]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
imsm: FIX: Debug strings cleanup
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2008 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "sha1.h"
24 #include "platform-intel.h"
25 #include <values.h>
26 #include <scsi/sg.h>
27 #include <ctype.h>
28 #include <dirent.h>
29
30 /* MPB == Metadata Parameter Block */
31 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33 #define MPB_VERSION_RAID0 "1.0.00"
34 #define MPB_VERSION_RAID1 "1.1.00"
35 #define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36 #define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
37 #define MPB_VERSION_RAID5 "1.2.02"
38 #define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39 #define MPB_VERSION_CNG "1.2.06"
40 #define MPB_VERSION_ATTRIBS "1.3.00"
41 #define MAX_SIGNATURE_LENGTH 32
42 #define MAX_RAID_SERIAL_LEN 16
43
44 #define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
45 #define MPB_ATTRIB_PM __cpu_to_le32(0x40000000)
46 #define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
47 #define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
48 #define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
49 #define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50 #define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
51 #define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
52 #define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
53
54 #define MPB_SECTOR_CNT 418
55 #define IMSM_RESERVED_SECTORS 4096
56 #define SECT_PER_MB_SHIFT 11
57
58 /* Disk configuration info. */
59 #define IMSM_MAX_DEVICES 255
60 struct imsm_disk {
61 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
62 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
63 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
64 #define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
65 #define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
66 #define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
67 __u32 status; /* 0xF0 - 0xF3 */
68 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
69 #define IMSM_DISK_FILLERS 4
70 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
71 };
72
73 /* RAID map configuration infos. */
74 struct imsm_map {
75 __u32 pba_of_lba0; /* start address of partition */
76 __u32 blocks_per_member;/* blocks per member */
77 __u32 num_data_stripes; /* number of data stripes */
78 __u16 blocks_per_strip;
79 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
80 #define IMSM_T_STATE_NORMAL 0
81 #define IMSM_T_STATE_UNINITIALIZED 1
82 #define IMSM_T_STATE_DEGRADED 2
83 #define IMSM_T_STATE_FAILED 3
84 __u8 raid_level;
85 #define IMSM_T_RAID0 0
86 #define IMSM_T_RAID1 1
87 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
88 __u8 num_members; /* number of member disks */
89 __u8 num_domains; /* number of parity domains */
90 __u8 failed_disk_num; /* valid only when state is degraded */
91 __u8 ddf;
92 __u32 filler[7]; /* expansion area */
93 #define IMSM_ORD_REBUILD (1 << 24)
94 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
95 * top byte contains some flags
96 */
97 } __attribute__ ((packed));
98
99 struct imsm_vol {
100 __u32 curr_migr_unit;
101 __u32 checkpoint_id; /* id to access curr_migr_unit */
102 __u8 migr_state; /* Normal or Migrating */
103 #define MIGR_INIT 0
104 #define MIGR_REBUILD 1
105 #define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
106 #define MIGR_GEN_MIGR 3
107 #define MIGR_STATE_CHANGE 4
108 #define MIGR_REPAIR 5
109 __u8 migr_type; /* Initializing, Rebuilding, ... */
110 __u8 dirty;
111 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
112 __u16 verify_errors; /* number of mismatches */
113 __u16 bad_blocks; /* number of bad blocks during verify */
114 __u32 filler[4];
115 struct imsm_map map[1];
116 /* here comes another one if migr_state */
117 } __attribute__ ((packed));
118
119 struct imsm_dev {
120 __u8 volume[MAX_RAID_SERIAL_LEN];
121 __u32 size_low;
122 __u32 size_high;
123 #define DEV_BOOTABLE __cpu_to_le32(0x01)
124 #define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
125 #define DEV_READ_COALESCING __cpu_to_le32(0x04)
126 #define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
127 #define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
128 #define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
129 #define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
130 #define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
131 #define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
132 #define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
133 #define DEV_CLONE_N_GO __cpu_to_le32(0x400)
134 #define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
135 #define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
136 __u32 status; /* Persistent RaidDev status */
137 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
138 __u8 migr_priority;
139 __u8 num_sub_vols;
140 __u8 tid;
141 __u8 cng_master_disk;
142 __u16 cache_policy;
143 __u8 cng_state;
144 __u8 cng_sub_state;
145 #define IMSM_DEV_FILLERS 10
146 __u32 filler[IMSM_DEV_FILLERS];
147 struct imsm_vol vol;
148 } __attribute__ ((packed));
149
150 struct imsm_super {
151 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
152 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
153 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
154 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
155 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
156 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
157 __u32 attributes; /* 0x34 - 0x37 */
158 __u8 num_disks; /* 0x38 Number of configured disks */
159 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
160 __u8 error_log_pos; /* 0x3A */
161 __u8 fill[1]; /* 0x3B */
162 __u32 cache_size; /* 0x3c - 0x40 in mb */
163 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
164 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
165 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
166 #define IMSM_FILLERS 35
167 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
168 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
169 /* here comes imsm_dev[num_raid_devs] */
170 /* here comes BBM logs */
171 } __attribute__ ((packed));
172
173 #define BBM_LOG_MAX_ENTRIES 254
174
175 struct bbm_log_entry {
176 __u64 defective_block_start;
177 #define UNREADABLE 0xFFFFFFFF
178 __u32 spare_block_offset;
179 __u16 remapped_marked_count;
180 __u16 disk_ordinal;
181 } __attribute__ ((__packed__));
182
183 struct bbm_log {
184 __u32 signature; /* 0xABADB10C */
185 __u32 entry_count;
186 __u32 reserved_spare_block_count; /* 0 */
187 __u32 reserved; /* 0xFFFF */
188 __u64 first_spare_lba;
189 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
190 } __attribute__ ((__packed__));
191
192
193 #ifndef MDASSEMBLE
194 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
195 #endif
196
197 static __u8 migr_type(struct imsm_dev *dev)
198 {
199 if (dev->vol.migr_type == MIGR_VERIFY &&
200 dev->status & DEV_VERIFY_AND_FIX)
201 return MIGR_REPAIR;
202 else
203 return dev->vol.migr_type;
204 }
205
206 static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
207 {
208 /* for compatibility with older oroms convert MIGR_REPAIR, into
209 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
210 */
211 if (migr_type == MIGR_REPAIR) {
212 dev->vol.migr_type = MIGR_VERIFY;
213 dev->status |= DEV_VERIFY_AND_FIX;
214 } else {
215 dev->vol.migr_type = migr_type;
216 dev->status &= ~DEV_VERIFY_AND_FIX;
217 }
218 }
219
220 static unsigned int sector_count(__u32 bytes)
221 {
222 return ((bytes + (512-1)) & (~(512-1))) / 512;
223 }
224
225 static unsigned int mpb_sectors(struct imsm_super *mpb)
226 {
227 return sector_count(__le32_to_cpu(mpb->mpb_size));
228 }
229
230 struct intel_dev {
231 struct imsm_dev *dev;
232 struct intel_dev *next;
233 unsigned index;
234 };
235
236 struct intel_hba {
237 enum sys_dev_type type;
238 char *path;
239 char *pci_id;
240 struct intel_hba *next;
241 };
242
243 enum action {
244 DISK_REMOVE = 1,
245 DISK_ADD
246 };
247 /* internal representation of IMSM metadata */
248 struct intel_super {
249 union {
250 void *buf; /* O_DIRECT buffer for reading/writing metadata */
251 struct imsm_super *anchor; /* immovable parameters */
252 };
253 size_t len; /* size of the 'buf' allocation */
254 void *next_buf; /* for realloc'ing buf from the manager */
255 size_t next_len;
256 int updates_pending; /* count of pending updates for mdmon */
257 int current_vol; /* index of raid device undergoing creation */
258 __u32 create_offset; /* common start for 'current_vol' */
259 __u32 random; /* random data for seeding new family numbers */
260 struct intel_dev *devlist;
261 struct dl {
262 struct dl *next;
263 int index;
264 __u8 serial[MAX_RAID_SERIAL_LEN];
265 int major, minor;
266 char *devname;
267 struct imsm_disk disk;
268 int fd;
269 int extent_cnt;
270 struct extent *e; /* for determining freespace @ create */
271 int raiddisk; /* slot to fill in autolayout */
272 enum action action;
273 } *disks;
274 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
275 active */
276 struct dl *missing; /* disks removed while we weren't looking */
277 struct bbm_log *bbm_log;
278 struct intel_hba *hba; /* device path of the raid controller for this metadata */
279 const struct imsm_orom *orom; /* platform firmware support */
280 struct intel_super *next; /* (temp) list for disambiguating family_num */
281 };
282
283 struct intel_disk {
284 struct imsm_disk disk;
285 #define IMSM_UNKNOWN_OWNER (-1)
286 int owner;
287 struct intel_disk *next;
288 };
289
290 struct extent {
291 unsigned long long start, size;
292 };
293
294 /* definitions of reshape process types */
295 enum imsm_reshape_type {
296 CH_TAKEOVER,
297 CH_CHUNK_MIGR,
298 CH_LEVEL_MIGRATION
299 };
300
301 /* definition of messages passed to imsm_process_update */
302 enum imsm_update_type {
303 update_activate_spare,
304 update_create_array,
305 update_kill_array,
306 update_rename_array,
307 update_add_remove_disk,
308 update_reshape_container_disks,
309 update_takeover
310 };
311
312 struct imsm_update_activate_spare {
313 enum imsm_update_type type;
314 struct dl *dl;
315 int slot;
316 int array;
317 struct imsm_update_activate_spare *next;
318 };
319
320 struct geo_params {
321 int dev_id;
322 char *dev_name;
323 long long size;
324 int level;
325 int layout;
326 int chunksize;
327 int raid_disks;
328 };
329
330 enum takeover_direction {
331 R10_TO_R0,
332 R0_TO_R10
333 };
334 struct imsm_update_takeover {
335 enum imsm_update_type type;
336 int subarray;
337 enum takeover_direction direction;
338 };
339
340 struct imsm_update_reshape {
341 enum imsm_update_type type;
342 int old_raid_disks;
343 int new_raid_disks;
344 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
345 };
346
347 struct disk_info {
348 __u8 serial[MAX_RAID_SERIAL_LEN];
349 };
350
351 struct imsm_update_create_array {
352 enum imsm_update_type type;
353 int dev_idx;
354 struct imsm_dev dev;
355 };
356
357 struct imsm_update_kill_array {
358 enum imsm_update_type type;
359 int dev_idx;
360 };
361
362 struct imsm_update_rename_array {
363 enum imsm_update_type type;
364 __u8 name[MAX_RAID_SERIAL_LEN];
365 int dev_idx;
366 };
367
368 struct imsm_update_add_remove_disk {
369 enum imsm_update_type type;
370 };
371
372
373 static const char *_sys_dev_type[] = {
374 [SYS_DEV_UNKNOWN] = "Unknown",
375 [SYS_DEV_SAS] = "SAS",
376 [SYS_DEV_SATA] = "SATA"
377 };
378
379 const char *get_sys_dev_type(enum sys_dev_type type)
380 {
381 if (type >= SYS_DEV_MAX)
382 type = SYS_DEV_UNKNOWN;
383
384 return _sys_dev_type[type];
385 }
386
387 #ifndef MDASSEMBLE
388 static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
389 {
390 struct intel_hba *result = malloc(sizeof(*result));
391 if (result) {
392 result->type = device->type;
393 result->path = strdup(device->path);
394 result->next = NULL;
395 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
396 result->pci_id++;
397 }
398 return result;
399 }
400
401 static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
402 {
403 struct intel_hba *result=NULL;
404 for (result = hba; result; result = result->next) {
405 if (result->type == device->type && strcmp(result->path, device->path) == 0)
406 break;
407 }
408 return result;
409 }
410
411
412 static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device,
413 const char *devname)
414 {
415 struct intel_hba *hba;
416
417 /* check if disk attached to Intel HBA */
418 hba = find_intel_hba(super->hba, device);
419 if (hba != NULL)
420 return 1;
421 /* Check if HBA is already attached to super */
422 if (super->hba == NULL) {
423 super->hba = alloc_intel_hba(device);
424 return 1;
425 }
426
427 hba = super->hba;
428 /* Intel metadata allows for all disks attached to the same type HBA.
429 * Do not sypport odf HBA types mixing
430 */
431 if (device->type != hba->type)
432 return 2;
433
434 while (hba->next)
435 hba = hba->next;
436
437 hba->next = alloc_intel_hba(device);
438 return 1;
439 }
440
441 static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
442 {
443 struct sys_dev *list, *elem, *prev;
444 char *disk_path;
445
446 if ((list = find_intel_devices()) == NULL)
447 return 0;
448
449 if (fd < 0)
450 disk_path = (char *) devname;
451 else
452 disk_path = diskfd_to_devpath(fd);
453
454 if (!disk_path) {
455 free_sys_dev(&list);
456 return 0;
457 }
458
459 for (prev = NULL, elem = list; elem; prev = elem, elem = elem->next) {
460 if (path_attached_to_hba(disk_path, elem->path)) {
461 if (prev == NULL)
462 list = list->next;
463 else
464 prev->next = elem->next;
465 elem->next = NULL;
466 if (disk_path != devname)
467 free(disk_path);
468 free_sys_dev(&list);
469 return elem;
470 }
471 }
472 if (disk_path != devname)
473 free(disk_path);
474 free_sys_dev(&list);
475
476 return NULL;
477 }
478 #endif /* MDASSEMBLE */
479
480
481 static struct supertype *match_metadata_desc_imsm(char *arg)
482 {
483 struct supertype *st;
484
485 if (strcmp(arg, "imsm") != 0 &&
486 strcmp(arg, "default") != 0
487 )
488 return NULL;
489
490 st = malloc(sizeof(*st));
491 if (!st)
492 return NULL;
493 memset(st, 0, sizeof(*st));
494 st->container_dev = NoMdDev;
495 st->ss = &super_imsm;
496 st->max_devs = IMSM_MAX_DEVICES;
497 st->minor_version = 0;
498 st->sb = NULL;
499 return st;
500 }
501
502 #ifndef MDASSEMBLE
503 static __u8 *get_imsm_version(struct imsm_super *mpb)
504 {
505 return &mpb->sig[MPB_SIG_LEN];
506 }
507 #endif
508
509 /* retrieve a disk directly from the anchor when the anchor is known to be
510 * up-to-date, currently only at load time
511 */
512 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
513 {
514 if (index >= mpb->num_disks)
515 return NULL;
516 return &mpb->disk[index];
517 }
518
519 /* retrieve the disk description based on a index of the disk
520 * in the sub-array
521 */
522 static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
523 {
524 struct dl *d;
525
526 for (d = super->disks; d; d = d->next)
527 if (d->index == index)
528 return d;
529
530 return NULL;
531 }
532 /* retrieve a disk from the parsed metadata */
533 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
534 {
535 struct dl *dl;
536
537 dl = get_imsm_dl_disk(super, index);
538 if (dl)
539 return &dl->disk;
540
541 return NULL;
542 }
543
544 /* generate a checksum directly from the anchor when the anchor is known to be
545 * up-to-date, currently only at load or write_super after coalescing
546 */
547 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
548 {
549 __u32 end = mpb->mpb_size / sizeof(end);
550 __u32 *p = (__u32 *) mpb;
551 __u32 sum = 0;
552
553 while (end--) {
554 sum += __le32_to_cpu(*p);
555 p++;
556 }
557
558 return sum - __le32_to_cpu(mpb->check_sum);
559 }
560
561 static size_t sizeof_imsm_map(struct imsm_map *map)
562 {
563 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
564 }
565
566 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
567 {
568 /* A device can have 2 maps if it is in the middle of a migration.
569 * If second_map is:
570 * 0 - we return the first map
571 * 1 - we return the second map if it exists, else NULL
572 * -1 - we return the second map if it exists, else the first
573 */
574 struct imsm_map *map = &dev->vol.map[0];
575
576 if (second_map == 1 && !dev->vol.migr_state)
577 return NULL;
578 else if (second_map == 1 ||
579 (second_map < 0 && dev->vol.migr_state)) {
580 void *ptr = map;
581
582 return ptr + sizeof_imsm_map(map);
583 } else
584 return map;
585
586 }
587
588 /* return the size of the device.
589 * migr_state increases the returned size if map[0] were to be duplicated
590 */
591 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
592 {
593 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
594 sizeof_imsm_map(get_imsm_map(dev, 0));
595
596 /* migrating means an additional map */
597 if (dev->vol.migr_state)
598 size += sizeof_imsm_map(get_imsm_map(dev, 1));
599 else if (migr_state)
600 size += sizeof_imsm_map(get_imsm_map(dev, 0));
601
602 return size;
603 }
604
605 #ifndef MDASSEMBLE
606 /* retrieve disk serial number list from a metadata update */
607 static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
608 {
609 void *u = update;
610 struct disk_info *inf;
611
612 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
613 sizeof_imsm_dev(&update->dev, 0);
614
615 return inf;
616 }
617 #endif
618
619 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
620 {
621 int offset;
622 int i;
623 void *_mpb = mpb;
624
625 if (index >= mpb->num_raid_devs)
626 return NULL;
627
628 /* devices start after all disks */
629 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
630
631 for (i = 0; i <= index; i++)
632 if (i == index)
633 return _mpb + offset;
634 else
635 offset += sizeof_imsm_dev(_mpb + offset, 0);
636
637 return NULL;
638 }
639
640 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
641 {
642 struct intel_dev *dv;
643
644 if (index >= super->anchor->num_raid_devs)
645 return NULL;
646 for (dv = super->devlist; dv; dv = dv->next)
647 if (dv->index == index)
648 return dv->dev;
649 return NULL;
650 }
651
652 /*
653 * for second_map:
654 * == 0 get first map
655 * == 1 get second map
656 * == -1 than get map according to the current migr_state
657 */
658 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
659 int slot,
660 int second_map)
661 {
662 struct imsm_map *map;
663
664 map = get_imsm_map(dev, second_map);
665
666 /* top byte identifies disk under rebuild */
667 return __le32_to_cpu(map->disk_ord_tbl[slot]);
668 }
669
670 #define ord_to_idx(ord) (((ord) << 8) >> 8)
671 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
672 {
673 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
674
675 return ord_to_idx(ord);
676 }
677
678 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
679 {
680 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
681 }
682
683 static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
684 {
685 int slot;
686 __u32 ord;
687
688 for (slot = 0; slot < map->num_members; slot++) {
689 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
690 if (ord_to_idx(ord) == idx)
691 return slot;
692 }
693
694 return -1;
695 }
696
697 static int get_imsm_raid_level(struct imsm_map *map)
698 {
699 if (map->raid_level == 1) {
700 if (map->num_members == 2)
701 return 1;
702 else
703 return 10;
704 }
705
706 return map->raid_level;
707 }
708
709 static int cmp_extent(const void *av, const void *bv)
710 {
711 const struct extent *a = av;
712 const struct extent *b = bv;
713 if (a->start < b->start)
714 return -1;
715 if (a->start > b->start)
716 return 1;
717 return 0;
718 }
719
720 static int count_memberships(struct dl *dl, struct intel_super *super)
721 {
722 int memberships = 0;
723 int i;
724
725 for (i = 0; i < super->anchor->num_raid_devs; i++) {
726 struct imsm_dev *dev = get_imsm_dev(super, i);
727 struct imsm_map *map = get_imsm_map(dev, 0);
728
729 if (get_imsm_disk_slot(map, dl->index) >= 0)
730 memberships++;
731 }
732
733 return memberships;
734 }
735
736 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
737 {
738 /* find a list of used extents on the given physical device */
739 struct extent *rv, *e;
740 int i;
741 int memberships = count_memberships(dl, super);
742 __u32 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
743
744 rv = malloc(sizeof(struct extent) * (memberships + 1));
745 if (!rv)
746 return NULL;
747 e = rv;
748
749 for (i = 0; i < super->anchor->num_raid_devs; i++) {
750 struct imsm_dev *dev = get_imsm_dev(super, i);
751 struct imsm_map *map = get_imsm_map(dev, 0);
752
753 if (get_imsm_disk_slot(map, dl->index) >= 0) {
754 e->start = __le32_to_cpu(map->pba_of_lba0);
755 e->size = __le32_to_cpu(map->blocks_per_member);
756 e++;
757 }
758 }
759 qsort(rv, memberships, sizeof(*rv), cmp_extent);
760
761 /* determine the start of the metadata
762 * when no raid devices are defined use the default
763 * ...otherwise allow the metadata to truncate the value
764 * as is the case with older versions of imsm
765 */
766 if (memberships) {
767 struct extent *last = &rv[memberships - 1];
768 __u32 remainder;
769
770 remainder = __le32_to_cpu(dl->disk.total_blocks) -
771 (last->start + last->size);
772 /* round down to 1k block to satisfy precision of the kernel
773 * 'size' interface
774 */
775 remainder &= ~1UL;
776 /* make sure remainder is still sane */
777 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
778 remainder = ROUND_UP(super->len, 512) >> 9;
779 if (reservation > remainder)
780 reservation = remainder;
781 }
782 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
783 e->size = 0;
784 return rv;
785 }
786
787 /* try to determine how much space is reserved for metadata from
788 * the last get_extents() entry, otherwise fallback to the
789 * default
790 */
791 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
792 {
793 struct extent *e;
794 int i;
795 __u32 rv;
796
797 /* for spares just return a minimal reservation which will grow
798 * once the spare is picked up by an array
799 */
800 if (dl->index == -1)
801 return MPB_SECTOR_CNT;
802
803 e = get_extents(super, dl);
804 if (!e)
805 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
806
807 /* scroll to last entry */
808 for (i = 0; e[i].size; i++)
809 continue;
810
811 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
812
813 free(e);
814
815 return rv;
816 }
817
818 static int is_spare(struct imsm_disk *disk)
819 {
820 return (disk->status & SPARE_DISK) == SPARE_DISK;
821 }
822
823 static int is_configured(struct imsm_disk *disk)
824 {
825 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
826 }
827
828 static int is_failed(struct imsm_disk *disk)
829 {
830 return (disk->status & FAILED_DISK) == FAILED_DISK;
831 }
832
833 /* Return minimum size of a spare that can be used in this array*/
834 static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
835 {
836 struct intel_super *super = st->sb;
837 struct dl *dl;
838 struct extent *e;
839 int i;
840 unsigned long long rv = 0;
841
842 if (!super)
843 return rv;
844 /* find first active disk in array */
845 dl = super->disks;
846 while (dl && (is_failed(&dl->disk) || dl->index == -1))
847 dl = dl->next;
848 if (!dl)
849 return rv;
850 /* find last lba used by subarrays */
851 e = get_extents(super, dl);
852 if (!e)
853 return rv;
854 for (i = 0; e[i].size; i++)
855 continue;
856 if (i > 0)
857 rv = e[i-1].start + e[i-1].size;
858 free(e);
859 /* add the amount of space needed for metadata */
860 rv = rv + MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
861 return rv * 512;
862 }
863
864 #ifndef MDASSEMBLE
865 static __u64 blocks_per_migr_unit(struct imsm_dev *dev);
866
867 static void print_imsm_dev(struct imsm_dev *dev, char *uuid, int disk_idx)
868 {
869 __u64 sz;
870 int slot, i;
871 struct imsm_map *map = get_imsm_map(dev, 0);
872 struct imsm_map *map2 = get_imsm_map(dev, 1);
873 __u32 ord;
874
875 printf("\n");
876 printf("[%.16s]:\n", dev->volume);
877 printf(" UUID : %s\n", uuid);
878 printf(" RAID Level : %d", get_imsm_raid_level(map));
879 if (map2)
880 printf(" <-- %d", get_imsm_raid_level(map2));
881 printf("\n");
882 printf(" Members : %d", map->num_members);
883 if (map2)
884 printf(" <-- %d", map2->num_members);
885 printf("\n");
886 printf(" Slots : [");
887 for (i = 0; i < map->num_members; i++) {
888 ord = get_imsm_ord_tbl_ent(dev, i, 0);
889 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
890 }
891 printf("]");
892 if (map2) {
893 printf(" <-- [");
894 for (i = 0; i < map2->num_members; i++) {
895 ord = get_imsm_ord_tbl_ent(dev, i, 1);
896 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
897 }
898 printf("]");
899 }
900 printf("\n");
901 slot = get_imsm_disk_slot(map, disk_idx);
902 if (slot >= 0) {
903 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
904 printf(" This Slot : %d%s\n", slot,
905 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
906 } else
907 printf(" This Slot : ?\n");
908 sz = __le32_to_cpu(dev->size_high);
909 sz <<= 32;
910 sz += __le32_to_cpu(dev->size_low);
911 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
912 human_size(sz * 512));
913 sz = __le32_to_cpu(map->blocks_per_member);
914 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
915 human_size(sz * 512));
916 printf(" Sector Offset : %u\n",
917 __le32_to_cpu(map->pba_of_lba0));
918 printf(" Num Stripes : %u\n",
919 __le32_to_cpu(map->num_data_stripes));
920 printf(" Chunk Size : %u KiB",
921 __le16_to_cpu(map->blocks_per_strip) / 2);
922 if (map2)
923 printf(" <-- %u KiB",
924 __le16_to_cpu(map2->blocks_per_strip) / 2);
925 printf("\n");
926 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
927 printf(" Migrate State : ");
928 if (dev->vol.migr_state) {
929 if (migr_type(dev) == MIGR_INIT)
930 printf("initialize\n");
931 else if (migr_type(dev) == MIGR_REBUILD)
932 printf("rebuild\n");
933 else if (migr_type(dev) == MIGR_VERIFY)
934 printf("check\n");
935 else if (migr_type(dev) == MIGR_GEN_MIGR)
936 printf("general migration\n");
937 else if (migr_type(dev) == MIGR_STATE_CHANGE)
938 printf("state change\n");
939 else if (migr_type(dev) == MIGR_REPAIR)
940 printf("repair\n");
941 else
942 printf("<unknown:%d>\n", migr_type(dev));
943 } else
944 printf("idle\n");
945 printf(" Map State : %s", map_state_str[map->map_state]);
946 if (dev->vol.migr_state) {
947 struct imsm_map *map = get_imsm_map(dev, 1);
948
949 printf(" <-- %s", map_state_str[map->map_state]);
950 printf("\n Checkpoint : %u (%llu)",
951 __le32_to_cpu(dev->vol.curr_migr_unit),
952 (unsigned long long)blocks_per_migr_unit(dev));
953 }
954 printf("\n");
955 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
956 }
957
958 static void print_imsm_disk(struct imsm_super *mpb, int index, __u32 reserved)
959 {
960 struct imsm_disk *disk = __get_imsm_disk(mpb, index);
961 char str[MAX_RAID_SERIAL_LEN + 1];
962 __u64 sz;
963
964 if (index < 0 || !disk)
965 return;
966
967 printf("\n");
968 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
969 printf(" Disk%02d Serial : %s\n", index, str);
970 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
971 is_configured(disk) ? " active" : "",
972 is_failed(disk) ? " failed" : "");
973 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
974 sz = __le32_to_cpu(disk->total_blocks) - reserved;
975 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
976 human_size(sz * 512));
977 }
978
979 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
980
981 static void examine_super_imsm(struct supertype *st, char *homehost)
982 {
983 struct intel_super *super = st->sb;
984 struct imsm_super *mpb = super->anchor;
985 char str[MAX_SIGNATURE_LENGTH];
986 int i;
987 struct mdinfo info;
988 char nbuf[64];
989 __u32 sum;
990 __u32 reserved = imsm_reserved_sectors(super, super->disks);
991 struct dl *dl;
992
993 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
994 printf(" Magic : %s\n", str);
995 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
996 printf(" Version : %s\n", get_imsm_version(mpb));
997 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
998 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
999 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
1000 getinfo_super_imsm(st, &info, NULL);
1001 fname_from_uuid(st, &info, nbuf, ':');
1002 printf(" UUID : %s\n", nbuf + 5);
1003 sum = __le32_to_cpu(mpb->check_sum);
1004 printf(" Checksum : %08x %s\n", sum,
1005 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
1006 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
1007 printf(" Disks : %d\n", mpb->num_disks);
1008 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
1009 print_imsm_disk(mpb, super->disks->index, reserved);
1010 if (super->bbm_log) {
1011 struct bbm_log *log = super->bbm_log;
1012
1013 printf("\n");
1014 printf("Bad Block Management Log:\n");
1015 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1016 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1017 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1018 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
1019 printf(" First Spare : %llx\n",
1020 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
1021 }
1022 for (i = 0; i < mpb->num_raid_devs; i++) {
1023 struct mdinfo info;
1024 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1025
1026 super->current_vol = i;
1027 getinfo_super_imsm(st, &info, NULL);
1028 fname_from_uuid(st, &info, nbuf, ':');
1029 print_imsm_dev(dev, nbuf + 5, super->disks->index);
1030 }
1031 for (i = 0; i < mpb->num_disks; i++) {
1032 if (i == super->disks->index)
1033 continue;
1034 print_imsm_disk(mpb, i, reserved);
1035 }
1036 for (dl = super->disks ; dl; dl = dl->next) {
1037 struct imsm_disk *disk;
1038 char str[MAX_RAID_SERIAL_LEN + 1];
1039 __u64 sz;
1040
1041 if (dl->index >= 0)
1042 continue;
1043
1044 disk = &dl->disk;
1045 printf("\n");
1046 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
1047 printf(" Disk Serial : %s\n", str);
1048 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1049 is_configured(disk) ? " active" : "",
1050 is_failed(disk) ? " failed" : "");
1051 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
1052 sz = __le32_to_cpu(disk->total_blocks) - reserved;
1053 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1054 human_size(sz * 512));
1055 }
1056 }
1057
1058 static void brief_examine_super_imsm(struct supertype *st, int verbose)
1059 {
1060 /* We just write a generic IMSM ARRAY entry */
1061 struct mdinfo info;
1062 char nbuf[64];
1063 struct intel_super *super = st->sb;
1064
1065 if (!super->anchor->num_raid_devs) {
1066 printf("ARRAY metadata=imsm\n");
1067 return;
1068 }
1069
1070 getinfo_super_imsm(st, &info, NULL);
1071 fname_from_uuid(st, &info, nbuf, ':');
1072 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1073 }
1074
1075 static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1076 {
1077 /* We just write a generic IMSM ARRAY entry */
1078 struct mdinfo info;
1079 char nbuf[64];
1080 char nbuf1[64];
1081 struct intel_super *super = st->sb;
1082 int i;
1083
1084 if (!super->anchor->num_raid_devs)
1085 return;
1086
1087 getinfo_super_imsm(st, &info, NULL);
1088 fname_from_uuid(st, &info, nbuf, ':');
1089 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1090 struct imsm_dev *dev = get_imsm_dev(super, i);
1091
1092 super->current_vol = i;
1093 getinfo_super_imsm(st, &info, NULL);
1094 fname_from_uuid(st, &info, nbuf1, ':');
1095 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
1096 dev->volume, nbuf + 5, i, nbuf1 + 5);
1097 }
1098 }
1099
1100 static void export_examine_super_imsm(struct supertype *st)
1101 {
1102 struct intel_super *super = st->sb;
1103 struct imsm_super *mpb = super->anchor;
1104 struct mdinfo info;
1105 char nbuf[64];
1106
1107 getinfo_super_imsm(st, &info, NULL);
1108 fname_from_uuid(st, &info, nbuf, ':');
1109 printf("MD_METADATA=imsm\n");
1110 printf("MD_LEVEL=container\n");
1111 printf("MD_UUID=%s\n", nbuf+5);
1112 printf("MD_DEVICES=%u\n", mpb->num_disks);
1113 }
1114
1115 static void detail_super_imsm(struct supertype *st, char *homehost)
1116 {
1117 struct mdinfo info;
1118 char nbuf[64];
1119
1120 getinfo_super_imsm(st, &info, NULL);
1121 fname_from_uuid(st, &info, nbuf, ':');
1122 printf("\n UUID : %s\n", nbuf + 5);
1123 }
1124
1125 static void brief_detail_super_imsm(struct supertype *st)
1126 {
1127 struct mdinfo info;
1128 char nbuf[64];
1129 getinfo_super_imsm(st, &info, NULL);
1130 fname_from_uuid(st, &info, nbuf, ':');
1131 printf(" UUID=%s", nbuf + 5);
1132 }
1133
1134 static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1135 static void fd2devname(int fd, char *name);
1136
1137 static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
1138 {
1139 /* dump an unsorted list of devices attached to AHCI Intel storage
1140 * controller, as well as non-connected ports
1141 */
1142 int hba_len = strlen(hba_path) + 1;
1143 struct dirent *ent;
1144 DIR *dir;
1145 char *path = NULL;
1146 int err = 0;
1147 unsigned long port_mask = (1 << port_count) - 1;
1148
1149 if (port_count > (int)sizeof(port_mask) * 8) {
1150 if (verbose)
1151 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
1152 return 2;
1153 }
1154
1155 /* scroll through /sys/dev/block looking for devices attached to
1156 * this hba
1157 */
1158 dir = opendir("/sys/dev/block");
1159 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1160 int fd;
1161 char model[64];
1162 char vendor[64];
1163 char buf[1024];
1164 int major, minor;
1165 char *device;
1166 char *c;
1167 int port;
1168 int type;
1169
1170 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1171 continue;
1172 path = devt_to_devpath(makedev(major, minor));
1173 if (!path)
1174 continue;
1175 if (!path_attached_to_hba(path, hba_path)) {
1176 free(path);
1177 path = NULL;
1178 continue;
1179 }
1180
1181 /* retrieve the scsi device type */
1182 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
1183 if (verbose)
1184 fprintf(stderr, Name ": failed to allocate 'device'\n");
1185 err = 2;
1186 break;
1187 }
1188 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
1189 if (load_sys(device, buf) != 0) {
1190 if (verbose)
1191 fprintf(stderr, Name ": failed to read device type for %s\n",
1192 path);
1193 err = 2;
1194 free(device);
1195 break;
1196 }
1197 type = strtoul(buf, NULL, 10);
1198
1199 /* if it's not a disk print the vendor and model */
1200 if (!(type == 0 || type == 7 || type == 14)) {
1201 vendor[0] = '\0';
1202 model[0] = '\0';
1203 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
1204 if (load_sys(device, buf) == 0) {
1205 strncpy(vendor, buf, sizeof(vendor));
1206 vendor[sizeof(vendor) - 1] = '\0';
1207 c = (char *) &vendor[sizeof(vendor) - 1];
1208 while (isspace(*c) || *c == '\0')
1209 *c-- = '\0';
1210
1211 }
1212 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
1213 if (load_sys(device, buf) == 0) {
1214 strncpy(model, buf, sizeof(model));
1215 model[sizeof(model) - 1] = '\0';
1216 c = (char *) &model[sizeof(model) - 1];
1217 while (isspace(*c) || *c == '\0')
1218 *c-- = '\0';
1219 }
1220
1221 if (vendor[0] && model[0])
1222 sprintf(buf, "%.64s %.64s", vendor, model);
1223 else
1224 switch (type) { /* numbers from hald/linux/device.c */
1225 case 1: sprintf(buf, "tape"); break;
1226 case 2: sprintf(buf, "printer"); break;
1227 case 3: sprintf(buf, "processor"); break;
1228 case 4:
1229 case 5: sprintf(buf, "cdrom"); break;
1230 case 6: sprintf(buf, "scanner"); break;
1231 case 8: sprintf(buf, "media_changer"); break;
1232 case 9: sprintf(buf, "comm"); break;
1233 case 12: sprintf(buf, "raid"); break;
1234 default: sprintf(buf, "unknown");
1235 }
1236 } else
1237 buf[0] = '\0';
1238 free(device);
1239
1240 /* chop device path to 'host%d' and calculate the port number */
1241 c = strchr(&path[hba_len], '/');
1242 if (!c) {
1243 if (verbose)
1244 fprintf(stderr, Name ": %s - invalid path name\n", path + hba_len);
1245 err = 2;
1246 break;
1247 }
1248 *c = '\0';
1249 if (sscanf(&path[hba_len], "host%d", &port) == 1)
1250 port -= host_base;
1251 else {
1252 if (verbose) {
1253 *c = '/'; /* repair the full string */
1254 fprintf(stderr, Name ": failed to determine port number for %s\n",
1255 path);
1256 }
1257 err = 2;
1258 break;
1259 }
1260
1261 /* mark this port as used */
1262 port_mask &= ~(1 << port);
1263
1264 /* print out the device information */
1265 if (buf[0]) {
1266 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
1267 continue;
1268 }
1269
1270 fd = dev_open(ent->d_name, O_RDONLY);
1271 if (fd < 0)
1272 printf(" Port%d : - disk info unavailable -\n", port);
1273 else {
1274 fd2devname(fd, buf);
1275 printf(" Port%d : %s", port, buf);
1276 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
1277 printf(" (%s)\n", buf);
1278 else
1279 printf("()\n");
1280 }
1281 close(fd);
1282 free(path);
1283 path = NULL;
1284 }
1285 if (path)
1286 free(path);
1287 if (dir)
1288 closedir(dir);
1289 if (err == 0) {
1290 int i;
1291
1292 for (i = 0; i < port_count; i++)
1293 if (port_mask & (1 << i))
1294 printf(" Port%d : - no device attached -\n", i);
1295 }
1296
1297 return err;
1298 }
1299
1300
1301
1302 static void print_found_intel_controllers(struct sys_dev *elem)
1303 {
1304 for (; elem; elem = elem->next) {
1305 fprintf(stderr, Name ": found Intel(R) ");
1306 if (elem->type == SYS_DEV_SATA)
1307 fprintf(stderr, "SATA ");
1308 else if (elem->type == SYS_DEV_SAS)
1309 fprintf(stderr, "SAS ");
1310 fprintf(stderr, "RAID controller");
1311 if (elem->pci_id)
1312 fprintf(stderr, " at %s", elem->pci_id);
1313 fprintf(stderr, ".\n");
1314 }
1315 fflush(stderr);
1316 }
1317
1318 static int ahci_get_port_count(const char *hba_path, int *port_count)
1319 {
1320 struct dirent *ent;
1321 DIR *dir;
1322 int host_base = -1;
1323
1324 *port_count = 0;
1325 if ((dir = opendir(hba_path)) == NULL)
1326 return -1;
1327
1328 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1329 int host;
1330
1331 if (sscanf(ent->d_name, "host%d", &host) != 1)
1332 continue;
1333 if (*port_count == 0)
1334 host_base = host;
1335 else if (host < host_base)
1336 host_base = host;
1337
1338 if (host + 1 > *port_count + host_base)
1339 *port_count = host + 1 - host_base;
1340 }
1341 closedir(dir);
1342 return host_base;
1343 }
1344
1345 static int detail_platform_imsm(int verbose, int enumerate_only)
1346 {
1347 /* There are two components to imsm platform support, the ahci SATA
1348 * controller and the option-rom. To find the SATA controller we
1349 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1350 * controller with the Intel vendor id is present. This approach
1351 * allows mdadm to leverage the kernel's ahci detection logic, with the
1352 * caveat that if ahci.ko is not loaded mdadm will not be able to
1353 * detect platform raid capabilities. The option-rom resides in a
1354 * platform "Adapter ROM". We scan for its signature to retrieve the
1355 * platform capabilities. If raid support is disabled in the BIOS the
1356 * option-rom capability structure will not be available.
1357 */
1358 const struct imsm_orom *orom;
1359 struct sys_dev *list, *hba;
1360 int host_base = 0;
1361 int port_count = 0;
1362 int result=0;
1363
1364 if (enumerate_only) {
1365 if (check_env("IMSM_NO_PLATFORM") || find_imsm_orom())
1366 return 0;
1367 return 2;
1368 }
1369
1370 list = find_intel_devices();
1371 if (!list) {
1372 if (verbose)
1373 fprintf(stderr, Name ": no active Intel(R) RAID "
1374 "controller found.\n");
1375 free_sys_dev(&list);
1376 return 2;
1377 } else if (verbose)
1378 print_found_intel_controllers(list);
1379
1380 orom = find_imsm_orom();
1381 if (!orom) {
1382 free_sys_dev(&list);
1383 if (verbose)
1384 fprintf(stderr, Name ": imsm option-rom not found\n");
1385 return 2;
1386 }
1387
1388 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1389 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1390 orom->hotfix_ver, orom->build);
1391 printf(" RAID Levels :%s%s%s%s%s\n",
1392 imsm_orom_has_raid0(orom) ? " raid0" : "",
1393 imsm_orom_has_raid1(orom) ? " raid1" : "",
1394 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1395 imsm_orom_has_raid10(orom) ? " raid10" : "",
1396 imsm_orom_has_raid5(orom) ? " raid5" : "");
1397 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1398 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1399 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1400 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1401 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1402 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1403 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1404 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1405 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1406 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1407 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1408 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1409 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1410 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1411 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1412 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1413 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1414 printf(" Max Disks : %d\n", orom->tds);
1415 printf(" Max Volumes : %d\n", orom->vpa);
1416
1417 for (hba = list; hba; hba = hba->next) {
1418 printf(" I/O Controller : %s (%s)\n",
1419 hba->path, get_sys_dev_type(hba->type));
1420
1421 if (hba->type == SYS_DEV_SATA) {
1422 host_base = ahci_get_port_count(hba->path, &port_count);
1423 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
1424 if (verbose)
1425 fprintf(stderr, Name ": failed to enumerate "
1426 "ports on SATA controller at %s.", hba->pci_id);
1427 result |= 2;
1428 }
1429 } else if (hba->type == SYS_DEV_SAS) {
1430 if (verbose)
1431 fprintf(stderr, Name ": failed to enumerate "
1432 "devices on SAS controller at %s.", hba->pci_id);
1433 result |= 2;
1434 }
1435 }
1436
1437 free_sys_dev(&list);
1438 return result;
1439 }
1440 #endif
1441
1442 static int match_home_imsm(struct supertype *st, char *homehost)
1443 {
1444 /* the imsm metadata format does not specify any host
1445 * identification information. We return -1 since we can never
1446 * confirm nor deny whether a given array is "meant" for this
1447 * host. We rely on compare_super and the 'family_num' fields to
1448 * exclude member disks that do not belong, and we rely on
1449 * mdadm.conf to specify the arrays that should be assembled.
1450 * Auto-assembly may still pick up "foreign" arrays.
1451 */
1452
1453 return -1;
1454 }
1455
1456 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1457 {
1458 /* The uuid returned here is used for:
1459 * uuid to put into bitmap file (Create, Grow)
1460 * uuid for backup header when saving critical section (Grow)
1461 * comparing uuids when re-adding a device into an array
1462 * In these cases the uuid required is that of the data-array,
1463 * not the device-set.
1464 * uuid to recognise same set when adding a missing device back
1465 * to an array. This is a uuid for the device-set.
1466 *
1467 * For each of these we can make do with a truncated
1468 * or hashed uuid rather than the original, as long as
1469 * everyone agrees.
1470 * In each case the uuid required is that of the data-array,
1471 * not the device-set.
1472 */
1473 /* imsm does not track uuid's so we synthesis one using sha1 on
1474 * - The signature (Which is constant for all imsm array, but no matter)
1475 * - the orig_family_num of the container
1476 * - the index number of the volume
1477 * - the 'serial' number of the volume.
1478 * Hopefully these are all constant.
1479 */
1480 struct intel_super *super = st->sb;
1481
1482 char buf[20];
1483 struct sha1_ctx ctx;
1484 struct imsm_dev *dev = NULL;
1485 __u32 family_num;
1486
1487 /* some mdadm versions failed to set ->orig_family_num, in which
1488 * case fall back to ->family_num. orig_family_num will be
1489 * fixed up with the first metadata update.
1490 */
1491 family_num = super->anchor->orig_family_num;
1492 if (family_num == 0)
1493 family_num = super->anchor->family_num;
1494 sha1_init_ctx(&ctx);
1495 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
1496 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
1497 if (super->current_vol >= 0)
1498 dev = get_imsm_dev(super, super->current_vol);
1499 if (dev) {
1500 __u32 vol = super->current_vol;
1501 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1502 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1503 }
1504 sha1_finish_ctx(&ctx, buf);
1505 memcpy(uuid, buf, 4*4);
1506 }
1507
1508 #if 0
1509 static void
1510 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
1511 {
1512 __u8 *v = get_imsm_version(mpb);
1513 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1514 char major[] = { 0, 0, 0 };
1515 char minor[] = { 0 ,0, 0 };
1516 char patch[] = { 0, 0, 0 };
1517 char *ver_parse[] = { major, minor, patch };
1518 int i, j;
1519
1520 i = j = 0;
1521 while (*v != '\0' && v < end) {
1522 if (*v != '.' && j < 2)
1523 ver_parse[i][j++] = *v;
1524 else {
1525 i++;
1526 j = 0;
1527 }
1528 v++;
1529 }
1530
1531 *m = strtol(minor, NULL, 0);
1532 *p = strtol(patch, NULL, 0);
1533 }
1534 #endif
1535
1536 static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
1537 {
1538 /* migr_strip_size when repairing or initializing parity */
1539 struct imsm_map *map = get_imsm_map(dev, 0);
1540 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1541
1542 switch (get_imsm_raid_level(map)) {
1543 case 5:
1544 case 10:
1545 return chunk;
1546 default:
1547 return 128*1024 >> 9;
1548 }
1549 }
1550
1551 static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
1552 {
1553 /* migr_strip_size when rebuilding a degraded disk, no idea why
1554 * this is different than migr_strip_size_resync(), but it's good
1555 * to be compatible
1556 */
1557 struct imsm_map *map = get_imsm_map(dev, 1);
1558 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1559
1560 switch (get_imsm_raid_level(map)) {
1561 case 1:
1562 case 10:
1563 if (map->num_members % map->num_domains == 0)
1564 return 128*1024 >> 9;
1565 else
1566 return chunk;
1567 case 5:
1568 return max((__u32) 64*1024 >> 9, chunk);
1569 default:
1570 return 128*1024 >> 9;
1571 }
1572 }
1573
1574 static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
1575 {
1576 struct imsm_map *lo = get_imsm_map(dev, 0);
1577 struct imsm_map *hi = get_imsm_map(dev, 1);
1578 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
1579 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
1580
1581 return max((__u32) 1, hi_chunk / lo_chunk);
1582 }
1583
1584 static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
1585 {
1586 struct imsm_map *lo = get_imsm_map(dev, 0);
1587 int level = get_imsm_raid_level(lo);
1588
1589 if (level == 1 || level == 10) {
1590 struct imsm_map *hi = get_imsm_map(dev, 1);
1591
1592 return hi->num_domains;
1593 } else
1594 return num_stripes_per_unit_resync(dev);
1595 }
1596
1597 static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
1598 {
1599 /* named 'imsm_' because raid0, raid1 and raid10
1600 * counter-intuitively have the same number of data disks
1601 */
1602 struct imsm_map *map = get_imsm_map(dev, second_map);
1603
1604 switch (get_imsm_raid_level(map)) {
1605 case 0:
1606 case 1:
1607 case 10:
1608 return map->num_members;
1609 case 5:
1610 return map->num_members - 1;
1611 default:
1612 dprintf("%s: unsupported raid level\n", __func__);
1613 return 0;
1614 }
1615 }
1616
1617 static __u32 parity_segment_depth(struct imsm_dev *dev)
1618 {
1619 struct imsm_map *map = get_imsm_map(dev, 0);
1620 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1621
1622 switch(get_imsm_raid_level(map)) {
1623 case 1:
1624 case 10:
1625 return chunk * map->num_domains;
1626 case 5:
1627 return chunk * map->num_members;
1628 default:
1629 return chunk;
1630 }
1631 }
1632
1633 static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
1634 {
1635 struct imsm_map *map = get_imsm_map(dev, 1);
1636 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1637 __u32 strip = block / chunk;
1638
1639 switch (get_imsm_raid_level(map)) {
1640 case 1:
1641 case 10: {
1642 __u32 vol_strip = (strip * map->num_domains) + 1;
1643 __u32 vol_stripe = vol_strip / map->num_members;
1644
1645 return vol_stripe * chunk + block % chunk;
1646 } case 5: {
1647 __u32 stripe = strip / (map->num_members - 1);
1648
1649 return stripe * chunk + block % chunk;
1650 }
1651 default:
1652 return 0;
1653 }
1654 }
1655
1656 static __u64 blocks_per_migr_unit(struct imsm_dev *dev)
1657 {
1658 /* calculate the conversion factor between per member 'blocks'
1659 * (md/{resync,rebuild}_start) and imsm migration units, return
1660 * 0 for the 'not migrating' and 'unsupported migration' cases
1661 */
1662 if (!dev->vol.migr_state)
1663 return 0;
1664
1665 switch (migr_type(dev)) {
1666 case MIGR_GEN_MIGR:
1667 case MIGR_VERIFY:
1668 case MIGR_REPAIR:
1669 case MIGR_INIT: {
1670 struct imsm_map *map = get_imsm_map(dev, 0);
1671 __u32 stripes_per_unit;
1672 __u32 blocks_per_unit;
1673 __u32 parity_depth;
1674 __u32 migr_chunk;
1675 __u32 block_map;
1676 __u32 block_rel;
1677 __u32 segment;
1678 __u32 stripe;
1679 __u8 disks;
1680
1681 /* yes, this is really the translation of migr_units to
1682 * per-member blocks in the 'resync' case
1683 */
1684 stripes_per_unit = num_stripes_per_unit_resync(dev);
1685 migr_chunk = migr_strip_blocks_resync(dev);
1686 disks = imsm_num_data_members(dev, 0);
1687 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
1688 stripe = __le32_to_cpu(map->blocks_per_strip) * disks;
1689 segment = blocks_per_unit / stripe;
1690 block_rel = blocks_per_unit - segment * stripe;
1691 parity_depth = parity_segment_depth(dev);
1692 block_map = map_migr_block(dev, block_rel);
1693 return block_map + parity_depth * segment;
1694 }
1695 case MIGR_REBUILD: {
1696 __u32 stripes_per_unit;
1697 __u32 migr_chunk;
1698
1699 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
1700 migr_chunk = migr_strip_blocks_rebuild(dev);
1701 return migr_chunk * stripes_per_unit;
1702 }
1703 case MIGR_STATE_CHANGE:
1704 default:
1705 return 0;
1706 }
1707 }
1708
1709 static int imsm_level_to_layout(int level)
1710 {
1711 switch (level) {
1712 case 0:
1713 case 1:
1714 return 0;
1715 case 5:
1716 case 6:
1717 return ALGORITHM_LEFT_ASYMMETRIC;
1718 case 10:
1719 return 0x102;
1720 }
1721 return UnSet;
1722 }
1723
1724 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
1725 {
1726 struct intel_super *super = st->sb;
1727 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
1728 struct imsm_map *map = get_imsm_map(dev, 0);
1729 struct imsm_map *prev_map = get_imsm_map(dev, 1);
1730 struct imsm_map *map_to_analyse = map;
1731 struct dl *dl;
1732 char *devname;
1733 int map_disks = info->array.raid_disks;
1734
1735 if (prev_map)
1736 map_to_analyse = prev_map;
1737
1738 for (dl = super->disks; dl; dl = dl->next)
1739 if (dl->raiddisk == info->disk.raid_disk)
1740 break;
1741 info->container_member = super->current_vol;
1742 info->array.raid_disks = map_to_analyse->num_members;
1743 info->array.level = get_imsm_raid_level(map_to_analyse);
1744 info->array.layout = imsm_level_to_layout(info->array.level);
1745 info->array.md_minor = -1;
1746 info->array.ctime = 0;
1747 info->array.utime = 0;
1748 info->array.chunk_size =
1749 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
1750 info->array.state = !dev->vol.dirty;
1751 info->custom_array_size = __le32_to_cpu(dev->size_high);
1752 info->custom_array_size <<= 32;
1753 info->custom_array_size |= __le32_to_cpu(dev->size_low);
1754 if (prev_map) {
1755 info->new_level = get_imsm_raid_level(map);
1756 info->new_layout = imsm_level_to_layout(info->new_level);
1757 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
1758 } else {
1759 info->new_level = UnSet;
1760 info->new_layout = UnSet;
1761 info->new_chunk = info->array.chunk_size;
1762 }
1763 info->disk.major = 0;
1764 info->disk.minor = 0;
1765 if (dl) {
1766 info->disk.major = dl->major;
1767 info->disk.minor = dl->minor;
1768 }
1769
1770 info->data_offset = __le32_to_cpu(map_to_analyse->pba_of_lba0);
1771 info->component_size =
1772 __le32_to_cpu(map_to_analyse->blocks_per_member);
1773 memset(info->uuid, 0, sizeof(info->uuid));
1774 info->recovery_start = MaxSector;
1775 info->reshape_active = (prev_map != NULL);
1776 if (info->reshape_active)
1777 info->delta_disks = map->num_members - prev_map->num_members;
1778 else
1779 info->delta_disks = 0;
1780
1781 if (map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
1782 dev->vol.dirty) {
1783 info->resync_start = 0;
1784 } else if (dev->vol.migr_state) {
1785 switch (migr_type(dev)) {
1786 case MIGR_REPAIR:
1787 case MIGR_INIT: {
1788 __u64 blocks_per_unit = blocks_per_migr_unit(dev);
1789 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
1790
1791 info->resync_start = blocks_per_unit * units;
1792 break;
1793 }
1794 case MIGR_VERIFY:
1795 /* we could emulate the checkpointing of
1796 * 'sync_action=check' migrations, but for now
1797 * we just immediately complete them
1798 */
1799 case MIGR_REBUILD:
1800 /* this is handled by container_content_imsm() */
1801 case MIGR_GEN_MIGR:
1802 case MIGR_STATE_CHANGE:
1803 /* FIXME handle other migrations */
1804 default:
1805 /* we are not dirty, so... */
1806 info->resync_start = MaxSector;
1807 }
1808 } else
1809 info->resync_start = MaxSector;
1810
1811 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
1812 info->name[MAX_RAID_SERIAL_LEN] = 0;
1813
1814 info->array.major_version = -1;
1815 info->array.minor_version = -2;
1816 devname = devnum2devname(st->container_dev);
1817 *info->text_version = '\0';
1818 if (devname)
1819 sprintf(info->text_version, "/%s/%d", devname, info->container_member);
1820 free(devname);
1821 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
1822 uuid_from_super_imsm(st, info->uuid);
1823
1824 if (dmap) {
1825 int i, j;
1826 for (i=0; i<map_disks; i++) {
1827 dmap[i] = 0;
1828 if (i < info->array.raid_disks) {
1829 struct imsm_disk *dsk;
1830 j = get_imsm_disk_idx(dev, i, -1);
1831 dsk = get_imsm_disk(super, j);
1832 if (dsk && (dsk->status & CONFIGURED_DISK))
1833 dmap[i] = 1;
1834 }
1835 }
1836 }
1837 }
1838
1839 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed);
1840 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev);
1841
1842 static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
1843 {
1844 struct dl *d;
1845
1846 for (d = super->missing; d; d = d->next)
1847 if (d->index == index)
1848 return &d->disk;
1849 return NULL;
1850 }
1851
1852 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
1853 {
1854 struct intel_super *super = st->sb;
1855 struct imsm_disk *disk;
1856 int map_disks = info->array.raid_disks;
1857 int max_enough = -1;
1858 int i;
1859 struct imsm_super *mpb;
1860
1861 if (super->current_vol >= 0) {
1862 getinfo_super_imsm_volume(st, info, map);
1863 return;
1864 }
1865
1866 /* Set raid_disks to zero so that Assemble will always pull in valid
1867 * spares
1868 */
1869 info->array.raid_disks = 0;
1870 info->array.level = LEVEL_CONTAINER;
1871 info->array.layout = 0;
1872 info->array.md_minor = -1;
1873 info->array.ctime = 0; /* N/A for imsm */
1874 info->array.utime = 0;
1875 info->array.chunk_size = 0;
1876
1877 info->disk.major = 0;
1878 info->disk.minor = 0;
1879 info->disk.raid_disk = -1;
1880 info->reshape_active = 0;
1881 info->array.major_version = -1;
1882 info->array.minor_version = -2;
1883 strcpy(info->text_version, "imsm");
1884 info->safe_mode_delay = 0;
1885 info->disk.number = -1;
1886 info->disk.state = 0;
1887 info->name[0] = 0;
1888 info->recovery_start = MaxSector;
1889
1890 /* do we have the all the insync disks that we expect? */
1891 mpb = super->anchor;
1892
1893 for (i = 0; i < mpb->num_raid_devs; i++) {
1894 struct imsm_dev *dev = get_imsm_dev(super, i);
1895 int failed, enough, j, missing = 0;
1896 struct imsm_map *map;
1897 __u8 state;
1898
1899 failed = imsm_count_failed(super, dev);
1900 state = imsm_check_degraded(super, dev, failed);
1901 map = get_imsm_map(dev, dev->vol.migr_state);
1902
1903 /* any newly missing disks?
1904 * (catches single-degraded vs double-degraded)
1905 */
1906 for (j = 0; j < map->num_members; j++) {
1907 __u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
1908 __u32 idx = ord_to_idx(ord);
1909
1910 if (!(ord & IMSM_ORD_REBUILD) &&
1911 get_imsm_missing(super, idx)) {
1912 missing = 1;
1913 break;
1914 }
1915 }
1916
1917 if (state == IMSM_T_STATE_FAILED)
1918 enough = -1;
1919 else if (state == IMSM_T_STATE_DEGRADED &&
1920 (state != map->map_state || missing))
1921 enough = 0;
1922 else /* we're normal, or already degraded */
1923 enough = 1;
1924
1925 /* in the missing/failed disk case check to see
1926 * if at least one array is runnable
1927 */
1928 max_enough = max(max_enough, enough);
1929 }
1930 dprintf("%s: enough: %d\n", __func__, max_enough);
1931 info->container_enough = max_enough;
1932
1933 if (super->disks) {
1934 __u32 reserved = imsm_reserved_sectors(super, super->disks);
1935
1936 disk = &super->disks->disk;
1937 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
1938 info->component_size = reserved;
1939 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
1940 /* we don't change info->disk.raid_disk here because
1941 * this state will be finalized in mdmon after we have
1942 * found the 'most fresh' version of the metadata
1943 */
1944 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
1945 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
1946 }
1947
1948 /* only call uuid_from_super_imsm when this disk is part of a populated container,
1949 * ->compare_super may have updated the 'num_raid_devs' field for spares
1950 */
1951 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
1952 uuid_from_super_imsm(st, info->uuid);
1953 else
1954 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
1955
1956 /* I don't know how to compute 'map' on imsm, so use safe default */
1957 if (map) {
1958 int i;
1959 for (i = 0; i < map_disks; i++)
1960 map[i] = 1;
1961 }
1962
1963 }
1964
1965 /* allocates memory and fills disk in mdinfo structure
1966 * for each disk in array */
1967 struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
1968 {
1969 struct mdinfo *mddev = NULL;
1970 struct intel_super *super = st->sb;
1971 struct imsm_disk *disk;
1972 int count = 0;
1973 struct dl *dl;
1974 if (!super || !super->disks)
1975 return NULL;
1976 dl = super->disks;
1977 mddev = malloc(sizeof(*mddev));
1978 if (!mddev) {
1979 fprintf(stderr, Name ": Failed to allocate memory.\n");
1980 return NULL;
1981 }
1982 memset(mddev, 0, sizeof(*mddev));
1983 while (dl) {
1984 struct mdinfo *tmp;
1985 disk = &dl->disk;
1986 tmp = malloc(sizeof(*tmp));
1987 if (!tmp) {
1988 fprintf(stderr, Name ": Failed to allocate memory.\n");
1989 if (mddev)
1990 sysfs_free(mddev);
1991 return NULL;
1992 }
1993 memset(tmp, 0, sizeof(*tmp));
1994 if (mddev->devs)
1995 tmp->next = mddev->devs;
1996 mddev->devs = tmp;
1997 tmp->disk.number = count++;
1998 tmp->disk.major = dl->major;
1999 tmp->disk.minor = dl->minor;
2000 tmp->disk.state = is_configured(disk) ?
2001 (1 << MD_DISK_ACTIVE) : 0;
2002 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2003 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2004 tmp->disk.raid_disk = -1;
2005 dl = dl->next;
2006 }
2007 return mddev;
2008 }
2009
2010 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
2011 char *update, char *devname, int verbose,
2012 int uuid_set, char *homehost)
2013 {
2014 /* For 'assemble' and 'force' we need to return non-zero if any
2015 * change was made. For others, the return value is ignored.
2016 * Update options are:
2017 * force-one : This device looks a bit old but needs to be included,
2018 * update age info appropriately.
2019 * assemble: clear any 'faulty' flag to allow this device to
2020 * be assembled.
2021 * force-array: Array is degraded but being forced, mark it clean
2022 * if that will be needed to assemble it.
2023 *
2024 * newdev: not used ????
2025 * grow: Array has gained a new device - this is currently for
2026 * linear only
2027 * resync: mark as dirty so a resync will happen.
2028 * name: update the name - preserving the homehost
2029 * uuid: Change the uuid of the array to match watch is given
2030 *
2031 * Following are not relevant for this imsm:
2032 * sparc2.2 : update from old dodgey metadata
2033 * super-minor: change the preferred_minor number
2034 * summaries: update redundant counters.
2035 * homehost: update the recorded homehost
2036 * _reshape_progress: record new reshape_progress position.
2037 */
2038 int rv = 1;
2039 struct intel_super *super = st->sb;
2040 struct imsm_super *mpb;
2041
2042 /* we can only update container info */
2043 if (!super || super->current_vol >= 0 || !super->anchor)
2044 return 1;
2045
2046 mpb = super->anchor;
2047
2048 if (strcmp(update, "uuid") == 0 && uuid_set && !info->update_private)
2049 rv = -1;
2050 else if (strcmp(update, "uuid") == 0 && uuid_set && info->update_private) {
2051 mpb->orig_family_num = *((__u32 *) info->update_private);
2052 rv = 0;
2053 } else if (strcmp(update, "uuid") == 0) {
2054 __u32 *new_family = malloc(sizeof(*new_family));
2055
2056 /* update orig_family_number with the incoming random
2057 * data, report the new effective uuid, and store the
2058 * new orig_family_num for future updates.
2059 */
2060 if (new_family) {
2061 memcpy(&mpb->orig_family_num, info->uuid, sizeof(__u32));
2062 uuid_from_super_imsm(st, info->uuid);
2063 *new_family = mpb->orig_family_num;
2064 info->update_private = new_family;
2065 rv = 0;
2066 }
2067 } else if (strcmp(update, "assemble") == 0)
2068 rv = 0;
2069 else
2070 rv = -1;
2071
2072 /* successful update? recompute checksum */
2073 if (rv == 0)
2074 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
2075
2076 return rv;
2077 }
2078
2079 static size_t disks_to_mpb_size(int disks)
2080 {
2081 size_t size;
2082
2083 size = sizeof(struct imsm_super);
2084 size += (disks - 1) * sizeof(struct imsm_disk);
2085 size += 2 * sizeof(struct imsm_dev);
2086 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
2087 size += (4 - 2) * sizeof(struct imsm_map);
2088 /* 4 possible disk_ord_tbl's */
2089 size += 4 * (disks - 1) * sizeof(__u32);
2090
2091 return size;
2092 }
2093
2094 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
2095 {
2096 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
2097 return 0;
2098
2099 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
2100 }
2101
2102 static void free_devlist(struct intel_super *super)
2103 {
2104 struct intel_dev *dv;
2105
2106 while (super->devlist) {
2107 dv = super->devlist->next;
2108 free(super->devlist->dev);
2109 free(super->devlist);
2110 super->devlist = dv;
2111 }
2112 }
2113
2114 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
2115 {
2116 memcpy(dest, src, sizeof_imsm_dev(src, 0));
2117 }
2118
2119 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
2120 {
2121 /*
2122 * return:
2123 * 0 same, or first was empty, and second was copied
2124 * 1 second had wrong number
2125 * 2 wrong uuid
2126 * 3 wrong other info
2127 */
2128 struct intel_super *first = st->sb;
2129 struct intel_super *sec = tst->sb;
2130
2131 if (!first) {
2132 st->sb = tst->sb;
2133 tst->sb = NULL;
2134 return 0;
2135 }
2136
2137 /* if an anchor does not have num_raid_devs set then it is a free
2138 * floating spare
2139 */
2140 if (first->anchor->num_raid_devs > 0 &&
2141 sec->anchor->num_raid_devs > 0) {
2142 /* Determine if these disks might ever have been
2143 * related. Further disambiguation can only take place
2144 * in load_super_imsm_all
2145 */
2146 __u32 first_family = first->anchor->orig_family_num;
2147 __u32 sec_family = sec->anchor->orig_family_num;
2148
2149 if (memcmp(first->anchor->sig, sec->anchor->sig,
2150 MAX_SIGNATURE_LENGTH) != 0)
2151 return 3;
2152
2153 if (first_family == 0)
2154 first_family = first->anchor->family_num;
2155 if (sec_family == 0)
2156 sec_family = sec->anchor->family_num;
2157
2158 if (first_family != sec_family)
2159 return 3;
2160
2161 }
2162
2163
2164 /* if 'first' is a spare promote it to a populated mpb with sec's
2165 * family number
2166 */
2167 if (first->anchor->num_raid_devs == 0 &&
2168 sec->anchor->num_raid_devs > 0) {
2169 int i;
2170 struct intel_dev *dv;
2171 struct imsm_dev *dev;
2172
2173 /* we need to copy raid device info from sec if an allocation
2174 * fails here we don't associate the spare
2175 */
2176 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
2177 dv = malloc(sizeof(*dv));
2178 if (!dv)
2179 break;
2180 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
2181 if (!dev) {
2182 free(dv);
2183 break;
2184 }
2185 dv->dev = dev;
2186 dv->index = i;
2187 dv->next = first->devlist;
2188 first->devlist = dv;
2189 }
2190 if (i < sec->anchor->num_raid_devs) {
2191 /* allocation failure */
2192 free_devlist(first);
2193 fprintf(stderr, "imsm: failed to associate spare\n");
2194 return 3;
2195 }
2196 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
2197 first->anchor->orig_family_num = sec->anchor->orig_family_num;
2198 first->anchor->family_num = sec->anchor->family_num;
2199 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
2200 for (i = 0; i < sec->anchor->num_raid_devs; i++)
2201 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
2202 }
2203
2204 return 0;
2205 }
2206
2207 static void fd2devname(int fd, char *name)
2208 {
2209 struct stat st;
2210 char path[256];
2211 char dname[PATH_MAX];
2212 char *nm;
2213 int rv;
2214
2215 name[0] = '\0';
2216 if (fstat(fd, &st) != 0)
2217 return;
2218 sprintf(path, "/sys/dev/block/%d:%d",
2219 major(st.st_rdev), minor(st.st_rdev));
2220
2221 rv = readlink(path, dname, sizeof(dname));
2222 if (rv <= 0)
2223 return;
2224
2225 dname[rv] = '\0';
2226 nm = strrchr(dname, '/');
2227 nm++;
2228 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
2229 }
2230
2231 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
2232
2233 static int imsm_read_serial(int fd, char *devname,
2234 __u8 serial[MAX_RAID_SERIAL_LEN])
2235 {
2236 unsigned char scsi_serial[255];
2237 int rv;
2238 int rsp_len;
2239 int len;
2240 char *dest;
2241 char *src;
2242 char *rsp_buf;
2243 int i;
2244
2245 memset(scsi_serial, 0, sizeof(scsi_serial));
2246
2247 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
2248
2249 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
2250 memset(serial, 0, MAX_RAID_SERIAL_LEN);
2251 fd2devname(fd, (char *) serial);
2252 return 0;
2253 }
2254
2255 if (rv != 0) {
2256 if (devname)
2257 fprintf(stderr,
2258 Name ": Failed to retrieve serial for %s\n",
2259 devname);
2260 return rv;
2261 }
2262
2263 rsp_len = scsi_serial[3];
2264 if (!rsp_len) {
2265 if (devname)
2266 fprintf(stderr,
2267 Name ": Failed to retrieve serial for %s\n",
2268 devname);
2269 return 2;
2270 }
2271 rsp_buf = (char *) &scsi_serial[4];
2272
2273 /* trim all whitespace and non-printable characters and convert
2274 * ':' to ';'
2275 */
2276 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
2277 src = &rsp_buf[i];
2278 if (*src > 0x20) {
2279 /* ':' is reserved for use in placeholder serial
2280 * numbers for missing disks
2281 */
2282 if (*src == ':')
2283 *dest++ = ';';
2284 else
2285 *dest++ = *src;
2286 }
2287 }
2288 len = dest - rsp_buf;
2289 dest = rsp_buf;
2290
2291 /* truncate leading characters */
2292 if (len > MAX_RAID_SERIAL_LEN) {
2293 dest += len - MAX_RAID_SERIAL_LEN;
2294 len = MAX_RAID_SERIAL_LEN;
2295 }
2296
2297 memset(serial, 0, MAX_RAID_SERIAL_LEN);
2298 memcpy(serial, dest, len);
2299
2300 return 0;
2301 }
2302
2303 static int serialcmp(__u8 *s1, __u8 *s2)
2304 {
2305 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
2306 }
2307
2308 static void serialcpy(__u8 *dest, __u8 *src)
2309 {
2310 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
2311 }
2312
2313 #ifndef MDASSEMBLE
2314 static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
2315 {
2316 struct dl *dl;
2317
2318 for (dl = super->disks; dl; dl = dl->next)
2319 if (serialcmp(dl->serial, serial) == 0)
2320 break;
2321
2322 return dl;
2323 }
2324 #endif
2325
2326 static struct imsm_disk *
2327 __serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
2328 {
2329 int i;
2330
2331 for (i = 0; i < mpb->num_disks; i++) {
2332 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
2333
2334 if (serialcmp(disk->serial, serial) == 0) {
2335 if (idx)
2336 *idx = i;
2337 return disk;
2338 }
2339 }
2340
2341 return NULL;
2342 }
2343
2344 static int
2345 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
2346 {
2347 struct imsm_disk *disk;
2348 struct dl *dl;
2349 struct stat stb;
2350 int rv;
2351 char name[40];
2352 __u8 serial[MAX_RAID_SERIAL_LEN];
2353
2354 rv = imsm_read_serial(fd, devname, serial);
2355
2356 if (rv != 0)
2357 return 2;
2358
2359 dl = calloc(1, sizeof(*dl));
2360 if (!dl) {
2361 if (devname)
2362 fprintf(stderr,
2363 Name ": failed to allocate disk buffer for %s\n",
2364 devname);
2365 return 2;
2366 }
2367
2368 fstat(fd, &stb);
2369 dl->major = major(stb.st_rdev);
2370 dl->minor = minor(stb.st_rdev);
2371 dl->next = super->disks;
2372 dl->fd = keep_fd ? fd : -1;
2373 assert(super->disks == NULL);
2374 super->disks = dl;
2375 serialcpy(dl->serial, serial);
2376 dl->index = -2;
2377 dl->e = NULL;
2378 fd2devname(fd, name);
2379 if (devname)
2380 dl->devname = strdup(devname);
2381 else
2382 dl->devname = strdup(name);
2383
2384 /* look up this disk's index in the current anchor */
2385 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
2386 if (disk) {
2387 dl->disk = *disk;
2388 /* only set index on disks that are a member of a
2389 * populated contianer, i.e. one with raid_devs
2390 */
2391 if (is_failed(&dl->disk))
2392 dl->index = -2;
2393 else if (is_spare(&dl->disk))
2394 dl->index = -1;
2395 }
2396
2397 return 0;
2398 }
2399
2400 #ifndef MDASSEMBLE
2401 /* When migrating map0 contains the 'destination' state while map1
2402 * contains the current state. When not migrating map0 contains the
2403 * current state. This routine assumes that map[0].map_state is set to
2404 * the current array state before being called.
2405 *
2406 * Migration is indicated by one of the following states
2407 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
2408 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
2409 * map1state=unitialized)
2410 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
2411 * map1state=normal)
2412 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
2413 * map1state=degraded)
2414 */
2415 static void migrate(struct imsm_dev *dev, __u8 to_state, int migr_type)
2416 {
2417 struct imsm_map *dest;
2418 struct imsm_map *src = get_imsm_map(dev, 0);
2419
2420 dev->vol.migr_state = 1;
2421 set_migr_type(dev, migr_type);
2422 dev->vol.curr_migr_unit = 0;
2423 dest = get_imsm_map(dev, 1);
2424
2425 /* duplicate and then set the target end state in map[0] */
2426 memcpy(dest, src, sizeof_imsm_map(src));
2427 if ((migr_type == MIGR_REBUILD) ||
2428 (migr_type == MIGR_GEN_MIGR)) {
2429 __u32 ord;
2430 int i;
2431
2432 for (i = 0; i < src->num_members; i++) {
2433 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
2434 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
2435 }
2436 }
2437
2438 src->map_state = to_state;
2439 }
2440
2441 static void end_migration(struct imsm_dev *dev, __u8 map_state)
2442 {
2443 struct imsm_map *map = get_imsm_map(dev, 0);
2444 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
2445 int i, j;
2446
2447 /* merge any IMSM_ORD_REBUILD bits that were not successfully
2448 * completed in the last migration.
2449 *
2450 * FIXME add support for raid-level-migration
2451 */
2452 for (i = 0; i < prev->num_members; i++)
2453 for (j = 0; j < map->num_members; j++)
2454 /* during online capacity expansion
2455 * disks position can be changed if takeover is used
2456 */
2457 if (ord_to_idx(map->disk_ord_tbl[j]) ==
2458 ord_to_idx(prev->disk_ord_tbl[i])) {
2459 map->disk_ord_tbl[j] |= prev->disk_ord_tbl[i];
2460 break;
2461 }
2462
2463 dev->vol.migr_state = 0;
2464 dev->vol.migr_type = 0;
2465 dev->vol.curr_migr_unit = 0;
2466 map->map_state = map_state;
2467 }
2468 #endif
2469
2470 static int parse_raid_devices(struct intel_super *super)
2471 {
2472 int i;
2473 struct imsm_dev *dev_new;
2474 size_t len, len_migr;
2475 size_t max_len = 0;
2476 size_t space_needed = 0;
2477 struct imsm_super *mpb = super->anchor;
2478
2479 for (i = 0; i < super->anchor->num_raid_devs; i++) {
2480 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
2481 struct intel_dev *dv;
2482
2483 len = sizeof_imsm_dev(dev_iter, 0);
2484 len_migr = sizeof_imsm_dev(dev_iter, 1);
2485 if (len_migr > len)
2486 space_needed += len_migr - len;
2487
2488 dv = malloc(sizeof(*dv));
2489 if (!dv)
2490 return 1;
2491 if (max_len < len_migr)
2492 max_len = len_migr;
2493 if (max_len > len_migr)
2494 space_needed += max_len - len_migr;
2495 dev_new = malloc(max_len);
2496 if (!dev_new) {
2497 free(dv);
2498 return 1;
2499 }
2500 imsm_copy_dev(dev_new, dev_iter);
2501 dv->dev = dev_new;
2502 dv->index = i;
2503 dv->next = super->devlist;
2504 super->devlist = dv;
2505 }
2506
2507 /* ensure that super->buf is large enough when all raid devices
2508 * are migrating
2509 */
2510 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
2511 void *buf;
2512
2513 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
2514 if (posix_memalign(&buf, 512, len) != 0)
2515 return 1;
2516
2517 memcpy(buf, super->buf, super->len);
2518 memset(buf + super->len, 0, len - super->len);
2519 free(super->buf);
2520 super->buf = buf;
2521 super->len = len;
2522 }
2523
2524 return 0;
2525 }
2526
2527 /* retrieve a pointer to the bbm log which starts after all raid devices */
2528 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
2529 {
2530 void *ptr = NULL;
2531
2532 if (__le32_to_cpu(mpb->bbm_log_size)) {
2533 ptr = mpb;
2534 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
2535 }
2536
2537 return ptr;
2538 }
2539
2540 static void __free_imsm(struct intel_super *super, int free_disks);
2541
2542 /* load_imsm_mpb - read matrix metadata
2543 * allocates super->mpb to be freed by free_super
2544 */
2545 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
2546 {
2547 unsigned long long dsize;
2548 unsigned long long sectors;
2549 struct stat;
2550 struct imsm_super *anchor;
2551 __u32 check_sum;
2552
2553 get_dev_size(fd, NULL, &dsize);
2554 if (dsize < 1024) {
2555 if (devname)
2556 fprintf(stderr,
2557 Name ": %s: device to small for imsm\n",
2558 devname);
2559 return 1;
2560 }
2561
2562 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
2563 if (devname)
2564 fprintf(stderr,
2565 Name ": Cannot seek to anchor block on %s: %s\n",
2566 devname, strerror(errno));
2567 return 1;
2568 }
2569
2570 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
2571 if (devname)
2572 fprintf(stderr,
2573 Name ": Failed to allocate imsm anchor buffer"
2574 " on %s\n", devname);
2575 return 1;
2576 }
2577 if (read(fd, anchor, 512) != 512) {
2578 if (devname)
2579 fprintf(stderr,
2580 Name ": Cannot read anchor block on %s: %s\n",
2581 devname, strerror(errno));
2582 free(anchor);
2583 return 1;
2584 }
2585
2586 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
2587 if (devname)
2588 fprintf(stderr,
2589 Name ": no IMSM anchor on %s\n", devname);
2590 free(anchor);
2591 return 2;
2592 }
2593
2594 __free_imsm(super, 0);
2595 super->len = ROUND_UP(anchor->mpb_size, 512);
2596 if (posix_memalign(&super->buf, 512, super->len) != 0) {
2597 if (devname)
2598 fprintf(stderr,
2599 Name ": unable to allocate %zu byte mpb buffer\n",
2600 super->len);
2601 free(anchor);
2602 return 2;
2603 }
2604 memcpy(super->buf, anchor, 512);
2605
2606 sectors = mpb_sectors(anchor) - 1;
2607 free(anchor);
2608 if (!sectors) {
2609 check_sum = __gen_imsm_checksum(super->anchor);
2610 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
2611 if (devname)
2612 fprintf(stderr,
2613 Name ": IMSM checksum %x != %x on %s\n",
2614 check_sum,
2615 __le32_to_cpu(super->anchor->check_sum),
2616 devname);
2617 return 2;
2618 }
2619
2620 return 0;
2621 }
2622
2623 /* read the extended mpb */
2624 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
2625 if (devname)
2626 fprintf(stderr,
2627 Name ": Cannot seek to extended mpb on %s: %s\n",
2628 devname, strerror(errno));
2629 return 1;
2630 }
2631
2632 if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
2633 if (devname)
2634 fprintf(stderr,
2635 Name ": Cannot read extended mpb on %s: %s\n",
2636 devname, strerror(errno));
2637 return 2;
2638 }
2639
2640 check_sum = __gen_imsm_checksum(super->anchor);
2641 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
2642 if (devname)
2643 fprintf(stderr,
2644 Name ": IMSM checksum %x != %x on %s\n",
2645 check_sum, __le32_to_cpu(super->anchor->check_sum),
2646 devname);
2647 return 3;
2648 }
2649
2650 /* FIXME the BBM log is disk specific so we cannot use this global
2651 * buffer for all disks. Ok for now since we only look at the global
2652 * bbm_log_size parameter to gate assembly
2653 */
2654 super->bbm_log = __get_imsm_bbm_log(super->anchor);
2655
2656 return 0;
2657 }
2658
2659 static int
2660 load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
2661 {
2662 int err;
2663
2664 err = load_imsm_mpb(fd, super, devname);
2665 if (err)
2666 return err;
2667 err = load_imsm_disk(fd, super, devname, keep_fd);
2668 if (err)
2669 return err;
2670 err = parse_raid_devices(super);
2671
2672 return err;
2673 }
2674
2675 static void __free_imsm_disk(struct dl *d)
2676 {
2677 if (d->fd >= 0)
2678 close(d->fd);
2679 if (d->devname)
2680 free(d->devname);
2681 if (d->e)
2682 free(d->e);
2683 free(d);
2684
2685 }
2686
2687 static void free_imsm_disks(struct intel_super *super)
2688 {
2689 struct dl *d;
2690
2691 while (super->disks) {
2692 d = super->disks;
2693 super->disks = d->next;
2694 __free_imsm_disk(d);
2695 }
2696 while (super->disk_mgmt_list) {
2697 d = super->disk_mgmt_list;
2698 super->disk_mgmt_list = d->next;
2699 __free_imsm_disk(d);
2700 }
2701 while (super->missing) {
2702 d = super->missing;
2703 super->missing = d->next;
2704 __free_imsm_disk(d);
2705 }
2706
2707 }
2708
2709 /* free all the pieces hanging off of a super pointer */
2710 static void __free_imsm(struct intel_super *super, int free_disks)
2711 {
2712 struct intel_hba *elem, *next;
2713
2714 if (super->buf) {
2715 free(super->buf);
2716 super->buf = NULL;
2717 }
2718 if (free_disks)
2719 free_imsm_disks(super);
2720 free_devlist(super);
2721 elem = super->hba;
2722 while (elem) {
2723 if (elem->path)
2724 free((void *)elem->path);
2725 next = elem->next;
2726 free(elem);
2727 elem = next;
2728 }
2729 super->hba = NULL;
2730 }
2731
2732 static void free_imsm(struct intel_super *super)
2733 {
2734 __free_imsm(super, 1);
2735 free(super);
2736 }
2737
2738 static void free_super_imsm(struct supertype *st)
2739 {
2740 struct intel_super *super = st->sb;
2741
2742 if (!super)
2743 return;
2744
2745 free_imsm(super);
2746 st->sb = NULL;
2747 }
2748
2749 static struct intel_super *alloc_super(void)
2750 {
2751 struct intel_super *super = malloc(sizeof(*super));
2752
2753 if (super) {
2754 memset(super, 0, sizeof(*super));
2755 super->current_vol = -1;
2756 super->create_offset = ~((__u32 ) 0);
2757 if (!check_env("IMSM_NO_PLATFORM"))
2758 super->orom = find_imsm_orom();
2759 }
2760
2761 return super;
2762 }
2763
2764 #ifndef MDASSEMBLE
2765 /* find_missing - helper routine for load_super_imsm_all that identifies
2766 * disks that have disappeared from the system. This routine relies on
2767 * the mpb being uptodate, which it is at load time.
2768 */
2769 static int find_missing(struct intel_super *super)
2770 {
2771 int i;
2772 struct imsm_super *mpb = super->anchor;
2773 struct dl *dl;
2774 struct imsm_disk *disk;
2775
2776 for (i = 0; i < mpb->num_disks; i++) {
2777 disk = __get_imsm_disk(mpb, i);
2778 dl = serial_to_dl(disk->serial, super);
2779 if (dl)
2780 continue;
2781
2782 dl = malloc(sizeof(*dl));
2783 if (!dl)
2784 return 1;
2785 dl->major = 0;
2786 dl->minor = 0;
2787 dl->fd = -1;
2788 dl->devname = strdup("missing");
2789 dl->index = i;
2790 serialcpy(dl->serial, disk->serial);
2791 dl->disk = *disk;
2792 dl->e = NULL;
2793 dl->next = super->missing;
2794 super->missing = dl;
2795 }
2796
2797 return 0;
2798 }
2799
2800 static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
2801 {
2802 struct intel_disk *idisk = disk_list;
2803
2804 while (idisk) {
2805 if (serialcmp(idisk->disk.serial, serial) == 0)
2806 break;
2807 idisk = idisk->next;
2808 }
2809
2810 return idisk;
2811 }
2812
2813 static int __prep_thunderdome(struct intel_super **table, int tbl_size,
2814 struct intel_super *super,
2815 struct intel_disk **disk_list)
2816 {
2817 struct imsm_disk *d = &super->disks->disk;
2818 struct imsm_super *mpb = super->anchor;
2819 int i, j;
2820
2821 for (i = 0; i < tbl_size; i++) {
2822 struct imsm_super *tbl_mpb = table[i]->anchor;
2823 struct imsm_disk *tbl_d = &table[i]->disks->disk;
2824
2825 if (tbl_mpb->family_num == mpb->family_num) {
2826 if (tbl_mpb->check_sum == mpb->check_sum) {
2827 dprintf("%s: mpb from %d:%d matches %d:%d\n",
2828 __func__, super->disks->major,
2829 super->disks->minor,
2830 table[i]->disks->major,
2831 table[i]->disks->minor);
2832 break;
2833 }
2834
2835 if (((is_configured(d) && !is_configured(tbl_d)) ||
2836 is_configured(d) == is_configured(tbl_d)) &&
2837 tbl_mpb->generation_num < mpb->generation_num) {
2838 /* current version of the mpb is a
2839 * better candidate than the one in
2840 * super_table, but copy over "cross
2841 * generational" status
2842 */
2843 struct intel_disk *idisk;
2844
2845 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
2846 __func__, super->disks->major,
2847 super->disks->minor,
2848 table[i]->disks->major,
2849 table[i]->disks->minor);
2850
2851 idisk = disk_list_get(tbl_d->serial, *disk_list);
2852 if (idisk && is_failed(&idisk->disk))
2853 tbl_d->status |= FAILED_DISK;
2854 break;
2855 } else {
2856 struct intel_disk *idisk;
2857 struct imsm_disk *disk;
2858
2859 /* tbl_mpb is more up to date, but copy
2860 * over cross generational status before
2861 * returning
2862 */
2863 disk = __serial_to_disk(d->serial, mpb, NULL);
2864 if (disk && is_failed(disk))
2865 d->status |= FAILED_DISK;
2866
2867 idisk = disk_list_get(d->serial, *disk_list);
2868 if (idisk) {
2869 idisk->owner = i;
2870 if (disk && is_configured(disk))
2871 idisk->disk.status |= CONFIGURED_DISK;
2872 }
2873
2874 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
2875 __func__, super->disks->major,
2876 super->disks->minor,
2877 table[i]->disks->major,
2878 table[i]->disks->minor);
2879
2880 return tbl_size;
2881 }
2882 }
2883 }
2884
2885 if (i >= tbl_size)
2886 table[tbl_size++] = super;
2887 else
2888 table[i] = super;
2889
2890 /* update/extend the merged list of imsm_disk records */
2891 for (j = 0; j < mpb->num_disks; j++) {
2892 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
2893 struct intel_disk *idisk;
2894
2895 idisk = disk_list_get(disk->serial, *disk_list);
2896 if (idisk) {
2897 idisk->disk.status |= disk->status;
2898 if (is_configured(&idisk->disk) ||
2899 is_failed(&idisk->disk))
2900 idisk->disk.status &= ~(SPARE_DISK);
2901 } else {
2902 idisk = calloc(1, sizeof(*idisk));
2903 if (!idisk)
2904 return -1;
2905 idisk->owner = IMSM_UNKNOWN_OWNER;
2906 idisk->disk = *disk;
2907 idisk->next = *disk_list;
2908 *disk_list = idisk;
2909 }
2910
2911 if (serialcmp(idisk->disk.serial, d->serial) == 0)
2912 idisk->owner = i;
2913 }
2914
2915 return tbl_size;
2916 }
2917
2918 static struct intel_super *
2919 validate_members(struct intel_super *super, struct intel_disk *disk_list,
2920 const int owner)
2921 {
2922 struct imsm_super *mpb = super->anchor;
2923 int ok_count = 0;
2924 int i;
2925
2926 for (i = 0; i < mpb->num_disks; i++) {
2927 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
2928 struct intel_disk *idisk;
2929
2930 idisk = disk_list_get(disk->serial, disk_list);
2931 if (idisk) {
2932 if (idisk->owner == owner ||
2933 idisk->owner == IMSM_UNKNOWN_OWNER)
2934 ok_count++;
2935 else
2936 dprintf("%s: '%.16s' owner %d != %d\n",
2937 __func__, disk->serial, idisk->owner,
2938 owner);
2939 } else {
2940 dprintf("%s: unknown disk %x [%d]: %.16s\n",
2941 __func__, __le32_to_cpu(mpb->family_num), i,
2942 disk->serial);
2943 break;
2944 }
2945 }
2946
2947 if (ok_count == mpb->num_disks)
2948 return super;
2949 return NULL;
2950 }
2951
2952 static void show_conflicts(__u32 family_num, struct intel_super *super_list)
2953 {
2954 struct intel_super *s;
2955
2956 for (s = super_list; s; s = s->next) {
2957 if (family_num != s->anchor->family_num)
2958 continue;
2959 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
2960 __le32_to_cpu(family_num), s->disks->devname);
2961 }
2962 }
2963
2964 static struct intel_super *
2965 imsm_thunderdome(struct intel_super **super_list, int len)
2966 {
2967 struct intel_super *super_table[len];
2968 struct intel_disk *disk_list = NULL;
2969 struct intel_super *champion, *spare;
2970 struct intel_super *s, **del;
2971 int tbl_size = 0;
2972 int conflict;
2973 int i;
2974
2975 memset(super_table, 0, sizeof(super_table));
2976 for (s = *super_list; s; s = s->next)
2977 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
2978
2979 for (i = 0; i < tbl_size; i++) {
2980 struct imsm_disk *d;
2981 struct intel_disk *idisk;
2982 struct imsm_super *mpb = super_table[i]->anchor;
2983
2984 s = super_table[i];
2985 d = &s->disks->disk;
2986
2987 /* 'd' must appear in merged disk list for its
2988 * configuration to be valid
2989 */
2990 idisk = disk_list_get(d->serial, disk_list);
2991 if (idisk && idisk->owner == i)
2992 s = validate_members(s, disk_list, i);
2993 else
2994 s = NULL;
2995
2996 if (!s)
2997 dprintf("%s: marking family: %#x from %d:%d offline\n",
2998 __func__, mpb->family_num,
2999 super_table[i]->disks->major,
3000 super_table[i]->disks->minor);
3001 super_table[i] = s;
3002 }
3003
3004 /* This is where the mdadm implementation differs from the Windows
3005 * driver which has no strict concept of a container. We can only
3006 * assemble one family from a container, so when returning a prodigal
3007 * array member to this system the code will not be able to disambiguate
3008 * the container contents that should be assembled ("foreign" versus
3009 * "local"). It requires user intervention to set the orig_family_num
3010 * to a new value to establish a new container. The Windows driver in
3011 * this situation fixes up the volume name in place and manages the
3012 * foreign array as an independent entity.
3013 */
3014 s = NULL;
3015 spare = NULL;
3016 conflict = 0;
3017 for (i = 0; i < tbl_size; i++) {
3018 struct intel_super *tbl_ent = super_table[i];
3019 int is_spare = 0;
3020
3021 if (!tbl_ent)
3022 continue;
3023
3024 if (tbl_ent->anchor->num_raid_devs == 0) {
3025 spare = tbl_ent;
3026 is_spare = 1;
3027 }
3028
3029 if (s && !is_spare) {
3030 show_conflicts(tbl_ent->anchor->family_num, *super_list);
3031 conflict++;
3032 } else if (!s && !is_spare)
3033 s = tbl_ent;
3034 }
3035
3036 if (!s)
3037 s = spare;
3038 if (!s) {
3039 champion = NULL;
3040 goto out;
3041 }
3042 champion = s;
3043
3044 if (conflict)
3045 fprintf(stderr, "Chose family %#x on '%s', "
3046 "assemble conflicts to new container with '--update=uuid'\n",
3047 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
3048
3049 /* collect all dl's onto 'champion', and update them to
3050 * champion's version of the status
3051 */
3052 for (s = *super_list; s; s = s->next) {
3053 struct imsm_super *mpb = champion->anchor;
3054 struct dl *dl = s->disks;
3055
3056 if (s == champion)
3057 continue;
3058
3059 for (i = 0; i < mpb->num_disks; i++) {
3060 struct imsm_disk *disk;
3061
3062 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
3063 if (disk) {
3064 dl->disk = *disk;
3065 /* only set index on disks that are a member of
3066 * a populated contianer, i.e. one with
3067 * raid_devs
3068 */
3069 if (is_failed(&dl->disk))
3070 dl->index = -2;
3071 else if (is_spare(&dl->disk))
3072 dl->index = -1;
3073 break;
3074 }
3075 }
3076
3077 if (i >= mpb->num_disks) {
3078 struct intel_disk *idisk;
3079
3080 idisk = disk_list_get(dl->serial, disk_list);
3081 if (idisk && is_spare(&idisk->disk) &&
3082 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
3083 dl->index = -1;
3084 else {
3085 dl->index = -2;
3086 continue;
3087 }
3088 }
3089
3090 dl->next = champion->disks;
3091 champion->disks = dl;
3092 s->disks = NULL;
3093 }
3094
3095 /* delete 'champion' from super_list */
3096 for (del = super_list; *del; ) {
3097 if (*del == champion) {
3098 *del = (*del)->next;
3099 break;
3100 } else
3101 del = &(*del)->next;
3102 }
3103 champion->next = NULL;
3104
3105 out:
3106 while (disk_list) {
3107 struct intel_disk *idisk = disk_list;
3108
3109 disk_list = disk_list->next;
3110 free(idisk);
3111 }
3112
3113 return champion;
3114 }
3115
3116 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
3117 char *devname)
3118 {
3119 struct mdinfo *sra;
3120 struct intel_super *super_list = NULL;
3121 struct intel_super *super = NULL;
3122 int devnum = fd2devnum(fd);
3123 struct mdinfo *sd;
3124 int retry;
3125 int err = 0;
3126 int i;
3127
3128 /* check if 'fd' an opened container */
3129 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
3130 if (!sra)
3131 return 1;
3132
3133 if (sra->array.major_version != -1 ||
3134 sra->array.minor_version != -2 ||
3135 strcmp(sra->text_version, "imsm") != 0) {
3136 err = 1;
3137 goto error;
3138 }
3139 /* load all mpbs */
3140 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
3141 struct intel_super *s = alloc_super();
3142 char nm[32];
3143 int dfd;
3144
3145 err = 1;
3146 if (!s)
3147 goto error;
3148 s->next = super_list;
3149 super_list = s;
3150
3151 err = 2;
3152 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
3153 dfd = dev_open(nm, O_RDWR);
3154 if (dfd < 0)
3155 goto error;
3156
3157 err = load_and_parse_mpb(dfd, s, NULL, 1);
3158
3159 /* retry the load if we might have raced against mdmon */
3160 if (err == 3 && mdmon_running(devnum))
3161 for (retry = 0; retry < 3; retry++) {
3162 usleep(3000);
3163 err = load_and_parse_mpb(dfd, s, NULL, 1);
3164 if (err != 3)
3165 break;
3166 }
3167 if (err)
3168 goto error;
3169 }
3170
3171 /* all mpbs enter, maybe one leaves */
3172 super = imsm_thunderdome(&super_list, i);
3173 if (!super) {
3174 err = 1;
3175 goto error;
3176 }
3177
3178 if (find_missing(super) != 0) {
3179 free_imsm(super);
3180 err = 2;
3181 goto error;
3182 }
3183 err = 0;
3184
3185 error:
3186 while (super_list) {
3187 struct intel_super *s = super_list;
3188
3189 super_list = super_list->next;
3190 free_imsm(s);
3191 }
3192 sysfs_free(sra);
3193
3194 if (err)
3195 return err;
3196
3197 *sbp = super;
3198 st->container_dev = devnum;
3199 if (err == 0 && st->ss == NULL) {
3200 st->ss = &super_imsm;
3201 st->minor_version = 0;
3202 st->max_devs = IMSM_MAX_DEVICES;
3203 }
3204 return 0;
3205 }
3206
3207 static int load_container_imsm(struct supertype *st, int fd, char *devname)
3208 {
3209 return load_super_imsm_all(st, fd, &st->sb, devname);
3210 }
3211 #endif
3212
3213 static int load_super_imsm(struct supertype *st, int fd, char *devname)
3214 {
3215 struct intel_super *super;
3216 int rv;
3217
3218 if (test_partition(fd))
3219 /* IMSM not allowed on partitions */
3220 return 1;
3221
3222 free_super_imsm(st);
3223
3224 super = alloc_super();
3225 if (!super) {
3226 fprintf(stderr,
3227 Name ": malloc of %zu failed.\n",
3228 sizeof(*super));
3229 return 1;
3230 }
3231
3232 rv = load_and_parse_mpb(fd, super, devname, 0);
3233
3234 if (rv) {
3235 if (devname)
3236 fprintf(stderr,
3237 Name ": Failed to load all information "
3238 "sections on %s\n", devname);
3239 free_imsm(super);
3240 return rv;
3241 }
3242
3243 st->sb = super;
3244 if (st->ss == NULL) {
3245 st->ss = &super_imsm;
3246 st->minor_version = 0;
3247 st->max_devs = IMSM_MAX_DEVICES;
3248 }
3249 return 0;
3250 }
3251
3252 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
3253 {
3254 if (info->level == 1)
3255 return 128;
3256 return info->chunk_size >> 9;
3257 }
3258
3259 static __u32 info_to_num_data_stripes(mdu_array_info_t *info, int num_domains)
3260 {
3261 __u32 num_stripes;
3262
3263 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
3264 num_stripes /= num_domains;
3265
3266 return num_stripes;
3267 }
3268
3269 static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
3270 {
3271 if (info->level == 1)
3272 return info->size * 2;
3273 else
3274 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
3275 }
3276
3277 static void imsm_update_version_info(struct intel_super *super)
3278 {
3279 /* update the version and attributes */
3280 struct imsm_super *mpb = super->anchor;
3281 char *version;
3282 struct imsm_dev *dev;
3283 struct imsm_map *map;
3284 int i;
3285
3286 for (i = 0; i < mpb->num_raid_devs; i++) {
3287 dev = get_imsm_dev(super, i);
3288 map = get_imsm_map(dev, 0);
3289 if (__le32_to_cpu(dev->size_high) > 0)
3290 mpb->attributes |= MPB_ATTRIB_2TB;
3291
3292 /* FIXME detect when an array spans a port multiplier */
3293 #if 0
3294 mpb->attributes |= MPB_ATTRIB_PM;
3295 #endif
3296
3297 if (mpb->num_raid_devs > 1 ||
3298 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
3299 version = MPB_VERSION_ATTRIBS;
3300 switch (get_imsm_raid_level(map)) {
3301 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
3302 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
3303 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
3304 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
3305 }
3306 } else {
3307 if (map->num_members >= 5)
3308 version = MPB_VERSION_5OR6_DISK_ARRAY;
3309 else if (dev->status == DEV_CLONE_N_GO)
3310 version = MPB_VERSION_CNG;
3311 else if (get_imsm_raid_level(map) == 5)
3312 version = MPB_VERSION_RAID5;
3313 else if (map->num_members >= 3)
3314 version = MPB_VERSION_3OR4_DISK_ARRAY;
3315 else if (get_imsm_raid_level(map) == 1)
3316 version = MPB_VERSION_RAID1;
3317 else
3318 version = MPB_VERSION_RAID0;
3319 }
3320 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
3321 }
3322 }
3323
3324 static int check_name(struct intel_super *super, char *name, int quiet)
3325 {
3326 struct imsm_super *mpb = super->anchor;
3327 char *reason = NULL;
3328 int i;
3329
3330 if (strlen(name) > MAX_RAID_SERIAL_LEN)
3331 reason = "must be 16 characters or less";
3332
3333 for (i = 0; i < mpb->num_raid_devs; i++) {
3334 struct imsm_dev *dev = get_imsm_dev(super, i);
3335
3336 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
3337 reason = "already exists";
3338 break;
3339 }
3340 }
3341
3342 if (reason && !quiet)
3343 fprintf(stderr, Name ": imsm volume name %s\n", reason);
3344
3345 return !reason;
3346 }
3347
3348 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
3349 unsigned long long size, char *name,
3350 char *homehost, int *uuid)
3351 {
3352 /* We are creating a volume inside a pre-existing container.
3353 * so st->sb is already set.
3354 */
3355 struct intel_super *super = st->sb;
3356 struct imsm_super *mpb = super->anchor;
3357 struct intel_dev *dv;
3358 struct imsm_dev *dev;
3359 struct imsm_vol *vol;
3360 struct imsm_map *map;
3361 int idx = mpb->num_raid_devs;
3362 int i;
3363 unsigned long long array_blocks;
3364 size_t size_old, size_new;
3365 __u32 num_data_stripes;
3366
3367 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
3368 fprintf(stderr, Name": This imsm-container already has the "
3369 "maximum of %d volumes\n", super->orom->vpa);
3370 return 0;
3371 }
3372
3373 /* ensure the mpb is large enough for the new data */
3374 size_old = __le32_to_cpu(mpb->mpb_size);
3375 size_new = disks_to_mpb_size(info->nr_disks);
3376 if (size_new > size_old) {
3377 void *mpb_new;
3378 size_t size_round = ROUND_UP(size_new, 512);
3379
3380 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
3381 fprintf(stderr, Name": could not allocate new mpb\n");
3382 return 0;
3383 }
3384 memcpy(mpb_new, mpb, size_old);
3385 free(mpb);
3386 mpb = mpb_new;
3387 super->anchor = mpb_new;
3388 mpb->mpb_size = __cpu_to_le32(size_new);
3389 memset(mpb_new + size_old, 0, size_round - size_old);
3390 }
3391 super->current_vol = idx;
3392 /* when creating the first raid device in this container set num_disks
3393 * to zero, i.e. delete this spare and add raid member devices in
3394 * add_to_super_imsm_volume()
3395 */
3396 if (super->current_vol == 0)
3397 mpb->num_disks = 0;
3398
3399 if (!check_name(super, name, 0))
3400 return 0;
3401 dv = malloc(sizeof(*dv));
3402 if (!dv) {
3403 fprintf(stderr, Name ": failed to allocate device list entry\n");
3404 return 0;
3405 }
3406 dev = malloc(sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
3407 if (!dev) {
3408 free(dv);
3409 fprintf(stderr, Name": could not allocate raid device\n");
3410 return 0;
3411 }
3412 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
3413 if (info->level == 1)
3414 array_blocks = info_to_blocks_per_member(info);
3415 else
3416 array_blocks = calc_array_size(info->level, info->raid_disks,
3417 info->layout, info->chunk_size,
3418 info->size*2);
3419 /* round array size down to closest MB */
3420 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
3421
3422 dev->size_low = __cpu_to_le32((__u32) array_blocks);
3423 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
3424 dev->status = __cpu_to_le32(0);
3425 dev->reserved_blocks = __cpu_to_le32(0);
3426 vol = &dev->vol;
3427 vol->migr_state = 0;
3428 set_migr_type(dev, MIGR_INIT);
3429 vol->dirty = 0;
3430 vol->curr_migr_unit = 0;
3431 map = get_imsm_map(dev, 0);
3432 map->pba_of_lba0 = __cpu_to_le32(super->create_offset);
3433 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
3434 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
3435 map->failed_disk_num = ~0;
3436 map->map_state = info->level ? IMSM_T_STATE_UNINITIALIZED :
3437 IMSM_T_STATE_NORMAL;
3438 map->ddf = 1;
3439
3440 if (info->level == 1 && info->raid_disks > 2) {
3441 free(dev);
3442 free(dv);
3443 fprintf(stderr, Name": imsm does not support more than 2 disks"
3444 "in a raid1 volume\n");
3445 return 0;
3446 }
3447
3448 map->raid_level = info->level;
3449 if (info->level == 10) {
3450 map->raid_level = 1;
3451 map->num_domains = info->raid_disks / 2;
3452 } else if (info->level == 1)
3453 map->num_domains = info->raid_disks;
3454 else
3455 map->num_domains = 1;
3456
3457 num_data_stripes = info_to_num_data_stripes(info, map->num_domains);
3458 map->num_data_stripes = __cpu_to_le32(num_data_stripes);
3459
3460 map->num_members = info->raid_disks;
3461 for (i = 0; i < map->num_members; i++) {
3462 /* initialized in add_to_super */
3463 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
3464 }
3465 mpb->num_raid_devs++;
3466
3467 dv->dev = dev;
3468 dv->index = super->current_vol;
3469 dv->next = super->devlist;
3470 super->devlist = dv;
3471
3472 imsm_update_version_info(super);
3473
3474 return 1;
3475 }
3476
3477 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
3478 unsigned long long size, char *name,
3479 char *homehost, int *uuid)
3480 {
3481 /* This is primarily called by Create when creating a new array.
3482 * We will then get add_to_super called for each component, and then
3483 * write_init_super called to write it out to each device.
3484 * For IMSM, Create can create on fresh devices or on a pre-existing
3485 * array.
3486 * To create on a pre-existing array a different method will be called.
3487 * This one is just for fresh drives.
3488 */
3489 struct intel_super *super;
3490 struct imsm_super *mpb;
3491 size_t mpb_size;
3492 char *version;
3493
3494 if (st->sb)
3495 return init_super_imsm_volume(st, info, size, name, homehost, uuid);
3496
3497 if (info)
3498 mpb_size = disks_to_mpb_size(info->nr_disks);
3499 else
3500 mpb_size = 512;
3501
3502 super = alloc_super();
3503 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
3504 free(super);
3505 super = NULL;
3506 }
3507 if (!super) {
3508 fprintf(stderr, Name
3509 ": %s could not allocate superblock\n", __func__);
3510 return 0;
3511 }
3512 memset(super->buf, 0, mpb_size);
3513 mpb = super->buf;
3514 mpb->mpb_size = __cpu_to_le32(mpb_size);
3515 st->sb = super;
3516
3517 if (info == NULL) {
3518 /* zeroing superblock */
3519 return 0;
3520 }
3521
3522 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
3523
3524 version = (char *) mpb->sig;
3525 strcpy(version, MPB_SIGNATURE);
3526 version += strlen(MPB_SIGNATURE);
3527 strcpy(version, MPB_VERSION_RAID0);
3528
3529 return 1;
3530 }
3531
3532 #ifndef MDASSEMBLE
3533 static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
3534 int fd, char *devname)
3535 {
3536 struct intel_super *super = st->sb;
3537 struct imsm_super *mpb = super->anchor;
3538 struct dl *dl;
3539 struct imsm_dev *dev;
3540 struct imsm_map *map;
3541 int slot;
3542
3543 dev = get_imsm_dev(super, super->current_vol);
3544 map = get_imsm_map(dev, 0);
3545
3546 if (! (dk->state & (1<<MD_DISK_SYNC))) {
3547 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
3548 devname);
3549 return 1;
3550 }
3551
3552 if (fd == -1) {
3553 /* we're doing autolayout so grab the pre-marked (in
3554 * validate_geometry) raid_disk
3555 */
3556 for (dl = super->disks; dl; dl = dl->next)
3557 if (dl->raiddisk == dk->raid_disk)
3558 break;
3559 } else {
3560 for (dl = super->disks; dl ; dl = dl->next)
3561 if (dl->major == dk->major &&
3562 dl->minor == dk->minor)
3563 break;
3564 }
3565
3566 if (!dl) {
3567 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
3568 return 1;
3569 }
3570
3571 /* add a pristine spare to the metadata */
3572 if (dl->index < 0) {
3573 dl->index = super->anchor->num_disks;
3574 super->anchor->num_disks++;
3575 }
3576 /* Check the device has not already been added */
3577 slot = get_imsm_disk_slot(map, dl->index);
3578 if (slot >= 0 &&
3579 (get_imsm_ord_tbl_ent(dev, slot, -1) & IMSM_ORD_REBUILD) == 0) {
3580 fprintf(stderr, Name ": %s has been included in this array twice\n",
3581 devname);
3582 return 1;
3583 }
3584 set_imsm_ord_tbl_ent(map, dk->number, dl->index);
3585 dl->disk.status = CONFIGURED_DISK;
3586
3587 /* if we are creating the first raid device update the family number */
3588 if (super->current_vol == 0) {
3589 __u32 sum;
3590 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
3591 struct imsm_disk *_disk = __get_imsm_disk(mpb, dl->index);
3592
3593 if (!_dev || !_disk) {
3594 fprintf(stderr, Name ": BUG mpb setup error\n");
3595 return 1;
3596 }
3597 *_dev = *dev;
3598 *_disk = dl->disk;
3599 sum = random32();
3600 sum += __gen_imsm_checksum(mpb);
3601 mpb->family_num = __cpu_to_le32(sum);
3602 mpb->orig_family_num = mpb->family_num;
3603 }
3604
3605 return 0;
3606 }
3607
3608
3609 static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
3610 int fd, char *devname)
3611 {
3612 struct intel_super *super = st->sb;
3613 struct dl *dd;
3614 unsigned long long size;
3615 __u32 id;
3616 int rv;
3617 struct stat stb;
3618
3619 /* If we are on an RAID enabled platform check that the disk is
3620 * attached to the raid controller.
3621 * We do not need to test disks attachment for container based additions,
3622 * they shall be already tested when container was created/assembled.
3623 */
3624 if ((fd != -1) && !check_env("IMSM_NO_PLATFORM")) {
3625 struct sys_dev *hba_name;
3626 struct intel_hba *hba;
3627
3628 hba_name = find_disk_attached_hba(fd, NULL);
3629 if (!hba_name) {
3630 fprintf(stderr,
3631 Name ": %s is not attached to Intel(R) RAID controller.\n",
3632 devname ? : "disk");
3633 return 1;
3634 }
3635 rv = attach_hba_to_super(super, hba_name, devname);
3636 switch (rv) {
3637 case 2:
3638 fprintf(stderr, Name ": %s is attached to Intel(R) %s RAID "
3639 "controller (%s),\n but the container is assigned to Intel(R) "
3640 "%s RAID controller (",
3641 devname,
3642 get_sys_dev_type(hba_name->type),
3643 hba_name->pci_id ? : "Err!",
3644 get_sys_dev_type(hba_name->type));
3645
3646 hba = super->hba;
3647 while (hba) {
3648 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
3649 if (hba->next)
3650 fprintf(stderr, ", ");
3651 hba = hba->next;
3652 }
3653
3654 fprintf(stderr, ").\n"
3655 " Mixing devices attached to different controllers "
3656 "is not allowed.\n");
3657 free_sys_dev(&hba_name);
3658 return 1;
3659 }
3660 free_sys_dev(&hba_name);
3661 }
3662
3663 if (super->current_vol >= 0)
3664 return add_to_super_imsm_volume(st, dk, fd, devname);
3665
3666 fstat(fd, &stb);
3667 dd = malloc(sizeof(*dd));
3668 if (!dd) {
3669 fprintf(stderr,
3670 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
3671 return 1;
3672 }
3673 memset(dd, 0, sizeof(*dd));
3674 dd->major = major(stb.st_rdev);
3675 dd->minor = minor(stb.st_rdev);
3676 dd->index = -1;
3677 dd->devname = devname ? strdup(devname) : NULL;
3678 dd->fd = fd;
3679 dd->e = NULL;
3680 dd->action = DISK_ADD;
3681 rv = imsm_read_serial(fd, devname, dd->serial);
3682 if (rv) {
3683 fprintf(stderr,
3684 Name ": failed to retrieve scsi serial, aborting\n");
3685 free(dd);
3686 abort();
3687 }
3688
3689 get_dev_size(fd, NULL, &size);
3690 size /= 512;
3691 serialcpy(dd->disk.serial, dd->serial);
3692 dd->disk.total_blocks = __cpu_to_le32(size);
3693 dd->disk.status = SPARE_DISK;
3694 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
3695 dd->disk.scsi_id = __cpu_to_le32(id);
3696 else
3697 dd->disk.scsi_id = __cpu_to_le32(0);
3698
3699 if (st->update_tail) {
3700 dd->next = super->disk_mgmt_list;
3701 super->disk_mgmt_list = dd;
3702 } else {
3703 dd->next = super->disks;
3704 super->disks = dd;
3705 }
3706
3707 return 0;
3708 }
3709
3710
3711 static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
3712 {
3713 struct intel_super *super = st->sb;
3714 struct dl *dd;
3715
3716 /* remove from super works only in mdmon - for communication
3717 * manager - monitor. Check if communication memory buffer
3718 * is prepared.
3719 */
3720 if (!st->update_tail) {
3721 fprintf(stderr,
3722 Name ": %s shall be used in mdmon context only"
3723 "(line %d).\n", __func__, __LINE__);
3724 return 1;
3725 }
3726 dd = malloc(sizeof(*dd));
3727 if (!dd) {
3728 fprintf(stderr,
3729 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
3730 return 1;
3731 }
3732 memset(dd, 0, sizeof(*dd));
3733 dd->major = dk->major;
3734 dd->minor = dk->minor;
3735 dd->index = -1;
3736 dd->fd = -1;
3737 dd->disk.status = SPARE_DISK;
3738 dd->action = DISK_REMOVE;
3739
3740 dd->next = super->disk_mgmt_list;
3741 super->disk_mgmt_list = dd;
3742
3743
3744 return 0;
3745 }
3746
3747 static int store_imsm_mpb(int fd, struct imsm_super *mpb);
3748
3749 static union {
3750 char buf[512];
3751 struct imsm_super anchor;
3752 } spare_record __attribute__ ((aligned(512)));
3753
3754 /* spare records have their own family number and do not have any defined raid
3755 * devices
3756 */
3757 static int write_super_imsm_spares(struct intel_super *super, int doclose)
3758 {
3759 struct imsm_super *mpb = super->anchor;
3760 struct imsm_super *spare = &spare_record.anchor;
3761 __u32 sum;
3762 struct dl *d;
3763
3764 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
3765 spare->generation_num = __cpu_to_le32(1UL),
3766 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
3767 spare->num_disks = 1,
3768 spare->num_raid_devs = 0,
3769 spare->cache_size = mpb->cache_size,
3770 spare->pwr_cycle_count = __cpu_to_le32(1),
3771
3772 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
3773 MPB_SIGNATURE MPB_VERSION_RAID0);
3774
3775 for (d = super->disks; d; d = d->next) {
3776 if (d->index != -1)
3777 continue;
3778
3779 spare->disk[0] = d->disk;
3780 sum = __gen_imsm_checksum(spare);
3781 spare->family_num = __cpu_to_le32(sum);
3782 spare->orig_family_num = 0;
3783 sum = __gen_imsm_checksum(spare);
3784 spare->check_sum = __cpu_to_le32(sum);
3785
3786 if (store_imsm_mpb(d->fd, spare)) {
3787 fprintf(stderr, "%s: failed for device %d:%d %s\n",
3788 __func__, d->major, d->minor, strerror(errno));
3789 return 1;
3790 }
3791 if (doclose) {
3792 close(d->fd);
3793 d->fd = -1;
3794 }
3795 }
3796
3797 return 0;
3798 }
3799
3800 static int write_super_imsm(struct supertype *st, int doclose)
3801 {
3802 struct intel_super *super = st->sb;
3803 struct imsm_super *mpb = super->anchor;
3804 struct dl *d;
3805 __u32 generation;
3806 __u32 sum;
3807 int spares = 0;
3808 int i;
3809 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
3810 int num_disks = 0;
3811
3812 /* 'generation' is incremented everytime the metadata is written */
3813 generation = __le32_to_cpu(mpb->generation_num);
3814 generation++;
3815 mpb->generation_num = __cpu_to_le32(generation);
3816
3817 /* fix up cases where previous mdadm releases failed to set
3818 * orig_family_num
3819 */
3820 if (mpb->orig_family_num == 0)
3821 mpb->orig_family_num = mpb->family_num;
3822
3823 for (d = super->disks; d; d = d->next) {
3824 if (d->index == -1)
3825 spares++;
3826 else {
3827 mpb->disk[d->index] = d->disk;
3828 num_disks++;
3829 }
3830 }
3831 for (d = super->missing; d; d = d->next) {
3832 mpb->disk[d->index] = d->disk;
3833 num_disks++;
3834 }
3835 mpb->num_disks = num_disks;
3836 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
3837
3838 for (i = 0; i < mpb->num_raid_devs; i++) {
3839 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
3840 struct imsm_dev *dev2 = get_imsm_dev(super, i);
3841 if (dev && dev2) {
3842 imsm_copy_dev(dev, dev2);
3843 mpb_size += sizeof_imsm_dev(dev, 0);
3844 }
3845 }
3846 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
3847 mpb->mpb_size = __cpu_to_le32(mpb_size);
3848
3849 /* recalculate checksum */
3850 sum = __gen_imsm_checksum(mpb);
3851 mpb->check_sum = __cpu_to_le32(sum);
3852
3853 /* write the mpb for disks that compose raid devices */
3854 for (d = super->disks; d ; d = d->next) {
3855 if (d->index < 0)
3856 continue;
3857 if (store_imsm_mpb(d->fd, mpb))
3858 fprintf(stderr, "%s: failed for device %d:%d %s\n",
3859 __func__, d->major, d->minor, strerror(errno));
3860 if (doclose) {
3861 close(d->fd);
3862 d->fd = -1;
3863 }
3864 }
3865
3866 if (spares)
3867 return write_super_imsm_spares(super, doclose);
3868
3869 return 0;
3870 }
3871
3872
3873 static int create_array(struct supertype *st, int dev_idx)
3874 {
3875 size_t len;
3876 struct imsm_update_create_array *u;
3877 struct intel_super *super = st->sb;
3878 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
3879 struct imsm_map *map = get_imsm_map(dev, 0);
3880 struct disk_info *inf;
3881 struct imsm_disk *disk;
3882 int i;
3883
3884 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
3885 sizeof(*inf) * map->num_members;
3886 u = malloc(len);
3887 if (!u) {
3888 fprintf(stderr, "%s: failed to allocate update buffer\n",
3889 __func__);
3890 return 1;
3891 }
3892
3893 u->type = update_create_array;
3894 u->dev_idx = dev_idx;
3895 imsm_copy_dev(&u->dev, dev);
3896 inf = get_disk_info(u);
3897 for (i = 0; i < map->num_members; i++) {
3898 int idx = get_imsm_disk_idx(dev, i, -1);
3899
3900 disk = get_imsm_disk(super, idx);
3901 serialcpy(inf[i].serial, disk->serial);
3902 }
3903 append_metadata_update(st, u, len);
3904
3905 return 0;
3906 }
3907
3908 static int mgmt_disk(struct supertype *st)
3909 {
3910 struct intel_super *super = st->sb;
3911 size_t len;
3912 struct imsm_update_add_remove_disk *u;
3913
3914 if (!super->disk_mgmt_list)
3915 return 0;
3916
3917 len = sizeof(*u);
3918 u = malloc(len);
3919 if (!u) {
3920 fprintf(stderr, "%s: failed to allocate update buffer\n",
3921 __func__);
3922 return 1;
3923 }
3924
3925 u->type = update_add_remove_disk;
3926 append_metadata_update(st, u, len);
3927
3928 return 0;
3929 }
3930
3931 static int write_init_super_imsm(struct supertype *st)
3932 {
3933 struct intel_super *super = st->sb;
3934 int current_vol = super->current_vol;
3935
3936 /* we are done with current_vol reset it to point st at the container */
3937 super->current_vol = -1;
3938
3939 if (st->update_tail) {
3940 /* queue the recently created array / added disk
3941 * as a metadata update */
3942 int rv;
3943
3944 /* determine if we are creating a volume or adding a disk */
3945 if (current_vol < 0) {
3946 /* in the mgmt (add/remove) disk case we are running
3947 * in mdmon context, so don't close fd's
3948 */
3949 return mgmt_disk(st);
3950 } else
3951 rv = create_array(st, current_vol);
3952
3953 return rv;
3954 } else {
3955 struct dl *d;
3956 for (d = super->disks; d; d = d->next)
3957 Kill(d->devname, NULL, 0, 1, 1);
3958 return write_super_imsm(st, 1);
3959 }
3960 }
3961 #endif
3962
3963 static int store_super_imsm(struct supertype *st, int fd)
3964 {
3965 struct intel_super *super = st->sb;
3966 struct imsm_super *mpb = super ? super->anchor : NULL;
3967
3968 if (!mpb)
3969 return 1;
3970
3971 #ifndef MDASSEMBLE
3972 return store_imsm_mpb(fd, mpb);
3973 #else
3974 return 1;
3975 #endif
3976 }
3977
3978 static int imsm_bbm_log_size(struct imsm_super *mpb)
3979 {
3980 return __le32_to_cpu(mpb->bbm_log_size);
3981 }
3982
3983 #ifndef MDASSEMBLE
3984 static int validate_geometry_imsm_container(struct supertype *st, int level,
3985 int layout, int raiddisks, int chunk,
3986 unsigned long long size, char *dev,
3987 unsigned long long *freesize,
3988 int verbose)
3989 {
3990 int fd;
3991 unsigned long long ldsize;
3992 const struct imsm_orom *orom;
3993
3994 if (level != LEVEL_CONTAINER)
3995 return 0;
3996 if (!dev)
3997 return 1;
3998
3999 if (check_env("IMSM_NO_PLATFORM"))
4000 orom = NULL;
4001 else
4002 orom = find_imsm_orom();
4003 if (orom && raiddisks > orom->tds) {
4004 if (verbose)
4005 fprintf(stderr, Name ": %d exceeds maximum number of"
4006 " platform supported disks: %d\n",
4007 raiddisks, orom->tds);
4008 return 0;
4009 }
4010
4011 fd = open(dev, O_RDONLY|O_EXCL, 0);
4012 if (fd < 0) {
4013 if (verbose)
4014 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
4015 dev, strerror(errno));
4016 return 0;
4017 }
4018 if (!get_dev_size(fd, dev, &ldsize)) {
4019 close(fd);
4020 return 0;
4021 }
4022 close(fd);
4023
4024 *freesize = avail_size_imsm(st, ldsize >> 9);
4025
4026 return 1;
4027 }
4028
4029 static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
4030 {
4031 const unsigned long long base_start = e[*idx].start;
4032 unsigned long long end = base_start + e[*idx].size;
4033 int i;
4034
4035 if (base_start == end)
4036 return 0;
4037
4038 *idx = *idx + 1;
4039 for (i = *idx; i < num_extents; i++) {
4040 /* extend overlapping extents */
4041 if (e[i].start >= base_start &&
4042 e[i].start <= end) {
4043 if (e[i].size == 0)
4044 return 0;
4045 if (e[i].start + e[i].size > end)
4046 end = e[i].start + e[i].size;
4047 } else if (e[i].start > end) {
4048 *idx = i;
4049 break;
4050 }
4051 }
4052
4053 return end - base_start;
4054 }
4055
4056 static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
4057 {
4058 /* build a composite disk with all known extents and generate a new
4059 * 'maxsize' given the "all disks in an array must share a common start
4060 * offset" constraint
4061 */
4062 struct extent *e = calloc(sum_extents, sizeof(*e));
4063 struct dl *dl;
4064 int i, j;
4065 int start_extent;
4066 unsigned long long pos;
4067 unsigned long long start = 0;
4068 unsigned long long maxsize;
4069 unsigned long reserve;
4070
4071 if (!e)
4072 return 0;
4073
4074 /* coalesce and sort all extents. also, check to see if we need to
4075 * reserve space between member arrays
4076 */
4077 j = 0;
4078 for (dl = super->disks; dl; dl = dl->next) {
4079 if (!dl->e)
4080 continue;
4081 for (i = 0; i < dl->extent_cnt; i++)
4082 e[j++] = dl->e[i];
4083 }
4084 qsort(e, sum_extents, sizeof(*e), cmp_extent);
4085
4086 /* merge extents */
4087 i = 0;
4088 j = 0;
4089 while (i < sum_extents) {
4090 e[j].start = e[i].start;
4091 e[j].size = find_size(e, &i, sum_extents);
4092 j++;
4093 if (e[j-1].size == 0)
4094 break;
4095 }
4096
4097 pos = 0;
4098 maxsize = 0;
4099 start_extent = 0;
4100 i = 0;
4101 do {
4102 unsigned long long esize;
4103
4104 esize = e[i].start - pos;
4105 if (esize >= maxsize) {
4106 maxsize = esize;
4107 start = pos;
4108 start_extent = i;
4109 }
4110 pos = e[i].start + e[i].size;
4111 i++;
4112 } while (e[i-1].size);
4113 free(e);
4114
4115 if (maxsize == 0)
4116 return 0;
4117
4118 /* FIXME assumes volume at offset 0 is the first volume in a
4119 * container
4120 */
4121 if (start_extent > 0)
4122 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
4123 else
4124 reserve = 0;
4125
4126 if (maxsize < reserve)
4127 return 0;
4128
4129 super->create_offset = ~((__u32) 0);
4130 if (start + reserve > super->create_offset)
4131 return 0; /* start overflows create_offset */
4132 super->create_offset = start + reserve;
4133
4134 return maxsize - reserve;
4135 }
4136
4137 static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
4138 {
4139 if (level < 0 || level == 6 || level == 4)
4140 return 0;
4141
4142 /* if we have an orom prevent invalid raid levels */
4143 if (orom)
4144 switch (level) {
4145 case 0: return imsm_orom_has_raid0(orom);
4146 case 1:
4147 if (raiddisks > 2)
4148 return imsm_orom_has_raid1e(orom);
4149 return imsm_orom_has_raid1(orom) && raiddisks == 2;
4150 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
4151 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
4152 }
4153 else
4154 return 1; /* not on an Intel RAID platform so anything goes */
4155
4156 return 0;
4157 }
4158
4159 #define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
4160 static int
4161 validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
4162 int raiddisks, int chunk, int verbose)
4163 {
4164 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
4165 pr_vrb(": platform does not support raid%d with %d disk%s\n",
4166 level, raiddisks, raiddisks > 1 ? "s" : "");
4167 return 0;
4168 }
4169 if (super->orom && level != 1 &&
4170 !imsm_orom_has_chunk(super->orom, chunk)) {
4171 pr_vrb(": platform does not support a chunk size of: %d\n", chunk);
4172 return 0;
4173 }
4174 if (layout != imsm_level_to_layout(level)) {
4175 if (level == 5)
4176 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
4177 else if (level == 10)
4178 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
4179 else
4180 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
4181 layout, level);
4182 return 0;
4183 }
4184
4185 return 1;
4186 }
4187
4188 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
4189 * FIX ME add ahci details
4190 */
4191 static int validate_geometry_imsm_volume(struct supertype *st, int level,
4192 int layout, int raiddisks, int chunk,
4193 unsigned long long size, char *dev,
4194 unsigned long long *freesize,
4195 int verbose)
4196 {
4197 struct stat stb;
4198 struct intel_super *super = st->sb;
4199 struct imsm_super *mpb = super->anchor;
4200 struct dl *dl;
4201 unsigned long long pos = 0;
4202 unsigned long long maxsize;
4203 struct extent *e;
4204 int i;
4205
4206 /* We must have the container info already read in. */
4207 if (!super)
4208 return 0;
4209
4210 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, verbose))
4211 return 0;
4212
4213 if (!dev) {
4214 /* General test: make sure there is space for
4215 * 'raiddisks' device extents of size 'size' at a given
4216 * offset
4217 */
4218 unsigned long long minsize = size;
4219 unsigned long long start_offset = MaxSector;
4220 int dcnt = 0;
4221 if (minsize == 0)
4222 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
4223 for (dl = super->disks; dl ; dl = dl->next) {
4224 int found = 0;
4225
4226 pos = 0;
4227 i = 0;
4228 e = get_extents(super, dl);
4229 if (!e) continue;
4230 do {
4231 unsigned long long esize;
4232 esize = e[i].start - pos;
4233 if (esize >= minsize)
4234 found = 1;
4235 if (found && start_offset == MaxSector) {
4236 start_offset = pos;
4237 break;
4238 } else if (found && pos != start_offset) {
4239 found = 0;
4240 break;
4241 }
4242 pos = e[i].start + e[i].size;
4243 i++;
4244 } while (e[i-1].size);
4245 if (found)
4246 dcnt++;
4247 free(e);
4248 }
4249 if (dcnt < raiddisks) {
4250 if (verbose)
4251 fprintf(stderr, Name ": imsm: Not enough "
4252 "devices with space for this array "
4253 "(%d < %d)\n",
4254 dcnt, raiddisks);
4255 return 0;
4256 }
4257 return 1;
4258 }
4259
4260 /* This device must be a member of the set */
4261 if (stat(dev, &stb) < 0)
4262 return 0;
4263 if ((S_IFMT & stb.st_mode) != S_IFBLK)
4264 return 0;
4265 for (dl = super->disks ; dl ; dl = dl->next) {
4266 if (dl->major == (int)major(stb.st_rdev) &&
4267 dl->minor == (int)minor(stb.st_rdev))
4268 break;
4269 }
4270 if (!dl) {
4271 if (verbose)
4272 fprintf(stderr, Name ": %s is not in the "
4273 "same imsm set\n", dev);
4274 return 0;
4275 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
4276 /* If a volume is present then the current creation attempt
4277 * cannot incorporate new spares because the orom may not
4278 * understand this configuration (all member disks must be
4279 * members of each array in the container).
4280 */
4281 fprintf(stderr, Name ": %s is a spare and a volume"
4282 " is already defined for this container\n", dev);
4283 fprintf(stderr, Name ": The option-rom requires all member"
4284 " disks to be a member of all volumes\n");
4285 return 0;
4286 }
4287
4288 /* retrieve the largest free space block */
4289 e = get_extents(super, dl);
4290 maxsize = 0;
4291 i = 0;
4292 if (e) {
4293 do {
4294 unsigned long long esize;
4295
4296 esize = e[i].start - pos;
4297 if (esize >= maxsize)
4298 maxsize = esize;
4299 pos = e[i].start + e[i].size;
4300 i++;
4301 } while (e[i-1].size);
4302 dl->e = e;
4303 dl->extent_cnt = i;
4304 } else {
4305 if (verbose)
4306 fprintf(stderr, Name ": unable to determine free space for: %s\n",
4307 dev);
4308 return 0;
4309 }
4310 if (maxsize < size) {
4311 if (verbose)
4312 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
4313 dev, maxsize, size);
4314 return 0;
4315 }
4316
4317 /* count total number of extents for merge */
4318 i = 0;
4319 for (dl = super->disks; dl; dl = dl->next)
4320 if (dl->e)
4321 i += dl->extent_cnt;
4322
4323 maxsize = merge_extents(super, i);
4324 if (maxsize < size || maxsize == 0) {
4325 if (verbose)
4326 fprintf(stderr, Name ": not enough space after merge (%llu < %llu)\n",
4327 maxsize, size);
4328 return 0;
4329 }
4330
4331 *freesize = maxsize;
4332
4333 return 1;
4334 }
4335
4336 static int reserve_space(struct supertype *st, int raiddisks,
4337 unsigned long long size, int chunk,
4338 unsigned long long *freesize)
4339 {
4340 struct intel_super *super = st->sb;
4341 struct imsm_super *mpb = super->anchor;
4342 struct dl *dl;
4343 int i;
4344 int extent_cnt;
4345 struct extent *e;
4346 unsigned long long maxsize;
4347 unsigned long long minsize;
4348 int cnt;
4349 int used;
4350
4351 /* find the largest common start free region of the possible disks */
4352 used = 0;
4353 extent_cnt = 0;
4354 cnt = 0;
4355 for (dl = super->disks; dl; dl = dl->next) {
4356 dl->raiddisk = -1;
4357
4358 if (dl->index >= 0)
4359 used++;
4360
4361 /* don't activate new spares if we are orom constrained
4362 * and there is already a volume active in the container
4363 */
4364 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
4365 continue;
4366
4367 e = get_extents(super, dl);
4368 if (!e)
4369 continue;
4370 for (i = 1; e[i-1].size; i++)
4371 ;
4372 dl->e = e;
4373 dl->extent_cnt = i;
4374 extent_cnt += i;
4375 cnt++;
4376 }
4377
4378 maxsize = merge_extents(super, extent_cnt);
4379 minsize = size;
4380 if (size == 0)
4381 minsize = chunk;
4382
4383 if (cnt < raiddisks ||
4384 (super->orom && used && used != raiddisks) ||
4385 maxsize < minsize ||
4386 maxsize == 0) {
4387 fprintf(stderr, Name ": not enough devices with space to create array.\n");
4388 return 0; /* No enough free spaces large enough */
4389 }
4390
4391 if (size == 0) {
4392 size = maxsize;
4393 if (chunk) {
4394 size /= chunk;
4395 size *= chunk;
4396 }
4397 }
4398
4399 cnt = 0;
4400 for (dl = super->disks; dl; dl = dl->next)
4401 if (dl->e)
4402 dl->raiddisk = cnt++;
4403
4404 *freesize = size;
4405
4406 return 1;
4407 }
4408
4409 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
4410 int raiddisks, int chunk, unsigned long long size,
4411 char *dev, unsigned long long *freesize,
4412 int verbose)
4413 {
4414 int fd, cfd;
4415 struct mdinfo *sra;
4416 int is_member = 0;
4417
4418 /* if given unused devices create a container
4419 * if given given devices in a container create a member volume
4420 */
4421 if (level == LEVEL_CONTAINER) {
4422 /* Must be a fresh device to add to a container */
4423 return validate_geometry_imsm_container(st, level, layout,
4424 raiddisks, chunk, size,
4425 dev, freesize,
4426 verbose);
4427 }
4428
4429 if (!dev) {
4430 if (st->sb && freesize) {
4431 /* we are being asked to automatically layout a
4432 * new volume based on the current contents of
4433 * the container. If the the parameters can be
4434 * satisfied reserve_space will record the disks,
4435 * start offset, and size of the volume to be
4436 * created. add_to_super and getinfo_super
4437 * detect when autolayout is in progress.
4438 */
4439 if (!validate_geometry_imsm_orom(st->sb, level, layout,
4440 raiddisks, chunk,
4441 verbose))
4442 return 0;
4443 return reserve_space(st, raiddisks, size, chunk, freesize);
4444 }
4445 return 1;
4446 }
4447 if (st->sb) {
4448 /* creating in a given container */
4449 return validate_geometry_imsm_volume(st, level, layout,
4450 raiddisks, chunk, size,
4451 dev, freesize, verbose);
4452 }
4453
4454 /* This device needs to be a device in an 'imsm' container */
4455 fd = open(dev, O_RDONLY|O_EXCL, 0);
4456 if (fd >= 0) {
4457 if (verbose)
4458 fprintf(stderr,
4459 Name ": Cannot create this array on device %s\n",
4460 dev);
4461 close(fd);
4462 return 0;
4463 }
4464 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
4465 if (verbose)
4466 fprintf(stderr, Name ": Cannot open %s: %s\n",
4467 dev, strerror(errno));
4468 return 0;
4469 }
4470 /* Well, it is in use by someone, maybe an 'imsm' container. */
4471 cfd = open_container(fd);
4472 close(fd);
4473 if (cfd < 0) {
4474 if (verbose)
4475 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
4476 dev);
4477 return 0;
4478 }
4479 sra = sysfs_read(cfd, 0, GET_VERSION);
4480 if (sra && sra->array.major_version == -1 &&
4481 strcmp(sra->text_version, "imsm") == 0)
4482 is_member = 1;
4483 sysfs_free(sra);
4484 if (is_member) {
4485 /* This is a member of a imsm container. Load the container
4486 * and try to create a volume
4487 */
4488 struct intel_super *super;
4489
4490 if (load_super_imsm_all(st, cfd, (void **) &super, NULL) == 0) {
4491 st->sb = super;
4492 st->container_dev = fd2devnum(cfd);
4493 close(cfd);
4494 return validate_geometry_imsm_volume(st, level, layout,
4495 raiddisks, chunk,
4496 size, dev,
4497 freesize, verbose);
4498 }
4499 }
4500
4501 if (verbose)
4502 fprintf(stderr, Name ": failed container membership check\n");
4503
4504 close(cfd);
4505 return 0;
4506 }
4507
4508 static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
4509 {
4510 struct intel_super *super = st->sb;
4511
4512 if (level && *level == UnSet)
4513 *level = LEVEL_CONTAINER;
4514
4515 if (level && layout && *layout == UnSet)
4516 *layout = imsm_level_to_layout(*level);
4517
4518 if (chunk && (*chunk == UnSet || *chunk == 0) &&
4519 super && super->orom)
4520 *chunk = imsm_orom_default_chunk(super->orom);
4521 }
4522
4523 static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
4524
4525 static int kill_subarray_imsm(struct supertype *st)
4526 {
4527 /* remove the subarray currently referenced by ->current_vol */
4528 __u8 i;
4529 struct intel_dev **dp;
4530 struct intel_super *super = st->sb;
4531 __u8 current_vol = super->current_vol;
4532 struct imsm_super *mpb = super->anchor;
4533
4534 if (super->current_vol < 0)
4535 return 2;
4536 super->current_vol = -1; /* invalidate subarray cursor */
4537
4538 /* block deletions that would change the uuid of active subarrays
4539 *
4540 * FIXME when immutable ids are available, but note that we'll
4541 * also need to fixup the invalidated/active subarray indexes in
4542 * mdstat
4543 */
4544 for (i = 0; i < mpb->num_raid_devs; i++) {
4545 char subarray[4];
4546
4547 if (i < current_vol)
4548 continue;
4549 sprintf(subarray, "%u", i);
4550 if (is_subarray_active(subarray, st->devname)) {
4551 fprintf(stderr,
4552 Name ": deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
4553 current_vol, i);
4554
4555 return 2;
4556 }
4557 }
4558
4559 if (st->update_tail) {
4560 struct imsm_update_kill_array *u = malloc(sizeof(*u));
4561
4562 if (!u)
4563 return 2;
4564 u->type = update_kill_array;
4565 u->dev_idx = current_vol;
4566 append_metadata_update(st, u, sizeof(*u));
4567
4568 return 0;
4569 }
4570
4571 for (dp = &super->devlist; *dp;)
4572 if ((*dp)->index == current_vol) {
4573 *dp = (*dp)->next;
4574 } else {
4575 handle_missing(super, (*dp)->dev);
4576 if ((*dp)->index > current_vol)
4577 (*dp)->index--;
4578 dp = &(*dp)->next;
4579 }
4580
4581 /* no more raid devices, all active components are now spares,
4582 * but of course failed are still failed
4583 */
4584 if (--mpb->num_raid_devs == 0) {
4585 struct dl *d;
4586
4587 for (d = super->disks; d; d = d->next)
4588 if (d->index > -2) {
4589 d->index = -1;
4590 d->disk.status = SPARE_DISK;
4591 }
4592 }
4593
4594 super->updates_pending++;
4595
4596 return 0;
4597 }
4598
4599 static int update_subarray_imsm(struct supertype *st, char *subarray,
4600 char *update, struct mddev_ident *ident)
4601 {
4602 /* update the subarray currently referenced by ->current_vol */
4603 struct intel_super *super = st->sb;
4604 struct imsm_super *mpb = super->anchor;
4605
4606 if (strcmp(update, "name") == 0) {
4607 char *name = ident->name;
4608 char *ep;
4609 int vol;
4610
4611 if (is_subarray_active(subarray, st->devname)) {
4612 fprintf(stderr,
4613 Name ": Unable to update name of active subarray\n");
4614 return 2;
4615 }
4616
4617 if (!check_name(super, name, 0))
4618 return 2;
4619
4620 vol = strtoul(subarray, &ep, 10);
4621 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
4622 return 2;
4623
4624 if (st->update_tail) {
4625 struct imsm_update_rename_array *u = malloc(sizeof(*u));
4626
4627 if (!u)
4628 return 2;
4629 u->type = update_rename_array;
4630 u->dev_idx = vol;
4631 snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
4632 append_metadata_update(st, u, sizeof(*u));
4633 } else {
4634 struct imsm_dev *dev;
4635 int i;
4636
4637 dev = get_imsm_dev(super, vol);
4638 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
4639 for (i = 0; i < mpb->num_raid_devs; i++) {
4640 dev = get_imsm_dev(super, i);
4641 handle_missing(super, dev);
4642 }
4643 super->updates_pending++;
4644 }
4645 } else
4646 return 2;
4647
4648 return 0;
4649 }
4650
4651 static int is_gen_migration(struct imsm_dev *dev)
4652 {
4653 if (!dev->vol.migr_state)
4654 return 0;
4655
4656 if (migr_type(dev) == MIGR_GEN_MIGR)
4657 return 1;
4658
4659 return 0;
4660 }
4661 #endif /* MDASSEMBLE */
4662
4663 static int is_rebuilding(struct imsm_dev *dev)
4664 {
4665 struct imsm_map *migr_map;
4666
4667 if (!dev->vol.migr_state)
4668 return 0;
4669
4670 if (migr_type(dev) != MIGR_REBUILD)
4671 return 0;
4672
4673 migr_map = get_imsm_map(dev, 1);
4674
4675 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
4676 return 1;
4677 else
4678 return 0;
4679 }
4680
4681 static void update_recovery_start(struct imsm_dev *dev, struct mdinfo *array)
4682 {
4683 struct mdinfo *rebuild = NULL;
4684 struct mdinfo *d;
4685 __u32 units;
4686
4687 if (!is_rebuilding(dev))
4688 return;
4689
4690 /* Find the rebuild target, but punt on the dual rebuild case */
4691 for (d = array->devs; d; d = d->next)
4692 if (d->recovery_start == 0) {
4693 if (rebuild)
4694 return;
4695 rebuild = d;
4696 }
4697
4698 if (!rebuild) {
4699 /* (?) none of the disks are marked with
4700 * IMSM_ORD_REBUILD, so assume they are missing and the
4701 * disk_ord_tbl was not correctly updated
4702 */
4703 dprintf("%s: failed to locate out-of-sync disk\n", __func__);
4704 return;
4705 }
4706
4707 units = __le32_to_cpu(dev->vol.curr_migr_unit);
4708 rebuild->recovery_start = units * blocks_per_migr_unit(dev);
4709 }
4710
4711
4712 static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
4713 {
4714 /* Given a container loaded by load_super_imsm_all,
4715 * extract information about all the arrays into
4716 * an mdinfo tree.
4717 * If 'subarray' is given, just extract info about that array.
4718 *
4719 * For each imsm_dev create an mdinfo, fill it in,
4720 * then look for matching devices in super->disks
4721 * and create appropriate device mdinfo.
4722 */
4723 struct intel_super *super = st->sb;
4724 struct imsm_super *mpb = super->anchor;
4725 struct mdinfo *rest = NULL;
4726 unsigned int i;
4727 int bbm_errors = 0;
4728
4729 /* check for bad blocks */
4730 if (imsm_bbm_log_size(super->anchor))
4731 bbm_errors = 1;
4732
4733 for (i = 0; i < mpb->num_raid_devs; i++) {
4734 struct imsm_dev *dev;
4735 struct imsm_map *map;
4736 struct imsm_map *map2;
4737 struct mdinfo *this;
4738 int slot;
4739 char *ep;
4740
4741 if (subarray &&
4742 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
4743 continue;
4744
4745 dev = get_imsm_dev(super, i);
4746 map = get_imsm_map(dev, 0);
4747 map2 = get_imsm_map(dev, 1);
4748
4749 /* do not publish arrays that are in the middle of an
4750 * unsupported migration
4751 */
4752 if (dev->vol.migr_state &&
4753 (migr_type(dev) == MIGR_STATE_CHANGE)) {
4754 fprintf(stderr, Name ": cannot assemble volume '%.16s':"
4755 " unsupported migration in progress\n",
4756 dev->volume);
4757 continue;
4758 }
4759
4760 this = malloc(sizeof(*this));
4761 if (!this) {
4762 fprintf(stderr, Name ": failed to allocate %zu bytes\n",
4763 sizeof(*this));
4764 break;
4765 }
4766 memset(this, 0, sizeof(*this));
4767 this->next = rest;
4768
4769 super->current_vol = i;
4770 getinfo_super_imsm_volume(st, this, NULL);
4771 for (slot = 0 ; slot < map->num_members; slot++) {
4772 unsigned long long recovery_start;
4773 struct mdinfo *info_d;
4774 struct dl *d;
4775 int idx;
4776 int skip;
4777 __u32 ord;
4778
4779 skip = 0;
4780 idx = get_imsm_disk_idx(dev, slot, 0);
4781 ord = get_imsm_ord_tbl_ent(dev, slot, 0);
4782 for (d = super->disks; d ; d = d->next)
4783 if (d->index == idx)
4784 break;
4785
4786 recovery_start = MaxSector;
4787 if (d == NULL)
4788 skip = 1;
4789 if (d && is_failed(&d->disk))
4790 skip = 1;
4791 if (ord & IMSM_ORD_REBUILD)
4792 recovery_start = 0;
4793
4794 /*
4795 * if we skip some disks the array will be assmebled degraded;
4796 * reset resync start to avoid a dirty-degraded
4797 * situation when performing the intial sync
4798 *
4799 * FIXME handle dirty degraded
4800 */
4801 if ((skip || recovery_start == 0) && !dev->vol.dirty)
4802 this->resync_start = MaxSector;
4803 if (skip)
4804 continue;
4805
4806 info_d = calloc(1, sizeof(*info_d));
4807 if (!info_d) {
4808 fprintf(stderr, Name ": failed to allocate disk"
4809 " for volume %.16s\n", dev->volume);
4810 info_d = this->devs;
4811 while (info_d) {
4812 struct mdinfo *d = info_d->next;
4813
4814 free(info_d);
4815 info_d = d;
4816 }
4817 free(this);
4818 this = rest;
4819 break;
4820 }
4821 info_d->next = this->devs;
4822 this->devs = info_d;
4823
4824 info_d->disk.number = d->index;
4825 info_d->disk.major = d->major;
4826 info_d->disk.minor = d->minor;
4827 info_d->disk.raid_disk = slot;
4828 info_d->recovery_start = recovery_start;
4829 if (map2) {
4830 if (slot < map2->num_members)
4831 info_d->disk.state = (1 << MD_DISK_ACTIVE);
4832 else
4833 this->array.spare_disks++;
4834 } else {
4835 if (slot < map->num_members)
4836 info_d->disk.state = (1 << MD_DISK_ACTIVE);
4837 else
4838 this->array.spare_disks++;
4839 }
4840 if (info_d->recovery_start == MaxSector)
4841 this->array.working_disks++;
4842
4843 info_d->events = __le32_to_cpu(mpb->generation_num);
4844 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
4845 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
4846 }
4847 /* now that the disk list is up-to-date fixup recovery_start */
4848 update_recovery_start(dev, this);
4849 rest = this;
4850 }
4851
4852 /* if array has bad blocks, set suitable bit in array status */
4853 if (bbm_errors)
4854 rest->array.state |= (1<<MD_SB_BBM_ERRORS);
4855
4856 return rest;
4857 }
4858
4859
4860 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev, int failed)
4861 {
4862 struct imsm_map *map = get_imsm_map(dev, 0);
4863
4864 if (!failed)
4865 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
4866 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
4867
4868 switch (get_imsm_raid_level(map)) {
4869 case 0:
4870 return IMSM_T_STATE_FAILED;
4871 break;
4872 case 1:
4873 if (failed < map->num_members)
4874 return IMSM_T_STATE_DEGRADED;
4875 else
4876 return IMSM_T_STATE_FAILED;
4877 break;
4878 case 10:
4879 {
4880 /**
4881 * check to see if any mirrors have failed, otherwise we
4882 * are degraded. Even numbered slots are mirrored on
4883 * slot+1
4884 */
4885 int i;
4886 /* gcc -Os complains that this is unused */
4887 int insync = insync;
4888
4889 for (i = 0; i < map->num_members; i++) {
4890 __u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
4891 int idx = ord_to_idx(ord);
4892 struct imsm_disk *disk;
4893
4894 /* reset the potential in-sync count on even-numbered
4895 * slots. num_copies is always 2 for imsm raid10
4896 */
4897 if ((i & 1) == 0)
4898 insync = 2;
4899
4900 disk = get_imsm_disk(super, idx);
4901 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
4902 insync--;
4903
4904 /* no in-sync disks left in this mirror the
4905 * array has failed
4906 */
4907 if (insync == 0)
4908 return IMSM_T_STATE_FAILED;
4909 }
4910
4911 return IMSM_T_STATE_DEGRADED;
4912 }
4913 case 5:
4914 if (failed < 2)
4915 return IMSM_T_STATE_DEGRADED;
4916 else
4917 return IMSM_T_STATE_FAILED;
4918 break;
4919 default:
4920 break;
4921 }
4922
4923 return map->map_state;
4924 }
4925
4926 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev)
4927 {
4928 int i;
4929 int failed = 0;
4930 struct imsm_disk *disk;
4931 struct imsm_map *map = get_imsm_map(dev, 0);
4932 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
4933 __u32 ord;
4934 int idx;
4935
4936 /* at the beginning of migration we set IMSM_ORD_REBUILD on
4937 * disks that are being rebuilt. New failures are recorded to
4938 * map[0]. So we look through all the disks we started with and
4939 * see if any failures are still present, or if any new ones
4940 * have arrived
4941 *
4942 * FIXME add support for online capacity expansion and
4943 * raid-level-migration
4944 */
4945 for (i = 0; i < prev->num_members; i++) {
4946 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
4947 ord |= __le32_to_cpu(map->disk_ord_tbl[i]);
4948 idx = ord_to_idx(ord);
4949
4950 disk = get_imsm_disk(super, idx);
4951 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
4952 failed++;
4953 }
4954
4955 return failed;
4956 }
4957
4958 #ifndef MDASSEMBLE
4959 static int imsm_open_new(struct supertype *c, struct active_array *a,
4960 char *inst)
4961 {
4962 struct intel_super *super = c->sb;
4963 struct imsm_super *mpb = super->anchor;
4964
4965 if (atoi(inst) >= mpb->num_raid_devs) {
4966 fprintf(stderr, "%s: subarry index %d, out of range\n",
4967 __func__, atoi(inst));
4968 return -ENODEV;
4969 }
4970
4971 dprintf("imsm: open_new %s\n", inst);
4972 a->info.container_member = atoi(inst);
4973 return 0;
4974 }
4975
4976 static int is_resyncing(struct imsm_dev *dev)
4977 {
4978 struct imsm_map *migr_map;
4979
4980 if (!dev->vol.migr_state)
4981 return 0;
4982
4983 if (migr_type(dev) == MIGR_INIT ||
4984 migr_type(dev) == MIGR_REPAIR)
4985 return 1;
4986
4987 if (migr_type(dev) == MIGR_GEN_MIGR)
4988 return 0;
4989
4990 migr_map = get_imsm_map(dev, 1);
4991
4992 if ((migr_map->map_state == IMSM_T_STATE_NORMAL) &&
4993 (dev->vol.migr_type != MIGR_GEN_MIGR))
4994 return 1;
4995 else
4996 return 0;
4997 }
4998
4999 /* return true if we recorded new information */
5000 static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
5001 {
5002 __u32 ord;
5003 int slot;
5004 struct imsm_map *map;
5005
5006 /* new failures are always set in map[0] */
5007 map = get_imsm_map(dev, 0);
5008
5009 slot = get_imsm_disk_slot(map, idx);
5010 if (slot < 0)
5011 return 0;
5012
5013 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
5014 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
5015 return 0;
5016
5017 disk->status |= FAILED_DISK;
5018 disk->status &= ~CONFIGURED_DISK;
5019 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
5020 if (map->failed_disk_num == 0xff)
5021 map->failed_disk_num = slot;
5022 return 1;
5023 }
5024
5025 static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
5026 {
5027 mark_failure(dev, disk, idx);
5028
5029 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
5030 return;
5031
5032 disk->scsi_id = __cpu_to_le32(~(__u32)0);
5033 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
5034 }
5035
5036 static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
5037 {
5038 __u8 map_state;
5039 struct dl *dl;
5040 int failed;
5041
5042 if (!super->missing)
5043 return;
5044 failed = imsm_count_failed(super, dev);
5045 map_state = imsm_check_degraded(super, dev, failed);
5046
5047 dprintf("imsm: mark missing\n");
5048 end_migration(dev, map_state);
5049 for (dl = super->missing; dl; dl = dl->next)
5050 mark_missing(dev, &dl->disk, dl->index);
5051 super->updates_pending++;
5052 }
5053
5054 static void imsm_set_disk(struct active_array *a, int n, int state);
5055
5056 static void imsm_progress_container_reshape(struct intel_super *super)
5057 {
5058 /* if no device has a migr_state, but some device has a
5059 * different number of members than the previous device, start
5060 * changing the number of devices in this device to match
5061 * previous.
5062 */
5063 struct imsm_super *mpb = super->anchor;
5064 int prev_disks = -1;
5065 int i;
5066 int copy_map_size;
5067
5068 for (i = 0; i < mpb->num_raid_devs; i++) {
5069 struct imsm_dev *dev = get_imsm_dev(super, i);
5070 struct imsm_map *map = get_imsm_map(dev, 0);
5071 struct imsm_map *map2;
5072 int prev_num_members;
5073 int used_disks;
5074
5075 if (dev->vol.migr_state)
5076 return;
5077
5078 if (prev_disks == -1)
5079 prev_disks = map->num_members;
5080 if (prev_disks == map->num_members)
5081 continue;
5082
5083 /* OK, this array needs to enter reshape mode.
5084 * i.e it needs a migr_state
5085 */
5086
5087 copy_map_size = sizeof_imsm_map(map);
5088 prev_num_members = map->num_members;
5089 map->num_members = prev_disks;
5090 dev->vol.migr_state = 1;
5091 dev->vol.curr_migr_unit = 0;
5092 dev->vol.migr_type = MIGR_GEN_MIGR;
5093 for (i = prev_num_members;
5094 i < map->num_members; i++)
5095 set_imsm_ord_tbl_ent(map, i, i);
5096 map2 = get_imsm_map(dev, 1);
5097 /* Copy the current map */
5098 memcpy(map2, map, copy_map_size);
5099 map2->num_members = prev_num_members;
5100
5101 /* calculate new size
5102 */
5103 used_disks = imsm_num_data_members(dev, 0);
5104 if (used_disks) {
5105 unsigned long long array_blocks;
5106
5107 array_blocks =
5108 map->blocks_per_member
5109 * used_disks;
5110 /* round array size down to closest MB
5111 */
5112 array_blocks = (array_blocks
5113 >> SECT_PER_MB_SHIFT)
5114 << SECT_PER_MB_SHIFT;
5115 dev->size_low =
5116 __cpu_to_le32((__u32)array_blocks);
5117 dev->size_high =
5118 __cpu_to_le32(
5119 (__u32)(array_blocks >> 32));
5120 }
5121 super->updates_pending++;
5122 }
5123 }
5124
5125 /* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
5126 * states are handled in imsm_set_disk() with one exception, when a
5127 * resync is stopped due to a new failure this routine will set the
5128 * 'degraded' state for the array.
5129 */
5130 static int imsm_set_array_state(struct active_array *a, int consistent)
5131 {
5132 int inst = a->info.container_member;
5133 struct intel_super *super = a->container->sb;
5134 struct imsm_dev *dev = get_imsm_dev(super, inst);
5135 struct imsm_map *map = get_imsm_map(dev, 0);
5136 int failed = imsm_count_failed(super, dev);
5137 __u8 map_state = imsm_check_degraded(super, dev, failed);
5138 __u32 blocks_per_unit;
5139
5140 if (dev->vol.migr_state &&
5141 dev->vol.migr_type == MIGR_GEN_MIGR) {
5142 /* array state change is blocked due to reshape action
5143 * We might need to
5144 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
5145 * - finish the reshape (if last_checkpoint is big and action != reshape)
5146 * - update curr_migr_unit
5147 */
5148 if (a->curr_action == reshape) {
5149 /* still reshaping, maybe update curr_migr_unit */
5150 long long blocks_per_unit = blocks_per_migr_unit(dev);
5151 long long unit = a->last_checkpoint;
5152 if (blocks_per_unit) {
5153 unit /= blocks_per_unit;
5154 if (unit >
5155 __le32_to_cpu(dev->vol.curr_migr_unit)) {
5156 dev->vol.curr_migr_unit =
5157 __cpu_to_le32(unit);
5158 super->updates_pending++;
5159 }
5160 }
5161 return 0;
5162 } else {
5163 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
5164 /* for some reason we aborted the reshape.
5165 * Better clean up
5166 */
5167 struct imsm_map *map2 = get_imsm_map(dev, 1);
5168 dev->vol.migr_state = 0;
5169 dev->vol.migr_type = 0;
5170 dev->vol.curr_migr_unit = 0;
5171 memcpy(map, map2, sizeof_imsm_map(map2));
5172 super->updates_pending++;
5173 }
5174 if (a->last_checkpoint >= a->info.component_size) {
5175 unsigned long long array_blocks;
5176 int used_disks;
5177 struct mdinfo *mdi;
5178
5179 used_disks = imsm_num_data_members(dev, -1);
5180 if (used_disks > 0) {
5181 array_blocks =
5182 map->blocks_per_member *
5183 used_disks;
5184 /* round array size down to closest MB
5185 */
5186 array_blocks = (array_blocks
5187 >> SECT_PER_MB_SHIFT)
5188 << SECT_PER_MB_SHIFT;
5189 dev->size_low = __cpu_to_le32(
5190 (__u32) array_blocks);
5191 dev->size_high = __cpu_to_le32(
5192 (__u32) (array_blocks >> 32));
5193 a->info.custom_array_size = array_blocks;
5194 /* encourage manager to update array
5195 * size
5196 */
5197 super->updates_pending++;
5198
5199 a->check_reshape = 1;
5200 }
5201 /* finalize online capacity expansion/reshape */
5202 for (mdi = a->info.devs; mdi; mdi = mdi->next)
5203 imsm_set_disk(a,
5204 mdi->disk.raid_disk,
5205 mdi->curr_state);
5206
5207 imsm_progress_container_reshape(super);
5208 }
5209 }
5210 }
5211
5212 /* before we activate this array handle any missing disks */
5213 if (consistent == 2)
5214 handle_missing(super, dev);
5215
5216 if (consistent == 2 &&
5217 (!is_resync_complete(&a->info) ||
5218 map_state != IMSM_T_STATE_NORMAL ||
5219 dev->vol.migr_state))
5220 consistent = 0;
5221
5222 if (is_resync_complete(&a->info)) {
5223 /* complete intialization / resync,
5224 * recovery and interrupted recovery is completed in
5225 * ->set_disk
5226 */
5227 if (is_resyncing(dev)) {
5228 dprintf("imsm: mark resync done\n");
5229 end_migration(dev, map_state);
5230 super->updates_pending++;
5231 a->last_checkpoint = 0;
5232 }
5233 } else if (!is_resyncing(dev) && !failed) {
5234 /* mark the start of the init process if nothing is failed */
5235 dprintf("imsm: mark resync start\n");
5236 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
5237 migrate(dev, IMSM_T_STATE_NORMAL, MIGR_INIT);
5238 else
5239 migrate(dev, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
5240 super->updates_pending++;
5241 }
5242
5243 /* check if we can update curr_migr_unit from resync_start, recovery_start */
5244 blocks_per_unit = blocks_per_migr_unit(dev);
5245 if (blocks_per_unit) {
5246 __u32 units32;
5247 __u64 units;
5248
5249 units = a->last_checkpoint / blocks_per_unit;
5250 units32 = units;
5251
5252 /* check that we did not overflow 32-bits, and that
5253 * curr_migr_unit needs updating
5254 */
5255 if (units32 == units &&
5256 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
5257 dprintf("imsm: mark checkpoint (%u)\n", units32);
5258 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
5259 super->updates_pending++;
5260 }
5261 }
5262
5263 /* mark dirty / clean */
5264 if (dev->vol.dirty != !consistent) {
5265 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
5266 if (consistent)
5267 dev->vol.dirty = 0;
5268 else
5269 dev->vol.dirty = 1;
5270 super->updates_pending++;
5271 }
5272
5273 return consistent;
5274 }
5275
5276 static void imsm_set_disk(struct active_array *a, int n, int state)
5277 {
5278 int inst = a->info.container_member;
5279 struct intel_super *super = a->container->sb;
5280 struct imsm_dev *dev = get_imsm_dev(super, inst);
5281 struct imsm_map *map = get_imsm_map(dev, 0);
5282 struct imsm_disk *disk;
5283 int failed;
5284 __u32 ord;
5285 __u8 map_state;
5286
5287 if (n > map->num_members)
5288 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
5289 n, map->num_members - 1);
5290
5291 if (n < 0)
5292 return;
5293
5294 dprintf("imsm: set_disk %d:%x\n", n, state);
5295
5296 ord = get_imsm_ord_tbl_ent(dev, n, -1);
5297 disk = get_imsm_disk(super, ord_to_idx(ord));
5298
5299 /* check for new failures */
5300 if (state & DS_FAULTY) {
5301 if (mark_failure(dev, disk, ord_to_idx(ord)))
5302 super->updates_pending++;
5303 }
5304
5305 /* check if in_sync */
5306 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
5307 struct imsm_map *migr_map = get_imsm_map(dev, 1);
5308
5309 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
5310 super->updates_pending++;
5311 }
5312
5313 failed = imsm_count_failed(super, dev);
5314 map_state = imsm_check_degraded(super, dev, failed);
5315
5316 /* check if recovery complete, newly degraded, or failed */
5317 if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
5318 end_migration(dev, map_state);
5319 map = get_imsm_map(dev, 0);
5320 map->failed_disk_num = ~0;
5321 super->updates_pending++;
5322 a->last_checkpoint = 0;
5323 } else if (map_state == IMSM_T_STATE_DEGRADED &&
5324 map->map_state != map_state &&
5325 !dev->vol.migr_state) {
5326 dprintf("imsm: mark degraded\n");
5327 map->map_state = map_state;
5328 super->updates_pending++;
5329 a->last_checkpoint = 0;
5330 } else if (map_state == IMSM_T_STATE_FAILED &&
5331 map->map_state != map_state) {
5332 dprintf("imsm: mark failed\n");
5333 end_migration(dev, map_state);
5334 super->updates_pending++;
5335 a->last_checkpoint = 0;
5336 } else if (is_gen_migration(dev)) {
5337 dprintf("imsm: Detected General Migration in state: ");
5338 if (map_state == IMSM_T_STATE_NORMAL) {
5339 end_migration(dev, map_state);
5340 map = get_imsm_map(dev, 0);
5341 map->failed_disk_num = ~0;
5342 dprintf("normal\n");
5343 } else {
5344 if (map_state == IMSM_T_STATE_DEGRADED) {
5345 printf("degraded\n");
5346 end_migration(dev, map_state);
5347 } else {
5348 dprintf("failed\n");
5349 }
5350 map->map_state = map_state;
5351 }
5352 super->updates_pending++;
5353 }
5354 }
5355
5356 static int store_imsm_mpb(int fd, struct imsm_super *mpb)
5357 {
5358 void *buf = mpb;
5359 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
5360 unsigned long long dsize;
5361 unsigned long long sectors;
5362
5363 get_dev_size(fd, NULL, &dsize);
5364
5365 if (mpb_size > 512) {
5366 /* -1 to account for anchor */
5367 sectors = mpb_sectors(mpb) - 1;
5368
5369 /* write the extended mpb to the sectors preceeding the anchor */
5370 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
5371 return 1;
5372
5373 if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
5374 != 512 * sectors)
5375 return 1;
5376 }
5377
5378 /* first block is stored on second to last sector of the disk */
5379 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
5380 return 1;
5381
5382 if (write(fd, buf, 512) != 512)
5383 return 1;
5384
5385 return 0;
5386 }
5387
5388 static void imsm_sync_metadata(struct supertype *container)
5389 {
5390 struct intel_super *super = container->sb;
5391
5392 dprintf("sync metadata: %d\n", super->updates_pending);
5393 if (!super->updates_pending)
5394 return;
5395
5396 write_super_imsm(container, 0);
5397
5398 super->updates_pending = 0;
5399 }
5400
5401 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
5402 {
5403 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
5404 int i = get_imsm_disk_idx(dev, idx, -1);
5405 struct dl *dl;
5406
5407 for (dl = super->disks; dl; dl = dl->next)
5408 if (dl->index == i)
5409 break;
5410
5411 if (dl && is_failed(&dl->disk))
5412 dl = NULL;
5413
5414 if (dl)
5415 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
5416
5417 return dl;
5418 }
5419
5420 static struct dl *imsm_add_spare(struct intel_super *super, int slot,
5421 struct active_array *a, int activate_new,
5422 struct mdinfo *additional_test_list)
5423 {
5424 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
5425 int idx = get_imsm_disk_idx(dev, slot, -1);
5426 struct imsm_super *mpb = super->anchor;
5427 struct imsm_map *map;
5428 unsigned long long pos;
5429 struct mdinfo *d;
5430 struct extent *ex;
5431 int i, j;
5432 int found;
5433 __u32 array_start = 0;
5434 __u32 array_end = 0;
5435 struct dl *dl;
5436 struct mdinfo *test_list;
5437
5438 for (dl = super->disks; dl; dl = dl->next) {
5439 /* If in this array, skip */
5440 for (d = a->info.devs ; d ; d = d->next)
5441 if (d->state_fd >= 0 &&
5442 d->disk.major == dl->major &&
5443 d->disk.minor == dl->minor) {
5444 dprintf("%x:%x already in array\n",
5445 dl->major, dl->minor);
5446 break;
5447 }
5448 if (d)
5449 continue;
5450 test_list = additional_test_list;
5451 while (test_list) {
5452 if (test_list->disk.major == dl->major &&
5453 test_list->disk.minor == dl->minor) {
5454 dprintf("%x:%x already in additional test list\n",
5455 dl->major, dl->minor);
5456 break;
5457 }
5458 test_list = test_list->next;
5459 }
5460 if (test_list)
5461 continue;
5462
5463 /* skip in use or failed drives */
5464 if (is_failed(&dl->disk) || idx == dl->index ||
5465 dl->index == -2) {
5466 dprintf("%x:%x status (failed: %d index: %d)\n",
5467 dl->major, dl->minor, is_failed(&dl->disk), idx);
5468 continue;
5469 }
5470
5471 /* skip pure spares when we are looking for partially
5472 * assimilated drives
5473 */
5474 if (dl->index == -1 && !activate_new)
5475 continue;
5476
5477 /* Does this unused device have the requisite free space?
5478 * It needs to be able to cover all member volumes
5479 */
5480 ex = get_extents(super, dl);
5481 if (!ex) {
5482 dprintf("cannot get extents\n");
5483 continue;
5484 }
5485 for (i = 0; i < mpb->num_raid_devs; i++) {
5486 dev = get_imsm_dev(super, i);
5487 map = get_imsm_map(dev, 0);
5488
5489 /* check if this disk is already a member of
5490 * this array
5491 */
5492 if (get_imsm_disk_slot(map, dl->index) >= 0)
5493 continue;
5494
5495 found = 0;
5496 j = 0;
5497 pos = 0;
5498 array_start = __le32_to_cpu(map->pba_of_lba0);
5499 array_end = array_start +
5500 __le32_to_cpu(map->blocks_per_member) - 1;
5501
5502 do {
5503 /* check that we can start at pba_of_lba0 with
5504 * blocks_per_member of space
5505 */
5506 if (array_start >= pos && array_end < ex[j].start) {
5507 found = 1;
5508 break;
5509 }
5510 pos = ex[j].start + ex[j].size;
5511 j++;
5512 } while (ex[j-1].size);
5513
5514 if (!found)
5515 break;
5516 }
5517
5518 free(ex);
5519 if (i < mpb->num_raid_devs) {
5520 dprintf("%x:%x does not have %u to %u available\n",
5521 dl->major, dl->minor, array_start, array_end);
5522 /* No room */
5523 continue;
5524 }
5525 return dl;
5526 }
5527
5528 return dl;
5529 }
5530
5531
5532 static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
5533 {
5534 struct imsm_dev *dev2;
5535 struct imsm_map *map;
5536 struct dl *idisk;
5537 int slot;
5538 int idx;
5539 __u8 state;
5540
5541 dev2 = get_imsm_dev(cont->sb, dev_idx);
5542 if (dev2) {
5543 state = imsm_check_degraded(cont->sb, dev2, failed);
5544 if (state == IMSM_T_STATE_FAILED) {
5545 map = get_imsm_map(dev2, 0);
5546 if (!map)
5547 return 1;
5548 for (slot = 0; slot < map->num_members; slot++) {
5549 /*
5550 * Check if failed disks are deleted from intel
5551 * disk list or are marked to be deleted
5552 */
5553 idx = get_imsm_disk_idx(dev2, slot, -1);
5554 idisk = get_imsm_dl_disk(cont->sb, idx);
5555 /*
5556 * Do not rebuild the array if failed disks
5557 * from failed sub-array are not removed from
5558 * container.
5559 */
5560 if (idisk &&
5561 is_failed(&idisk->disk) &&
5562 (idisk->action != DISK_REMOVE))
5563 return 0;
5564 }
5565 }
5566 }
5567 return 1;
5568 }
5569
5570 static struct mdinfo *imsm_activate_spare(struct active_array *a,
5571 struct metadata_update **updates)
5572 {
5573 /**
5574 * Find a device with unused free space and use it to replace a
5575 * failed/vacant region in an array. We replace failed regions one a
5576 * array at a time. The result is that a new spare disk will be added
5577 * to the first failed array and after the monitor has finished
5578 * propagating failures the remainder will be consumed.
5579 *
5580 * FIXME add a capability for mdmon to request spares from another
5581 * container.
5582 */
5583
5584 struct intel_super *super = a->container->sb;
5585 int inst = a->info.container_member;
5586 struct imsm_dev *dev = get_imsm_dev(super, inst);
5587 struct imsm_map *map = get_imsm_map(dev, 0);
5588 int failed = a->info.array.raid_disks;
5589 struct mdinfo *rv = NULL;
5590 struct mdinfo *d;
5591 struct mdinfo *di;
5592 struct metadata_update *mu;
5593 struct dl *dl;
5594 struct imsm_update_activate_spare *u;
5595 int num_spares = 0;
5596 int i;
5597 int allowed;
5598
5599 for (d = a->info.devs ; d ; d = d->next) {
5600 if ((d->curr_state & DS_FAULTY) &&
5601 d->state_fd >= 0)
5602 /* wait for Removal to happen */
5603 return NULL;
5604 if (d->state_fd >= 0)
5605 failed--;
5606 }
5607
5608 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
5609 inst, failed, a->info.array.raid_disks, a->info.array.level);
5610
5611 if (dev->vol.migr_state &&
5612 dev->vol.migr_type == MIGR_GEN_MIGR)
5613 /* No repair during migration */
5614 return NULL;
5615
5616 if (a->info.array.level == 4)
5617 /* No repair for takeovered array
5618 * imsm doesn't support raid4
5619 */
5620 return NULL;
5621
5622 if (imsm_check_degraded(super, dev, failed) != IMSM_T_STATE_DEGRADED)
5623 return NULL;
5624
5625 /*
5626 * If there are any failed disks check state of the other volume.
5627 * Block rebuild if the another one is failed until failed disks
5628 * are removed from container.
5629 */
5630 if (failed) {
5631 dprintf("found failed disks in %s, check if there another"
5632 "failed sub-array.\n",
5633 dev->volume);
5634 /* check if states of the other volumes allow for rebuild */
5635 for (i = 0; i < super->anchor->num_raid_devs; i++) {
5636 if (i != inst) {
5637 allowed = imsm_rebuild_allowed(a->container,
5638 i, failed);
5639 if (!allowed)
5640 return NULL;
5641 }
5642 }
5643 }
5644
5645 /* For each slot, if it is not working, find a spare */
5646 for (i = 0; i < a->info.array.raid_disks; i++) {
5647 for (d = a->info.devs ; d ; d = d->next)
5648 if (d->disk.raid_disk == i)
5649 break;
5650 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
5651 if (d && (d->state_fd >= 0))
5652 continue;
5653
5654 /*
5655 * OK, this device needs recovery. Try to re-add the
5656 * previous occupant of this slot, if this fails see if
5657 * we can continue the assimilation of a spare that was
5658 * partially assimilated, finally try to activate a new
5659 * spare.
5660 */
5661 dl = imsm_readd(super, i, a);
5662 if (!dl)
5663 dl = imsm_add_spare(super, i, a, 0, NULL);
5664 if (!dl)
5665 dl = imsm_add_spare(super, i, a, 1, NULL);
5666 if (!dl)
5667 continue;
5668
5669 /* found a usable disk with enough space */
5670 di = malloc(sizeof(*di));
5671 if (!di)
5672 continue;
5673 memset(di, 0, sizeof(*di));
5674
5675 /* dl->index will be -1 in the case we are activating a
5676 * pristine spare. imsm_process_update() will create a
5677 * new index in this case. Once a disk is found to be
5678 * failed in all member arrays it is kicked from the
5679 * metadata
5680 */
5681 di->disk.number = dl->index;
5682
5683 /* (ab)use di->devs to store a pointer to the device
5684 * we chose
5685 */
5686 di->devs = (struct mdinfo *) dl;
5687
5688 di->disk.raid_disk = i;
5689 di->disk.major = dl->major;
5690 di->disk.minor = dl->minor;
5691 di->disk.state = 0;
5692 di->recovery_start = 0;
5693 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
5694 di->component_size = a->info.component_size;
5695 di->container_member = inst;
5696 super->random = random32();
5697 di->next = rv;
5698 rv = di;
5699 num_spares++;
5700 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
5701 i, di->data_offset);
5702
5703 break;
5704 }
5705
5706 if (!rv)
5707 /* No spares found */
5708 return rv;
5709 /* Now 'rv' has a list of devices to return.
5710 * Create a metadata_update record to update the
5711 * disk_ord_tbl for the array
5712 */
5713 mu = malloc(sizeof(*mu));
5714 if (mu) {
5715 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
5716 if (mu->buf == NULL) {
5717 free(mu);
5718 mu = NULL;
5719 }
5720 }
5721 if (!mu) {
5722 while (rv) {
5723 struct mdinfo *n = rv->next;
5724
5725 free(rv);
5726 rv = n;
5727 }
5728 return NULL;
5729 }
5730
5731 mu->space = NULL;
5732 mu->space_list = NULL;
5733 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
5734 mu->next = *updates;
5735 u = (struct imsm_update_activate_spare *) mu->buf;
5736
5737 for (di = rv ; di ; di = di->next) {
5738 u->type = update_activate_spare;
5739 u->dl = (struct dl *) di->devs;
5740 di->devs = NULL;
5741 u->slot = di->disk.raid_disk;
5742 u->array = inst;
5743 u->next = u + 1;
5744 u++;
5745 }
5746 (u-1)->next = NULL;
5747 *updates = mu;
5748
5749 return rv;
5750 }
5751
5752 static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
5753 {
5754 struct imsm_dev *dev = get_imsm_dev(super, idx);
5755 struct imsm_map *map = get_imsm_map(dev, 0);
5756 struct imsm_map *new_map = get_imsm_map(&u->dev, 0);
5757 struct disk_info *inf = get_disk_info(u);
5758 struct imsm_disk *disk;
5759 int i;
5760 int j;
5761
5762 for (i = 0; i < map->num_members; i++) {
5763 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, -1));
5764 for (j = 0; j < new_map->num_members; j++)
5765 if (serialcmp(disk->serial, inf[j].serial) == 0)
5766 return 1;
5767 }
5768
5769 return 0;
5770 }
5771
5772
5773 static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
5774 {
5775 struct dl *dl = NULL;
5776 for (dl = super->disks; dl; dl = dl->next)
5777 if ((dl->major == major) && (dl->minor == minor))
5778 return dl;
5779 return NULL;
5780 }
5781
5782 static int remove_disk_super(struct intel_super *super, int major, int minor)
5783 {
5784 struct dl *prev = NULL;
5785 struct dl *dl;
5786
5787 prev = NULL;
5788 for (dl = super->disks; dl; dl = dl->next) {
5789 if ((dl->major == major) && (dl->minor == minor)) {
5790 /* remove */
5791 if (prev)
5792 prev->next = dl->next;
5793 else
5794 super->disks = dl->next;
5795 dl->next = NULL;
5796 __free_imsm_disk(dl);
5797 dprintf("%s: removed %x:%x\n",
5798 __func__, major, minor);
5799 break;
5800 }
5801 prev = dl;
5802 }
5803 return 0;
5804 }
5805
5806 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
5807
5808 static int add_remove_disk_update(struct intel_super *super)
5809 {
5810 int check_degraded = 0;
5811 struct dl *disk = NULL;
5812 /* add/remove some spares to/from the metadata/contrainer */
5813 while (super->disk_mgmt_list) {
5814 struct dl *disk_cfg;
5815
5816 disk_cfg = super->disk_mgmt_list;
5817 super->disk_mgmt_list = disk_cfg->next;
5818 disk_cfg->next = NULL;
5819
5820 if (disk_cfg->action == DISK_ADD) {
5821 disk_cfg->next = super->disks;
5822 super->disks = disk_cfg;
5823 check_degraded = 1;
5824 dprintf("%s: added %x:%x\n",
5825 __func__, disk_cfg->major,
5826 disk_cfg->minor);
5827 } else if (disk_cfg->action == DISK_REMOVE) {
5828 dprintf("Disk remove action processed: %x.%x\n",
5829 disk_cfg->major, disk_cfg->minor);
5830 disk = get_disk_super(super,
5831 disk_cfg->major,
5832 disk_cfg->minor);
5833 if (disk) {
5834 /* store action status */
5835 disk->action = DISK_REMOVE;
5836 /* remove spare disks only */
5837 if (disk->index == -1) {
5838 remove_disk_super(super,
5839 disk_cfg->major,
5840 disk_cfg->minor);
5841 }
5842 }
5843 /* release allocate disk structure */
5844 __free_imsm_disk(disk_cfg);
5845 }
5846 }
5847 return check_degraded;
5848 }
5849
5850 static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
5851 struct intel_super *super,
5852 void ***space_list)
5853 {
5854 struct dl *new_disk;
5855 struct intel_dev *id;
5856 int i;
5857 int delta_disks = u->new_raid_disks - u->old_raid_disks;
5858 int disk_count = u->old_raid_disks;
5859 void **tofree = NULL;
5860 int devices_to_reshape = 1;
5861 struct imsm_super *mpb = super->anchor;
5862 int ret_val = 0;
5863 unsigned int dev_id;
5864
5865 dprintf("imsm: apply_reshape_container_disks_update()\n");
5866
5867 /* enable spares to use in array */
5868 for (i = 0; i < delta_disks; i++) {
5869 new_disk = get_disk_super(super,
5870 major(u->new_disks[i]),
5871 minor(u->new_disks[i]));
5872 dprintf("imsm: new disk for reshape is: %i:%i "
5873 "(%p, index = %i)\n",
5874 major(u->new_disks[i]), minor(u->new_disks[i]),
5875 new_disk, new_disk->index);
5876 if ((new_disk == NULL) ||
5877 ((new_disk->index >= 0) &&
5878 (new_disk->index < u->old_raid_disks)))
5879 goto update_reshape_exit;
5880 new_disk->index = disk_count++;
5881 /* slot to fill in autolayout
5882 */
5883 new_disk->raiddisk = new_disk->index;
5884 new_disk->disk.status |=
5885 CONFIGURED_DISK;
5886 new_disk->disk.status &= ~SPARE_DISK;
5887 }
5888
5889 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
5890 mpb->num_raid_devs);
5891 /* manage changes in volume
5892 */
5893 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
5894 void **sp = *space_list;
5895 struct imsm_dev *newdev;
5896 struct imsm_map *newmap, *oldmap;
5897
5898 for (id = super->devlist ; id; id = id->next) {
5899 if (id->index == dev_id)
5900 break;
5901 }
5902 if (id == NULL)
5903 break;
5904 if (!sp)
5905 continue;
5906 *space_list = *sp;
5907 newdev = (void*)sp;
5908 /* Copy the dev, but not (all of) the map */
5909 memcpy(newdev, id->dev, sizeof(*newdev));
5910 oldmap = get_imsm_map(id->dev, 0);
5911 newmap = get_imsm_map(newdev, 0);
5912 /* Copy the current map */
5913 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
5914 /* update one device only
5915 */
5916 if (devices_to_reshape) {
5917 int used_disks;
5918
5919 dprintf("imsm: modifying subdev: %i\n",
5920 id->index);
5921 devices_to_reshape--;
5922 newdev->vol.migr_state = 1;
5923 newdev->vol.curr_migr_unit = 0;
5924 newdev->vol.migr_type = MIGR_GEN_MIGR;
5925 newmap->num_members = u->new_raid_disks;
5926 for (i = 0; i < delta_disks; i++) {
5927 set_imsm_ord_tbl_ent(newmap,
5928 u->old_raid_disks + i,
5929 u->old_raid_disks + i);
5930 }
5931 /* New map is correct, now need to save old map
5932 */
5933 newmap = get_imsm_map(newdev, 1);
5934 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
5935
5936 /* calculate new size
5937 */
5938 used_disks = imsm_num_data_members(newdev, 0);
5939 if (used_disks) {
5940 unsigned long long array_blocks;
5941
5942 array_blocks =
5943 newmap->blocks_per_member * used_disks;
5944 /* round array size down to closest MB
5945 */
5946 array_blocks = (array_blocks
5947 >> SECT_PER_MB_SHIFT)
5948 << SECT_PER_MB_SHIFT;
5949 newdev->size_low =
5950 __cpu_to_le32((__u32)array_blocks);
5951 newdev->size_high =
5952 __cpu_to_le32((__u32)(array_blocks >> 32));
5953 }
5954 }
5955
5956 sp = (void **)id->dev;
5957 id->dev = newdev;
5958 *sp = tofree;
5959 tofree = sp;
5960 }
5961 if (tofree)
5962 *space_list = tofree;
5963 ret_val = 1;
5964
5965 update_reshape_exit:
5966
5967 return ret_val;
5968 }
5969
5970 static int apply_takeover_update(struct imsm_update_takeover *u,
5971 struct intel_super *super,
5972 void ***space_list)
5973 {
5974 struct imsm_dev *dev = NULL;
5975 struct intel_dev *dv;
5976 struct imsm_dev *dev_new;
5977 struct imsm_map *map;
5978 struct dl *dm, *du;
5979 int i;
5980
5981 for (dv = super->devlist; dv; dv = dv->next)
5982 if (dv->index == (unsigned int)u->subarray) {
5983 dev = dv->dev;
5984 break;
5985 }
5986
5987 if (dev == NULL)
5988 return 0;
5989
5990 map = get_imsm_map(dev, 0);
5991
5992 if (u->direction == R10_TO_R0) {
5993 /* Number of failed disks must be half of initial disk number */
5994 if (imsm_count_failed(super, dev) != (map->num_members / 2))
5995 return 0;
5996
5997 /* iterate through devices to mark removed disks as spare */
5998 for (dm = super->disks; dm; dm = dm->next) {
5999 if (dm->disk.status & FAILED_DISK) {
6000 int idx = dm->index;
6001 /* update indexes on the disk list */
6002 /* FIXME this loop-with-the-loop looks wrong, I'm not convinced
6003 the index values will end up being correct.... NB */
6004 for (du = super->disks; du; du = du->next)
6005 if (du->index > idx)
6006 du->index--;
6007 /* mark as spare disk */
6008 dm->disk.status = SPARE_DISK;
6009 dm->index = -1;
6010 }
6011 }
6012 /* update map */
6013 map->num_members = map->num_members / 2;
6014 map->map_state = IMSM_T_STATE_NORMAL;
6015 map->num_domains = 1;
6016 map->raid_level = 0;
6017 map->failed_disk_num = -1;
6018 }
6019
6020 if (u->direction == R0_TO_R10) {
6021 void **space;
6022 /* update slots in current disk list */
6023 for (dm = super->disks; dm; dm = dm->next) {
6024 if (dm->index >= 0)
6025 dm->index *= 2;
6026 }
6027 /* create new *missing* disks */
6028 for (i = 0; i < map->num_members; i++) {
6029 space = *space_list;
6030 if (!space)
6031 continue;
6032 *space_list = *space;
6033 du = (void *)space;
6034 memcpy(du, super->disks, sizeof(*du));
6035 du->disk.status = FAILED_DISK;
6036 du->disk.scsi_id = 0;
6037 du->fd = -1;
6038 du->minor = 0;
6039 du->major = 0;
6040 du->index = (i * 2) + 1;
6041 sprintf((char *)du->disk.serial,
6042 " MISSING_%d", du->index);
6043 sprintf((char *)du->serial,
6044 "MISSING_%d", du->index);
6045 du->next = super->missing;
6046 super->missing = du;
6047 }
6048 /* create new dev and map */
6049 space = *space_list;
6050 if (!space)
6051 return 0;
6052 *space_list = *space;
6053 dev_new = (void *)space;
6054 memcpy(dev_new, dev, sizeof(*dev));
6055 /* update new map */
6056 map = get_imsm_map(dev_new, 0);
6057 map->failed_disk_num = map->num_members;
6058 map->num_members = map->num_members * 2;
6059 map->map_state = IMSM_T_STATE_NORMAL;
6060 map->num_domains = 2;
6061 map->raid_level = 1;
6062 /* replace dev<->dev_new */
6063 dv->dev = dev_new;
6064 }
6065 /* update disk order table */
6066 for (du = super->disks; du; du = du->next)
6067 if (du->index >= 0)
6068 set_imsm_ord_tbl_ent(map, du->index, du->index);
6069 for (du = super->missing; du; du = du->next)
6070 if (du->index >= 0)
6071 set_imsm_ord_tbl_ent(map, du->index,
6072 du->index | IMSM_ORD_REBUILD);
6073
6074 return 1;
6075 }
6076
6077 static void imsm_process_update(struct supertype *st,
6078 struct metadata_update *update)
6079 {
6080 /**
6081 * crack open the metadata_update envelope to find the update record
6082 * update can be one of:
6083 * update_reshape_container_disks - all the arrays in the container
6084 * are being reshaped to have more devices. We need to mark
6085 * the arrays for general migration and convert selected spares
6086 * into active devices.
6087 * update_activate_spare - a spare device has replaced a failed
6088 * device in an array, update the disk_ord_tbl. If this disk is
6089 * present in all member arrays then also clear the SPARE_DISK
6090 * flag
6091 * update_create_array
6092 * update_kill_array
6093 * update_rename_array
6094 * update_add_remove_disk
6095 */
6096 struct intel_super *super = st->sb;
6097 struct imsm_super *mpb;
6098 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
6099
6100 /* update requires a larger buf but the allocation failed */
6101 if (super->next_len && !super->next_buf) {
6102 super->next_len = 0;
6103 return;
6104 }
6105
6106 if (super->next_buf) {
6107 memcpy(super->next_buf, super->buf, super->len);
6108 free(super->buf);
6109 super->len = super->next_len;
6110 super->buf = super->next_buf;
6111
6112 super->next_len = 0;
6113 super->next_buf = NULL;
6114 }
6115
6116 mpb = super->anchor;
6117
6118 switch (type) {
6119 case update_takeover: {
6120 struct imsm_update_takeover *u = (void *)update->buf;
6121 if (apply_takeover_update(u, super, &update->space_list))
6122 super->updates_pending++;
6123 break;
6124 }
6125
6126 case update_reshape_container_disks: {
6127 struct imsm_update_reshape *u = (void *)update->buf;
6128 if (apply_reshape_container_disks_update(
6129 u, super, &update->space_list))
6130 super->updates_pending++;
6131 break;
6132 }
6133 case update_activate_spare: {
6134 struct imsm_update_activate_spare *u = (void *) update->buf;
6135 struct imsm_dev *dev = get_imsm_dev(super, u->array);
6136 struct imsm_map *map = get_imsm_map(dev, 0);
6137 struct imsm_map *migr_map;
6138 struct active_array *a;
6139 struct imsm_disk *disk;
6140 __u8 to_state;
6141 struct dl *dl;
6142 unsigned int found;
6143 int failed;
6144 int victim = get_imsm_disk_idx(dev, u->slot, -1);
6145 int i;
6146
6147 for (dl = super->disks; dl; dl = dl->next)
6148 if (dl == u->dl)
6149 break;
6150
6151 if (!dl) {
6152 fprintf(stderr, "error: imsm_activate_spare passed "
6153 "an unknown disk (index: %d)\n",
6154 u->dl->index);
6155 return;
6156 }
6157
6158 super->updates_pending++;
6159
6160 /* count failures (excluding rebuilds and the victim)
6161 * to determine map[0] state
6162 */
6163 failed = 0;
6164 for (i = 0; i < map->num_members; i++) {
6165 if (i == u->slot)
6166 continue;
6167 disk = get_imsm_disk(super,
6168 get_imsm_disk_idx(dev, i, -1));
6169 if (!disk || is_failed(disk))
6170 failed++;
6171 }
6172
6173 /* adding a pristine spare, assign a new index */
6174 if (dl->index < 0) {
6175 dl->index = super->anchor->num_disks;
6176 super->anchor->num_disks++;
6177 }
6178 disk = &dl->disk;
6179 disk->status |= CONFIGURED_DISK;
6180 disk->status &= ~SPARE_DISK;
6181
6182 /* mark rebuild */
6183 to_state = imsm_check_degraded(super, dev, failed);
6184 map->map_state = IMSM_T_STATE_DEGRADED;
6185 migrate(dev, to_state, MIGR_REBUILD);
6186 migr_map = get_imsm_map(dev, 1);
6187 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
6188 set_imsm_ord_tbl_ent(migr_map, u->slot, dl->index | IMSM_ORD_REBUILD);
6189
6190 /* update the family_num to mark a new container
6191 * generation, being careful to record the existing
6192 * family_num in orig_family_num to clean up after
6193 * earlier mdadm versions that neglected to set it.
6194 */
6195 if (mpb->orig_family_num == 0)
6196 mpb->orig_family_num = mpb->family_num;
6197 mpb->family_num += super->random;
6198
6199 /* count arrays using the victim in the metadata */
6200 found = 0;
6201 for (a = st->arrays; a ; a = a->next) {
6202 dev = get_imsm_dev(super, a->info.container_member);
6203 map = get_imsm_map(dev, 0);
6204
6205 if (get_imsm_disk_slot(map, victim) >= 0)
6206 found++;
6207 }
6208
6209 /* delete the victim if it is no longer being
6210 * utilized anywhere
6211 */
6212 if (!found) {
6213 struct dl **dlp;
6214
6215 /* We know that 'manager' isn't touching anything,
6216 * so it is safe to delete
6217 */
6218 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
6219 if ((*dlp)->index == victim)
6220 break;
6221
6222 /* victim may be on the missing list */
6223 if (!*dlp)
6224 for (dlp = &super->missing; *dlp; dlp = &(*dlp)->next)
6225 if ((*dlp)->index == victim)
6226 break;
6227 imsm_delete(super, dlp, victim);
6228 }
6229 break;
6230 }
6231 case update_create_array: {
6232 /* someone wants to create a new array, we need to be aware of
6233 * a few races/collisions:
6234 * 1/ 'Create' called by two separate instances of mdadm
6235 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
6236 * devices that have since been assimilated via
6237 * activate_spare.
6238 * In the event this update can not be carried out mdadm will
6239 * (FIX ME) notice that its update did not take hold.
6240 */
6241 struct imsm_update_create_array *u = (void *) update->buf;
6242 struct intel_dev *dv;
6243 struct imsm_dev *dev;
6244 struct imsm_map *map, *new_map;
6245 unsigned long long start, end;
6246 unsigned long long new_start, new_end;
6247 int i;
6248 struct disk_info *inf;
6249 struct dl *dl;
6250
6251 /* handle racing creates: first come first serve */
6252 if (u->dev_idx < mpb->num_raid_devs) {
6253 dprintf("%s: subarray %d already defined\n",
6254 __func__, u->dev_idx);
6255 goto create_error;
6256 }
6257
6258 /* check update is next in sequence */
6259 if (u->dev_idx != mpb->num_raid_devs) {
6260 dprintf("%s: can not create array %d expected index %d\n",
6261 __func__, u->dev_idx, mpb->num_raid_devs);
6262 goto create_error;
6263 }
6264
6265 new_map = get_imsm_map(&u->dev, 0);
6266 new_start = __le32_to_cpu(new_map->pba_of_lba0);
6267 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
6268 inf = get_disk_info(u);
6269
6270 /* handle activate_spare versus create race:
6271 * check to make sure that overlapping arrays do not include
6272 * overalpping disks
6273 */
6274 for (i = 0; i < mpb->num_raid_devs; i++) {
6275 dev = get_imsm_dev(super, i);
6276 map = get_imsm_map(dev, 0);
6277 start = __le32_to_cpu(map->pba_of_lba0);
6278 end = start + __le32_to_cpu(map->blocks_per_member);
6279 if ((new_start >= start && new_start <= end) ||
6280 (start >= new_start && start <= new_end))
6281 /* overlap */;
6282 else
6283 continue;
6284
6285 if (disks_overlap(super, i, u)) {
6286 dprintf("%s: arrays overlap\n", __func__);
6287 goto create_error;
6288 }
6289 }
6290
6291 /* check that prepare update was successful */
6292 if (!update->space) {
6293 dprintf("%s: prepare update failed\n", __func__);
6294 goto create_error;
6295 }
6296
6297 /* check that all disks are still active before committing
6298 * changes. FIXME: could we instead handle this by creating a
6299 * degraded array? That's probably not what the user expects,
6300 * so better to drop this update on the floor.
6301 */
6302 for (i = 0; i < new_map->num_members; i++) {
6303 dl = serial_to_dl(inf[i].serial, super);
6304 if (!dl) {
6305 dprintf("%s: disk disappeared\n", __func__);
6306 goto create_error;
6307 }
6308 }
6309
6310 super->updates_pending++;
6311
6312 /* convert spares to members and fixup ord_tbl */
6313 for (i = 0; i < new_map->num_members; i++) {
6314 dl = serial_to_dl(inf[i].serial, super);
6315 if (dl->index == -1) {
6316 dl->index = mpb->num_disks;
6317 mpb->num_disks++;
6318 dl->disk.status |= CONFIGURED_DISK;
6319 dl->disk.status &= ~SPARE_DISK;
6320 }
6321 set_imsm_ord_tbl_ent(new_map, i, dl->index);
6322 }
6323
6324 dv = update->space;
6325 dev = dv->dev;
6326 update->space = NULL;
6327 imsm_copy_dev(dev, &u->dev);
6328 dv->index = u->dev_idx;
6329 dv->next = super->devlist;
6330 super->devlist = dv;
6331 mpb->num_raid_devs++;
6332
6333 imsm_update_version_info(super);
6334 break;
6335 create_error:
6336 /* mdmon knows how to release update->space, but not
6337 * ((struct intel_dev *) update->space)->dev
6338 */
6339 if (update->space) {
6340 dv = update->space;
6341 free(dv->dev);
6342 }
6343 break;
6344 }
6345 case update_kill_array: {
6346 struct imsm_update_kill_array *u = (void *) update->buf;
6347 int victim = u->dev_idx;
6348 struct active_array *a;
6349 struct intel_dev **dp;
6350 struct imsm_dev *dev;
6351
6352 /* sanity check that we are not affecting the uuid of
6353 * active arrays, or deleting an active array
6354 *
6355 * FIXME when immutable ids are available, but note that
6356 * we'll also need to fixup the invalidated/active
6357 * subarray indexes in mdstat
6358 */
6359 for (a = st->arrays; a; a = a->next)
6360 if (a->info.container_member >= victim)
6361 break;
6362 /* by definition if mdmon is running at least one array
6363 * is active in the container, so checking
6364 * mpb->num_raid_devs is just extra paranoia
6365 */
6366 dev = get_imsm_dev(super, victim);
6367 if (a || !dev || mpb->num_raid_devs == 1) {
6368 dprintf("failed to delete subarray-%d\n", victim);
6369 break;
6370 }
6371
6372 for (dp = &super->devlist; *dp;)
6373 if ((*dp)->index == (unsigned)super->current_vol) {
6374 *dp = (*dp)->next;
6375 } else {
6376 if ((*dp)->index > (unsigned)victim)
6377 (*dp)->index--;
6378 dp = &(*dp)->next;
6379 }
6380 mpb->num_raid_devs--;
6381 super->updates_pending++;
6382 break;
6383 }
6384 case update_rename_array: {
6385 struct imsm_update_rename_array *u = (void *) update->buf;
6386 char name[MAX_RAID_SERIAL_LEN+1];
6387 int target = u->dev_idx;
6388 struct active_array *a;
6389 struct imsm_dev *dev;
6390
6391 /* sanity check that we are not affecting the uuid of
6392 * an active array
6393 */
6394 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
6395 name[MAX_RAID_SERIAL_LEN] = '\0';
6396 for (a = st->arrays; a; a = a->next)
6397 if (a->info.container_member == target)
6398 break;
6399 dev = get_imsm_dev(super, u->dev_idx);
6400 if (a || !dev || !check_name(super, name, 1)) {
6401 dprintf("failed to rename subarray-%d\n", target);
6402 break;
6403 }
6404
6405 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
6406 super->updates_pending++;
6407 break;
6408 }
6409 case update_add_remove_disk: {
6410 /* we may be able to repair some arrays if disks are
6411 * being added, check teh status of add_remove_disk
6412 * if discs has been added.
6413 */
6414 if (add_remove_disk_update(super)) {
6415 struct active_array *a;
6416
6417 super->updates_pending++;
6418 for (a = st->arrays; a; a = a->next)
6419 a->check_degraded = 1;
6420 }
6421 break;
6422 }
6423 default:
6424 fprintf(stderr, "error: unsuported process update type:"
6425 "(type: %d)\n", type);
6426 }
6427 }
6428
6429 static void imsm_prepare_update(struct supertype *st,
6430 struct metadata_update *update)
6431 {
6432 /**
6433 * Allocate space to hold new disk entries, raid-device entries or a new
6434 * mpb if necessary. The manager synchronously waits for updates to
6435 * complete in the monitor, so new mpb buffers allocated here can be
6436 * integrated by the monitor thread without worrying about live pointers
6437 * in the manager thread.
6438 */
6439 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
6440 struct intel_super *super = st->sb;
6441 struct imsm_super *mpb = super->anchor;
6442 size_t buf_len;
6443 size_t len = 0;
6444
6445 switch (type) {
6446 case update_takeover: {
6447 struct imsm_update_takeover *u = (void *)update->buf;
6448 if (u->direction == R0_TO_R10) {
6449 void **tail = (void **)&update->space_list;
6450 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
6451 struct imsm_map *map = get_imsm_map(dev, 0);
6452 int num_members = map->num_members;
6453 void *space;
6454 int size, i;
6455 int err = 0;
6456 /* allocate memory for added disks */
6457 for (i = 0; i < num_members; i++) {
6458 size = sizeof(struct dl);
6459 space = malloc(size);
6460 if (!space) {
6461 err++;
6462 break;
6463 }
6464 *tail = space;
6465 tail = space;
6466 *tail = NULL;
6467 }
6468 /* allocate memory for new device */
6469 size = sizeof_imsm_dev(super->devlist->dev, 0) +
6470 (num_members * sizeof(__u32));
6471 space = malloc(size);
6472 if (!space)
6473 err++;
6474 else {
6475 *tail = space;
6476 tail = space;
6477 *tail = NULL;
6478 }
6479 if (!err) {
6480 len = disks_to_mpb_size(num_members * 2);
6481 } else {
6482 /* if allocation didn't success, free buffer */
6483 while (update->space_list) {
6484 void **sp = update->space_list;
6485 update->space_list = *sp;
6486 free(sp);
6487 }
6488 }
6489 }
6490
6491 break;
6492 }
6493 case update_reshape_container_disks: {
6494 /* Every raid device in the container is about to
6495 * gain some more devices, and we will enter a
6496 * reconfiguration.
6497 * So each 'imsm_map' will be bigger, and the imsm_vol
6498 * will now hold 2 of them.
6499 * Thus we need new 'struct imsm_dev' allocations sized
6500 * as sizeof_imsm_dev but with more devices in both maps.
6501 */
6502 struct imsm_update_reshape *u = (void *)update->buf;
6503 struct intel_dev *dl;
6504 void **space_tail = (void**)&update->space_list;
6505
6506 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
6507
6508 for (dl = super->devlist; dl; dl = dl->next) {
6509 int size = sizeof_imsm_dev(dl->dev, 1);
6510 void *s;
6511 if (u->new_raid_disks > u->old_raid_disks)
6512 size += sizeof(__u32)*2*
6513 (u->new_raid_disks - u->old_raid_disks);
6514 s = malloc(size);
6515 if (!s)
6516 break;
6517 *space_tail = s;
6518 space_tail = s;
6519 *space_tail = NULL;
6520 }
6521
6522 len = disks_to_mpb_size(u->new_raid_disks);
6523 dprintf("New anchor length is %llu\n", (unsigned long long)len);
6524 break;
6525 }
6526 case update_create_array: {
6527 struct imsm_update_create_array *u = (void *) update->buf;
6528 struct intel_dev *dv;
6529 struct imsm_dev *dev = &u->dev;
6530 struct imsm_map *map = get_imsm_map(dev, 0);
6531 struct dl *dl;
6532 struct disk_info *inf;
6533 int i;
6534 int activate = 0;
6535
6536 inf = get_disk_info(u);
6537 len = sizeof_imsm_dev(dev, 1);
6538 /* allocate a new super->devlist entry */
6539 dv = malloc(sizeof(*dv));
6540 if (dv) {
6541 dv->dev = malloc(len);
6542 if (dv->dev)
6543 update->space = dv;
6544 else {
6545 free(dv);
6546 update->space = NULL;
6547 }
6548 }
6549
6550 /* count how many spares will be converted to members */
6551 for (i = 0; i < map->num_members; i++) {
6552 dl = serial_to_dl(inf[i].serial, super);
6553 if (!dl) {
6554 /* hmm maybe it failed?, nothing we can do about
6555 * it here
6556 */
6557 continue;
6558 }
6559 if (count_memberships(dl, super) == 0)
6560 activate++;
6561 }
6562 len += activate * sizeof(struct imsm_disk);
6563 break;
6564 default:
6565 break;
6566 }
6567 }
6568
6569 /* check if we need a larger metadata buffer */
6570 if (super->next_buf)
6571 buf_len = super->next_len;
6572 else
6573 buf_len = super->len;
6574
6575 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
6576 /* ok we need a larger buf than what is currently allocated
6577 * if this allocation fails process_update will notice that
6578 * ->next_len is set and ->next_buf is NULL
6579 */
6580 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
6581 if (super->next_buf)
6582 free(super->next_buf);
6583
6584 super->next_len = buf_len;
6585 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
6586 memset(super->next_buf, 0, buf_len);
6587 else
6588 super->next_buf = NULL;
6589 }
6590 }
6591
6592 /* must be called while manager is quiesced */
6593 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
6594 {
6595 struct imsm_super *mpb = super->anchor;
6596 struct dl *iter;
6597 struct imsm_dev *dev;
6598 struct imsm_map *map;
6599 int i, j, num_members;
6600 __u32 ord;
6601
6602 dprintf("%s: deleting device[%d] from imsm_super\n",
6603 __func__, index);
6604
6605 /* shift all indexes down one */
6606 for (iter = super->disks; iter; iter = iter->next)
6607 if (iter->index > (int)index)
6608 iter->index--;
6609 for (iter = super->missing; iter; iter = iter->next)
6610 if (iter->index > (int)index)
6611 iter->index--;
6612
6613 for (i = 0; i < mpb->num_raid_devs; i++) {
6614 dev = get_imsm_dev(super, i);
6615 map = get_imsm_map(dev, 0);
6616 num_members = map->num_members;
6617 for (j = 0; j < num_members; j++) {
6618 /* update ord entries being careful not to propagate
6619 * ord-flags to the first map
6620 */
6621 ord = get_imsm_ord_tbl_ent(dev, j, -1);
6622
6623 if (ord_to_idx(ord) <= index)
6624 continue;
6625
6626 map = get_imsm_map(dev, 0);
6627 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
6628 map = get_imsm_map(dev, 1);
6629 if (map)
6630 set_imsm_ord_tbl_ent(map, j, ord - 1);
6631 }
6632 }
6633
6634 mpb->num_disks--;
6635 super->updates_pending++;
6636 if (*dlp) {
6637 struct dl *dl = *dlp;
6638
6639 *dlp = (*dlp)->next;
6640 __free_imsm_disk(dl);
6641 }
6642 }
6643
6644 static char disk_by_path[] = "/dev/disk/by-path/";
6645
6646 static const char *imsm_get_disk_controller_domain(const char *path)
6647 {
6648 char disk_path[PATH_MAX];
6649 char *drv=NULL;
6650 struct stat st;
6651
6652 strncpy(disk_path, disk_by_path, PATH_MAX - 1);
6653 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
6654 if (stat(disk_path, &st) == 0) {
6655 struct sys_dev* hba;
6656 char *path=NULL;
6657
6658 path = devt_to_devpath(st.st_rdev);
6659 if (path == NULL)
6660 return "unknown";
6661 hba = find_disk_attached_hba(-1, path);
6662 if (hba && hba->type == SYS_DEV_SAS)
6663 drv = "isci";
6664 else if (hba && hba->type == SYS_DEV_SATA)
6665 drv = "ahci";
6666 else
6667 drv = "unknown";
6668 dprintf("path: %s hba: %s attached: %s\n",
6669 path, (hba) ? hba->path : "NULL", drv);
6670 free(path);
6671 if (hba)
6672 free_sys_dev(&hba);
6673 }
6674 return drv;
6675 }
6676
6677 static int imsm_find_array_minor_by_subdev(int subdev, int container, int *minor)
6678 {
6679 char subdev_name[20];
6680 struct mdstat_ent *mdstat;
6681
6682 sprintf(subdev_name, "%d", subdev);
6683 mdstat = mdstat_by_subdev(subdev_name, container);
6684 if (!mdstat)
6685 return -1;
6686
6687 *minor = mdstat->devnum;
6688 free_mdstat(mdstat);
6689 return 0;
6690 }
6691
6692 static int imsm_reshape_is_allowed_on_container(struct supertype *st,
6693 struct geo_params *geo,
6694 int *old_raid_disks)
6695 {
6696 /* currently we only support increasing the number of devices
6697 * for a container. This increases the number of device for each
6698 * member array. They must all be RAID0 or RAID5.
6699 */
6700 int ret_val = 0;
6701 struct mdinfo *info, *member;
6702 int devices_that_can_grow = 0;
6703
6704 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): "
6705 "st->devnum = (%i)\n",
6706 st->devnum);
6707
6708 if (geo->size != -1 ||
6709 geo->level != UnSet ||
6710 geo->layout != UnSet ||
6711 geo->chunksize != 0 ||
6712 geo->raid_disks == UnSet) {
6713 dprintf("imsm: Container operation is allowed for "
6714 "raid disks number change only.\n");
6715 return ret_val;
6716 }
6717
6718 info = container_content_imsm(st, NULL);
6719 for (member = info; member; member = member->next) {
6720 int result;
6721 int minor;
6722
6723 dprintf("imsm: checking device_num: %i\n",
6724 member->container_member);
6725
6726 if (geo->raid_disks <= member->array.raid_disks) {
6727 /* we work on container for Online Capacity Expansion
6728 * only so raid_disks has to grow
6729 */
6730 dprintf("imsm: for container operation raid disks "
6731 "increase is required\n");
6732 break;
6733 }
6734
6735 if ((info->array.level != 0) &&
6736 (info->array.level != 5)) {
6737 /* we cannot use this container with other raid level
6738 */
6739 dprintf("imsm: for container operation wrong"
6740 " raid level (%i) detected\n",
6741 info->array.level);
6742 break;
6743 } else {
6744 /* check for platform support
6745 * for this raid level configuration
6746 */
6747 struct intel_super *super = st->sb;
6748 if (!is_raid_level_supported(super->orom,
6749 member->array.level,
6750 geo->raid_disks)) {
6751 dprintf("platform does not support raid%d with"
6752 " %d disk%s\n",
6753 info->array.level,
6754 geo->raid_disks,
6755 geo->raid_disks > 1 ? "s" : "");
6756 break;
6757 }
6758 }
6759
6760 if (*old_raid_disks &&
6761 info->array.raid_disks != *old_raid_disks)
6762 break;
6763 *old_raid_disks = info->array.raid_disks;
6764
6765 /* All raid5 and raid0 volumes in container
6766 * have to be ready for Online Capacity Expansion
6767 * so they need to be assembled. We have already
6768 * checked that no recovery etc is happening.
6769 */
6770 result = imsm_find_array_minor_by_subdev(member->container_member,
6771 st->container_dev,
6772 &minor);
6773 if (result < 0) {
6774 dprintf("imsm: cannot find array\n");
6775 break;
6776 }
6777 devices_that_can_grow++;
6778 }
6779 sysfs_free(info);
6780 if (!member && devices_that_can_grow)
6781 ret_val = 1;
6782
6783 if (ret_val)
6784 dprintf("\tContainer operation allowed\n");
6785 else
6786 dprintf("\tError: %i\n", ret_val);
6787
6788 return ret_val;
6789 }
6790
6791 /* Function: get_spares_for_grow
6792 * Description: Allocates memory and creates list of spare devices
6793 * avaliable in container. Checks if spare drive size is acceptable.
6794 * Parameters: Pointer to the supertype structure
6795 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
6796 * NULL if fail
6797 */
6798 static struct mdinfo *get_spares_for_grow(struct supertype *st)
6799 {
6800 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
6801 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
6802 }
6803
6804 /******************************************************************************
6805 * function: imsm_create_metadata_update_for_reshape
6806 * Function creates update for whole IMSM container.
6807 *
6808 ******************************************************************************/
6809 static int imsm_create_metadata_update_for_reshape(
6810 struct supertype *st,
6811 struct geo_params *geo,
6812 int old_raid_disks,
6813 struct imsm_update_reshape **updatep)
6814 {
6815 struct intel_super *super = st->sb;
6816 struct imsm_super *mpb = super->anchor;
6817 int update_memory_size = 0;
6818 struct imsm_update_reshape *u = NULL;
6819 struct mdinfo *spares = NULL;
6820 int i;
6821 int delta_disks = 0;
6822 struct mdinfo *dev;
6823
6824 dprintf("imsm_update_metadata_for_reshape(enter) raid_disks = %i\n",
6825 geo->raid_disks);
6826
6827 delta_disks = geo->raid_disks - old_raid_disks;
6828
6829 /* size of all update data without anchor */
6830 update_memory_size = sizeof(struct imsm_update_reshape);
6831
6832 /* now add space for spare disks that we need to add. */
6833 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
6834
6835 u = calloc(1, update_memory_size);
6836 if (u == NULL) {
6837 dprintf("error: "
6838 "cannot get memory for imsm_update_reshape update\n");
6839 return 0;
6840 }
6841 u->type = update_reshape_container_disks;
6842 u->old_raid_disks = old_raid_disks;
6843 u->new_raid_disks = geo->raid_disks;
6844
6845 /* now get spare disks list
6846 */
6847 spares = get_spares_for_grow(st);
6848
6849 if (spares == NULL
6850 || delta_disks > spares->array.spare_disks) {
6851 dprintf("imsm: ERROR: Cannot get spare devices.\n");
6852 goto abort;
6853 }
6854
6855 /* we have got spares
6856 * update disk list in imsm_disk list table in anchor
6857 */
6858 dprintf("imsm: %i spares are available.\n\n",
6859 spares->array.spare_disks);
6860
6861 dev = spares->devs;
6862 for (i = 0; i < delta_disks; i++) {
6863 struct dl *dl;
6864
6865 if (dev == NULL)
6866 break;
6867 u->new_disks[i] = makedev(dev->disk.major,
6868 dev->disk.minor);
6869 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
6870 dl->index = mpb->num_disks;
6871 mpb->num_disks++;
6872 dev = dev->next;
6873 }
6874
6875 abort:
6876 /* free spares
6877 */
6878 sysfs_free(spares);
6879
6880 dprintf("imsm: reshape update preparation :");
6881 if (i == delta_disks) {
6882 dprintf(" OK\n");
6883 *updatep = u;
6884 return update_memory_size;
6885 }
6886 free(u);
6887 dprintf(" Error\n");
6888
6889 return 0;
6890 }
6891
6892 static void imsm_update_metadata_locally(struct supertype *st,
6893 void *buf, int len)
6894 {
6895 struct metadata_update mu;
6896
6897 mu.buf = buf;
6898 mu.len = len;
6899 mu.space = NULL;
6900 mu.space_list = NULL;
6901 mu.next = NULL;
6902 imsm_prepare_update(st, &mu);
6903 imsm_process_update(st, &mu);
6904
6905 while (mu.space_list) {
6906 void **space = mu.space_list;
6907 mu.space_list = *space;
6908 free(space);
6909 }
6910 }
6911
6912 /***************************************************************************
6913 * Function: imsm_analyze_change
6914 * Description: Function analyze change for single volume
6915 * and validate if transition is supported
6916 * Parameters: Geometry parameters, supertype structure
6917 * Returns: Operation type code on success, -1 if fail
6918 ****************************************************************************/
6919 enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
6920 struct geo_params *geo)
6921 {
6922 struct mdinfo info;
6923 int change = -1;
6924 int check_devs = 0;
6925
6926 getinfo_super_imsm_volume(st, &info, NULL);
6927
6928 if ((geo->level != info.array.level) &&
6929 (geo->level >= 0) &&
6930 (geo->level != UnSet)) {
6931 switch (info.array.level) {
6932 case 0:
6933 if (geo->level == 5) {
6934 change = CH_LEVEL_MIGRATION;
6935 check_devs = 1;
6936 }
6937 if (geo->level == 10) {
6938 change = CH_TAKEOVER;
6939 check_devs = 1;
6940 }
6941 break;
6942 case 1:
6943 if (geo->level == 0) {
6944 change = CH_TAKEOVER;
6945 check_devs = 1;
6946 }
6947 break;
6948 case 5:
6949 if (geo->level != 0)
6950 change = CH_LEVEL_MIGRATION;
6951 break;
6952 case 10:
6953 if (geo->level == 0) {
6954 change = CH_TAKEOVER;
6955 check_devs = 1;
6956 }
6957 break;
6958 }
6959 if (change == -1) {
6960 fprintf(stderr,
6961 Name " Error. Level Migration from %d to %d "
6962 "not supported!\n",
6963 info.array.level, geo->level);
6964 goto analyse_change_exit;
6965 }
6966 } else
6967 geo->level = info.array.level;
6968
6969 if ((geo->layout != info.array.layout)
6970 && ((geo->layout != UnSet) && (geo->layout != -1))) {
6971 change = CH_LEVEL_MIGRATION;
6972 if ((info.array.layout == 0)
6973 && (info.array.level == 5)
6974 && (geo->layout == 5)) {
6975 /* reshape 5 -> 4 */
6976 } else if ((info.array.layout == 5)
6977 && (info.array.level == 5)
6978 && (geo->layout == 0)) {
6979 /* reshape 4 -> 5 */
6980 geo->layout = 0;
6981 geo->level = 5;
6982 } else {
6983 fprintf(stderr,
6984 Name " Error. Layout Migration from %d to %d "
6985 "not supported!\n",
6986 info.array.layout, geo->layout);
6987 change = -1;
6988 goto analyse_change_exit;
6989 }
6990 } else
6991 geo->layout = info.array.layout;
6992
6993 if ((geo->chunksize > 0) && (geo->chunksize != UnSet)
6994 && (geo->chunksize != info.array.chunk_size))
6995 change = CH_CHUNK_MIGR;
6996 else
6997 geo->chunksize = info.array.chunk_size;
6998
6999 if (!validate_geometry_imsm(st,
7000 geo->level,
7001 geo->layout,
7002 geo->raid_disks,
7003 (geo->chunksize / 1024),
7004 geo->size,
7005 0, 0, 1))
7006 change = -1;
7007
7008 if (check_devs) {
7009 struct intel_super *super = st->sb;
7010 struct imsm_super *mpb = super->anchor;
7011
7012 if (mpb->num_raid_devs > 1) {
7013 fprintf(stderr,
7014 Name " Error. Cannot perform operation on %s"
7015 "- for this operation it MUST be single "
7016 "array in container\n",
7017 geo->dev_name);
7018 change = -1;
7019 }
7020 }
7021
7022 analyse_change_exit:
7023
7024 return change;
7025 }
7026
7027 int imsm_takeover(struct supertype *st, struct geo_params *geo)
7028 {
7029 struct intel_super *super = st->sb;
7030 struct imsm_update_takeover *u;
7031
7032 u = malloc(sizeof(struct imsm_update_takeover));
7033 if (u == NULL)
7034 return 1;
7035
7036 u->type = update_takeover;
7037 u->subarray = super->current_vol;
7038
7039 /* 10->0 transition */
7040 if (geo->level == 0)
7041 u->direction = R10_TO_R0;
7042
7043 /* 0->10 transition */
7044 if (geo->level == 10)
7045 u->direction = R0_TO_R10;
7046
7047 /* update metadata locally */
7048 imsm_update_metadata_locally(st, u,
7049 sizeof(struct imsm_update_takeover));
7050 /* and possibly remotely */
7051 if (st->update_tail)
7052 append_metadata_update(st, u,
7053 sizeof(struct imsm_update_takeover));
7054 else
7055 free(u);
7056
7057 return 0;
7058 }
7059
7060 static int imsm_reshape_super(struct supertype *st, long long size, int level,
7061 int layout, int chunksize, int raid_disks,
7062 char *backup, char *dev, int verbose)
7063 {
7064 int ret_val = 1;
7065 struct geo_params geo;
7066
7067 dprintf("imsm: reshape_super called.\n");
7068
7069 memset(&geo, 0, sizeof(struct geo_params));
7070
7071 geo.dev_name = dev;
7072 geo.dev_id = st->devnum;
7073 geo.size = size;
7074 geo.level = level;
7075 geo.layout = layout;
7076 geo.chunksize = chunksize;
7077 geo.raid_disks = raid_disks;
7078
7079 dprintf("\tfor level : %i\n", geo.level);
7080 dprintf("\tfor raid_disks : %i\n", geo.raid_disks);
7081
7082 if (experimental() == 0)
7083 return ret_val;
7084
7085 if (st->container_dev == st->devnum) {
7086 /* On container level we can only increase number of devices. */
7087 dprintf("imsm: info: Container operation\n");
7088 int old_raid_disks = 0;
7089 if (imsm_reshape_is_allowed_on_container(
7090 st, &geo, &old_raid_disks)) {
7091 struct imsm_update_reshape *u = NULL;
7092 int len;
7093
7094 len = imsm_create_metadata_update_for_reshape(
7095 st, &geo, old_raid_disks, &u);
7096
7097 if (len <= 0) {
7098 dprintf("imsm: Cannot prepare update\n");
7099 goto exit_imsm_reshape_super;
7100 }
7101
7102 ret_val = 0;
7103 /* update metadata locally */
7104 imsm_update_metadata_locally(st, u, len);
7105 /* and possibly remotely */
7106 if (st->update_tail)
7107 append_metadata_update(st, u, len);
7108 else
7109 free(u);
7110
7111 } else {
7112 fprintf(stderr, Name "imsm: Operation is not allowed "
7113 "on this container\n");
7114 }
7115 } else {
7116 /* On volume level we support following operations
7117 * - takeover: raid10 -> raid0; raid0 -> raid10
7118 * - chunk size migration
7119 * - migration: raid5 -> raid0; raid0 -> raid5
7120 */
7121 struct intel_super *super = st->sb;
7122 struct intel_dev *dev = super->devlist;
7123 int change, devnum;
7124 dprintf("imsm: info: Volume operation\n");
7125 /* find requested device */
7126 while (dev) {
7127 imsm_find_array_minor_by_subdev(dev->index, st->container_dev, &devnum);
7128 if (devnum == geo.dev_id)
7129 break;
7130 dev = dev->next;
7131 }
7132 if (dev == NULL) {
7133 fprintf(stderr, Name " Cannot find %s (%i) subarray\n",
7134 geo.dev_name, geo.dev_id);
7135 goto exit_imsm_reshape_super;
7136 }
7137 super->current_vol = dev->index;
7138 change = imsm_analyze_change(st, &geo);
7139 switch (change) {
7140 case CH_TAKEOVER:
7141 ret_val = imsm_takeover(st, &geo);
7142 break;
7143 case CH_CHUNK_MIGR:
7144 ret_val = 0;
7145 break;
7146 case CH_LEVEL_MIGRATION:
7147 ret_val = 0;
7148 break;
7149 default:
7150 ret_val = 1;
7151 }
7152 }
7153
7154 exit_imsm_reshape_super:
7155 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
7156 return ret_val;
7157 }
7158
7159 static int imsm_manage_reshape(
7160 int afd, struct mdinfo *sra, struct reshape *reshape,
7161 struct supertype *st, unsigned long stripes,
7162 int *fds, unsigned long long *offsets,
7163 int dests, int *destfd, unsigned long long *destoffsets)
7164 {
7165 /* Just use child_monitor for now */
7166 return child_monitor(
7167 afd, sra, reshape, st, stripes,
7168 fds, offsets, dests, destfd, destoffsets);
7169 }
7170 #endif /* MDASSEMBLE */
7171
7172 struct superswitch super_imsm = {
7173 #ifndef MDASSEMBLE
7174 .examine_super = examine_super_imsm,
7175 .brief_examine_super = brief_examine_super_imsm,
7176 .brief_examine_subarrays = brief_examine_subarrays_imsm,
7177 .export_examine_super = export_examine_super_imsm,
7178 .detail_super = detail_super_imsm,
7179 .brief_detail_super = brief_detail_super_imsm,
7180 .write_init_super = write_init_super_imsm,
7181 .validate_geometry = validate_geometry_imsm,
7182 .add_to_super = add_to_super_imsm,
7183 .remove_from_super = remove_from_super_imsm,
7184 .detail_platform = detail_platform_imsm,
7185 .kill_subarray = kill_subarray_imsm,
7186 .update_subarray = update_subarray_imsm,
7187 .load_container = load_container_imsm,
7188 .default_geometry = default_geometry_imsm,
7189 .get_disk_controller_domain = imsm_get_disk_controller_domain,
7190 .reshape_super = imsm_reshape_super,
7191 .manage_reshape = imsm_manage_reshape,
7192 #endif
7193 .match_home = match_home_imsm,
7194 .uuid_from_super= uuid_from_super_imsm,
7195 .getinfo_super = getinfo_super_imsm,
7196 .getinfo_super_disks = getinfo_super_disks_imsm,
7197 .update_super = update_super_imsm,
7198
7199 .avail_size = avail_size_imsm,
7200 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
7201
7202 .compare_super = compare_super_imsm,
7203
7204 .load_super = load_super_imsm,
7205 .init_super = init_super_imsm,
7206 .store_super = store_super_imsm,
7207 .free_super = free_super_imsm,
7208 .match_metadata_desc = match_metadata_desc_imsm,
7209 .container_content = container_content_imsm,
7210
7211 .external = 1,
7212 .name = "imsm",
7213
7214 #ifndef MDASSEMBLE
7215 /* for mdmon */
7216 .open_new = imsm_open_new,
7217 .set_array_state= imsm_set_array_state,
7218 .set_disk = imsm_set_disk,
7219 .sync_metadata = imsm_sync_metadata,
7220 .activate_spare = imsm_activate_spare,
7221 .process_update = imsm_process_update,
7222 .prepare_update = imsm_prepare_update,
7223 #endif /* MDASSEMBLE */
7224 };