]> git.ipfire.org Git - thirdparty/mdadm.git/blob - super-intel.c
imsm: FIX: Check maximum allowed degradation level in open_backup_targets()
[thirdparty/mdadm.git] / super-intel.c
1 /*
2 * mdadm - Intel(R) Matrix Storage Manager Support
3 *
4 * Copyright (C) 2002-2008 Intel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc.,
17 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 */
19
20 #define HAVE_STDINT_H 1
21 #include "mdadm.h"
22 #include "mdmon.h"
23 #include "sha1.h"
24 #include "platform-intel.h"
25 #include <values.h>
26 #include <scsi/sg.h>
27 #include <ctype.h>
28 #include <dirent.h>
29
30 /* MPB == Metadata Parameter Block */
31 #define MPB_SIGNATURE "Intel Raid ISM Cfg Sig. "
32 #define MPB_SIG_LEN (strlen(MPB_SIGNATURE))
33 #define MPB_VERSION_RAID0 "1.0.00"
34 #define MPB_VERSION_RAID1 "1.1.00"
35 #define MPB_VERSION_MANY_VOLUMES_PER_ARRAY "1.2.00"
36 #define MPB_VERSION_3OR4_DISK_ARRAY "1.2.01"
37 #define MPB_VERSION_RAID5 "1.2.02"
38 #define MPB_VERSION_5OR6_DISK_ARRAY "1.2.04"
39 #define MPB_VERSION_CNG "1.2.06"
40 #define MPB_VERSION_ATTRIBS "1.3.00"
41 #define MAX_SIGNATURE_LENGTH 32
42 #define MAX_RAID_SERIAL_LEN 16
43
44 /* supports RAID0 */
45 #define MPB_ATTRIB_RAID0 __cpu_to_le32(0x00000001)
46 /* supports RAID1 */
47 #define MPB_ATTRIB_RAID1 __cpu_to_le32(0x00000002)
48 /* supports RAID10 */
49 #define MPB_ATTRIB_RAID10 __cpu_to_le32(0x00000004)
50 /* supports RAID1E */
51 #define MPB_ATTRIB_RAID1E __cpu_to_le32(0x00000008)
52 /* supports RAID5 */
53 #define MPB_ATTRIB_RAID5 __cpu_to_le32(0x00000010)
54 /* supports RAID CNG */
55 #define MPB_ATTRIB_RAIDCNG __cpu_to_le32(0x00000020)
56 /* supports expanded stripe sizes of 256K, 512K and 1MB */
57 #define MPB_ATTRIB_EXP_STRIPE_SIZE __cpu_to_le32(0x00000040)
58
59 /* The OROM Support RST Caching of Volumes */
60 #define MPB_ATTRIB_NVM __cpu_to_le32(0x02000000)
61 /* The OROM supports creating disks greater than 2TB */
62 #define MPB_ATTRIB_2TB_DISK __cpu_to_le32(0x04000000)
63 /* The OROM supports Bad Block Management */
64 #define MPB_ATTRIB_BBM __cpu_to_le32(0x08000000)
65
66 /* THe OROM Supports NVM Caching of Volumes */
67 #define MPB_ATTRIB_NEVER_USE2 __cpu_to_le32(0x10000000)
68 /* The OROM supports creating volumes greater than 2TB */
69 #define MPB_ATTRIB_2TB __cpu_to_le32(0x20000000)
70 /* originally for PMP, now it's wasted b/c. Never use this bit! */
71 #define MPB_ATTRIB_NEVER_USE __cpu_to_le32(0x40000000)
72 /* Verify MPB contents against checksum after reading MPB */
73 #define MPB_ATTRIB_CHECKSUM_VERIFY __cpu_to_le32(0x80000000)
74
75 /* Define all supported attributes that have to be accepted by mdadm
76 */
77 #define MPB_ATTRIB_SUPPORTED (MPB_ATTRIB_CHECKSUM_VERIFY | \
78 MPB_ATTRIB_2TB | \
79 MPB_ATTRIB_2TB_DISK | \
80 MPB_ATTRIB_RAID0 | \
81 MPB_ATTRIB_RAID1 | \
82 MPB_ATTRIB_RAID10 | \
83 MPB_ATTRIB_RAID5 | \
84 MPB_ATTRIB_EXP_STRIPE_SIZE)
85
86 /* Define attributes that are unused but not harmful */
87 #define MPB_ATTRIB_IGNORED (MPB_ATTRIB_NEVER_USE)
88
89 #define MPB_SECTOR_CNT 2210
90 #define IMSM_RESERVED_SECTORS 4096
91 #define NUM_BLOCKS_DIRTY_STRIPE_REGION 2056
92 #define SECT_PER_MB_SHIFT 11
93
94 /* Disk configuration info. */
95 #define IMSM_MAX_DEVICES 255
96 struct imsm_disk {
97 __u8 serial[MAX_RAID_SERIAL_LEN];/* 0xD8 - 0xE7 ascii serial number */
98 __u32 total_blocks; /* 0xE8 - 0xEB total blocks */
99 __u32 scsi_id; /* 0xEC - 0xEF scsi ID */
100 #define SPARE_DISK __cpu_to_le32(0x01) /* Spare */
101 #define CONFIGURED_DISK __cpu_to_le32(0x02) /* Member of some RaidDev */
102 #define FAILED_DISK __cpu_to_le32(0x04) /* Permanent failure */
103 __u32 status; /* 0xF0 - 0xF3 */
104 __u32 owner_cfg_num; /* which config 0,1,2... owns this disk */
105 #define IMSM_DISK_FILLERS 4
106 __u32 filler[IMSM_DISK_FILLERS]; /* 0xF4 - 0x107 MPB_DISK_FILLERS for future expansion */
107 };
108
109 /* map selector for map managment
110 */
111 #define MAP_0 2
112 #define MAP_1 4
113
114 /* RAID map configuration infos. */
115 struct imsm_map {
116 __u32 pba_of_lba0; /* start address of partition */
117 __u32 blocks_per_member;/* blocks per member */
118 __u32 num_data_stripes; /* number of data stripes */
119 __u16 blocks_per_strip;
120 __u8 map_state; /* Normal, Uninitialized, Degraded, Failed */
121 #define IMSM_T_STATE_NORMAL 0
122 #define IMSM_T_STATE_UNINITIALIZED 1
123 #define IMSM_T_STATE_DEGRADED 2
124 #define IMSM_T_STATE_FAILED 3
125 __u8 raid_level;
126 #define IMSM_T_RAID0 0
127 #define IMSM_T_RAID1 1
128 #define IMSM_T_RAID5 5 /* since metadata version 1.2.02 ? */
129 __u8 num_members; /* number of member disks */
130 __u8 num_domains; /* number of parity domains */
131 __u8 failed_disk_num; /* valid only when state is degraded */
132 __u8 ddf;
133 __u32 filler[7]; /* expansion area */
134 #define IMSM_ORD_REBUILD (1 << 24)
135 __u32 disk_ord_tbl[1]; /* disk_ord_tbl[num_members],
136 * top byte contains some flags
137 */
138 } __attribute__ ((packed));
139
140 struct imsm_vol {
141 __u32 curr_migr_unit;
142 __u32 checkpoint_id; /* id to access curr_migr_unit */
143 __u8 migr_state; /* Normal or Migrating */
144 #define MIGR_INIT 0
145 #define MIGR_REBUILD 1
146 #define MIGR_VERIFY 2 /* analagous to echo check > sync_action */
147 #define MIGR_GEN_MIGR 3
148 #define MIGR_STATE_CHANGE 4
149 #define MIGR_REPAIR 5
150 __u8 migr_type; /* Initializing, Rebuilding, ... */
151 __u8 dirty;
152 __u8 fs_state; /* fast-sync state for CnG (0xff == disabled) */
153 __u16 verify_errors; /* number of mismatches */
154 __u16 bad_blocks; /* number of bad blocks during verify */
155 __u32 filler[4];
156 struct imsm_map map[1];
157 /* here comes another one if migr_state */
158 } __attribute__ ((packed));
159
160 struct imsm_dev {
161 __u8 volume[MAX_RAID_SERIAL_LEN];
162 __u32 size_low;
163 __u32 size_high;
164 #define DEV_BOOTABLE __cpu_to_le32(0x01)
165 #define DEV_BOOT_DEVICE __cpu_to_le32(0x02)
166 #define DEV_READ_COALESCING __cpu_to_le32(0x04)
167 #define DEV_WRITE_COALESCING __cpu_to_le32(0x08)
168 #define DEV_LAST_SHUTDOWN_DIRTY __cpu_to_le32(0x10)
169 #define DEV_HIDDEN_AT_BOOT __cpu_to_le32(0x20)
170 #define DEV_CURRENTLY_HIDDEN __cpu_to_le32(0x40)
171 #define DEV_VERIFY_AND_FIX __cpu_to_le32(0x80)
172 #define DEV_MAP_STATE_UNINIT __cpu_to_le32(0x100)
173 #define DEV_NO_AUTO_RECOVERY __cpu_to_le32(0x200)
174 #define DEV_CLONE_N_GO __cpu_to_le32(0x400)
175 #define DEV_CLONE_MAN_SYNC __cpu_to_le32(0x800)
176 #define DEV_CNG_MASTER_DISK_NUM __cpu_to_le32(0x1000)
177 __u32 status; /* Persistent RaidDev status */
178 __u32 reserved_blocks; /* Reserved blocks at beginning of volume */
179 __u8 migr_priority;
180 __u8 num_sub_vols;
181 __u8 tid;
182 __u8 cng_master_disk;
183 __u16 cache_policy;
184 __u8 cng_state;
185 __u8 cng_sub_state;
186 #define IMSM_DEV_FILLERS 10
187 __u32 filler[IMSM_DEV_FILLERS];
188 struct imsm_vol vol;
189 } __attribute__ ((packed));
190
191 struct imsm_super {
192 __u8 sig[MAX_SIGNATURE_LENGTH]; /* 0x00 - 0x1F */
193 __u32 check_sum; /* 0x20 - 0x23 MPB Checksum */
194 __u32 mpb_size; /* 0x24 - 0x27 Size of MPB */
195 __u32 family_num; /* 0x28 - 0x2B Checksum from first time this config was written */
196 __u32 generation_num; /* 0x2C - 0x2F Incremented each time this array's MPB is written */
197 __u32 error_log_size; /* 0x30 - 0x33 in bytes */
198 __u32 attributes; /* 0x34 - 0x37 */
199 __u8 num_disks; /* 0x38 Number of configured disks */
200 __u8 num_raid_devs; /* 0x39 Number of configured volumes */
201 __u8 error_log_pos; /* 0x3A */
202 __u8 fill[1]; /* 0x3B */
203 __u32 cache_size; /* 0x3c - 0x40 in mb */
204 __u32 orig_family_num; /* 0x40 - 0x43 original family num */
205 __u32 pwr_cycle_count; /* 0x44 - 0x47 simulated power cycle count for array */
206 __u32 bbm_log_size; /* 0x48 - 0x4B - size of bad Block Mgmt Log in bytes */
207 #define IMSM_FILLERS 35
208 __u32 filler[IMSM_FILLERS]; /* 0x4C - 0xD7 RAID_MPB_FILLERS */
209 struct imsm_disk disk[1]; /* 0xD8 diskTbl[numDisks] */
210 /* here comes imsm_dev[num_raid_devs] */
211 /* here comes BBM logs */
212 } __attribute__ ((packed));
213
214 #define BBM_LOG_MAX_ENTRIES 254
215
216 struct bbm_log_entry {
217 __u64 defective_block_start;
218 #define UNREADABLE 0xFFFFFFFF
219 __u32 spare_block_offset;
220 __u16 remapped_marked_count;
221 __u16 disk_ordinal;
222 } __attribute__ ((__packed__));
223
224 struct bbm_log {
225 __u32 signature; /* 0xABADB10C */
226 __u32 entry_count;
227 __u32 reserved_spare_block_count; /* 0 */
228 __u32 reserved; /* 0xFFFF */
229 __u64 first_spare_lba;
230 struct bbm_log_entry mapped_block_entries[BBM_LOG_MAX_ENTRIES];
231 } __attribute__ ((__packed__));
232
233
234 #ifndef MDASSEMBLE
235 static char *map_state_str[] = { "normal", "uninitialized", "degraded", "failed" };
236 #endif
237
238 #define RAID_DISK_RESERVED_BLOCKS_IMSM_HI 2209
239
240 #define GEN_MIGR_AREA_SIZE 2048 /* General Migration Copy Area size in blocks */
241
242 #define UNIT_SRC_NORMAL 0 /* Source data for curr_migr_unit must
243 * be recovered using srcMap */
244 #define UNIT_SRC_IN_CP_AREA 1 /* Source data for curr_migr_unit has
245 * already been migrated and must
246 * be recovered from checkpoint area */
247 struct migr_record {
248 __u32 rec_status; /* Status used to determine how to restart
249 * migration in case it aborts
250 * in some fashion */
251 __u32 curr_migr_unit; /* 0..numMigrUnits-1 */
252 __u32 family_num; /* Family number of MPB
253 * containing the RaidDev
254 * that is migrating */
255 __u32 ascending_migr; /* True if migrating in increasing
256 * order of lbas */
257 __u32 blocks_per_unit; /* Num disk blocks per unit of operation */
258 __u32 dest_depth_per_unit; /* Num member blocks each destMap
259 * member disk
260 * advances per unit-of-operation */
261 __u32 ckpt_area_pba; /* Pba of first block of ckpt copy area */
262 __u32 dest_1st_member_lba; /* First member lba on first
263 * stripe of destination */
264 __u32 num_migr_units; /* Total num migration units-of-op */
265 __u32 post_migr_vol_cap; /* Size of volume after
266 * migration completes */
267 __u32 post_migr_vol_cap_hi; /* Expansion space for LBA64 */
268 __u32 ckpt_read_disk_num; /* Which member disk in destSubMap[0] the
269 * migration ckpt record was read from
270 * (for recovered migrations) */
271 } __attribute__ ((__packed__));
272
273 static __u8 migr_type(struct imsm_dev *dev)
274 {
275 if (dev->vol.migr_type == MIGR_VERIFY &&
276 dev->status & DEV_VERIFY_AND_FIX)
277 return MIGR_REPAIR;
278 else
279 return dev->vol.migr_type;
280 }
281
282 static void set_migr_type(struct imsm_dev *dev, __u8 migr_type)
283 {
284 /* for compatibility with older oroms convert MIGR_REPAIR, into
285 * MIGR_VERIFY w/ DEV_VERIFY_AND_FIX status
286 */
287 if (migr_type == MIGR_REPAIR) {
288 dev->vol.migr_type = MIGR_VERIFY;
289 dev->status |= DEV_VERIFY_AND_FIX;
290 } else {
291 dev->vol.migr_type = migr_type;
292 dev->status &= ~DEV_VERIFY_AND_FIX;
293 }
294 }
295
296 static unsigned int sector_count(__u32 bytes)
297 {
298 return ((bytes + (512-1)) & (~(512-1))) / 512;
299 }
300
301 static unsigned int mpb_sectors(struct imsm_super *mpb)
302 {
303 return sector_count(__le32_to_cpu(mpb->mpb_size));
304 }
305
306 struct intel_dev {
307 struct imsm_dev *dev;
308 struct intel_dev *next;
309 unsigned index;
310 };
311
312 struct intel_hba {
313 enum sys_dev_type type;
314 char *path;
315 char *pci_id;
316 struct intel_hba *next;
317 };
318
319 enum action {
320 DISK_REMOVE = 1,
321 DISK_ADD
322 };
323 /* internal representation of IMSM metadata */
324 struct intel_super {
325 union {
326 void *buf; /* O_DIRECT buffer for reading/writing metadata */
327 struct imsm_super *anchor; /* immovable parameters */
328 };
329 union {
330 void *migr_rec_buf; /* buffer for I/O operations */
331 struct migr_record *migr_rec; /* migration record */
332 };
333 size_t len; /* size of the 'buf' allocation */
334 void *next_buf; /* for realloc'ing buf from the manager */
335 size_t next_len;
336 int updates_pending; /* count of pending updates for mdmon */
337 int current_vol; /* index of raid device undergoing creation */
338 __u32 create_offset; /* common start for 'current_vol' */
339 __u32 random; /* random data for seeding new family numbers */
340 struct intel_dev *devlist;
341 struct dl {
342 struct dl *next;
343 int index;
344 __u8 serial[MAX_RAID_SERIAL_LEN];
345 int major, minor;
346 char *devname;
347 struct imsm_disk disk;
348 int fd;
349 int extent_cnt;
350 struct extent *e; /* for determining freespace @ create */
351 int raiddisk; /* slot to fill in autolayout */
352 enum action action;
353 } *disks, *current_disk;
354 struct dl *disk_mgmt_list; /* list of disks to add/remove while mdmon
355 active */
356 struct dl *missing; /* disks removed while we weren't looking */
357 struct bbm_log *bbm_log;
358 struct intel_hba *hba; /* device path of the raid controller for this metadata */
359 const struct imsm_orom *orom; /* platform firmware support */
360 struct intel_super *next; /* (temp) list for disambiguating family_num */
361 };
362
363 struct intel_disk {
364 struct imsm_disk disk;
365 #define IMSM_UNKNOWN_OWNER (-1)
366 int owner;
367 struct intel_disk *next;
368 };
369
370 struct extent {
371 unsigned long long start, size;
372 };
373
374 /* definitions of reshape process types */
375 enum imsm_reshape_type {
376 CH_TAKEOVER,
377 CH_MIGRATION,
378 };
379
380 /* definition of messages passed to imsm_process_update */
381 enum imsm_update_type {
382 update_activate_spare,
383 update_create_array,
384 update_kill_array,
385 update_rename_array,
386 update_add_remove_disk,
387 update_reshape_container_disks,
388 update_reshape_migration,
389 update_takeover,
390 update_general_migration_checkpoint,
391 };
392
393 struct imsm_update_activate_spare {
394 enum imsm_update_type type;
395 struct dl *dl;
396 int slot;
397 int array;
398 struct imsm_update_activate_spare *next;
399 };
400
401 struct geo_params {
402 int dev_id;
403 char *dev_name;
404 long long size;
405 int level;
406 int layout;
407 int chunksize;
408 int raid_disks;
409 };
410
411 enum takeover_direction {
412 R10_TO_R0,
413 R0_TO_R10
414 };
415 struct imsm_update_takeover {
416 enum imsm_update_type type;
417 int subarray;
418 enum takeover_direction direction;
419 };
420
421 struct imsm_update_reshape {
422 enum imsm_update_type type;
423 int old_raid_disks;
424 int new_raid_disks;
425
426 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
427 };
428
429 struct imsm_update_reshape_migration {
430 enum imsm_update_type type;
431 int old_raid_disks;
432 int new_raid_disks;
433 /* fields for array migration changes
434 */
435 int subdev;
436 int new_level;
437 int new_layout;
438 int new_chunksize;
439
440 int new_disks[1]; /* new_raid_disks - old_raid_disks makedev number */
441 };
442
443 struct imsm_update_general_migration_checkpoint {
444 enum imsm_update_type type;
445 __u32 curr_migr_unit;
446 };
447
448 struct disk_info {
449 __u8 serial[MAX_RAID_SERIAL_LEN];
450 };
451
452 struct imsm_update_create_array {
453 enum imsm_update_type type;
454 int dev_idx;
455 struct imsm_dev dev;
456 };
457
458 struct imsm_update_kill_array {
459 enum imsm_update_type type;
460 int dev_idx;
461 };
462
463 struct imsm_update_rename_array {
464 enum imsm_update_type type;
465 __u8 name[MAX_RAID_SERIAL_LEN];
466 int dev_idx;
467 };
468
469 struct imsm_update_add_remove_disk {
470 enum imsm_update_type type;
471 };
472
473
474 static const char *_sys_dev_type[] = {
475 [SYS_DEV_UNKNOWN] = "Unknown",
476 [SYS_DEV_SAS] = "SAS",
477 [SYS_DEV_SATA] = "SATA"
478 };
479
480 const char *get_sys_dev_type(enum sys_dev_type type)
481 {
482 if (type >= SYS_DEV_MAX)
483 type = SYS_DEV_UNKNOWN;
484
485 return _sys_dev_type[type];
486 }
487
488 static struct intel_hba * alloc_intel_hba(struct sys_dev *device)
489 {
490 struct intel_hba *result = malloc(sizeof(*result));
491 if (result) {
492 result->type = device->type;
493 result->path = strdup(device->path);
494 result->next = NULL;
495 if (result->path && (result->pci_id = strrchr(result->path, '/')) != NULL)
496 result->pci_id++;
497 }
498 return result;
499 }
500
501 static struct intel_hba * find_intel_hba(struct intel_hba *hba, struct sys_dev *device)
502 {
503 struct intel_hba *result=NULL;
504 for (result = hba; result; result = result->next) {
505 if (result->type == device->type && strcmp(result->path, device->path) == 0)
506 break;
507 }
508 return result;
509 }
510
511 static int attach_hba_to_super(struct intel_super *super, struct sys_dev *device)
512 {
513 struct intel_hba *hba;
514
515 /* check if disk attached to Intel HBA */
516 hba = find_intel_hba(super->hba, device);
517 if (hba != NULL)
518 return 1;
519 /* Check if HBA is already attached to super */
520 if (super->hba == NULL) {
521 super->hba = alloc_intel_hba(device);
522 return 1;
523 }
524
525 hba = super->hba;
526 /* Intel metadata allows for all disks attached to the same type HBA.
527 * Do not sypport odf HBA types mixing
528 */
529 if (device->type != hba->type)
530 return 2;
531
532 while (hba->next)
533 hba = hba->next;
534
535 hba->next = alloc_intel_hba(device);
536 return 1;
537 }
538
539 static struct sys_dev* find_disk_attached_hba(int fd, const char *devname)
540 {
541 struct sys_dev *list, *elem, *prev;
542 char *disk_path;
543
544 if ((list = find_intel_devices()) == NULL)
545 return 0;
546
547 if (fd < 0)
548 disk_path = (char *) devname;
549 else
550 disk_path = diskfd_to_devpath(fd);
551
552 if (!disk_path) {
553 free_sys_dev(&list);
554 return 0;
555 }
556
557 for (prev = NULL, elem = list; elem; prev = elem, elem = elem->next) {
558 if (path_attached_to_hba(disk_path, elem->path)) {
559 if (prev == NULL)
560 list = list->next;
561 else
562 prev->next = elem->next;
563 elem->next = NULL;
564 if (disk_path != devname)
565 free(disk_path);
566 free_sys_dev(&list);
567 return elem;
568 }
569 }
570 if (disk_path != devname)
571 free(disk_path);
572 free_sys_dev(&list);
573
574 return NULL;
575 }
576
577
578 static int find_intel_hba_capability(int fd, struct intel_super *super,
579 char *devname);
580
581 static struct supertype *match_metadata_desc_imsm(char *arg)
582 {
583 struct supertype *st;
584
585 if (strcmp(arg, "imsm") != 0 &&
586 strcmp(arg, "default") != 0
587 )
588 return NULL;
589
590 st = malloc(sizeof(*st));
591 if (!st)
592 return NULL;
593 memset(st, 0, sizeof(*st));
594 st->container_dev = NoMdDev;
595 st->ss = &super_imsm;
596 st->max_devs = IMSM_MAX_DEVICES;
597 st->minor_version = 0;
598 st->sb = NULL;
599 return st;
600 }
601
602 #ifndef MDASSEMBLE
603 static __u8 *get_imsm_version(struct imsm_super *mpb)
604 {
605 return &mpb->sig[MPB_SIG_LEN];
606 }
607 #endif
608
609 /* retrieve a disk directly from the anchor when the anchor is known to be
610 * up-to-date, currently only at load time
611 */
612 static struct imsm_disk *__get_imsm_disk(struct imsm_super *mpb, __u8 index)
613 {
614 if (index >= mpb->num_disks)
615 return NULL;
616 return &mpb->disk[index];
617 }
618
619 /* retrieve the disk description based on a index of the disk
620 * in the sub-array
621 */
622 static struct dl *get_imsm_dl_disk(struct intel_super *super, __u8 index)
623 {
624 struct dl *d;
625
626 for (d = super->disks; d; d = d->next)
627 if (d->index == index)
628 return d;
629
630 return NULL;
631 }
632 /* retrieve a disk from the parsed metadata */
633 static struct imsm_disk *get_imsm_disk(struct intel_super *super, __u8 index)
634 {
635 struct dl *dl;
636
637 dl = get_imsm_dl_disk(super, index);
638 if (dl)
639 return &dl->disk;
640
641 return NULL;
642 }
643
644 /* generate a checksum directly from the anchor when the anchor is known to be
645 * up-to-date, currently only at load or write_super after coalescing
646 */
647 static __u32 __gen_imsm_checksum(struct imsm_super *mpb)
648 {
649 __u32 end = mpb->mpb_size / sizeof(end);
650 __u32 *p = (__u32 *) mpb;
651 __u32 sum = 0;
652
653 while (end--) {
654 sum += __le32_to_cpu(*p);
655 p++;
656 }
657
658 return sum - __le32_to_cpu(mpb->check_sum);
659 }
660
661 static size_t sizeof_imsm_map(struct imsm_map *map)
662 {
663 return sizeof(struct imsm_map) + sizeof(__u32) * (map->num_members - 1);
664 }
665
666 struct imsm_map *get_imsm_map(struct imsm_dev *dev, int second_map)
667 {
668 /* A device can have 2 maps if it is in the middle of a migration.
669 * If second_map is:
670 * MAP_0 or
671 * 0 - we return the first map
672 * MAP_1 or
673 * 1 - we return the second map if it exists, else NULL
674 * -1 - we return the second map if it exists, else the first
675 * -2 - we return longer map /excluding uninitialized state/
676 */
677 struct imsm_map *map = &dev->vol.map[0];
678 struct imsm_map *map2 = NULL;
679
680 if (dev->vol.migr_state)
681 map2 = (void *)map + sizeof_imsm_map(map);
682
683 switch (second_map) {
684 case MAP_0:
685 case 0:
686 break;
687 case MAP_1:
688 case 1:
689 map = map2;
690 break;
691 case -1:
692 if (map2)
693 map = map2;
694 break;
695 case -2:
696 if (map2
697 && map2->map_state != IMSM_T_STATE_UNINITIALIZED
698 && map2->num_members > map->num_members)
699 map = map2;
700 break;
701 default:
702 map = NULL;
703 }
704 return map;
705
706 }
707
708 /* return the size of the device.
709 * migr_state increases the returned size if map[0] were to be duplicated
710 */
711 static size_t sizeof_imsm_dev(struct imsm_dev *dev, int migr_state)
712 {
713 size_t size = sizeof(*dev) - sizeof(struct imsm_map) +
714 sizeof_imsm_map(get_imsm_map(dev, 0));
715
716 /* migrating means an additional map */
717 if (dev->vol.migr_state)
718 size += sizeof_imsm_map(get_imsm_map(dev, 1));
719 else if (migr_state)
720 size += sizeof_imsm_map(get_imsm_map(dev, 0));
721
722 return size;
723 }
724
725 #ifndef MDASSEMBLE
726 /* retrieve disk serial number list from a metadata update */
727 static struct disk_info *get_disk_info(struct imsm_update_create_array *update)
728 {
729 void *u = update;
730 struct disk_info *inf;
731
732 inf = u + sizeof(*update) - sizeof(struct imsm_dev) +
733 sizeof_imsm_dev(&update->dev, 0);
734
735 return inf;
736 }
737 #endif
738
739 static struct imsm_dev *__get_imsm_dev(struct imsm_super *mpb, __u8 index)
740 {
741 int offset;
742 int i;
743 void *_mpb = mpb;
744
745 if (index >= mpb->num_raid_devs)
746 return NULL;
747
748 /* devices start after all disks */
749 offset = ((void *) &mpb->disk[mpb->num_disks]) - _mpb;
750
751 for (i = 0; i <= index; i++)
752 if (i == index)
753 return _mpb + offset;
754 else
755 offset += sizeof_imsm_dev(_mpb + offset, 0);
756
757 return NULL;
758 }
759
760 static struct imsm_dev *get_imsm_dev(struct intel_super *super, __u8 index)
761 {
762 struct intel_dev *dv;
763
764 if (index >= super->anchor->num_raid_devs)
765 return NULL;
766 for (dv = super->devlist; dv; dv = dv->next)
767 if (dv->index == index)
768 return dv->dev;
769 return NULL;
770 }
771
772 /*
773 * for second_map:
774 * == 0 get first map
775 * == 1 get second map
776 * == -1 than get map according to the current migr_state
777 */
778 static __u32 get_imsm_ord_tbl_ent(struct imsm_dev *dev,
779 int slot,
780 int second_map)
781 {
782 struct imsm_map *map;
783
784 map = get_imsm_map(dev, second_map);
785
786 /* top byte identifies disk under rebuild */
787 return __le32_to_cpu(map->disk_ord_tbl[slot]);
788 }
789
790 #define ord_to_idx(ord) (((ord) << 8) >> 8)
791 static __u32 get_imsm_disk_idx(struct imsm_dev *dev, int slot, int second_map)
792 {
793 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, second_map);
794
795 return ord_to_idx(ord);
796 }
797
798 static void set_imsm_ord_tbl_ent(struct imsm_map *map, int slot, __u32 ord)
799 {
800 map->disk_ord_tbl[slot] = __cpu_to_le32(ord);
801 }
802
803 static int get_imsm_disk_slot(struct imsm_map *map, unsigned idx)
804 {
805 int slot;
806 __u32 ord;
807
808 for (slot = 0; slot < map->num_members; slot++) {
809 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
810 if (ord_to_idx(ord) == idx)
811 return slot;
812 }
813
814 return -1;
815 }
816
817 static int get_imsm_raid_level(struct imsm_map *map)
818 {
819 if (map->raid_level == 1) {
820 if (map->num_members == 2)
821 return 1;
822 else
823 return 10;
824 }
825
826 return map->raid_level;
827 }
828
829 static int cmp_extent(const void *av, const void *bv)
830 {
831 const struct extent *a = av;
832 const struct extent *b = bv;
833 if (a->start < b->start)
834 return -1;
835 if (a->start > b->start)
836 return 1;
837 return 0;
838 }
839
840 static int count_memberships(struct dl *dl, struct intel_super *super)
841 {
842 int memberships = 0;
843 int i;
844
845 for (i = 0; i < super->anchor->num_raid_devs; i++) {
846 struct imsm_dev *dev = get_imsm_dev(super, i);
847 struct imsm_map *map = get_imsm_map(dev, 0);
848
849 if (get_imsm_disk_slot(map, dl->index) >= 0)
850 memberships++;
851 }
852
853 return memberships;
854 }
855
856 static __u32 imsm_min_reserved_sectors(struct intel_super *super);
857
858 static struct extent *get_extents(struct intel_super *super, struct dl *dl)
859 {
860 /* find a list of used extents on the given physical device */
861 struct extent *rv, *e;
862 int i;
863 int memberships = count_memberships(dl, super);
864 __u32 reservation;
865
866 /* trim the reserved area for spares, so they can join any array
867 * regardless of whether the OROM has assigned sectors from the
868 * IMSM_RESERVED_SECTORS region
869 */
870 if (dl->index == -1)
871 reservation = imsm_min_reserved_sectors(super);
872 else
873 reservation = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
874
875 rv = malloc(sizeof(struct extent) * (memberships + 1));
876 if (!rv)
877 return NULL;
878 e = rv;
879
880 for (i = 0; i < super->anchor->num_raid_devs; i++) {
881 struct imsm_dev *dev = get_imsm_dev(super, i);
882 struct imsm_map *map = get_imsm_map(dev, 0);
883
884 if (get_imsm_disk_slot(map, dl->index) >= 0) {
885 e->start = __le32_to_cpu(map->pba_of_lba0);
886 e->size = __le32_to_cpu(map->blocks_per_member);
887 e++;
888 }
889 }
890 qsort(rv, memberships, sizeof(*rv), cmp_extent);
891
892 /* determine the start of the metadata
893 * when no raid devices are defined use the default
894 * ...otherwise allow the metadata to truncate the value
895 * as is the case with older versions of imsm
896 */
897 if (memberships) {
898 struct extent *last = &rv[memberships - 1];
899 __u32 remainder;
900
901 remainder = __le32_to_cpu(dl->disk.total_blocks) -
902 (last->start + last->size);
903 /* round down to 1k block to satisfy precision of the kernel
904 * 'size' interface
905 */
906 remainder &= ~1UL;
907 /* make sure remainder is still sane */
908 if (remainder < (unsigned)ROUND_UP(super->len, 512) >> 9)
909 remainder = ROUND_UP(super->len, 512) >> 9;
910 if (reservation > remainder)
911 reservation = remainder;
912 }
913 e->start = __le32_to_cpu(dl->disk.total_blocks) - reservation;
914 e->size = 0;
915 return rv;
916 }
917
918 /* try to determine how much space is reserved for metadata from
919 * the last get_extents() entry, otherwise fallback to the
920 * default
921 */
922 static __u32 imsm_reserved_sectors(struct intel_super *super, struct dl *dl)
923 {
924 struct extent *e;
925 int i;
926 __u32 rv;
927
928 /* for spares just return a minimal reservation which will grow
929 * once the spare is picked up by an array
930 */
931 if (dl->index == -1)
932 return MPB_SECTOR_CNT;
933
934 e = get_extents(super, dl);
935 if (!e)
936 return MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
937
938 /* scroll to last entry */
939 for (i = 0; e[i].size; i++)
940 continue;
941
942 rv = __le32_to_cpu(dl->disk.total_blocks) - e[i].start;
943
944 free(e);
945
946 return rv;
947 }
948
949 static int is_spare(struct imsm_disk *disk)
950 {
951 return (disk->status & SPARE_DISK) == SPARE_DISK;
952 }
953
954 static int is_configured(struct imsm_disk *disk)
955 {
956 return (disk->status & CONFIGURED_DISK) == CONFIGURED_DISK;
957 }
958
959 static int is_failed(struct imsm_disk *disk)
960 {
961 return (disk->status & FAILED_DISK) == FAILED_DISK;
962 }
963
964 /* try to determine how much space is reserved for metadata from
965 * the last get_extents() entry on the smallest active disk,
966 * otherwise fallback to the default
967 */
968 static __u32 imsm_min_reserved_sectors(struct intel_super *super)
969 {
970 struct extent *e;
971 int i;
972 __u32 min_active, remainder;
973 __u32 rv = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
974 struct dl *dl, *dl_min = NULL;
975
976 if (!super)
977 return rv;
978
979 min_active = 0;
980 for (dl = super->disks; dl; dl = dl->next) {
981 if (dl->index < 0)
982 continue;
983 if (dl->disk.total_blocks < min_active || min_active == 0) {
984 dl_min = dl;
985 min_active = dl->disk.total_blocks;
986 }
987 }
988 if (!dl_min)
989 return rv;
990
991 /* find last lba used by subarrays on the smallest active disk */
992 e = get_extents(super, dl_min);
993 if (!e)
994 return rv;
995 for (i = 0; e[i].size; i++)
996 continue;
997
998 remainder = min_active - e[i].start;
999 free(e);
1000
1001 /* to give priority to recovery we should not require full
1002 IMSM_RESERVED_SECTORS from the spare */
1003 rv = MPB_SECTOR_CNT + NUM_BLOCKS_DIRTY_STRIPE_REGION;
1004
1005 /* if real reservation is smaller use that value */
1006 return (remainder < rv) ? remainder : rv;
1007 }
1008
1009 /* Return minimum size of a spare that can be used in this array*/
1010 static unsigned long long min_acceptable_spare_size_imsm(struct supertype *st)
1011 {
1012 struct intel_super *super = st->sb;
1013 struct dl *dl;
1014 struct extent *e;
1015 int i;
1016 unsigned long long rv = 0;
1017
1018 if (!super)
1019 return rv;
1020 /* find first active disk in array */
1021 dl = super->disks;
1022 while (dl && (is_failed(&dl->disk) || dl->index == -1))
1023 dl = dl->next;
1024 if (!dl)
1025 return rv;
1026 /* find last lba used by subarrays */
1027 e = get_extents(super, dl);
1028 if (!e)
1029 return rv;
1030 for (i = 0; e[i].size; i++)
1031 continue;
1032 if (i > 0)
1033 rv = e[i-1].start + e[i-1].size;
1034 free(e);
1035
1036 /* add the amount of space needed for metadata */
1037 rv = rv + imsm_min_reserved_sectors(super);
1038
1039 return rv * 512;
1040 }
1041
1042 #ifndef MDASSEMBLE
1043 static __u64 blocks_per_migr_unit(struct intel_super *super,
1044 struct imsm_dev *dev);
1045
1046 static int is_gen_migration(struct imsm_dev *dev);
1047
1048 static void print_imsm_dev(struct intel_super *super,
1049 struct imsm_dev *dev,
1050 char *uuid,
1051 int disk_idx)
1052 {
1053 __u64 sz;
1054 int slot, i;
1055 struct imsm_map *map = get_imsm_map(dev, 0);
1056 struct imsm_map *map2 = get_imsm_map(dev, 1);
1057 __u32 ord;
1058
1059 printf("\n");
1060 printf("[%.16s]:\n", dev->volume);
1061 printf(" UUID : %s\n", uuid);
1062 printf(" RAID Level : %d", get_imsm_raid_level(map));
1063 if (map2)
1064 printf(" <-- %d", get_imsm_raid_level(map2));
1065 printf("\n");
1066 printf(" Members : %d", map->num_members);
1067 if (map2)
1068 printf(" <-- %d", map2->num_members);
1069 printf("\n");
1070 printf(" Slots : [");
1071 for (i = 0; i < map->num_members; i++) {
1072 ord = get_imsm_ord_tbl_ent(dev, i, 0);
1073 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1074 }
1075 printf("]");
1076 if (map2) {
1077 printf(" <-- [");
1078 for (i = 0; i < map2->num_members; i++) {
1079 ord = get_imsm_ord_tbl_ent(dev, i, 1);
1080 printf("%s", ord & IMSM_ORD_REBUILD ? "_" : "U");
1081 }
1082 printf("]");
1083 }
1084 printf("\n");
1085 printf(" Failed disk : ");
1086 if (map->failed_disk_num == 0xff)
1087 printf("none");
1088 else
1089 printf("%i", map->failed_disk_num);
1090 printf("\n");
1091 slot = get_imsm_disk_slot(map, disk_idx);
1092 if (slot >= 0) {
1093 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
1094 printf(" This Slot : %d%s\n", slot,
1095 ord & IMSM_ORD_REBUILD ? " (out-of-sync)" : "");
1096 } else
1097 printf(" This Slot : ?\n");
1098 sz = __le32_to_cpu(dev->size_high);
1099 sz <<= 32;
1100 sz += __le32_to_cpu(dev->size_low);
1101 printf(" Array Size : %llu%s\n", (unsigned long long)sz,
1102 human_size(sz * 512));
1103 sz = __le32_to_cpu(map->blocks_per_member);
1104 printf(" Per Dev Size : %llu%s\n", (unsigned long long)sz,
1105 human_size(sz * 512));
1106 printf(" Sector Offset : %u\n",
1107 __le32_to_cpu(map->pba_of_lba0));
1108 printf(" Num Stripes : %u\n",
1109 __le32_to_cpu(map->num_data_stripes));
1110 printf(" Chunk Size : %u KiB",
1111 __le16_to_cpu(map->blocks_per_strip) / 2);
1112 if (map2)
1113 printf(" <-- %u KiB",
1114 __le16_to_cpu(map2->blocks_per_strip) / 2);
1115 printf("\n");
1116 printf(" Reserved : %d\n", __le32_to_cpu(dev->reserved_blocks));
1117 printf(" Migrate State : ");
1118 if (dev->vol.migr_state) {
1119 if (migr_type(dev) == MIGR_INIT)
1120 printf("initialize\n");
1121 else if (migr_type(dev) == MIGR_REBUILD)
1122 printf("rebuild\n");
1123 else if (migr_type(dev) == MIGR_VERIFY)
1124 printf("check\n");
1125 else if (migr_type(dev) == MIGR_GEN_MIGR)
1126 printf("general migration\n");
1127 else if (migr_type(dev) == MIGR_STATE_CHANGE)
1128 printf("state change\n");
1129 else if (migr_type(dev) == MIGR_REPAIR)
1130 printf("repair\n");
1131 else
1132 printf("<unknown:%d>\n", migr_type(dev));
1133 } else
1134 printf("idle\n");
1135 printf(" Map State : %s", map_state_str[map->map_state]);
1136 if (dev->vol.migr_state) {
1137 struct imsm_map *map = get_imsm_map(dev, 1);
1138
1139 printf(" <-- %s", map_state_str[map->map_state]);
1140 printf("\n Checkpoint : %u ",
1141 __le32_to_cpu(dev->vol.curr_migr_unit));
1142 if ((is_gen_migration(dev)) && (super->disks->index > 1))
1143 printf("(N/A)");
1144 else
1145 printf("(%llu)", (unsigned long long)
1146 blocks_per_migr_unit(super, dev));
1147 }
1148 printf("\n");
1149 printf(" Dirty State : %s\n", dev->vol.dirty ? "dirty" : "clean");
1150 }
1151
1152 static void print_imsm_disk(struct imsm_disk *disk, int index, __u32 reserved)
1153 {
1154 char str[MAX_RAID_SERIAL_LEN + 1];
1155 __u64 sz;
1156
1157 if (index < -1 || !disk)
1158 return;
1159
1160 printf("\n");
1161 snprintf(str, MAX_RAID_SERIAL_LEN + 1, "%s", disk->serial);
1162 if (index >= 0)
1163 printf(" Disk%02d Serial : %s\n", index, str);
1164 else
1165 printf(" Disk Serial : %s\n", str);
1166 printf(" State :%s%s%s\n", is_spare(disk) ? " spare" : "",
1167 is_configured(disk) ? " active" : "",
1168 is_failed(disk) ? " failed" : "");
1169 printf(" Id : %08x\n", __le32_to_cpu(disk->scsi_id));
1170 sz = __le32_to_cpu(disk->total_blocks) - reserved;
1171 printf(" Usable Size : %llu%s\n", (unsigned long long)sz,
1172 human_size(sz * 512));
1173 }
1174
1175 void examine_migr_rec_imsm(struct intel_super *super)
1176 {
1177 struct migr_record *migr_rec = super->migr_rec;
1178 struct imsm_super *mpb = super->anchor;
1179 int i;
1180
1181 for (i = 0; i < mpb->num_raid_devs; i++) {
1182 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1183 if (is_gen_migration(dev) == 0)
1184 continue;
1185
1186 printf("\nMigration Record Information:");
1187 if (super->disks->index > 1) {
1188 printf(" Empty\n ");
1189 printf("Examine one of first two disks in array\n");
1190 break;
1191 }
1192 printf("\n Status : ");
1193 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
1194 printf("Normal\n");
1195 else
1196 printf("Contains Data\n");
1197 printf(" Current Unit : %u\n",
1198 __le32_to_cpu(migr_rec->curr_migr_unit));
1199 printf(" Family : %u\n",
1200 __le32_to_cpu(migr_rec->family_num));
1201 printf(" Ascending : %u\n",
1202 __le32_to_cpu(migr_rec->ascending_migr));
1203 printf(" Blocks Per Unit : %u\n",
1204 __le32_to_cpu(migr_rec->blocks_per_unit));
1205 printf(" Dest. Depth Per Unit : %u\n",
1206 __le32_to_cpu(migr_rec->dest_depth_per_unit));
1207 printf(" Checkpoint Area pba : %u\n",
1208 __le32_to_cpu(migr_rec->ckpt_area_pba));
1209 printf(" First member lba : %u\n",
1210 __le32_to_cpu(migr_rec->dest_1st_member_lba));
1211 printf(" Total Number of Units : %u\n",
1212 __le32_to_cpu(migr_rec->num_migr_units));
1213 printf(" Size of volume : %u\n",
1214 __le32_to_cpu(migr_rec->post_migr_vol_cap));
1215 printf(" Expansion space for LBA64 : %u\n",
1216 __le32_to_cpu(migr_rec->post_migr_vol_cap_hi));
1217 printf(" Record was read from : %u\n",
1218 __le32_to_cpu(migr_rec->ckpt_read_disk_num));
1219
1220 break;
1221 }
1222 }
1223 #endif /* MDASSEMBLE */
1224 /*******************************************************************************
1225 * function: imsm_check_attributes
1226 * Description: Function checks if features represented by attributes flags
1227 * are supported by mdadm.
1228 * Parameters:
1229 * attributes - Attributes read from metadata
1230 * Returns:
1231 * 0 - passed attributes contains unsupported features flags
1232 * 1 - all features are supported
1233 ******************************************************************************/
1234 static int imsm_check_attributes(__u32 attributes)
1235 {
1236 int ret_val = 1;
1237 __u32 not_supported = MPB_ATTRIB_SUPPORTED^0xffffffff;
1238
1239 not_supported &= ~MPB_ATTRIB_IGNORED;
1240
1241 not_supported &= attributes;
1242 if (not_supported) {
1243 fprintf(stderr, Name "(IMSM): Unsupported attributes : %x\n",
1244 (unsigned)__le32_to_cpu(not_supported));
1245 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1246 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY \n");
1247 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1248 }
1249 if (not_supported & MPB_ATTRIB_2TB) {
1250 dprintf("\t\tMPB_ATTRIB_2TB\n");
1251 not_supported ^= MPB_ATTRIB_2TB;
1252 }
1253 if (not_supported & MPB_ATTRIB_RAID0) {
1254 dprintf("\t\tMPB_ATTRIB_RAID0\n");
1255 not_supported ^= MPB_ATTRIB_RAID0;
1256 }
1257 if (not_supported & MPB_ATTRIB_RAID1) {
1258 dprintf("\t\tMPB_ATTRIB_RAID1\n");
1259 not_supported ^= MPB_ATTRIB_RAID1;
1260 }
1261 if (not_supported & MPB_ATTRIB_RAID10) {
1262 dprintf("\t\tMPB_ATTRIB_RAID10\n");
1263 not_supported ^= MPB_ATTRIB_RAID10;
1264 }
1265 if (not_supported & MPB_ATTRIB_RAID1E) {
1266 dprintf("\t\tMPB_ATTRIB_RAID1E\n");
1267 not_supported ^= MPB_ATTRIB_RAID1E;
1268 }
1269 if (not_supported & MPB_ATTRIB_RAID5) {
1270 dprintf("\t\tMPB_ATTRIB_RAID5\n");
1271 not_supported ^= MPB_ATTRIB_RAID5;
1272 }
1273 if (not_supported & MPB_ATTRIB_RAIDCNG) {
1274 dprintf("\t\tMPB_ATTRIB_RAIDCNG\n");
1275 not_supported ^= MPB_ATTRIB_RAIDCNG;
1276 }
1277 if (not_supported & MPB_ATTRIB_BBM) {
1278 dprintf("\t\tMPB_ATTRIB_BBM\n");
1279 not_supported ^= MPB_ATTRIB_BBM;
1280 }
1281 if (not_supported & MPB_ATTRIB_CHECKSUM_VERIFY) {
1282 dprintf("\t\tMPB_ATTRIB_CHECKSUM_VERIFY (== MPB_ATTRIB_LEGACY)\n");
1283 not_supported ^= MPB_ATTRIB_CHECKSUM_VERIFY;
1284 }
1285 if (not_supported & MPB_ATTRIB_EXP_STRIPE_SIZE) {
1286 dprintf("\t\tMPB_ATTRIB_EXP_STRIP_SIZE\n");
1287 not_supported ^= MPB_ATTRIB_EXP_STRIPE_SIZE;
1288 }
1289 if (not_supported & MPB_ATTRIB_2TB_DISK) {
1290 dprintf("\t\tMPB_ATTRIB_2TB_DISK\n");
1291 not_supported ^= MPB_ATTRIB_2TB_DISK;
1292 }
1293 if (not_supported & MPB_ATTRIB_NEVER_USE2) {
1294 dprintf("\t\tMPB_ATTRIB_NEVER_USE2\n");
1295 not_supported ^= MPB_ATTRIB_NEVER_USE2;
1296 }
1297 if (not_supported & MPB_ATTRIB_NEVER_USE) {
1298 dprintf("\t\tMPB_ATTRIB_NEVER_USE\n");
1299 not_supported ^= MPB_ATTRIB_NEVER_USE;
1300 }
1301
1302 if (not_supported)
1303 dprintf(Name "(IMSM): Unknown attributes : %x\n", not_supported);
1304
1305 ret_val = 0;
1306 }
1307
1308 return ret_val;
1309 }
1310
1311 #ifndef MDASSEMBLE
1312 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map);
1313
1314 static void examine_super_imsm(struct supertype *st, char *homehost)
1315 {
1316 struct intel_super *super = st->sb;
1317 struct imsm_super *mpb = super->anchor;
1318 char str[MAX_SIGNATURE_LENGTH];
1319 int i;
1320 struct mdinfo info;
1321 char nbuf[64];
1322 __u32 sum;
1323 __u32 reserved = imsm_reserved_sectors(super, super->disks);
1324 struct dl *dl;
1325
1326 snprintf(str, MPB_SIG_LEN, "%s", mpb->sig);
1327 printf(" Magic : %s\n", str);
1328 snprintf(str, strlen(MPB_VERSION_RAID0), "%s", get_imsm_version(mpb));
1329 printf(" Version : %s\n", get_imsm_version(mpb));
1330 printf(" Orig Family : %08x\n", __le32_to_cpu(mpb->orig_family_num));
1331 printf(" Family : %08x\n", __le32_to_cpu(mpb->family_num));
1332 printf(" Generation : %08x\n", __le32_to_cpu(mpb->generation_num));
1333 printf(" Attributes : ");
1334 if (imsm_check_attributes(mpb->attributes))
1335 printf("All supported\n");
1336 else
1337 printf("not supported\n");
1338 getinfo_super_imsm(st, &info, NULL);
1339 fname_from_uuid(st, &info, nbuf, ':');
1340 printf(" UUID : %s\n", nbuf + 5);
1341 sum = __le32_to_cpu(mpb->check_sum);
1342 printf(" Checksum : %08x %s\n", sum,
1343 __gen_imsm_checksum(mpb) == sum ? "correct" : "incorrect");
1344 printf(" MPB Sectors : %d\n", mpb_sectors(mpb));
1345 printf(" Disks : %d\n", mpb->num_disks);
1346 printf(" RAID Devices : %d\n", mpb->num_raid_devs);
1347 print_imsm_disk(__get_imsm_disk(mpb, super->disks->index), super->disks->index, reserved);
1348 if (super->bbm_log) {
1349 struct bbm_log *log = super->bbm_log;
1350
1351 printf("\n");
1352 printf("Bad Block Management Log:\n");
1353 printf(" Log Size : %d\n", __le32_to_cpu(mpb->bbm_log_size));
1354 printf(" Signature : %x\n", __le32_to_cpu(log->signature));
1355 printf(" Entry Count : %d\n", __le32_to_cpu(log->entry_count));
1356 printf(" Spare Blocks : %d\n", __le32_to_cpu(log->reserved_spare_block_count));
1357 printf(" First Spare : %llx\n",
1358 (unsigned long long) __le64_to_cpu(log->first_spare_lba));
1359 }
1360 for (i = 0; i < mpb->num_raid_devs; i++) {
1361 struct mdinfo info;
1362 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
1363
1364 super->current_vol = i;
1365 getinfo_super_imsm(st, &info, NULL);
1366 fname_from_uuid(st, &info, nbuf, ':');
1367 print_imsm_dev(super, dev, nbuf + 5, super->disks->index);
1368 }
1369 for (i = 0; i < mpb->num_disks; i++) {
1370 if (i == super->disks->index)
1371 continue;
1372 print_imsm_disk(__get_imsm_disk(mpb, i), i, reserved);
1373 }
1374
1375 for (dl = super->disks; dl; dl = dl->next)
1376 if (dl->index == -1)
1377 print_imsm_disk(&dl->disk, -1, reserved);
1378
1379 examine_migr_rec_imsm(super);
1380 }
1381
1382 static void brief_examine_super_imsm(struct supertype *st, int verbose)
1383 {
1384 /* We just write a generic IMSM ARRAY entry */
1385 struct mdinfo info;
1386 char nbuf[64];
1387 struct intel_super *super = st->sb;
1388
1389 if (!super->anchor->num_raid_devs) {
1390 printf("ARRAY metadata=imsm\n");
1391 return;
1392 }
1393
1394 getinfo_super_imsm(st, &info, NULL);
1395 fname_from_uuid(st, &info, nbuf, ':');
1396 printf("ARRAY metadata=imsm UUID=%s\n", nbuf + 5);
1397 }
1398
1399 static void brief_examine_subarrays_imsm(struct supertype *st, int verbose)
1400 {
1401 /* We just write a generic IMSM ARRAY entry */
1402 struct mdinfo info;
1403 char nbuf[64];
1404 char nbuf1[64];
1405 struct intel_super *super = st->sb;
1406 int i;
1407
1408 if (!super->anchor->num_raid_devs)
1409 return;
1410
1411 getinfo_super_imsm(st, &info, NULL);
1412 fname_from_uuid(st, &info, nbuf, ':');
1413 for (i = 0; i < super->anchor->num_raid_devs; i++) {
1414 struct imsm_dev *dev = get_imsm_dev(super, i);
1415
1416 super->current_vol = i;
1417 getinfo_super_imsm(st, &info, NULL);
1418 fname_from_uuid(st, &info, nbuf1, ':');
1419 printf("ARRAY /dev/md/%.16s container=%s member=%d UUID=%s\n",
1420 dev->volume, nbuf + 5, i, nbuf1 + 5);
1421 }
1422 }
1423
1424 static void export_examine_super_imsm(struct supertype *st)
1425 {
1426 struct intel_super *super = st->sb;
1427 struct imsm_super *mpb = super->anchor;
1428 struct mdinfo info;
1429 char nbuf[64];
1430
1431 getinfo_super_imsm(st, &info, NULL);
1432 fname_from_uuid(st, &info, nbuf, ':');
1433 printf("MD_METADATA=imsm\n");
1434 printf("MD_LEVEL=container\n");
1435 printf("MD_UUID=%s\n", nbuf+5);
1436 printf("MD_DEVICES=%u\n", mpb->num_disks);
1437 }
1438
1439 static void detail_super_imsm(struct supertype *st, char *homehost)
1440 {
1441 struct mdinfo info;
1442 char nbuf[64];
1443
1444 getinfo_super_imsm(st, &info, NULL);
1445 fname_from_uuid(st, &info, nbuf, ':');
1446 printf("\n UUID : %s\n", nbuf + 5);
1447 }
1448
1449 static void brief_detail_super_imsm(struct supertype *st)
1450 {
1451 struct mdinfo info;
1452 char nbuf[64];
1453 getinfo_super_imsm(st, &info, NULL);
1454 fname_from_uuid(st, &info, nbuf, ':');
1455 printf(" UUID=%s", nbuf + 5);
1456 }
1457
1458 static int imsm_read_serial(int fd, char *devname, __u8 *serial);
1459 static void fd2devname(int fd, char *name);
1460
1461 static int ahci_enumerate_ports(const char *hba_path, int port_count, int host_base, int verbose)
1462 {
1463 /* dump an unsorted list of devices attached to AHCI Intel storage
1464 * controller, as well as non-connected ports
1465 */
1466 int hba_len = strlen(hba_path) + 1;
1467 struct dirent *ent;
1468 DIR *dir;
1469 char *path = NULL;
1470 int err = 0;
1471 unsigned long port_mask = (1 << port_count) - 1;
1472
1473 if (port_count > (int)sizeof(port_mask) * 8) {
1474 if (verbose)
1475 fprintf(stderr, Name ": port_count %d out of range\n", port_count);
1476 return 2;
1477 }
1478
1479 /* scroll through /sys/dev/block looking for devices attached to
1480 * this hba
1481 */
1482 dir = opendir("/sys/dev/block");
1483 for (ent = dir ? readdir(dir) : NULL; ent; ent = readdir(dir)) {
1484 int fd;
1485 char model[64];
1486 char vendor[64];
1487 char buf[1024];
1488 int major, minor;
1489 char *device;
1490 char *c;
1491 int port;
1492 int type;
1493
1494 if (sscanf(ent->d_name, "%d:%d", &major, &minor) != 2)
1495 continue;
1496 path = devt_to_devpath(makedev(major, minor));
1497 if (!path)
1498 continue;
1499 if (!path_attached_to_hba(path, hba_path)) {
1500 free(path);
1501 path = NULL;
1502 continue;
1503 }
1504
1505 /* retrieve the scsi device type */
1506 if (asprintf(&device, "/sys/dev/block/%d:%d/device/xxxxxxx", major, minor) < 0) {
1507 if (verbose)
1508 fprintf(stderr, Name ": failed to allocate 'device'\n");
1509 err = 2;
1510 break;
1511 }
1512 sprintf(device, "/sys/dev/block/%d:%d/device/type", major, minor);
1513 if (load_sys(device, buf) != 0) {
1514 if (verbose)
1515 fprintf(stderr, Name ": failed to read device type for %s\n",
1516 path);
1517 err = 2;
1518 free(device);
1519 break;
1520 }
1521 type = strtoul(buf, NULL, 10);
1522
1523 /* if it's not a disk print the vendor and model */
1524 if (!(type == 0 || type == 7 || type == 14)) {
1525 vendor[0] = '\0';
1526 model[0] = '\0';
1527 sprintf(device, "/sys/dev/block/%d:%d/device/vendor", major, minor);
1528 if (load_sys(device, buf) == 0) {
1529 strncpy(vendor, buf, sizeof(vendor));
1530 vendor[sizeof(vendor) - 1] = '\0';
1531 c = (char *) &vendor[sizeof(vendor) - 1];
1532 while (isspace(*c) || *c == '\0')
1533 *c-- = '\0';
1534
1535 }
1536 sprintf(device, "/sys/dev/block/%d:%d/device/model", major, minor);
1537 if (load_sys(device, buf) == 0) {
1538 strncpy(model, buf, sizeof(model));
1539 model[sizeof(model) - 1] = '\0';
1540 c = (char *) &model[sizeof(model) - 1];
1541 while (isspace(*c) || *c == '\0')
1542 *c-- = '\0';
1543 }
1544
1545 if (vendor[0] && model[0])
1546 sprintf(buf, "%.64s %.64s", vendor, model);
1547 else
1548 switch (type) { /* numbers from hald/linux/device.c */
1549 case 1: sprintf(buf, "tape"); break;
1550 case 2: sprintf(buf, "printer"); break;
1551 case 3: sprintf(buf, "processor"); break;
1552 case 4:
1553 case 5: sprintf(buf, "cdrom"); break;
1554 case 6: sprintf(buf, "scanner"); break;
1555 case 8: sprintf(buf, "media_changer"); break;
1556 case 9: sprintf(buf, "comm"); break;
1557 case 12: sprintf(buf, "raid"); break;
1558 default: sprintf(buf, "unknown");
1559 }
1560 } else
1561 buf[0] = '\0';
1562 free(device);
1563
1564 /* chop device path to 'host%d' and calculate the port number */
1565 c = strchr(&path[hba_len], '/');
1566 if (!c) {
1567 if (verbose)
1568 fprintf(stderr, Name ": %s - invalid path name\n", path + hba_len);
1569 err = 2;
1570 break;
1571 }
1572 *c = '\0';
1573 if (sscanf(&path[hba_len], "host%d", &port) == 1)
1574 port -= host_base;
1575 else {
1576 if (verbose) {
1577 *c = '/'; /* repair the full string */
1578 fprintf(stderr, Name ": failed to determine port number for %s\n",
1579 path);
1580 }
1581 err = 2;
1582 break;
1583 }
1584
1585 /* mark this port as used */
1586 port_mask &= ~(1 << port);
1587
1588 /* print out the device information */
1589 if (buf[0]) {
1590 printf(" Port%d : - non-disk device (%s) -\n", port, buf);
1591 continue;
1592 }
1593
1594 fd = dev_open(ent->d_name, O_RDONLY);
1595 if (fd < 0)
1596 printf(" Port%d : - disk info unavailable -\n", port);
1597 else {
1598 fd2devname(fd, buf);
1599 printf(" Port%d : %s", port, buf);
1600 if (imsm_read_serial(fd, NULL, (__u8 *) buf) == 0)
1601 printf(" (%.*s)\n", MAX_RAID_SERIAL_LEN, buf);
1602 else
1603 printf(" ()\n");
1604 close(fd);
1605 }
1606 free(path);
1607 path = NULL;
1608 }
1609 if (path)
1610 free(path);
1611 if (dir)
1612 closedir(dir);
1613 if (err == 0) {
1614 int i;
1615
1616 for (i = 0; i < port_count; i++)
1617 if (port_mask & (1 << i))
1618 printf(" Port%d : - no device attached -\n", i);
1619 }
1620
1621 return err;
1622 }
1623
1624 static void print_found_intel_controllers(struct sys_dev *elem)
1625 {
1626 for (; elem; elem = elem->next) {
1627 fprintf(stderr, Name ": found Intel(R) ");
1628 if (elem->type == SYS_DEV_SATA)
1629 fprintf(stderr, "SATA ");
1630 else if (elem->type == SYS_DEV_SAS)
1631 fprintf(stderr, "SAS ");
1632 fprintf(stderr, "RAID controller");
1633 if (elem->pci_id)
1634 fprintf(stderr, " at %s", elem->pci_id);
1635 fprintf(stderr, ".\n");
1636 }
1637 fflush(stderr);
1638 }
1639
1640 static int ahci_get_port_count(const char *hba_path, int *port_count)
1641 {
1642 struct dirent *ent;
1643 DIR *dir;
1644 int host_base = -1;
1645
1646 *port_count = 0;
1647 if ((dir = opendir(hba_path)) == NULL)
1648 return -1;
1649
1650 for (ent = readdir(dir); ent; ent = readdir(dir)) {
1651 int host;
1652
1653 if (sscanf(ent->d_name, "host%d", &host) != 1)
1654 continue;
1655 if (*port_count == 0)
1656 host_base = host;
1657 else if (host < host_base)
1658 host_base = host;
1659
1660 if (host + 1 > *port_count + host_base)
1661 *port_count = host + 1 - host_base;
1662 }
1663 closedir(dir);
1664 return host_base;
1665 }
1666
1667 static void print_imsm_capability(const struct imsm_orom *orom)
1668 {
1669 printf(" Platform : Intel(R) Matrix Storage Manager\n");
1670 printf(" Version : %d.%d.%d.%d\n", orom->major_ver, orom->minor_ver,
1671 orom->hotfix_ver, orom->build);
1672 printf(" RAID Levels :%s%s%s%s%s\n",
1673 imsm_orom_has_raid0(orom) ? " raid0" : "",
1674 imsm_orom_has_raid1(orom) ? " raid1" : "",
1675 imsm_orom_has_raid1e(orom) ? " raid1e" : "",
1676 imsm_orom_has_raid10(orom) ? " raid10" : "",
1677 imsm_orom_has_raid5(orom) ? " raid5" : "");
1678 printf(" Chunk Sizes :%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
1679 imsm_orom_has_chunk(orom, 2) ? " 2k" : "",
1680 imsm_orom_has_chunk(orom, 4) ? " 4k" : "",
1681 imsm_orom_has_chunk(orom, 8) ? " 8k" : "",
1682 imsm_orom_has_chunk(orom, 16) ? " 16k" : "",
1683 imsm_orom_has_chunk(orom, 32) ? " 32k" : "",
1684 imsm_orom_has_chunk(orom, 64) ? " 64k" : "",
1685 imsm_orom_has_chunk(orom, 128) ? " 128k" : "",
1686 imsm_orom_has_chunk(orom, 256) ? " 256k" : "",
1687 imsm_orom_has_chunk(orom, 512) ? " 512k" : "",
1688 imsm_orom_has_chunk(orom, 1024*1) ? " 1M" : "",
1689 imsm_orom_has_chunk(orom, 1024*2) ? " 2M" : "",
1690 imsm_orom_has_chunk(orom, 1024*4) ? " 4M" : "",
1691 imsm_orom_has_chunk(orom, 1024*8) ? " 8M" : "",
1692 imsm_orom_has_chunk(orom, 1024*16) ? " 16M" : "",
1693 imsm_orom_has_chunk(orom, 1024*32) ? " 32M" : "",
1694 imsm_orom_has_chunk(orom, 1024*64) ? " 64M" : "");
1695 printf(" Max Disks : %d\n", orom->tds);
1696 printf(" Max Volumes : %d\n", orom->vpa);
1697 return;
1698 }
1699
1700 static int detail_platform_imsm(int verbose, int enumerate_only)
1701 {
1702 /* There are two components to imsm platform support, the ahci SATA
1703 * controller and the option-rom. To find the SATA controller we
1704 * simply look in /sys/bus/pci/drivers/ahci to see if an ahci
1705 * controller with the Intel vendor id is present. This approach
1706 * allows mdadm to leverage the kernel's ahci detection logic, with the
1707 * caveat that if ahci.ko is not loaded mdadm will not be able to
1708 * detect platform raid capabilities. The option-rom resides in a
1709 * platform "Adapter ROM". We scan for its signature to retrieve the
1710 * platform capabilities. If raid support is disabled in the BIOS the
1711 * option-rom capability structure will not be available.
1712 */
1713 const struct imsm_orom *orom;
1714 struct sys_dev *list, *hba;
1715 int host_base = 0;
1716 int port_count = 0;
1717 int result=0;
1718
1719 if (enumerate_only) {
1720 if (check_env("IMSM_NO_PLATFORM"))
1721 return 0;
1722 list = find_intel_devices();
1723 if (!list)
1724 return 2;
1725 for (hba = list; hba; hba = hba->next) {
1726 orom = find_imsm_capability(hba->type);
1727 if (!orom) {
1728 result = 2;
1729 break;
1730 }
1731 }
1732 free_sys_dev(&list);
1733 return result;
1734 }
1735
1736 list = find_intel_devices();
1737 if (!list) {
1738 if (verbose)
1739 fprintf(stderr, Name ": no active Intel(R) RAID "
1740 "controller found.\n");
1741 free_sys_dev(&list);
1742 return 2;
1743 } else if (verbose)
1744 print_found_intel_controllers(list);
1745
1746 for (hba = list; hba; hba = hba->next) {
1747 orom = find_imsm_capability(hba->type);
1748 if (!orom)
1749 fprintf(stderr, Name ": imsm capabilities not found for controller: %s (type %s)\n",
1750 hba->path, get_sys_dev_type(hba->type));
1751 else
1752 print_imsm_capability(orom);
1753 }
1754
1755 for (hba = list; hba; hba = hba->next) {
1756 printf(" I/O Controller : %s (%s)\n",
1757 hba->path, get_sys_dev_type(hba->type));
1758
1759 if (hba->type == SYS_DEV_SATA) {
1760 host_base = ahci_get_port_count(hba->path, &port_count);
1761 if (ahci_enumerate_ports(hba->path, port_count, host_base, verbose)) {
1762 if (verbose)
1763 fprintf(stderr, Name ": failed to enumerate "
1764 "ports on SATA controller at %s.", hba->pci_id);
1765 result |= 2;
1766 }
1767 }
1768 }
1769
1770 free_sys_dev(&list);
1771 return result;
1772 }
1773 #endif
1774
1775 static int match_home_imsm(struct supertype *st, char *homehost)
1776 {
1777 /* the imsm metadata format does not specify any host
1778 * identification information. We return -1 since we can never
1779 * confirm nor deny whether a given array is "meant" for this
1780 * host. We rely on compare_super and the 'family_num' fields to
1781 * exclude member disks that do not belong, and we rely on
1782 * mdadm.conf to specify the arrays that should be assembled.
1783 * Auto-assembly may still pick up "foreign" arrays.
1784 */
1785
1786 return -1;
1787 }
1788
1789 static void uuid_from_super_imsm(struct supertype *st, int uuid[4])
1790 {
1791 /* The uuid returned here is used for:
1792 * uuid to put into bitmap file (Create, Grow)
1793 * uuid for backup header when saving critical section (Grow)
1794 * comparing uuids when re-adding a device into an array
1795 * In these cases the uuid required is that of the data-array,
1796 * not the device-set.
1797 * uuid to recognise same set when adding a missing device back
1798 * to an array. This is a uuid for the device-set.
1799 *
1800 * For each of these we can make do with a truncated
1801 * or hashed uuid rather than the original, as long as
1802 * everyone agrees.
1803 * In each case the uuid required is that of the data-array,
1804 * not the device-set.
1805 */
1806 /* imsm does not track uuid's so we synthesis one using sha1 on
1807 * - The signature (Which is constant for all imsm array, but no matter)
1808 * - the orig_family_num of the container
1809 * - the index number of the volume
1810 * - the 'serial' number of the volume.
1811 * Hopefully these are all constant.
1812 */
1813 struct intel_super *super = st->sb;
1814
1815 char buf[20];
1816 struct sha1_ctx ctx;
1817 struct imsm_dev *dev = NULL;
1818 __u32 family_num;
1819
1820 /* some mdadm versions failed to set ->orig_family_num, in which
1821 * case fall back to ->family_num. orig_family_num will be
1822 * fixed up with the first metadata update.
1823 */
1824 family_num = super->anchor->orig_family_num;
1825 if (family_num == 0)
1826 family_num = super->anchor->family_num;
1827 sha1_init_ctx(&ctx);
1828 sha1_process_bytes(super->anchor->sig, MPB_SIG_LEN, &ctx);
1829 sha1_process_bytes(&family_num, sizeof(__u32), &ctx);
1830 if (super->current_vol >= 0)
1831 dev = get_imsm_dev(super, super->current_vol);
1832 if (dev) {
1833 __u32 vol = super->current_vol;
1834 sha1_process_bytes(&vol, sizeof(vol), &ctx);
1835 sha1_process_bytes(dev->volume, MAX_RAID_SERIAL_LEN, &ctx);
1836 }
1837 sha1_finish_ctx(&ctx, buf);
1838 memcpy(uuid, buf, 4*4);
1839 }
1840
1841 #if 0
1842 static void
1843 get_imsm_numerical_version(struct imsm_super *mpb, int *m, int *p)
1844 {
1845 __u8 *v = get_imsm_version(mpb);
1846 __u8 *end = mpb->sig + MAX_SIGNATURE_LENGTH;
1847 char major[] = { 0, 0, 0 };
1848 char minor[] = { 0 ,0, 0 };
1849 char patch[] = { 0, 0, 0 };
1850 char *ver_parse[] = { major, minor, patch };
1851 int i, j;
1852
1853 i = j = 0;
1854 while (*v != '\0' && v < end) {
1855 if (*v != '.' && j < 2)
1856 ver_parse[i][j++] = *v;
1857 else {
1858 i++;
1859 j = 0;
1860 }
1861 v++;
1862 }
1863
1864 *m = strtol(minor, NULL, 0);
1865 *p = strtol(patch, NULL, 0);
1866 }
1867 #endif
1868
1869 static __u32 migr_strip_blocks_resync(struct imsm_dev *dev)
1870 {
1871 /* migr_strip_size when repairing or initializing parity */
1872 struct imsm_map *map = get_imsm_map(dev, 0);
1873 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1874
1875 switch (get_imsm_raid_level(map)) {
1876 case 5:
1877 case 10:
1878 return chunk;
1879 default:
1880 return 128*1024 >> 9;
1881 }
1882 }
1883
1884 static __u32 migr_strip_blocks_rebuild(struct imsm_dev *dev)
1885 {
1886 /* migr_strip_size when rebuilding a degraded disk, no idea why
1887 * this is different than migr_strip_size_resync(), but it's good
1888 * to be compatible
1889 */
1890 struct imsm_map *map = get_imsm_map(dev, 1);
1891 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1892
1893 switch (get_imsm_raid_level(map)) {
1894 case 1:
1895 case 10:
1896 if (map->num_members % map->num_domains == 0)
1897 return 128*1024 >> 9;
1898 else
1899 return chunk;
1900 case 5:
1901 return max((__u32) 64*1024 >> 9, chunk);
1902 default:
1903 return 128*1024 >> 9;
1904 }
1905 }
1906
1907 static __u32 num_stripes_per_unit_resync(struct imsm_dev *dev)
1908 {
1909 struct imsm_map *lo = get_imsm_map(dev, 0);
1910 struct imsm_map *hi = get_imsm_map(dev, 1);
1911 __u32 lo_chunk = __le32_to_cpu(lo->blocks_per_strip);
1912 __u32 hi_chunk = __le32_to_cpu(hi->blocks_per_strip);
1913
1914 return max((__u32) 1, hi_chunk / lo_chunk);
1915 }
1916
1917 static __u32 num_stripes_per_unit_rebuild(struct imsm_dev *dev)
1918 {
1919 struct imsm_map *lo = get_imsm_map(dev, 0);
1920 int level = get_imsm_raid_level(lo);
1921
1922 if (level == 1 || level == 10) {
1923 struct imsm_map *hi = get_imsm_map(dev, 1);
1924
1925 return hi->num_domains;
1926 } else
1927 return num_stripes_per_unit_resync(dev);
1928 }
1929
1930 static __u8 imsm_num_data_members(struct imsm_dev *dev, int second_map)
1931 {
1932 /* named 'imsm_' because raid0, raid1 and raid10
1933 * counter-intuitively have the same number of data disks
1934 */
1935 struct imsm_map *map = get_imsm_map(dev, second_map);
1936
1937 switch (get_imsm_raid_level(map)) {
1938 case 0:
1939 case 1:
1940 case 10:
1941 return map->num_members;
1942 case 5:
1943 return map->num_members - 1;
1944 default:
1945 dprintf("%s: unsupported raid level\n", __func__);
1946 return 0;
1947 }
1948 }
1949
1950 static __u32 parity_segment_depth(struct imsm_dev *dev)
1951 {
1952 struct imsm_map *map = get_imsm_map(dev, 0);
1953 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1954
1955 switch(get_imsm_raid_level(map)) {
1956 case 1:
1957 case 10:
1958 return chunk * map->num_domains;
1959 case 5:
1960 return chunk * map->num_members;
1961 default:
1962 return chunk;
1963 }
1964 }
1965
1966 static __u32 map_migr_block(struct imsm_dev *dev, __u32 block)
1967 {
1968 struct imsm_map *map = get_imsm_map(dev, 1);
1969 __u32 chunk = __le32_to_cpu(map->blocks_per_strip);
1970 __u32 strip = block / chunk;
1971
1972 switch (get_imsm_raid_level(map)) {
1973 case 1:
1974 case 10: {
1975 __u32 vol_strip = (strip * map->num_domains) + 1;
1976 __u32 vol_stripe = vol_strip / map->num_members;
1977
1978 return vol_stripe * chunk + block % chunk;
1979 } case 5: {
1980 __u32 stripe = strip / (map->num_members - 1);
1981
1982 return stripe * chunk + block % chunk;
1983 }
1984 default:
1985 return 0;
1986 }
1987 }
1988
1989 static __u64 blocks_per_migr_unit(struct intel_super *super,
1990 struct imsm_dev *dev)
1991 {
1992 /* calculate the conversion factor between per member 'blocks'
1993 * (md/{resync,rebuild}_start) and imsm migration units, return
1994 * 0 for the 'not migrating' and 'unsupported migration' cases
1995 */
1996 if (!dev->vol.migr_state)
1997 return 0;
1998
1999 switch (migr_type(dev)) {
2000 case MIGR_GEN_MIGR: {
2001 struct migr_record *migr_rec = super->migr_rec;
2002 return __le32_to_cpu(migr_rec->blocks_per_unit);
2003 }
2004 case MIGR_VERIFY:
2005 case MIGR_REPAIR:
2006 case MIGR_INIT: {
2007 struct imsm_map *map = get_imsm_map(dev, 0);
2008 __u32 stripes_per_unit;
2009 __u32 blocks_per_unit;
2010 __u32 parity_depth;
2011 __u32 migr_chunk;
2012 __u32 block_map;
2013 __u32 block_rel;
2014 __u32 segment;
2015 __u32 stripe;
2016 __u8 disks;
2017
2018 /* yes, this is really the translation of migr_units to
2019 * per-member blocks in the 'resync' case
2020 */
2021 stripes_per_unit = num_stripes_per_unit_resync(dev);
2022 migr_chunk = migr_strip_blocks_resync(dev);
2023 disks = imsm_num_data_members(dev, 0);
2024 blocks_per_unit = stripes_per_unit * migr_chunk * disks;
2025 stripe = __le16_to_cpu(map->blocks_per_strip) * disks;
2026 segment = blocks_per_unit / stripe;
2027 block_rel = blocks_per_unit - segment * stripe;
2028 parity_depth = parity_segment_depth(dev);
2029 block_map = map_migr_block(dev, block_rel);
2030 return block_map + parity_depth * segment;
2031 }
2032 case MIGR_REBUILD: {
2033 __u32 stripes_per_unit;
2034 __u32 migr_chunk;
2035
2036 stripes_per_unit = num_stripes_per_unit_rebuild(dev);
2037 migr_chunk = migr_strip_blocks_rebuild(dev);
2038 return migr_chunk * stripes_per_unit;
2039 }
2040 case MIGR_STATE_CHANGE:
2041 default:
2042 return 0;
2043 }
2044 }
2045
2046 static int imsm_level_to_layout(int level)
2047 {
2048 switch (level) {
2049 case 0:
2050 case 1:
2051 return 0;
2052 case 5:
2053 case 6:
2054 return ALGORITHM_LEFT_ASYMMETRIC;
2055 case 10:
2056 return 0x102;
2057 }
2058 return UnSet;
2059 }
2060
2061 /*******************************************************************************
2062 * Function: read_imsm_migr_rec
2063 * Description: Function reads imsm migration record from last sector of disk
2064 * Parameters:
2065 * fd : disk descriptor
2066 * super : metadata info
2067 * Returns:
2068 * 0 : success,
2069 * -1 : fail
2070 ******************************************************************************/
2071 static int read_imsm_migr_rec(int fd, struct intel_super *super)
2072 {
2073 int ret_val = -1;
2074 unsigned long long dsize;
2075
2076 get_dev_size(fd, NULL, &dsize);
2077 if (lseek64(fd, dsize - 512, SEEK_SET) < 0) {
2078 fprintf(stderr,
2079 Name ": Cannot seek to anchor block: %s\n",
2080 strerror(errno));
2081 goto out;
2082 }
2083 if (read(fd, super->migr_rec_buf, 512) != 512) {
2084 fprintf(stderr,
2085 Name ": Cannot read migr record block: %s\n",
2086 strerror(errno));
2087 goto out;
2088 }
2089 ret_val = 0;
2090
2091 out:
2092 return ret_val;
2093 }
2094
2095 /*******************************************************************************
2096 * Function: load_imsm_migr_rec
2097 * Description: Function reads imsm migration record (it is stored at the last
2098 * sector of disk)
2099 * Parameters:
2100 * super : imsm internal array info
2101 * info : general array info
2102 * Returns:
2103 * 0 : success
2104 * -1 : fail
2105 ******************************************************************************/
2106 static int load_imsm_migr_rec(struct intel_super *super, struct mdinfo *info)
2107 {
2108 struct mdinfo *sd;
2109 struct dl *dl = NULL;
2110 char nm[30];
2111 int retval = -1;
2112 int fd = -1;
2113
2114 if (info) {
2115 for (sd = info->devs ; sd ; sd = sd->next) {
2116 /* read only from one of the first two slots */
2117 if ((sd->disk.raid_disk > 1) ||
2118 (sd->disk.raid_disk < 0))
2119 continue;
2120 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
2121 fd = dev_open(nm, O_RDONLY);
2122 if (fd >= 0)
2123 break;
2124 }
2125 }
2126 if (fd < 0) {
2127 for (dl = super->disks; dl; dl = dl->next) {
2128 /* read only from one of the first two slots */
2129 if (dl->index > 1)
2130 continue;
2131 sprintf(nm, "%d:%d", dl->major, dl->minor);
2132 fd = dev_open(nm, O_RDONLY);
2133 if (fd >= 0)
2134 break;
2135 }
2136 }
2137 if (fd < 0)
2138 goto out;
2139 retval = read_imsm_migr_rec(fd, super);
2140
2141 out:
2142 if (fd >= 0)
2143 close(fd);
2144 return retval;
2145 }
2146
2147 #ifndef MDASSEMBLE
2148 /*******************************************************************************
2149 * function: imsm_create_metadata_checkpoint_update
2150 * Description: It creates update for checkpoint change.
2151 * Parameters:
2152 * super : imsm internal array info
2153 * u : pointer to prepared update
2154 * Returns:
2155 * Uptate length.
2156 * If length is equal to 0, input pointer u contains no update
2157 ******************************************************************************/
2158 static int imsm_create_metadata_checkpoint_update(
2159 struct intel_super *super,
2160 struct imsm_update_general_migration_checkpoint **u)
2161 {
2162
2163 int update_memory_size = 0;
2164
2165 dprintf("imsm_create_metadata_checkpoint_update(enter)\n");
2166
2167 if (u == NULL)
2168 return 0;
2169 *u = NULL;
2170
2171 /* size of all update data without anchor */
2172 update_memory_size =
2173 sizeof(struct imsm_update_general_migration_checkpoint);
2174
2175 *u = calloc(1, update_memory_size);
2176 if (*u == NULL) {
2177 dprintf("error: cannot get memory for "
2178 "imsm_create_metadata_checkpoint_update update\n");
2179 return 0;
2180 }
2181 (*u)->type = update_general_migration_checkpoint;
2182 (*u)->curr_migr_unit = __le32_to_cpu(super->migr_rec->curr_migr_unit);
2183 dprintf("imsm_create_metadata_checkpoint_update: prepared for %u\n",
2184 (*u)->curr_migr_unit);
2185
2186 return update_memory_size;
2187 }
2188
2189
2190 static void imsm_update_metadata_locally(struct supertype *st,
2191 void *buf, int len);
2192
2193 /*******************************************************************************
2194 * Function: write_imsm_migr_rec
2195 * Description: Function writes imsm migration record
2196 * (at the last sector of disk)
2197 * Parameters:
2198 * super : imsm internal array info
2199 * Returns:
2200 * 0 : success
2201 * -1 : if fail
2202 ******************************************************************************/
2203 static int write_imsm_migr_rec(struct supertype *st)
2204 {
2205 struct intel_super *super = st->sb;
2206 unsigned long long dsize;
2207 char nm[30];
2208 int fd = -1;
2209 int retval = -1;
2210 struct dl *sd;
2211 int len;
2212 struct imsm_update_general_migration_checkpoint *u;
2213
2214 for (sd = super->disks ; sd ; sd = sd->next) {
2215 /* write to 2 first slots only */
2216 if ((sd->index < 0) || (sd->index > 1))
2217 continue;
2218 sprintf(nm, "%d:%d", sd->major, sd->minor);
2219 fd = dev_open(nm, O_RDWR);
2220 if (fd < 0)
2221 continue;
2222 get_dev_size(fd, NULL, &dsize);
2223 if (lseek64(fd, dsize - 512, SEEK_SET) < 0) {
2224 fprintf(stderr,
2225 Name ": Cannot seek to anchor block: %s\n",
2226 strerror(errno));
2227 goto out;
2228 }
2229 if (write(fd, super->migr_rec_buf, 512) != 512) {
2230 fprintf(stderr,
2231 Name ": Cannot write migr record block: %s\n",
2232 strerror(errno));
2233 goto out;
2234 }
2235 close(fd);
2236 fd = -1;
2237 }
2238 /* update checkpoint information in metadata */
2239 len = imsm_create_metadata_checkpoint_update(super, &u);
2240
2241 if (len <= 0) {
2242 dprintf("imsm: Cannot prepare update\n");
2243 goto out;
2244 }
2245 /* update metadata locally */
2246 imsm_update_metadata_locally(st, u, len);
2247 /* and possibly remotely */
2248 if (st->update_tail) {
2249 append_metadata_update(st, u, len);
2250 /* during reshape we do all work inside metadata handler
2251 * manage_reshape(), so metadata update has to be triggered
2252 * insida it
2253 */
2254 flush_metadata_updates(st);
2255 st->update_tail = &st->updates;
2256 } else
2257 free(u);
2258
2259 retval = 0;
2260 out:
2261 if (fd >= 0)
2262 close(fd);
2263 return retval;
2264 }
2265 #endif /* MDASSEMBLE */
2266
2267 /* spare/missing disks activations are not allowe when
2268 * array/container performs reshape operation, because
2269 * all arrays in container works on the same disks set
2270 */
2271 int imsm_reshape_blocks_arrays_changes(struct intel_super *super)
2272 {
2273 int rv = 0;
2274 struct intel_dev *i_dev;
2275 struct imsm_dev *dev;
2276
2277 /* check whole container
2278 */
2279 for (i_dev = super->devlist; i_dev; i_dev = i_dev->next) {
2280 dev = i_dev->dev;
2281 if (is_gen_migration(dev)) {
2282 /* No repair during any migration in container
2283 */
2284 rv = 1;
2285 break;
2286 }
2287 }
2288 return rv;
2289 }
2290
2291 static void getinfo_super_imsm_volume(struct supertype *st, struct mdinfo *info, char *dmap)
2292 {
2293 struct intel_super *super = st->sb;
2294 struct migr_record *migr_rec = super->migr_rec;
2295 struct imsm_dev *dev = get_imsm_dev(super, super->current_vol);
2296 struct imsm_map *map = get_imsm_map(dev, 0);
2297 struct imsm_map *prev_map = get_imsm_map(dev, 1);
2298 struct imsm_map *map_to_analyse = map;
2299 struct dl *dl;
2300 char *devname;
2301 unsigned int component_size_alligment;
2302 int map_disks = info->array.raid_disks;
2303
2304 memset(info, 0, sizeof(*info));
2305 if (prev_map)
2306 map_to_analyse = prev_map;
2307
2308 dl = super->current_disk;
2309
2310 info->container_member = super->current_vol;
2311 info->array.raid_disks = map->num_members;
2312 info->array.level = get_imsm_raid_level(map_to_analyse);
2313 info->array.layout = imsm_level_to_layout(info->array.level);
2314 info->array.md_minor = -1;
2315 info->array.ctime = 0;
2316 info->array.utime = 0;
2317 info->array.chunk_size =
2318 __le16_to_cpu(map_to_analyse->blocks_per_strip) << 9;
2319 info->array.state = !dev->vol.dirty;
2320 info->custom_array_size = __le32_to_cpu(dev->size_high);
2321 info->custom_array_size <<= 32;
2322 info->custom_array_size |= __le32_to_cpu(dev->size_low);
2323 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2324
2325 if (is_gen_migration(dev)) {
2326 info->reshape_active = 1;
2327 info->new_level = get_imsm_raid_level(map);
2328 info->new_layout = imsm_level_to_layout(info->new_level);
2329 info->new_chunk = __le16_to_cpu(map->blocks_per_strip) << 9;
2330 info->delta_disks = map->num_members - prev_map->num_members;
2331 if (info->delta_disks) {
2332 /* this needs to be applied to every array
2333 * in the container.
2334 */
2335 info->reshape_active = CONTAINER_RESHAPE;
2336 }
2337 /* We shape information that we give to md might have to be
2338 * modify to cope with md's requirement for reshaping arrays.
2339 * For example, when reshaping a RAID0, md requires it to be
2340 * presented as a degraded RAID4.
2341 * Also if a RAID0 is migrating to a RAID5 we need to specify
2342 * the array as already being RAID5, but the 'before' layout
2343 * is a RAID4-like layout.
2344 */
2345 switch (info->array.level) {
2346 case 0:
2347 switch(info->new_level) {
2348 case 0:
2349 /* conversion is happening as RAID4 */
2350 info->array.level = 4;
2351 info->array.raid_disks += 1;
2352 break;
2353 case 5:
2354 /* conversion is happening as RAID5 */
2355 info->array.level = 5;
2356 info->array.layout = ALGORITHM_PARITY_N;
2357 info->delta_disks -= 1;
2358 break;
2359 default:
2360 /* FIXME error message */
2361 info->array.level = UnSet;
2362 break;
2363 }
2364 break;
2365 }
2366 } else {
2367 info->new_level = UnSet;
2368 info->new_layout = UnSet;
2369 info->new_chunk = info->array.chunk_size;
2370 info->delta_disks = 0;
2371 }
2372
2373 if (dl) {
2374 info->disk.major = dl->major;
2375 info->disk.minor = dl->minor;
2376 info->disk.number = dl->index;
2377 info->disk.raid_disk = get_imsm_disk_slot(map_to_analyse,
2378 dl->index);
2379 }
2380
2381 info->data_offset = __le32_to_cpu(map_to_analyse->pba_of_lba0);
2382 info->component_size =
2383 __le32_to_cpu(map_to_analyse->blocks_per_member);
2384
2385 /* check component size aligment
2386 */
2387 component_size_alligment =
2388 info->component_size % (info->array.chunk_size/512);
2389
2390 if (component_size_alligment &&
2391 (info->array.level != 1) && (info->array.level != UnSet)) {
2392 dprintf("imsm: reported component size alligned from %llu ",
2393 info->component_size);
2394 info->component_size -= component_size_alligment;
2395 dprintf("to %llu (%i).\n",
2396 info->component_size, component_size_alligment);
2397 }
2398
2399 memset(info->uuid, 0, sizeof(info->uuid));
2400 info->recovery_start = MaxSector;
2401
2402 info->reshape_progress = 0;
2403 info->resync_start = MaxSector;
2404 if ((map_to_analyse->map_state == IMSM_T_STATE_UNINITIALIZED ||
2405 dev->vol.dirty) &&
2406 imsm_reshape_blocks_arrays_changes(super) == 0) {
2407 info->resync_start = 0;
2408 }
2409 if (dev->vol.migr_state) {
2410 switch (migr_type(dev)) {
2411 case MIGR_REPAIR:
2412 case MIGR_INIT: {
2413 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2414 dev);
2415 __u64 units = __le32_to_cpu(dev->vol.curr_migr_unit);
2416
2417 info->resync_start = blocks_per_unit * units;
2418 break;
2419 }
2420 case MIGR_GEN_MIGR: {
2421 __u64 blocks_per_unit = blocks_per_migr_unit(super,
2422 dev);
2423 __u64 units = __le32_to_cpu(migr_rec->curr_migr_unit);
2424 unsigned long long array_blocks;
2425 int used_disks;
2426
2427 if (__le32_to_cpu(migr_rec->ascending_migr) &&
2428 (units <
2429 (__le32_to_cpu(migr_rec->num_migr_units)-1)) &&
2430 (super->migr_rec->rec_status ==
2431 __cpu_to_le32(UNIT_SRC_IN_CP_AREA)))
2432 units++;
2433
2434 info->reshape_progress = blocks_per_unit * units;
2435
2436 dprintf("IMSM: General Migration checkpoint : %llu "
2437 "(%llu) -> read reshape progress : %llu\n",
2438 (unsigned long long)units,
2439 (unsigned long long)blocks_per_unit,
2440 info->reshape_progress);
2441
2442 used_disks = imsm_num_data_members(dev, 1);
2443 if (used_disks > 0) {
2444 array_blocks = map->blocks_per_member *
2445 used_disks;
2446 /* round array size down to closest MB
2447 */
2448 info->custom_array_size = (array_blocks
2449 >> SECT_PER_MB_SHIFT)
2450 << SECT_PER_MB_SHIFT;
2451 }
2452 }
2453 case MIGR_VERIFY:
2454 /* we could emulate the checkpointing of
2455 * 'sync_action=check' migrations, but for now
2456 * we just immediately complete them
2457 */
2458 case MIGR_REBUILD:
2459 /* this is handled by container_content_imsm() */
2460 case MIGR_STATE_CHANGE:
2461 /* FIXME handle other migrations */
2462 default:
2463 /* we are not dirty, so... */
2464 info->resync_start = MaxSector;
2465 }
2466 }
2467
2468 strncpy(info->name, (char *) dev->volume, MAX_RAID_SERIAL_LEN);
2469 info->name[MAX_RAID_SERIAL_LEN] = 0;
2470
2471 info->array.major_version = -1;
2472 info->array.minor_version = -2;
2473 devname = devnum2devname(st->container_dev);
2474 *info->text_version = '\0';
2475 if (devname)
2476 sprintf(info->text_version, "/%s/%d", devname, info->container_member);
2477 free(devname);
2478 info->safe_mode_delay = 4000; /* 4 secs like the Matrix driver */
2479 uuid_from_super_imsm(st, info->uuid);
2480
2481 if (dmap) {
2482 int i, j;
2483 for (i=0; i<map_disks; i++) {
2484 dmap[i] = 0;
2485 if (i < info->array.raid_disks) {
2486 struct imsm_disk *dsk;
2487 j = get_imsm_disk_idx(dev, i, -1);
2488 dsk = get_imsm_disk(super, j);
2489 if (dsk && (dsk->status & CONFIGURED_DISK))
2490 dmap[i] = 1;
2491 }
2492 }
2493 }
2494 }
2495
2496 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
2497 int failed, int look_in_map);
2498
2499 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
2500 int look_in_map);
2501
2502 static void manage_second_map(struct intel_super *super, struct imsm_dev *dev)
2503 {
2504 if (is_gen_migration(dev)) {
2505 int failed;
2506 __u8 map_state;
2507 struct imsm_map *map2 = get_imsm_map(dev, MAP_1);
2508
2509 failed = imsm_count_failed(super, dev, MAP_1);
2510 map_state = imsm_check_degraded(super, dev, failed,
2511 MAP_1);
2512 if (map2->map_state != map_state) {
2513 map2->map_state = map_state;
2514 super->updates_pending++;
2515 }
2516 }
2517 }
2518
2519 static struct imsm_disk *get_imsm_missing(struct intel_super *super, __u8 index)
2520 {
2521 struct dl *d;
2522
2523 for (d = super->missing; d; d = d->next)
2524 if (d->index == index)
2525 return &d->disk;
2526 return NULL;
2527 }
2528
2529 static void getinfo_super_imsm(struct supertype *st, struct mdinfo *info, char *map)
2530 {
2531 struct intel_super *super = st->sb;
2532 struct imsm_disk *disk;
2533 int map_disks = info->array.raid_disks;
2534 int max_enough = -1;
2535 int i;
2536 struct imsm_super *mpb;
2537
2538 if (super->current_vol >= 0) {
2539 getinfo_super_imsm_volume(st, info, map);
2540 return;
2541 }
2542 memset(info, 0, sizeof(*info));
2543
2544 /* Set raid_disks to zero so that Assemble will always pull in valid
2545 * spares
2546 */
2547 info->array.raid_disks = 0;
2548 info->array.level = LEVEL_CONTAINER;
2549 info->array.layout = 0;
2550 info->array.md_minor = -1;
2551 info->array.ctime = 0; /* N/A for imsm */
2552 info->array.utime = 0;
2553 info->array.chunk_size = 0;
2554
2555 info->disk.major = 0;
2556 info->disk.minor = 0;
2557 info->disk.raid_disk = -1;
2558 info->reshape_active = 0;
2559 info->array.major_version = -1;
2560 info->array.minor_version = -2;
2561 strcpy(info->text_version, "imsm");
2562 info->safe_mode_delay = 0;
2563 info->disk.number = -1;
2564 info->disk.state = 0;
2565 info->name[0] = 0;
2566 info->recovery_start = MaxSector;
2567 info->recovery_blocked = imsm_reshape_blocks_arrays_changes(st->sb);
2568
2569 /* do we have the all the insync disks that we expect? */
2570 mpb = super->anchor;
2571
2572 for (i = 0; i < mpb->num_raid_devs; i++) {
2573 struct imsm_dev *dev = get_imsm_dev(super, i);
2574 int failed, enough, j, missing = 0;
2575 struct imsm_map *map;
2576 __u8 state;
2577
2578 failed = imsm_count_failed(super, dev, MAP_0);
2579 state = imsm_check_degraded(super, dev, failed, MAP_0);
2580 map = get_imsm_map(dev, 0);
2581
2582 /* any newly missing disks?
2583 * (catches single-degraded vs double-degraded)
2584 */
2585 for (j = 0; j < map->num_members; j++) {
2586 __u32 ord = get_imsm_ord_tbl_ent(dev, j, 0);
2587 __u32 idx = ord_to_idx(ord);
2588
2589 if (!(ord & IMSM_ORD_REBUILD) &&
2590 get_imsm_missing(super, idx)) {
2591 missing = 1;
2592 break;
2593 }
2594 }
2595
2596 if (state == IMSM_T_STATE_FAILED)
2597 enough = -1;
2598 else if (state == IMSM_T_STATE_DEGRADED &&
2599 (state != map->map_state || missing))
2600 enough = 0;
2601 else /* we're normal, or already degraded */
2602 enough = 1;
2603
2604 /* in the missing/failed disk case check to see
2605 * if at least one array is runnable
2606 */
2607 max_enough = max(max_enough, enough);
2608 }
2609 dprintf("%s: enough: %d\n", __func__, max_enough);
2610 info->container_enough = max_enough;
2611
2612 if (super->disks) {
2613 __u32 reserved = imsm_reserved_sectors(super, super->disks);
2614
2615 disk = &super->disks->disk;
2616 info->data_offset = __le32_to_cpu(disk->total_blocks) - reserved;
2617 info->component_size = reserved;
2618 info->disk.state = is_configured(disk) ? (1 << MD_DISK_ACTIVE) : 0;
2619 /* we don't change info->disk.raid_disk here because
2620 * this state will be finalized in mdmon after we have
2621 * found the 'most fresh' version of the metadata
2622 */
2623 info->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2624 info->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2625 }
2626
2627 /* only call uuid_from_super_imsm when this disk is part of a populated container,
2628 * ->compare_super may have updated the 'num_raid_devs' field for spares
2629 */
2630 if (info->disk.state & (1 << MD_DISK_SYNC) || super->anchor->num_raid_devs)
2631 uuid_from_super_imsm(st, info->uuid);
2632 else
2633 memcpy(info->uuid, uuid_zero, sizeof(uuid_zero));
2634
2635 /* I don't know how to compute 'map' on imsm, so use safe default */
2636 if (map) {
2637 int i;
2638 for (i = 0; i < map_disks; i++)
2639 map[i] = 1;
2640 }
2641
2642 }
2643
2644 /* allocates memory and fills disk in mdinfo structure
2645 * for each disk in array */
2646 struct mdinfo *getinfo_super_disks_imsm(struct supertype *st)
2647 {
2648 struct mdinfo *mddev = NULL;
2649 struct intel_super *super = st->sb;
2650 struct imsm_disk *disk;
2651 int count = 0;
2652 struct dl *dl;
2653 if (!super || !super->disks)
2654 return NULL;
2655 dl = super->disks;
2656 mddev = malloc(sizeof(*mddev));
2657 if (!mddev) {
2658 fprintf(stderr, Name ": Failed to allocate memory.\n");
2659 return NULL;
2660 }
2661 memset(mddev, 0, sizeof(*mddev));
2662 while (dl) {
2663 struct mdinfo *tmp;
2664 disk = &dl->disk;
2665 tmp = malloc(sizeof(*tmp));
2666 if (!tmp) {
2667 fprintf(stderr, Name ": Failed to allocate memory.\n");
2668 if (mddev)
2669 sysfs_free(mddev);
2670 return NULL;
2671 }
2672 memset(tmp, 0, sizeof(*tmp));
2673 if (mddev->devs)
2674 tmp->next = mddev->devs;
2675 mddev->devs = tmp;
2676 tmp->disk.number = count++;
2677 tmp->disk.major = dl->major;
2678 tmp->disk.minor = dl->minor;
2679 tmp->disk.state = is_configured(disk) ?
2680 (1 << MD_DISK_ACTIVE) : 0;
2681 tmp->disk.state |= is_failed(disk) ? (1 << MD_DISK_FAULTY) : 0;
2682 tmp->disk.state |= is_spare(disk) ? 0 : (1 << MD_DISK_SYNC);
2683 tmp->disk.raid_disk = -1;
2684 dl = dl->next;
2685 }
2686 return mddev;
2687 }
2688
2689 static int update_super_imsm(struct supertype *st, struct mdinfo *info,
2690 char *update, char *devname, int verbose,
2691 int uuid_set, char *homehost)
2692 {
2693 /* For 'assemble' and 'force' we need to return non-zero if any
2694 * change was made. For others, the return value is ignored.
2695 * Update options are:
2696 * force-one : This device looks a bit old but needs to be included,
2697 * update age info appropriately.
2698 * assemble: clear any 'faulty' flag to allow this device to
2699 * be assembled.
2700 * force-array: Array is degraded but being forced, mark it clean
2701 * if that will be needed to assemble it.
2702 *
2703 * newdev: not used ????
2704 * grow: Array has gained a new device - this is currently for
2705 * linear only
2706 * resync: mark as dirty so a resync will happen.
2707 * name: update the name - preserving the homehost
2708 * uuid: Change the uuid of the array to match watch is given
2709 *
2710 * Following are not relevant for this imsm:
2711 * sparc2.2 : update from old dodgey metadata
2712 * super-minor: change the preferred_minor number
2713 * summaries: update redundant counters.
2714 * homehost: update the recorded homehost
2715 * _reshape_progress: record new reshape_progress position.
2716 */
2717 int rv = 1;
2718 struct intel_super *super = st->sb;
2719 struct imsm_super *mpb;
2720
2721 /* we can only update container info */
2722 if (!super || super->current_vol >= 0 || !super->anchor)
2723 return 1;
2724
2725 mpb = super->anchor;
2726
2727 if (strcmp(update, "uuid") == 0 && uuid_set && !info->update_private)
2728 rv = -1;
2729 else if (strcmp(update, "uuid") == 0 && uuid_set && info->update_private) {
2730 mpb->orig_family_num = *((__u32 *) info->update_private);
2731 rv = 0;
2732 } else if (strcmp(update, "uuid") == 0) {
2733 __u32 *new_family = malloc(sizeof(*new_family));
2734
2735 /* update orig_family_number with the incoming random
2736 * data, report the new effective uuid, and store the
2737 * new orig_family_num for future updates.
2738 */
2739 if (new_family) {
2740 memcpy(&mpb->orig_family_num, info->uuid, sizeof(__u32));
2741 uuid_from_super_imsm(st, info->uuid);
2742 *new_family = mpb->orig_family_num;
2743 info->update_private = new_family;
2744 rv = 0;
2745 }
2746 } else if (strcmp(update, "assemble") == 0)
2747 rv = 0;
2748 else
2749 rv = -1;
2750
2751 /* successful update? recompute checksum */
2752 if (rv == 0)
2753 mpb->check_sum = __le32_to_cpu(__gen_imsm_checksum(mpb));
2754
2755 return rv;
2756 }
2757
2758 static size_t disks_to_mpb_size(int disks)
2759 {
2760 size_t size;
2761
2762 size = sizeof(struct imsm_super);
2763 size += (disks - 1) * sizeof(struct imsm_disk);
2764 size += 2 * sizeof(struct imsm_dev);
2765 /* up to 2 maps per raid device (-2 for imsm_maps in imsm_dev */
2766 size += (4 - 2) * sizeof(struct imsm_map);
2767 /* 4 possible disk_ord_tbl's */
2768 size += 4 * (disks - 1) * sizeof(__u32);
2769
2770 return size;
2771 }
2772
2773 static __u64 avail_size_imsm(struct supertype *st, __u64 devsize)
2774 {
2775 if (devsize < (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS))
2776 return 0;
2777
2778 return devsize - (MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS);
2779 }
2780
2781 static void free_devlist(struct intel_super *super)
2782 {
2783 struct intel_dev *dv;
2784
2785 while (super->devlist) {
2786 dv = super->devlist->next;
2787 free(super->devlist->dev);
2788 free(super->devlist);
2789 super->devlist = dv;
2790 }
2791 }
2792
2793 static void imsm_copy_dev(struct imsm_dev *dest, struct imsm_dev *src)
2794 {
2795 memcpy(dest, src, sizeof_imsm_dev(src, 0));
2796 }
2797
2798 static int compare_super_imsm(struct supertype *st, struct supertype *tst)
2799 {
2800 /*
2801 * return:
2802 * 0 same, or first was empty, and second was copied
2803 * 1 second had wrong number
2804 * 2 wrong uuid
2805 * 3 wrong other info
2806 */
2807 struct intel_super *first = st->sb;
2808 struct intel_super *sec = tst->sb;
2809
2810 if (!first) {
2811 st->sb = tst->sb;
2812 tst->sb = NULL;
2813 return 0;
2814 }
2815 /* in platform dependent environment test if the disks
2816 * use the same Intel hba
2817 */
2818 if (!check_env("IMSM_NO_PLATFORM")) {
2819 if (!first->hba || !sec->hba ||
2820 (first->hba->type != sec->hba->type)) {
2821 fprintf(stderr,
2822 "HBAs of devices does not match %s != %s\n",
2823 first->hba ? get_sys_dev_type(first->hba->type) : NULL,
2824 sec->hba ? get_sys_dev_type(sec->hba->type) : NULL);
2825 return 3;
2826 }
2827 }
2828
2829 /* if an anchor does not have num_raid_devs set then it is a free
2830 * floating spare
2831 */
2832 if (first->anchor->num_raid_devs > 0 &&
2833 sec->anchor->num_raid_devs > 0) {
2834 /* Determine if these disks might ever have been
2835 * related. Further disambiguation can only take place
2836 * in load_super_imsm_all
2837 */
2838 __u32 first_family = first->anchor->orig_family_num;
2839 __u32 sec_family = sec->anchor->orig_family_num;
2840
2841 if (memcmp(first->anchor->sig, sec->anchor->sig,
2842 MAX_SIGNATURE_LENGTH) != 0)
2843 return 3;
2844
2845 if (first_family == 0)
2846 first_family = first->anchor->family_num;
2847 if (sec_family == 0)
2848 sec_family = sec->anchor->family_num;
2849
2850 if (first_family != sec_family)
2851 return 3;
2852
2853 }
2854
2855
2856 /* if 'first' is a spare promote it to a populated mpb with sec's
2857 * family number
2858 */
2859 if (first->anchor->num_raid_devs == 0 &&
2860 sec->anchor->num_raid_devs > 0) {
2861 int i;
2862 struct intel_dev *dv;
2863 struct imsm_dev *dev;
2864
2865 /* we need to copy raid device info from sec if an allocation
2866 * fails here we don't associate the spare
2867 */
2868 for (i = 0; i < sec->anchor->num_raid_devs; i++) {
2869 dv = malloc(sizeof(*dv));
2870 if (!dv)
2871 break;
2872 dev = malloc(sizeof_imsm_dev(get_imsm_dev(sec, i), 1));
2873 if (!dev) {
2874 free(dv);
2875 break;
2876 }
2877 dv->dev = dev;
2878 dv->index = i;
2879 dv->next = first->devlist;
2880 first->devlist = dv;
2881 }
2882 if (i < sec->anchor->num_raid_devs) {
2883 /* allocation failure */
2884 free_devlist(first);
2885 fprintf(stderr, "imsm: failed to associate spare\n");
2886 return 3;
2887 }
2888 first->anchor->num_raid_devs = sec->anchor->num_raid_devs;
2889 first->anchor->orig_family_num = sec->anchor->orig_family_num;
2890 first->anchor->family_num = sec->anchor->family_num;
2891 memcpy(first->anchor->sig, sec->anchor->sig, MAX_SIGNATURE_LENGTH);
2892 for (i = 0; i < sec->anchor->num_raid_devs; i++)
2893 imsm_copy_dev(get_imsm_dev(first, i), get_imsm_dev(sec, i));
2894 }
2895
2896 return 0;
2897 }
2898
2899 static void fd2devname(int fd, char *name)
2900 {
2901 struct stat st;
2902 char path[256];
2903 char dname[PATH_MAX];
2904 char *nm;
2905 int rv;
2906
2907 name[0] = '\0';
2908 if (fstat(fd, &st) != 0)
2909 return;
2910 sprintf(path, "/sys/dev/block/%d:%d",
2911 major(st.st_rdev), minor(st.st_rdev));
2912
2913 rv = readlink(path, dname, sizeof(dname)-1);
2914 if (rv <= 0)
2915 return;
2916
2917 dname[rv] = '\0';
2918 nm = strrchr(dname, '/');
2919 if (nm) {
2920 nm++;
2921 snprintf(name, MAX_RAID_SERIAL_LEN, "/dev/%s", nm);
2922 }
2923 }
2924
2925 extern int scsi_get_serial(int fd, void *buf, size_t buf_len);
2926
2927 static int imsm_read_serial(int fd, char *devname,
2928 __u8 serial[MAX_RAID_SERIAL_LEN])
2929 {
2930 unsigned char scsi_serial[255];
2931 int rv;
2932 int rsp_len;
2933 int len;
2934 char *dest;
2935 char *src;
2936 char *rsp_buf;
2937 int i;
2938
2939 memset(scsi_serial, 0, sizeof(scsi_serial));
2940
2941 rv = scsi_get_serial(fd, scsi_serial, sizeof(scsi_serial));
2942
2943 if (rv && check_env("IMSM_DEVNAME_AS_SERIAL")) {
2944 memset(serial, 0, MAX_RAID_SERIAL_LEN);
2945 fd2devname(fd, (char *) serial);
2946 return 0;
2947 }
2948
2949 if (rv != 0) {
2950 if (devname)
2951 fprintf(stderr,
2952 Name ": Failed to retrieve serial for %s\n",
2953 devname);
2954 return rv;
2955 }
2956
2957 rsp_len = scsi_serial[3];
2958 if (!rsp_len) {
2959 if (devname)
2960 fprintf(stderr,
2961 Name ": Failed to retrieve serial for %s\n",
2962 devname);
2963 return 2;
2964 }
2965 rsp_buf = (char *) &scsi_serial[4];
2966
2967 /* trim all whitespace and non-printable characters and convert
2968 * ':' to ';'
2969 */
2970 for (i = 0, dest = rsp_buf; i < rsp_len; i++) {
2971 src = &rsp_buf[i];
2972 if (*src > 0x20) {
2973 /* ':' is reserved for use in placeholder serial
2974 * numbers for missing disks
2975 */
2976 if (*src == ':')
2977 *dest++ = ';';
2978 else
2979 *dest++ = *src;
2980 }
2981 }
2982 len = dest - rsp_buf;
2983 dest = rsp_buf;
2984
2985 /* truncate leading characters */
2986 if (len > MAX_RAID_SERIAL_LEN) {
2987 dest += len - MAX_RAID_SERIAL_LEN;
2988 len = MAX_RAID_SERIAL_LEN;
2989 }
2990
2991 memset(serial, 0, MAX_RAID_SERIAL_LEN);
2992 memcpy(serial, dest, len);
2993
2994 return 0;
2995 }
2996
2997 static int serialcmp(__u8 *s1, __u8 *s2)
2998 {
2999 return strncmp((char *) s1, (char *) s2, MAX_RAID_SERIAL_LEN);
3000 }
3001
3002 static void serialcpy(__u8 *dest, __u8 *src)
3003 {
3004 strncpy((char *) dest, (char *) src, MAX_RAID_SERIAL_LEN);
3005 }
3006
3007 static struct dl *serial_to_dl(__u8 *serial, struct intel_super *super)
3008 {
3009 struct dl *dl;
3010
3011 for (dl = super->disks; dl; dl = dl->next)
3012 if (serialcmp(dl->serial, serial) == 0)
3013 break;
3014
3015 return dl;
3016 }
3017
3018 static struct imsm_disk *
3019 __serial_to_disk(__u8 *serial, struct imsm_super *mpb, int *idx)
3020 {
3021 int i;
3022
3023 for (i = 0; i < mpb->num_disks; i++) {
3024 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3025
3026 if (serialcmp(disk->serial, serial) == 0) {
3027 if (idx)
3028 *idx = i;
3029 return disk;
3030 }
3031 }
3032
3033 return NULL;
3034 }
3035
3036 static int
3037 load_imsm_disk(int fd, struct intel_super *super, char *devname, int keep_fd)
3038 {
3039 struct imsm_disk *disk;
3040 struct dl *dl;
3041 struct stat stb;
3042 int rv;
3043 char name[40];
3044 __u8 serial[MAX_RAID_SERIAL_LEN];
3045
3046 rv = imsm_read_serial(fd, devname, serial);
3047
3048 if (rv != 0)
3049 return 2;
3050
3051 dl = calloc(1, sizeof(*dl));
3052 if (!dl) {
3053 if (devname)
3054 fprintf(stderr,
3055 Name ": failed to allocate disk buffer for %s\n",
3056 devname);
3057 return 2;
3058 }
3059
3060 fstat(fd, &stb);
3061 dl->major = major(stb.st_rdev);
3062 dl->minor = minor(stb.st_rdev);
3063 dl->next = super->disks;
3064 dl->fd = keep_fd ? fd : -1;
3065 assert(super->disks == NULL);
3066 super->disks = dl;
3067 serialcpy(dl->serial, serial);
3068 dl->index = -2;
3069 dl->e = NULL;
3070 fd2devname(fd, name);
3071 if (devname)
3072 dl->devname = strdup(devname);
3073 else
3074 dl->devname = strdup(name);
3075
3076 /* look up this disk's index in the current anchor */
3077 disk = __serial_to_disk(dl->serial, super->anchor, &dl->index);
3078 if (disk) {
3079 dl->disk = *disk;
3080 /* only set index on disks that are a member of a
3081 * populated contianer, i.e. one with raid_devs
3082 */
3083 if (is_failed(&dl->disk))
3084 dl->index = -2;
3085 else if (is_spare(&dl->disk))
3086 dl->index = -1;
3087 }
3088
3089 return 0;
3090 }
3091
3092 #ifndef MDASSEMBLE
3093 /* When migrating map0 contains the 'destination' state while map1
3094 * contains the current state. When not migrating map0 contains the
3095 * current state. This routine assumes that map[0].map_state is set to
3096 * the current array state before being called.
3097 *
3098 * Migration is indicated by one of the following states
3099 * 1/ Idle (migr_state=0 map0state=normal||unitialized||degraded||failed)
3100 * 2/ Initialize (migr_state=1 migr_type=MIGR_INIT map0state=normal
3101 * map1state=unitialized)
3102 * 3/ Repair (Resync) (migr_state=1 migr_type=MIGR_REPAIR map0state=normal
3103 * map1state=normal)
3104 * 4/ Rebuild (migr_state=1 migr_type=MIGR_REBUILD map0state=normal
3105 * map1state=degraded)
3106 * 5/ Migration (mig_state=1 migr_type=MIGR_GEN_MIGR map0state=normal
3107 * map1state=normal)
3108 */
3109 static void migrate(struct imsm_dev *dev, struct intel_super *super,
3110 __u8 to_state, int migr_type)
3111 {
3112 struct imsm_map *dest;
3113 struct imsm_map *src = get_imsm_map(dev, 0);
3114
3115 dev->vol.migr_state = 1;
3116 set_migr_type(dev, migr_type);
3117 dev->vol.curr_migr_unit = 0;
3118 dest = get_imsm_map(dev, 1);
3119
3120 /* duplicate and then set the target end state in map[0] */
3121 memcpy(dest, src, sizeof_imsm_map(src));
3122 if ((migr_type == MIGR_REBUILD) ||
3123 (migr_type == MIGR_GEN_MIGR)) {
3124 __u32 ord;
3125 int i;
3126
3127 for (i = 0; i < src->num_members; i++) {
3128 ord = __le32_to_cpu(src->disk_ord_tbl[i]);
3129 set_imsm_ord_tbl_ent(src, i, ord_to_idx(ord));
3130 }
3131 }
3132
3133 if (migr_type == MIGR_GEN_MIGR)
3134 /* Clear migration record */
3135 memset(super->migr_rec, 0, sizeof(struct migr_record));
3136
3137 src->map_state = to_state;
3138 }
3139
3140 static void end_migration(struct imsm_dev *dev, __u8 map_state)
3141 {
3142 struct imsm_map *map = get_imsm_map(dev, 0);
3143 struct imsm_map *prev = get_imsm_map(dev, dev->vol.migr_state);
3144 int i, j;
3145
3146 /* merge any IMSM_ORD_REBUILD bits that were not successfully
3147 * completed in the last migration.
3148 *
3149 * FIXME add support for raid-level-migration
3150 */
3151 for (i = 0; i < prev->num_members; i++)
3152 for (j = 0; j < map->num_members; j++)
3153 /* during online capacity expansion
3154 * disks position can be changed if takeover is used
3155 */
3156 if (ord_to_idx(map->disk_ord_tbl[j]) ==
3157 ord_to_idx(prev->disk_ord_tbl[i])) {
3158 map->disk_ord_tbl[j] |= prev->disk_ord_tbl[i];
3159 break;
3160 }
3161
3162 dev->vol.migr_state = 0;
3163 set_migr_type(dev, 0);
3164 dev->vol.curr_migr_unit = 0;
3165 map->map_state = map_state;
3166 }
3167 #endif
3168
3169 static int parse_raid_devices(struct intel_super *super)
3170 {
3171 int i;
3172 struct imsm_dev *dev_new;
3173 size_t len, len_migr;
3174 size_t max_len = 0;
3175 size_t space_needed = 0;
3176 struct imsm_super *mpb = super->anchor;
3177
3178 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3179 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3180 struct intel_dev *dv;
3181
3182 len = sizeof_imsm_dev(dev_iter, 0);
3183 len_migr = sizeof_imsm_dev(dev_iter, 1);
3184 if (len_migr > len)
3185 space_needed += len_migr - len;
3186
3187 dv = malloc(sizeof(*dv));
3188 if (!dv)
3189 return 1;
3190 if (max_len < len_migr)
3191 max_len = len_migr;
3192 if (max_len > len_migr)
3193 space_needed += max_len - len_migr;
3194 dev_new = malloc(max_len);
3195 if (!dev_new) {
3196 free(dv);
3197 return 1;
3198 }
3199 imsm_copy_dev(dev_new, dev_iter);
3200 dv->dev = dev_new;
3201 dv->index = i;
3202 dv->next = super->devlist;
3203 super->devlist = dv;
3204 }
3205
3206 /* ensure that super->buf is large enough when all raid devices
3207 * are migrating
3208 */
3209 if (__le32_to_cpu(mpb->mpb_size) + space_needed > super->len) {
3210 void *buf;
3211
3212 len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + space_needed, 512);
3213 if (posix_memalign(&buf, 512, len) != 0)
3214 return 1;
3215
3216 memcpy(buf, super->buf, super->len);
3217 memset(buf + super->len, 0, len - super->len);
3218 free(super->buf);
3219 super->buf = buf;
3220 super->len = len;
3221 }
3222
3223 return 0;
3224 }
3225
3226 /* retrieve a pointer to the bbm log which starts after all raid devices */
3227 struct bbm_log *__get_imsm_bbm_log(struct imsm_super *mpb)
3228 {
3229 void *ptr = NULL;
3230
3231 if (__le32_to_cpu(mpb->bbm_log_size)) {
3232 ptr = mpb;
3233 ptr += mpb->mpb_size - __le32_to_cpu(mpb->bbm_log_size);
3234 }
3235
3236 return ptr;
3237 }
3238
3239 /*******************************************************************************
3240 * Function: check_mpb_migr_compatibility
3241 * Description: Function checks for unsupported migration features:
3242 * - migration optimization area (pba_of_lba0)
3243 * - descending reshape (ascending_migr)
3244 * Parameters:
3245 * super : imsm metadata information
3246 * Returns:
3247 * 0 : migration is compatible
3248 * -1 : migration is not compatible
3249 ******************************************************************************/
3250 int check_mpb_migr_compatibility(struct intel_super *super)
3251 {
3252 struct imsm_map *map0, *map1;
3253 struct migr_record *migr_rec = super->migr_rec;
3254 int i;
3255
3256 for (i = 0; i < super->anchor->num_raid_devs; i++) {
3257 struct imsm_dev *dev_iter = __get_imsm_dev(super->anchor, i);
3258
3259 if (dev_iter &&
3260 dev_iter->vol.migr_state == 1 &&
3261 dev_iter->vol.migr_type == MIGR_GEN_MIGR) {
3262 /* This device is migrating */
3263 map0 = get_imsm_map(dev_iter, 0);
3264 map1 = get_imsm_map(dev_iter, 1);
3265 if (map0->pba_of_lba0 != map1->pba_of_lba0)
3266 /* migration optimization area was used */
3267 return -1;
3268 if (migr_rec->ascending_migr == 0
3269 && migr_rec->dest_depth_per_unit > 0)
3270 /* descending reshape not supported yet */
3271 return -1;
3272 }
3273 }
3274 return 0;
3275 }
3276
3277 static void __free_imsm(struct intel_super *super, int free_disks);
3278
3279 /* load_imsm_mpb - read matrix metadata
3280 * allocates super->mpb to be freed by free_imsm
3281 */
3282 static int load_imsm_mpb(int fd, struct intel_super *super, char *devname)
3283 {
3284 unsigned long long dsize;
3285 unsigned long long sectors;
3286 struct stat;
3287 struct imsm_super *anchor;
3288 __u32 check_sum;
3289
3290 get_dev_size(fd, NULL, &dsize);
3291 if (dsize < 1024) {
3292 if (devname)
3293 fprintf(stderr,
3294 Name ": %s: device to small for imsm\n",
3295 devname);
3296 return 1;
3297 }
3298
3299 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0) {
3300 if (devname)
3301 fprintf(stderr, Name
3302 ": Cannot seek to anchor block on %s: %s\n",
3303 devname, strerror(errno));
3304 return 1;
3305 }
3306
3307 if (posix_memalign((void**)&anchor, 512, 512) != 0) {
3308 if (devname)
3309 fprintf(stderr,
3310 Name ": Failed to allocate imsm anchor buffer"
3311 " on %s\n", devname);
3312 return 1;
3313 }
3314 if (read(fd, anchor, 512) != 512) {
3315 if (devname)
3316 fprintf(stderr,
3317 Name ": Cannot read anchor block on %s: %s\n",
3318 devname, strerror(errno));
3319 free(anchor);
3320 return 1;
3321 }
3322
3323 if (strncmp((char *) anchor->sig, MPB_SIGNATURE, MPB_SIG_LEN) != 0) {
3324 if (devname)
3325 fprintf(stderr,
3326 Name ": no IMSM anchor on %s\n", devname);
3327 free(anchor);
3328 return 2;
3329 }
3330
3331 __free_imsm(super, 0);
3332 /* reload capability and hba */
3333
3334 /* capability and hba must be updated with new super allocation */
3335 find_intel_hba_capability(fd, super, devname);
3336 super->len = ROUND_UP(anchor->mpb_size, 512);
3337 if (posix_memalign(&super->buf, 512, super->len) != 0) {
3338 if (devname)
3339 fprintf(stderr,
3340 Name ": unable to allocate %zu byte mpb buffer\n",
3341 super->len);
3342 free(anchor);
3343 return 2;
3344 }
3345 memcpy(super->buf, anchor, 512);
3346
3347 sectors = mpb_sectors(anchor) - 1;
3348 free(anchor);
3349
3350 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
3351 fprintf(stderr, Name
3352 ": %s could not allocate migr_rec buffer\n", __func__);
3353 free(super->buf);
3354 return 2;
3355 }
3356
3357 if (!sectors) {
3358 check_sum = __gen_imsm_checksum(super->anchor);
3359 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3360 if (devname)
3361 fprintf(stderr,
3362 Name ": IMSM checksum %x != %x on %s\n",
3363 check_sum,
3364 __le32_to_cpu(super->anchor->check_sum),
3365 devname);
3366 return 2;
3367 }
3368
3369 return 0;
3370 }
3371
3372 /* read the extended mpb */
3373 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0) {
3374 if (devname)
3375 fprintf(stderr,
3376 Name ": Cannot seek to extended mpb on %s: %s\n",
3377 devname, strerror(errno));
3378 return 1;
3379 }
3380
3381 if ((unsigned)read(fd, super->buf + 512, super->len - 512) != super->len - 512) {
3382 if (devname)
3383 fprintf(stderr,
3384 Name ": Cannot read extended mpb on %s: %s\n",
3385 devname, strerror(errno));
3386 return 2;
3387 }
3388
3389 check_sum = __gen_imsm_checksum(super->anchor);
3390 if (check_sum != __le32_to_cpu(super->anchor->check_sum)) {
3391 if (devname)
3392 fprintf(stderr,
3393 Name ": IMSM checksum %x != %x on %s\n",
3394 check_sum, __le32_to_cpu(super->anchor->check_sum),
3395 devname);
3396 return 3;
3397 }
3398
3399 /* FIXME the BBM log is disk specific so we cannot use this global
3400 * buffer for all disks. Ok for now since we only look at the global
3401 * bbm_log_size parameter to gate assembly
3402 */
3403 super->bbm_log = __get_imsm_bbm_log(super->anchor);
3404
3405 return 0;
3406 }
3407
3408 static int read_imsm_migr_rec(int fd, struct intel_super *super);
3409
3410 static int
3411 load_and_parse_mpb(int fd, struct intel_super *super, char *devname, int keep_fd)
3412 {
3413 int err;
3414
3415 err = load_imsm_mpb(fd, super, devname);
3416 if (err)
3417 return err;
3418 err = load_imsm_disk(fd, super, devname, keep_fd);
3419 if (err)
3420 return err;
3421 err = parse_raid_devices(super);
3422
3423 return err;
3424 }
3425
3426 static void __free_imsm_disk(struct dl *d)
3427 {
3428 if (d->fd >= 0)
3429 close(d->fd);
3430 if (d->devname)
3431 free(d->devname);
3432 if (d->e)
3433 free(d->e);
3434 free(d);
3435
3436 }
3437
3438 static void free_imsm_disks(struct intel_super *super)
3439 {
3440 struct dl *d;
3441
3442 while (super->disks) {
3443 d = super->disks;
3444 super->disks = d->next;
3445 __free_imsm_disk(d);
3446 }
3447 while (super->disk_mgmt_list) {
3448 d = super->disk_mgmt_list;
3449 super->disk_mgmt_list = d->next;
3450 __free_imsm_disk(d);
3451 }
3452 while (super->missing) {
3453 d = super->missing;
3454 super->missing = d->next;
3455 __free_imsm_disk(d);
3456 }
3457
3458 }
3459
3460 /* free all the pieces hanging off of a super pointer */
3461 static void __free_imsm(struct intel_super *super, int free_disks)
3462 {
3463 struct intel_hba *elem, *next;
3464
3465 if (super->buf) {
3466 free(super->buf);
3467 super->buf = NULL;
3468 }
3469 /* unlink capability description */
3470 super->orom = NULL;
3471 if (super->migr_rec_buf) {
3472 free(super->migr_rec_buf);
3473 super->migr_rec_buf = NULL;
3474 }
3475 if (free_disks)
3476 free_imsm_disks(super);
3477 free_devlist(super);
3478 elem = super->hba;
3479 while (elem) {
3480 if (elem->path)
3481 free((void *)elem->path);
3482 next = elem->next;
3483 free(elem);
3484 elem = next;
3485 }
3486 super->hba = NULL;
3487 }
3488
3489 static void free_imsm(struct intel_super *super)
3490 {
3491 __free_imsm(super, 1);
3492 free(super);
3493 }
3494
3495 static void free_super_imsm(struct supertype *st)
3496 {
3497 struct intel_super *super = st->sb;
3498
3499 if (!super)
3500 return;
3501
3502 free_imsm(super);
3503 st->sb = NULL;
3504 }
3505
3506 static struct intel_super *alloc_super(void)
3507 {
3508 struct intel_super *super = malloc(sizeof(*super));
3509
3510 if (super) {
3511 memset(super, 0, sizeof(*super));
3512 super->current_vol = -1;
3513 super->create_offset = ~((__u32 ) 0);
3514 }
3515 return super;
3516 }
3517
3518 /*
3519 * find and allocate hba and OROM/EFI based on valid fd of RAID component device
3520 */
3521 static int find_intel_hba_capability(int fd, struct intel_super *super, char *devname)
3522 {
3523 struct sys_dev *hba_name;
3524 int rv = 0;
3525
3526 if ((fd < 0) || check_env("IMSM_NO_PLATFORM")) {
3527 super->orom = NULL;
3528 super->hba = NULL;
3529 return 0;
3530 }
3531 hba_name = find_disk_attached_hba(fd, NULL);
3532 if (!hba_name) {
3533 if (devname)
3534 fprintf(stderr,
3535 Name ": %s is not attached to Intel(R) RAID controller.\n",
3536 devname);
3537 return 1;
3538 }
3539 rv = attach_hba_to_super(super, hba_name);
3540 if (rv == 2) {
3541 if (devname) {
3542 struct intel_hba *hba = super->hba;
3543
3544 fprintf(stderr, Name ": %s is attached to Intel(R) %s RAID "
3545 "controller (%s),\n"
3546 " but the container is assigned to Intel(R) "
3547 "%s RAID controller (",
3548 devname,
3549 hba_name->path,
3550 hba_name->pci_id ? : "Err!",
3551 get_sys_dev_type(hba_name->type));
3552
3553 while (hba) {
3554 fprintf(stderr, "%s", hba->pci_id ? : "Err!");
3555 if (hba->next)
3556 fprintf(stderr, ", ");
3557 hba = hba->next;
3558 }
3559
3560 fprintf(stderr, ").\n"
3561 " Mixing devices attached to different controllers "
3562 "is not allowed.\n");
3563 }
3564 free_sys_dev(&hba_name);
3565 return 2;
3566 }
3567 super->orom = find_imsm_capability(hba_name->type);
3568 free_sys_dev(&hba_name);
3569 if (!super->orom)
3570 return 3;
3571 return 0;
3572 }
3573
3574 /* find_missing - helper routine for load_super_imsm_all that identifies
3575 * disks that have disappeared from the system. This routine relies on
3576 * the mpb being uptodate, which it is at load time.
3577 */
3578 static int find_missing(struct intel_super *super)
3579 {
3580 int i;
3581 struct imsm_super *mpb = super->anchor;
3582 struct dl *dl;
3583 struct imsm_disk *disk;
3584
3585 for (i = 0; i < mpb->num_disks; i++) {
3586 disk = __get_imsm_disk(mpb, i);
3587 dl = serial_to_dl(disk->serial, super);
3588 if (dl)
3589 continue;
3590
3591 dl = malloc(sizeof(*dl));
3592 if (!dl)
3593 return 1;
3594 dl->major = 0;
3595 dl->minor = 0;
3596 dl->fd = -1;
3597 dl->devname = strdup("missing");
3598 dl->index = i;
3599 serialcpy(dl->serial, disk->serial);
3600 dl->disk = *disk;
3601 dl->e = NULL;
3602 dl->next = super->missing;
3603 super->missing = dl;
3604 }
3605
3606 return 0;
3607 }
3608
3609 #ifndef MDASSEMBLE
3610 static struct intel_disk *disk_list_get(__u8 *serial, struct intel_disk *disk_list)
3611 {
3612 struct intel_disk *idisk = disk_list;
3613
3614 while (idisk) {
3615 if (serialcmp(idisk->disk.serial, serial) == 0)
3616 break;
3617 idisk = idisk->next;
3618 }
3619
3620 return idisk;
3621 }
3622
3623 static int __prep_thunderdome(struct intel_super **table, int tbl_size,
3624 struct intel_super *super,
3625 struct intel_disk **disk_list)
3626 {
3627 struct imsm_disk *d = &super->disks->disk;
3628 struct imsm_super *mpb = super->anchor;
3629 int i, j;
3630
3631 for (i = 0; i < tbl_size; i++) {
3632 struct imsm_super *tbl_mpb = table[i]->anchor;
3633 struct imsm_disk *tbl_d = &table[i]->disks->disk;
3634
3635 if (tbl_mpb->family_num == mpb->family_num) {
3636 if (tbl_mpb->check_sum == mpb->check_sum) {
3637 dprintf("%s: mpb from %d:%d matches %d:%d\n",
3638 __func__, super->disks->major,
3639 super->disks->minor,
3640 table[i]->disks->major,
3641 table[i]->disks->minor);
3642 break;
3643 }
3644
3645 if (((is_configured(d) && !is_configured(tbl_d)) ||
3646 is_configured(d) == is_configured(tbl_d)) &&
3647 tbl_mpb->generation_num < mpb->generation_num) {
3648 /* current version of the mpb is a
3649 * better candidate than the one in
3650 * super_table, but copy over "cross
3651 * generational" status
3652 */
3653 struct intel_disk *idisk;
3654
3655 dprintf("%s: mpb from %d:%d replaces %d:%d\n",
3656 __func__, super->disks->major,
3657 super->disks->minor,
3658 table[i]->disks->major,
3659 table[i]->disks->minor);
3660
3661 idisk = disk_list_get(tbl_d->serial, *disk_list);
3662 if (idisk && is_failed(&idisk->disk))
3663 tbl_d->status |= FAILED_DISK;
3664 break;
3665 } else {
3666 struct intel_disk *idisk;
3667 struct imsm_disk *disk;
3668
3669 /* tbl_mpb is more up to date, but copy
3670 * over cross generational status before
3671 * returning
3672 */
3673 disk = __serial_to_disk(d->serial, mpb, NULL);
3674 if (disk && is_failed(disk))
3675 d->status |= FAILED_DISK;
3676
3677 idisk = disk_list_get(d->serial, *disk_list);
3678 if (idisk) {
3679 idisk->owner = i;
3680 if (disk && is_configured(disk))
3681 idisk->disk.status |= CONFIGURED_DISK;
3682 }
3683
3684 dprintf("%s: mpb from %d:%d prefer %d:%d\n",
3685 __func__, super->disks->major,
3686 super->disks->minor,
3687 table[i]->disks->major,
3688 table[i]->disks->minor);
3689
3690 return tbl_size;
3691 }
3692 }
3693 }
3694
3695 if (i >= tbl_size)
3696 table[tbl_size++] = super;
3697 else
3698 table[i] = super;
3699
3700 /* update/extend the merged list of imsm_disk records */
3701 for (j = 0; j < mpb->num_disks; j++) {
3702 struct imsm_disk *disk = __get_imsm_disk(mpb, j);
3703 struct intel_disk *idisk;
3704
3705 idisk = disk_list_get(disk->serial, *disk_list);
3706 if (idisk) {
3707 idisk->disk.status |= disk->status;
3708 if (is_configured(&idisk->disk) ||
3709 is_failed(&idisk->disk))
3710 idisk->disk.status &= ~(SPARE_DISK);
3711 } else {
3712 idisk = calloc(1, sizeof(*idisk));
3713 if (!idisk)
3714 return -1;
3715 idisk->owner = IMSM_UNKNOWN_OWNER;
3716 idisk->disk = *disk;
3717 idisk->next = *disk_list;
3718 *disk_list = idisk;
3719 }
3720
3721 if (serialcmp(idisk->disk.serial, d->serial) == 0)
3722 idisk->owner = i;
3723 }
3724
3725 return tbl_size;
3726 }
3727
3728 static struct intel_super *
3729 validate_members(struct intel_super *super, struct intel_disk *disk_list,
3730 const int owner)
3731 {
3732 struct imsm_super *mpb = super->anchor;
3733 int ok_count = 0;
3734 int i;
3735
3736 for (i = 0; i < mpb->num_disks; i++) {
3737 struct imsm_disk *disk = __get_imsm_disk(mpb, i);
3738 struct intel_disk *idisk;
3739
3740 idisk = disk_list_get(disk->serial, disk_list);
3741 if (idisk) {
3742 if (idisk->owner == owner ||
3743 idisk->owner == IMSM_UNKNOWN_OWNER)
3744 ok_count++;
3745 else
3746 dprintf("%s: '%.16s' owner %d != %d\n",
3747 __func__, disk->serial, idisk->owner,
3748 owner);
3749 } else {
3750 dprintf("%s: unknown disk %x [%d]: %.16s\n",
3751 __func__, __le32_to_cpu(mpb->family_num), i,
3752 disk->serial);
3753 break;
3754 }
3755 }
3756
3757 if (ok_count == mpb->num_disks)
3758 return super;
3759 return NULL;
3760 }
3761
3762 static void show_conflicts(__u32 family_num, struct intel_super *super_list)
3763 {
3764 struct intel_super *s;
3765
3766 for (s = super_list; s; s = s->next) {
3767 if (family_num != s->anchor->family_num)
3768 continue;
3769 fprintf(stderr, "Conflict, offlining family %#x on '%s'\n",
3770 __le32_to_cpu(family_num), s->disks->devname);
3771 }
3772 }
3773
3774 static struct intel_super *
3775 imsm_thunderdome(struct intel_super **super_list, int len)
3776 {
3777 struct intel_super *super_table[len];
3778 struct intel_disk *disk_list = NULL;
3779 struct intel_super *champion, *spare;
3780 struct intel_super *s, **del;
3781 int tbl_size = 0;
3782 int conflict;
3783 int i;
3784
3785 memset(super_table, 0, sizeof(super_table));
3786 for (s = *super_list; s; s = s->next)
3787 tbl_size = __prep_thunderdome(super_table, tbl_size, s, &disk_list);
3788
3789 for (i = 0; i < tbl_size; i++) {
3790 struct imsm_disk *d;
3791 struct intel_disk *idisk;
3792 struct imsm_super *mpb = super_table[i]->anchor;
3793
3794 s = super_table[i];
3795 d = &s->disks->disk;
3796
3797 /* 'd' must appear in merged disk list for its
3798 * configuration to be valid
3799 */
3800 idisk = disk_list_get(d->serial, disk_list);
3801 if (idisk && idisk->owner == i)
3802 s = validate_members(s, disk_list, i);
3803 else
3804 s = NULL;
3805
3806 if (!s)
3807 dprintf("%s: marking family: %#x from %d:%d offline\n",
3808 __func__, mpb->family_num,
3809 super_table[i]->disks->major,
3810 super_table[i]->disks->minor);
3811 super_table[i] = s;
3812 }
3813
3814 /* This is where the mdadm implementation differs from the Windows
3815 * driver which has no strict concept of a container. We can only
3816 * assemble one family from a container, so when returning a prodigal
3817 * array member to this system the code will not be able to disambiguate
3818 * the container contents that should be assembled ("foreign" versus
3819 * "local"). It requires user intervention to set the orig_family_num
3820 * to a new value to establish a new container. The Windows driver in
3821 * this situation fixes up the volume name in place and manages the
3822 * foreign array as an independent entity.
3823 */
3824 s = NULL;
3825 spare = NULL;
3826 conflict = 0;
3827 for (i = 0; i < tbl_size; i++) {
3828 struct intel_super *tbl_ent = super_table[i];
3829 int is_spare = 0;
3830
3831 if (!tbl_ent)
3832 continue;
3833
3834 if (tbl_ent->anchor->num_raid_devs == 0) {
3835 spare = tbl_ent;
3836 is_spare = 1;
3837 }
3838
3839 if (s && !is_spare) {
3840 show_conflicts(tbl_ent->anchor->family_num, *super_list);
3841 conflict++;
3842 } else if (!s && !is_spare)
3843 s = tbl_ent;
3844 }
3845
3846 if (!s)
3847 s = spare;
3848 if (!s) {
3849 champion = NULL;
3850 goto out;
3851 }
3852 champion = s;
3853
3854 if (conflict)
3855 fprintf(stderr, "Chose family %#x on '%s', "
3856 "assemble conflicts to new container with '--update=uuid'\n",
3857 __le32_to_cpu(s->anchor->family_num), s->disks->devname);
3858
3859 /* collect all dl's onto 'champion', and update them to
3860 * champion's version of the status
3861 */
3862 for (s = *super_list; s; s = s->next) {
3863 struct imsm_super *mpb = champion->anchor;
3864 struct dl *dl = s->disks;
3865
3866 if (s == champion)
3867 continue;
3868
3869 for (i = 0; i < mpb->num_disks; i++) {
3870 struct imsm_disk *disk;
3871
3872 disk = __serial_to_disk(dl->serial, mpb, &dl->index);
3873 if (disk) {
3874 dl->disk = *disk;
3875 /* only set index on disks that are a member of
3876 * a populated contianer, i.e. one with
3877 * raid_devs
3878 */
3879 if (is_failed(&dl->disk))
3880 dl->index = -2;
3881 else if (is_spare(&dl->disk))
3882 dl->index = -1;
3883 break;
3884 }
3885 }
3886
3887 if (i >= mpb->num_disks) {
3888 struct intel_disk *idisk;
3889
3890 idisk = disk_list_get(dl->serial, disk_list);
3891 if (idisk && is_spare(&idisk->disk) &&
3892 !is_failed(&idisk->disk) && !is_configured(&idisk->disk))
3893 dl->index = -1;
3894 else {
3895 dl->index = -2;
3896 continue;
3897 }
3898 }
3899
3900 dl->next = champion->disks;
3901 champion->disks = dl;
3902 s->disks = NULL;
3903 }
3904
3905 /* delete 'champion' from super_list */
3906 for (del = super_list; *del; ) {
3907 if (*del == champion) {
3908 *del = (*del)->next;
3909 break;
3910 } else
3911 del = &(*del)->next;
3912 }
3913 champion->next = NULL;
3914
3915 out:
3916 while (disk_list) {
3917 struct intel_disk *idisk = disk_list;
3918
3919 disk_list = disk_list->next;
3920 free(idisk);
3921 }
3922
3923 return champion;
3924 }
3925
3926 static int load_super_imsm_all(struct supertype *st, int fd, void **sbp,
3927 char *devname)
3928 {
3929 struct mdinfo *sra;
3930 struct intel_super *super_list = NULL;
3931 struct intel_super *super = NULL;
3932 int devnum = fd2devnum(fd);
3933 struct mdinfo *sd;
3934 int retry;
3935 int err = 0;
3936 int i;
3937
3938 /* check if 'fd' an opened container */
3939 sra = sysfs_read(fd, 0, GET_LEVEL|GET_VERSION|GET_DEVS|GET_STATE);
3940 if (!sra)
3941 return 1;
3942
3943 if (sra->array.major_version != -1 ||
3944 sra->array.minor_version != -2 ||
3945 strcmp(sra->text_version, "imsm") != 0) {
3946 err = 1;
3947 goto error;
3948 }
3949 /* load all mpbs */
3950 for (sd = sra->devs, i = 0; sd; sd = sd->next, i++) {
3951 struct intel_super *s = alloc_super();
3952 char nm[32];
3953 int dfd;
3954 int rv;
3955
3956 err = 1;
3957 if (!s)
3958 goto error;
3959 s->next = super_list;
3960 super_list = s;
3961
3962 err = 2;
3963 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
3964 dfd = dev_open(nm, O_RDWR);
3965 if (dfd < 0)
3966 goto error;
3967
3968 rv = find_intel_hba_capability(dfd, s, devname);
3969 /* no orom/efi or non-intel hba of the disk */
3970 if (rv != 0)
3971 goto error;
3972
3973 err = load_and_parse_mpb(dfd, s, NULL, 1);
3974
3975 /* retry the load if we might have raced against mdmon */
3976 if (err == 3 && mdmon_running(devnum))
3977 for (retry = 0; retry < 3; retry++) {
3978 usleep(3000);
3979 err = load_and_parse_mpb(dfd, s, NULL, 1);
3980 if (err != 3)
3981 break;
3982 }
3983 if (err)
3984 goto error;
3985 }
3986
3987 /* all mpbs enter, maybe one leaves */
3988 super = imsm_thunderdome(&super_list, i);
3989 if (!super) {
3990 err = 1;
3991 goto error;
3992 }
3993
3994 if (find_missing(super) != 0) {
3995 free_imsm(super);
3996 err = 2;
3997 goto error;
3998 }
3999
4000 /* load migration record */
4001 err = load_imsm_migr_rec(super, NULL);
4002 if (err) {
4003 err = 4;
4004 goto error;
4005 }
4006
4007 /* Check migration compatibility */
4008 if (check_mpb_migr_compatibility(super) != 0) {
4009 fprintf(stderr, Name ": Unsupported migration detected");
4010 if (devname)
4011 fprintf(stderr, " on %s\n", devname);
4012 else
4013 fprintf(stderr, " (IMSM).\n");
4014
4015 err = 5;
4016 goto error;
4017 }
4018
4019 err = 0;
4020
4021 error:
4022 while (super_list) {
4023 struct intel_super *s = super_list;
4024
4025 super_list = super_list->next;
4026 free_imsm(s);
4027 }
4028 sysfs_free(sra);
4029
4030 if (err)
4031 return err;
4032
4033 *sbp = super;
4034 st->container_dev = devnum;
4035 if (err == 0 && st->ss == NULL) {
4036 st->ss = &super_imsm;
4037 st->minor_version = 0;
4038 st->max_devs = IMSM_MAX_DEVICES;
4039 }
4040 return 0;
4041 }
4042
4043 static int load_container_imsm(struct supertype *st, int fd, char *devname)
4044 {
4045 return load_super_imsm_all(st, fd, &st->sb, devname);
4046 }
4047 #endif
4048
4049 static int load_super_imsm(struct supertype *st, int fd, char *devname)
4050 {
4051 struct intel_super *super;
4052 int rv;
4053
4054 if (test_partition(fd))
4055 /* IMSM not allowed on partitions */
4056 return 1;
4057
4058 free_super_imsm(st);
4059
4060 super = alloc_super();
4061 if (!super) {
4062 fprintf(stderr,
4063 Name ": malloc of %zu failed.\n",
4064 sizeof(*super));
4065 return 1;
4066 }
4067 /* Load hba and capabilities if they exist.
4068 * But do not preclude loading metadata in case capabilities or hba are
4069 * non-compliant and ignore_hw_compat is set.
4070 */
4071 rv = find_intel_hba_capability(fd, super, devname);
4072 /* no orom/efi or non-intel hba of the disk */
4073 if ((rv != 0) && (st->ignore_hw_compat == 0)) {
4074 if (devname)
4075 fprintf(stderr,
4076 Name ": No OROM/EFI properties for %s\n", devname);
4077 free_imsm(super);
4078 return 2;
4079 }
4080 rv = load_and_parse_mpb(fd, super, devname, 0);
4081
4082 if (rv) {
4083 if (devname)
4084 fprintf(stderr,
4085 Name ": Failed to load all information "
4086 "sections on %s\n", devname);
4087 free_imsm(super);
4088 return rv;
4089 }
4090
4091 st->sb = super;
4092 if (st->ss == NULL) {
4093 st->ss = &super_imsm;
4094 st->minor_version = 0;
4095 st->max_devs = IMSM_MAX_DEVICES;
4096 }
4097
4098 /* load migration record */
4099 if (load_imsm_migr_rec(super, NULL) == 0) {
4100 /* Check for unsupported migration features */
4101 if (check_mpb_migr_compatibility(super) != 0) {
4102 fprintf(stderr,
4103 Name ": Unsupported migration detected");
4104 if (devname)
4105 fprintf(stderr, " on %s\n", devname);
4106 else
4107 fprintf(stderr, " (IMSM).\n");
4108 return 3;
4109 }
4110 }
4111
4112 return 0;
4113 }
4114
4115 static __u16 info_to_blocks_per_strip(mdu_array_info_t *info)
4116 {
4117 if (info->level == 1)
4118 return 128;
4119 return info->chunk_size >> 9;
4120 }
4121
4122 static __u32 info_to_num_data_stripes(mdu_array_info_t *info, int num_domains)
4123 {
4124 __u32 num_stripes;
4125
4126 num_stripes = (info->size * 2) / info_to_blocks_per_strip(info);
4127 num_stripes /= num_domains;
4128
4129 return num_stripes;
4130 }
4131
4132 static __u32 info_to_blocks_per_member(mdu_array_info_t *info)
4133 {
4134 if (info->level == 1)
4135 return info->size * 2;
4136 else
4137 return (info->size * 2) & ~(info_to_blocks_per_strip(info) - 1);
4138 }
4139
4140 static void imsm_update_version_info(struct intel_super *super)
4141 {
4142 /* update the version and attributes */
4143 struct imsm_super *mpb = super->anchor;
4144 char *version;
4145 struct imsm_dev *dev;
4146 struct imsm_map *map;
4147 int i;
4148
4149 for (i = 0; i < mpb->num_raid_devs; i++) {
4150 dev = get_imsm_dev(super, i);
4151 map = get_imsm_map(dev, 0);
4152 if (__le32_to_cpu(dev->size_high) > 0)
4153 mpb->attributes |= MPB_ATTRIB_2TB;
4154
4155 /* FIXME detect when an array spans a port multiplier */
4156 #if 0
4157 mpb->attributes |= MPB_ATTRIB_PM;
4158 #endif
4159
4160 if (mpb->num_raid_devs > 1 ||
4161 mpb->attributes != MPB_ATTRIB_CHECKSUM_VERIFY) {
4162 version = MPB_VERSION_ATTRIBS;
4163 switch (get_imsm_raid_level(map)) {
4164 case 0: mpb->attributes |= MPB_ATTRIB_RAID0; break;
4165 case 1: mpb->attributes |= MPB_ATTRIB_RAID1; break;
4166 case 10: mpb->attributes |= MPB_ATTRIB_RAID10; break;
4167 case 5: mpb->attributes |= MPB_ATTRIB_RAID5; break;
4168 }
4169 } else {
4170 if (map->num_members >= 5)
4171 version = MPB_VERSION_5OR6_DISK_ARRAY;
4172 else if (dev->status == DEV_CLONE_N_GO)
4173 version = MPB_VERSION_CNG;
4174 else if (get_imsm_raid_level(map) == 5)
4175 version = MPB_VERSION_RAID5;
4176 else if (map->num_members >= 3)
4177 version = MPB_VERSION_3OR4_DISK_ARRAY;
4178 else if (get_imsm_raid_level(map) == 1)
4179 version = MPB_VERSION_RAID1;
4180 else
4181 version = MPB_VERSION_RAID0;
4182 }
4183 strcpy(((char *) mpb->sig) + strlen(MPB_SIGNATURE), version);
4184 }
4185 }
4186
4187 static int check_name(struct intel_super *super, char *name, int quiet)
4188 {
4189 struct imsm_super *mpb = super->anchor;
4190 char *reason = NULL;
4191 int i;
4192
4193 if (strlen(name) > MAX_RAID_SERIAL_LEN)
4194 reason = "must be 16 characters or less";
4195
4196 for (i = 0; i < mpb->num_raid_devs; i++) {
4197 struct imsm_dev *dev = get_imsm_dev(super, i);
4198
4199 if (strncmp((char *) dev->volume, name, MAX_RAID_SERIAL_LEN) == 0) {
4200 reason = "already exists";
4201 break;
4202 }
4203 }
4204
4205 if (reason && !quiet)
4206 fprintf(stderr, Name ": imsm volume name %s\n", reason);
4207
4208 return !reason;
4209 }
4210
4211 static int init_super_imsm_volume(struct supertype *st, mdu_array_info_t *info,
4212 unsigned long long size, char *name,
4213 char *homehost, int *uuid)
4214 {
4215 /* We are creating a volume inside a pre-existing container.
4216 * so st->sb is already set.
4217 */
4218 struct intel_super *super = st->sb;
4219 struct imsm_super *mpb = super->anchor;
4220 struct intel_dev *dv;
4221 struct imsm_dev *dev;
4222 struct imsm_vol *vol;
4223 struct imsm_map *map;
4224 int idx = mpb->num_raid_devs;
4225 int i;
4226 unsigned long long array_blocks;
4227 size_t size_old, size_new;
4228 __u32 num_data_stripes;
4229
4230 if (super->orom && mpb->num_raid_devs >= super->orom->vpa) {
4231 fprintf(stderr, Name": This imsm-container already has the "
4232 "maximum of %d volumes\n", super->orom->vpa);
4233 return 0;
4234 }
4235
4236 /* ensure the mpb is large enough for the new data */
4237 size_old = __le32_to_cpu(mpb->mpb_size);
4238 size_new = disks_to_mpb_size(info->nr_disks);
4239 if (size_new > size_old) {
4240 void *mpb_new;
4241 size_t size_round = ROUND_UP(size_new, 512);
4242
4243 if (posix_memalign(&mpb_new, 512, size_round) != 0) {
4244 fprintf(stderr, Name": could not allocate new mpb\n");
4245 return 0;
4246 }
4247 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
4248 fprintf(stderr, Name
4249 ": %s could not allocate migr_rec buffer\n",
4250 __func__);
4251 free(super->buf);
4252 free(super);
4253 free(mpb_new);
4254 return 0;
4255 }
4256 memcpy(mpb_new, mpb, size_old);
4257 free(mpb);
4258 mpb = mpb_new;
4259 super->anchor = mpb_new;
4260 mpb->mpb_size = __cpu_to_le32(size_new);
4261 memset(mpb_new + size_old, 0, size_round - size_old);
4262 }
4263 super->current_vol = idx;
4264
4265 /* handle 'failed_disks' by either:
4266 * a) create dummy disk entries in the table if this the first
4267 * volume in the array. We add them here as this is the only
4268 * opportunity to add them. add_to_super_imsm_volume()
4269 * handles the non-failed disks and continues incrementing
4270 * mpb->num_disks.
4271 * b) validate that 'failed_disks' matches the current number
4272 * of missing disks if the container is populated
4273 */
4274 if (super->current_vol == 0) {
4275 mpb->num_disks = 0;
4276 for (i = 0; i < info->failed_disks; i++) {
4277 struct imsm_disk *disk;
4278
4279 mpb->num_disks++;
4280 disk = __get_imsm_disk(mpb, i);
4281 disk->status = CONFIGURED_DISK | FAILED_DISK;
4282 disk->scsi_id = __cpu_to_le32(~(__u32)0);
4283 snprintf((char *) disk->serial, MAX_RAID_SERIAL_LEN,
4284 "missing:%d", i);
4285 }
4286 find_missing(super);
4287 } else {
4288 int missing = 0;
4289 struct dl *d;
4290
4291 for (d = super->missing; d; d = d->next)
4292 missing++;
4293 if (info->failed_disks > missing) {
4294 fprintf(stderr, Name": unable to add 'missing' disk to container\n");
4295 return 0;
4296 }
4297 }
4298
4299 if (!check_name(super, name, 0))
4300 return 0;
4301 dv = malloc(sizeof(*dv));
4302 if (!dv) {
4303 fprintf(stderr, Name ": failed to allocate device list entry\n");
4304 return 0;
4305 }
4306 dev = calloc(1, sizeof(*dev) + sizeof(__u32) * (info->raid_disks - 1));
4307 if (!dev) {
4308 free(dv);
4309 fprintf(stderr, Name": could not allocate raid device\n");
4310 return 0;
4311 }
4312
4313 strncpy((char *) dev->volume, name, MAX_RAID_SERIAL_LEN);
4314 if (info->level == 1)
4315 array_blocks = info_to_blocks_per_member(info);
4316 else
4317 array_blocks = calc_array_size(info->level, info->raid_disks,
4318 info->layout, info->chunk_size,
4319 info->size*2);
4320 /* round array size down to closest MB */
4321 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
4322
4323 dev->size_low = __cpu_to_le32((__u32) array_blocks);
4324 dev->size_high = __cpu_to_le32((__u32) (array_blocks >> 32));
4325 dev->status = (DEV_READ_COALESCING | DEV_WRITE_COALESCING);
4326 vol = &dev->vol;
4327 vol->migr_state = 0;
4328 set_migr_type(dev, MIGR_INIT);
4329 vol->dirty = !info->state;
4330 vol->curr_migr_unit = 0;
4331 map = get_imsm_map(dev, 0);
4332 map->pba_of_lba0 = __cpu_to_le32(super->create_offset);
4333 map->blocks_per_member = __cpu_to_le32(info_to_blocks_per_member(info));
4334 map->blocks_per_strip = __cpu_to_le16(info_to_blocks_per_strip(info));
4335 map->failed_disk_num = ~0;
4336 map->map_state = info->failed_disks ? IMSM_T_STATE_DEGRADED : IMSM_T_STATE_NORMAL;
4337 map->ddf = 1;
4338
4339 if (info->level == 1 && info->raid_disks > 2) {
4340 free(dev);
4341 free(dv);
4342 fprintf(stderr, Name": imsm does not support more than 2 disks"
4343 "in a raid1 volume\n");
4344 return 0;
4345 }
4346
4347 map->raid_level = info->level;
4348 if (info->level == 10) {
4349 map->raid_level = 1;
4350 map->num_domains = info->raid_disks / 2;
4351 } else if (info->level == 1)
4352 map->num_domains = info->raid_disks;
4353 else
4354 map->num_domains = 1;
4355
4356 num_data_stripes = info_to_num_data_stripes(info, map->num_domains);
4357 map->num_data_stripes = __cpu_to_le32(num_data_stripes);
4358
4359 map->num_members = info->raid_disks;
4360 for (i = 0; i < map->num_members; i++) {
4361 /* initialized in add_to_super */
4362 set_imsm_ord_tbl_ent(map, i, IMSM_ORD_REBUILD);
4363 }
4364 mpb->num_raid_devs++;
4365
4366 dv->dev = dev;
4367 dv->index = super->current_vol;
4368 dv->next = super->devlist;
4369 super->devlist = dv;
4370
4371 imsm_update_version_info(super);
4372
4373 return 1;
4374 }
4375
4376 static int init_super_imsm(struct supertype *st, mdu_array_info_t *info,
4377 unsigned long long size, char *name,
4378 char *homehost, int *uuid)
4379 {
4380 /* This is primarily called by Create when creating a new array.
4381 * We will then get add_to_super called for each component, and then
4382 * write_init_super called to write it out to each device.
4383 * For IMSM, Create can create on fresh devices or on a pre-existing
4384 * array.
4385 * To create on a pre-existing array a different method will be called.
4386 * This one is just for fresh drives.
4387 */
4388 struct intel_super *super;
4389 struct imsm_super *mpb;
4390 size_t mpb_size;
4391 char *version;
4392
4393 if (st->sb)
4394 return init_super_imsm_volume(st, info, size, name, homehost, uuid);
4395
4396 if (info)
4397 mpb_size = disks_to_mpb_size(info->nr_disks);
4398 else
4399 mpb_size = 512;
4400
4401 super = alloc_super();
4402 if (super && posix_memalign(&super->buf, 512, mpb_size) != 0) {
4403 free(super);
4404 super = NULL;
4405 }
4406 if (!super) {
4407 fprintf(stderr, Name
4408 ": %s could not allocate superblock\n", __func__);
4409 return 0;
4410 }
4411 if (posix_memalign(&super->migr_rec_buf, 512, 512) != 0) {
4412 fprintf(stderr, Name
4413 ": %s could not allocate migr_rec buffer\n", __func__);
4414 free(super->buf);
4415 free(super);
4416 return 0;
4417 }
4418 memset(super->buf, 0, mpb_size);
4419 mpb = super->buf;
4420 mpb->mpb_size = __cpu_to_le32(mpb_size);
4421 st->sb = super;
4422
4423 if (info == NULL) {
4424 /* zeroing superblock */
4425 return 0;
4426 }
4427
4428 mpb->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4429
4430 version = (char *) mpb->sig;
4431 strcpy(version, MPB_SIGNATURE);
4432 version += strlen(MPB_SIGNATURE);
4433 strcpy(version, MPB_VERSION_RAID0);
4434
4435 return 1;
4436 }
4437
4438 #ifndef MDASSEMBLE
4439 static int add_to_super_imsm_volume(struct supertype *st, mdu_disk_info_t *dk,
4440 int fd, char *devname)
4441 {
4442 struct intel_super *super = st->sb;
4443 struct imsm_super *mpb = super->anchor;
4444 struct imsm_disk *_disk;
4445 struct imsm_dev *dev;
4446 struct imsm_map *map;
4447 struct dl *dl, *df;
4448 int slot;
4449
4450 dev = get_imsm_dev(super, super->current_vol);
4451 map = get_imsm_map(dev, 0);
4452
4453 if (! (dk->state & (1<<MD_DISK_SYNC))) {
4454 fprintf(stderr, Name ": %s: Cannot add spare devices to IMSM volume\n",
4455 devname);
4456 return 1;
4457 }
4458
4459 if (fd == -1) {
4460 /* we're doing autolayout so grab the pre-marked (in
4461 * validate_geometry) raid_disk
4462 */
4463 for (dl = super->disks; dl; dl = dl->next)
4464 if (dl->raiddisk == dk->raid_disk)
4465 break;
4466 } else {
4467 for (dl = super->disks; dl ; dl = dl->next)
4468 if (dl->major == dk->major &&
4469 dl->minor == dk->minor)
4470 break;
4471 }
4472
4473 if (!dl) {
4474 fprintf(stderr, Name ": %s is not a member of the same container\n", devname);
4475 return 1;
4476 }
4477
4478 /* add a pristine spare to the metadata */
4479 if (dl->index < 0) {
4480 dl->index = super->anchor->num_disks;
4481 super->anchor->num_disks++;
4482 }
4483 /* Check the device has not already been added */
4484 slot = get_imsm_disk_slot(map, dl->index);
4485 if (slot >= 0 &&
4486 (get_imsm_ord_tbl_ent(dev, slot, -1) & IMSM_ORD_REBUILD) == 0) {
4487 fprintf(stderr, Name ": %s has been included in this array twice\n",
4488 devname);
4489 return 1;
4490 }
4491 set_imsm_ord_tbl_ent(map, dk->raid_disk, dl->index);
4492 dl->disk.status = CONFIGURED_DISK;
4493
4494 /* update size of 'missing' disks to be at least as large as the
4495 * largest acitve member (we only have dummy missing disks when
4496 * creating the first volume)
4497 */
4498 if (super->current_vol == 0) {
4499 for (df = super->missing; df; df = df->next) {
4500 if (dl->disk.total_blocks > df->disk.total_blocks)
4501 df->disk.total_blocks = dl->disk.total_blocks;
4502 _disk = __get_imsm_disk(mpb, df->index);
4503 *_disk = df->disk;
4504 }
4505 }
4506
4507 /* refresh unset/failed slots to point to valid 'missing' entries */
4508 for (df = super->missing; df; df = df->next)
4509 for (slot = 0; slot < mpb->num_disks; slot++) {
4510 __u32 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
4511
4512 if ((ord & IMSM_ORD_REBUILD) == 0)
4513 continue;
4514 set_imsm_ord_tbl_ent(map, slot, df->index | IMSM_ORD_REBUILD);
4515 if (is_gen_migration(dev)) {
4516 struct imsm_map *map2 = get_imsm_map(dev, 1);
4517 if (slot < map2->num_members) {
4518 __u32 ord2 = get_imsm_ord_tbl_ent(dev,
4519 slot,
4520 1);
4521 if ((unsigned)df->index ==
4522 ord_to_idx(ord2))
4523 set_imsm_ord_tbl_ent(map2,
4524 slot,
4525 df->index |
4526 IMSM_ORD_REBUILD);
4527 }
4528 }
4529 dprintf("set slot:%d to missing disk:%d\n", slot, df->index);
4530 break;
4531 }
4532
4533 /* if we are creating the first raid device update the family number */
4534 if (super->current_vol == 0) {
4535 __u32 sum;
4536 struct imsm_dev *_dev = __get_imsm_dev(mpb, 0);
4537
4538 _disk = __get_imsm_disk(mpb, dl->index);
4539 if (!_dev || !_disk) {
4540 fprintf(stderr, Name ": BUG mpb setup error\n");
4541 return 1;
4542 }
4543 *_dev = *dev;
4544 *_disk = dl->disk;
4545 sum = random32();
4546 sum += __gen_imsm_checksum(mpb);
4547 mpb->family_num = __cpu_to_le32(sum);
4548 mpb->orig_family_num = mpb->family_num;
4549 }
4550 super->current_disk = dl;
4551 return 0;
4552 }
4553
4554 /* mark_spare()
4555 * Function marks disk as spare and restores disk serial
4556 * in case it was previously marked as failed by takeover operation
4557 * reruns:
4558 * -1 : critical error
4559 * 0 : disk is marked as spare but serial is not set
4560 * 1 : success
4561 */
4562 int mark_spare(struct dl *disk)
4563 {
4564 __u8 serial[MAX_RAID_SERIAL_LEN];
4565 int ret_val = -1;
4566
4567 if (!disk)
4568 return ret_val;
4569
4570 ret_val = 0;
4571 if (!imsm_read_serial(disk->fd, NULL, serial)) {
4572 /* Restore disk serial number, because takeover marks disk
4573 * as failed and adds to serial ':0' before it becomes
4574 * a spare disk.
4575 */
4576 serialcpy(disk->serial, serial);
4577 serialcpy(disk->disk.serial, serial);
4578 ret_val = 1;
4579 }
4580 disk->disk.status = SPARE_DISK;
4581 disk->index = -1;
4582
4583 return ret_val;
4584 }
4585
4586 static int add_to_super_imsm(struct supertype *st, mdu_disk_info_t *dk,
4587 int fd, char *devname)
4588 {
4589 struct intel_super *super = st->sb;
4590 struct dl *dd;
4591 unsigned long long size;
4592 __u32 id;
4593 int rv;
4594 struct stat stb;
4595
4596 /* If we are on an RAID enabled platform check that the disk is
4597 * attached to the raid controller.
4598 * We do not need to test disks attachment for container based additions,
4599 * they shall be already tested when container was created/assembled.
4600 */
4601 rv = find_intel_hba_capability(fd, super, devname);
4602 /* no orom/efi or non-intel hba of the disk */
4603 if (rv != 0) {
4604 dprintf("capability: %p fd: %d ret: %d\n",
4605 super->orom, fd, rv);
4606 return 1;
4607 }
4608
4609 if (super->current_vol >= 0)
4610 return add_to_super_imsm_volume(st, dk, fd, devname);
4611
4612 fstat(fd, &stb);
4613 dd = malloc(sizeof(*dd));
4614 if (!dd) {
4615 fprintf(stderr,
4616 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
4617 return 1;
4618 }
4619 memset(dd, 0, sizeof(*dd));
4620 dd->major = major(stb.st_rdev);
4621 dd->minor = minor(stb.st_rdev);
4622 dd->devname = devname ? strdup(devname) : NULL;
4623 dd->fd = fd;
4624 dd->e = NULL;
4625 dd->action = DISK_ADD;
4626 rv = imsm_read_serial(fd, devname, dd->serial);
4627 if (rv) {
4628 fprintf(stderr,
4629 Name ": failed to retrieve scsi serial, aborting\n");
4630 free(dd);
4631 abort();
4632 }
4633
4634 get_dev_size(fd, NULL, &size);
4635 size /= 512;
4636 serialcpy(dd->disk.serial, dd->serial);
4637 dd->disk.total_blocks = __cpu_to_le32(size);
4638 mark_spare(dd);
4639 if (sysfs_disk_to_scsi_id(fd, &id) == 0)
4640 dd->disk.scsi_id = __cpu_to_le32(id);
4641 else
4642 dd->disk.scsi_id = __cpu_to_le32(0);
4643
4644 if (st->update_tail) {
4645 dd->next = super->disk_mgmt_list;
4646 super->disk_mgmt_list = dd;
4647 } else {
4648 dd->next = super->disks;
4649 super->disks = dd;
4650 super->updates_pending++;
4651 }
4652
4653 return 0;
4654 }
4655
4656
4657 static int remove_from_super_imsm(struct supertype *st, mdu_disk_info_t *dk)
4658 {
4659 struct intel_super *super = st->sb;
4660 struct dl *dd;
4661
4662 /* remove from super works only in mdmon - for communication
4663 * manager - monitor. Check if communication memory buffer
4664 * is prepared.
4665 */
4666 if (!st->update_tail) {
4667 fprintf(stderr,
4668 Name ": %s shall be used in mdmon context only"
4669 "(line %d).\n", __func__, __LINE__);
4670 return 1;
4671 }
4672 dd = malloc(sizeof(*dd));
4673 if (!dd) {
4674 fprintf(stderr,
4675 Name ": malloc failed %s:%d.\n", __func__, __LINE__);
4676 return 1;
4677 }
4678 memset(dd, 0, sizeof(*dd));
4679 dd->major = dk->major;
4680 dd->minor = dk->minor;
4681 dd->fd = -1;
4682 mark_spare(dd);
4683 dd->action = DISK_REMOVE;
4684
4685 dd->next = super->disk_mgmt_list;
4686 super->disk_mgmt_list = dd;
4687
4688
4689 return 0;
4690 }
4691
4692 static int store_imsm_mpb(int fd, struct imsm_super *mpb);
4693
4694 static union {
4695 char buf[512];
4696 struct imsm_super anchor;
4697 } spare_record __attribute__ ((aligned(512)));
4698
4699 /* spare records have their own family number and do not have any defined raid
4700 * devices
4701 */
4702 static int write_super_imsm_spares(struct intel_super *super, int doclose)
4703 {
4704 struct imsm_super *mpb = super->anchor;
4705 struct imsm_super *spare = &spare_record.anchor;
4706 __u32 sum;
4707 struct dl *d;
4708
4709 spare->mpb_size = __cpu_to_le32(sizeof(struct imsm_super)),
4710 spare->generation_num = __cpu_to_le32(1UL),
4711 spare->attributes = MPB_ATTRIB_CHECKSUM_VERIFY;
4712 spare->num_disks = 1,
4713 spare->num_raid_devs = 0,
4714 spare->cache_size = mpb->cache_size,
4715 spare->pwr_cycle_count = __cpu_to_le32(1),
4716
4717 snprintf((char *) spare->sig, MAX_SIGNATURE_LENGTH,
4718 MPB_SIGNATURE MPB_VERSION_RAID0);
4719
4720 for (d = super->disks; d; d = d->next) {
4721 if (d->index != -1)
4722 continue;
4723
4724 spare->disk[0] = d->disk;
4725 sum = __gen_imsm_checksum(spare);
4726 spare->family_num = __cpu_to_le32(sum);
4727 spare->orig_family_num = 0;
4728 sum = __gen_imsm_checksum(spare);
4729 spare->check_sum = __cpu_to_le32(sum);
4730
4731 if (store_imsm_mpb(d->fd, spare)) {
4732 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4733 __func__, d->major, d->minor, strerror(errno));
4734 return 1;
4735 }
4736 if (doclose) {
4737 close(d->fd);
4738 d->fd = -1;
4739 }
4740 }
4741
4742 return 0;
4743 }
4744
4745 static int write_super_imsm(struct supertype *st, int doclose)
4746 {
4747 struct intel_super *super = st->sb;
4748 struct imsm_super *mpb = super->anchor;
4749 struct dl *d;
4750 __u32 generation;
4751 __u32 sum;
4752 int spares = 0;
4753 int i;
4754 __u32 mpb_size = sizeof(struct imsm_super) - sizeof(struct imsm_disk);
4755 int num_disks = 0;
4756 int clear_migration_record = 1;
4757
4758 /* 'generation' is incremented everytime the metadata is written */
4759 generation = __le32_to_cpu(mpb->generation_num);
4760 generation++;
4761 mpb->generation_num = __cpu_to_le32(generation);
4762
4763 /* fix up cases where previous mdadm releases failed to set
4764 * orig_family_num
4765 */
4766 if (mpb->orig_family_num == 0)
4767 mpb->orig_family_num = mpb->family_num;
4768
4769 for (d = super->disks; d; d = d->next) {
4770 if (d->index == -1)
4771 spares++;
4772 else {
4773 mpb->disk[d->index] = d->disk;
4774 num_disks++;
4775 }
4776 }
4777 for (d = super->missing; d; d = d->next) {
4778 mpb->disk[d->index] = d->disk;
4779 num_disks++;
4780 }
4781 mpb->num_disks = num_disks;
4782 mpb_size += sizeof(struct imsm_disk) * mpb->num_disks;
4783
4784 for (i = 0; i < mpb->num_raid_devs; i++) {
4785 struct imsm_dev *dev = __get_imsm_dev(mpb, i);
4786 struct imsm_dev *dev2 = get_imsm_dev(super, i);
4787 if (dev && dev2) {
4788 imsm_copy_dev(dev, dev2);
4789 mpb_size += sizeof_imsm_dev(dev, 0);
4790 }
4791 if (is_gen_migration(dev2))
4792 clear_migration_record = 0;
4793 }
4794 mpb_size += __le32_to_cpu(mpb->bbm_log_size);
4795 mpb->mpb_size = __cpu_to_le32(mpb_size);
4796
4797 /* recalculate checksum */
4798 sum = __gen_imsm_checksum(mpb);
4799 mpb->check_sum = __cpu_to_le32(sum);
4800
4801 if (clear_migration_record)
4802 memset(super->migr_rec_buf, 0, 512);
4803
4804 /* write the mpb for disks that compose raid devices */
4805 for (d = super->disks; d ; d = d->next) {
4806 if (d->index < 0 || is_failed(&d->disk))
4807 continue;
4808 if (store_imsm_mpb(d->fd, mpb))
4809 fprintf(stderr, "%s: failed for device %d:%d %s\n",
4810 __func__, d->major, d->minor, strerror(errno));
4811 if (clear_migration_record) {
4812 unsigned long long dsize;
4813
4814 get_dev_size(d->fd, NULL, &dsize);
4815 if (lseek64(d->fd, dsize - 512, SEEK_SET) >= 0) {
4816 if (write(d->fd, super->migr_rec_buf, 512) != 512)
4817 perror("Write migr_rec failed");
4818 }
4819 }
4820 if (doclose) {
4821 close(d->fd);
4822 d->fd = -1;
4823 }
4824 }
4825
4826 if (spares)
4827 return write_super_imsm_spares(super, doclose);
4828
4829 return 0;
4830 }
4831
4832
4833 static int create_array(struct supertype *st, int dev_idx)
4834 {
4835 size_t len;
4836 struct imsm_update_create_array *u;
4837 struct intel_super *super = st->sb;
4838 struct imsm_dev *dev = get_imsm_dev(super, dev_idx);
4839 struct imsm_map *map = get_imsm_map(dev, 0);
4840 struct disk_info *inf;
4841 struct imsm_disk *disk;
4842 int i;
4843
4844 len = sizeof(*u) - sizeof(*dev) + sizeof_imsm_dev(dev, 0) +
4845 sizeof(*inf) * map->num_members;
4846 u = malloc(len);
4847 if (!u) {
4848 fprintf(stderr, "%s: failed to allocate update buffer\n",
4849 __func__);
4850 return 1;
4851 }
4852
4853 u->type = update_create_array;
4854 u->dev_idx = dev_idx;
4855 imsm_copy_dev(&u->dev, dev);
4856 inf = get_disk_info(u);
4857 for (i = 0; i < map->num_members; i++) {
4858 int idx = get_imsm_disk_idx(dev, i, -1);
4859
4860 disk = get_imsm_disk(super, idx);
4861 serialcpy(inf[i].serial, disk->serial);
4862 }
4863 append_metadata_update(st, u, len);
4864
4865 return 0;
4866 }
4867
4868 static int mgmt_disk(struct supertype *st)
4869 {
4870 struct intel_super *super = st->sb;
4871 size_t len;
4872 struct imsm_update_add_remove_disk *u;
4873
4874 if (!super->disk_mgmt_list)
4875 return 0;
4876
4877 len = sizeof(*u);
4878 u = malloc(len);
4879 if (!u) {
4880 fprintf(stderr, "%s: failed to allocate update buffer\n",
4881 __func__);
4882 return 1;
4883 }
4884
4885 u->type = update_add_remove_disk;
4886 append_metadata_update(st, u, len);
4887
4888 return 0;
4889 }
4890
4891 static int write_init_super_imsm(struct supertype *st)
4892 {
4893 struct intel_super *super = st->sb;
4894 int current_vol = super->current_vol;
4895
4896 /* we are done with current_vol reset it to point st at the container */
4897 super->current_vol = -1;
4898
4899 if (st->update_tail) {
4900 /* queue the recently created array / added disk
4901 * as a metadata update */
4902 int rv;
4903
4904 /* determine if we are creating a volume or adding a disk */
4905 if (current_vol < 0) {
4906 /* in the mgmt (add/remove) disk case we are running
4907 * in mdmon context, so don't close fd's
4908 */
4909 return mgmt_disk(st);
4910 } else
4911 rv = create_array(st, current_vol);
4912
4913 return rv;
4914 } else {
4915 struct dl *d;
4916 for (d = super->disks; d; d = d->next)
4917 Kill(d->devname, NULL, 0, 1, 1);
4918 return write_super_imsm(st, 1);
4919 }
4920 }
4921 #endif
4922
4923 static int store_super_imsm(struct supertype *st, int fd)
4924 {
4925 struct intel_super *super = st->sb;
4926 struct imsm_super *mpb = super ? super->anchor : NULL;
4927
4928 if (!mpb)
4929 return 1;
4930
4931 #ifndef MDASSEMBLE
4932 return store_imsm_mpb(fd, mpb);
4933 #else
4934 return 1;
4935 #endif
4936 }
4937
4938 static int imsm_bbm_log_size(struct imsm_super *mpb)
4939 {
4940 return __le32_to_cpu(mpb->bbm_log_size);
4941 }
4942
4943 #ifndef MDASSEMBLE
4944 static int validate_geometry_imsm_container(struct supertype *st, int level,
4945 int layout, int raiddisks, int chunk,
4946 unsigned long long size, char *dev,
4947 unsigned long long *freesize,
4948 int verbose)
4949 {
4950 int fd;
4951 unsigned long long ldsize;
4952 struct intel_super *super=NULL;
4953 int rv = 0;
4954
4955 if (level != LEVEL_CONTAINER)
4956 return 0;
4957 if (!dev)
4958 return 1;
4959
4960 fd = open(dev, O_RDONLY|O_EXCL, 0);
4961 if (fd < 0) {
4962 if (verbose)
4963 fprintf(stderr, Name ": imsm: Cannot open %s: %s\n",
4964 dev, strerror(errno));
4965 return 0;
4966 }
4967 if (!get_dev_size(fd, dev, &ldsize)) {
4968 close(fd);
4969 return 0;
4970 }
4971
4972 /* capabilities retrieve could be possible
4973 * note that there is no fd for the disks in array.
4974 */
4975 super = alloc_super();
4976 if (!super) {
4977 fprintf(stderr,
4978 Name ": malloc of %zu failed.\n",
4979 sizeof(*super));
4980 close(fd);
4981 return 0;
4982 }
4983
4984 rv = find_intel_hba_capability(fd, super, verbose ? dev : NULL);
4985 if (rv != 0) {
4986 #if DEBUG
4987 char str[256];
4988 fd2devname(fd, str);
4989 dprintf("validate_geometry_imsm_container: fd: %d %s orom: %p rv: %d raiddisk: %d\n",
4990 fd, str, super->orom, rv, raiddisks);
4991 #endif
4992 /* no orom/efi or non-intel hba of the disk */
4993 close(fd);
4994 free_imsm(super);
4995 return 0;
4996 }
4997 close(fd);
4998 if (super->orom && raiddisks > super->orom->tds) {
4999 if (verbose)
5000 fprintf(stderr, Name ": %d exceeds maximum number of"
5001 " platform supported disks: %d\n",
5002 raiddisks, super->orom->tds);
5003
5004 free_imsm(super);
5005 return 0;
5006 }
5007
5008 *freesize = avail_size_imsm(st, ldsize >> 9);
5009 free_imsm(super);
5010
5011 return 1;
5012 }
5013
5014 static unsigned long long find_size(struct extent *e, int *idx, int num_extents)
5015 {
5016 const unsigned long long base_start = e[*idx].start;
5017 unsigned long long end = base_start + e[*idx].size;
5018 int i;
5019
5020 if (base_start == end)
5021 return 0;
5022
5023 *idx = *idx + 1;
5024 for (i = *idx; i < num_extents; i++) {
5025 /* extend overlapping extents */
5026 if (e[i].start >= base_start &&
5027 e[i].start <= end) {
5028 if (e[i].size == 0)
5029 return 0;
5030 if (e[i].start + e[i].size > end)
5031 end = e[i].start + e[i].size;
5032 } else if (e[i].start > end) {
5033 *idx = i;
5034 break;
5035 }
5036 }
5037
5038 return end - base_start;
5039 }
5040
5041 static unsigned long long merge_extents(struct intel_super *super, int sum_extents)
5042 {
5043 /* build a composite disk with all known extents and generate a new
5044 * 'maxsize' given the "all disks in an array must share a common start
5045 * offset" constraint
5046 */
5047 struct extent *e = calloc(sum_extents, sizeof(*e));
5048 struct dl *dl;
5049 int i, j;
5050 int start_extent;
5051 unsigned long long pos;
5052 unsigned long long start = 0;
5053 unsigned long long maxsize;
5054 unsigned long reserve;
5055
5056 if (!e)
5057 return 0;
5058
5059 /* coalesce and sort all extents. also, check to see if we need to
5060 * reserve space between member arrays
5061 */
5062 j = 0;
5063 for (dl = super->disks; dl; dl = dl->next) {
5064 if (!dl->e)
5065 continue;
5066 for (i = 0; i < dl->extent_cnt; i++)
5067 e[j++] = dl->e[i];
5068 }
5069 qsort(e, sum_extents, sizeof(*e), cmp_extent);
5070
5071 /* merge extents */
5072 i = 0;
5073 j = 0;
5074 while (i < sum_extents) {
5075 e[j].start = e[i].start;
5076 e[j].size = find_size(e, &i, sum_extents);
5077 j++;
5078 if (e[j-1].size == 0)
5079 break;
5080 }
5081
5082 pos = 0;
5083 maxsize = 0;
5084 start_extent = 0;
5085 i = 0;
5086 do {
5087 unsigned long long esize;
5088
5089 esize = e[i].start - pos;
5090 if (esize >= maxsize) {
5091 maxsize = esize;
5092 start = pos;
5093 start_extent = i;
5094 }
5095 pos = e[i].start + e[i].size;
5096 i++;
5097 } while (e[i-1].size);
5098 free(e);
5099
5100 if (maxsize == 0)
5101 return 0;
5102
5103 /* FIXME assumes volume at offset 0 is the first volume in a
5104 * container
5105 */
5106 if (start_extent > 0)
5107 reserve = IMSM_RESERVED_SECTORS; /* gap between raid regions */
5108 else
5109 reserve = 0;
5110
5111 if (maxsize < reserve)
5112 return 0;
5113
5114 super->create_offset = ~((__u32) 0);
5115 if (start + reserve > super->create_offset)
5116 return 0; /* start overflows create_offset */
5117 super->create_offset = start + reserve;
5118
5119 return maxsize - reserve;
5120 }
5121
5122 static int is_raid_level_supported(const struct imsm_orom *orom, int level, int raiddisks)
5123 {
5124 if (level < 0 || level == 6 || level == 4)
5125 return 0;
5126
5127 /* if we have an orom prevent invalid raid levels */
5128 if (orom)
5129 switch (level) {
5130 case 0: return imsm_orom_has_raid0(orom);
5131 case 1:
5132 if (raiddisks > 2)
5133 return imsm_orom_has_raid1e(orom);
5134 return imsm_orom_has_raid1(orom) && raiddisks == 2;
5135 case 10: return imsm_orom_has_raid10(orom) && raiddisks == 4;
5136 case 5: return imsm_orom_has_raid5(orom) && raiddisks > 2;
5137 }
5138 else
5139 return 1; /* not on an Intel RAID platform so anything goes */
5140
5141 return 0;
5142 }
5143
5144 static int imsm_default_chunk(const struct imsm_orom *orom)
5145 {
5146 /* up to 512 if the plaform supports it, otherwise the platform max.
5147 * 128 if no platform detected
5148 */
5149 int fs = max(7, orom ? fls(orom->sss) : 0);
5150
5151 return min(512, (1 << fs));
5152 }
5153
5154 #define pr_vrb(fmt, arg...) (void) (verbose && fprintf(stderr, Name fmt, ##arg))
5155 static int
5156 validate_geometry_imsm_orom(struct intel_super *super, int level, int layout,
5157 int raiddisks, int *chunk, int verbose)
5158 {
5159 /* check/set platform and metadata limits/defaults */
5160 if (super->orom && raiddisks > super->orom->dpa) {
5161 pr_vrb(": platform supports a maximum of %d disks per array\n",
5162 super->orom->dpa);
5163 return 0;
5164 }
5165
5166 /* capabilities of OROM tested - copied from validate_geometry_imsm_volume */
5167 if (!is_raid_level_supported(super->orom, level, raiddisks)) {
5168 pr_vrb(": platform does not support raid%d with %d disk%s\n",
5169 level, raiddisks, raiddisks > 1 ? "s" : "");
5170 return 0;
5171 }
5172
5173 if (chunk && (*chunk == 0 || *chunk == UnSet))
5174 *chunk = imsm_default_chunk(super->orom);
5175
5176 if (super->orom && chunk && !imsm_orom_has_chunk(super->orom, *chunk)) {
5177 pr_vrb(": platform does not support a chunk size of: "
5178 "%d\n", *chunk);
5179 return 0;
5180 }
5181
5182 if (layout != imsm_level_to_layout(level)) {
5183 if (level == 5)
5184 pr_vrb(": imsm raid 5 only supports the left-asymmetric layout\n");
5185 else if (level == 10)
5186 pr_vrb(": imsm raid 10 only supports the n2 layout\n");
5187 else
5188 pr_vrb(": imsm unknown layout %#x for this raid level %d\n",
5189 layout, level);
5190 return 0;
5191 }
5192 return 1;
5193 }
5194
5195 /* validate_geometry_imsm_volume - lifted from validate_geometry_ddf_bvd
5196 * FIX ME add ahci details
5197 */
5198 static int validate_geometry_imsm_volume(struct supertype *st, int level,
5199 int layout, int raiddisks, int *chunk,
5200 unsigned long long size, char *dev,
5201 unsigned long long *freesize,
5202 int verbose)
5203 {
5204 struct stat stb;
5205 struct intel_super *super = st->sb;
5206 struct imsm_super *mpb;
5207 struct dl *dl;
5208 unsigned long long pos = 0;
5209 unsigned long long maxsize;
5210 struct extent *e;
5211 int i;
5212
5213 /* We must have the container info already read in. */
5214 if (!super)
5215 return 0;
5216
5217 mpb = super->anchor;
5218
5219 if (mpb->num_raid_devs > 0 && mpb->num_disks != raiddisks) {
5220 fprintf(stderr, Name ": the option-rom requires all "
5221 "member disks to be a member of all volumes.\n");
5222 return 0;
5223 }
5224
5225 if (!validate_geometry_imsm_orom(super, level, layout, raiddisks, chunk, verbose)) {
5226 fprintf(stderr, Name ": RAID gemetry validation failed. "
5227 "Cannot proceed with the action(s).\n");
5228 return 0;
5229 }
5230 if (!dev) {
5231 /* General test: make sure there is space for
5232 * 'raiddisks' device extents of size 'size' at a given
5233 * offset
5234 */
5235 unsigned long long minsize = size;
5236 unsigned long long start_offset = MaxSector;
5237 int dcnt = 0;
5238 if (minsize == 0)
5239 minsize = MPB_SECTOR_CNT + IMSM_RESERVED_SECTORS;
5240 for (dl = super->disks; dl ; dl = dl->next) {
5241 int found = 0;
5242
5243 pos = 0;
5244 i = 0;
5245 e = get_extents(super, dl);
5246 if (!e) continue;
5247 do {
5248 unsigned long long esize;
5249 esize = e[i].start - pos;
5250 if (esize >= minsize)
5251 found = 1;
5252 if (found && start_offset == MaxSector) {
5253 start_offset = pos;
5254 break;
5255 } else if (found && pos != start_offset) {
5256 found = 0;
5257 break;
5258 }
5259 pos = e[i].start + e[i].size;
5260 i++;
5261 } while (e[i-1].size);
5262 if (found)
5263 dcnt++;
5264 free(e);
5265 }
5266 if (dcnt < raiddisks) {
5267 if (verbose)
5268 fprintf(stderr, Name ": imsm: Not enough "
5269 "devices with space for this array "
5270 "(%d < %d)\n",
5271 dcnt, raiddisks);
5272 return 0;
5273 }
5274 return 1;
5275 }
5276
5277 /* This device must be a member of the set */
5278 if (stat(dev, &stb) < 0)
5279 return 0;
5280 if ((S_IFMT & stb.st_mode) != S_IFBLK)
5281 return 0;
5282 for (dl = super->disks ; dl ; dl = dl->next) {
5283 if (dl->major == (int)major(stb.st_rdev) &&
5284 dl->minor == (int)minor(stb.st_rdev))
5285 break;
5286 }
5287 if (!dl) {
5288 if (verbose)
5289 fprintf(stderr, Name ": %s is not in the "
5290 "same imsm set\n", dev);
5291 return 0;
5292 } else if (super->orom && dl->index < 0 && mpb->num_raid_devs) {
5293 /* If a volume is present then the current creation attempt
5294 * cannot incorporate new spares because the orom may not
5295 * understand this configuration (all member disks must be
5296 * members of each array in the container).
5297 */
5298 fprintf(stderr, Name ": %s is a spare and a volume"
5299 " is already defined for this container\n", dev);
5300 fprintf(stderr, Name ": The option-rom requires all member"
5301 " disks to be a member of all volumes\n");
5302 return 0;
5303 }
5304
5305 /* retrieve the largest free space block */
5306 e = get_extents(super, dl);
5307 maxsize = 0;
5308 i = 0;
5309 if (e) {
5310 do {
5311 unsigned long long esize;
5312
5313 esize = e[i].start - pos;
5314 if (esize >= maxsize)
5315 maxsize = esize;
5316 pos = e[i].start + e[i].size;
5317 i++;
5318 } while (e[i-1].size);
5319 dl->e = e;
5320 dl->extent_cnt = i;
5321 } else {
5322 if (verbose)
5323 fprintf(stderr, Name ": unable to determine free space for: %s\n",
5324 dev);
5325 return 0;
5326 }
5327 if (maxsize < size) {
5328 if (verbose)
5329 fprintf(stderr, Name ": %s not enough space (%llu < %llu)\n",
5330 dev, maxsize, size);
5331 return 0;
5332 }
5333
5334 /* count total number of extents for merge */
5335 i = 0;
5336 for (dl = super->disks; dl; dl = dl->next)
5337 if (dl->e)
5338 i += dl->extent_cnt;
5339
5340 maxsize = merge_extents(super, i);
5341
5342 if (!check_env("IMSM_NO_PLATFORM") &&
5343 mpb->num_raid_devs > 0 && size && size != maxsize) {
5344 fprintf(stderr, Name ": attempting to create a second "
5345 "volume with size less then remaining space. "
5346 "Aborting...\n");
5347 return 0;
5348 }
5349
5350 if (maxsize < size || maxsize == 0) {
5351 if (verbose)
5352 fprintf(stderr, Name ": not enough space after merge (%llu < %llu)\n",
5353 maxsize, size);
5354 return 0;
5355 }
5356
5357 *freesize = maxsize;
5358
5359 return 1;
5360 }
5361
5362 static int reserve_space(struct supertype *st, int raiddisks,
5363 unsigned long long size, int chunk,
5364 unsigned long long *freesize)
5365 {
5366 struct intel_super *super = st->sb;
5367 struct imsm_super *mpb = super->anchor;
5368 struct dl *dl;
5369 int i;
5370 int extent_cnt;
5371 struct extent *e;
5372 unsigned long long maxsize;
5373 unsigned long long minsize;
5374 int cnt;
5375 int used;
5376
5377 /* find the largest common start free region of the possible disks */
5378 used = 0;
5379 extent_cnt = 0;
5380 cnt = 0;
5381 for (dl = super->disks; dl; dl = dl->next) {
5382 dl->raiddisk = -1;
5383
5384 if (dl->index >= 0)
5385 used++;
5386
5387 /* don't activate new spares if we are orom constrained
5388 * and there is already a volume active in the container
5389 */
5390 if (super->orom && dl->index < 0 && mpb->num_raid_devs)
5391 continue;
5392
5393 e = get_extents(super, dl);
5394 if (!e)
5395 continue;
5396 for (i = 1; e[i-1].size; i++)
5397 ;
5398 dl->e = e;
5399 dl->extent_cnt = i;
5400 extent_cnt += i;
5401 cnt++;
5402 }
5403
5404 maxsize = merge_extents(super, extent_cnt);
5405 minsize = size;
5406 if (size == 0)
5407 /* chunk is in K */
5408 minsize = chunk * 2;
5409
5410 if (cnt < raiddisks ||
5411 (super->orom && used && used != raiddisks) ||
5412 maxsize < minsize ||
5413 maxsize == 0) {
5414 fprintf(stderr, Name ": not enough devices with space to create array.\n");
5415 return 0; /* No enough free spaces large enough */
5416 }
5417
5418 if (size == 0) {
5419 size = maxsize;
5420 if (chunk) {
5421 size /= 2 * chunk;
5422 size *= 2 * chunk;
5423 }
5424 }
5425
5426 cnt = 0;
5427 for (dl = super->disks; dl; dl = dl->next)
5428 if (dl->e)
5429 dl->raiddisk = cnt++;
5430
5431 *freesize = size;
5432
5433 return 1;
5434 }
5435
5436 static int validate_geometry_imsm(struct supertype *st, int level, int layout,
5437 int raiddisks, int *chunk, unsigned long long size,
5438 char *dev, unsigned long long *freesize,
5439 int verbose)
5440 {
5441 int fd, cfd;
5442 struct mdinfo *sra;
5443 int is_member = 0;
5444
5445 /* load capability
5446 * if given unused devices create a container
5447 * if given given devices in a container create a member volume
5448 */
5449 if (level == LEVEL_CONTAINER) {
5450 /* Must be a fresh device to add to a container */
5451 return validate_geometry_imsm_container(st, level, layout,
5452 raiddisks,
5453 chunk?*chunk:0, size,
5454 dev, freesize,
5455 verbose);
5456 }
5457
5458 if (!dev) {
5459 if (st->sb) {
5460 if (!validate_geometry_imsm_orom(st->sb, level, layout,
5461 raiddisks, chunk,
5462 verbose))
5463 return 0;
5464 /* we are being asked to automatically layout a
5465 * new volume based on the current contents of
5466 * the container. If the the parameters can be
5467 * satisfied reserve_space will record the disks,
5468 * start offset, and size of the volume to be
5469 * created. add_to_super and getinfo_super
5470 * detect when autolayout is in progress.
5471 */
5472 if (freesize)
5473 return reserve_space(st, raiddisks, size,
5474 chunk?*chunk:0, freesize);
5475 }
5476 return 1;
5477 }
5478 if (st->sb) {
5479 /* creating in a given container */
5480 return validate_geometry_imsm_volume(st, level, layout,
5481 raiddisks, chunk, size,
5482 dev, freesize, verbose);
5483 }
5484
5485 /* This device needs to be a device in an 'imsm' container */
5486 fd = open(dev, O_RDONLY|O_EXCL, 0);
5487 if (fd >= 0) {
5488 if (verbose)
5489 fprintf(stderr,
5490 Name ": Cannot create this array on device %s\n",
5491 dev);
5492 close(fd);
5493 return 0;
5494 }
5495 if (errno != EBUSY || (fd = open(dev, O_RDONLY, 0)) < 0) {
5496 if (verbose)
5497 fprintf(stderr, Name ": Cannot open %s: %s\n",
5498 dev, strerror(errno));
5499 return 0;
5500 }
5501 /* Well, it is in use by someone, maybe an 'imsm' container. */
5502 cfd = open_container(fd);
5503 close(fd);
5504 if (cfd < 0) {
5505 if (verbose)
5506 fprintf(stderr, Name ": Cannot use %s: It is busy\n",
5507 dev);
5508 return 0;
5509 }
5510 sra = sysfs_read(cfd, 0, GET_VERSION);
5511 if (sra && sra->array.major_version == -1 &&
5512 strcmp(sra->text_version, "imsm") == 0)
5513 is_member = 1;
5514 sysfs_free(sra);
5515 if (is_member) {
5516 /* This is a member of a imsm container. Load the container
5517 * and try to create a volume
5518 */
5519 struct intel_super *super;
5520
5521 if (load_super_imsm_all(st, cfd, (void **) &super, NULL) == 0) {
5522 st->sb = super;
5523 st->container_dev = fd2devnum(cfd);
5524 close(cfd);
5525 return validate_geometry_imsm_volume(st, level, layout,
5526 raiddisks, chunk,
5527 size, dev,
5528 freesize, 1)
5529 ? 1 : -1;
5530 }
5531 }
5532
5533 if (verbose)
5534 fprintf(stderr, Name ": failed container membership check\n");
5535
5536 close(cfd);
5537 return 0;
5538 }
5539
5540 static void default_geometry_imsm(struct supertype *st, int *level, int *layout, int *chunk)
5541 {
5542 struct intel_super *super = st->sb;
5543
5544 if (level && *level == UnSet)
5545 *level = LEVEL_CONTAINER;
5546
5547 if (level && layout && *layout == UnSet)
5548 *layout = imsm_level_to_layout(*level);
5549
5550 if (chunk && (*chunk == UnSet || *chunk == 0))
5551 *chunk = imsm_default_chunk(super->orom);
5552 }
5553
5554 static void handle_missing(struct intel_super *super, struct imsm_dev *dev);
5555
5556 static int kill_subarray_imsm(struct supertype *st)
5557 {
5558 /* remove the subarray currently referenced by ->current_vol */
5559 __u8 i;
5560 struct intel_dev **dp;
5561 struct intel_super *super = st->sb;
5562 __u8 current_vol = super->current_vol;
5563 struct imsm_super *mpb = super->anchor;
5564
5565 if (super->current_vol < 0)
5566 return 2;
5567 super->current_vol = -1; /* invalidate subarray cursor */
5568
5569 /* block deletions that would change the uuid of active subarrays
5570 *
5571 * FIXME when immutable ids are available, but note that we'll
5572 * also need to fixup the invalidated/active subarray indexes in
5573 * mdstat
5574 */
5575 for (i = 0; i < mpb->num_raid_devs; i++) {
5576 char subarray[4];
5577
5578 if (i < current_vol)
5579 continue;
5580 sprintf(subarray, "%u", i);
5581 if (is_subarray_active(subarray, st->devname)) {
5582 fprintf(stderr,
5583 Name ": deleting subarray-%d would change the UUID of active subarray-%d, aborting\n",
5584 current_vol, i);
5585
5586 return 2;
5587 }
5588 }
5589
5590 if (st->update_tail) {
5591 struct imsm_update_kill_array *u = malloc(sizeof(*u));
5592
5593 if (!u)
5594 return 2;
5595 u->type = update_kill_array;
5596 u->dev_idx = current_vol;
5597 append_metadata_update(st, u, sizeof(*u));
5598
5599 return 0;
5600 }
5601
5602 for (dp = &super->devlist; *dp;)
5603 if ((*dp)->index == current_vol) {
5604 *dp = (*dp)->next;
5605 } else {
5606 handle_missing(super, (*dp)->dev);
5607 if ((*dp)->index > current_vol)
5608 (*dp)->index--;
5609 dp = &(*dp)->next;
5610 }
5611
5612 /* no more raid devices, all active components are now spares,
5613 * but of course failed are still failed
5614 */
5615 if (--mpb->num_raid_devs == 0) {
5616 struct dl *d;
5617
5618 for (d = super->disks; d; d = d->next)
5619 if (d->index > -2)
5620 mark_spare(d);
5621 }
5622
5623 super->updates_pending++;
5624
5625 return 0;
5626 }
5627
5628 static int update_subarray_imsm(struct supertype *st, char *subarray,
5629 char *update, struct mddev_ident *ident)
5630 {
5631 /* update the subarray currently referenced by ->current_vol */
5632 struct intel_super *super = st->sb;
5633 struct imsm_super *mpb = super->anchor;
5634
5635 if (strcmp(update, "name") == 0) {
5636 char *name = ident->name;
5637 char *ep;
5638 int vol;
5639
5640 if (is_subarray_active(subarray, st->devname)) {
5641 fprintf(stderr,
5642 Name ": Unable to update name of active subarray\n");
5643 return 2;
5644 }
5645
5646 if (!check_name(super, name, 0))
5647 return 2;
5648
5649 vol = strtoul(subarray, &ep, 10);
5650 if (*ep != '\0' || vol >= super->anchor->num_raid_devs)
5651 return 2;
5652
5653 if (st->update_tail) {
5654 struct imsm_update_rename_array *u = malloc(sizeof(*u));
5655
5656 if (!u)
5657 return 2;
5658 u->type = update_rename_array;
5659 u->dev_idx = vol;
5660 snprintf((char *) u->name, MAX_RAID_SERIAL_LEN, "%s", name);
5661 append_metadata_update(st, u, sizeof(*u));
5662 } else {
5663 struct imsm_dev *dev;
5664 int i;
5665
5666 dev = get_imsm_dev(super, vol);
5667 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
5668 for (i = 0; i < mpb->num_raid_devs; i++) {
5669 dev = get_imsm_dev(super, i);
5670 handle_missing(super, dev);
5671 }
5672 super->updates_pending++;
5673 }
5674 } else
5675 return 2;
5676
5677 return 0;
5678 }
5679
5680 static int is_gen_migration(struct imsm_dev *dev)
5681 {
5682 if (dev == NULL)
5683 return 0;
5684
5685 if (!dev->vol.migr_state)
5686 return 0;
5687
5688 if (migr_type(dev) == MIGR_GEN_MIGR)
5689 return 1;
5690
5691 return 0;
5692 }
5693 #endif /* MDASSEMBLE */
5694
5695 static int is_rebuilding(struct imsm_dev *dev)
5696 {
5697 struct imsm_map *migr_map;
5698
5699 if (!dev->vol.migr_state)
5700 return 0;
5701
5702 if (migr_type(dev) != MIGR_REBUILD)
5703 return 0;
5704
5705 migr_map = get_imsm_map(dev, 1);
5706
5707 if (migr_map->map_state == IMSM_T_STATE_DEGRADED)
5708 return 1;
5709 else
5710 return 0;
5711 }
5712
5713 static void update_recovery_start(struct intel_super *super,
5714 struct imsm_dev *dev,
5715 struct mdinfo *array)
5716 {
5717 struct mdinfo *rebuild = NULL;
5718 struct mdinfo *d;
5719 __u32 units;
5720
5721 if (!is_rebuilding(dev))
5722 return;
5723
5724 /* Find the rebuild target, but punt on the dual rebuild case */
5725 for (d = array->devs; d; d = d->next)
5726 if (d->recovery_start == 0) {
5727 if (rebuild)
5728 return;
5729 rebuild = d;
5730 }
5731
5732 if (!rebuild) {
5733 /* (?) none of the disks are marked with
5734 * IMSM_ORD_REBUILD, so assume they are missing and the
5735 * disk_ord_tbl was not correctly updated
5736 */
5737 dprintf("%s: failed to locate out-of-sync disk\n", __func__);
5738 return;
5739 }
5740
5741 units = __le32_to_cpu(dev->vol.curr_migr_unit);
5742 rebuild->recovery_start = units * blocks_per_migr_unit(super, dev);
5743 }
5744
5745 #ifndef MDASSEMBLE
5746 static int recover_backup_imsm(struct supertype *st, struct mdinfo *info);
5747 #endif
5748
5749 static struct mdinfo *container_content_imsm(struct supertype *st, char *subarray)
5750 {
5751 /* Given a container loaded by load_super_imsm_all,
5752 * extract information about all the arrays into
5753 * an mdinfo tree.
5754 * If 'subarray' is given, just extract info about that array.
5755 *
5756 * For each imsm_dev create an mdinfo, fill it in,
5757 * then look for matching devices in super->disks
5758 * and create appropriate device mdinfo.
5759 */
5760 struct intel_super *super = st->sb;
5761 struct imsm_super *mpb = super->anchor;
5762 struct mdinfo *rest = NULL;
5763 unsigned int i;
5764 int sb_errors = 0;
5765 struct dl *d;
5766 int spare_disks = 0;
5767
5768 /* do not assemble arrays when not all attributes are supported */
5769 if (imsm_check_attributes(mpb->attributes) == 0) {
5770 sb_errors = 1;
5771 fprintf(stderr, Name ": Unsupported attributes in IMSM metadata."
5772 "Arrays activation is blocked.\n");
5773 }
5774
5775 /* check for bad blocks */
5776 if (imsm_bbm_log_size(super->anchor)) {
5777 fprintf(stderr, Name ": BBM log found in IMSM metadata."
5778 "Arrays activation is blocked.\n");
5779 sb_errors = 1;
5780 }
5781
5782
5783 /* count spare devices, not used in maps
5784 */
5785 for (d = super->disks; d; d = d->next)
5786 if (d->index == -1)
5787 spare_disks++;
5788
5789 for (i = 0; i < mpb->num_raid_devs; i++) {
5790 struct imsm_dev *dev;
5791 struct imsm_map *map;
5792 struct imsm_map *map2;
5793 struct mdinfo *this;
5794 int slot, chunk;
5795 char *ep;
5796
5797 if (subarray &&
5798 (i != strtoul(subarray, &ep, 10) || *ep != '\0'))
5799 continue;
5800
5801 dev = get_imsm_dev(super, i);
5802 map = get_imsm_map(dev, 0);
5803 map2 = get_imsm_map(dev, 1);
5804
5805 /* do not publish arrays that are in the middle of an
5806 * unsupported migration
5807 */
5808 if (dev->vol.migr_state &&
5809 (migr_type(dev) == MIGR_STATE_CHANGE)) {
5810 fprintf(stderr, Name ": cannot assemble volume '%.16s':"
5811 " unsupported migration in progress\n",
5812 dev->volume);
5813 continue;
5814 }
5815 /* do not publish arrays that are not support by controller's
5816 * OROM/EFI
5817 */
5818
5819 chunk = __le16_to_cpu(map->blocks_per_strip) >> 1;
5820 this = malloc(sizeof(*this));
5821 if (!this) {
5822 fprintf(stderr, Name ": failed to allocate %zu bytes\n",
5823 sizeof(*this));
5824 break;
5825 }
5826
5827 super->current_vol = i;
5828 getinfo_super_imsm_volume(st, this, NULL);
5829 this->next = rest;
5830 #ifndef MDASSEMBLE
5831 /* mdadm does not support all metadata features- set the bit in all arrays state */
5832 if (!validate_geometry_imsm_orom(super,
5833 get_imsm_raid_level(map), /* RAID level */
5834 imsm_level_to_layout(get_imsm_raid_level(map)),
5835 map->num_members, /* raid disks */
5836 &chunk,
5837 1 /* verbose */)) {
5838 fprintf(stderr, Name ": IMSM RAID geometry validation"
5839 " failed. Array %s activation is blocked.\n",
5840 dev->volume);
5841 this->array.state |=
5842 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
5843 (1<<MD_SB_BLOCK_VOLUME);
5844 }
5845 #endif
5846
5847 /* if array has bad blocks, set suitable bit in all arrays state */
5848 if (sb_errors)
5849 this->array.state |=
5850 (1<<MD_SB_BLOCK_CONTAINER_RESHAPE) |
5851 (1<<MD_SB_BLOCK_VOLUME);
5852
5853 for (slot = 0 ; slot < map->num_members; slot++) {
5854 unsigned long long recovery_start;
5855 struct mdinfo *info_d;
5856 struct dl *d;
5857 int idx;
5858 int skip;
5859 __u32 ord;
5860
5861 skip = 0;
5862 idx = get_imsm_disk_idx(dev, slot, 0);
5863 ord = get_imsm_ord_tbl_ent(dev, slot, -1);
5864 for (d = super->disks; d ; d = d->next)
5865 if (d->index == idx)
5866 break;
5867
5868 recovery_start = MaxSector;
5869 if (d == NULL)
5870 skip = 1;
5871 if (d && is_failed(&d->disk))
5872 skip = 1;
5873 if (ord & IMSM_ORD_REBUILD)
5874 recovery_start = 0;
5875
5876 /*
5877 * if we skip some disks the array will be assmebled degraded;
5878 * reset resync start to avoid a dirty-degraded
5879 * situation when performing the intial sync
5880 *
5881 * FIXME handle dirty degraded
5882 */
5883 if ((skip || recovery_start == 0) && !dev->vol.dirty)
5884 this->resync_start = MaxSector;
5885 if (skip)
5886 continue;
5887
5888 info_d = calloc(1, sizeof(*info_d));
5889 if (!info_d) {
5890 fprintf(stderr, Name ": failed to allocate disk"
5891 " for volume %.16s\n", dev->volume);
5892 info_d = this->devs;
5893 while (info_d) {
5894 struct mdinfo *d = info_d->next;
5895
5896 free(info_d);
5897 info_d = d;
5898 }
5899 free(this);
5900 this = rest;
5901 break;
5902 }
5903 info_d->next = this->devs;
5904 this->devs = info_d;
5905
5906 info_d->disk.number = d->index;
5907 info_d->disk.major = d->major;
5908 info_d->disk.minor = d->minor;
5909 info_d->disk.raid_disk = slot;
5910 info_d->recovery_start = recovery_start;
5911 if (map2) {
5912 if (slot < map2->num_members)
5913 info_d->disk.state = (1 << MD_DISK_ACTIVE);
5914 else
5915 this->array.spare_disks++;
5916 } else {
5917 if (slot < map->num_members)
5918 info_d->disk.state = (1 << MD_DISK_ACTIVE);
5919 else
5920 this->array.spare_disks++;
5921 }
5922 if (info_d->recovery_start == MaxSector)
5923 this->array.working_disks++;
5924
5925 info_d->events = __le32_to_cpu(mpb->generation_num);
5926 info_d->data_offset = __le32_to_cpu(map->pba_of_lba0);
5927 info_d->component_size = __le32_to_cpu(map->blocks_per_member);
5928 }
5929 /* now that the disk list is up-to-date fixup recovery_start */
5930 update_recovery_start(super, dev, this);
5931 this->array.spare_disks += spare_disks;
5932
5933 #ifndef MDASSEMBLE
5934 /* check for reshape */
5935 if (this->reshape_active == 1)
5936 recover_backup_imsm(st, this);
5937 #endif
5938 rest = this;
5939 }
5940
5941 return rest;
5942 }
5943
5944
5945 static __u8 imsm_check_degraded(struct intel_super *super, struct imsm_dev *dev,
5946 int failed, int look_in_map)
5947 {
5948 struct imsm_map *map;
5949
5950 map = get_imsm_map(dev, look_in_map);
5951
5952 if (!failed)
5953 return map->map_state == IMSM_T_STATE_UNINITIALIZED ?
5954 IMSM_T_STATE_UNINITIALIZED : IMSM_T_STATE_NORMAL;
5955
5956 switch (get_imsm_raid_level(map)) {
5957 case 0:
5958 return IMSM_T_STATE_FAILED;
5959 break;
5960 case 1:
5961 if (failed < map->num_members)
5962 return IMSM_T_STATE_DEGRADED;
5963 else
5964 return IMSM_T_STATE_FAILED;
5965 break;
5966 case 10:
5967 {
5968 /**
5969 * check to see if any mirrors have failed, otherwise we
5970 * are degraded. Even numbered slots are mirrored on
5971 * slot+1
5972 */
5973 int i;
5974 /* gcc -Os complains that this is unused */
5975 int insync = insync;
5976
5977 for (i = 0; i < map->num_members; i++) {
5978 __u32 ord = get_imsm_ord_tbl_ent(dev, i, -1);
5979 int idx = ord_to_idx(ord);
5980 struct imsm_disk *disk;
5981
5982 /* reset the potential in-sync count on even-numbered
5983 * slots. num_copies is always 2 for imsm raid10
5984 */
5985 if ((i & 1) == 0)
5986 insync = 2;
5987
5988 disk = get_imsm_disk(super, idx);
5989 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
5990 insync--;
5991
5992 /* no in-sync disks left in this mirror the
5993 * array has failed
5994 */
5995 if (insync == 0)
5996 return IMSM_T_STATE_FAILED;
5997 }
5998
5999 return IMSM_T_STATE_DEGRADED;
6000 }
6001 case 5:
6002 if (failed < 2)
6003 return IMSM_T_STATE_DEGRADED;
6004 else
6005 return IMSM_T_STATE_FAILED;
6006 break;
6007 default:
6008 break;
6009 }
6010
6011 return map->map_state;
6012 }
6013
6014 static int imsm_count_failed(struct intel_super *super, struct imsm_dev *dev,
6015 int look_in_map)
6016 {
6017 int i;
6018 int failed = 0;
6019 struct imsm_disk *disk;
6020 struct imsm_map *map = get_imsm_map(dev, MAP_0);
6021 struct imsm_map *prev = get_imsm_map(dev, MAP_1);
6022 struct imsm_map *map_for_loop;
6023 __u32 ord;
6024 int idx;
6025 int idx_1;
6026
6027 /* at the beginning of migration we set IMSM_ORD_REBUILD on
6028 * disks that are being rebuilt. New failures are recorded to
6029 * map[0]. So we look through all the disks we started with and
6030 * see if any failures are still present, or if any new ones
6031 * have arrived
6032 */
6033 map_for_loop = map;
6034 if (prev && (map->num_members < prev->num_members))
6035 map_for_loop = prev;
6036
6037 for (i = 0; i < map_for_loop->num_members; i++) {
6038 idx_1 = -255;
6039 if (prev &&
6040 (look_in_map & MAP_1) && (i < prev->num_members)) {
6041 ord = __le32_to_cpu(prev->disk_ord_tbl[i]);
6042 idx_1 = ord_to_idx(ord);
6043
6044 disk = get_imsm_disk(super, idx_1);
6045 if (!disk || is_failed(disk) || ord & IMSM_ORD_REBUILD)
6046 failed++;
6047 }
6048 if ((look_in_map & MAP_0) && (i < map->num_members)) {
6049 ord = __le32_to_cpu(map->disk_ord_tbl[i]);
6050 idx = ord_to_idx(ord);
6051
6052 if (idx != idx_1) {
6053 disk = get_imsm_disk(super, idx);
6054 if (!disk || is_failed(disk) ||
6055 ord & IMSM_ORD_REBUILD)
6056 failed++;
6057 }
6058 }
6059 }
6060
6061 return failed;
6062 }
6063
6064 #ifndef MDASSEMBLE
6065 static int imsm_open_new(struct supertype *c, struct active_array *a,
6066 char *inst)
6067 {
6068 struct intel_super *super = c->sb;
6069 struct imsm_super *mpb = super->anchor;
6070
6071 if (atoi(inst) >= mpb->num_raid_devs) {
6072 fprintf(stderr, "%s: subarry index %d, out of range\n",
6073 __func__, atoi(inst));
6074 return -ENODEV;
6075 }
6076
6077 dprintf("imsm: open_new %s\n", inst);
6078 a->info.container_member = atoi(inst);
6079 return 0;
6080 }
6081
6082 static int is_resyncing(struct imsm_dev *dev)
6083 {
6084 struct imsm_map *migr_map;
6085
6086 if (!dev->vol.migr_state)
6087 return 0;
6088
6089 if (migr_type(dev) == MIGR_INIT ||
6090 migr_type(dev) == MIGR_REPAIR)
6091 return 1;
6092
6093 if (migr_type(dev) == MIGR_GEN_MIGR)
6094 return 0;
6095
6096 migr_map = get_imsm_map(dev, 1);
6097
6098 if ((migr_map->map_state == IMSM_T_STATE_NORMAL) &&
6099 (dev->vol.migr_type != MIGR_GEN_MIGR))
6100 return 1;
6101 else
6102 return 0;
6103 }
6104
6105 /* return true if we recorded new information */
6106 static int mark_failure(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
6107 {
6108 __u32 ord;
6109 int slot;
6110 struct imsm_map *map;
6111 char buf[MAX_RAID_SERIAL_LEN+3];
6112 unsigned int len, shift = 0;
6113
6114 /* new failures are always set in map[0] */
6115 map = get_imsm_map(dev, 0);
6116
6117 slot = get_imsm_disk_slot(map, idx);
6118 if (slot < 0)
6119 return 0;
6120
6121 ord = __le32_to_cpu(map->disk_ord_tbl[slot]);
6122 if (is_failed(disk) && (ord & IMSM_ORD_REBUILD))
6123 return 0;
6124
6125 memcpy(buf, disk->serial, MAX_RAID_SERIAL_LEN);
6126 buf[MAX_RAID_SERIAL_LEN] = '\000';
6127 strcat(buf, ":0");
6128 if ((len = strlen(buf)) >= MAX_RAID_SERIAL_LEN)
6129 shift = len - MAX_RAID_SERIAL_LEN + 1;
6130 strncpy((char *)disk->serial, &buf[shift], MAX_RAID_SERIAL_LEN);
6131
6132 disk->status |= FAILED_DISK;
6133 set_imsm_ord_tbl_ent(map, slot, idx | IMSM_ORD_REBUILD);
6134 if (is_gen_migration(dev)) {
6135 struct imsm_map *map2 = get_imsm_map(dev, 1);
6136 if (slot < map2->num_members)
6137 set_imsm_ord_tbl_ent(map2, slot,
6138 idx | IMSM_ORD_REBUILD);
6139 }
6140 if (map->failed_disk_num == 0xff)
6141 map->failed_disk_num = slot;
6142 return 1;
6143 }
6144
6145 static void mark_missing(struct imsm_dev *dev, struct imsm_disk *disk, int idx)
6146 {
6147 mark_failure(dev, disk, idx);
6148
6149 if (disk->scsi_id == __cpu_to_le32(~(__u32)0))
6150 return;
6151
6152 disk->scsi_id = __cpu_to_le32(~(__u32)0);
6153 memmove(&disk->serial[0], &disk->serial[1], MAX_RAID_SERIAL_LEN - 1);
6154 }
6155
6156 static void handle_missing(struct intel_super *super, struct imsm_dev *dev)
6157 {
6158 struct dl *dl;
6159
6160 if (!super->missing)
6161 return;
6162
6163 dprintf("imsm: mark missing\n");
6164 for (dl = super->missing; dl; dl = dl->next)
6165 mark_missing(dev, &dl->disk, dl->index);
6166 super->updates_pending++;
6167 }
6168
6169 static unsigned long long imsm_set_array_size(struct imsm_dev *dev)
6170 {
6171 int used_disks = imsm_num_data_members(dev, 0);
6172 unsigned long long array_blocks;
6173 struct imsm_map *map;
6174
6175 if (used_disks == 0) {
6176 /* when problems occures
6177 * return current array_blocks value
6178 */
6179 array_blocks = __le32_to_cpu(dev->size_high);
6180 array_blocks = array_blocks << 32;
6181 array_blocks += __le32_to_cpu(dev->size_low);
6182
6183 return array_blocks;
6184 }
6185
6186 /* set array size in metadata
6187 */
6188 map = get_imsm_map(dev, 0);
6189 array_blocks = map->blocks_per_member * used_disks;
6190
6191 /* round array size down to closest MB
6192 */
6193 array_blocks = (array_blocks >> SECT_PER_MB_SHIFT) << SECT_PER_MB_SHIFT;
6194 dev->size_low = __cpu_to_le32((__u32)array_blocks);
6195 dev->size_high = __cpu_to_le32((__u32)(array_blocks >> 32));
6196
6197 return array_blocks;
6198 }
6199
6200 static void imsm_set_disk(struct active_array *a, int n, int state);
6201
6202 static void imsm_progress_container_reshape(struct intel_super *super)
6203 {
6204 /* if no device has a migr_state, but some device has a
6205 * different number of members than the previous device, start
6206 * changing the number of devices in this device to match
6207 * previous.
6208 */
6209 struct imsm_super *mpb = super->anchor;
6210 int prev_disks = -1;
6211 int i;
6212 int copy_map_size;
6213
6214 for (i = 0; i < mpb->num_raid_devs; i++) {
6215 struct imsm_dev *dev = get_imsm_dev(super, i);
6216 struct imsm_map *map = get_imsm_map(dev, 0);
6217 struct imsm_map *map2;
6218 int prev_num_members;
6219
6220 if (dev->vol.migr_state)
6221 return;
6222
6223 if (prev_disks == -1)
6224 prev_disks = map->num_members;
6225 if (prev_disks == map->num_members)
6226 continue;
6227
6228 /* OK, this array needs to enter reshape mode.
6229 * i.e it needs a migr_state
6230 */
6231
6232 copy_map_size = sizeof_imsm_map(map);
6233 prev_num_members = map->num_members;
6234 map->num_members = prev_disks;
6235 dev->vol.migr_state = 1;
6236 dev->vol.curr_migr_unit = 0;
6237 set_migr_type(dev, MIGR_GEN_MIGR);
6238 for (i = prev_num_members;
6239 i < map->num_members; i++)
6240 set_imsm_ord_tbl_ent(map, i, i);
6241 map2 = get_imsm_map(dev, 1);
6242 /* Copy the current map */
6243 memcpy(map2, map, copy_map_size);
6244 map2->num_members = prev_num_members;
6245
6246 imsm_set_array_size(dev);
6247 super->updates_pending++;
6248 }
6249 }
6250
6251 /* Handle dirty -> clean transititions, resync and reshape. Degraded and rebuild
6252 * states are handled in imsm_set_disk() with one exception, when a
6253 * resync is stopped due to a new failure this routine will set the
6254 * 'degraded' state for the array.
6255 */
6256 static int imsm_set_array_state(struct active_array *a, int consistent)
6257 {
6258 int inst = a->info.container_member;
6259 struct intel_super *super = a->container->sb;
6260 struct imsm_dev *dev = get_imsm_dev(super, inst);
6261 struct imsm_map *map = get_imsm_map(dev, 0);
6262 int failed = imsm_count_failed(super, dev, MAP_0);
6263 __u8 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
6264 __u32 blocks_per_unit;
6265
6266 if (dev->vol.migr_state &&
6267 dev->vol.migr_type == MIGR_GEN_MIGR) {
6268 /* array state change is blocked due to reshape action
6269 * We might need to
6270 * - abort the reshape (if last_checkpoint is 0 and action!= reshape)
6271 * - finish the reshape (if last_checkpoint is big and action != reshape)
6272 * - update curr_migr_unit
6273 */
6274 if (a->curr_action == reshape) {
6275 /* still reshaping, maybe update curr_migr_unit */
6276 goto mark_checkpoint;
6277 } else {
6278 if (a->last_checkpoint == 0 && a->prev_action == reshape) {
6279 /* for some reason we aborted the reshape.
6280 *
6281 * disable automatic metadata rollback
6282 * user action is required to recover process
6283 */
6284 if (0) {
6285 struct imsm_map *map2 = get_imsm_map(dev, 1);
6286 dev->vol.migr_state = 0;
6287 set_migr_type(dev, 0);
6288 dev->vol.curr_migr_unit = 0;
6289 memcpy(map, map2, sizeof_imsm_map(map2));
6290 super->updates_pending++;
6291 }
6292 }
6293 if (a->last_checkpoint >= a->info.component_size) {
6294 unsigned long long array_blocks;
6295 int used_disks;
6296 struct mdinfo *mdi;
6297
6298 used_disks = imsm_num_data_members(dev, 0);
6299 if (used_disks > 0) {
6300 array_blocks =
6301 map->blocks_per_member *
6302 used_disks;
6303 /* round array size down to closest MB
6304 */
6305 array_blocks = (array_blocks
6306 >> SECT_PER_MB_SHIFT)
6307 << SECT_PER_MB_SHIFT;
6308 a->info.custom_array_size = array_blocks;
6309 /* encourage manager to update array
6310 * size
6311 */
6312
6313 a->check_reshape = 1;
6314 }
6315 /* finalize online capacity expansion/reshape */
6316 for (mdi = a->info.devs; mdi; mdi = mdi->next)
6317 imsm_set_disk(a,
6318 mdi->disk.raid_disk,
6319 mdi->curr_state);
6320
6321 imsm_progress_container_reshape(super);
6322 }
6323 }
6324 }
6325
6326 /* before we activate this array handle any missing disks */
6327 if (consistent == 2)
6328 handle_missing(super, dev);
6329
6330 if (consistent == 2 &&
6331 (!is_resync_complete(&a->info) ||
6332 map_state != IMSM_T_STATE_NORMAL ||
6333 dev->vol.migr_state))
6334 consistent = 0;
6335
6336 if (is_resync_complete(&a->info)) {
6337 /* complete intialization / resync,
6338 * recovery and interrupted recovery is completed in
6339 * ->set_disk
6340 */
6341 if (is_resyncing(dev)) {
6342 dprintf("imsm: mark resync done\n");
6343 end_migration(dev, map_state);
6344 super->updates_pending++;
6345 a->last_checkpoint = 0;
6346 }
6347 } else if ((!is_resyncing(dev) && !failed) &&
6348 (imsm_reshape_blocks_arrays_changes(super) == 0)) {
6349 /* mark the start of the init process if nothing is failed */
6350 dprintf("imsm: mark resync start\n");
6351 if (map->map_state == IMSM_T_STATE_UNINITIALIZED)
6352 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_INIT);
6353 else
6354 migrate(dev, super, IMSM_T_STATE_NORMAL, MIGR_REPAIR);
6355 super->updates_pending++;
6356 }
6357
6358 mark_checkpoint:
6359 /* skip checkpointing for general migration,
6360 * it is controlled in mdadm
6361 */
6362 if (is_gen_migration(dev))
6363 goto skip_mark_checkpoint;
6364
6365 /* check if we can update curr_migr_unit from resync_start, recovery_start */
6366 blocks_per_unit = blocks_per_migr_unit(super, dev);
6367 if (blocks_per_unit) {
6368 __u32 units32;
6369 __u64 units;
6370
6371 units = a->last_checkpoint / blocks_per_unit;
6372 units32 = units;
6373
6374 /* check that we did not overflow 32-bits, and that
6375 * curr_migr_unit needs updating
6376 */
6377 if (units32 == units &&
6378 units32 != 0 &&
6379 __le32_to_cpu(dev->vol.curr_migr_unit) != units32) {
6380 dprintf("imsm: mark checkpoint (%u)\n", units32);
6381 dev->vol.curr_migr_unit = __cpu_to_le32(units32);
6382 super->updates_pending++;
6383 }
6384 }
6385
6386 skip_mark_checkpoint:
6387 /* mark dirty / clean */
6388 if (dev->vol.dirty != !consistent) {
6389 dprintf("imsm: mark '%s'\n", consistent ? "clean" : "dirty");
6390 if (consistent)
6391 dev->vol.dirty = 0;
6392 else
6393 dev->vol.dirty = 1;
6394 super->updates_pending++;
6395 }
6396
6397 return consistent;
6398 }
6399
6400 static void imsm_set_disk(struct active_array *a, int n, int state)
6401 {
6402 int inst = a->info.container_member;
6403 struct intel_super *super = a->container->sb;
6404 struct imsm_dev *dev = get_imsm_dev(super, inst);
6405 struct imsm_map *map = get_imsm_map(dev, 0);
6406 struct imsm_disk *disk;
6407 int failed;
6408 __u32 ord;
6409 __u8 map_state;
6410
6411 if (n > map->num_members)
6412 fprintf(stderr, "imsm: set_disk %d out of range 0..%d\n",
6413 n, map->num_members - 1);
6414
6415 if (n < 0)
6416 return;
6417
6418 dprintf("imsm: set_disk %d:%x\n", n, state);
6419
6420 ord = get_imsm_ord_tbl_ent(dev, n, -2);
6421 disk = get_imsm_disk(super, ord_to_idx(ord));
6422
6423 /* check for new failures */
6424 if (state & DS_FAULTY) {
6425 if (mark_failure(dev, disk, ord_to_idx(ord)))
6426 super->updates_pending++;
6427 }
6428
6429 /* check if in_sync */
6430 if (state & DS_INSYNC && ord & IMSM_ORD_REBUILD && is_rebuilding(dev)) {
6431 struct imsm_map *migr_map = get_imsm_map(dev, 1);
6432
6433 set_imsm_ord_tbl_ent(migr_map, n, ord_to_idx(ord));
6434 super->updates_pending++;
6435 }
6436
6437 failed = imsm_count_failed(super, dev, MAP_0);
6438 map_state = imsm_check_degraded(super, dev, failed, MAP_0);
6439
6440 /* check if recovery complete, newly degraded, or failed */
6441 if (map_state == IMSM_T_STATE_NORMAL && is_rebuilding(dev)) {
6442 end_migration(dev, map_state);
6443 map = get_imsm_map(dev, 0);
6444 map->failed_disk_num = ~0;
6445 super->updates_pending++;
6446 a->last_checkpoint = 0;
6447 } else if (map_state == IMSM_T_STATE_DEGRADED &&
6448 map->map_state != map_state &&
6449 !dev->vol.migr_state) {
6450 dprintf("imsm: mark degraded\n");
6451 map->map_state = map_state;
6452 super->updates_pending++;
6453 a->last_checkpoint = 0;
6454 } else if (map_state == IMSM_T_STATE_FAILED &&
6455 map->map_state != map_state) {
6456 dprintf("imsm: mark failed\n");
6457 end_migration(dev, map_state);
6458 super->updates_pending++;
6459 a->last_checkpoint = 0;
6460 } else if (is_gen_migration(dev)) {
6461 dprintf("imsm: Detected General Migration in state: ");
6462
6463 switch (map_state) {
6464 case IMSM_T_STATE_NORMAL:
6465 dprintf("normal\n");
6466 if (a->last_checkpoint >= a->info.component_size)
6467 end_migration(dev, map_state);
6468 map = get_imsm_map(dev, 0);
6469 map->failed_disk_num = ~0;
6470 break;
6471 case IMSM_T_STATE_DEGRADED:
6472 dprintf("degraded\n");
6473 if (a->last_checkpoint >= a->info.component_size)
6474 end_migration(dev, map_state);
6475 else
6476 manage_second_map(super, dev);
6477 break;
6478 default:
6479 dprintf("failed\n");
6480 }
6481 map->map_state = map_state;
6482 super->updates_pending++;
6483 }
6484 }
6485
6486 static int store_imsm_mpb(int fd, struct imsm_super *mpb)
6487 {
6488 void *buf = mpb;
6489 __u32 mpb_size = __le32_to_cpu(mpb->mpb_size);
6490 unsigned long long dsize;
6491 unsigned long long sectors;
6492
6493 get_dev_size(fd, NULL, &dsize);
6494
6495 if (mpb_size > 512) {
6496 /* -1 to account for anchor */
6497 sectors = mpb_sectors(mpb) - 1;
6498
6499 /* write the extended mpb to the sectors preceeding the anchor */
6500 if (lseek64(fd, dsize - (512 * (2 + sectors)), SEEK_SET) < 0)
6501 return 1;
6502
6503 if ((unsigned long long)write(fd, buf + 512, 512 * sectors)
6504 != 512 * sectors)
6505 return 1;
6506 }
6507
6508 /* first block is stored on second to last sector of the disk */
6509 if (lseek64(fd, dsize - (512 * 2), SEEK_SET) < 0)
6510 return 1;
6511
6512 if (write(fd, buf, 512) != 512)
6513 return 1;
6514
6515 return 0;
6516 }
6517
6518 static void imsm_sync_metadata(struct supertype *container)
6519 {
6520 struct intel_super *super = container->sb;
6521
6522 dprintf("sync metadata: %d\n", super->updates_pending);
6523 if (!super->updates_pending)
6524 return;
6525
6526 write_super_imsm(container, 0);
6527
6528 super->updates_pending = 0;
6529 }
6530
6531 static struct dl *imsm_readd(struct intel_super *super, int idx, struct active_array *a)
6532 {
6533 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
6534 int i = get_imsm_disk_idx(dev, idx, -1);
6535 struct dl *dl;
6536
6537 for (dl = super->disks; dl; dl = dl->next)
6538 if (dl->index == i)
6539 break;
6540
6541 if (dl && is_failed(&dl->disk))
6542 dl = NULL;
6543
6544 if (dl)
6545 dprintf("%s: found %x:%x\n", __func__, dl->major, dl->minor);
6546
6547 return dl;
6548 }
6549
6550 static struct dl *imsm_add_spare(struct intel_super *super, int slot,
6551 struct active_array *a, int activate_new,
6552 struct mdinfo *additional_test_list)
6553 {
6554 struct imsm_dev *dev = get_imsm_dev(super, a->info.container_member);
6555 int idx = get_imsm_disk_idx(dev, slot, -1);
6556 struct imsm_super *mpb = super->anchor;
6557 struct imsm_map *map;
6558 unsigned long long pos;
6559 struct mdinfo *d;
6560 struct extent *ex;
6561 int i, j;
6562 int found;
6563 __u32 array_start = 0;
6564 __u32 array_end = 0;
6565 struct dl *dl;
6566 struct mdinfo *test_list;
6567
6568 for (dl = super->disks; dl; dl = dl->next) {
6569 /* If in this array, skip */
6570 for (d = a->info.devs ; d ; d = d->next)
6571 if (d->state_fd >= 0 &&
6572 d->disk.major == dl->major &&
6573 d->disk.minor == dl->minor) {
6574 dprintf("%x:%x already in array\n",
6575 dl->major, dl->minor);
6576 break;
6577 }
6578 if (d)
6579 continue;
6580 test_list = additional_test_list;
6581 while (test_list) {
6582 if (test_list->disk.major == dl->major &&
6583 test_list->disk.minor == dl->minor) {
6584 dprintf("%x:%x already in additional test list\n",
6585 dl->major, dl->minor);
6586 break;
6587 }
6588 test_list = test_list->next;
6589 }
6590 if (test_list)
6591 continue;
6592
6593 /* skip in use or failed drives */
6594 if (is_failed(&dl->disk) || idx == dl->index ||
6595 dl->index == -2) {
6596 dprintf("%x:%x status (failed: %d index: %d)\n",
6597 dl->major, dl->minor, is_failed(&dl->disk), idx);
6598 continue;
6599 }
6600
6601 /* skip pure spares when we are looking for partially
6602 * assimilated drives
6603 */
6604 if (dl->index == -1 && !activate_new)
6605 continue;
6606
6607 /* Does this unused device have the requisite free space?
6608 * It needs to be able to cover all member volumes
6609 */
6610 ex = get_extents(super, dl);
6611 if (!ex) {
6612 dprintf("cannot get extents\n");
6613 continue;
6614 }
6615 for (i = 0; i < mpb->num_raid_devs; i++) {
6616 dev = get_imsm_dev(super, i);
6617 map = get_imsm_map(dev, 0);
6618
6619 /* check if this disk is already a member of
6620 * this array
6621 */
6622 if (get_imsm_disk_slot(map, dl->index) >= 0)
6623 continue;
6624
6625 found = 0;
6626 j = 0;
6627 pos = 0;
6628 array_start = __le32_to_cpu(map->pba_of_lba0);
6629 array_end = array_start +
6630 __le32_to_cpu(map->blocks_per_member) - 1;
6631
6632 do {
6633 /* check that we can start at pba_of_lba0 with
6634 * blocks_per_member of space
6635 */
6636 if (array_start >= pos && array_end < ex[j].start) {
6637 found = 1;
6638 break;
6639 }
6640 pos = ex[j].start + ex[j].size;
6641 j++;
6642 } while (ex[j-1].size);
6643
6644 if (!found)
6645 break;
6646 }
6647
6648 free(ex);
6649 if (i < mpb->num_raid_devs) {
6650 dprintf("%x:%x does not have %u to %u available\n",
6651 dl->major, dl->minor, array_start, array_end);
6652 /* No room */
6653 continue;
6654 }
6655 return dl;
6656 }
6657
6658 return dl;
6659 }
6660
6661
6662 static int imsm_rebuild_allowed(struct supertype *cont, int dev_idx, int failed)
6663 {
6664 struct imsm_dev *dev2;
6665 struct imsm_map *map;
6666 struct dl *idisk;
6667 int slot;
6668 int idx;
6669 __u8 state;
6670
6671 dev2 = get_imsm_dev(cont->sb, dev_idx);
6672 if (dev2) {
6673 state = imsm_check_degraded(cont->sb, dev2, failed,
6674 MAP_0);
6675 if (state == IMSM_T_STATE_FAILED) {
6676 map = get_imsm_map(dev2, 0);
6677 if (!map)
6678 return 1;
6679 for (slot = 0; slot < map->num_members; slot++) {
6680 /*
6681 * Check if failed disks are deleted from intel
6682 * disk list or are marked to be deleted
6683 */
6684 idx = get_imsm_disk_idx(dev2, slot, -1);
6685 idisk = get_imsm_dl_disk(cont->sb, idx);
6686 /*
6687 * Do not rebuild the array if failed disks
6688 * from failed sub-array are not removed from
6689 * container.
6690 */
6691 if (idisk &&
6692 is_failed(&idisk->disk) &&
6693 (idisk->action != DISK_REMOVE))
6694 return 0;
6695 }
6696 }
6697 }
6698 return 1;
6699 }
6700
6701 static struct mdinfo *imsm_activate_spare(struct active_array *a,
6702 struct metadata_update **updates)
6703 {
6704 /**
6705 * Find a device with unused free space and use it to replace a
6706 * failed/vacant region in an array. We replace failed regions one a
6707 * array at a time. The result is that a new spare disk will be added
6708 * to the first failed array and after the monitor has finished
6709 * propagating failures the remainder will be consumed.
6710 *
6711 * FIXME add a capability for mdmon to request spares from another
6712 * container.
6713 */
6714
6715 struct intel_super *super = a->container->sb;
6716 int inst = a->info.container_member;
6717 struct imsm_dev *dev = get_imsm_dev(super, inst);
6718 struct imsm_map *map = get_imsm_map(dev, 0);
6719 int failed = a->info.array.raid_disks;
6720 struct mdinfo *rv = NULL;
6721 struct mdinfo *d;
6722 struct mdinfo *di;
6723 struct metadata_update *mu;
6724 struct dl *dl;
6725 struct imsm_update_activate_spare *u;
6726 int num_spares = 0;
6727 int i;
6728 int allowed;
6729
6730 for (d = a->info.devs ; d ; d = d->next) {
6731 if ((d->curr_state & DS_FAULTY) &&
6732 d->state_fd >= 0)
6733 /* wait for Removal to happen */
6734 return NULL;
6735 if (d->state_fd >= 0)
6736 failed--;
6737 }
6738
6739 dprintf("imsm: activate spare: inst=%d failed=%d (%d) level=%d\n",
6740 inst, failed, a->info.array.raid_disks, a->info.array.level);
6741
6742 if (imsm_reshape_blocks_arrays_changes(super))
6743 return NULL;
6744
6745 if (a->info.array.level == 4)
6746 /* No repair for takeovered array
6747 * imsm doesn't support raid4
6748 */
6749 return NULL;
6750
6751 if (imsm_check_degraded(super, dev, failed, MAP_0) !=
6752 IMSM_T_STATE_DEGRADED)
6753 return NULL;
6754
6755 /*
6756 * If there are any failed disks check state of the other volume.
6757 * Block rebuild if the another one is failed until failed disks
6758 * are removed from container.
6759 */
6760 if (failed) {
6761 dprintf("found failed disks in %.*s, check if there another"
6762 "failed sub-array.\n",
6763 MAX_RAID_SERIAL_LEN, dev->volume);
6764 /* check if states of the other volumes allow for rebuild */
6765 for (i = 0; i < super->anchor->num_raid_devs; i++) {
6766 if (i != inst) {
6767 allowed = imsm_rebuild_allowed(a->container,
6768 i, failed);
6769 if (!allowed)
6770 return NULL;
6771 }
6772 }
6773 }
6774
6775 /* For each slot, if it is not working, find a spare */
6776 for (i = 0; i < a->info.array.raid_disks; i++) {
6777 for (d = a->info.devs ; d ; d = d->next)
6778 if (d->disk.raid_disk == i)
6779 break;
6780 dprintf("found %d: %p %x\n", i, d, d?d->curr_state:0);
6781 if (d && (d->state_fd >= 0))
6782 continue;
6783
6784 /*
6785 * OK, this device needs recovery. Try to re-add the
6786 * previous occupant of this slot, if this fails see if
6787 * we can continue the assimilation of a spare that was
6788 * partially assimilated, finally try to activate a new
6789 * spare.
6790 */
6791 dl = imsm_readd(super, i, a);
6792 if (!dl)
6793 dl = imsm_add_spare(super, i, a, 0, rv);
6794 if (!dl)
6795 dl = imsm_add_spare(super, i, a, 1, rv);
6796 if (!dl)
6797 continue;
6798
6799 /* found a usable disk with enough space */
6800 di = malloc(sizeof(*di));
6801 if (!di)
6802 continue;
6803 memset(di, 0, sizeof(*di));
6804
6805 /* dl->index will be -1 in the case we are activating a
6806 * pristine spare. imsm_process_update() will create a
6807 * new index in this case. Once a disk is found to be
6808 * failed in all member arrays it is kicked from the
6809 * metadata
6810 */
6811 di->disk.number = dl->index;
6812
6813 /* (ab)use di->devs to store a pointer to the device
6814 * we chose
6815 */
6816 di->devs = (struct mdinfo *) dl;
6817
6818 di->disk.raid_disk = i;
6819 di->disk.major = dl->major;
6820 di->disk.minor = dl->minor;
6821 di->disk.state = 0;
6822 di->recovery_start = 0;
6823 di->data_offset = __le32_to_cpu(map->pba_of_lba0);
6824 di->component_size = a->info.component_size;
6825 di->container_member = inst;
6826 super->random = random32();
6827 di->next = rv;
6828 rv = di;
6829 num_spares++;
6830 dprintf("%x:%x to be %d at %llu\n", dl->major, dl->minor,
6831 i, di->data_offset);
6832 }
6833
6834 if (!rv)
6835 /* No spares found */
6836 return rv;
6837 /* Now 'rv' has a list of devices to return.
6838 * Create a metadata_update record to update the
6839 * disk_ord_tbl for the array
6840 */
6841 mu = malloc(sizeof(*mu));
6842 if (mu) {
6843 mu->buf = malloc(sizeof(struct imsm_update_activate_spare) * num_spares);
6844 if (mu->buf == NULL) {
6845 free(mu);
6846 mu = NULL;
6847 }
6848 }
6849 if (!mu) {
6850 while (rv) {
6851 struct mdinfo *n = rv->next;
6852
6853 free(rv);
6854 rv = n;
6855 }
6856 return NULL;
6857 }
6858
6859 mu->space = NULL;
6860 mu->space_list = NULL;
6861 mu->len = sizeof(struct imsm_update_activate_spare) * num_spares;
6862 mu->next = *updates;
6863 u = (struct imsm_update_activate_spare *) mu->buf;
6864
6865 for (di = rv ; di ; di = di->next) {
6866 u->type = update_activate_spare;
6867 u->dl = (struct dl *) di->devs;
6868 di->devs = NULL;
6869 u->slot = di->disk.raid_disk;
6870 u->array = inst;
6871 u->next = u + 1;
6872 u++;
6873 }
6874 (u-1)->next = NULL;
6875 *updates = mu;
6876
6877 return rv;
6878 }
6879
6880 static int disks_overlap(struct intel_super *super, int idx, struct imsm_update_create_array *u)
6881 {
6882 struct imsm_dev *dev = get_imsm_dev(super, idx);
6883 struct imsm_map *map = get_imsm_map(dev, 0);
6884 struct imsm_map *new_map = get_imsm_map(&u->dev, 0);
6885 struct disk_info *inf = get_disk_info(u);
6886 struct imsm_disk *disk;
6887 int i;
6888 int j;
6889
6890 for (i = 0; i < map->num_members; i++) {
6891 disk = get_imsm_disk(super, get_imsm_disk_idx(dev, i, -1));
6892 for (j = 0; j < new_map->num_members; j++)
6893 if (serialcmp(disk->serial, inf[j].serial) == 0)
6894 return 1;
6895 }
6896
6897 return 0;
6898 }
6899
6900
6901 static struct dl *get_disk_super(struct intel_super *super, int major, int minor)
6902 {
6903 struct dl *dl = NULL;
6904 for (dl = super->disks; dl; dl = dl->next)
6905 if ((dl->major == major) && (dl->minor == minor))
6906 return dl;
6907 return NULL;
6908 }
6909
6910 static int remove_disk_super(struct intel_super *super, int major, int minor)
6911 {
6912 struct dl *prev = NULL;
6913 struct dl *dl;
6914
6915 prev = NULL;
6916 for (dl = super->disks; dl; dl = dl->next) {
6917 if ((dl->major == major) && (dl->minor == minor)) {
6918 /* remove */
6919 if (prev)
6920 prev->next = dl->next;
6921 else
6922 super->disks = dl->next;
6923 dl->next = NULL;
6924 __free_imsm_disk(dl);
6925 dprintf("%s: removed %x:%x\n",
6926 __func__, major, minor);
6927 break;
6928 }
6929 prev = dl;
6930 }
6931 return 0;
6932 }
6933
6934 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index);
6935
6936 static int add_remove_disk_update(struct intel_super *super)
6937 {
6938 int check_degraded = 0;
6939 struct dl *disk = NULL;
6940 /* add/remove some spares to/from the metadata/contrainer */
6941 while (super->disk_mgmt_list) {
6942 struct dl *disk_cfg;
6943
6944 disk_cfg = super->disk_mgmt_list;
6945 super->disk_mgmt_list = disk_cfg->next;
6946 disk_cfg->next = NULL;
6947
6948 if (disk_cfg->action == DISK_ADD) {
6949 disk_cfg->next = super->disks;
6950 super->disks = disk_cfg;
6951 check_degraded = 1;
6952 dprintf("%s: added %x:%x\n",
6953 __func__, disk_cfg->major,
6954 disk_cfg->minor);
6955 } else if (disk_cfg->action == DISK_REMOVE) {
6956 dprintf("Disk remove action processed: %x.%x\n",
6957 disk_cfg->major, disk_cfg->minor);
6958 disk = get_disk_super(super,
6959 disk_cfg->major,
6960 disk_cfg->minor);
6961 if (disk) {
6962 /* store action status */
6963 disk->action = DISK_REMOVE;
6964 /* remove spare disks only */
6965 if (disk->index == -1) {
6966 remove_disk_super(super,
6967 disk_cfg->major,
6968 disk_cfg->minor);
6969 }
6970 }
6971 /* release allocate disk structure */
6972 __free_imsm_disk(disk_cfg);
6973 }
6974 }
6975 return check_degraded;
6976 }
6977
6978
6979 static int apply_reshape_migration_update(struct imsm_update_reshape_migration *u,
6980 struct intel_super *super,
6981 void ***space_list)
6982 {
6983 struct intel_dev *id;
6984 void **tofree = NULL;
6985 int ret_val = 0;
6986
6987 dprintf("apply_reshape_migration_update()\n");
6988 if ((u->subdev < 0) ||
6989 (u->subdev > 1)) {
6990 dprintf("imsm: Error: Wrong subdev: %i\n", u->subdev);
6991 return ret_val;
6992 }
6993 if ((space_list == NULL) || (*space_list == NULL)) {
6994 dprintf("imsm: Error: Memory is not allocated\n");
6995 return ret_val;
6996 }
6997
6998 for (id = super->devlist ; id; id = id->next) {
6999 if (id->index == (unsigned)u->subdev) {
7000 struct imsm_dev *dev = get_imsm_dev(super, u->subdev);
7001 struct imsm_map *map;
7002 struct imsm_dev *new_dev =
7003 (struct imsm_dev *)*space_list;
7004 struct imsm_map *migr_map = get_imsm_map(dev, 1);
7005 int to_state;
7006 struct dl *new_disk;
7007
7008 if (new_dev == NULL)
7009 return ret_val;
7010 *space_list = **space_list;
7011 memcpy(new_dev, dev, sizeof_imsm_dev(dev, 0));
7012 map = get_imsm_map(new_dev, 0);
7013 if (migr_map) {
7014 dprintf("imsm: Error: migration in progress");
7015 return ret_val;
7016 }
7017
7018 to_state = map->map_state;
7019 if ((u->new_level == 5) && (map->raid_level == 0)) {
7020 map->num_members++;
7021 /* this should not happen */
7022 if (u->new_disks[0] < 0) {
7023 map->failed_disk_num =
7024 map->num_members - 1;
7025 to_state = IMSM_T_STATE_DEGRADED;
7026 } else
7027 to_state = IMSM_T_STATE_NORMAL;
7028 }
7029 migrate(new_dev, super, to_state, MIGR_GEN_MIGR);
7030 if (u->new_level > -1)
7031 map->raid_level = u->new_level;
7032 migr_map = get_imsm_map(new_dev, 1);
7033 if ((u->new_level == 5) &&
7034 (migr_map->raid_level == 0)) {
7035 int ord = map->num_members - 1;
7036 migr_map->num_members--;
7037 if (u->new_disks[0] < 0)
7038 ord |= IMSM_ORD_REBUILD;
7039 set_imsm_ord_tbl_ent(map,
7040 map->num_members - 1,
7041 ord);
7042 }
7043 id->dev = new_dev;
7044 tofree = (void **)dev;
7045
7046 /* update chunk size
7047 */
7048 if (u->new_chunksize > 0)
7049 map->blocks_per_strip =
7050 __cpu_to_le16(u->new_chunksize * 2);
7051
7052 /* add disk
7053 */
7054 if ((u->new_level != 5) ||
7055 (migr_map->raid_level != 0) ||
7056 (migr_map->raid_level == map->raid_level))
7057 goto skip_disk_add;
7058
7059 if (u->new_disks[0] >= 0) {
7060 /* use passes spare
7061 */
7062 new_disk = get_disk_super(super,
7063 major(u->new_disks[0]),
7064 minor(u->new_disks[0]));
7065 dprintf("imsm: new disk for reshape is: %i:%i "
7066 "(%p, index = %i)\n",
7067 major(u->new_disks[0]),
7068 minor(u->new_disks[0]),
7069 new_disk, new_disk->index);
7070 if (new_disk == NULL)
7071 goto error_disk_add;
7072
7073 new_disk->index = map->num_members - 1;
7074 /* slot to fill in autolayout
7075 */
7076 new_disk->raiddisk = new_disk->index;
7077 new_disk->disk.status |= CONFIGURED_DISK;
7078 new_disk->disk.status &= ~SPARE_DISK;
7079 } else
7080 goto error_disk_add;
7081
7082 skip_disk_add:
7083 *tofree = *space_list;
7084 /* calculate new size
7085 */
7086 imsm_set_array_size(new_dev);
7087
7088 ret_val = 1;
7089 }
7090 }
7091
7092 if (tofree)
7093 *space_list = tofree;
7094 return ret_val;
7095
7096 error_disk_add:
7097 dprintf("Error: imsm: Cannot find disk.\n");
7098 return ret_val;
7099 }
7100
7101 static int apply_update_activate_spare(struct imsm_update_activate_spare *u,
7102 struct intel_super *super,
7103 struct active_array *active_array)
7104 {
7105 struct imsm_super *mpb = super->anchor;
7106 struct imsm_dev *dev = get_imsm_dev(super, u->array);
7107 struct imsm_map *map = get_imsm_map(dev, 0);
7108 struct imsm_map *migr_map;
7109 struct active_array *a;
7110 struct imsm_disk *disk;
7111 __u8 to_state;
7112 struct dl *dl;
7113 unsigned int found;
7114 int failed;
7115 int victim;
7116 int i;
7117 int second_map_created = 0;
7118
7119 for (; u; u = u->next) {
7120 victim = get_imsm_disk_idx(dev, u->slot, -1);
7121
7122 if (victim < 0)
7123 return 0;
7124
7125 for (dl = super->disks; dl; dl = dl->next)
7126 if (dl == u->dl)
7127 break;
7128
7129 if (!dl) {
7130 fprintf(stderr, "error: imsm_activate_spare passed "
7131 "an unknown disk (index: %d)\n",
7132 u->dl->index);
7133 return 0;
7134 }
7135
7136 /* count failures (excluding rebuilds and the victim)
7137 * to determine map[0] state
7138 */
7139 failed = 0;
7140 for (i = 0; i < map->num_members; i++) {
7141 if (i == u->slot)
7142 continue;
7143 disk = get_imsm_disk(super,
7144 get_imsm_disk_idx(dev, i, -1));
7145 if (!disk || is_failed(disk))
7146 failed++;
7147 }
7148
7149 /* adding a pristine spare, assign a new index */
7150 if (dl->index < 0) {
7151 dl->index = super->anchor->num_disks;
7152 super->anchor->num_disks++;
7153 }
7154 disk = &dl->disk;
7155 disk->status |= CONFIGURED_DISK;
7156 disk->status &= ~SPARE_DISK;
7157
7158 /* mark rebuild */
7159 to_state = imsm_check_degraded(super, dev, failed,
7160 MAP_0);
7161 if (!second_map_created) {
7162 second_map_created = 1;
7163 map->map_state = IMSM_T_STATE_DEGRADED;
7164 migrate(dev, super, to_state, MIGR_REBUILD);
7165 } else
7166 map->map_state = to_state;
7167 migr_map = get_imsm_map(dev, 1);
7168 set_imsm_ord_tbl_ent(map, u->slot, dl->index);
7169 set_imsm_ord_tbl_ent(migr_map, u->slot,
7170 dl->index | IMSM_ORD_REBUILD);
7171
7172 /* update the family_num to mark a new container
7173 * generation, being careful to record the existing
7174 * family_num in orig_family_num to clean up after
7175 * earlier mdadm versions that neglected to set it.
7176 */
7177 if (mpb->orig_family_num == 0)
7178 mpb->orig_family_num = mpb->family_num;
7179 mpb->family_num += super->random;
7180
7181 /* count arrays using the victim in the metadata */
7182 found = 0;
7183 for (a = active_array; a ; a = a->next) {
7184 dev = get_imsm_dev(super, a->info.container_member);
7185 map = get_imsm_map(dev, 0);
7186
7187 if (get_imsm_disk_slot(map, victim) >= 0)
7188 found++;
7189 }
7190
7191 /* delete the victim if it is no longer being
7192 * utilized anywhere
7193 */
7194 if (!found) {
7195 struct dl **dlp;
7196
7197 /* We know that 'manager' isn't touching anything,
7198 * so it is safe to delete
7199 */
7200 for (dlp = &super->disks; *dlp; dlp = &(*dlp)->next)
7201 if ((*dlp)->index == victim)
7202 break;
7203
7204 /* victim may be on the missing list */
7205 if (!*dlp)
7206 for (dlp = &super->missing; *dlp;
7207 dlp = &(*dlp)->next)
7208 if ((*dlp)->index == victim)
7209 break;
7210 imsm_delete(super, dlp, victim);
7211 }
7212 }
7213
7214 return 1;
7215 }
7216
7217 static int apply_reshape_container_disks_update(struct imsm_update_reshape *u,
7218 struct intel_super *super,
7219 void ***space_list)
7220 {
7221 struct dl *new_disk;
7222 struct intel_dev *id;
7223 int i;
7224 int delta_disks = u->new_raid_disks - u->old_raid_disks;
7225 int disk_count = u->old_raid_disks;
7226 void **tofree = NULL;
7227 int devices_to_reshape = 1;
7228 struct imsm_super *mpb = super->anchor;
7229 int ret_val = 0;
7230 unsigned int dev_id;
7231
7232 dprintf("imsm: apply_reshape_container_disks_update()\n");
7233
7234 /* enable spares to use in array */
7235 for (i = 0; i < delta_disks; i++) {
7236 new_disk = get_disk_super(super,
7237 major(u->new_disks[i]),
7238 minor(u->new_disks[i]));
7239 dprintf("imsm: new disk for reshape is: %i:%i "
7240 "(%p, index = %i)\n",
7241 major(u->new_disks[i]), minor(u->new_disks[i]),
7242 new_disk, new_disk->index);
7243 if ((new_disk == NULL) ||
7244 ((new_disk->index >= 0) &&
7245 (new_disk->index < u->old_raid_disks)))
7246 goto update_reshape_exit;
7247 new_disk->index = disk_count++;
7248 /* slot to fill in autolayout
7249 */
7250 new_disk->raiddisk = new_disk->index;
7251 new_disk->disk.status |=
7252 CONFIGURED_DISK;
7253 new_disk->disk.status &= ~SPARE_DISK;
7254 }
7255
7256 dprintf("imsm: volume set mpb->num_raid_devs = %i\n",
7257 mpb->num_raid_devs);
7258 /* manage changes in volume
7259 */
7260 for (dev_id = 0; dev_id < mpb->num_raid_devs; dev_id++) {
7261 void **sp = *space_list;
7262 struct imsm_dev *newdev;
7263 struct imsm_map *newmap, *oldmap;
7264
7265 for (id = super->devlist ; id; id = id->next) {
7266 if (id->index == dev_id)
7267 break;
7268 }
7269 if (id == NULL)
7270 break;
7271 if (!sp)
7272 continue;
7273 *space_list = *sp;
7274 newdev = (void*)sp;
7275 /* Copy the dev, but not (all of) the map */
7276 memcpy(newdev, id->dev, sizeof(*newdev));
7277 oldmap = get_imsm_map(id->dev, 0);
7278 newmap = get_imsm_map(newdev, 0);
7279 /* Copy the current map */
7280 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
7281 /* update one device only
7282 */
7283 if (devices_to_reshape) {
7284 dprintf("imsm: modifying subdev: %i\n",
7285 id->index);
7286 devices_to_reshape--;
7287 newdev->vol.migr_state = 1;
7288 newdev->vol.curr_migr_unit = 0;
7289 set_migr_type(newdev, MIGR_GEN_MIGR);
7290 newmap->num_members = u->new_raid_disks;
7291 for (i = 0; i < delta_disks; i++) {
7292 set_imsm_ord_tbl_ent(newmap,
7293 u->old_raid_disks + i,
7294 u->old_raid_disks + i);
7295 }
7296 /* New map is correct, now need to save old map
7297 */
7298 newmap = get_imsm_map(newdev, 1);
7299 memcpy(newmap, oldmap, sizeof_imsm_map(oldmap));
7300
7301 imsm_set_array_size(newdev);
7302 }
7303
7304 sp = (void **)id->dev;
7305 id->dev = newdev;
7306 *sp = tofree;
7307 tofree = sp;
7308
7309 /* Clear migration record */
7310 memset(super->migr_rec, 0, sizeof(struct migr_record));
7311 }
7312 if (tofree)
7313 *space_list = tofree;
7314 ret_val = 1;
7315
7316 update_reshape_exit:
7317
7318 return ret_val;
7319 }
7320
7321 static int apply_takeover_update(struct imsm_update_takeover *u,
7322 struct intel_super *super,
7323 void ***space_list)
7324 {
7325 struct imsm_dev *dev = NULL;
7326 struct intel_dev *dv;
7327 struct imsm_dev *dev_new;
7328 struct imsm_map *map;
7329 struct dl *dm, *du;
7330 int i;
7331
7332 for (dv = super->devlist; dv; dv = dv->next)
7333 if (dv->index == (unsigned int)u->subarray) {
7334 dev = dv->dev;
7335 break;
7336 }
7337
7338 if (dev == NULL)
7339 return 0;
7340
7341 map = get_imsm_map(dev, 0);
7342
7343 if (u->direction == R10_TO_R0) {
7344 /* Number of failed disks must be half of initial disk number */
7345 if (imsm_count_failed(super, dev, MAP_0) !=
7346 (map->num_members / 2))
7347 return 0;
7348
7349 /* iterate through devices to mark removed disks as spare */
7350 for (dm = super->disks; dm; dm = dm->next) {
7351 if (dm->disk.status & FAILED_DISK) {
7352 int idx = dm->index;
7353 /* update indexes on the disk list */
7354 /* FIXME this loop-with-the-loop looks wrong, I'm not convinced
7355 the index values will end up being correct.... NB */
7356 for (du = super->disks; du; du = du->next)
7357 if (du->index > idx)
7358 du->index--;
7359 /* mark as spare disk */
7360 mark_spare(dm);
7361 }
7362 }
7363 /* update map */
7364 map->num_members = map->num_members / 2;
7365 map->map_state = IMSM_T_STATE_NORMAL;
7366 map->num_domains = 1;
7367 map->raid_level = 0;
7368 map->failed_disk_num = -1;
7369 }
7370
7371 if (u->direction == R0_TO_R10) {
7372 void **space;
7373 /* update slots in current disk list */
7374 for (dm = super->disks; dm; dm = dm->next) {
7375 if (dm->index >= 0)
7376 dm->index *= 2;
7377 }
7378 /* create new *missing* disks */
7379 for (i = 0; i < map->num_members; i++) {
7380 space = *space_list;
7381 if (!space)
7382 continue;
7383 *space_list = *space;
7384 du = (void *)space;
7385 memcpy(du, super->disks, sizeof(*du));
7386 du->fd = -1;
7387 du->minor = 0;
7388 du->major = 0;
7389 du->index = (i * 2) + 1;
7390 sprintf((char *)du->disk.serial,
7391 " MISSING_%d", du->index);
7392 sprintf((char *)du->serial,
7393 "MISSING_%d", du->index);
7394 du->next = super->missing;
7395 super->missing = du;
7396 }
7397 /* create new dev and map */
7398 space = *space_list;
7399 if (!space)
7400 return 0;
7401 *space_list = *space;
7402 dev_new = (void *)space;
7403 memcpy(dev_new, dev, sizeof(*dev));
7404 /* update new map */
7405 map = get_imsm_map(dev_new, 0);
7406 map->num_members = map->num_members * 2;
7407 map->map_state = IMSM_T_STATE_DEGRADED;
7408 map->num_domains = 2;
7409 map->raid_level = 1;
7410 /* replace dev<->dev_new */
7411 dv->dev = dev_new;
7412 }
7413 /* update disk order table */
7414 for (du = super->disks; du; du = du->next)
7415 if (du->index >= 0)
7416 set_imsm_ord_tbl_ent(map, du->index, du->index);
7417 for (du = super->missing; du; du = du->next)
7418 if (du->index >= 0) {
7419 set_imsm_ord_tbl_ent(map, du->index, du->index);
7420 mark_missing(dv->dev, &du->disk, du->index);
7421 }
7422
7423 return 1;
7424 }
7425
7426 static void imsm_process_update(struct supertype *st,
7427 struct metadata_update *update)
7428 {
7429 /**
7430 * crack open the metadata_update envelope to find the update record
7431 * update can be one of:
7432 * update_reshape_container_disks - all the arrays in the container
7433 * are being reshaped to have more devices. We need to mark
7434 * the arrays for general migration and convert selected spares
7435 * into active devices.
7436 * update_activate_spare - a spare device has replaced a failed
7437 * device in an array, update the disk_ord_tbl. If this disk is
7438 * present in all member arrays then also clear the SPARE_DISK
7439 * flag
7440 * update_create_array
7441 * update_kill_array
7442 * update_rename_array
7443 * update_add_remove_disk
7444 */
7445 struct intel_super *super = st->sb;
7446 struct imsm_super *mpb;
7447 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
7448
7449 /* update requires a larger buf but the allocation failed */
7450 if (super->next_len && !super->next_buf) {
7451 super->next_len = 0;
7452 return;
7453 }
7454
7455 if (super->next_buf) {
7456 memcpy(super->next_buf, super->buf, super->len);
7457 free(super->buf);
7458 super->len = super->next_len;
7459 super->buf = super->next_buf;
7460
7461 super->next_len = 0;
7462 super->next_buf = NULL;
7463 }
7464
7465 mpb = super->anchor;
7466
7467 switch (type) {
7468 case update_general_migration_checkpoint: {
7469 struct intel_dev *id;
7470 struct imsm_update_general_migration_checkpoint *u =
7471 (void *)update->buf;
7472
7473 dprintf("imsm: process_update() "
7474 "for update_general_migration_checkpoint called\n");
7475
7476 /* find device under general migration */
7477 for (id = super->devlist ; id; id = id->next) {
7478 if (is_gen_migration(id->dev)) {
7479 id->dev->vol.curr_migr_unit =
7480 __cpu_to_le32(u->curr_migr_unit);
7481 super->updates_pending++;
7482 }
7483 }
7484 break;
7485 }
7486 case update_takeover: {
7487 struct imsm_update_takeover *u = (void *)update->buf;
7488 if (apply_takeover_update(u, super, &update->space_list)) {
7489 imsm_update_version_info(super);
7490 super->updates_pending++;
7491 }
7492 break;
7493 }
7494
7495 case update_reshape_container_disks: {
7496 struct imsm_update_reshape *u = (void *)update->buf;
7497 if (apply_reshape_container_disks_update(
7498 u, super, &update->space_list))
7499 super->updates_pending++;
7500 break;
7501 }
7502 case update_reshape_migration: {
7503 struct imsm_update_reshape_migration *u = (void *)update->buf;
7504 if (apply_reshape_migration_update(
7505 u, super, &update->space_list))
7506 super->updates_pending++;
7507 break;
7508 }
7509 case update_activate_spare: {
7510 struct imsm_update_activate_spare *u = (void *) update->buf;
7511 if (apply_update_activate_spare(u, super, st->arrays))
7512 super->updates_pending++;
7513 break;
7514 }
7515 case update_create_array: {
7516 /* someone wants to create a new array, we need to be aware of
7517 * a few races/collisions:
7518 * 1/ 'Create' called by two separate instances of mdadm
7519 * 2/ 'Create' versus 'activate_spare': mdadm has chosen
7520 * devices that have since been assimilated via
7521 * activate_spare.
7522 * In the event this update can not be carried out mdadm will
7523 * (FIX ME) notice that its update did not take hold.
7524 */
7525 struct imsm_update_create_array *u = (void *) update->buf;
7526 struct intel_dev *dv;
7527 struct imsm_dev *dev;
7528 struct imsm_map *map, *new_map;
7529 unsigned long long start, end;
7530 unsigned long long new_start, new_end;
7531 int i;
7532 struct disk_info *inf;
7533 struct dl *dl;
7534
7535 /* handle racing creates: first come first serve */
7536 if (u->dev_idx < mpb->num_raid_devs) {
7537 dprintf("%s: subarray %d already defined\n",
7538 __func__, u->dev_idx);
7539 goto create_error;
7540 }
7541
7542 /* check update is next in sequence */
7543 if (u->dev_idx != mpb->num_raid_devs) {
7544 dprintf("%s: can not create array %d expected index %d\n",
7545 __func__, u->dev_idx, mpb->num_raid_devs);
7546 goto create_error;
7547 }
7548
7549 new_map = get_imsm_map(&u->dev, 0);
7550 new_start = __le32_to_cpu(new_map->pba_of_lba0);
7551 new_end = new_start + __le32_to_cpu(new_map->blocks_per_member);
7552 inf = get_disk_info(u);
7553
7554 /* handle activate_spare versus create race:
7555 * check to make sure that overlapping arrays do not include
7556 * overalpping disks
7557 */
7558 for (i = 0; i < mpb->num_raid_devs; i++) {
7559 dev = get_imsm_dev(super, i);
7560 map = get_imsm_map(dev, 0);
7561 start = __le32_to_cpu(map->pba_of_lba0);
7562 end = start + __le32_to_cpu(map->blocks_per_member);
7563 if ((new_start >= start && new_start <= end) ||
7564 (start >= new_start && start <= new_end))
7565 /* overlap */;
7566 else
7567 continue;
7568
7569 if (disks_overlap(super, i, u)) {
7570 dprintf("%s: arrays overlap\n", __func__);
7571 goto create_error;
7572 }
7573 }
7574
7575 /* check that prepare update was successful */
7576 if (!update->space) {
7577 dprintf("%s: prepare update failed\n", __func__);
7578 goto create_error;
7579 }
7580
7581 /* check that all disks are still active before committing
7582 * changes. FIXME: could we instead handle this by creating a
7583 * degraded array? That's probably not what the user expects,
7584 * so better to drop this update on the floor.
7585 */
7586 for (i = 0; i < new_map->num_members; i++) {
7587 dl = serial_to_dl(inf[i].serial, super);
7588 if (!dl) {
7589 dprintf("%s: disk disappeared\n", __func__);
7590 goto create_error;
7591 }
7592 }
7593
7594 super->updates_pending++;
7595
7596 /* convert spares to members and fixup ord_tbl */
7597 for (i = 0; i < new_map->num_members; i++) {
7598 dl = serial_to_dl(inf[i].serial, super);
7599 if (dl->index == -1) {
7600 dl->index = mpb->num_disks;
7601 mpb->num_disks++;
7602 dl->disk.status |= CONFIGURED_DISK;
7603 dl->disk.status &= ~SPARE_DISK;
7604 }
7605 set_imsm_ord_tbl_ent(new_map, i, dl->index);
7606 }
7607
7608 dv = update->space;
7609 dev = dv->dev;
7610 update->space = NULL;
7611 imsm_copy_dev(dev, &u->dev);
7612 dv->index = u->dev_idx;
7613 dv->next = super->devlist;
7614 super->devlist = dv;
7615 mpb->num_raid_devs++;
7616
7617 imsm_update_version_info(super);
7618 break;
7619 create_error:
7620 /* mdmon knows how to release update->space, but not
7621 * ((struct intel_dev *) update->space)->dev
7622 */
7623 if (update->space) {
7624 dv = update->space;
7625 free(dv->dev);
7626 }
7627 break;
7628 }
7629 case update_kill_array: {
7630 struct imsm_update_kill_array *u = (void *) update->buf;
7631 int victim = u->dev_idx;
7632 struct active_array *a;
7633 struct intel_dev **dp;
7634 struct imsm_dev *dev;
7635
7636 /* sanity check that we are not affecting the uuid of
7637 * active arrays, or deleting an active array
7638 *
7639 * FIXME when immutable ids are available, but note that
7640 * we'll also need to fixup the invalidated/active
7641 * subarray indexes in mdstat
7642 */
7643 for (a = st->arrays; a; a = a->next)
7644 if (a->info.container_member >= victim)
7645 break;
7646 /* by definition if mdmon is running at least one array
7647 * is active in the container, so checking
7648 * mpb->num_raid_devs is just extra paranoia
7649 */
7650 dev = get_imsm_dev(super, victim);
7651 if (a || !dev || mpb->num_raid_devs == 1) {
7652 dprintf("failed to delete subarray-%d\n", victim);
7653 break;
7654 }
7655
7656 for (dp = &super->devlist; *dp;)
7657 if ((*dp)->index == (unsigned)super->current_vol) {
7658 *dp = (*dp)->next;
7659 } else {
7660 if ((*dp)->index > (unsigned)victim)
7661 (*dp)->index--;
7662 dp = &(*dp)->next;
7663 }
7664 mpb->num_raid_devs--;
7665 super->updates_pending++;
7666 break;
7667 }
7668 case update_rename_array: {
7669 struct imsm_update_rename_array *u = (void *) update->buf;
7670 char name[MAX_RAID_SERIAL_LEN+1];
7671 int target = u->dev_idx;
7672 struct active_array *a;
7673 struct imsm_dev *dev;
7674
7675 /* sanity check that we are not affecting the uuid of
7676 * an active array
7677 */
7678 snprintf(name, MAX_RAID_SERIAL_LEN, "%s", (char *) u->name);
7679 name[MAX_RAID_SERIAL_LEN] = '\0';
7680 for (a = st->arrays; a; a = a->next)
7681 if (a->info.container_member == target)
7682 break;
7683 dev = get_imsm_dev(super, u->dev_idx);
7684 if (a || !dev || !check_name(super, name, 1)) {
7685 dprintf("failed to rename subarray-%d\n", target);
7686 break;
7687 }
7688
7689 snprintf((char *) dev->volume, MAX_RAID_SERIAL_LEN, "%s", name);
7690 super->updates_pending++;
7691 break;
7692 }
7693 case update_add_remove_disk: {
7694 /* we may be able to repair some arrays if disks are
7695 * being added, check teh status of add_remove_disk
7696 * if discs has been added.
7697 */
7698 if (add_remove_disk_update(super)) {
7699 struct active_array *a;
7700
7701 super->updates_pending++;
7702 for (a = st->arrays; a; a = a->next)
7703 a->check_degraded = 1;
7704 }
7705 break;
7706 }
7707 default:
7708 fprintf(stderr, "error: unsuported process update type:"
7709 "(type: %d)\n", type);
7710 }
7711 }
7712
7713 static struct mdinfo *get_spares_for_grow(struct supertype *st);
7714
7715 static void imsm_prepare_update(struct supertype *st,
7716 struct metadata_update *update)
7717 {
7718 /**
7719 * Allocate space to hold new disk entries, raid-device entries or a new
7720 * mpb if necessary. The manager synchronously waits for updates to
7721 * complete in the monitor, so new mpb buffers allocated here can be
7722 * integrated by the monitor thread without worrying about live pointers
7723 * in the manager thread.
7724 */
7725 enum imsm_update_type type = *(enum imsm_update_type *) update->buf;
7726 struct intel_super *super = st->sb;
7727 struct imsm_super *mpb = super->anchor;
7728 size_t buf_len;
7729 size_t len = 0;
7730
7731 switch (type) {
7732 case update_general_migration_checkpoint:
7733 dprintf("imsm: prepare_update() "
7734 "for update_general_migration_checkpoint called\n");
7735 break;
7736 case update_takeover: {
7737 struct imsm_update_takeover *u = (void *)update->buf;
7738 if (u->direction == R0_TO_R10) {
7739 void **tail = (void **)&update->space_list;
7740 struct imsm_dev *dev = get_imsm_dev(super, u->subarray);
7741 struct imsm_map *map = get_imsm_map(dev, 0);
7742 int num_members = map->num_members;
7743 void *space;
7744 int size, i;
7745 int err = 0;
7746 /* allocate memory for added disks */
7747 for (i = 0; i < num_members; i++) {
7748 size = sizeof(struct dl);
7749 space = malloc(size);
7750 if (!space) {
7751 err++;
7752 break;
7753 }
7754 *tail = space;
7755 tail = space;
7756 *tail = NULL;
7757 }
7758 /* allocate memory for new device */
7759 size = sizeof_imsm_dev(super->devlist->dev, 0) +
7760 (num_members * sizeof(__u32));
7761 space = malloc(size);
7762 if (!space)
7763 err++;
7764 else {
7765 *tail = space;
7766 tail = space;
7767 *tail = NULL;
7768 }
7769 if (!err) {
7770 len = disks_to_mpb_size(num_members * 2);
7771 } else {
7772 /* if allocation didn't success, free buffer */
7773 while (update->space_list) {
7774 void **sp = update->space_list;
7775 update->space_list = *sp;
7776 free(sp);
7777 }
7778 }
7779 }
7780
7781 break;
7782 }
7783 case update_reshape_container_disks: {
7784 /* Every raid device in the container is about to
7785 * gain some more devices, and we will enter a
7786 * reconfiguration.
7787 * So each 'imsm_map' will be bigger, and the imsm_vol
7788 * will now hold 2 of them.
7789 * Thus we need new 'struct imsm_dev' allocations sized
7790 * as sizeof_imsm_dev but with more devices in both maps.
7791 */
7792 struct imsm_update_reshape *u = (void *)update->buf;
7793 struct intel_dev *dl;
7794 void **space_tail = (void**)&update->space_list;
7795
7796 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7797
7798 for (dl = super->devlist; dl; dl = dl->next) {
7799 int size = sizeof_imsm_dev(dl->dev, 1);
7800 void *s;
7801 if (u->new_raid_disks > u->old_raid_disks)
7802 size += sizeof(__u32)*2*
7803 (u->new_raid_disks - u->old_raid_disks);
7804 s = malloc(size);
7805 if (!s)
7806 break;
7807 *space_tail = s;
7808 space_tail = s;
7809 *space_tail = NULL;
7810 }
7811
7812 len = disks_to_mpb_size(u->new_raid_disks);
7813 dprintf("New anchor length is %llu\n", (unsigned long long)len);
7814 break;
7815 }
7816 case update_reshape_migration: {
7817 /* for migration level 0->5 we need to add disks
7818 * so the same as for container operation we will copy
7819 * device to the bigger location.
7820 * in memory prepared device and new disk area are prepared
7821 * for usage in process update
7822 */
7823 struct imsm_update_reshape_migration *u = (void *)update->buf;
7824 struct intel_dev *id;
7825 void **space_tail = (void **)&update->space_list;
7826 int size;
7827 void *s;
7828 int current_level = -1;
7829
7830 dprintf("imsm: imsm_prepare_update() for update_reshape\n");
7831
7832 /* add space for bigger array in update
7833 */
7834 for (id = super->devlist; id; id = id->next) {
7835 if (id->index == (unsigned)u->subdev) {
7836 size = sizeof_imsm_dev(id->dev, 1);
7837 if (u->new_raid_disks > u->old_raid_disks)
7838 size += sizeof(__u32)*2*
7839 (u->new_raid_disks - u->old_raid_disks);
7840 s = malloc(size);
7841 if (!s)
7842 break;
7843 *space_tail = s;
7844 space_tail = s;
7845 *space_tail = NULL;
7846 break;
7847 }
7848 }
7849 if (update->space_list == NULL)
7850 break;
7851
7852 /* add space for disk in update
7853 */
7854 size = sizeof(struct dl);
7855 s = malloc(size);
7856 if (!s) {
7857 free(update->space_list);
7858 update->space_list = NULL;
7859 break;
7860 }
7861 *space_tail = s;
7862 space_tail = s;
7863 *space_tail = NULL;
7864
7865 /* add spare device to update
7866 */
7867 for (id = super->devlist ; id; id = id->next)
7868 if (id->index == (unsigned)u->subdev) {
7869 struct imsm_dev *dev;
7870 struct imsm_map *map;
7871
7872 dev = get_imsm_dev(super, u->subdev);
7873 map = get_imsm_map(dev, 0);
7874 current_level = map->raid_level;
7875 break;
7876 }
7877 if ((u->new_level == 5) && (u->new_level != current_level)) {
7878 struct mdinfo *spares;
7879
7880 spares = get_spares_for_grow(st);
7881 if (spares) {
7882 struct dl *dl;
7883 struct mdinfo *dev;
7884
7885 dev = spares->devs;
7886 if (dev) {
7887 u->new_disks[0] =
7888 makedev(dev->disk.major,
7889 dev->disk.minor);
7890 dl = get_disk_super(super,
7891 dev->disk.major,
7892 dev->disk.minor);
7893 dl->index = u->old_raid_disks;
7894 dev = dev->next;
7895 }
7896 sysfs_free(spares);
7897 }
7898 }
7899 len = disks_to_mpb_size(u->new_raid_disks);
7900 dprintf("New anchor length is %llu\n", (unsigned long long)len);
7901 break;
7902 }
7903 case update_create_array: {
7904 struct imsm_update_create_array *u = (void *) update->buf;
7905 struct intel_dev *dv;
7906 struct imsm_dev *dev = &u->dev;
7907 struct imsm_map *map = get_imsm_map(dev, 0);
7908 struct dl *dl;
7909 struct disk_info *inf;
7910 int i;
7911 int activate = 0;
7912
7913 inf = get_disk_info(u);
7914 len = sizeof_imsm_dev(dev, 1);
7915 /* allocate a new super->devlist entry */
7916 dv = malloc(sizeof(*dv));
7917 if (dv) {
7918 dv->dev = malloc(len);
7919 if (dv->dev)
7920 update->space = dv;
7921 else {
7922 free(dv);
7923 update->space = NULL;
7924 }
7925 }
7926
7927 /* count how many spares will be converted to members */
7928 for (i = 0; i < map->num_members; i++) {
7929 dl = serial_to_dl(inf[i].serial, super);
7930 if (!dl) {
7931 /* hmm maybe it failed?, nothing we can do about
7932 * it here
7933 */
7934 continue;
7935 }
7936 if (count_memberships(dl, super) == 0)
7937 activate++;
7938 }
7939 len += activate * sizeof(struct imsm_disk);
7940 break;
7941 default:
7942 break;
7943 }
7944 }
7945
7946 /* check if we need a larger metadata buffer */
7947 if (super->next_buf)
7948 buf_len = super->next_len;
7949 else
7950 buf_len = super->len;
7951
7952 if (__le32_to_cpu(mpb->mpb_size) + len > buf_len) {
7953 /* ok we need a larger buf than what is currently allocated
7954 * if this allocation fails process_update will notice that
7955 * ->next_len is set and ->next_buf is NULL
7956 */
7957 buf_len = ROUND_UP(__le32_to_cpu(mpb->mpb_size) + len, 512);
7958 if (super->next_buf)
7959 free(super->next_buf);
7960
7961 super->next_len = buf_len;
7962 if (posix_memalign(&super->next_buf, 512, buf_len) == 0)
7963 memset(super->next_buf, 0, buf_len);
7964 else
7965 super->next_buf = NULL;
7966 }
7967 }
7968
7969 /* must be called while manager is quiesced */
7970 static void imsm_delete(struct intel_super *super, struct dl **dlp, unsigned index)
7971 {
7972 struct imsm_super *mpb = super->anchor;
7973 struct dl *iter;
7974 struct imsm_dev *dev;
7975 struct imsm_map *map;
7976 int i, j, num_members;
7977 __u32 ord;
7978
7979 dprintf("%s: deleting device[%d] from imsm_super\n",
7980 __func__, index);
7981
7982 /* shift all indexes down one */
7983 for (iter = super->disks; iter; iter = iter->next)
7984 if (iter->index > (int)index)
7985 iter->index--;
7986 for (iter = super->missing; iter; iter = iter->next)
7987 if (iter->index > (int)index)
7988 iter->index--;
7989
7990 for (i = 0; i < mpb->num_raid_devs; i++) {
7991 dev = get_imsm_dev(super, i);
7992 map = get_imsm_map(dev, 0);
7993 num_members = map->num_members;
7994 for (j = 0; j < num_members; j++) {
7995 /* update ord entries being careful not to propagate
7996 * ord-flags to the first map
7997 */
7998 ord = get_imsm_ord_tbl_ent(dev, j, -1);
7999
8000 if (ord_to_idx(ord) <= index)
8001 continue;
8002
8003 map = get_imsm_map(dev, 0);
8004 set_imsm_ord_tbl_ent(map, j, ord_to_idx(ord - 1));
8005 map = get_imsm_map(dev, 1);
8006 if (map)
8007 set_imsm_ord_tbl_ent(map, j, ord - 1);
8008 }
8009 }
8010
8011 mpb->num_disks--;
8012 super->updates_pending++;
8013 if (*dlp) {
8014 struct dl *dl = *dlp;
8015
8016 *dlp = (*dlp)->next;
8017 __free_imsm_disk(dl);
8018 }
8019 }
8020 #endif /* MDASSEMBLE */
8021
8022 static void close_targets(int *targets, int new_disks)
8023 {
8024 int i;
8025
8026 if (!targets)
8027 return;
8028
8029 for (i = 0; i < new_disks; i++) {
8030 if (targets[i] >= 0) {
8031 close(targets[i]);
8032 targets[i] = -1;
8033 }
8034 }
8035 }
8036
8037 static int imsm_get_allowed_degradation(int level, int raid_disks,
8038 struct intel_super *super,
8039 struct imsm_dev *dev)
8040 {
8041 switch (level) {
8042 case 10:{
8043 int ret_val = 0;
8044 struct imsm_map *map;
8045 int i;
8046
8047 ret_val = raid_disks/2;
8048 /* check map if all disks pairs not failed
8049 * in both maps
8050 */
8051 map = get_imsm_map(dev, 0);
8052 for (i = 0; i < ret_val; i++) {
8053 int degradation = 0;
8054 if (get_imsm_disk(super, i) == NULL)
8055 degradation++;
8056 if (get_imsm_disk(super, i + 1) == NULL)
8057 degradation++;
8058 if (degradation == 2)
8059 return 0;
8060 }
8061 map = get_imsm_map(dev, 1);
8062 /* if there is no second map
8063 * result can be returned
8064 */
8065 if (map == NULL)
8066 return ret_val;
8067 /* check degradation in second map
8068 */
8069 for (i = 0; i < ret_val; i++) {
8070 int degradation = 0;
8071 if (get_imsm_disk(super, i) == NULL)
8072 degradation++;
8073 if (get_imsm_disk(super, i + 1) == NULL)
8074 degradation++;
8075 if (degradation == 2)
8076 return 0;
8077 }
8078 return ret_val;
8079 }
8080 case 5:
8081 return 1;
8082 case 6:
8083 return 2;
8084 default:
8085 return 0;
8086 }
8087 }
8088
8089
8090 /*******************************************************************************
8091 * Function: open_backup_targets
8092 * Description: Function opens file descriptors for all devices given in
8093 * info->devs
8094 * Parameters:
8095 * info : general array info
8096 * raid_disks : number of disks
8097 * raid_fds : table of device's file descriptors
8098 * super : intel super for raid10 degradation check
8099 * dev : intel device for raid10 degradation check
8100 * Returns:
8101 * 0 : success
8102 * -1 : fail
8103 ******************************************************************************/
8104 int open_backup_targets(struct mdinfo *info, int raid_disks, int *raid_fds,
8105 struct intel_super *super, struct imsm_dev *dev)
8106 {
8107 struct mdinfo *sd;
8108 int i;
8109 int opened = 0;
8110
8111 for (i = 0; i < raid_disks; i++)
8112 raid_fds[i] = -1;
8113
8114 for (sd = info->devs ; sd ; sd = sd->next) {
8115 char *dn;
8116
8117 if (sd->disk.state & (1<<MD_DISK_FAULTY)) {
8118 dprintf("disk is faulty!!\n");
8119 continue;
8120 }
8121
8122 if ((sd->disk.raid_disk >= raid_disks) ||
8123 (sd->disk.raid_disk < 0))
8124 continue;
8125
8126 dn = map_dev(sd->disk.major,
8127 sd->disk.minor, 1);
8128 raid_fds[sd->disk.raid_disk] = dev_open(dn, O_RDWR);
8129 if (raid_fds[sd->disk.raid_disk] < 0) {
8130 fprintf(stderr, "cannot open component\n");
8131 continue;
8132 }
8133 opened++;
8134 }
8135 /* check if maximum array degradation level is not exceeded
8136 */
8137 if ((raid_disks - opened) >
8138 imsm_get_allowed_degradation(info->new_level,
8139 raid_disks,
8140 super, dev)) {
8141 fprintf(stderr, "Not enough disks can be opened.\n");
8142 close_targets(raid_fds, raid_disks);
8143 return -2;
8144 }
8145 return 0;
8146 }
8147
8148 #ifndef MDASSEMBLE
8149 /*******************************************************************************
8150 * Function: init_migr_record_imsm
8151 * Description: Function inits imsm migration record
8152 * Parameters:
8153 * super : imsm internal array info
8154 * dev : device under migration
8155 * info : general array info to find the smallest device
8156 * Returns:
8157 * none
8158 ******************************************************************************/
8159 void init_migr_record_imsm(struct supertype *st, struct imsm_dev *dev,
8160 struct mdinfo *info)
8161 {
8162 struct intel_super *super = st->sb;
8163 struct migr_record *migr_rec = super->migr_rec;
8164 int new_data_disks;
8165 unsigned long long dsize, dev_sectors;
8166 long long unsigned min_dev_sectors = -1LLU;
8167 struct mdinfo *sd;
8168 char nm[30];
8169 int fd;
8170 struct imsm_map *map_dest = get_imsm_map(dev, 0);
8171 struct imsm_map *map_src = get_imsm_map(dev, 1);
8172 unsigned long long num_migr_units;
8173 unsigned long long array_blocks;
8174
8175 memset(migr_rec, 0, sizeof(struct migr_record));
8176 migr_rec->family_num = __cpu_to_le32(super->anchor->family_num);
8177
8178 /* only ascending reshape supported now */
8179 migr_rec->ascending_migr = __cpu_to_le32(1);
8180
8181 migr_rec->dest_depth_per_unit = GEN_MIGR_AREA_SIZE /
8182 max(map_dest->blocks_per_strip, map_src->blocks_per_strip);
8183 migr_rec->dest_depth_per_unit *= map_dest->blocks_per_strip;
8184 new_data_disks = imsm_num_data_members(dev, 0);
8185 migr_rec->blocks_per_unit =
8186 __cpu_to_le32(migr_rec->dest_depth_per_unit * new_data_disks);
8187 migr_rec->dest_depth_per_unit =
8188 __cpu_to_le32(migr_rec->dest_depth_per_unit);
8189 array_blocks = info->component_size * new_data_disks;
8190 num_migr_units =
8191 array_blocks / __le32_to_cpu(migr_rec->blocks_per_unit);
8192
8193 if (array_blocks % __le32_to_cpu(migr_rec->blocks_per_unit))
8194 num_migr_units++;
8195 migr_rec->num_migr_units = __cpu_to_le32(num_migr_units);
8196
8197 migr_rec->post_migr_vol_cap = dev->size_low;
8198 migr_rec->post_migr_vol_cap_hi = dev->size_high;
8199
8200
8201 /* Find the smallest dev */
8202 for (sd = info->devs ; sd ; sd = sd->next) {
8203 sprintf(nm, "%d:%d", sd->disk.major, sd->disk.minor);
8204 fd = dev_open(nm, O_RDONLY);
8205 if (fd < 0)
8206 continue;
8207 get_dev_size(fd, NULL, &dsize);
8208 dev_sectors = dsize / 512;
8209 if (dev_sectors < min_dev_sectors)
8210 min_dev_sectors = dev_sectors;
8211 close(fd);
8212 }
8213 migr_rec->ckpt_area_pba = __cpu_to_le32(min_dev_sectors -
8214 RAID_DISK_RESERVED_BLOCKS_IMSM_HI);
8215
8216 write_imsm_migr_rec(st);
8217
8218 return;
8219 }
8220
8221 /*******************************************************************************
8222 * Function: save_backup_imsm
8223 * Description: Function saves critical data stripes to Migration Copy Area
8224 * and updates the current migration unit status.
8225 * Use restore_stripes() to form a destination stripe,
8226 * and to write it to the Copy Area.
8227 * Parameters:
8228 * st : supertype information
8229 * dev : imsm device that backup is saved for
8230 * info : general array info
8231 * buf : input buffer
8232 * length : length of data to backup (blocks_per_unit)
8233 * Returns:
8234 * 0 : success
8235 *, -1 : fail
8236 ******************************************************************************/
8237 int save_backup_imsm(struct supertype *st,
8238 struct imsm_dev *dev,
8239 struct mdinfo *info,
8240 void *buf,
8241 int length)
8242 {
8243 int rv = -1;
8244 struct intel_super *super = st->sb;
8245 unsigned long long *target_offsets = NULL;
8246 int *targets = NULL;
8247 int i;
8248 struct imsm_map *map_dest = get_imsm_map(dev, 0);
8249 int new_disks = map_dest->num_members;
8250 int dest_layout = 0;
8251 int dest_chunk;
8252 unsigned long long start;
8253 int data_disks = imsm_num_data_members(dev, 0);
8254
8255 targets = malloc(new_disks * sizeof(int));
8256 if (!targets)
8257 goto abort;
8258
8259 for (i = 0; i < new_disks; i++)
8260 targets[i] = -1;
8261
8262 target_offsets = malloc(new_disks * sizeof(unsigned long long));
8263 if (!target_offsets)
8264 goto abort;
8265
8266 start = info->reshape_progress * 512;
8267 for (i = 0; i < new_disks; i++) {
8268 target_offsets[i] = (unsigned long long)
8269 __le32_to_cpu(super->migr_rec->ckpt_area_pba) * 512;
8270 /* move back copy area adderss, it will be moved forward
8271 * in restore_stripes() using start input variable
8272 */
8273 target_offsets[i] -= start/data_disks;
8274 }
8275
8276 if (open_backup_targets(info, new_disks, targets,
8277 super, dev))
8278 goto abort;
8279
8280 dest_layout = imsm_level_to_layout(map_dest->raid_level);
8281 dest_chunk = __le16_to_cpu(map_dest->blocks_per_strip) * 512;
8282
8283 if (restore_stripes(targets, /* list of dest devices */
8284 target_offsets, /* migration record offsets */
8285 new_disks,
8286 dest_chunk,
8287 map_dest->raid_level,
8288 dest_layout,
8289 -1, /* source backup file descriptor */
8290 0, /* input buf offset
8291 * always 0 buf is already offseted */
8292 start,
8293 length,
8294 buf) != 0) {
8295 fprintf(stderr, Name ": Error restoring stripes\n");
8296 goto abort;
8297 }
8298
8299 rv = 0;
8300
8301 abort:
8302 if (targets) {
8303 close_targets(targets, new_disks);
8304 free(targets);
8305 }
8306 free(target_offsets);
8307
8308 return rv;
8309 }
8310
8311 /*******************************************************************************
8312 * Function: save_checkpoint_imsm
8313 * Description: Function called for current unit status update
8314 * in the migration record. It writes it to disk.
8315 * Parameters:
8316 * super : imsm internal array info
8317 * info : general array info
8318 * Returns:
8319 * 0: success
8320 * 1: failure
8321 * 2: failure, means no valid migration record
8322 * / no general migration in progress /
8323 ******************************************************************************/
8324 int save_checkpoint_imsm(struct supertype *st, struct mdinfo *info, int state)
8325 {
8326 struct intel_super *super = st->sb;
8327 unsigned long long blocks_per_unit;
8328 unsigned long long curr_migr_unit;
8329
8330 if (load_imsm_migr_rec(super, info) != 0) {
8331 dprintf("imsm: ERROR: Cannot read migration record "
8332 "for checkpoint save.\n");
8333 return 1;
8334 }
8335
8336 blocks_per_unit = __le32_to_cpu(super->migr_rec->blocks_per_unit);
8337 if (blocks_per_unit == 0) {
8338 dprintf("imsm: no migration in progress.\n");
8339 return 2;
8340 }
8341 curr_migr_unit = info->reshape_progress / blocks_per_unit;
8342 /* check if array is alligned to copy area
8343 * if it is not alligned, add one to current migration unit value
8344 * this can happend on array reshape finish only
8345 */
8346 if (info->reshape_progress % blocks_per_unit)
8347 curr_migr_unit++;
8348
8349 super->migr_rec->curr_migr_unit =
8350 __cpu_to_le32(curr_migr_unit);
8351 super->migr_rec->rec_status = __cpu_to_le32(state);
8352 super->migr_rec->dest_1st_member_lba =
8353 __cpu_to_le32(curr_migr_unit *
8354 __le32_to_cpu(super->migr_rec->dest_depth_per_unit));
8355 if (write_imsm_migr_rec(st) < 0) {
8356 dprintf("imsm: Cannot write migration record "
8357 "outside backup area\n");
8358 return 1;
8359 }
8360
8361 return 0;
8362 }
8363
8364 /*******************************************************************************
8365 * Function: recover_backup_imsm
8366 * Description: Function recovers critical data from the Migration Copy Area
8367 * while assembling an array.
8368 * Parameters:
8369 * super : imsm internal array info
8370 * info : general array info
8371 * Returns:
8372 * 0 : success (or there is no data to recover)
8373 * 1 : fail
8374 ******************************************************************************/
8375 int recover_backup_imsm(struct supertype *st, struct mdinfo *info)
8376 {
8377 struct intel_super *super = st->sb;
8378 struct migr_record *migr_rec = super->migr_rec;
8379 struct imsm_map *map_dest = NULL;
8380 struct intel_dev *id = NULL;
8381 unsigned long long read_offset;
8382 unsigned long long write_offset;
8383 unsigned unit_len;
8384 int *targets = NULL;
8385 int new_disks, i, err;
8386 char *buf = NULL;
8387 int retval = 1;
8388 unsigned long curr_migr_unit = __le32_to_cpu(migr_rec->curr_migr_unit);
8389 unsigned long num_migr_units = __le32_to_cpu(migr_rec->num_migr_units);
8390 char buffer[20];
8391 int skipped_disks = 0;
8392 int max_degradation;
8393
8394 err = sysfs_get_str(info, NULL, "array_state", (char *)buffer, 20);
8395 if (err < 1)
8396 return 1;
8397
8398 /* recover data only during assemblation */
8399 if (strncmp(buffer, "inactive", 8) != 0)
8400 return 0;
8401 /* no data to recover */
8402 if (__le32_to_cpu(migr_rec->rec_status) == UNIT_SRC_NORMAL)
8403 return 0;
8404 if (curr_migr_unit >= num_migr_units)
8405 return 1;
8406
8407 /* find device during reshape */
8408 for (id = super->devlist; id; id = id->next)
8409 if (is_gen_migration(id->dev))
8410 break;
8411 if (id == NULL)
8412 return 1;
8413
8414 map_dest = get_imsm_map(id->dev, 0);
8415 new_disks = map_dest->num_members;
8416 max_degradation = new_disks - imsm_num_data_members(id->dev, 0);
8417
8418 read_offset = (unsigned long long)
8419 __le32_to_cpu(migr_rec->ckpt_area_pba) * 512;
8420
8421 write_offset = ((unsigned long long)
8422 __le32_to_cpu(migr_rec->dest_1st_member_lba) +
8423 __le32_to_cpu(map_dest->pba_of_lba0)) * 512;
8424
8425 unit_len = __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
8426 if (posix_memalign((void **)&buf, 512, unit_len) != 0)
8427 goto abort;
8428 targets = malloc(new_disks * sizeof(int));
8429 if (!targets)
8430 goto abort;
8431
8432 if (open_backup_targets(info, new_disks, targets, super, id->dev)) {
8433 fprintf(stderr,
8434 Name ": Cannot open some devices belonging to array.\n");
8435 goto abort;
8436 }
8437
8438 for (i = 0; i < new_disks; i++) {
8439 if (targets[i] < 0) {
8440 skipped_disks++;
8441 continue;
8442 }
8443 if (lseek64(targets[i], read_offset, SEEK_SET) < 0) {
8444 fprintf(stderr,
8445 Name ": Cannot seek to block: %s\n",
8446 strerror(errno));
8447 goto abort;
8448 }
8449 if ((unsigned)read(targets[i], buf, unit_len) != unit_len) {
8450 fprintf(stderr,
8451 Name ": Cannot read copy area block: %s\n",
8452 strerror(errno));
8453 goto abort;
8454 }
8455 if (lseek64(targets[i], write_offset, SEEK_SET) < 0) {
8456 fprintf(stderr,
8457 Name ": Cannot seek to block: %s\n",
8458 strerror(errno));
8459 goto abort;
8460 }
8461 if ((unsigned)write(targets[i], buf, unit_len) != unit_len) {
8462 fprintf(stderr,
8463 Name ": Cannot restore block: %s\n",
8464 strerror(errno));
8465 goto abort;
8466 }
8467 }
8468
8469 if (skipped_disks > max_degradation) {
8470 fprintf(stderr,
8471 Name ": Cannot restore data from backup."
8472 " Too many failed disks\n");
8473 goto abort;
8474 }
8475
8476 if (save_checkpoint_imsm(st, info, UNIT_SRC_NORMAL)) {
8477 /* ignore error == 2, this can mean end of reshape here
8478 */
8479 dprintf("imsm: Cannot write checkpoint to "
8480 "migration record (UNIT_SRC_NORMAL) during restart\n");
8481 } else
8482 retval = 0;
8483
8484 abort:
8485 if (targets) {
8486 for (i = 0; i < new_disks; i++)
8487 if (targets[i])
8488 close(targets[i]);
8489 free(targets);
8490 }
8491 free(buf);
8492 return retval;
8493 }
8494
8495 static char disk_by_path[] = "/dev/disk/by-path/";
8496
8497 static const char *imsm_get_disk_controller_domain(const char *path)
8498 {
8499 char disk_path[PATH_MAX];
8500 char *drv=NULL;
8501 struct stat st;
8502
8503 strncpy(disk_path, disk_by_path, PATH_MAX - 1);
8504 strncat(disk_path, path, PATH_MAX - strlen(disk_path) - 1);
8505 if (stat(disk_path, &st) == 0) {
8506 struct sys_dev* hba;
8507 char *path=NULL;
8508
8509 path = devt_to_devpath(st.st_rdev);
8510 if (path == NULL)
8511 return "unknown";
8512 hba = find_disk_attached_hba(-1, path);
8513 if (hba && hba->type == SYS_DEV_SAS)
8514 drv = "isci";
8515 else if (hba && hba->type == SYS_DEV_SATA)
8516 drv = "ahci";
8517 else
8518 drv = "unknown";
8519 dprintf("path: %s hba: %s attached: %s\n",
8520 path, (hba) ? hba->path : "NULL", drv);
8521 free(path);
8522 if (hba)
8523 free_sys_dev(&hba);
8524 }
8525 return drv;
8526 }
8527
8528 static int imsm_find_array_minor_by_subdev(int subdev, int container, int *minor)
8529 {
8530 char subdev_name[20];
8531 struct mdstat_ent *mdstat;
8532
8533 sprintf(subdev_name, "%d", subdev);
8534 mdstat = mdstat_by_subdev(subdev_name, container);
8535 if (!mdstat)
8536 return -1;
8537
8538 *minor = mdstat->devnum;
8539 free_mdstat(mdstat);
8540 return 0;
8541 }
8542
8543 static int imsm_reshape_is_allowed_on_container(struct supertype *st,
8544 struct geo_params *geo,
8545 int *old_raid_disks)
8546 {
8547 /* currently we only support increasing the number of devices
8548 * for a container. This increases the number of device for each
8549 * member array. They must all be RAID0 or RAID5.
8550 */
8551 int ret_val = 0;
8552 struct mdinfo *info, *member;
8553 int devices_that_can_grow = 0;
8554
8555 dprintf("imsm: imsm_reshape_is_allowed_on_container(ENTER): "
8556 "st->devnum = (%i)\n",
8557 st->devnum);
8558
8559 if (geo->size != -1 ||
8560 geo->level != UnSet ||
8561 geo->layout != UnSet ||
8562 geo->chunksize != 0 ||
8563 geo->raid_disks == UnSet) {
8564 dprintf("imsm: Container operation is allowed for "
8565 "raid disks number change only.\n");
8566 return ret_val;
8567 }
8568
8569 info = container_content_imsm(st, NULL);
8570 for (member = info; member; member = member->next) {
8571 int result;
8572 int minor;
8573
8574 dprintf("imsm: checking device_num: %i\n",
8575 member->container_member);
8576
8577 if (geo->raid_disks <= member->array.raid_disks) {
8578 /* we work on container for Online Capacity Expansion
8579 * only so raid_disks has to grow
8580 */
8581 dprintf("imsm: for container operation raid disks "
8582 "increase is required\n");
8583 break;
8584 }
8585
8586 if ((info->array.level != 0) &&
8587 (info->array.level != 5)) {
8588 /* we cannot use this container with other raid level
8589 */
8590 dprintf("imsm: for container operation wrong"
8591 " raid level (%i) detected\n",
8592 info->array.level);
8593 break;
8594 } else {
8595 /* check for platform support
8596 * for this raid level configuration
8597 */
8598 struct intel_super *super = st->sb;
8599 if (!is_raid_level_supported(super->orom,
8600 member->array.level,
8601 geo->raid_disks)) {
8602 dprintf("platform does not support raid%d with"
8603 " %d disk%s\n",
8604 info->array.level,
8605 geo->raid_disks,
8606 geo->raid_disks > 1 ? "s" : "");
8607 break;
8608 }
8609 /* check if component size is aligned to chunk size
8610 */
8611 if (info->component_size %
8612 (info->array.chunk_size/512)) {
8613 dprintf("Component size is not aligned to "
8614 "chunk size\n");
8615 break;
8616 }
8617 }
8618
8619 if (*old_raid_disks &&
8620 info->array.raid_disks != *old_raid_disks)
8621 break;
8622 *old_raid_disks = info->array.raid_disks;
8623
8624 /* All raid5 and raid0 volumes in container
8625 * have to be ready for Online Capacity Expansion
8626 * so they need to be assembled. We have already
8627 * checked that no recovery etc is happening.
8628 */
8629 result = imsm_find_array_minor_by_subdev(member->container_member,
8630 st->container_dev,
8631 &minor);
8632 if (result < 0) {
8633 dprintf("imsm: cannot find array\n");
8634 break;
8635 }
8636 devices_that_can_grow++;
8637 }
8638 sysfs_free(info);
8639 if (!member && devices_that_can_grow)
8640 ret_val = 1;
8641
8642 if (ret_val)
8643 dprintf("\tContainer operation allowed\n");
8644 else
8645 dprintf("\tError: %i\n", ret_val);
8646
8647 return ret_val;
8648 }
8649
8650 /* Function: get_spares_for_grow
8651 * Description: Allocates memory and creates list of spare devices
8652 * avaliable in container. Checks if spare drive size is acceptable.
8653 * Parameters: Pointer to the supertype structure
8654 * Returns: Pointer to the list of spare devices (mdinfo structure) on success,
8655 * NULL if fail
8656 */
8657 static struct mdinfo *get_spares_for_grow(struct supertype *st)
8658 {
8659 unsigned long long min_size = min_acceptable_spare_size_imsm(st);
8660 return container_choose_spares(st, min_size, NULL, NULL, NULL, 0);
8661 }
8662
8663 /******************************************************************************
8664 * function: imsm_create_metadata_update_for_reshape
8665 * Function creates update for whole IMSM container.
8666 *
8667 ******************************************************************************/
8668 static int imsm_create_metadata_update_for_reshape(
8669 struct supertype *st,
8670 struct geo_params *geo,
8671 int old_raid_disks,
8672 struct imsm_update_reshape **updatep)
8673 {
8674 struct intel_super *super = st->sb;
8675 struct imsm_super *mpb = super->anchor;
8676 int update_memory_size = 0;
8677 struct imsm_update_reshape *u = NULL;
8678 struct mdinfo *spares = NULL;
8679 int i;
8680 int delta_disks = 0;
8681 struct mdinfo *dev;
8682
8683 dprintf("imsm_update_metadata_for_reshape(enter) raid_disks = %i\n",
8684 geo->raid_disks);
8685
8686 delta_disks = geo->raid_disks - old_raid_disks;
8687
8688 /* size of all update data without anchor */
8689 update_memory_size = sizeof(struct imsm_update_reshape);
8690
8691 /* now add space for spare disks that we need to add. */
8692 update_memory_size += sizeof(u->new_disks[0]) * (delta_disks - 1);
8693
8694 u = calloc(1, update_memory_size);
8695 if (u == NULL) {
8696 dprintf("error: "
8697 "cannot get memory for imsm_update_reshape update\n");
8698 return 0;
8699 }
8700 u->type = update_reshape_container_disks;
8701 u->old_raid_disks = old_raid_disks;
8702 u->new_raid_disks = geo->raid_disks;
8703
8704 /* now get spare disks list
8705 */
8706 spares = get_spares_for_grow(st);
8707
8708 if (spares == NULL
8709 || delta_disks > spares->array.spare_disks) {
8710 fprintf(stderr, Name ": imsm: ERROR: Cannot get spare devices "
8711 "for %s.\n", geo->dev_name);
8712 i = -1;
8713 goto abort;
8714 }
8715
8716 /* we have got spares
8717 * update disk list in imsm_disk list table in anchor
8718 */
8719 dprintf("imsm: %i spares are available.\n\n",
8720 spares->array.spare_disks);
8721
8722 dev = spares->devs;
8723 for (i = 0; i < delta_disks; i++) {
8724 struct dl *dl;
8725
8726 if (dev == NULL)
8727 break;
8728 u->new_disks[i] = makedev(dev->disk.major,
8729 dev->disk.minor);
8730 dl = get_disk_super(super, dev->disk.major, dev->disk.minor);
8731 dl->index = mpb->num_disks;
8732 mpb->num_disks++;
8733 dev = dev->next;
8734 }
8735
8736 abort:
8737 /* free spares
8738 */
8739 sysfs_free(spares);
8740
8741 dprintf("imsm: reshape update preparation :");
8742 if (i == delta_disks) {
8743 dprintf(" OK\n");
8744 *updatep = u;
8745 return update_memory_size;
8746 }
8747 free(u);
8748 dprintf(" Error\n");
8749
8750 return 0;
8751 }
8752
8753 /******************************************************************************
8754 * function: imsm_create_metadata_update_for_migration()
8755 * Creates update for IMSM array.
8756 *
8757 ******************************************************************************/
8758 static int imsm_create_metadata_update_for_migration(
8759 struct supertype *st,
8760 struct geo_params *geo,
8761 struct imsm_update_reshape_migration **updatep)
8762 {
8763 struct intel_super *super = st->sb;
8764 int update_memory_size = 0;
8765 struct imsm_update_reshape_migration *u = NULL;
8766 struct imsm_dev *dev;
8767 int previous_level = -1;
8768
8769 dprintf("imsm_create_metadata_update_for_migration(enter)"
8770 " New Level = %i\n", geo->level);
8771
8772 /* size of all update data without anchor */
8773 update_memory_size = sizeof(struct imsm_update_reshape_migration);
8774
8775 u = calloc(1, update_memory_size);
8776 if (u == NULL) {
8777 dprintf("error: cannot get memory for "
8778 "imsm_create_metadata_update_for_migration\n");
8779 return 0;
8780 }
8781 u->type = update_reshape_migration;
8782 u->subdev = super->current_vol;
8783 u->new_level = geo->level;
8784 u->new_layout = geo->layout;
8785 u->new_raid_disks = u->old_raid_disks = geo->raid_disks;
8786 u->new_disks[0] = -1;
8787 u->new_chunksize = -1;
8788
8789 dev = get_imsm_dev(super, u->subdev);
8790 if (dev) {
8791 struct imsm_map *map;
8792
8793 map = get_imsm_map(dev, 0);
8794 if (map) {
8795 int current_chunk_size =
8796 __le16_to_cpu(map->blocks_per_strip) / 2;
8797
8798 if (geo->chunksize != current_chunk_size) {
8799 u->new_chunksize = geo->chunksize / 1024;
8800 dprintf("imsm: "
8801 "chunk size change from %i to %i\n",
8802 current_chunk_size, u->new_chunksize);
8803 }
8804 previous_level = map->raid_level;
8805 }
8806 }
8807 if ((geo->level == 5) && (previous_level == 0)) {
8808 struct mdinfo *spares = NULL;
8809
8810 u->new_raid_disks++;
8811 spares = get_spares_for_grow(st);
8812 if ((spares == NULL) || (spares->array.spare_disks < 1)) {
8813 free(u);
8814 sysfs_free(spares);
8815 update_memory_size = 0;
8816 dprintf("error: cannot get spare device "
8817 "for requested migration");
8818 return 0;
8819 }
8820 sysfs_free(spares);
8821 }
8822 dprintf("imsm: reshape update preparation : OK\n");
8823 *updatep = u;
8824
8825 return update_memory_size;
8826 }
8827
8828 static void imsm_update_metadata_locally(struct supertype *st,
8829 void *buf, int len)
8830 {
8831 struct metadata_update mu;
8832
8833 mu.buf = buf;
8834 mu.len = len;
8835 mu.space = NULL;
8836 mu.space_list = NULL;
8837 mu.next = NULL;
8838 imsm_prepare_update(st, &mu);
8839 imsm_process_update(st, &mu);
8840
8841 while (mu.space_list) {
8842 void **space = mu.space_list;
8843 mu.space_list = *space;
8844 free(space);
8845 }
8846 }
8847
8848 /***************************************************************************
8849 * Function: imsm_analyze_change
8850 * Description: Function analyze change for single volume
8851 * and validate if transition is supported
8852 * Parameters: Geometry parameters, supertype structure
8853 * Returns: Operation type code on success, -1 if fail
8854 ****************************************************************************/
8855 enum imsm_reshape_type imsm_analyze_change(struct supertype *st,
8856 struct geo_params *geo)
8857 {
8858 struct mdinfo info;
8859 int change = -1;
8860 int check_devs = 0;
8861 int chunk;
8862 int devNumChange=0;
8863 int layout = -1;
8864
8865 getinfo_super_imsm_volume(st, &info, NULL);
8866 if ((geo->level != info.array.level) &&
8867 (geo->level >= 0) &&
8868 (geo->level != UnSet)) {
8869 switch (info.array.level) {
8870 case 0:
8871 if (geo->level == 5) {
8872 change = CH_MIGRATION;
8873 if (geo->layout != ALGORITHM_LEFT_ASYMMETRIC) {
8874 fprintf(stderr,
8875 Name " Error. Requested Layout "
8876 "not supported (left-asymmetric layout "
8877 "is supported only)!\n");
8878 change = -1;
8879 goto analyse_change_exit;
8880 }
8881 layout = geo->layout;
8882 check_devs = 1;
8883 devNumChange = 1; /* parity disk added */
8884 } else if (geo->level == 10) {
8885 change = CH_TAKEOVER;
8886 check_devs = 1;
8887 devNumChange = 2; /* two mirrors added */
8888 layout = 0x102; /* imsm supported layout */
8889 }
8890 break;
8891 case 1:
8892 case 10:
8893 if (geo->level == 0) {
8894 change = CH_TAKEOVER;
8895 check_devs = 1;
8896 devNumChange = -(geo->raid_disks/2);
8897 layout = 0; /* imsm raid0 layout */
8898 }
8899 break;
8900 }
8901 if (change == -1) {
8902 fprintf(stderr,
8903 Name " Error. Level Migration from %d to %d "
8904 "not supported!\n",
8905 info.array.level, geo->level);
8906 goto analyse_change_exit;
8907 }
8908 } else
8909 geo->level = info.array.level;
8910
8911 if ((geo->layout != info.array.layout)
8912 && ((geo->layout != UnSet) && (geo->layout != -1))) {
8913 change = CH_MIGRATION;
8914 if ((info.array.layout == 0)
8915 && (info.array.level == 5)
8916 && (geo->layout == 5)) {
8917 /* reshape 5 -> 4 */
8918 } else if ((info.array.layout == 5)
8919 && (info.array.level == 5)
8920 && (geo->layout == 0)) {
8921 /* reshape 4 -> 5 */
8922 geo->layout = 0;
8923 geo->level = 5;
8924 } else {
8925 fprintf(stderr,
8926 Name " Error. Layout Migration from %d to %d "
8927 "not supported!\n",
8928 info.array.layout, geo->layout);
8929 change = -1;
8930 goto analyse_change_exit;
8931 }
8932 } else
8933 geo->layout = info.array.layout;
8934
8935 if ((geo->chunksize > 0) && (geo->chunksize != UnSet)
8936 && (geo->chunksize != info.array.chunk_size))
8937 change = CH_MIGRATION;
8938 else
8939 geo->chunksize = info.array.chunk_size;
8940
8941 chunk = geo->chunksize / 1024;
8942 if (!validate_geometry_imsm(st,
8943 geo->level,
8944 layout,
8945 geo->raid_disks + devNumChange,
8946 &chunk,
8947 geo->size,
8948 0, 0, 1))
8949 change = -1;
8950
8951 if (check_devs) {
8952 struct intel_super *super = st->sb;
8953 struct imsm_super *mpb = super->anchor;
8954
8955 if (mpb->num_raid_devs > 1) {
8956 fprintf(stderr,
8957 Name " Error. Cannot perform operation on %s"
8958 "- for this operation it MUST be single "
8959 "array in container\n",
8960 geo->dev_name);
8961 change = -1;
8962 }
8963 }
8964
8965 analyse_change_exit:
8966
8967 return change;
8968 }
8969
8970 int imsm_takeover(struct supertype *st, struct geo_params *geo)
8971 {
8972 struct intel_super *super = st->sb;
8973 struct imsm_update_takeover *u;
8974
8975 u = malloc(sizeof(struct imsm_update_takeover));
8976 if (u == NULL)
8977 return 1;
8978
8979 u->type = update_takeover;
8980 u->subarray = super->current_vol;
8981
8982 /* 10->0 transition */
8983 if (geo->level == 0)
8984 u->direction = R10_TO_R0;
8985
8986 /* 0->10 transition */
8987 if (geo->level == 10)
8988 u->direction = R0_TO_R10;
8989
8990 /* update metadata locally */
8991 imsm_update_metadata_locally(st, u,
8992 sizeof(struct imsm_update_takeover));
8993 /* and possibly remotely */
8994 if (st->update_tail)
8995 append_metadata_update(st, u,
8996 sizeof(struct imsm_update_takeover));
8997 else
8998 free(u);
8999
9000 return 0;
9001 }
9002
9003 static int imsm_reshape_super(struct supertype *st, long long size, int level,
9004 int layout, int chunksize, int raid_disks,
9005 int delta_disks, char *backup, char *dev,
9006 int verbose)
9007 {
9008 int ret_val = 1;
9009 struct geo_params geo;
9010
9011 dprintf("imsm: reshape_super called.\n");
9012
9013 memset(&geo, 0, sizeof(struct geo_params));
9014
9015 geo.dev_name = dev;
9016 geo.dev_id = st->devnum;
9017 geo.size = size;
9018 geo.level = level;
9019 geo.layout = layout;
9020 geo.chunksize = chunksize;
9021 geo.raid_disks = raid_disks;
9022 if (delta_disks != UnSet)
9023 geo.raid_disks += delta_disks;
9024
9025 dprintf("\tfor level : %i\n", geo.level);
9026 dprintf("\tfor raid_disks : %i\n", geo.raid_disks);
9027
9028 if (experimental() == 0)
9029 return ret_val;
9030
9031 if (st->container_dev == st->devnum) {
9032 /* On container level we can only increase number of devices. */
9033 dprintf("imsm: info: Container operation\n");
9034 int old_raid_disks = 0;
9035
9036 if (imsm_reshape_is_allowed_on_container(
9037 st, &geo, &old_raid_disks)) {
9038 struct imsm_update_reshape *u = NULL;
9039 int len;
9040
9041 len = imsm_create_metadata_update_for_reshape(
9042 st, &geo, old_raid_disks, &u);
9043
9044 if (len <= 0) {
9045 dprintf("imsm: Cannot prepare update\n");
9046 goto exit_imsm_reshape_super;
9047 }
9048
9049 ret_val = 0;
9050 /* update metadata locally */
9051 imsm_update_metadata_locally(st, u, len);
9052 /* and possibly remotely */
9053 if (st->update_tail)
9054 append_metadata_update(st, u, len);
9055 else
9056 free(u);
9057
9058 } else {
9059 fprintf(stderr, Name ": (imsm) Operation "
9060 "is not allowed on this container\n");
9061 }
9062 } else {
9063 /* On volume level we support following operations
9064 * - takeover: raid10 -> raid0; raid0 -> raid10
9065 * - chunk size migration
9066 * - migration: raid5 -> raid0; raid0 -> raid5
9067 */
9068 struct intel_super *super = st->sb;
9069 struct intel_dev *dev = super->devlist;
9070 int change, devnum;
9071 dprintf("imsm: info: Volume operation\n");
9072 /* find requested device */
9073 while (dev) {
9074 if (imsm_find_array_minor_by_subdev(
9075 dev->index, st->container_dev, &devnum) == 0
9076 && devnum == geo.dev_id)
9077 break;
9078 dev = dev->next;
9079 }
9080 if (dev == NULL) {
9081 fprintf(stderr, Name " Cannot find %s (%i) subarray\n",
9082 geo.dev_name, geo.dev_id);
9083 goto exit_imsm_reshape_super;
9084 }
9085 super->current_vol = dev->index;
9086 change = imsm_analyze_change(st, &geo);
9087 switch (change) {
9088 case CH_TAKEOVER:
9089 ret_val = imsm_takeover(st, &geo);
9090 break;
9091 case CH_MIGRATION: {
9092 struct imsm_update_reshape_migration *u = NULL;
9093 int len =
9094 imsm_create_metadata_update_for_migration(
9095 st, &geo, &u);
9096 if (len < 1) {
9097 dprintf("imsm: "
9098 "Cannot prepare update\n");
9099 break;
9100 }
9101 ret_val = 0;
9102 /* update metadata locally */
9103 imsm_update_metadata_locally(st, u, len);
9104 /* and possibly remotely */
9105 if (st->update_tail)
9106 append_metadata_update(st, u, len);
9107 else
9108 free(u);
9109 }
9110 break;
9111 default:
9112 ret_val = 1;
9113 }
9114 }
9115
9116 exit_imsm_reshape_super:
9117 dprintf("imsm: reshape_super Exit code = %i\n", ret_val);
9118 return ret_val;
9119 }
9120
9121 /*******************************************************************************
9122 * Function: wait_for_reshape_imsm
9123 * Description: Function writes new sync_max value and waits until
9124 * reshape process reach new position
9125 * Parameters:
9126 * sra : general array info
9127 * ndata : number of disks in new array's layout
9128 * Returns:
9129 * 0 : success,
9130 * 1 : there is no reshape in progress,
9131 * -1 : fail
9132 ******************************************************************************/
9133 int wait_for_reshape_imsm(struct mdinfo *sra, int ndata)
9134 {
9135 int fd = sysfs_get_fd(sra, NULL, "reshape_position");
9136 unsigned long long completed;
9137 /* to_complete : new sync_max position */
9138 unsigned long long to_complete = sra->reshape_progress;
9139 unsigned long long position_to_set = to_complete / ndata;
9140
9141 if (fd < 0) {
9142 dprintf("imsm: wait_for_reshape_imsm() "
9143 "cannot open reshape_position\n");
9144 return 1;
9145 }
9146
9147 if (sysfs_fd_get_ll(fd, &completed) < 0) {
9148 dprintf("imsm: wait_for_reshape_imsm() "
9149 "cannot read reshape_position (no reshape in progres)\n");
9150 close(fd);
9151 return 0;
9152 }
9153
9154 if (completed > to_complete) {
9155 dprintf("imsm: wait_for_reshape_imsm() "
9156 "wrong next position to set %llu (%llu)\n",
9157 to_complete, completed);
9158 close(fd);
9159 return -1;
9160 }
9161 dprintf("Position set: %llu\n", position_to_set);
9162 if (sysfs_set_num(sra, NULL, "sync_max",
9163 position_to_set) != 0) {
9164 dprintf("imsm: wait_for_reshape_imsm() "
9165 "cannot set reshape position to %llu\n",
9166 position_to_set);
9167 close(fd);
9168 return -1;
9169 }
9170
9171 do {
9172 char action[20];
9173 fd_set rfds;
9174 FD_ZERO(&rfds);
9175 FD_SET(fd, &rfds);
9176 select(fd+1, &rfds, NULL, NULL, NULL);
9177 if (sysfs_get_str(sra, NULL, "sync_action",
9178 action, 20) > 0 &&
9179 strncmp(action, "reshape", 7) != 0)
9180 break;
9181 if (sysfs_fd_get_ll(fd, &completed) < 0) {
9182 dprintf("imsm: wait_for_reshape_imsm() "
9183 "cannot read reshape_position (in loop)\n");
9184 close(fd);
9185 return 1;
9186 }
9187 } while (completed < to_complete);
9188 close(fd);
9189 return 0;
9190
9191 }
9192
9193 /*******************************************************************************
9194 * Function: check_degradation_change
9195 * Description: Check that array hasn't become failed.
9196 * Parameters:
9197 * info : for sysfs access
9198 * sources : source disks descriptors
9199 * degraded: previous degradation level
9200 * Returns:
9201 * degradation level
9202 ******************************************************************************/
9203 int check_degradation_change(struct mdinfo *info,
9204 int *sources,
9205 int degraded)
9206 {
9207 unsigned long long new_degraded;
9208 sysfs_get_ll(info, NULL, "degraded", &new_degraded);
9209 if (new_degraded != (unsigned long long)degraded) {
9210 /* check each device to ensure it is still working */
9211 struct mdinfo *sd;
9212 new_degraded = 0;
9213 for (sd = info->devs ; sd ; sd = sd->next) {
9214 if (sd->disk.state & (1<<MD_DISK_FAULTY))
9215 continue;
9216 if (sd->disk.state & (1<<MD_DISK_SYNC)) {
9217 char sbuf[20];
9218 if (sysfs_get_str(info,
9219 sd, "state", sbuf, 20) < 0 ||
9220 strstr(sbuf, "faulty") ||
9221 strstr(sbuf, "in_sync") == NULL) {
9222 /* this device is dead */
9223 sd->disk.state = (1<<MD_DISK_FAULTY);
9224 if (sd->disk.raid_disk >= 0 &&
9225 sources[sd->disk.raid_disk] >= 0) {
9226 close(sources[
9227 sd->disk.raid_disk]);
9228 sources[sd->disk.raid_disk] =
9229 -1;
9230 }
9231 new_degraded++;
9232 }
9233 }
9234 }
9235 }
9236
9237 return new_degraded;
9238 }
9239
9240 /*******************************************************************************
9241 * Function: imsm_manage_reshape
9242 * Description: Function finds array under reshape and it manages reshape
9243 * process. It creates stripes backups (if required) and sets
9244 * checheckpoits.
9245 * Parameters:
9246 * afd : Backup handle (nattive) - not used
9247 * sra : general array info
9248 * reshape : reshape parameters - not used
9249 * st : supertype structure
9250 * blocks : size of critical section [blocks]
9251 * fds : table of source device descriptor
9252 * offsets : start of array (offest per devices)
9253 * dests : not used
9254 * destfd : table of destination device descriptor
9255 * destoffsets : table of destination offsets (per device)
9256 * Returns:
9257 * 1 : success, reshape is done
9258 * 0 : fail
9259 ******************************************************************************/
9260 static int imsm_manage_reshape(
9261 int afd, struct mdinfo *sra, struct reshape *reshape,
9262 struct supertype *st, unsigned long backup_blocks,
9263 int *fds, unsigned long long *offsets,
9264 int dests, int *destfd, unsigned long long *destoffsets)
9265 {
9266 int ret_val = 0;
9267 struct intel_super *super = st->sb;
9268 struct intel_dev *dv = NULL;
9269 struct imsm_dev *dev = NULL;
9270 struct imsm_map *map_src;
9271 int migr_vol_qan = 0;
9272 int ndata, odata; /* [bytes] */
9273 int chunk; /* [bytes] */
9274 struct migr_record *migr_rec;
9275 char *buf = NULL;
9276 unsigned int buf_size; /* [bytes] */
9277 unsigned long long max_position; /* array size [bytes] */
9278 unsigned long long next_step; /* [blocks]/[bytes] */
9279 unsigned long long old_data_stripe_length;
9280 unsigned long long start_src; /* [bytes] */
9281 unsigned long long start; /* [bytes] */
9282 unsigned long long start_buf_shift; /* [bytes] */
9283 int degraded = 0;
9284 int source_layout = 0;
9285
9286 if (!fds || !offsets || !sra)
9287 goto abort;
9288
9289 /* Find volume during the reshape */
9290 for (dv = super->devlist; dv; dv = dv->next) {
9291 if (dv->dev->vol.migr_type == MIGR_GEN_MIGR
9292 && dv->dev->vol.migr_state == 1) {
9293 dev = dv->dev;
9294 migr_vol_qan++;
9295 }
9296 }
9297 /* Only one volume can migrate at the same time */
9298 if (migr_vol_qan != 1) {
9299 fprintf(stderr, Name " : %s", migr_vol_qan ?
9300 "Number of migrating volumes greater than 1\n" :
9301 "There is no volume during migrationg\n");
9302 goto abort;
9303 }
9304
9305 map_src = get_imsm_map(dev, 1);
9306 if (map_src == NULL)
9307 goto abort;
9308
9309 ndata = imsm_num_data_members(dev, 0);
9310 odata = imsm_num_data_members(dev, 1);
9311
9312 chunk = __le16_to_cpu(map_src->blocks_per_strip) * 512;
9313 old_data_stripe_length = odata * chunk;
9314
9315 migr_rec = super->migr_rec;
9316
9317 /* initialize migration record for start condition */
9318 if (sra->reshape_progress == 0)
9319 init_migr_record_imsm(st, dev, sra);
9320 else {
9321 if (__le32_to_cpu(migr_rec->rec_status) != UNIT_SRC_NORMAL) {
9322 dprintf("imsm: cannot restart migration when data "
9323 "are present in copy area.\n");
9324 goto abort;
9325 }
9326 }
9327
9328 /* size for data */
9329 buf_size = __le32_to_cpu(migr_rec->blocks_per_unit) * 512;
9330 /* extend buffer size for parity disk */
9331 buf_size += __le32_to_cpu(migr_rec->dest_depth_per_unit) * 512;
9332 /* add space for stripe aligment */
9333 buf_size += old_data_stripe_length;
9334 if (posix_memalign((void **)&buf, 4096, buf_size)) {
9335 dprintf("imsm: Cannot allocate checpoint buffer\n");
9336 goto abort;
9337 }
9338
9339 max_position = sra->component_size * ndata;
9340 source_layout = imsm_level_to_layout(map_src->raid_level);
9341
9342 while (__le32_to_cpu(migr_rec->curr_migr_unit) <
9343 __le32_to_cpu(migr_rec->num_migr_units)) {
9344 /* current reshape position [blocks] */
9345 unsigned long long current_position =
9346 __le32_to_cpu(migr_rec->blocks_per_unit)
9347 * __le32_to_cpu(migr_rec->curr_migr_unit);
9348 unsigned long long border;
9349
9350 /* Check that array hasn't become failed.
9351 */
9352 degraded = check_degradation_change(sra, fds, degraded);
9353 if (degraded > 1) {
9354 dprintf("imsm: Abort reshape due to degradation"
9355 " level (%i)\n", degraded);
9356 goto abort;
9357 }
9358
9359 next_step = __le32_to_cpu(migr_rec->blocks_per_unit);
9360
9361 if ((current_position + next_step) > max_position)
9362 next_step = max_position - current_position;
9363
9364 start = current_position * 512;
9365
9366 /* allign reading start to old geometry */
9367 start_buf_shift = start % old_data_stripe_length;
9368 start_src = start - start_buf_shift;
9369
9370 border = (start_src / odata) - (start / ndata);
9371 border /= 512;
9372 if (border <= __le32_to_cpu(migr_rec->dest_depth_per_unit)) {
9373 /* save critical stripes to buf
9374 * start - start address of current unit
9375 * to backup [bytes]
9376 * start_src - start address of current unit
9377 * to backup alligned to source array
9378 * [bytes]
9379 */
9380 unsigned long long next_step_filler = 0;
9381 unsigned long long copy_length = next_step * 512;
9382
9383 /* allign copy area length to stripe in old geometry */
9384 next_step_filler = ((copy_length + start_buf_shift)
9385 % old_data_stripe_length);
9386 if (next_step_filler)
9387 next_step_filler = (old_data_stripe_length
9388 - next_step_filler);
9389 dprintf("save_stripes() parameters: start = %llu,"
9390 "\tstart_src = %llu,\tnext_step*512 = %llu,"
9391 "\tstart_in_buf_shift = %llu,"
9392 "\tnext_step_filler = %llu\n",
9393 start, start_src, copy_length,
9394 start_buf_shift, next_step_filler);
9395
9396 if (save_stripes(fds, offsets, map_src->num_members,
9397 chunk, map_src->raid_level,
9398 source_layout, 0, NULL, start_src,
9399 copy_length +
9400 next_step_filler + start_buf_shift,
9401 buf)) {
9402 dprintf("imsm: Cannot save stripes"
9403 " to buffer\n");
9404 goto abort;
9405 }
9406 /* Convert data to destination format and store it
9407 * in backup general migration area
9408 */
9409 if (save_backup_imsm(st, dev, sra,
9410 buf + start_buf_shift, copy_length)) {
9411 dprintf("imsm: Cannot save stripes to "
9412 "target devices\n");
9413 goto abort;
9414 }
9415 if (save_checkpoint_imsm(st, sra,
9416 UNIT_SRC_IN_CP_AREA)) {
9417 dprintf("imsm: Cannot write checkpoint to "
9418 "migration record (UNIT_SRC_IN_CP_AREA)\n");
9419 goto abort;
9420 }
9421 } else {
9422 /* set next step to use whole border area */
9423 border /= next_step;
9424 if (border > 1)
9425 next_step *= border;
9426 }
9427 /* When data backed up, checkpoint stored,
9428 * kick the kernel to reshape unit of data
9429 */
9430 next_step = next_step + sra->reshape_progress;
9431 /* limit next step to array max position */
9432 if (next_step > max_position)
9433 next_step = max_position;
9434 sysfs_set_num(sra, NULL, "suspend_lo", sra->reshape_progress);
9435 sysfs_set_num(sra, NULL, "suspend_hi", next_step);
9436 sra->reshape_progress = next_step;
9437
9438 /* wait until reshape finish */
9439 if (wait_for_reshape_imsm(sra, ndata) < 0) {
9440 dprintf("wait_for_reshape_imsm returned error!\n");
9441 goto abort;
9442 }
9443
9444 if (save_checkpoint_imsm(st, sra, UNIT_SRC_NORMAL) == 1) {
9445 /* ignore error == 2, this can mean end of reshape here
9446 */
9447 dprintf("imsm: Cannot write checkpoint to "
9448 "migration record (UNIT_SRC_NORMAL)\n");
9449 goto abort;
9450 }
9451
9452 }
9453
9454 /* return '1' if done */
9455 ret_val = 1;
9456 abort:
9457 free(buf);
9458 abort_reshape(sra);
9459
9460 return ret_val;
9461 }
9462 #endif /* MDASSEMBLE */
9463
9464 struct superswitch super_imsm = {
9465 #ifndef MDASSEMBLE
9466 .examine_super = examine_super_imsm,
9467 .brief_examine_super = brief_examine_super_imsm,
9468 .brief_examine_subarrays = brief_examine_subarrays_imsm,
9469 .export_examine_super = export_examine_super_imsm,
9470 .detail_super = detail_super_imsm,
9471 .brief_detail_super = brief_detail_super_imsm,
9472 .write_init_super = write_init_super_imsm,
9473 .validate_geometry = validate_geometry_imsm,
9474 .add_to_super = add_to_super_imsm,
9475 .remove_from_super = remove_from_super_imsm,
9476 .detail_platform = detail_platform_imsm,
9477 .kill_subarray = kill_subarray_imsm,
9478 .update_subarray = update_subarray_imsm,
9479 .load_container = load_container_imsm,
9480 .default_geometry = default_geometry_imsm,
9481 .get_disk_controller_domain = imsm_get_disk_controller_domain,
9482 .reshape_super = imsm_reshape_super,
9483 .manage_reshape = imsm_manage_reshape,
9484 .recover_backup = recover_backup_imsm,
9485 #endif
9486 .match_home = match_home_imsm,
9487 .uuid_from_super= uuid_from_super_imsm,
9488 .getinfo_super = getinfo_super_imsm,
9489 .getinfo_super_disks = getinfo_super_disks_imsm,
9490 .update_super = update_super_imsm,
9491
9492 .avail_size = avail_size_imsm,
9493 .min_acceptable_spare_size = min_acceptable_spare_size_imsm,
9494
9495 .compare_super = compare_super_imsm,
9496
9497 .load_super = load_super_imsm,
9498 .init_super = init_super_imsm,
9499 .store_super = store_super_imsm,
9500 .free_super = free_super_imsm,
9501 .match_metadata_desc = match_metadata_desc_imsm,
9502 .container_content = container_content_imsm,
9503
9504
9505 .external = 1,
9506 .name = "imsm",
9507
9508 #ifndef MDASSEMBLE
9509 /* for mdmon */
9510 .open_new = imsm_open_new,
9511 .set_array_state= imsm_set_array_state,
9512 .set_disk = imsm_set_disk,
9513 .sync_metadata = imsm_sync_metadata,
9514 .activate_spare = imsm_activate_spare,
9515 .process_update = imsm_process_update,
9516 .prepare_update = imsm_prepare_update,
9517 #endif /* MDASSEMBLE */
9518 };