCY_POLICY_BITMAP) {
9666 struct dl *dl;
9667
9668 for (dl = super->disks; dl; dl = dl->next)
9669 if (dl == u->dl)
9670 break;
9671 if (!dl)
9672 break;
9673
9674 super->current_vol = u->array;
9675 if (st->ss->write_bitmap(st, dl->fd, NoUpdate))
9676 ret = 0;
9677 super->current_vol = prev_current_vol;
9678 }
9679 return ret;
9680 }
9681
9682 static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
9683 struct intel_super *super,
9684 struct active_array *active_array)
9685 {
9686 struct imsm_super *mpb = super->anchor;
9687 struct imsm_dev *dev = get_imsm_dev(super, u->array);
9688 struct imsm_map *map = get_imsm_map(dev, MAP_0);
9689 struct imsm_map *migr_map;
9690 struct active_array *a;
9691 struct imsm_disk *disk;
9692 __u8 to_state;
9693 struct dl *dl;
9694 unsigned int found;
9695 int failed;
9696 int victim;
9697 int i;
9698 int second_map_created = 0;
9699
9700 for (; u; u = u->next) {
9701 victim = get_imsm_disk_idx(dev, u->slot, MAP_X);
9702
9703 if (victim < 0)
9704 return 0;
9705
9706 for (dl = super->disks; dl; dl = dl->next)
9707 if (dl == u->dl)
9708 break;
9709
9710 if (!dl) {
9711 pr_err("error: imsm_activate_spare passed an unknown disk (index: %d)\n",
9712 u->dl->index);
9713 return 0;
9714 }
9715
9716 /* count failures (excluding rebuilds and the victim)
9717 * to determine map[0] state
9718 */
9719 failed = 0;
9720 for (i = 0; i < map->num_members; i++) {
9721 if (i == u->slot)
9722 continue;
9723 disk = get_imsm_disk(super,
9724 get_imsm_disk_idx(dev, i, MAP_X));
9725 if (!disk || is_failed(disk))
9726 failed++;
9727 }
9728
9729 /* adding a pristine spare, assign a new index */
9730 if (dl->index < 0) {
9731 dl->index = super->anchor->num_disks;
9732 super->anchor->num_disks++;
9733 }
9734 disk = &dl->disk;
9735 disk->status |= CONFIGURED_DISK;
9736 disk->status &= ~SPARE_DISK;
9737
9738 /* mark rebuild */
9739 to_state = imsm_check_degraded(super, dev, failed, MAP_0);
9740 if (!second_map_created) {
9741 second_map_created = 1;
9742 map->map_state = IMSM_T_STATE_DEGRADED;
9743 migrate(dev, super, to_state, MIGR_REBUILD);
9744 } else
9745 map->map_state = to_state;
9746 migr_map = get_imsm_map(dev, MAP_1);
9747 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
9748 set_imsm_ord_tbl_ent(migr_map, u->slot,
9749 dl->index | IMSM_ORD_REBUILD);
9750
9751 /* update the family_num to mark a new container
9752 * generation, being careful to record the existing
9753 * family_num in orig_family_num to clean up after
9754 * earlier mdadm versions that neglected to set it.
9755 */
9756 if (mpb->orig_family_num == 0)
9757 mpb->orig_family_num = mpb->family_num;
9758 mpb->family_num += super->random;
9759
9760 /* count arrays using the victim in the metadata */
9761 found = 0;
9762 for (a = active_array; a ; a = a->next) {
9763 int dev_idx = a->info.container_member;
9764
9765 if (get_disk_slot_in_dev(super, dev_idx, victim) >= 0)
9766 found++;
9767 }
9768
9769 /* delete the victim if it is no longer being
9770 * utilized anywhere
9771 */
9772 if (!found) {
9773 struct dl **dlp;
9774
9775 /* We know that 'manager' isn't touching anything,
9776 * so it is safe to delete
9777 */
9778 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
9779 if ((*dlp)->index == victim)
9780 break;
9781
9782 /* victim may be on the missing list */
9783 if (!*dlp)
9784 for (dlp = &super->missing; *dlp;
9785 dlp = &(*dlp)->next)
9786 if ((*dlp)->index == victim)
9787 break;
9788 imsm_delete(super, dlp, victim);
9789 }
9790 }
9791
9792 return 1;
9793 }
9794
9795 static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
9796 struct intel_super *super,
9797 void ***space_list)
9798 {
9799 struct dl *new_disk;
9800 struct intel_dev *id;
9801 int i;
9802 int delta_disks = u->new_raid_disks - u->old_raid_disks;
9803 int disk_count = u->old_raid_disks;
9804 void **tofree = NULL;
9805 int devices_to_reshape = 1;
9806 struct imsm_super *mpb = super->anchor;
9807 int ret_val = 0;
9808 unsigned int dev_id;
9809
9810 dprintf("(enter)\n");
9811
9812 /* enable spares to use in array */
9813 for (i = 0; i < delta_disks; i++) {
9814 new_disk = get_disk_super(super,
9815 major(u->new_disks[i]),
9816 minor(u->new_disks[i]));
9817 dprintf("imsm: new disk for reshape is: %i:%i (%p, index = %i)\n",
9818 major(u->new_disks[i]), minor(u->new_disks[i]),
9819 new_disk, new_disk->index);
9820 if (new_disk == NULL ||
9821 (new_disk->index >= 0 &&
9822 new_disk->index < u->old_raid_disks))
9823 goto update_reshape_exit;
9824 new_disk->index = disk_count++;
9825 /* slot to fill in autolayout
9826 */
9827 new_disk->raiddisk = new_disk->index;
9828 new_disk->disk.status |=
9829 CONFIGURED_DISK;
9830 new_disk->disk.status &= ~SPARE_DISK;
9831 }
9832
9833 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
9834 mpb->num_raid_devs);
9835 /* manage changes in volume
9836 */
9837 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
9838 void **sp = *space_list;
9839 struct imsm_dev *newdev;
9840 struct imsm_map *newmap, *oldmap;
9841
9842 for (id = super->devlist ; id; id = id->next) {
9843 if (id->index == dev_id)
9844 break;
9845 }
9846 if (id == NULL)
9847 break;
9848 if (!sp)
9849 continue;
9850 *space_list = *sp;
9851 newdev = (void*)sp;
9852 /* Copy the dev, but not (all of) the map */
9853 memcpy(newdev, id->dev, sizeof(*newdev));
9854 oldmap = get_imsm_map(id->dev, MAP_0);
9855 newmap = get_imsm_map(newdev, MAP_0);
9856 /* Copy the current map */
9857 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
9858 /* update one device only
9859 */
9860 if (devices_to_reshape) {
9861 dprintf("imsm: modifying subdev: %i\n",
9862 id->index);
9863 devices_to_reshape--;
9864 newdev->vol.migr_state = 1;
9865 set_vol_curr_migr_unit(newdev, 0);
9866 set_migr_type(newdev, MIGR_GEN_MIGR);
9867 newmap->num_members = u->new_raid_disks;
9868 for (i = 0; i < delta_disks; i++) {
9869 set_imsm_ord_tbl_ent(newmap,
9870 u->old_raid_disks + i,
9871 u->old_raid_disks + i);
9872 }
9873 /* New map is correct, now need to save old map
9874 */
9875 newmap = get_imsm_map(newdev, MAP_1);
9876 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
9877
9878 imsm_set_array_size(newdev, -1);
9879 }
9880
9881 sp = (void **)id->dev;
9882 id->dev = newdev;
9883 *sp = tofree;
9884 tofree = sp;
9885
9886 /* Clear migration record */
9887 memset(super->migr_rec, 0, sizeof(struct migr_record));
9888 }
9889 if (tofree)
9890 *space_list = tofree;
9891 ret_val = 1;
9892
9893 update_reshape_exit:
9894
9895 return ret_val;
9896 }
9897
9898 static int apply_takeover_update(struct imsm_update_takeover *u,
9899 struct intel_super *super,
9900 void ***space_list)
9901 {
9902 struct imsm_dev *dev = NULL;
9903 struct intel_dev *dv;
9904 struct imsm_dev *dev_new;
9905 struct imsm_map *map;
9906 struct dl *dm, *du;
9907 int i;
9908
9909 for (dv = super->devlist; dv; dv = dv->next)
9910 if (dv->index == (unsigned int)u->subarray) {
9911 dev = dv->dev;
9912 break;
9913 }
9914
9915 if (dev == NULL)
9916 return 0;
9917
9918 map = get_imsm_map(dev, MAP_0);
9919
9920 if (u->direction == R10_TO_R0) {
9921 /* Number of failed disks must be half of initial disk number */
9922 if (imsm_count_failed(super, dev, MAP_0) !=
9923 (map->num_members / 2))
9924 return 0;
9925
9926 /* iterate through devices to mark removed disks as spare */
9927 for (dm = super->disks; dm; dm = dm->next) {
9928 if (dm->disk.status & FAILED_DISK) {
9929 int idx = dm->index;
9930 /* update indexes on the disk list */
9931 /* FIXME this loop-with-the-loop looks wrong, I'm not convinced
9932 the index values will end up being correct.... NB */
9933 for (du = super->disks; du; du = du->next)
9934 if (du->index > idx)
9935 du->index--;
9936 /* mark as spare disk */
9937 mark_spare(dm);
9938 }
9939 }
9940 /* update map */
9941 map->num_members /= map->num_domains;
9942 map->map_state = IMSM_T_STATE_NORMAL;
9943 map->raid_level = 0;
9944 set_num_domains(map);
9945 update_num_data_stripes(map, imsm_dev_size(dev));
9946 map->failed_disk_num = -1;
9947 }
9948
9949 if (u->direction == R0_TO_R10) {
9950 void **space;
9951
9952 /* update slots in current disk list */
9953 for (dm = super->disks; dm; dm = dm->next) {
9954 if (dm->index >= 0)
9955 dm->index *= 2;
9956 }
9957 /* create new *missing* disks */
9958 for (i = 0; i < map->num_members; i++) {
9959 space = *space_list;
9960 if (!space)
9961 continue;
9962 *space_list = *space;
9963 du = (void *)space;
9964 memcpy(du, super->disks, sizeof(*du));
9965 du->fd = -1;
9966 du->minor = 0;
9967 du->major = 0;
9968 du->index = (i * 2) + 1;
9969 sprintf((char *)du->disk.serial,
9970 " MISSING_%d", du->index);
9971 sprintf((char *)du->serial,
9972 "MISSING_%d", du->index);
9973 du->next = super->missing;
9974 super->missing = du;
9975 }
9976 /* create new dev and map */
9977 space = *space_list;
9978 if (!space)
9979 return 0;
9980 *space_list = *space;
9981 dev_new = (void *)space;
9982 memcpy(dev_new, dev, sizeof(*dev));
9983 /* update new map */
9984 map = get_imsm_map(dev_new, MAP_0);
9985
9986 map->map_state = IMSM_T_STATE_DEGRADED;
9987 map->raid_level = 1;
9988 set_num_domains(map);
9989 map->num_members = map->num_members * map->num_domains;
9990 update_num_data_stripes(map, imsm_dev_size(dev));
9991
9992 /* replace dev<->dev_new */
9993 dv->dev = dev_new;
9994 }
9995 /* update disk order table */
9996 for (du = super->disks; du; du = du->next)
9997 if (du->index >= 0)
9998 set_imsm_ord_tbl_ent(map, du->index, du->index);
9999 for (du = super->missing; du; du = du->next)
10000 if (du->index >= 0) {
10001 set_imsm_ord_tbl_ent(map, du->index, du->index);
10002 mark_missing(super, dv->dev, &du->disk, du->index);
10003 }
10004
10005 return 1;
10006 }
10007
10008 static void imsm_process_update(struct supertype *st,
10009 struct metadata_update *update)
10010 {
10011 /**
10012 * crack open the metadata_update envelope to find the update record
10013 * update can be one of:
10014 * update_reshape_container_disks - all the arrays in the container
10015 * are being reshaped to have more devices. We need to mark
10016 * the arrays for general migration and convert selected spares
10017 * into active devices.
10018 * update_activate_spare - a spare device has replaced a failed
10019 * device in an array, update the disk_ord_tbl. If this disk is
10020 * present in all member arrays then also clear the SPARE_DISK
10021 * flag
10022 * update_create_array
10023 * update_kill_array
10024 * update_rename_array
10025 * update_add_remove_disk
10026 */
10027 struct intel_super *super = st->sb;
10028 struct imsm_super *mpb;
10029 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
10030
10031 /* update requires a larger buf but the allocation failed */
10032 if (super->next_len && !super->next_buf) {
10033 super->next_len = 0;
10034 return;
10035 }
10036
10037 if (super->next_buf) {
10038 memcpy(super->next_buf, super->buf, super->len);
10039 free(super->buf);
10040 super->len = super->next_len;
10041 super->buf = super->next_buf;
10042
10043 super->next_len = 0;
10044 super->next_buf = NULL;
10045 }
10046
10047 mpb = super->anchor;
10048
10049 switch (type) {
10050 case update_general_migration_checkpoint: {
10051 struct intel_dev *id;
10052 struct imsm_update_general_migration_checkpoint *u =
10053 (void *)update->buf;
10054
10055 dprintf("called for update_general_migration_checkpoint\n");
10056
10057 /* find device under general migration */
10058 for (id = super->devlist ; id; id = id->next) {
10059 if (is_gen_migration(id->dev)) {
10060 set_vol_curr_migr_unit(id->dev,
10061 u->curr_migr_unit);
10062 super->updates_pending++;
10063 }
10064 }
10065 break;
10066 }
10067 case update_takeover: {
10068 struct imsm_update_takeover *u = (void *)update->buf;
10069 if (apply_takeover_update(u, super, &update->space_list)) {
10070 imsm_update_version_info(super);
10071 super->updates_pending++;
10072 }
10073 break;
10074 }
10075
10076 case update_reshape_container_disks: {
10077 struct imsm_update_reshape *u = (void *)update->buf;
10078 if (apply_reshape_container_disks_update(
10079 u, super, &update->space_list))
10080 super->updates_pending++;
10081 break;
10082 }
10083 case update_reshape_migration: {
10084 struct imsm_update_reshape_migration *u = (void *)update->buf;
10085 if (apply_reshape_migration_update(
10086 u, super, &update->space_list))
10087 super->updates_pending++;
10088 break;
10089 }
10090 case update_size_change: {
10091 struct imsm_update_size_change *u = (void *)update->buf;
10092 if (apply_size_change_update(u, super))
10093 super->updates_pending++;
10094 break;
10095 }
10096 case update_activate_spare: {
10097 struct imsm_update_activate_spare *u = (void *) update->buf;
10098
10099 if (prepare_spare_to_activate(st, u) &&
10100 apply_update_activate_spare(u, super, st->arrays))
10101 super->updates_pending++;
10102 break;
10103 }
10104 case update_create_array: {
10105 /* someone wants to create a new array, we need to be aware of
10106 * a few races/collisions:
10107 * 1/ 'Create' called by two separate instances of mdadm
10108 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
10109 * devices that have since been assimilated via
10110 * activate_spare.
10111 * In the event this update can not be carried out mdadm will
10112 * (FIX ME) notice that its update did not take hold.
10113 */
10114 struct imsm_update_create_array *u = (void *) update->buf;
10115 struct intel_dev *dv;
10116 struct imsm_dev *dev;
10117 struct imsm_map *map, *new_map;
10118 unsigned long long start, end;
10119 unsigned long long new_start, new_end;
10120 int i;
10121 struct disk_info *inf;
10122 struct dl *dl;
10123
10124 /* handle racing creates: first come first serve */
10125 if (u->dev_idx < mpb->num_raid_devs) {
10126 dprintf("subarray %d already defined\n", u->dev_idx);
10127 goto create_error;
10128 }
10129
10130 /* check update is next in sequence */
10131 if (u->dev_idx != mpb->num_raid_devs) {
10132 dprintf("can not create array %d expected index %d\n",
10133 u->dev_idx, mpb->num_raid_devs);
10134 goto create_error;
10135 }
10136
10137 new_map = get_imsm_map(&u->dev, MAP_0);
10138 new_start = pba_of_lba0(new_map);
10139 new_end = new_start + per_dev_array_size(new_map);
10140 inf = get_disk_info(u);
10141
10142 /* handle activate_spare versus create race:
10143 * check to make sure that overlapping arrays do not include
10144 * overalpping disks
10145 */
10146 for (i = 0; i < mpb->num_raid_devs; i++) {
10147 dev = get_imsm_dev(super, i);
10148 map = get_imsm_map(dev, MAP_0);
10149 start = pba_of_lba0(map);
10150 end = start + per_dev_array_size(map);
10151 if ((new_start >= start && new_start <= end) ||
10152 (start >= new_start && start <= new_end))
10153 /* overlap */;
10154 else
10155 continue;
10156
10157 if (disks_overlap(super, i, u)) {
10158 dprintf("arrays overlap\n");
10159 goto create_error;
10160 }
10161 }
10162
10163 /* check that prepare update was successful */
10164 if (!update->space) {
10165 dprintf("prepare update failed\n");
10166 goto create_error;
10167 }
10168
10169 /* check that all disks are still active before committing
10170 * changes. FIXME: could we instead handle this by creating a
10171 * degraded array? That's probably not what the user expects,
10172 * so better to drop this update on the floor.
10173 */
10174 for (i = 0; i < new_map->num_members; i++) {
10175 dl = serial_to_dl(inf[i].serial, super);
10176 if (!dl) {
10177 dprintf("disk disappeared\n");
10178 goto create_error;
10179 }
10180 }
10181
10182 super->updates_pending++;
10183
10184 /* convert spares to members and fixup ord_tbl */
10185 for (i = 0; i < new_map->num_members; i++) {
10186 dl = serial_to_dl(inf[i].serial, super);
10187 if (dl->index == -1) {
10188 dl->index = mpb->num_disks;
10189 mpb->num_disks++;
10190 dl->disk.status |= CONFIGURED_DISK;
10191 dl->disk.status &= ~SPARE_DISK;
10192 }
10193 set_imsm_ord_tbl_ent(new_map, i, dl->index);
10194 }
10195
10196 dv = update->space;
10197 dev = dv->dev;
10198 update->space = NULL;
10199 imsm_copy_dev(dev, &u->dev);
10200 dv->index = u->dev_idx;
10201 dv->next = super->devlist;
10202 super->devlist = dv;
10203 mpb->num_raid_devs++;
10204
10205 imsm_update_version_info(super);
10206 break;
10207 create_error:
10208 /* mdmon knows how to release update->space, but not
10209 * ((struct intel_dev *) update->space)->dev
10210 */
10211 if (update->space) {
10212 dv = update->space;
10213 free(dv->dev);
10214 }
10215 break;
10216 }
10217 case update_kill_array: {
10218 struct imsm_update_kill_array *u = (void *) update->buf;
10219 int victim = u->dev_idx;
10220 struct active_array *a;
10221 struct intel_dev **dp;
10222
10223 /* sanity check that we are not affecting the uuid of
10224 * active arrays, or deleting an active array
10225 *
10226 * FIXME when immutable ids are available, but note that
10227 * we'll also need to fixup the invalidated/active
10228 * subarray indexes in mdstat
10229 */
10230 for (a = st->arrays; a; a = a->next)
10231 if (a->info.container_member >= victim)
10232 break;
10233 /* by definition if mdmon is running at least one array
10234 * is active in the container, so checking
10235 * mpb->num_raid_devs is just extra paranoia
10236 */
10237 if (a || mpb->num_raid_devs == 1 || victim >= super->anchor->num_raid_devs) {
10238 dprintf("failed to delete subarray-%d\n", victim);
10239 break;
10240 }
10241
10242 for (dp = &super->devlist; *dp;)
10243 if ((*dp)->index == (unsigned)super->current_vol) {
10244 *dp = (*dp)->next;
10245 } else {
10246 if ((*dp)->index > (unsigned)victim)
10247 (*dp)->index--;
10248 dp = &(*dp)->next;
10249 }
10250 mpb->num_raid_devs--;
10251 super->updates_pending++;
10252 break;
10253 }
10254 case update_rename_array: {
10255 struct imsm_update_rename_array *u = (void *) update->buf;
10256 char name[MAX_RAID_SERIAL_LEN+1];
10257 int target = u->dev_idx;
10258 struct active_array *a;
10259 struct imsm_dev *dev;
10260
10261 /* sanity check that we are not affecting the uuid of
10262 * an active array
10263 */
10264 memset(name, 0, sizeof(name));
10265 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
10266 name[MAX_RAID_SERIAL_LEN] = '\0';
10267 for (a = st->arrays; a; a = a->next)
10268 if (a->info.container_member == target)
10269 break;
10270 dev = get_imsm_dev(super, u->dev_idx);
10271
10272 if (a || !dev || imsm_is_name_allowed(super, name, 0) == false) {
10273 dprintf("failed to rename subarray-%d\n", target);
10274 break;
10275 }
10276
10277 memcpy(dev->volume, name, MAX_RAID_SERIAL_LEN);
10278 super->updates_pending++;
10279 break;
10280 }
10281 case update_add_remove_disk: {
10282 /* we may be able to repair some arrays if disks are
10283 * being added, check the status of add_remove_disk
10284 * if discs has been added.
10285 */
10286 if (add_remove_disk_update(super)) {
10287 struct active_array *a;
10288
10289 super->updates_pending++;
10290 for (a = st->arrays; a; a = a->next)
10291 a->check_degraded = 1;
10292 }
10293 break;
10294 }
10295 case update_prealloc_badblocks_mem:
10296 break;
10297 case update_rwh_policy: {
10298 struct imsm_update_rwh_policy *u = (void *)update->buf;
10299 int target = u->dev_idx;
10300 struct imsm_dev *dev = get_imsm_dev(super, target);
10301
10302 if (dev->rwh_policy != u->new_policy) {
10303 dev->rwh_policy = u->new_policy;
10304 super->updates_pending++;
10305 }
10306 break;
10307 }
10308 default:
10309 pr_err("error: unsupported process update type:(type: %d)\n", type);
10310 }
10311 }
10312
10313 static struct mdinfo *get_spares_for_grow(struct supertype *st);
10314
10315 static int imsm_prepare_update(struct supertype *st,
10316 struct metadata_update *update)
10317 {
10318 /**
10319 * Allocate space to hold new disk entries, raid-device entries or a new
10320 * mpb if necessary. The manager synchronously waits for updates to
10321 * complete in the monitor, so new mpb buffers allocated here can be
10322 * integrated by the monitor thread without worrying about live pointers
10323 * in the manager thread.
10324 */
10325 enum imsm_update_type type;
10326 struct intel_super *super = st->sb;
10327 unsigned int sector_size = super->sector_size;
10328 struct imsm_super *mpb = super->anchor;
10329 size_t buf_len;
10330 size_t len = 0;
10331
10332 if (update->len < (int)sizeof(type))
10333 return 0;
10334
10335 type = *(enum imsm_update_type *) update->buf;
10336
10337 switch (type) {
10338 case update_general_migration_checkpoint:
10339 if (update->len < (int)sizeof(struct imsm_update_general_migration_checkpoint))
10340 return 0;
10341 dprintf("called for update_general_migration_checkpoint\n");
10342 break;
10343 case update_takeover: {
10344 struct imsm_update_takeover *u = (void *)update->buf;
10345 if (update->len < (int)sizeof(*u))
10346 return 0;
10347 if (u->direction == R0_TO_R10) {
10348 void **tail = (void **)&update->space_list;
10349 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
10350 struct imsm_map *map = get_imsm_map(dev, MAP_0);
10351 int num_members = map->num_members;
10352 void *space;
10353 int size, i;
10354 /* allocate memory for added disks */
10355 for (i = 0; i < num_members; i++) {
10356 size = sizeof(struct dl);
10357 space = xmalloc(size);
10358 *tail = space;
10359 tail = space;
10360 *tail = NULL;
10361 }
10362 /* allocate memory for new device */
10363 size = sizeof_imsm_dev(super->devlist->dev, 0) +
10364 (num_members * sizeof(__u32));
10365 space = xmalloc(size);
10366 *tail = space;
10367 tail = space;
10368 *tail = NULL;
10369 len = disks_to_mpb_size(num_members * 2);
10370 }
10371
10372 break;
10373 }
10374 case update_reshape_container_disks: {
10375 /* Every raid device in the container is about to
10376 * gain some more devices, and we will enter a
10377 * reconfiguration.
10378 * So each 'imsm_map' will be bigger, and the imsm_vol
10379 * will now hold 2 of them.
10380 * Thus we need new 'struct imsm_dev' allocations sized
10381 * as sizeof_imsm_dev but with more devices in both maps.
10382 */
10383 struct imsm_update_reshape *u = (void *)update->buf;
10384 struct intel_dev *dl;
10385 void **space_tail = (void**)&update->space_list;
10386
10387 if (update->len < (int)sizeof(*u))
10388 return 0;
10389
10390 dprintf("for update_reshape\n");
10391
10392 for (dl = super->devlist; dl; dl = dl->next) {
10393 int size = sizeof_imsm_dev(dl->dev, 1);
10394 void *s;
10395 if (u->new_raid_disks > u->old_raid_disks)
10396 size += sizeof(__u32)*2*
10397 (u->new_raid_disks - u->old_raid_disks);
10398 s = xmalloc(size);
10399 *space_tail = s;
10400 space_tail = s;
10401 *space_tail = NULL;
10402 }
10403
10404 len = disks_to_mpb_size(u->new_raid_disks);
10405 dprintf("New anchor length is %llu\n", (unsigned long long)len);
10406 break;
10407 }
10408 case update_reshape_migration: {
10409 /* for migration level 0->5 we need to add disks
10410 * so the same as for container operation we will copy
10411 * device to the bigger location.
10412 * in memory prepared device and new disk area are prepared
10413 * for usage in process update
10414 */
10415 struct imsm_update_reshape_migration *u = (void *)update->buf;
10416 struct intel_dev *id;
10417 void **space_tail = (void **)&update->space_list;
10418 int size;
10419 void *s;
10420 int current_level = -1;
10421
10422 if (update->len < (int)sizeof(*u))
10423 return 0;
10424
10425 dprintf("for update_reshape\n");
10426
10427 /* add space for bigger array in update
10428 */
10429 for (id = super->devlist; id; id = id->next) {
10430 if (id->index == (unsigned)u->subdev) {
10431 size = sizeof_imsm_dev(id->dev, 1);
10432 if (u->new_raid_disks > u->old_raid_disks)
10433 size += sizeof(__u32)*2*
10434 (u->new_raid_disks - u->old_raid_disks);
10435 s = xmalloc(size);
10436 *space_tail = s;
10437 space_tail = s;
10438 *space_tail = NULL;
10439 break;
10440 }
10441 }
10442 if (update->space_list == NULL)
10443 break;
10444
10445 /* add space for disk in update
10446 */
10447 size = sizeof(struct dl);
10448 s = xmalloc(size);
10449 *space_tail = s;
10450 space_tail = s;
10451 *space_tail = NULL;
10452
10453 /* add spare device to update
10454 */
10455 for (id = super->devlist ; id; id = id->next)
10456 if (id->index == (unsigned)u->subdev) {
10457 struct imsm_dev *dev;
10458 struct imsm_map *map;
10459
10460 dev = get_imsm_dev(super, u->subdev);
10461 map = get_imsm_map(dev, MAP_0);
10462 current_level = map->raid_level;
10463 break;
10464 }
10465 if (u->new_level == 5 && u->new_level != current_level) {
10466 struct mdinfo *spares;
10467
10468 spares = get_spares_for_grow(st);
10469 if (spares) {
10470 struct dl *dl;
10471 struct mdinfo *dev;
10472
10473 dev = spares->devs;
10474 if (dev) {
10475 u->new_disks[0] =
10476 makedev(dev->disk.major,
10477 dev->disk.minor);
10478 dl = get_disk_super(super,
10479 dev->disk.major,
10480 dev->disk.minor);
10481 dl->index = u->old_raid_disks;
10482 dev = dev->next;
10483 }
10484 sysfs_free(spares);
10485 }
10486 }
10487 len = disks_to_mpb_size(u->new_raid_disks);
10488 dprintf("New anchor length is %llu\n", (unsigned long long)len);
10489 break;
10490 }
10491 case update_size_change: {
10492 if (update->len < (int)sizeof(struct imsm_update_size_change))
10493 return 0;
10494 break;
10495 }
10496 case update_activate_spare: {
10497 if (update->len < (int)sizeof(struct imsm_update_activate_spare))
10498 return 0;
10499 break;
10500 }
10501 case update_create_array: {
10502 struct imsm_update_create_array *u = (void *) update->buf;
10503 struct intel_dev *dv;
10504 struct imsm_dev *dev = &u->dev;
10505 struct imsm_map *map = get_imsm_map(dev, MAP_0);
10506 struct dl *dl;
10507 struct disk_info *inf;
10508 int i;
10509 int activate = 0;
10510
10511 if (update->len < (int)sizeof(*u))
10512 return 0;
10513
10514 inf = get_disk_info(u);
10515 len = sizeof_imsm_dev(dev, 1);
10516 /* allocate a new super->devlist entry */
10517 dv = xmalloc(sizeof(*dv));
10518 dv->dev = xmalloc(len);
10519 update->space = dv;
10520
10521 /* count how many spares will be converted to members */
10522 for (i = 0; i < map->num_members; i++) {
10523 dl = serial_to_dl(inf[i].serial, super);
10524 if (!dl) {
10525 /* hmm maybe it failed?, nothing we can do about
10526 * it here
10527 */
10528 continue;
10529 }
10530 if (count_memberships(dl, super) == 0)
10531 activate++;
10532 }
10533 len += activate * sizeof(struct imsm_disk);
10534 break;
10535 }
10536 case update_kill_array: {
10537 if (update->len < (int)sizeof(struct imsm_update_kill_array))
10538 return 0;
10539 break;
10540 }
10541 case update_rename_array: {
10542 if (update->len < (int)sizeof(struct imsm_update_rename_array))
10543 return 0;
10544 break;
10545 }
10546 case update_add_remove_disk:
10547 /* no update->len needed */
10548 break;
10549 case update_prealloc_badblocks_mem:
10550 super->extra_space += sizeof(struct bbm_log) -
10551 get_imsm_bbm_log_size(super->bbm_log);
10552 break;
10553 case update_rwh_policy: {
10554 if (update->len < (int)sizeof(struct imsm_update_rwh_policy))
10555 return 0;
10556 break;
10557 }
10558 default:
10559 return 0;
10560 }
10561
10562 /* check if we need a larger metadata buffer */
10563 if (super->next_buf)
10564 buf_len = super->next_len;
10565 else
10566 buf_len = super->len;
10567
10568 if (__le32_to_cpu(mpb->mpb_size) + super->extra_space + len > buf_len) {
10569 /* ok we need a larger buf than what is currently allocated
10570 * if this allocation fails process_update will notice that
10571 * ->next_len is set and ->next_buf is NULL
10572 */
10573 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) +
10574 super->extra_space + len, sector_size);
10575 if (super->next_buf)
10576 free(super->next_buf);
10577
10578 super->next_len = buf_len;
10579 if (posix_memalign(&super->next_buf, sector_size, buf_len) == 0)
10580 memset(super->next_buf, 0, buf_len);
10581 else
10582 super->next_buf = NULL;
10583 }
10584 return 1;
10585 }
10586
10587 /* must be called while manager is quiesced */
10588 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
10589 {
10590 struct imsm_super *mpb = super->anchor;
10591 struct dl *iter;
10592 struct imsm_dev *dev;
10593 struct imsm_map *map;
10594 unsigned int i, j, num_members;
10595 __u32 ord, ord_map0;
10596 struct bbm_log *log = super->bbm_log;
10597
10598 dprintf("deleting device[%d] from imsm_super\n", index);
10599
10600 /* shift all indexes down one */
10601 for (iter = super->disks; iter; iter = iter->next)
10602 if (iter->index > (int)index)
10603 iter->index--;
10604 for (iter = super->missing; iter; iter = iter->next)
10605 if (iter->index > (int)index)
10606 iter->index--;
10607
10608 for (i = 0; i < mpb->num_raid_devs; i++) {
10609 dev = get_imsm_dev(super, i);
10610 map = get_imsm_map(dev, MAP_0);
10611 num_members = map->num_members;
10612 for (j = 0; j < num_members; j++) {
10613 /* update ord entries being careful not to propagate
10614 * ord-flags to the first map
10615 */
10616 ord = get_imsm_ord_tbl_ent(dev, j, MAP_X);
10617 ord_map0 = get_imsm_ord_tbl_ent(dev, j, MAP_0);
10618
10619 if (ord_to_idx(ord) <= index)
10620 continue;
10621
10622 map = get_imsm_map(dev, MAP_0);
10623 set_imsm_ord_tbl_ent(map, j, ord_map0 - 1);
10624 map = get_imsm_map(dev, MAP_1);
10625 if (map)
10626 set_imsm_ord_tbl_ent(map, j, ord - 1);
10627 }
10628 }
10629
10630 for (i = 0; i < log->entry_count; i++) {
10631 struct bbm_log_entry *entry = &log->marked_block_entries[i];
10632
10633 if (entry->disk_ordinal <= index)
10634 continue;
10635 entry->disk_ordinal--;
10636 }
10637
10638 mpb->num_disks--;
10639 super->updates_pending++;
10640 if (*dlp) {
10641 struct dl *dl = *dlp;
10642
10643 *dlp = (*dlp)->next;
10644 __free_imsm_disk(dl, 1);
10645 }
10646 }
10647
10648 static int imsm_get_allowed_degradation(int level, int raid_disks,
10649 struct intel_super *super,
10650 struct imsm_dev *dev)
10651 {
10652 switch (level) {
10653 case 1:
10654 case 10:{
10655 int ret_val = 0;
10656 struct imsm_map *map;
10657 int i;
10658
10659 ret_val = raid_disks/2;
10660 /* check map if all disks pairs not failed
10661 * in both maps
10662 */
10663 map = get_imsm_map(dev, MAP_0);
10664 for (i = 0; i < ret_val; i++) {
10665 int degradation = 0;
10666 if (get_imsm_disk(super, i) == NULL)
10667 degradation++;
10668 if (get_imsm_disk(super, i + 1) == NULL)
10669 degradation++;
10670 if (degradation == 2)
10671 return 0;
10672 }
10673 map = get_imsm_map(dev, MAP_1);
10674 /* if there is no second map
10675 * result can be returned
10676 */
10677 if (map == NULL)
10678 return ret_val;
10679 /* check degradation in second map
10680 */
10681 for (i = 0; i < ret_val; i++) {
10682 int degradation = 0;
10683 if (get_imsm_disk(super, i) == NULL)
10684 degradation++;
10685 if (get_imsm_disk(super, i + 1) == NULL)
10686 degradation++;
10687 if (degradation == 2)
10688 return 0;
10689 }
10690 return ret_val;
10691 }
10692 case 5:
10693 return 1;
10694 case 6:
10695 return 2;
10696 default:
10697 return 0;
10698 }
10699 }
10700
10701 /*******************************************************************************
10702 * Function: validate_container_imsm
10703 * Description: This routine validates container after assemble,
10704 * eg. if devices in container are under the same controller.
10705 *
10706 * Parameters:
10707 * info : linked list with info about devices used in array
10708 * Returns:
10709 * 1 : HBA mismatch
10710 * 0 : Success
10711 ******************************************************************************/
10712 int validate_container_imsm(struct mdinfo *info)
10713 {
10714 if (check_no_platform())
10715 return 0;
10716
10717 struct sys_dev *idev;
10718 struct sys_dev *hba = NULL;
10719 struct sys_dev *intel_devices = find_intel_devices();
10720 char *dev_path = devt_to_devpath(makedev(info->disk.major,
10721 info->disk.minor), 1, NULL);
10722
10723 for (idev = intel_devices; idev; idev = idev->next) {
10724 if (dev_path && strstr(dev_path, idev->path)) {
10725 hba = idev;
10726 break;
10727 }
10728 }
10729 if (dev_path)
10730 free(dev_path);
10731
10732 if (!hba) {
10733 pr_err("WARNING - Cannot detect HBA for device %s!\n",
10734 devid2kname(makedev(info->disk.major, info->disk.minor)));
10735 return 1;
10736 }
10737
10738 const struct imsm_orom *orom = get_orom_by_device_id(hba->dev_id);
10739 struct mdinfo *dev;
10740
10741 for (dev = info->next; dev; dev = dev->next) {
10742 dev_path = devt_to_devpath(makedev(dev->disk.major,
10743 dev->disk.minor), 1, NULL);
10744
10745 struct sys_dev *hba2 = NULL;
10746 for (idev = intel_devices; idev; idev = idev->next) {
10747 if (dev_path && strstr(dev_path, idev->path)) {
10748 hba2 = idev;
10749 break;
10750 }
10751 }
10752 if (dev_path)
10753 free(dev_path);
10754
10755 const struct imsm_orom *orom2 = hba2 == NULL ? NULL :
10756 get_orom_by_device_id(hba2->dev_id);
10757
10758 if (hba2 && hba->type != hba2->type) {
10759 pr_err("WARNING - HBAs of devices do not match %s != %s\n",
10760 get_sys_dev_type(hba->type), get_sys_dev_type(hba2->type));
10761 return 1;
10762 }
10763
10764 if (orom != orom2) {
10765 pr_err("WARNING - IMSM container assembled with disks under different HBAs!\n"
10766 " This operation is not supported and can lead to data loss.\n");
10767 return 1;
10768 }
10769
10770 if (!orom) {
10771 pr_err("WARNING - IMSM container assembled with disks under HBAs without IMSM platform support!\n"
10772 " This operation is not supported and can lead to data loss.\n");
10773 return 1;
10774 }
10775 }
10776
10777 return 0;
10778 }
10779
10780 /*******************************************************************************
10781 * Function: imsm_record_badblock
10782 * Description: This routine stores new bad block record in BBM log
10783 *
10784 * Parameters:
10785 * a : array containing a bad block
10786 * slot : disk number containing a bad block
10787 * sector : bad block sector
10788 * length : bad block sectors range
10789 * Returns:
10790 * 1 : Success
10791 * 0 : Error
10792 ******************************************************************************/
10793 static int imsm_record_badblock(struct active_array *a, int slot,
10794 unsigned long long sector, int length)
10795 {
10796 struct intel_super *super = a->container->sb;
10797 int ord;
10798 int ret;
10799
10800 ord = imsm_disk_slot_to_ord(a, slot);
10801 if (ord < 0)
10802 return 0;
10803
10804 ret = record_new_badblock(super->bbm_log, ord_to_idx(ord), sector,
10805 length);
10806 if (ret)
10807 super->updates_pending++;
10808
10809 return ret;
10810 }
10811 /*******************************************************************************
10812 * Function: imsm_clear_badblock
10813 * Description: This routine clears bad block record from BBM log
10814 *
10815 * Parameters:
10816 * a : array containing a bad block
10817 * slot : disk number containing a bad block
10818 * sector : bad block sector
10819 * length : bad block sectors range
10820 * Returns:
10821 * 1 : Success
10822 * 0 : Error
10823 ******************************************************************************/
10824 static int imsm_clear_badblock(struct active_array *a, int slot,
10825 unsigned long long sector, int length)
10826 {
10827 struct intel_super *super = a->container->sb;
10828 int ord;
10829 int ret;
10830
10831 ord = imsm_disk_slot_to_ord(a, slot);
10832 if (ord < 0)
10833 return 0;
10834
10835 ret = clear_badblock(super->bbm_log, ord_to_idx(ord), sector, length);
10836 if (ret)
10837 super->updates_pending++;
10838
10839 return ret;
10840 }
10841 /*******************************************************************************
10842 * Function: imsm_get_badblocks
10843 * Description: This routine get list of bad blocks for an array
10844 *
10845 * Parameters:
10846 * a : array
10847 * slot : disk number
10848 * Returns:
10849 * bb : structure containing bad blocks
10850 * NULL : error
10851 ******************************************************************************/
10852 static struct md_bb *imsm_get_badblocks(struct active_array *a, int slot)
10853 {
10854 int inst = a->info.container_member;
10855 struct intel_super *super = a->container->sb;
10856 struct imsm_dev *dev = get_imsm_dev(super, inst);
10857 struct imsm_map *map = get_imsm_map(dev, MAP_0);
10858 int ord;
10859
10860 ord = imsm_disk_slot_to_ord(a, slot);
10861 if (ord < 0)
10862 return NULL;
10863
10864 get_volume_badblocks(super->bbm_log, ord_to_idx(ord), pba_of_lba0(map),
10865 per_dev_array_size(map), &super->bb);
10866
10867 return &super->bb;
10868 }
10869 /*******************************************************************************
10870 * Function: examine_badblocks_imsm
10871 * Description: Prints list of bad blocks on a disk to the standard output
10872 *
10873 * Parameters:
10874 * st : metadata handler
10875 * fd : open file descriptor for device
10876 * devname : device name
10877 * Returns:
10878 * 0 : Success
10879 * 1 : Error
10880 ******************************************************************************/
10881 static int examine_badblocks_imsm(struct supertype *st, int fd, char *devname)
10882 {
10883 struct intel_super *super = st->sb;
10884 struct bbm_log *log = super->bbm_log;
10885 struct dl *d = NULL;
10886 int any = 0;
10887
10888 for (d = super->disks; d ; d = d->next) {
10889 if (strcmp(d->devname, devname) == 0)
10890 break;
10891 }
10892
10893 if ((d == NULL) || (d->index < 0)) { /* serial mismatch probably */
10894 pr_err("%s doesn't appear to be part of a raid array\n",
10895 devname);
10896 return 1;
10897 }
10898
10899 if (log != NULL) {
10900 unsigned int i;
10901 struct bbm_log_entry *entry = &log->marked_block_entries[0];
10902
10903 for (i = 0; i < log->entry_count; i++) {
10904 if (entry[i].disk_ordinal == d->index) {
10905 unsigned long long sector = __le48_to_cpu(
10906 &entry[i].defective_block_start);
10907 int cnt = entry[i].marked_count + 1;
10908
10909 if (!any) {
10910 printf("Bad-blocks on %s:\n", devname);
10911 any = 1;
10912 }
10913
10914 printf("%20llu for %d sectors\n", sector, cnt);
10915 }
10916 }
10917 }
10918
10919 if (!any)
10920 printf("No bad-blocks list configured on %s\n", devname);
10921
10922 return 0;
10923 }
10924 /*******************************************************************************
10925 * Function: init_migr_record_imsm
10926 * Description: Function inits imsm migration record
10927 * Parameters:
10928 * super : imsm internal array info
10929 * dev : device under migration
10930 * info : general array info to find the smallest device
10931 * Returns:
10932 * none
10933 ******************************************************************************/
10934 void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
10935 struct mdinfo *info)
10936 {
10937 struct intel_super *super = st->sb;
10938 struct migr_record *migr_rec = super->migr_rec;
10939 int new_data_disks;
10940 unsigned long long dsize, dev_sectors;
10941 long long unsigned min_dev_sectors = -1LLU;
10942 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
10943 struct imsm_map *map_src = get_imsm_map(dev, MAP_1);
10944 unsigned long long num_migr_units;
10945 unsigned long long array_blocks;
10946 struct dl *dl_disk = NULL;
10947
10948 memset(migr_rec, 0, sizeof(struct migr_record));
10949 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
10950
10951 /* only ascending reshape supported now */
10952 migr_rec->ascending_migr = __cpu_to_le32(1);
10953
10954 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
10955 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
10956 migr_rec->dest_depth_per_unit *=
10957 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
10958 new_data_disks = imsm_num_data_members(map_dest);
10959 migr_rec->blocks_per_unit =
10960 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
10961 migr_rec->dest_depth_per_unit =
10962 __cpu_to_le32(migr_rec->dest_depth_per_unit);
10963 array_blocks = info->component_size * new_data_disks;
10964 num_migr_units =
10965 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
10966
10967 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
10968 num_migr_units++;
10969 set_num_migr_units(migr_rec, num_migr_units);
10970
10971 migr_rec->post_migr_vol_cap = dev->size_low;
10972 migr_rec->post_migr_vol_cap_hi = dev->size_high;
10973
10974 /* Find the smallest dev */
10975 for (dl_disk = super->disks; dl_disk ; dl_disk = dl_disk->next) {
10976 /* ignore spares in container */
10977 if (dl_disk->index < 0)
10978 continue;
10979 get_dev_size(dl_disk->fd, NULL, &dsize);
10980 dev_sectors = dsize / 512;
10981 if (dev_sectors < min_dev_sectors)
10982 min_dev_sectors = dev_sectors;
10983 }
10984 set_migr_chkp_area_pba(migr_rec, min_dev_sectors -
10985 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
10986
10987 write_imsm_migr_rec(st);
10988
10989 return;
10990 }
10991
10992 /*******************************************************************************
10993 * Function: save_backup_imsm
10994 * Description: Function saves critical data stripes to Migration Copy Area
10995 * and updates the current migration unit status.
10996 * Use restore_stripes() to form a destination stripe,
10997 * and to write it to the Copy Area.
10998 * Parameters:
10999 * st : supertype information
11000 * dev : imsm device that backup is saved for
11001 * info : general array info
11002 * buf : input buffer
11003 * length : length of data to backup (blocks_per_unit)
11004 * Returns:
11005 * 0 : success
11006 *, -1 : fail
11007 ******************************************************************************/
11008 int save_backup_imsm(struct supertype *st,
11009 struct imsm_dev *dev,
11010 struct mdinfo *info,
11011 void *buf,
11012 int length)
11013 {
11014 int rv = -1;
11015 struct intel_super *super = st->sb;
11016 int i;
11017 struct imsm_map *map_dest = get_imsm_map(dev, MAP_0);
11018 int new_disks = map_dest->num_members;
11019 int dest_layout = 0;
11020 int dest_chunk, targets[new_disks];
11021 unsigned long long start, target_offsets[new_disks];
11022 int data_disks = imsm_num_data_members(map_dest);
11023
11024 for (i = 0; i < new_disks; i++) {
11025 struct dl *dl_disk = get_imsm_dl_disk(super, i);
11026 if (dl_disk && is_fd_valid(dl_disk->fd))
11027 targets[i] = dl_disk->fd;
11028 else
11029 goto abort;
11030 }
11031
11032 start = info->reshape_progress * 512;
11033 for (i = 0; i < new_disks; i++) {
11034 target_offsets[i] = migr_chkp_area_pba(super->migr_rec) * 512;
11035 /* move back copy area adderss, it will be moved forward
11036 * in restore_stripes() using start input variable
11037 */
11038 target_offsets[i] -= start/data_disks;
11039 }
11040
11041 dest_layout = imsm_level_to_layout(map_dest->raid_level);
11042 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
11043
11044 if (restore_stripes(targets, /* list of dest devices */
11045 target_offsets, /* migration record offsets */
11046 new_disks,
11047 dest_chunk,
11048 map_dest->raid_level,
11049 dest_layout,
11050 -1, /* source backup file descriptor */
11051 0, /* input buf offset
11052 * always 0 buf is already offseted */
11053 start,
11054 length,
11055 buf) != 0) {
11056 pr_err("Error restoring stripes\n");
11057 goto abort;
11058 }
11059
11060 rv = 0;
11061
11062 abort:
11063 return rv;
11064 }
11065
11066 /*******************************************************************************
11067 * Function: save_checkpoint_imsm
11068 * Description: Function called for current unit status update
11069 * in the migration record. It writes it to disk.
11070 * Parameters:
11071 * super : imsm internal array info
11072 * info : general array info
11073 * Returns:
11074 * 0: success
11075 * 1: failure
11076 * 2: failure, means no valid migration record
11077 * / no general migration in progress /
11078 ******************************************************************************/
11079 int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
11080 {
11081 struct intel_super *super = st->sb;
11082 unsigned long long blocks_per_unit;
11083 unsigned long long curr_migr_unit;
11084
11085 if (load_imsm_migr_rec(super) != 0) {
11086 dprintf("imsm: ERROR: Cannot read migration record for checkpoint save.\n");
11087 return 1;
11088 }
11089
11090 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
11091 if (blocks_per_unit == 0) {
11092 dprintf("imsm: no migration in progress.\n");
11093 return 2;
11094 }
11095 curr_migr_unit = info->reshape_progress / blocks_per_unit;
11096 /* check if array is alligned to copy area
11097 * if it is not alligned, add one to current migration unit value
11098 * this can happend on array reshape finish only
11099 */
11100 if (info->reshape_progress % blocks_per_unit)
11101 curr_migr_unit++;
11102
11103 set_current_migr_unit(super->migr_rec, curr_migr_unit);
11104 super->migr_rec->rec_status = __cpu_to_le32(state);
11105 set_migr_dest_1st_member_lba(super->migr_rec,
11106 super->migr_rec->dest_depth_per_unit * curr_migr_unit);
11107
11108 if (write_imsm_migr_rec(st) < 0) {
11109 dprintf("imsm: Cannot write migration record outside backup area\n");
11110 return 1;
11111 }
11112
11113 return 0;
11114 }
11115
11116 /*******************************************************************************
11117 * Function: recover_backup_imsm
11118 * Description: Function recovers critical data from the Migration Copy Area
11119 * while assembling an array.
11120 * Parameters:
11121 * super : imsm internal array info
11122 * info : general array info
11123 * Returns:
11124 * 0 : success (or there is no data to recover)
11125 * 1 : fail
11126 ******************************************************************************/
11127 int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
11128 {
11129 struct intel_super *super = st->sb;
11130 struct migr_record *migr_rec = super->migr_rec;
11131 struct imsm_map *map_dest;
11132 struct intel_dev *id = NULL;
11133 unsigned long long read_offset;
11134 unsigned long long write_offset;
11135 unsigned unit_len;
11136 int new_disks, err;
11137 char *buf = NULL;
11138 int retval = 1;
11139 unsigned int sector_size = super->sector_size;
11140 unsigned long long curr_migr_unit = current_migr_unit(migr_rec);
11141 unsigned long long num_migr_units = get_num_migr_units(migr_rec);
11142 char buffer[SYSFS_MAX_BUF_SIZE];
11143 int skipped_disks = 0;
11144 struct dl *dl_disk;
11145
11146 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, sizeof(buffer));
11147 if (err < 1)
11148 return 1;
11149
11150 /* recover data only during assemblation */
11151 if (strncmp(buffer, "inactive", 8) != 0)
11152 return 0;
11153 /* no data to recover */
11154 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
11155 return 0;
11156 if (curr_migr_unit >= num_migr_units)
11157 return 1;
11158
11159 /* find device during reshape */
11160 for (id = super->devlist; id; id = id->next)
11161 if (is_gen_migration(id->dev))
11162 break;
11163 if (id == NULL)
11164 return 1;
11165
11166 map_dest = get_imsm_map(id->dev, MAP_0);
11167 new_disks = map_dest->num_members;
11168
11169 read_offset = migr_chkp_area_pba(migr_rec) * 512;
11170
11171 write_offset = (migr_dest_1st_member_lba(migr_rec) +
11172 pba_of_lba0(map_dest)) * 512;
11173
11174 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
11175 if (posix_memalign((void **)&buf, sector_size, unit_len) != 0)
11176 goto abort;
11177
11178 for (dl_disk = super->disks; dl_disk; dl_disk = dl_disk->next) {
11179 if (dl_disk->index < 0)
11180 continue;
11181
11182 if (!is_fd_valid(dl_disk->fd)) {
11183 skipped_disks++;
11184 continue;
11185 }
11186 if (lseek64(dl_disk->fd, read_offset, SEEK_SET) < 0) {
11187 pr_err("Cannot seek to block: %s\n",
11188 strerror(errno));
11189 skipped_disks++;
11190 continue;
11191 }
11192 if (read(dl_disk->fd, buf, unit_len) != (ssize_t)unit_len) {
11193 pr_err("Cannot read copy area block: %s\n",
11194 strerror(errno));
11195 skipped_disks++;
11196 continue;
11197 }
11198 if (lseek64(dl_disk->fd, write_offset, SEEK_SET) < 0) {
11199 pr_err("Cannot seek to block: %s\n",
11200 strerror(errno));
11201 skipped_disks++;
11202 continue;
11203 }
11204 if (write(dl_disk->fd, buf, unit_len) != (ssize_t)unit_len) {
11205 pr_err("Cannot restore block: %s\n",
11206 strerror(errno));
11207 skipped_disks++;
11208 continue;
11209 }
11210 }
11211
11212 if (skipped_disks > imsm_get_allowed_degradation(info->new_level,
11213 new_disks,
11214 super,
11215 id->dev)) {
11216 pr_err("Cannot restore data from backup. Too many failed disks\n");
11217 goto abort;
11218 }
11219
11220 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
11221 /* ignore error == 2, this can mean end of reshape here
11222 */
11223 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL) during restart\n");
11224 } else
11225 retval = 0;
11226
11227 abort:
11228 free(buf);
11229 return retval;
11230 }
11231
11232 static char disk_by_path[] = "/dev/disk/by-path/";
11233
11234 static const char *imsm_get_disk_controller_domain(const char *path)
11235 {
11236 char disk_path[PATH_MAX];
11237 char *drv=NULL;
11238 struct stat st;
11239
11240 strncpy(disk_path, disk_by_path, PATH_MAX);
11241 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
11242 if (stat(disk_path, &st) == 0) {
11243 struct sys_dev* hba;
11244 char *path;
11245
11246 path = devt_to_devpath(st.st_rdev, 1, NULL);
11247 if (path == NULL)
11248 return "unknown";
11249 hba = find_disk_attached_hba(-1, path);
11250 if (hba && hba->type == SYS_DEV_SAS)
11251 drv = "isci";
11252 else if (hba && (hba->type == SYS_DEV_SATA || hba->type == SYS_DEV_SATA_VMD))
11253 drv = "ahci";
11254 else if (hba && hba->type == SYS_DEV_VMD)
11255 drv = "vmd";
11256 else if (hba && hba->type == SYS_DEV_NVME)
11257 drv = "nvme";
11258 else
11259 drv = "unknown";
11260 dprintf("path: %s hba: %s attached: %s\n",
11261 path, (hba) ? hba->path : "NULL", drv);
11262 free(path);
11263 }
11264 return drv;
11265 }
11266
11267 static char *imsm_find_array_devnm_by_subdev(int subdev, char *container)
11268 {
11269 static char devnm[32];
11270 char subdev_name[20];
11271 struct mdstat_ent *mdstat;
11272
11273 sprintf(subdev_name, "%d", subdev);
11274 mdstat = mdstat_by_subdev(subdev_name, container);
11275 if (!mdstat)
11276 return NULL;
11277
11278 strcpy(devnm, mdstat->devnm);
11279 free_mdstat(mdstat);
11280 return devnm;
11281 }
11282
11283 static int imsm_reshape_is_allowed_on_container(struct supertype *st,
11284 struct geo_params *geo,
11285 int *old_raid_disks,
11286 int direction)
11287 {
11288 /* currently we only support increasing the number of devices
11289 * for a container. This increases the number of device for each
11290 * member array. They must all be RAID0 or RAID5.
11291 */
11292 int ret_val = 0;
11293 struct mdinfo *info, *member;
11294 int devices_that_can_grow = 0;
11295
11296 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): st->devnm = (%s)\n", st->devnm);
11297
11298 if (geo->size > 0 ||
11299 geo->level != UnSet ||
11300 geo->layout != UnSet ||
11301 geo->chunksize != 0 ||
11302 geo->raid_disks == UnSet) {
11303 dprintf("imsm: Container operation is allowed for raid disks number change only.\n");
11304 return ret_val;
11305 }
11306
11307 if (direction == ROLLBACK_METADATA_CHANGES) {
11308 dprintf("imsm: Metadata changes rollback is not supported for container operation.\n");
11309 return ret_val;
11310 }
11311
11312 info = container_content_imsm(st, NULL);
11313 for (member = info; member; member = member->next) {
11314 char *result;
11315
11316 dprintf("imsm: checking device_num: %i\n",
11317 member->container_member);
11318
11319 if (geo->raid_disks <= member->array.raid_disks) {
11320 /* we work on container for Online Capacity Expansion
11321 * only so raid_disks has to grow
11322 */
11323 dprintf("imsm: for container operation raid disks increase is required\n");
11324 break;
11325 }
11326
11327 if (info->array.level != 0 && info->array.level != 5) {
11328 /* we cannot use this container with other raid level
11329 */
11330 dprintf("imsm: for container operation wrong raid level (%i) detected\n",
11331 info->array.level);
11332 break;
11333 } else {
11334 /* check for platform support
11335 * for this raid level configuration
11336 */
11337 struct intel_super *super = st->sb;
11338 if (!is_raid_level_supported(super->orom,
11339 member->array.level,
11340 geo->raid_disks)) {
11341 dprintf("platform does not support raid%d with %d disk%s\n",
11342 info->array.level,
11343 geo->raid_disks,
11344 geo->raid_disks > 1 ? "s" : "");
11345 break;
11346 }
11347 /* check if component size is aligned to chunk size
11348 */
11349 if (info->component_size %
11350 (info->array.chunk_size/512)) {
11351 dprintf("Component size is not aligned to chunk size\n");
11352 break;
11353 }
11354 }
11355
11356 if (*old_raid_disks &&
11357 info->array.raid_disks != *old_raid_disks)
11358 break;
11359 *old_raid_disks = info->array.raid_disks;
11360
11361 /* All raid5 and raid0 volumes in container
11362 * have to be ready for Online Capacity Expansion
11363 * so they need to be assembled. We have already
11364 * checked that no recovery etc is happening.
11365 */
11366 result = imsm_find_array_devnm_by_subdev(member->container_member,
11367 st->container_devnm);
11368 if (result == NULL) {
11369 dprintf("imsm: cannot find array\n");
11370 break;
11371 }
11372 devices_that_can_grow++;
11373 }
11374 sysfs_free(info);
11375 if (!member && devices_that_can_grow)
11376 ret_val = 1;
11377
11378 if (ret_val)
11379 dprintf("Container operation allowed\n");
11380 else
11381 dprintf("Error: %i\n", ret_val);
11382
11383 return ret_val;
11384 }
11385
11386 /* Function: get_spares_for_grow
11387 * Description: Allocates memory and creates list of spare devices
11388 * avaliable in container. Checks if spare drive size is acceptable.
11389 * Parameters: Pointer to the supertype structure
11390 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
11391 * NULL if fail
11392 */
11393 static struct mdinfo *get_spares_for_grow(struct supertype *st)
11394 {
11395 struct spare_criteria sc;
11396
11397 get_spare_criteria_imsm(st, &sc);
11398 return container_choose_spares(st, &sc, NULL, NULL, NULL, 0);
11399 }
11400
11401 /******************************************************************************
11402 * function: imsm_create_metadata_update_for_reshape
11403 * Function creates update for whole IMSM container.
11404 *
11405 ******************************************************************************/
11406 static int imsm_create_metadata_update_for_reshape(
11407 struct supertype *st,
11408 struct geo_params *geo,
11409 int old_raid_disks,
11410 struct imsm_update_reshape **updatep)
11411 {
11412 struct intel_super *super = st->sb;
11413 struct imsm_super *mpb = super->anchor;
11414 int update_memory_size;
11415 struct imsm_update_reshape *u;
11416 struct mdinfo *spares;
11417 int i;
11418 int delta_disks;
11419 struct mdinfo *dev;
11420
11421 dprintf("(enter) raid_disks = %i\n", geo->raid_disks);
11422
11423 delta_disks = geo->raid_disks - old_raid_disks;
11424
11425 /* size of all update data without anchor */
11426 update_memory_size = sizeof(struct imsm_update_reshape);
11427
11428 /* now add space for spare disks that we need to add. */
11429 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
11430
11431 u = xcalloc(1, update_memory_size);
11432 u->type = update_reshape_container_disks;
11433 u->old_raid_disks = old_raid_disks;
11434 u->new_raid_disks = geo->raid_disks;
11435
11436 /* now get spare disks list
11437 */
11438 spares = get_spares_for_grow(st);
11439
11440 if (spares == NULL || delta_disks > spares->array.spare_disks) {
11441 pr_err("imsm: ERROR: Cannot get spare devices for %s.\n", geo->dev_name);
11442 i = -1;
11443 goto abort;
11444 }
11445
11446 /* we have got spares
11447 * update disk list in imsm_disk list table in anchor
11448 */
11449 dprintf("imsm: %i spares are available.\n\n",
11450 spares->array.spare_disks);
11451
11452 dev = spares->devs;
11453 for (i = 0; i < delta_disks; i++) {
11454 struct dl *dl;
11455
11456 if (dev == NULL)
11457 break;
11458 u->new_disks[i] = makedev(dev->disk.major,
11459 dev->disk.minor);
11460 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
11461 dl->index = mpb->num_disks;
11462 mpb->num_disks++;
11463 dev = dev->next;
11464 }
11465
11466 abort:
11467 /* free spares
11468 */
11469 sysfs_free(spares);
11470
11471 dprintf("imsm: reshape update preparation :");
11472 if (i == delta_disks) {
11473 dprintf_cont(" OK\n");
11474 *updatep = u;
11475 return update_memory_size;
11476 }
11477 free(u);
11478 dprintf_cont(" Error\n");
11479
11480 return 0;
11481 }
11482
11483 /******************************************************************************
11484 * function: imsm_create_metadata_update_for_size_change()
11485 * Creates update for IMSM array for array size change.
11486 *
11487 ******************************************************************************/
11488 static int imsm_create_metadata_update_for_size_change(
11489 struct supertype *st,
11490 struct geo_params *geo,
11491 struct imsm_update_size_change **updatep)
11492 {
11493 struct intel_super *super = st->sb;
11494 int update_memory_size;
11495 struct imsm_update_size_change *u;
11496
11497 dprintf("(enter) New size = %llu\n", geo->size);
11498
11499 /* size of all update data without anchor */
11500 update_memory_size = sizeof(struct imsm_update_size_change);
11501
11502 u = xcalloc(1, update_memory_size);
11503 u->type = update_size_change;
11504 u->subdev = super->current_vol;
11505 u->new_size = geo->size;
11506
11507 dprintf("imsm: reshape update preparation : OK\n");
11508 *updatep = u;
11509
11510 return update_memory_size;
11511 }
11512
11513 /******************************************************************************
11514 * function: imsm_create_metadata_update_for_migration()
11515 * Creates update for IMSM array.
11516 *
11517 ******************************************************************************/
11518 static int imsm_create_metadata_update_for_migration(
11519 struct supertype *st,
11520 struct geo_params *geo,
11521 struct imsm_update_reshape_migration **updatep)
11522 {
11523 struct intel_super *super = st->sb;
11524 int update_memory_size;
11525 int current_chunk_size;
11526 struct imsm_update_reshape_migration *u;
11527 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
11528 struct imsm_map *map = get_imsm_map(dev, MAP_0);
11529 int previous_level = -1;
11530
11531 dprintf("(enter) New Level = %i\n", geo->level);
11532
11533 /* size of all update data without anchor */
11534 update_memory_size = sizeof(struct imsm_update_reshape_migration);
11535
11536 u = xcalloc(1, update_memory_size);
11537 u->type = update_reshape_migration;
11538 u->subdev = super->current_vol;
11539 u->new_level = geo->level;
11540 u->new_layout = geo->layout;
11541 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
11542 u->new_disks[0] = -1;
11543 u->new_chunksize = -1;
11544
11545 current_chunk_size = __le16_to_cpu(map->blocks_per_strip) / 2;
11546
11547 if (geo->chunksize != current_chunk_size) {
11548 u->new_chunksize = geo->chunksize / 1024;
11549 dprintf("imsm: chunk size change from %i to %i\n",
11550 current_chunk_size, u->new_chunksize);
11551 }
11552 previous_level = map->raid_level;
11553
11554 if (geo->level == 5 && previous_level == 0) {
11555 struct mdinfo *spares = NULL;
11556
11557 u->new_raid_disks++;
11558 spares = get_spares_for_grow(st);
11559 if (spares == NULL || spares->array.spare_disks < 1) {
11560 free(u);
11561 sysfs_free(spares);
11562 update_memory_size = 0;
11563 pr_err("cannot get spare device for requested migration\n");
11564 return 0;
11565 }
11566 sysfs_free(spares);
11567 }
11568 dprintf("imsm: reshape update preparation : OK\n");
11569 *updatep = u;
11570
11571 return update_memory_size;
11572 }
11573
11574 static void imsm_update_metadata_locally(struct supertype *st,
11575 void *buf, int len)
11576 {
11577 struct metadata_update mu;
11578
11579 mu.buf = buf;
11580 mu.len = len;
11581 mu.space = NULL;
11582 mu.space_list = NULL;
11583 mu.next = NULL;
11584 if (imsm_prepare_update(st, &mu))
11585 imsm_process_update(st, &mu);
11586
11587 while (mu.space_list) {
11588 void **space = mu.space_list;
11589 mu.space_list = *space;
11590 free(space);
11591 }
11592 }
11593
11594 /**
11595 * imsm_analyze_expand() - check expand properties and calculate new size.
11596 * @st: imsm supertype.
11597 * @geo: new geometry params.
11598 * @array: array info.
11599 * @direction: reshape direction.
11600 *
11601 * Obtain free space after the &array and verify if expand to requested size is
11602 * possible. If geo->size is set to %MAX_SIZE, assume that max free size is
11603 * requested.
11604 *
11605 * Return:
11606 * On success %IMSM_STATUS_OK is returned, geo->size and geo->raid_disks are
11607 * updated.
11608 * On error, %IMSM_STATUS_ERROR is returned.
11609 */
11610 static imsm_status_t imsm_analyze_expand(struct supertype *st,
11611 struct geo_params *geo,
11612 struct mdinfo *array,
11613 int direction)
11614 {
11615 struct intel_super *super = st->sb;
11616 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
11617 struct imsm_map *map = get_imsm_map(dev, MAP_0);
11618 int data_disks = imsm_num_data_members(map);
11619
11620 unsigned long long current_size;
11621 unsigned long long free_size;
11622 unsigned long long new_size;
11623 unsigned long long max_size;
11624
11625 const int chunk_kib = geo->chunksize / 1024;
11626 imsm_status_t rv;
11627
11628 if (direction == ROLLBACK_METADATA_CHANGES) {
11629 /**
11630 * Accept size for rollback only.
11631 */
11632 new_size = geo->size * 2;
11633 goto success;
11634 }
11635
11636 if (data_disks == 0) {
11637 pr_err("imsm: Cannot retrieve data disks.\n");
11638 return IMSM_STATUS_ERROR;
11639 }
11640 current_size = array->custom_array_size / data_disks;
11641
11642 rv = imsm_get_free_size(super, dev->vol.map->num_members, 0, chunk_kib, &free_size, true);
11643 if (rv != IMSM_STATUS_OK) {
11644 pr_err("imsm: Cannot find free space for expand.\n");
11645 return IMSM_STATUS_ERROR;
11646 }
11647 max_size = round_member_size_to_mb(free_size + current_size);
11648
11649 if (geo->size == MAX_SIZE)
11650 new_size = max_size;
11651 else
11652 new_size = round_member_size_to_mb(geo->size * 2);
11653
11654 if (new_size == 0) {
11655 pr_err("imsm: Rounded requested size is 0.\n");
11656 return IMSM_STATUS_ERROR;
11657 }
11658
11659 if (new_size > max_size) {
11660 pr_err("imsm: Rounded requested size (%llu) is larger than free space available (%llu).\n",
11661 new_size, max_size);
11662 return IMSM_STATUS_ERROR;
11663 }
11664
11665 if (new_size == current_size) {
11666 pr_err("imsm: Rounded requested size (%llu) is same as current size (%llu).\n",
11667 new_size, current_size);
11668 return IMSM_STATUS_ERROR;
11669 }
11670
11671 if (new_size < current_size) {
11672 pr_err("imsm: Size reduction is not supported, rounded requested size (%llu) is smaller than current (%llu).\n",
11673 new_size, current_size);
11674 return IMSM_STATUS_ERROR;
11675 }
11676
11677 success:
11678 dprintf("imsm: New size per member is %llu.\n", new_size);
11679 geo->size = data_disks * new_size;
11680 geo->raid_disks = dev->vol.map->num_members;
11681 return IMSM_STATUS_OK;
11682 }
11683
11684 /***************************************************************************
11685 * Function: imsm_analyze_change
11686 * Description: Function analyze change for single volume
11687 * and validate if transition is supported
11688 * Parameters: Geometry parameters, supertype structure,
11689 * metadata change direction (apply/rollback)
11690 * Returns: Operation type code on success, -1 if fail
11691 ****************************************************************************/
11692 enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
11693 struct geo_params *geo,
11694 int direction)
11695 {
11696 struct mdinfo info;
11697 int change = -1;
11698 int check_devs = 0;
11699 int chunk;
11700 /* number of added/removed disks in operation result */
11701 int devNumChange = 0;
11702 /* imsm compatible layout value for array geometry verification */
11703 int imsm_layout = -1;
11704 imsm_status_t rv;
11705
11706 getinfo_super_imsm_volume(st, &info, NULL);
11707 if (geo->level != info.array.level && geo->level >= 0 &&
11708 geo->level != UnSet) {
11709 switch (info.array.level) {
11710 case 0:
11711 if (geo->level == 5) {
11712 change = CH_MIGRATION;
11713 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
11714 pr_err("Error. Requested Layout not supported (left-asymmetric layout is supported only)!\n");
11715 change = -1;
11716 goto analyse_change_exit;
11717 }
11718 imsm_layout = geo->layout;
11719 check_devs = 1;
11720 devNumChange = 1; /* parity disk added */
11721 } else if (geo->level == 10) {
11722 change = CH_TAKEOVER;
11723 check_devs = 1;
11724 devNumChange = 2; /* two mirrors added */
11725 imsm_layout = 0x102; /* imsm supported layout */
11726 }
11727 break;
11728 case 1:
11729 case 10:
11730 if (geo->level == 0) {
11731 change = CH_TAKEOVER;
11732 check_devs = 1;
11733 devNumChange = -(geo->raid_disks/2);
11734 imsm_layout = 0; /* imsm raid0 layout */
11735 }
11736 break;
11737 }
11738 if (change == -1) {
11739 pr_err("Error. Level Migration from %d to %d not supported!\n",
11740 info.array.level, geo->level);
11741 goto analyse_change_exit;
11742 }
11743 } else
11744 geo->level = info.array.level;
11745
11746 if (geo->layout != info.array.layout &&
11747 (geo->layout != UnSet && geo->layout != -1)) {
11748 change = CH_MIGRATION;
11749 if (info.array.layout == 0 && info.array.level == 5 &&
11750 geo->layout == 5) {
11751 /* reshape 5 -> 4 */
11752 } else if (info.array.layout == 5 && info.array.level == 5 &&
11753 geo->layout == 0) {
11754 /* reshape 4 -> 5 */
11755 geo->layout = 0;
11756 geo->level = 5;
11757 } else {
11758 pr_err("Error. Layout Migration from %d to %d not supported!\n",
11759 info.array.layout, geo->layout);
11760 change = -1;
11761 goto analyse_change_exit;
11762 }
11763 } else {
11764 geo->layout = info.array.layout;
11765 if (imsm_layout == -1)
11766 imsm_layout = info.array.layout;
11767 }
11768
11769 if (geo->chunksize > 0 && geo->chunksize != UnSet &&
11770 geo->chunksize != info.array.chunk_size) {
11771 if (info.array.level == 10) {
11772 pr_err("Error. Chunk size change for RAID 10 is not supported.\n");
11773 change = -1;
11774 goto analyse_change_exit;
11775 } else if (info.component_size % (geo->chunksize/512)) {
11776 pr_err("New chunk size (%dK) does not evenly divide device size (%lluk). Aborting...\n",
11777 geo->chunksize/1024, info.component_size/2);
11778 change = -1;
11779 goto analyse_change_exit;
11780 }
11781 change = CH_MIGRATION;
11782 } else {
11783 geo->chunksize = info.array.chunk_size;
11784 }
11785
11786 if (geo->size > 0) {
11787 if (change != -1) {
11788 pr_err("Error. Size change should be the only one at a time.\n");
11789 change = -1;
11790 goto analyse_change_exit;
11791 }
11792
11793 rv = imsm_analyze_expand(st, geo, &info, direction);
11794 if (rv != IMSM_STATUS_OK)
11795 goto analyse_change_exit;
11796 change = CH_ARRAY_SIZE;
11797 }
11798
11799 chunk = geo->chunksize / 1024;
11800 if (!validate_geometry_imsm(st,
11801 geo->level,
11802 imsm_layout,
11803 geo->raid_disks + devNumChange,
11804 &chunk,
11805 geo->size, INVALID_SECTORS,
11806 0, 0, info.consistency_policy, 1))
11807 change = -1;
11808
11809 if (check_devs) {
11810 struct intel_super *super = st->sb;
11811 struct imsm_super *mpb = super->anchor;
11812
11813 if (mpb->num_raid_devs > 1) {
11814 pr_err("Error. Cannot perform operation on %s- for this operation "
11815 "it MUST be single array in container\n", geo->dev_name);
11816 change = -1;
11817 }
11818 }
11819
11820 analyse_change_exit:
11821 if (direction == ROLLBACK_METADATA_CHANGES &&
11822 (change == CH_MIGRATION || change == CH_TAKEOVER)) {
11823 dprintf("imsm: Metadata changes rollback is not supported for migration and takeover operations.\n");
11824 change = -1;
11825 }
11826 return change;
11827 }
11828
11829 int imsm_takeover(struct supertype *st, struct geo_params *geo)
11830 {
11831 struct intel_super *super = st->sb;
11832 struct imsm_update_takeover *u;
11833
11834 u = xmalloc(sizeof(struct imsm_update_takeover));
11835
11836 u->type = update_takeover;
11837 u->subarray = super->current_vol;
11838
11839 /* 10->0 transition */
11840 if (geo->level == 0)
11841 u->direction = R10_TO_R0;
11842
11843 /* 0->10 transition */
11844 if (geo->level == 10)
11845 u->direction = R0_TO_R10;
11846
11847 /* update metadata locally */
11848 imsm_update_metadata_locally(st, u,
11849 sizeof(struct imsm_update_takeover));
11850 /* and possibly remotely */
11851 if (st->update_tail)
11852 append_metadata_update(st, u,
11853 sizeof(struct imsm_update_takeover));
11854 else
11855 free(u);
11856
11857 return 0;
11858 }
11859
11860 /* Flush size update if size calculated by num_data_stripes is higher than
11861 * imsm_dev_size to eliminate differences during reshape.
11862 * Mdmon will recalculate them correctly.
11863 * If subarray index is not set then check whole container.
11864 * Returns:
11865 * 0 - no error occurred
11866 * 1 - error detected
11867 */
11868 static int imsm_fix_size_mismatch(struct supertype *st, int subarray_index)
11869 {
11870 struct intel_super *super = st->sb;
11871 int tmp = super->current_vol;
11872 int ret_val = 1;
11873 int i;
11874
11875 for (i = 0; i < super->anchor->num_raid_devs; i++) {
11876 if (subarray_index >= 0 && i != subarray_index)
11877 continue;
11878 super->current_vol = i;
11879 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
11880 struct imsm_map *map = get_imsm_map(dev, MAP_0);
11881 unsigned int disc_count = imsm_num_data_members(map);
11882 struct geo_params geo;
11883 struct imsm_update_size_change *update;
11884 unsigned long long calc_size = per_dev_array_size(map) * disc_count;
11885 unsigned long long d_size = imsm_dev_size(dev);
11886 int u_size;
11887
11888 if (calc_size == d_size)
11889 continue;
11890
11891 /* There is a difference, confirm that imsm_dev_size is
11892 * smaller and push update.
11893 */
11894 if (d_size > calc_size) {
11895 pr_err("imsm: dev size of subarray %d is incorrect\n",
11896 i);
11897 goto exit;
11898 }
11899 memset(&geo, 0, sizeof(struct geo_params));
11900 geo.size = d_size;
11901 u_size = imsm_create_metadata_update_for_size_change(st, &geo,
11902 &update);
11903 imsm_update_metadata_locally(st, update, u_size);
11904 if (st->update_tail) {
11905 append_metadata_update(st, update, u_size);
11906 flush_metadata_updates(st);
11907 st->update_tail = &st->updates;
11908 } else {
11909 imsm_sync_metadata(st);
11910 free(update);
11911 }
11912 }
11913 ret_val = 0;
11914 exit:
11915 super->current_vol = tmp;
11916 return ret_val;
11917 }
11918
11919 static int imsm_reshape_super(struct supertype *st, unsigned long long size,
11920 int level,
11921 int layout, int chunksize, int raid_disks,
11922 int delta_disks, char *backup, char *dev,
11923 int direction, int verbose)
11924 {
11925 int ret_val = 1;
11926 struct geo_params geo;
11927
11928 dprintf("(enter)\n");
11929
11930 memset(&geo, 0, sizeof(struct geo_params));
11931
11932 geo.dev_name = dev;
11933 strcpy(geo.devnm, st->devnm);
11934 geo.size = size;
11935 geo.level = level;
11936 geo.layout = layout;
11937 geo.chunksize = chunksize;
11938 geo.raid_disks = raid_disks;
11939 if (delta_disks != UnSet)
11940 geo.raid_disks += delta_disks;
11941
11942 dprintf("for level : %i\n", geo.level);
11943 dprintf("for raid_disks : %i\n", geo.raid_disks);
11944
11945 if (strcmp(st->container_devnm, st->devnm) == 0) {
11946 /* On container level we can only increase number of devices. */
11947 dprintf("imsm: info: Container operation\n");
11948 int old_raid_disks = 0;
11949
11950 if (imsm_reshape_is_allowed_on_container(
11951 st, &geo, &old_raid_disks, direction)) {
11952 struct imsm_update_reshape *u = NULL;
11953 int len;
11954
11955 if (imsm_fix_size_mismatch(st, -1)) {
11956 dprintf("imsm: Cannot fix size mismatch\n");
11957 goto exit_imsm_reshape_super;
11958 }
11959
11960 len = imsm_create_metadata_update_for_reshape(
11961 st, &geo, old_raid_disks, &u);
11962
11963 if (len <= 0) {
11964 dprintf("imsm: Cannot prepare update\n");
11965 goto exit_imsm_reshape_super;
11966 }
11967
11968 ret_val = 0;
11969 /* update metadata locally */
11970 imsm_update_metadata_locally(st, u, len);
11971 /* and possibly remotely */
11972 if (st->update_tail)
11973 append_metadata_update(st, u, len);
11974 else
11975 free(u);
11976
11977 } else {
11978 pr_err("(imsm) Operation is not allowed on this container\n");
11979 }
11980 } else {
11981 /* On volume level we support following operations
11982 * - takeover: raid10 -> raid0; raid0 -> raid10
11983 * - chunk size migration
11984 * - migration: raid5 -> raid0; raid0 -> raid5
11985 */
11986 struct intel_super *super = st->sb;
11987 struct intel_dev *dev = super->devlist;
11988 int change;
11989 dprintf("imsm: info: Volume operation\n");
11990 /* find requested device */
11991 while (dev) {
11992 char *devnm =
11993 imsm_find_array_devnm_by_subdev(
11994 dev->index, st->container_devnm);
11995 if (devnm && strcmp(devnm, geo.devnm) == 0)
11996 break;
11997 dev = dev->next;
11998 }
11999 if (dev == NULL) {
12000 pr_err("Cannot find %s (%s) subarray\n",
12001 geo.dev_name, geo.devnm);
12002 goto exit_imsm_reshape_super;
12003 }
12004 super->current_vol = dev->index;
12005 change = imsm_analyze_change(st, &geo, direction);
12006 switch (change) {
12007 case CH_TAKEOVER:
12008 ret_val = imsm_takeover(st, &geo);
12009 break;
12010 case CH_MIGRATION: {
12011 struct imsm_update_reshape_migration *u = NULL;
12012 int len =
12013 imsm_create_metadata_update_for_migration(
12014 st, &geo, &u);
12015 if (len < 1) {
12016 dprintf("imsm: Cannot prepare update\n");
12017 break;
12018 }
12019 ret_val = 0;
12020 /* update metadata locally */
12021 imsm_update_metadata_locally(st, u, len);
12022 /* and possibly remotely */
12023 if (st->update_tail)
12024 append_metadata_update(st, u, len);
12025 else
12026 free(u);
12027 }
12028 break;
12029 case CH_ARRAY_SIZE: {
12030 struct imsm_update_size_change *u = NULL;
12031 int len =
12032 imsm_create_metadata_update_for_size_change(
12033 st, &geo, &u);
12034 if (len < 1) {
12035 dprintf("imsm: Cannot prepare update\n");
12036 break;
12037 }
12038 ret_val = 0;
12039 /* update metadata locally */
12040 imsm_update_metadata_locally(st, u, len);
12041 /* and possibly remotely */
12042 if (st->update_tail)
12043 append_metadata_update(st, u, len);
12044 else
12045 free(u);
12046 }
12047 break;
12048 default:
12049 ret_val = 1;
12050 }
12051 }
12052
12053 exit_imsm_reshape_super:
12054 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
12055 return ret_val;
12056 }
12057
12058 #define COMPLETED_OK 0
12059 #define COMPLETED_NONE 1
12060 #define COMPLETED_DELAYED 2
12061
12062 static int read_completed(int fd, unsigned long long *val)
12063 {
12064 int ret;
12065 char buf[SYSFS_MAX_BUF_SIZE];
12066
12067 ret = sysfs_fd_get_str(fd, buf, sizeof(buf));
12068 if (ret < 0)
12069 return ret;
12070
12071 ret = COMPLETED_OK;
12072 if (str_is_none(buf) == true) {
12073 ret = COMPLETED_NONE;
12074 } else if (strncmp(buf, "delayed", 7) == 0) {
12075 ret = COMPLETED_DELAYED;
12076 } else {
12077 char *ep;
12078 *val = strtoull(buf, &ep, 0);
12079 if (ep == buf || (*ep != 0 && *ep != '\n' && *ep != ' '))
12080 ret = -1;
12081 }
12082 return ret;
12083 }
12084
12085 /*******************************************************************************
12086 * Function: wait_for_reshape_imsm
12087 * Description: Function writes new sync_max value and waits until
12088 * reshape process reach new position
12089 * Parameters:
12090 * sra : general array info
12091 * ndata : number of disks in new array's layout
12092 * Returns:
12093 * 0 : success,
12094 * 1 : there is no reshape in progress,
12095 * -1 : fail
12096 ******************************************************************************/
12097 int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
12098 {
12099 int fd = sysfs_get_fd(sra, NULL, "sync_completed");
12100 int retry = 3;
12101 unsigned long long completed;
12102 /* to_complete : new sync_max position */
12103 unsigned long long to_complete = sra->reshape_progress;
12104 unsigned long long position_to_set = to_complete / ndata;
12105
12106 if (!is_fd_valid(fd)) {
12107 dprintf("cannot open reshape_position\n");
12108 return 1;
12109 }
12110
12111 do {
12112 if (sysfs_fd_get_ll(fd, &completed) < 0) {
12113 if (!retry) {
12114 dprintf("cannot read reshape_position (no reshape in progres)\n");
12115 close(fd);
12116 return 1;
12117 }
12118 sleep_for(0, MSEC_TO_NSEC(30), true);
12119 } else
12120 break;
12121 } while (retry--);
12122
12123 if (completed > position_to_set) {
12124 dprintf("wrong next position to set %llu (%llu)\n",
12125 to_complete, position_to_set);
12126 close(fd);
12127 return -1;
12128 }
12129 dprintf("Position set: %llu\n", position_to_set);
12130 if (sysfs_set_num(sra, NULL, "sync_max",
12131 position_to_set) != 0) {
12132 dprintf("cannot set reshape position to %llu\n",
12133 position_to_set);
12134 close(fd);
12135 return -1;
12136 }
12137
12138 do {
12139 int rc;
12140 char action[SYSFS_MAX_BUF_SIZE];
12141 int timeout = 3000;
12142
12143 sysfs_wait(fd, &timeout);
12144 if (sysfs_get_str(sra, NULL, "sync_action",
12145 action, sizeof(action)) > 0 &&
12146 strncmp(action, "reshape", 7) != 0) {
12147 if (strncmp(action, "idle", 4) == 0)
12148 break;
12149 close(fd);
12150 return -1;
12151 }
12152
12153 rc = read_completed(fd, &completed);
12154 if (rc < 0) {
12155 dprintf("cannot read reshape_position (in loop)\n");
12156 close(fd);
12157 return 1;
12158 } else if (rc == COMPLETED_NONE)
12159 break;
12160 } while (completed < position_to_set);
12161
12162 close(fd);
12163 return 0;
12164 }
12165
12166 /*******************************************************************************
12167 * Function: check_degradation_change
12168 * Description: Check that array hasn't become failed.
12169 * Parameters:
12170 * info : for sysfs access
12171 * sources : source disks descriptors
12172 * degraded: previous degradation level
12173 * Returns:
12174 * degradation level
12175 ******************************************************************************/
12176 int check_degradation_change(struct mdinfo *info,
12177 int *sources,
12178 int degraded)
12179 {
12180 unsigned long long new_degraded;
12181 int rv;
12182
12183 rv = sysfs_get_ll(info, NULL, "degraded", &new_degraded);
12184 if (rv == -1 || (new_degraded != (unsigned long long)degraded)) {
12185 /* check each device to ensure it is still working */
12186 struct mdinfo *sd;
12187 new_degraded = 0;
12188 for (sd = info->devs ; sd ; sd = sd->next) {
12189 if (sd->disk.state & (1<<MD_DISK_FAULTY))
12190 continue;
12191 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
12192 char sbuf[SYSFS_MAX_BUF_SIZE];
12193 int raid_disk = sd->disk.raid_disk;
12194
12195 if (sysfs_get_str(info,
12196 sd, "state", sbuf, sizeof(sbuf)) < 0 ||
12197 strstr(sbuf, "faulty") ||
12198 strstr(sbuf, "in_sync") == NULL) {
12199 /* this device is dead */
12200 sd->disk.state = (1<<MD_DISK_FAULTY);
12201 if (raid_disk >= 0)
12202 close_fd(&sources[raid_disk]);
12203 new_degraded++;
12204 }
12205 }
12206 }
12207 }
12208
12209 return new_degraded;
12210 }
12211
12212 /*******************************************************************************
12213 * Function: imsm_manage_reshape
12214 * Description: Function finds array under reshape and it manages reshape
12215 * process. It creates stripes backups (if required) and sets
12216 * checkpoints.
12217 * Parameters:
12218 * afd : Backup handle (nattive) - not used
12219 * sra : general array info
12220 * reshape : reshape parameters - not used
12221 * st : supertype structure
12222 * blocks : size of critical section [blocks]
12223 * fds : table of source device descriptor
12224 * offsets : start of array (offest per devices)
12225 * dests : not used
12226 * destfd : table of destination device descriptor
12227 * destoffsets : table of destination offsets (per device)
12228 * Returns:
12229 * 1 : success, reshape is done
12230 * 0 : fail
12231 ******************************************************************************/
12232 static int imsm_manage_reshape(
12233 int afd, struct mdinfo *sra, struct reshape *reshape,
12234 struct supertype *st, unsigned long backup_blocks,
12235 int *fds, unsigned long long *offsets,
12236 int dests, int *destfd, unsigned long long *destoffsets)
12237 {
12238 int ret_val = 0;
12239 struct intel_super *super = st->sb;
12240 struct intel_dev *dv;
12241 unsigned int sector_size = super->sector_size;
12242 struct imsm_dev *dev = NULL;
12243 struct imsm_map *map_src, *map_dest;
12244 int migr_vol_qan = 0;
12245 int ndata, odata; /* [bytes] */
12246 int chunk; /* [bytes] */
12247 struct migr_record *migr_rec;
12248 char *buf = NULL;
12249 unsigned int buf_size; /* [bytes] */
12250 unsigned long long max_position; /* array size [bytes] */
12251 unsigned long long next_step; /* [blocks]/[bytes] */
12252 unsigned long long old_data_stripe_length;
12253 unsigned long long start_src; /* [bytes] */
12254 unsigned long long start; /* [bytes] */
12255 unsigned long long start_buf_shift; /* [bytes] */
12256 int degraded = 0;
12257 int source_layout = 0;
12258 int subarray_index = -1;
12259
12260 if (!sra)
12261 return ret_val;
12262
12263 if (!fds || !offsets)
12264 goto abort;
12265
12266 /* Find volume during the reshape */
12267 for (dv = super->devlist; dv; dv = dv->next) {
12268 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR &&
12269 dv->dev->vol.migr_state == 1) {
12270 dev = dv->dev;
12271 migr_vol_qan++;
12272 subarray_index = dv->index;
12273 }
12274 }
12275 /* Only one volume can migrate at the same time */
12276 if (migr_vol_qan != 1) {
12277 pr_err("%s", migr_vol_qan ?
12278 "Number of migrating volumes greater than 1\n" :
12279 "There is no volume during migrationg\n");
12280 goto abort;
12281 }
12282
12283 map_dest = get_imsm_map(dev, MAP_0);
12284 map_src = get_imsm_map(dev, MAP_1);
12285 if (map_src == NULL)
12286 goto abort;
12287
12288 ndata = imsm_num_data_members(map_dest);
12289 odata = imsm_num_data_members(map_src);
12290
12291 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
12292 old_data_stripe_length = odata * chunk;
12293
12294 migr_rec = super->migr_rec;
12295
12296 /* initialize migration record for start condition */
12297 if (sra->reshape_progress == 0)
12298 init_migr_record_imsm(st, dev, sra);
12299 else {
12300 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
12301 dprintf("imsm: cannot restart migration when data are present in copy area.\n");
12302 goto abort;
12303 }
12304 /* Save checkpoint to update migration record for current
12305 * reshape position (in md). It can be farther than current
12306 * reshape position in metadata.
12307 */
12308 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
12309 /* ignore error == 2, this can mean end of reshape here
12310 */
12311 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL, initial save)\n");
12312 goto abort;
12313 }
12314 }
12315
12316 /* size for data */
12317 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
12318 /* extend buffer size for parity disk */
12319 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
12320 /* add space for stripe alignment */
12321 buf_size += old_data_stripe_length;
12322 if (posix_memalign((void **)&buf, MAX_SECTOR_SIZE, buf_size)) {
12323 dprintf("imsm: Cannot allocate checkpoint buffer\n");
12324 goto abort;
12325 }
12326
12327 max_position = sra->component_size * ndata;
12328 source_layout = imsm_level_to_layout(map_src->raid_level);
12329
12330 while (current_migr_unit(migr_rec) <
12331 get_num_migr_units(migr_rec)) {
12332 /* current reshape position [blocks] */
12333 unsigned long long current_position =
12334 __le32_to_cpu(migr_rec->blocks_per_unit)
12335 * current_migr_unit(migr_rec);
12336 unsigned long long border;
12337
12338 /* Check that array hasn't become failed.
12339 */
12340 degraded = check_degradation_change(sra, fds, degraded);
12341 if (degraded > 1) {
12342 dprintf("imsm: Abort reshape due to degradation level (%i)\n", degraded);
12343 goto abort;
12344 }
12345
12346 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
12347
12348 if ((current_position + next_step) > max_position)
12349 next_step = max_position - current_position;
12350
12351 start = current_position * 512;
12352
12353 /* align reading start to old geometry */
12354 start_buf_shift = start % old_data_stripe_length;
12355 start_src = start - start_buf_shift;
12356
12357 border = (start_src / odata) - (start / ndata);
12358 border /= 512;
12359 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
12360 /* save critical stripes to buf
12361 * start - start address of current unit
12362 * to backup [bytes]
12363 * start_src - start address of current unit
12364 * to backup alligned to source array
12365 * [bytes]
12366 */
12367 unsigned long long next_step_filler;
12368 unsigned long long copy_length = next_step * 512;
12369
12370 /* allign copy area length to stripe in old geometry */
12371 next_step_filler = ((copy_length + start_buf_shift)
12372 % old_data_stripe_length);
12373 if (next_step_filler)
12374 next_step_filler = (old_data_stripe_length
12375 - next_step_filler);
12376 dprintf("save_stripes() parameters: start = %llu,\tstart_src = %llu,\tnext_step*512 = %llu,\tstart_in_buf_shift = %llu,\tnext_step_filler = %llu\n",
12377 start, start_src, copy_length,
12378 start_buf_shift, next_step_filler);
12379
12380 if (save_stripes(fds, offsets, map_src->num_members,
12381 chunk, map_src->raid_level,
12382 source_layout, 0, NULL, start_src,
12383 copy_length +
12384 next_step_filler + start_buf_shift,
12385 buf)) {
12386 dprintf("imsm: Cannot save stripes to buffer\n");
12387 goto abort;
12388 }
12389 /* Convert data to destination format and store it
12390 * in backup general migration area
12391 */
12392 if (save_backup_imsm(st, dev, sra,
12393 buf + start_buf_shift, copy_length)) {
12394 dprintf("imsm: Cannot save stripes to target devices\n");
12395 goto abort;
12396 }
12397 if (save_checkpoint_imsm(st, sra,
12398 UNIT_SRC_IN_CP_AREA)) {
12399 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_IN_CP_AREA)\n");
12400 goto abort;
12401 }
12402 } else {
12403 /* set next step to use whole border area */
12404 border /= next_step;
12405 if (border > 1)
12406 next_step *= border;
12407 }
12408 /* When data backed up, checkpoint stored,
12409 * kick the kernel to reshape unit of data
12410 */
12411 next_step = next_step + sra->reshape_progress;
12412 /* limit next step to array max position */
12413 if (next_step > max_position)
12414 next_step = max_position;
12415 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
12416 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
12417 sra->reshape_progress = next_step;
12418
12419 /* wait until reshape finish */
12420 if (wait_for_reshape_imsm(sra, ndata)) {
12421 dprintf("wait_for_reshape_imsm returned error!\n");
12422 goto abort;
12423 }
12424 if (sigterm)
12425 goto abort;
12426
12427 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
12428 /* ignore error == 2, this can mean end of reshape here
12429 */
12430 dprintf("imsm: Cannot write checkpoint to migration record (UNIT_SRC_NORMAL)\n");
12431 goto abort;
12432 }
12433
12434 }
12435
12436 /* clear migr_rec on disks after successful migration */
12437 struct dl *d;
12438
12439 memset(super->migr_rec_buf, 0, MIGR_REC_BUF_SECTORS*MAX_SECTOR_SIZE);
12440 for (d = super->disks; d; d = d->next) {
12441 if (d->index < 0 || is_failed(&d->disk))
12442 continue;
12443 unsigned long long dsize;
12444
12445 get_dev_size(d->fd, NULL, &dsize);
12446 if (lseek64(d->fd, dsize - MIGR_REC_SECTOR_POSITION*sector_size,
12447 SEEK_SET) >= 0) {
12448 if ((unsigned int)write(d->fd, super->migr_rec_buf,
12449 MIGR_REC_BUF_SECTORS*sector_size) !=
12450 MIGR_REC_BUF_SECTORS*sector_size)
12451 perror("Write migr_rec failed");
12452 }
12453 }
12454
12455 /* return '1' if done */
12456 ret_val = 1;
12457
12458 /* After the reshape eliminate size mismatch in metadata.
12459 * Don't update md/component_size here, volume hasn't
12460 * to take whole space. It is allowed by kernel.
12461 * md/component_size will be set propoperly after next assembly.
12462 */
12463 imsm_fix_size_mismatch(st, subarray_index);
12464
12465 abort:
12466 free(buf);
12467 /* See Grow.c: abort_reshape() for further explanation */
12468 sysfs_set_num(sra, NULL, "suspend_lo", 0x7FFFFFFFFFFFFFFFULL);
12469 sysfs_set_num(sra, NULL, "suspend_hi", 0);
12470 sysfs_set_num(sra, NULL, "suspend_lo", 0);
12471
12472 return ret_val;
12473 }
12474
12475 /*******************************************************************************
12476 * Function: calculate_bitmap_min_chunksize
12477 * Description: Calculates the minimal valid bitmap chunk size
12478 * Parameters:
12479 * max_bits : indicate how many bits can be used for the bitmap
12480 * data_area_size : the size of the data area covered by the bitmap
12481 *
12482 * Returns:
12483 * The bitmap chunk size
12484 ******************************************************************************/
12485 static unsigned long long
12486 calculate_bitmap_min_chunksize(unsigned long long max_bits,
12487 unsigned long long data_area_size)
12488 {
12489 unsigned long long min_chunk =
12490 4096; /* sub-page chunks don't work yet.. */
12491 unsigned long long bits = data_area_size / min_chunk + 1;
12492
12493 while (bits > max_bits) {
12494 min_chunk *= 2;
12495 bits = (bits + 1) / 2;
12496 }
12497 return min_chunk;
12498 }
12499
12500 /*******************************************************************************
12501 * Function: calculate_bitmap_chunksize
12502 * Description: Calculates the bitmap chunk size for the given device
12503 * Parameters:
12504 * st : supertype information
12505 * dev : device for the bitmap
12506 *
12507 * Returns:
12508 * The bitmap chunk size
12509 ******************************************************************************/
12510 static unsigned long long calculate_bitmap_chunksize(struct supertype *st,
12511 struct imsm_dev *dev)
12512 {
12513 struct intel_super *super = st->sb;
12514 unsigned long long min_chunksize;
12515 unsigned long long result = IMSM_DEFAULT_BITMAP_CHUNKSIZE;
12516 size_t dev_size = imsm_dev_size(dev);
12517
12518 min_chunksize = calculate_bitmap_min_chunksize(
12519 IMSM_BITMAP_AREA_SIZE * super->sector_size, dev_size);
12520
12521 if (result < min_chunksize)
12522 result = min_chunksize;
12523
12524 return result;
12525 }
12526
12527 /*******************************************************************************
12528 * Function: init_bitmap_header
12529 * Description: Initialize the bitmap header structure
12530 * Parameters:
12531 * st : supertype information
12532 * bms : bitmap header struct to initialize
12533 * dev : device for the bitmap
12534 *
12535 * Returns:
12536 * 0 : success
12537 * -1 : fail
12538 ******************************************************************************/
12539 static int init_bitmap_header(struct supertype *st, struct bitmap_super_s *bms,
12540 struct imsm_dev *dev)
12541 {
12542 int vol_uuid[4];
12543
12544 if (!bms || !dev)
12545 return -1;
12546
12547 bms->magic = __cpu_to_le32(BITMAP_MAGIC);
12548 bms->version = __cpu_to_le32(BITMAP_MAJOR_HI);
12549 bms->daemon_sleep = __cpu_to_le32(IMSM_DEFAULT_BITMAP_DAEMON_SLEEP);
12550 bms->sync_size = __cpu_to_le64(IMSM_BITMAP_AREA_SIZE);
12551 bms->write_behind = __cpu_to_le32(0);
12552
12553 uuid_from_super_imsm(st, vol_uuid);
12554 memcpy(bms->uuid, vol_uuid, 16);
12555
12556 bms->chunksize = calculate_bitmap_chunksize(st, dev);
12557
12558 return 0;
12559 }
12560
12561 /*******************************************************************************
12562 * Function: validate_internal_bitmap_for_drive
12563 * Description: Verify if the bitmap header for a given drive.
12564 * Parameters:
12565 * st : supertype information
12566 * offset : The offset from the beginning of the drive where to look for
12567 * the bitmap header.
12568 * d : the drive info
12569 *
12570 * Returns:
12571 * 0 : success
12572 * -1 : fail
12573 ******************************************************************************/
12574 static int validate_internal_bitmap_for_drive(struct supertype *st,
12575 unsigned long long offset,
12576 struct dl *d)
12577 {
12578 struct intel_super *super = st->sb;
12579 int ret = -1;
12580 int vol_uuid[4];
12581 bitmap_super_t *bms;
12582 int fd;
12583
12584 if (!d)
12585 return -1;
12586
12587 void *read_buf;
12588
12589 if (posix_memalign(&read_buf, MAX_SECTOR_SIZE, IMSM_BITMAP_HEADER_SIZE))
12590 return -1;
12591
12592 fd = d->fd;
12593 if (!is_fd_valid(fd)) {
12594 fd = open(d->devname, O_RDONLY, 0);
12595
12596 if (!is_fd_valid(fd)) {
12597 dprintf("cannot open the device %s\n", d->devname);
12598 goto abort;
12599 }
12600 }
12601
12602 if (lseek64(fd, offset * super->sector_size, SEEK_SET) < 0)
12603 goto abort;
12604 if (read(fd, read_buf, IMSM_BITMAP_HEADER_SIZE) !=
12605 IMSM_BITMAP_HEADER_SIZE)
12606 goto abort;
12607
12608 uuid_from_super_imsm(st, vol_uuid);
12609
12610 bms = read_buf;
12611 if ((bms->magic != __cpu_to_le32(BITMAP_MAGIC)) ||
12612 (bms->version != __cpu_to_le32(BITMAP_MAJOR_HI)) ||
12613 (!same_uuid((int *)bms->uuid, vol_uuid, st->ss->swapuuid))) {
12614 dprintf("wrong bitmap header detected\n");
12615 goto abort;
12616 }
12617
12618 ret = 0;
12619 abort:
12620 if (!is_fd_valid(d->fd))
12621 close_fd(&fd);
12622
12623 if (read_buf)
12624 free(read_buf);
12625
12626 return ret;
12627 }
12628
12629 /*******************************************************************************
12630 * Function: validate_internal_bitmap_imsm
12631 * Description: Verify if the bitmap header is in place and with proper data.
12632 * Parameters:
12633 * st : supertype information
12634 *
12635 * Returns:
12636 * 0 : success or device w/o RWH_BITMAP
12637 * -1 : fail
12638 ******************************************************************************/
12639 static int validate_internal_bitmap_imsm(struct supertype *st)
12640 {
12641 struct intel_super *super = st->sb;
12642 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
12643 unsigned long long offset;
12644 struct dl *d;
12645
12646 if (dev->rwh_policy != RWH_BITMAP)
12647 return 0;
12648
12649 offset = get_bitmap_header_sector(super, super->current_vol);
12650 for (d = super->disks; d; d = d->next) {
12651 if (d->index < 0 || is_failed(&d->disk))
12652 continue;
12653
12654 if (validate_internal_bitmap_for_drive(st, offset, d)) {
12655 pr_err("imsm: bitmap validation failed\n");
12656 return -1;
12657 }
12658 }
12659 return 0;
12660 }
12661
12662 /*******************************************************************************
12663 * Function: add_internal_bitmap_imsm
12664 * Description: Mark the volume to use the bitmap and updates the chunk size value.
12665 * Parameters:
12666 * st : supertype information
12667 * chunkp : bitmap chunk size
12668 * delay : not used for imsm
12669 * write_behind : not used for imsm
12670 * size : not used for imsm
12671 * may_change : not used for imsm
12672 * amajor : not used for imsm
12673 *
12674 * Returns:
12675 * 0 : success
12676 * -1 : fail
12677 ******************************************************************************/
12678 static int add_internal_bitmap_imsm(struct supertype *st, int *chunkp,
12679 int delay, int write_behind,
12680 unsigned long long size, int may_change,
12681 int amajor)
12682 {
12683 struct intel_super *super = st->sb;
12684 int vol_idx = super->current_vol;
12685 struct imsm_dev *dev;
12686
12687 if (!super->devlist || vol_idx == -1 || !chunkp)
12688 return -1;
12689
12690 dev = get_imsm_dev(super, vol_idx);
12691 dev->rwh_policy = RWH_BITMAP;
12692 *chunkp = calculate_bitmap_chunksize(st, dev);
12693 return 0;
12694 }
12695
12696 /*******************************************************************************
12697 * Function: locate_bitmap_imsm
12698 * Description: Seek 'fd' to start of write-intent-bitmap.
12699 * Parameters:
12700 * st : supertype information
12701 * fd : file descriptor for the device
12702 * node_num : not used for imsm
12703 *
12704 * Returns:
12705 * 0 : success
12706 * -1 : fail
12707 ******************************************************************************/
12708 static int locate_bitmap_imsm(struct supertype *st, int fd, int node_num)
12709 {
12710 struct intel_super *super = st->sb;
12711 unsigned long long offset;
12712 int vol_idx = super->current_vol;
12713
12714 if (!super->devlist || vol_idx == -1)
12715 return -1;
12716
12717 offset = get_bitmap_header_sector(super, super->current_vol);
12718 dprintf("bitmap header offset is %llu\n", offset);
12719
12720 lseek64(fd, offset << 9, 0);
12721
12722 return 0;
12723 }
12724
12725 /*******************************************************************************
12726 * Function: write_init_bitmap_imsm
12727 * Description: Write a bitmap header and prepares the area for the bitmap.
12728 * Parameters:
12729 * st : supertype information
12730 * fd : file descriptor for the device
12731 * update : not used for imsm
12732 *
12733 * Returns:
12734 * 0 : success
12735 * -1 : fail
12736 ******************************************************************************/
12737 static int write_init_bitmap_imsm(struct supertype *st, int fd,
12738 enum bitmap_update update)
12739 {
12740 struct intel_super *super = st->sb;
12741 int vol_idx = super->current_vol;
12742 int ret = 0;
12743 unsigned long long offset;
12744 bitmap_super_t bms = { 0 };
12745 size_t written = 0;
12746 size_t to_write;
12747 ssize_t rv_num;
12748 void *buf;
12749
12750 if (!super->devlist || !super->sector_size || vol_idx == -1)
12751 return -1;
12752
12753 struct imsm_dev *dev = get_imsm_dev(super, vol_idx);
12754
12755 /* first clear the space for bitmap header */
12756 unsigned long long bitmap_area_start =
12757 get_bitmap_header_sector(super, vol_idx);
12758
12759 dprintf("zeroing area start (%llu) and size (%u)\n", bitmap_area_start,
12760 IMSM_BITMAP_AND_HEADER_SIZE / super->sector_size);
12761 if (zero_disk_range(fd, bitmap_area_start,
12762 IMSM_BITMAP_HEADER_SIZE / super->sector_size)) {
12763 pr_err("imsm: cannot zeroing the space for the bitmap\n");
12764 return -1;
12765 }
12766
12767 /* The bitmap area should be filled with "1"s to perform initial
12768 * synchronization.
12769 */
12770 if (posix_memalign(&buf, MAX_SECTOR_SIZE, MAX_SECTOR_SIZE))
12771 return -1;
12772 memset(buf, 0xFF, MAX_SECTOR_SIZE);
12773 offset = get_bitmap_sector(super, vol_idx);
12774 lseek64(fd, offset << 9, 0);
12775 while (written < IMSM_BITMAP_AREA_SIZE) {
12776 to_write = IMSM_BITMAP_AREA_SIZE - written;
12777 if (to_write > MAX_SECTOR_SIZE)
12778 to_write = MAX_SECTOR_SIZE;
12779 rv_num = write(fd, buf, MAX_SECTOR_SIZE);
12780 if (rv_num != MAX_SECTOR_SIZE) {
12781 ret = -1;
12782 dprintf("cannot initialize bitmap area\n");
12783 goto abort;
12784 }
12785 written += rv_num;
12786 }
12787
12788 /* write a bitmap header */
12789 init_bitmap_header(st, &bms, dev);
12790 memset(buf, 0, MAX_SECTOR_SIZE);
12791 memcpy(buf, &bms, sizeof(bitmap_super_t));
12792 if (locate_bitmap_imsm(st, fd, 0)) {
12793 ret = -1;
12794 dprintf("cannot locate the bitmap\n");
12795 goto abort;
12796 }
12797 if (write(fd, buf, MAX_SECTOR_SIZE) != MAX_SECTOR_SIZE) {
12798 ret = -1;
12799 dprintf("cannot write the bitmap header\n");
12800 goto abort;
12801 }
12802 fsync(fd);
12803
12804 abort:
12805 free(buf);
12806
12807 return ret;
12808 }
12809
12810 /*******************************************************************************
12811 * Function: is_vol_to_setup_bitmap
12812 * Description: Checks if a bitmap should be activated on the dev.
12813 * Parameters:
12814 * info : info about the volume to setup the bitmap
12815 * dev : the device to check against bitmap creation
12816 *
12817 * Returns:
12818 * 0 : bitmap should be set up on the device
12819 * -1 : otherwise
12820 ******************************************************************************/
12821 static int is_vol_to_setup_bitmap(struct mdinfo *info, struct imsm_dev *dev)
12822 {
12823 if (!dev || !info)
12824 return -1;
12825
12826 if ((strcmp((char *)dev->volume, info->name) == 0) &&
12827 (dev->rwh_policy == RWH_BITMAP))
12828 return -1;
12829
12830 return 0;
12831 }
12832
12833 /*******************************************************************************
12834 * Function: set_bitmap_sysfs
12835 * Description: Set the sysfs atributes of a given volume to activate the bitmap.
12836 * Parameters:
12837 * info : info about the volume where the bitmap should be setup
12838 * chunksize : bitmap chunk size
12839 * location : location of the bitmap
12840 *
12841 * Returns:
12842 * 0 : success
12843 * -1 : fail
12844 ******************************************************************************/
12845 static int set_bitmap_sysfs(struct mdinfo *info, unsigned long long chunksize,
12846 char *location)
12847 {
12848 /* The bitmap/metadata is set to external to allow changing of value for
12849 * bitmap/location. When external is used, the kernel will treat an offset
12850 * related to the device's first lba (in opposition to the "internal" case
12851 * when this value is related to the beginning of the superblock).
12852 */
12853 if (sysfs_set_str(info, NULL, "bitmap/metadata", "external")) {
12854 dprintf("failed to set bitmap/metadata\n");
12855 return -1;
12856 }
12857
12858 /* It can only be changed when no bitmap is active.
12859 * Should be bigger than 512 and must be power of 2.
12860 * It is expecting the value in bytes.
12861 */
12862 if (sysfs_set_num(info, NULL, "bitmap/chunksize",
12863 __cpu_to_le32(chunksize))) {
12864 dprintf("failed to set bitmap/chunksize\n");
12865 return -1;
12866 }
12867
12868 /* It is expecting the value in sectors. */
12869 if (sysfs_set_num(info, NULL, "bitmap/space",
12870 __cpu_to_le64(IMSM_BITMAP_AREA_SIZE))) {
12871 dprintf("failed to set bitmap/space\n");
12872 return -1;
12873 }
12874
12875 /* Determines the delay between the bitmap updates.
12876 * It is expecting the value in seconds.
12877 */
12878 if (sysfs_set_num(info, NULL, "bitmap/time_base",
12879 __cpu_to_le64(IMSM_DEFAULT_BITMAP_DAEMON_SLEEP))) {
12880 dprintf("failed to set bitmap/time_base\n");
12881 return -1;
12882 }
12883
12884 /* It is expecting the value in sectors with a sign at the beginning. */
12885 if (sysfs_set_str(info, NULL, "bitmap/location", location)) {
12886 dprintf("failed to set bitmap/location\n");
12887 return -1;
12888 }
12889
12890 return 0;
12891 }
12892
12893 /*******************************************************************************
12894 * Function: set_bitmap_imsm
12895 * Description: Setup the bitmap for the given volume
12896 * Parameters:
12897 * st : supertype information
12898 * info : info about the volume where the bitmap should be setup
12899 *
12900 * Returns:
12901 * 0 : success
12902 * -1 : fail
12903 ******************************************************************************/
12904 static int set_bitmap_imsm(struct supertype *st, struct mdinfo *info)
12905 {
12906 struct intel_super *super = st->sb;
12907 int prev_current_vol = super->current_vol;
12908 struct imsm_dev *dev;
12909 int ret = -1;
12910 char location[16] = "";
12911 unsigned long long chunksize;
12912 struct intel_dev *dev_it;
12913
12914 for (dev_it = super->devlist; dev_it; dev_it = dev_it->next) {
12915 super->current_vol = dev_it->index;
12916 dev = get_imsm_dev(super, super->current_vol);
12917
12918 if (is_vol_to_setup_bitmap(info, dev)) {
12919 if (validate_internal_bitmap_imsm(st)) {
12920 dprintf("bitmap header validation failed\n");
12921 goto abort;
12922 }
12923
12924 chunksize = calculate_bitmap_chunksize(st, dev);
12925 dprintf("chunk size is %llu\n", chunksize);
12926
12927 snprintf(location, sizeof(location), "+%llu",
12928 get_bitmap_sector(super, super->current_vol));
12929 dprintf("bitmap offset is %s\n", location);
12930
12931 if (set_bitmap_sysfs(info, chunksize, location)) {
12932 dprintf("cannot setup the bitmap\n");
12933 goto abort;
12934 }
12935 }
12936 }
12937 ret = 0;
12938 abort:
12939 super->current_vol = prev_current_vol;
12940 return ret;
12941 }
12942
12943 struct superswitch super_imsm = {
12944 .examine_super = examine_super_imsm,
12945 .brief_examine_super = brief_examine_super_imsm,
12946 .brief_examine_subarrays = brief_examine_subarrays_imsm,
12947 .export_examine_super = export_examine_super_imsm,
12948 .detail_super = detail_super_imsm,
12949 .brief_detail_super = brief_detail_super_imsm,
12950 .write_init_super = write_init_super_imsm,
12951 .validate_geometry = validate_geometry_imsm,
12952 .add_to_super = add_to_super_imsm,
12953 .remove_from_super = remove_from_super_imsm,
12954 .detail_platform = detail_platform_imsm,
12955 .export_detail_platform = export_detail_platform_imsm,
12956 .kill_subarray = kill_subarray_imsm,
12957 .update_subarray = update_subarray_imsm,
12958 .load_container = load_container_imsm,
12959 .default_geometry = default_geometry_imsm,
12960 .get_disk_controller_domain = imsm_get_disk_controller_domain,
12961 .reshape_super = imsm_reshape_super,
12962 .manage_reshape = imsm_manage_reshape,
12963 .recover_backup = recover_backup_imsm,
12964 .examine_badblocks = examine_badblocks_imsm,
12965 .match_home = match_home_imsm,
12966 .uuid_from_super= uuid_from_super_imsm,
12967 .getinfo_super = getinfo_super_imsm,
12968 .getinfo_super_disks = getinfo_super_disks_imsm,
12969 .update_super = update_super_imsm,
12970
12971 .avail_size = avail_size_imsm,
12972 .get_spare_criteria = get_spare_criteria_imsm,
12973
12974 .compare_super = compare_super_imsm,
12975
12976 .load_super = load_super_imsm,
12977 .init_super = init_super_imsm,
12978 .store_super = store_super_imsm,
12979 .free_super = free_super_imsm,
12980 .match_metadata_desc = match_metadata_desc_imsm,
12981 .container_content = container_content_imsm,
12982 .validate_container = validate_container_imsm,
12983
12984 .add_internal_bitmap = add_internal_bitmap_imsm,
12985 .locate_bitmap = locate_bitmap_imsm,
12986 .write_bitmap = write_init_bitmap_imsm,
12987 .set_bitmap = set_bitmap_imsm,
12988
12989 .write_init_ppl = write_init_ppl_imsm,
12990 .validate_ppl = validate_ppl_imsm,
12991
12992 .external = 1,
12993 .name = "imsm",
12994
12995 /* for mdmon */
12996 .open_new = imsm_open_new,
12997 .set_array_state= imsm_set_array_state,
12998 .set_disk = imsm_set_disk,
12999 .sync_metadata = imsm_sync_metadata,
13000 .activate_spare = imsm_activate_spare,
13001 .process_update = imsm_process_update,
13002 .prepare_update = imsm_prepare_update,
13003 .record_bad_block = imsm_record_badblock,
13004 .clear_bad_block = imsm_clear_badblock,
13005 .get_bad_blocks = imsm_get_badblocks,
13006 };