]> git.ipfire.org Git - thirdparty/mdadm.git/blob - util.c
03336d6fa24c5529f9e09ffb301a3a4ad31223b3
[thirdparty/mdadm.git] / util.c
1 /*
2 * mdadm - manage Linux "md" devices aka RAID arrays.
3 *
4 * Copyright (C) 2001-2013 Neil Brown <neilb@suse.de>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Author: Neil Brown
22 * Email: <neilb@suse.de>
23 */
24
25 #include "mdadm.h"
26 #include "md_p.h"
27 #include <sys/socket.h>
28 #include <sys/utsname.h>
29 #include <sys/wait.h>
30 #include <sys/un.h>
31 #include <sys/resource.h>
32 #include <sys/vfs.h>
33 #include <sys/mman.h>
34 #include <linux/magic.h>
35 #include <poll.h>
36 #include <ctype.h>
37 #include <dirent.h>
38 #include <dlfcn.h>
39 #include <limits.h>
40
41 /*
42 * following taken from linux/blkpg.h because they aren't
43 * anywhere else and it isn't safe to #include linux/ * stuff.
44 */
45
46 #define BLKPG _IO(0x12,105)
47
48 /* The argument structure */
49 struct blkpg_ioctl_arg {
50 int op;
51 int flags;
52 int datalen;
53 void *data;
54 };
55
56 /* The subfunctions (for the op field) */
57 #define BLKPG_ADD_PARTITION 1
58 #define BLKPG_DEL_PARTITION 2
59
60 /* Sizes of name fields. Unused at present. */
61 #define BLKPG_DEVNAMELTH 64
62 #define BLKPG_VOLNAMELTH 64
63
64 /* The data structure for ADD_PARTITION and DEL_PARTITION */
65 struct blkpg_partition {
66 long long start; /* starting offset in bytes */
67 long long length; /* length in bytes */
68 int pno; /* partition number */
69 char devname[BLKPG_DEVNAMELTH]; /* partition name, like sda5 or c0d1p2,
70 to be used in kernel messages */
71 char volname[BLKPG_VOLNAMELTH]; /* volume label */
72 };
73
74 #include "part.h"
75
76 /* Force a compilation error if condition is true */
77 #define BUILD_BUG_ON(condition) ((void)BUILD_BUG_ON_ZERO(condition))
78
79 /* Force a compilation error if condition is true, but also produce a
80 result (of value 0 and type size_t), so the expression can be used
81 e.g. in a structure initializer (or where-ever else comma expressions
82 aren't permitted). */
83 #define BUILD_BUG_ON_ZERO(e) (sizeof(struct { int:-!!(e); }))
84
85 static int is_dlm_hooks_ready = 0;
86
87 int dlm_funs_ready(void)
88 {
89 return is_dlm_hooks_ready ? 1 : 0;
90 }
91
92 static struct dlm_hooks *dlm_hooks = NULL;
93 struct dlm_lock_resource *dlm_lock_res = NULL;
94 static int ast_called = 0;
95
96 struct dlm_lock_resource {
97 dlm_lshandle_t *ls;
98 struct dlm_lksb lksb;
99 };
100
101 /* Using poll(2) to wait for and dispatch ASTs */
102 static int poll_for_ast(dlm_lshandle_t ls)
103 {
104 struct pollfd pfd;
105
106 pfd.fd = dlm_hooks->ls_get_fd(ls);
107 pfd.events = POLLIN;
108
109 while (!ast_called)
110 {
111 if (poll(&pfd, 1, 0) < 0)
112 {
113 perror("poll");
114 return -1;
115 }
116 dlm_hooks->dispatch(dlm_hooks->ls_get_fd(ls));
117 }
118 ast_called = 0;
119
120 return 0;
121 }
122
123 static void dlm_ast(void *arg)
124 {
125 ast_called = 1;
126 }
127
128 static char *cluster_name = NULL;
129 /* Create the lockspace, take bitmapXXX locks on all the bitmaps. */
130 int cluster_get_dlmlock(void)
131 {
132 int ret = -1;
133 char str[64];
134 int flags = LKF_NOQUEUE;
135 int retry_count = 0;
136
137 if (!dlm_funs_ready()) {
138 pr_err("Something wrong with dlm library\n");
139 return -1;
140 }
141
142 ret = get_cluster_name(&cluster_name);
143 if (ret) {
144 pr_err("The md can't get cluster name\n");
145 return -1;
146 }
147
148 dlm_lock_res = xmalloc(sizeof(struct dlm_lock_resource));
149 dlm_lock_res->ls = dlm_hooks->open_lockspace(cluster_name);
150 if (!dlm_lock_res->ls) {
151 dlm_lock_res->ls = dlm_hooks->create_lockspace(cluster_name, O_RDWR);
152 if (!dlm_lock_res->ls) {
153 pr_err("%s failed to create lockspace\n", cluster_name);
154 return -ENOMEM;
155 }
156 } else {
157 pr_err("open existed %s lockspace\n", cluster_name);
158 }
159
160 snprintf(str, 64, "bitmap%s", cluster_name);
161 retry:
162 ret = dlm_hooks->ls_lock(dlm_lock_res->ls, LKM_PWMODE,
163 &dlm_lock_res->lksb, flags, str, strlen(str),
164 0, dlm_ast, dlm_lock_res, NULL, NULL);
165 if (ret) {
166 pr_err("error %d when get PW mode on lock %s\n", errno, str);
167 /* let's try several times if EAGAIN happened */
168 if (dlm_lock_res->lksb.sb_status == EAGAIN && retry_count < 10) {
169 sleep_for(10, 0, true);
170 retry_count++;
171 goto retry;
172 }
173 dlm_hooks->release_lockspace(cluster_name, dlm_lock_res->ls, 1);
174 return ret;
175 }
176
177 /* Wait for it to complete */
178 poll_for_ast(dlm_lock_res->ls);
179
180 if (dlm_lock_res->lksb.sb_status) {
181 pr_err("failed to lock cluster\n");
182 return -1;
183 }
184 return 1;
185 }
186
187 int cluster_release_dlmlock(void)
188 {
189 int ret = -1;
190
191 if (!cluster_name)
192 goto out;
193
194 if (!dlm_lock_res->lksb.sb_lkid)
195 goto out;
196
197 ret = dlm_hooks->ls_unlock_wait(dlm_lock_res->ls,
198 dlm_lock_res->lksb.sb_lkid, 0,
199 &dlm_lock_res->lksb);
200 if (ret) {
201 pr_err("error %d happened when unlock\n", errno);
202 /* XXX make sure the lock is unlocked eventually */
203 goto out;
204 }
205
206 /* Wait for it to complete */
207 poll_for_ast(dlm_lock_res->ls);
208
209 errno = dlm_lock_res->lksb.sb_status;
210 if (errno != EUNLOCK) {
211 pr_err("error %d happened in ast when unlock lockspace\n",
212 errno);
213 /* XXX make sure the lockspace is unlocked eventually */
214 goto out;
215 }
216
217 ret = dlm_hooks->release_lockspace(cluster_name, dlm_lock_res->ls, 1);
218 if (ret) {
219 pr_err("error %d happened when release lockspace\n", errno);
220 /* XXX make sure the lockspace is released eventually */
221 goto out;
222 }
223 free(dlm_lock_res);
224
225 out:
226 return ret;
227 }
228
229 int md_array_valid(int fd)
230 {
231 struct mdinfo *sra;
232 int ret;
233
234 sra = sysfs_read(fd, NULL, GET_ARRAY_STATE);
235 if (sra) {
236 if (sra->array_state != ARRAY_UNKNOWN_STATE)
237 ret = 0;
238 else
239 ret = -ENODEV;
240
241 free(sra);
242 } else {
243 /*
244 * GET_ARRAY_INFO doesn't provide access to the proper state
245 * information, so fallback to a basic check for raid_disks != 0
246 */
247 ret = ioctl(fd, RAID_VERSION);
248 }
249
250 return !ret;
251 }
252
253 int md_array_active(int fd)
254 {
255 struct mdinfo *sra;
256 struct mdu_array_info_s array;
257 int ret = 0;
258
259 sra = sysfs_read(fd, NULL, GET_ARRAY_STATE);
260 if (sra) {
261 if (!md_array_is_active(sra))
262 ret = -ENODEV;
263
264 free(sra);
265 } else {
266 /*
267 * GET_ARRAY_INFO doesn't provide access to the proper state
268 * information, so fallback to a basic check for raid_disks != 0
269 */
270 ret = md_get_array_info(fd, &array);
271 }
272
273 return !ret;
274 }
275
276 int md_array_is_active(struct mdinfo *info)
277 {
278 return (info->array_state != ARRAY_CLEAR &&
279 info->array_state != ARRAY_INACTIVE &&
280 info->array_state != ARRAY_UNKNOWN_STATE);
281 }
282
283 /*
284 * Get array info from the kernel. Longer term we want to deprecate the
285 * ioctl and get it from sysfs.
286 */
287 int md_get_array_info(int fd, struct mdu_array_info_s *array)
288 {
289 return ioctl(fd, GET_ARRAY_INFO, array);
290 }
291
292 /*
293 * Set array info
294 */
295 int md_set_array_info(int fd, struct mdu_array_info_s *array)
296 {
297 return ioctl(fd, SET_ARRAY_INFO, array);
298 }
299
300 /*
301 * Get disk info from the kernel.
302 */
303 int md_get_disk_info(int fd, struct mdu_disk_info_s *disk)
304 {
305 return ioctl(fd, GET_DISK_INFO, disk);
306 }
307
308 int get_linux_version()
309 {
310 struct utsname name;
311 char *cp;
312 int a = 0, b = 0,c = 0;
313 if (uname(&name) <0)
314 return -1;
315
316 cp = name.release;
317 a = strtoul(cp, &cp, 10);
318 if (*cp == '.')
319 b = strtoul(cp+1, &cp, 10);
320 if (*cp == '.')
321 c = strtoul(cp+1, &cp, 10);
322
323 return (a*1000000)+(b*1000)+c;
324 }
325
326 int mdadm_version(char *version)
327 {
328 int a, b, c;
329 char *cp;
330
331 if (!version)
332 version = Version;
333
334 cp = strchr(version, '-');
335 if (!cp || *(cp+1) != ' ' || *(cp+2) != 'v')
336 return -1;
337 cp += 3;
338 a = strtoul(cp, &cp, 10);
339 if (*cp != '.')
340 return -1;
341 b = strtoul(cp+1, &cp, 10);
342 if (*cp == '.')
343 c = strtoul(cp+1, &cp, 10);
344 else
345 c = 0;
346 if (*cp != ' ' && *cp != '-')
347 return -1;
348 return (a*1000000)+(b*1000)+c;
349 }
350
351 unsigned long long parse_size(char *size)
352 {
353 /* parse 'size' which should be a number optionally
354 * followed by 'K', 'M'. 'G' or 'T'.
355 * Without a suffix, K is assumed.
356 * Number returned is in sectors (half-K)
357 * INVALID_SECTORS returned on error.
358 */
359 char *c;
360 long long s = strtoll(size, &c, 10);
361 if (s > 0) {
362 switch (*c) {
363 case 'K':
364 c++;
365 default:
366 s *= 2;
367 break;
368 case 'M':
369 c++;
370 s *= 1024 * 2;
371 break;
372 case 'G':
373 c++;
374 s *= 1024 * 1024 * 2;
375 break;
376 case 'T':
377 c++;
378 s *= 1024 * 1024 * 1024 * 2LL;
379 break;
380 case 's': /* sectors */
381 c++;
382 break;
383 }
384 } else
385 s = INVALID_SECTORS;
386 if (*c)
387 s = INVALID_SECTORS;
388 return s;
389 }
390
391 int is_near_layout_10(int layout)
392 {
393 int fc, fo;
394
395 fc = (layout >> 8) & 255;
396 fo = layout & (1 << 16);
397 if (fc > 1 || fo > 0)
398 return 0;
399 return 1;
400 }
401
402 int parse_layout_10(char *layout)
403 {
404 int copies, rv;
405 char *cp;
406 /* Parse the layout string for raid10 */
407 /* 'f', 'o' or 'n' followed by a number <= raid_disks */
408 if ((layout[0] != 'n' && layout[0] != 'f' && layout[0] != 'o') ||
409 (copies = strtoul(layout+1, &cp, 10)) < 1 ||
410 copies > 200 ||
411 *cp)
412 return -1;
413 if (layout[0] == 'n')
414 rv = 256 + copies;
415 else if (layout[0] == 'o')
416 rv = 0x10000 + (copies<<8) + 1;
417 else
418 rv = 1 + (copies<<8);
419 return rv;
420 }
421
422 int parse_layout_faulty(char *layout)
423 {
424 int ln, mode;
425 char *m;
426
427 if (!layout)
428 return -1;
429
430 /* Parse the layout string for 'faulty' */
431 ln = strcspn(layout, "0123456789");
432 m = xstrdup(layout);
433 m[ln] = 0;
434 mode = map_name(faultylayout, m);
435 free(m);
436
437 if (mode == UnSet)
438 return -1;
439
440 return mode | (atoi(layout+ln)<< ModeShift);
441 }
442
443 int parse_cluster_confirm_arg(char *input, char **devname, int *slot)
444 {
445 char *dev;
446 *slot = strtoul(input, &dev, 10);
447 if (dev == input || dev[0] != ':')
448 return -1;
449 *devname = dev+1;
450 return 0;
451 }
452
453 void remove_partitions(int fd)
454 {
455 /* remove partitions from this block devices.
456 * This is used for components added to an array
457 */
458 #ifdef BLKPG_DEL_PARTITION
459 struct blkpg_ioctl_arg a;
460 struct blkpg_partition p;
461
462 a.op = BLKPG_DEL_PARTITION;
463 a.data = (void*)&p;
464 a.datalen = sizeof(p);
465 a.flags = 0;
466 memset(a.data, 0, a.datalen);
467 for (p.pno = 0; p.pno < 16; p.pno++)
468 ioctl(fd, BLKPG, &a);
469 #endif
470 }
471
472 int test_partition(int fd)
473 {
474 /* Check if fd is a whole-disk or a partition.
475 * BLKPG will return EINVAL on a partition, and BLKPG_DEL_PARTITION
476 * will return ENXIO on an invalid partition number.
477 */
478 struct blkpg_ioctl_arg a;
479 struct blkpg_partition p;
480 a.op = BLKPG_DEL_PARTITION;
481 a.data = (void*)&p;
482 a.datalen = sizeof(p);
483 a.flags = 0;
484 memset(a.data, 0, a.datalen);
485 p.pno = 1<<30;
486 if (ioctl(fd, BLKPG, &a) == 0)
487 /* Very unlikely, but not a partition */
488 return 0;
489 if (errno == ENXIO || errno == ENOTTY)
490 /* not a partition */
491 return 0;
492
493 return 1;
494 }
495
496 int test_partition_from_id(dev_t id)
497 {
498 char buf[20];
499 int fd, rv;
500
501 sprintf(buf, "%d:%d", major(id), minor(id));
502 fd = dev_open(buf, O_RDONLY);
503 if (fd < 0)
504 return -1;
505 rv = test_partition(fd);
506 close(fd);
507 return rv;
508 }
509
510 int enough(int level, int raid_disks, int layout, int clean, char *avail)
511 {
512 int copies, first;
513 int i;
514 int avail_disks = 0;
515
516 for (i = 0; i < raid_disks; i++)
517 avail_disks += !!avail[i];
518
519 switch (level) {
520 case 10:
521 /* This is the tricky one - we need to check
522 * which actual disks are present.
523 */
524 copies = (layout&255)* ((layout>>8) & 255);
525 first = 0;
526 do {
527 /* there must be one of the 'copies' form 'first' */
528 int n = copies;
529 int cnt = 0;
530 int this = first;
531 while (n--) {
532 if (avail[this])
533 cnt++;
534 this = (this+1) % raid_disks;
535 }
536 if (cnt == 0)
537 return 0;
538 first = (first+(layout&255)) % raid_disks;
539 } while (first != 0);
540 return 1;
541
542 case LEVEL_MULTIPATH:
543 return avail_disks>= 1;
544 case LEVEL_LINEAR:
545 case 0:
546 return avail_disks == raid_disks;
547 case 1:
548 return avail_disks >= 1;
549 case 4:
550 if (avail_disks == raid_disks - 1 &&
551 !avail[raid_disks - 1])
552 /* If just the parity device is missing, then we
553 * have enough, even if not clean
554 */
555 return 1;
556 /* FALL THROUGH */
557 case 5:
558 if (clean)
559 return avail_disks >= raid_disks-1;
560 else
561 return avail_disks >= raid_disks;
562 case 6:
563 if (clean)
564 return avail_disks >= raid_disks-2;
565 else
566 return avail_disks >= raid_disks;
567 default:
568 return 0;
569 }
570 }
571
572 char *__fname_from_uuid(int id[4], int swap, char *buf, char sep)
573 {
574 int i, j;
575 char uuid[16];
576 char *c = buf;
577 strcpy(c, "UUID-");
578 c += strlen(c);
579 copy_uuid(uuid, id, swap);
580 for (i = 0; i < 4; i++) {
581 if (i)
582 *c++ = sep;
583 for (j = 3; j >= 0; j--) {
584 sprintf(c,"%02x", (unsigned char) uuid[j+4*i]);
585 c+= 2;
586 }
587 }
588 return buf;
589
590 }
591
592 /**
593 * fname_from_uuid() - generate uuid string. Should not be used with super1.
594 * @info: info with uuid
595 * @buf: buf to fill.
596 *
597 * This routine should not be used with super1. See detail_fname_from_uuid() for details. It does
598 * not use superswitch swapuuid as it should be 0 but it has to do UUID conversion if host is big
599 * endian- left for backward compatibility.
600 */
601 char *fname_from_uuid(struct mdinfo *info, char *buf)
602 {
603 #if __BYTE_ORDER == BIG_ENDIAN
604 return __fname_from_uuid(info->uuid, true, buf, ':');
605 #else
606 return __fname_from_uuid(info->uuid, false, buf, ':');
607 #endif
608 }
609
610 int check_ext2(int fd, char *name)
611 {
612 /*
613 * Check for an ext2fs file system.
614 * Superblock is always 1K at 1K offset
615 *
616 * s_magic is le16 at 56 == 0xEF53
617 * report mtime - le32 at 44
618 * blocks - le32 at 4
619 * logblksize - le32 at 24
620 */
621 unsigned char sb[1024];
622 time_t mtime;
623 unsigned long long size;
624 int bsize;
625 if (lseek(fd, 1024,0)!= 1024)
626 return 0;
627 if (read(fd, sb, 1024)!= 1024)
628 return 0;
629 if (sb[56] != 0x53 || sb[57] != 0xef)
630 return 0;
631
632 mtime = sb[44]|(sb[45]|(sb[46]|sb[47]<<8)<<8)<<8;
633 bsize = sb[24]|(sb[25]|(sb[26]|sb[27]<<8)<<8)<<8;
634 size = sb[4]|(sb[5]|(sb[6]|sb[7]<<8)<<8)<<8;
635 size <<= bsize;
636 pr_err("%s appears to contain an ext2fs file system\n",
637 name);
638 cont_err("size=%lluK mtime=%s", size, ctime(&mtime));
639 return 1;
640 }
641
642 int check_reiser(int fd, char *name)
643 {
644 /*
645 * superblock is at 64K
646 * size is 1024;
647 * Magic string "ReIsErFs" or "ReIsEr2Fs" at 52
648 *
649 */
650 unsigned char sb[1024];
651 unsigned long long size;
652 if (lseek(fd, 64*1024, 0) != 64*1024)
653 return 0;
654 if (read(fd, sb, 1024) != 1024)
655 return 0;
656 if (strncmp((char*)sb+52, "ReIsErFs",8) != 0 &&
657 strncmp((char*)sb+52, "ReIsEr2Fs",9) != 0)
658 return 0;
659 pr_err("%s appears to contain a reiserfs file system\n",name);
660 size = sb[0]|(sb[1]|(sb[2]|sb[3]<<8)<<8)<<8;
661 cont_err("size = %lluK\n", size*4);
662
663 return 1;
664 }
665
666 int check_raid(int fd, char *name)
667 {
668 struct mdinfo info;
669 time_t crtime;
670 char *level;
671 struct supertype *st = guess_super(fd);
672
673 if (!st)
674 return 0;
675 if (st->ss->add_to_super != NULL) {
676 st->ss->load_super(st, fd, name);
677 /* Looks like a raid array .. */
678 pr_err("%s appears to be part of a raid array:\n", name);
679 st->ss->getinfo_super(st, &info, NULL);
680 st->ss->free_super(st);
681 crtime = info.array.ctime;
682 level = map_num(pers, info.array.level);
683 if (!level)
684 level = "-unknown-";
685 cont_err("level=%s devices=%d ctime=%s",
686 level, info.array.raid_disks, ctime(&crtime));
687 } else {
688 /* Looks like GPT or MBR */
689 pr_err("partition table exists on %s\n", name);
690 }
691 return 1;
692 }
693
694 int fstat_is_blkdev(int fd, char *devname, dev_t *rdev)
695 {
696 struct stat stb;
697
698 if (fstat(fd, &stb) != 0) {
699 pr_err("fstat failed for %s: %s\n", devname, strerror(errno));
700 return 0;
701 }
702 if ((S_IFMT & stb.st_mode) != S_IFBLK) {
703 pr_err("%s is not a block device.\n", devname);
704 return 0;
705 }
706 if (rdev)
707 *rdev = stb.st_rdev;
708 return 1;
709 }
710
711 int stat_is_blkdev(char *devname, dev_t *rdev)
712 {
713 struct stat stb;
714
715 if (stat(devname, &stb) != 0) {
716 pr_err("stat failed for %s: %s\n", devname, strerror(errno));
717 return 0;
718 }
719 if ((S_IFMT & stb.st_mode) != S_IFBLK) {
720 pr_err("%s is not a block device.\n", devname);
721 return 0;
722 }
723 if (rdev)
724 *rdev = stb.st_rdev;
725 return 1;
726 }
727
728 int ask(char *mesg)
729 {
730 char *add = "";
731 int i;
732 for (i = 0; i < 5; i++) {
733 char buf[100];
734 fprintf(stderr, "%s%s", mesg, add);
735 fflush(stderr);
736 if (fgets(buf, 100, stdin)==NULL)
737 return 0;
738 if (buf[0]=='y' || buf[0]=='Y')
739 return 1;
740 if (buf[0]=='n' || buf[0]=='N')
741 return 0;
742 add = "(y/n) ";
743 }
744 pr_err("assuming 'no'\n");
745 return 0;
746 }
747
748 int is_standard(char *dev, int *nump)
749 {
750 /* tests if dev is a "standard" md dev name.
751 * i.e if the last component is "/dNN" or "/mdNN",
752 * where NN is a string of digits
753 * Returns 1 if a partitionable standard,
754 * -1 if non-partitonable,
755 * 0 if not a standard name.
756 */
757 char *d = strrchr(dev, '/');
758 int type = 0;
759 int num;
760 if (!d)
761 return 0;
762 if (strncmp(d, "/d",2) == 0)
763 d += 2, type = 1; /* /dev/md/dN{pM} */
764 else if (strncmp(d, "/md_d", 5) == 0)
765 d += 5, type = 1; /* /dev/md_dN{pM} */
766 else if (strncmp(d, "/md", 3) == 0)
767 d += 3, type = -1; /* /dev/mdN */
768 else if (d-dev > 3 && strncmp(d-2, "md/", 3) == 0)
769 d += 1, type = -1; /* /dev/md/N */
770 else
771 return 0;
772 if (!*d)
773 return 0;
774 num = atoi(d);
775 while (isdigit(*d))
776 d++;
777 if (*d)
778 return 0;
779 if (nump) *nump = num;
780
781 return type;
782 }
783
784 unsigned long calc_csum(void *super, int bytes)
785 {
786 unsigned long long newcsum = 0;
787 int i;
788 unsigned int csum;
789 unsigned int *superc = (unsigned int*) super;
790
791 for(i = 0; i < bytes/4; i++)
792 newcsum += superc[i];
793 csum = (newcsum& 0xffffffff) + (newcsum>>32);
794 #ifdef __alpha__
795 /* The in-kernel checksum calculation is always 16bit on
796 * the alpha, though it is 32 bit on i386...
797 * I wonder what it is elsewhere... (it uses an API in
798 * a way that it shouldn't).
799 */
800 csum = (csum & 0xffff) + (csum >> 16);
801 csum = (csum & 0xffff) + (csum >> 16);
802 #endif
803 return csum;
804 }
805
806 char *human_size(long long bytes)
807 {
808 static char buf[47];
809
810 /* We convert bytes to either centi-M{ega,ibi}bytes,
811 * centi-G{igi,ibi}bytes or centi-T{era,ebi}bytes
812 * with appropriate rounding, and then print
813 * 1/100th of those as a decimal.
814 * We allow upto 2048Megabytes before converting to
815 * gigabytes and 2048Gigabytes before converting to
816 * terabytes, as that shows more precision and isn't
817 * too large a number.
818 */
819
820 if (bytes < 5000*1024)
821 buf[0] = 0;
822 else if (bytes < 2*1024LL*1024LL*1024LL) {
823 long cMiB = (bytes * 200LL / (1LL<<20) + 1) / 2;
824 long cMB = (bytes / ( 1000000LL / 200LL ) +1) /2;
825 snprintf(buf, sizeof(buf), " (%ld.%02ld MiB %ld.%02ld MB)",
826 cMiB/100, cMiB % 100, cMB/100, cMB % 100);
827 } else if (bytes < 2*1024LL*1024LL*1024LL*1024LL) {
828 long cGiB = (bytes * 200LL / (1LL<<30) +1) / 2;
829 long cGB = (bytes / (1000000000LL/200LL ) +1) /2;
830 snprintf(buf, sizeof(buf), " (%ld.%02ld GiB %ld.%02ld GB)",
831 cGiB/100, cGiB % 100, cGB/100, cGB % 100);
832 } else {
833 long cTiB = (bytes * 200LL / (1LL<<40) + 1) / 2;
834 long cTB = (bytes / (1000000000000LL / 200LL) + 1) / 2;
835 snprintf(buf, sizeof(buf), " (%ld.%02ld TiB %ld.%02ld TB)",
836 cTiB/100, cTiB % 100, cTB/100, cTB % 100);
837 }
838 return buf;
839 }
840
841 char *human_size_brief(long long bytes, int prefix)
842 {
843 static char buf[30];
844
845 /* We convert bytes to either centi-M{ega,ibi}bytes,
846 * centi-G{igi,ibi}bytes or centi-T{era,ebi}bytes
847 * with appropriate rounding, and then print
848 * 1/100th of those as a decimal.
849 * We allow upto 2048Megabytes before converting to
850 * gigabytes and 2048Gigabytes before converting to
851 * terabytes, as that shows more precision and isn't
852 * too large a number.
853 *
854 * If prefix == IEC, we mean prefixes like kibi,mebi,gibi etc.
855 * If prefix == JEDEC, we mean prefixes like kilo,mega,giga etc.
856 */
857
858 if (bytes < 5000*1024)
859 buf[0] = 0;
860 else if (prefix == IEC) {
861 if (bytes < 2*1024LL*1024LL*1024LL) {
862 long cMiB = (bytes * 200LL / (1LL<<20) +1) /2;
863 snprintf(buf, sizeof(buf), "%ld.%02ldMiB",
864 cMiB/100, cMiB % 100);
865 } else if (bytes < 2*1024LL*1024LL*1024LL*1024LL) {
866 long cGiB = (bytes * 200LL / (1LL<<30) +1) /2;
867 snprintf(buf, sizeof(buf), "%ld.%02ldGiB",
868 cGiB/100, cGiB % 100);
869 } else {
870 long cTiB = (bytes * 200LL / (1LL<<40) + 1) / 2;
871 snprintf(buf, sizeof(buf), "%ld.%02ldTiB",
872 cTiB/100, cTiB % 100);
873 }
874 }
875 else if (prefix == JEDEC) {
876 if (bytes < 2*1024LL*1024LL*1024LL) {
877 long cMB = (bytes / ( 1000000LL / 200LL ) +1) /2;
878 snprintf(buf, sizeof(buf), "%ld.%02ldMB",
879 cMB/100, cMB % 100);
880 } else if (bytes < 2*1024LL*1024LL*1024LL*1024LL) {
881 long cGB = (bytes / (1000000000LL/200LL ) +1) /2;
882 snprintf(buf, sizeof(buf), "%ld.%02ldGB",
883 cGB/100, cGB % 100);
884 } else {
885 long cTB = (bytes / (1000000000000LL / 200LL) + 1) / 2;
886 snprintf(buf, sizeof(buf), "%ld.%02ldTB",
887 cTB/100, cTB % 100);
888 }
889 }
890 else
891 buf[0] = 0;
892
893 return buf;
894 }
895
896 void print_r10_layout(int layout)
897 {
898 int near = layout & 255;
899 int far = (layout >> 8) & 255;
900 int offset = (layout&0x10000);
901 char *sep = "";
902
903 if (near != 1) {
904 printf("%s near=%d", sep, near);
905 sep = ",";
906 }
907 if (far != 1)
908 printf("%s %s=%d", sep, offset?"offset":"far", far);
909 if (near*far == 1)
910 printf("NO REDUNDANCY");
911 }
912
913 unsigned long long calc_array_size(int level, int raid_disks, int layout,
914 int chunksize, unsigned long long devsize)
915 {
916 if (level == 1)
917 return devsize;
918 devsize &= ~(unsigned long long)((chunksize>>9)-1);
919 return get_data_disks(level, layout, raid_disks) * devsize;
920 }
921
922 int get_data_disks(int level, int layout, int raid_disks)
923 {
924 int data_disks = 0;
925 switch (level) {
926 case 0: data_disks = raid_disks;
927 break;
928 case 1: data_disks = 1;
929 break;
930 case 4:
931 case 5: data_disks = raid_disks - 1;
932 break;
933 case 6: data_disks = raid_disks - 2;
934 break;
935 case 10: data_disks = raid_disks / (layout & 255) / ((layout>>8)&255);
936 break;
937 }
938
939 return data_disks;
940 }
941
942 dev_t devnm2devid(char *devnm)
943 {
944 /* First look in /sys/block/$DEVNM/dev for %d:%d
945 * If that fails, try parsing out a number
946 */
947 char path[PATH_MAX];
948 char *ep;
949 int fd;
950 int mjr,mnr;
951
952 snprintf(path, sizeof(path), "/sys/block/%s/dev", devnm);
953 fd = open(path, O_RDONLY);
954 if (fd >= 0) {
955 char buf[20];
956 int n = read(fd, buf, sizeof(buf));
957 close(fd);
958 if (n > 0)
959 buf[n] = 0;
960 if (n > 0 && sscanf(buf, "%d:%d\n", &mjr, &mnr) == 2)
961 return makedev(mjr, mnr);
962 }
963 if (strncmp(devnm, "md_d", 4) == 0 &&
964 isdigit(devnm[4]) &&
965 (mnr = strtoul(devnm+4, &ep, 10)) >= 0 &&
966 ep > devnm && *ep == 0)
967 return makedev(get_mdp_major(), mnr << MdpMinorShift);
968
969 if (strncmp(devnm, "md", 2) == 0 &&
970 isdigit(devnm[2]) &&
971 (mnr = strtoul(devnm+2, &ep, 10)) >= 0 &&
972 ep > devnm && *ep == 0)
973 return makedev(MD_MAJOR, mnr);
974
975 return 0;
976 }
977
978 /**
979 * is_devname_numbered() - helper for numbered devname verification.
980 * @devname: path or name to check.
981 * @pref: expected devname prefix.
982 * @pref_len: prefix len.
983 */
984 static bool is_devname_numbered(const char *devname, const char *pref, const int pref_len)
985 {
986 int val;
987
988 assert(devname && pref);
989
990 if (strncmp(devname, pref, pref_len) != 0)
991 return false;
992
993 if (parse_num(&val, devname + pref_len) != 0)
994 return false;
995
996 if (val > 127)
997 return false;
998
999 return true;
1000 }
1001
1002 /**
1003 * is_devname_md_numbered() - check if &devname is numbered MD device (md).
1004 * @devname: path or name to check.
1005 */
1006 bool is_devname_md_numbered(const char *devname)
1007 {
1008 return is_devname_numbered(devname, DEV_NUM_PREF, DEV_NUM_PREF_LEN);
1009 }
1010
1011 /**
1012 * is_devname_md_d_numbered() - check if &devname is secondary numbered MD device (md_d).
1013 * @devname: path or name to check.
1014 */
1015 bool is_devname_md_d_numbered(const char *devname)
1016 {
1017 static const char d_dev[] = DEV_NUM_PREF "_d";
1018
1019 return is_devname_numbered(devname, d_dev, sizeof(d_dev) - 1);
1020 }
1021
1022 /**
1023 * get_md_name() - Get main dev node of the md device.
1024 * @devnm: Md device name or path.
1025 *
1026 * Function checks if the full name was passed and returns md name
1027 * if it is the MD device.
1028 *
1029 * Return: Main dev node of the md device or NULL if not found.
1030 */
1031 char *get_md_name(char *devnm)
1032 {
1033 static char devname[NAME_MAX];
1034 struct stat stb;
1035
1036 if (strncmp(devnm, "/dev/", 5) == 0)
1037 snprintf(devname, sizeof(devname), "%s", devnm);
1038 else
1039 snprintf(devname, sizeof(devname), "/dev/%s", devnm);
1040
1041 if (!is_mddev(devname))
1042 return NULL;
1043 if (stat(devname, &stb) == 0 && (S_IFMT&stb.st_mode) == S_IFBLK)
1044 return devname;
1045
1046 return NULL;
1047 }
1048
1049 void put_md_name(char *name)
1050 {
1051 if (strncmp(name, "/dev/.tmp.md", 12) == 0)
1052 unlink(name);
1053 }
1054
1055 int get_maj_min(char *dev, int *major, int *minor)
1056 {
1057 char *e;
1058 *major = strtoul(dev, &e, 0);
1059 return (e > dev && *e == ':' && e[1] &&
1060 (*minor = strtoul(e+1, &e, 0)) >= 0 &&
1061 *e == 0);
1062 }
1063
1064 /**
1065 * is_bit_set() - get bit value by index.
1066 * @val: value.
1067 * @index: index of the bit (LSB numbering).
1068 *
1069 * Return: bit value.
1070 */
1071 bool is_bit_set(int *val, unsigned char index)
1072 {
1073 if ((*val) & (1 << index))
1074 return true;
1075 return false;
1076 }
1077
1078 int dev_open(char *dev, int flags)
1079 {
1080 /* like 'open', but if 'dev' matches %d:%d, create a temp
1081 * block device and open that
1082 */
1083 int fd = -1;
1084 char devname[32];
1085 int major;
1086 int minor;
1087
1088 if (!dev)
1089 return -1;
1090 flags |= O_DIRECT;
1091
1092 if (get_maj_min(dev, &major, &minor)) {
1093 snprintf(devname, sizeof(devname), "/dev/.tmp.md.%d:%d:%d",
1094 (int)getpid(), major, minor);
1095 if (mknod(devname, S_IFBLK|0600, makedev(major, minor)) == 0) {
1096 fd = open(devname, flags);
1097 unlink(devname);
1098 }
1099 if (fd < 0) {
1100 /* Try /tmp as /dev appear to be read-only */
1101 snprintf(devname, sizeof(devname),
1102 "/tmp/.tmp.md.%d:%d:%d",
1103 (int)getpid(), major, minor);
1104 if (mknod(devname, S_IFBLK|0600,
1105 makedev(major, minor)) == 0) {
1106 fd = open(devname, flags);
1107 unlink(devname);
1108 }
1109 }
1110 } else
1111 fd = open(dev, flags);
1112 return fd;
1113 }
1114
1115 int open_dev_flags(char *devnm, int flags)
1116 {
1117 dev_t devid;
1118 char buf[20];
1119
1120 devid = devnm2devid(devnm);
1121 sprintf(buf, "%d:%d", major(devid), minor(devid));
1122 return dev_open(buf, flags);
1123 }
1124
1125 int open_dev(char *devnm)
1126 {
1127 return open_dev_flags(devnm, O_RDONLY);
1128 }
1129
1130 int open_dev_excl(char *devnm)
1131 {
1132 char buf[20];
1133 int i;
1134 int flags = O_RDWR;
1135 dev_t devid = devnm2devid(devnm);
1136 unsigned int delay = 1; // miliseconds
1137
1138 sprintf(buf, "%d:%d", major(devid), minor(devid));
1139 for (i = 0; i < 25; i++) {
1140 int fd = dev_open(buf, flags|O_EXCL);
1141 if (fd >= 0)
1142 return fd;
1143 if (errno == EACCES && flags == O_RDWR) {
1144 flags = O_RDONLY;
1145 continue;
1146 }
1147 if (errno != EBUSY)
1148 return fd;
1149 sleep_for(0, MSEC_TO_NSEC(delay), true);
1150 if (delay < 200)
1151 delay *= 2;
1152 }
1153 return -1;
1154 }
1155
1156 int same_dev(char *one, char *two)
1157 {
1158 struct stat st1, st2;
1159 if (stat(one, &st1) != 0)
1160 return 0;
1161 if (stat(two, &st2) != 0)
1162 return 0;
1163 if ((st1.st_mode & S_IFMT) != S_IFBLK)
1164 return 0;
1165 if ((st2.st_mode & S_IFMT) != S_IFBLK)
1166 return 0;
1167 return st1.st_rdev == st2.st_rdev;
1168 }
1169
1170 void wait_for(char *dev, int fd)
1171 {
1172 int i;
1173 struct stat stb_want;
1174 unsigned int delay = 1; // miliseconds
1175
1176 if (fstat(fd, &stb_want) != 0 ||
1177 (stb_want.st_mode & S_IFMT) != S_IFBLK)
1178 return;
1179
1180 for (i = 0; i < 25; i++) {
1181 struct stat stb;
1182 if (stat(dev, &stb) == 0 &&
1183 (stb.st_mode & S_IFMT) == S_IFBLK &&
1184 (stb.st_rdev == stb_want.st_rdev))
1185 return;
1186 sleep_for(0, MSEC_TO_NSEC(delay), true);
1187 if (delay < 200)
1188 delay *= 2;
1189 }
1190 if (i == 25)
1191 pr_err("timeout waiting for %s\n", dev);
1192 }
1193
1194 struct superswitch *superlist[] =
1195 {
1196 &super0, &super1,
1197 &super_ddf, &super_imsm,
1198 &mbr, &gpt,
1199 NULL
1200 };
1201
1202 struct supertype *super_by_fd(int fd, char **subarrayp)
1203 {
1204 mdu_array_info_t array;
1205 int vers;
1206 int minor;
1207 struct supertype *st = NULL;
1208 struct mdinfo *sra;
1209 char *verstr;
1210 char version[20];
1211 int i;
1212 char *subarray = NULL;
1213 char container[32] = "";
1214 char *devnm = NULL;
1215
1216 devnm = fd2devnm(fd);
1217 if (!devnm)
1218 return NULL;
1219
1220 sra = sysfs_read(fd, NULL, GET_VERSION);
1221
1222 if (sra) {
1223 vers = sra->array.major_version;
1224 minor = sra->array.minor_version;
1225 verstr = sra->text_version;
1226 } else {
1227 if (md_get_array_info(fd, &array))
1228 array.major_version = array.minor_version = 0;
1229 vers = array.major_version;
1230 minor = array.minor_version;
1231 verstr = "";
1232 }
1233
1234 if (vers != -1) {
1235 sprintf(version, "%d.%d", vers, minor);
1236 verstr = version;
1237 }
1238 if (minor == -2 && is_subarray(verstr)) {
1239 char *dev = verstr+1;
1240
1241 subarray = strchr(dev, '/');
1242 if (subarray) {
1243 *subarray++ = '\0';
1244 subarray = xstrdup(subarray);
1245 }
1246 strcpy(container, dev);
1247 sysfs_free(sra);
1248 sra = sysfs_read(-1, container, GET_VERSION);
1249 if (sra && sra->text_version[0])
1250 verstr = sra->text_version;
1251 else
1252 verstr = "-no-metadata-";
1253 }
1254
1255 for (i = 0; st == NULL && superlist[i]; i++)
1256 st = superlist[i]->match_metadata_desc(verstr);
1257
1258 sysfs_free(sra);
1259 if (st) {
1260 st->sb = NULL;
1261 if (subarrayp)
1262 *subarrayp = subarray;
1263 strcpy(st->container_devnm, container);
1264 strncpy(st->devnm, devnm, MD_NAME_MAX - 1);
1265 } else
1266 free(subarray);
1267
1268 return st;
1269 }
1270
1271 struct supertype *dup_super(struct supertype *orig)
1272 {
1273 struct supertype *st;
1274
1275 if (!orig)
1276 return orig;
1277 st = xcalloc(1, sizeof(*st));
1278 st->ss = orig->ss;
1279 st->max_devs = orig->max_devs;
1280 st->minor_version = orig->minor_version;
1281 st->ignore_hw_compat = orig->ignore_hw_compat;
1282 st->data_offset = orig->data_offset;
1283 st->sb = NULL;
1284 st->info = NULL;
1285 return st;
1286 }
1287
1288 struct supertype *guess_super_type(int fd, enum guess_types guess_type)
1289 {
1290 /* try each load_super to find the best match,
1291 * and return the best superswitch
1292 */
1293 struct superswitch *ss;
1294 struct supertype *st;
1295 unsigned int besttime = 0;
1296 int bestsuper = -1;
1297 int i;
1298
1299 st = xcalloc(1, sizeof(*st));
1300 st->container_devnm[0] = 0;
1301
1302 for (i = 0; superlist[i]; i++) {
1303 int rv;
1304 ss = superlist[i];
1305 if (guess_type == guess_array && ss->add_to_super == NULL)
1306 continue;
1307 if (guess_type == guess_partitions && ss->add_to_super != NULL)
1308 continue;
1309 memset(st, 0, sizeof(*st));
1310 st->ignore_hw_compat = 1;
1311 rv = ss->load_super(st, fd, NULL);
1312 if (rv == 0) {
1313 struct mdinfo info;
1314 st->ss->getinfo_super(st, &info, NULL);
1315 if (bestsuper == -1 ||
1316 besttime < info.array.ctime) {
1317 bestsuper = i;
1318 besttime = info.array.ctime;
1319 }
1320 ss->free_super(st);
1321 }
1322 }
1323 if (bestsuper != -1) {
1324 int rv;
1325 memset(st, 0, sizeof(*st));
1326 st->ignore_hw_compat = 1;
1327 rv = superlist[bestsuper]->load_super(st, fd, NULL);
1328 if (rv == 0) {
1329 superlist[bestsuper]->free_super(st);
1330 return st;
1331 }
1332 }
1333 free(st);
1334 return NULL;
1335 }
1336
1337 /* Return size of device in bytes */
1338 int get_dev_size(int fd, char *dname, unsigned long long *sizep)
1339 {
1340 unsigned long long ldsize;
1341 struct stat st;
1342
1343 if (fstat(fd, &st) != -1 && S_ISREG(st.st_mode))
1344 ldsize = (unsigned long long)st.st_size;
1345 else
1346 #ifdef BLKGETSIZE64
1347 if (ioctl(fd, BLKGETSIZE64, &ldsize) != 0)
1348 #endif
1349 {
1350 unsigned long dsize;
1351 if (ioctl(fd, BLKGETSIZE, &dsize) == 0) {
1352 ldsize = dsize;
1353 ldsize <<= 9;
1354 } else {
1355 if (dname)
1356 pr_err("Cannot get size of %s: %s\n",
1357 dname, strerror(errno));
1358 return 0;
1359 }
1360 }
1361 *sizep = ldsize;
1362 return 1;
1363 }
1364
1365 /* Return sector size of device in bytes */
1366 int get_dev_sector_size(int fd, char *dname, unsigned int *sectsizep)
1367 {
1368 unsigned int sectsize;
1369
1370 if (ioctl(fd, BLKSSZGET, &sectsize) != 0) {
1371 if (dname)
1372 pr_err("Cannot get sector size of %s: %s\n",
1373 dname, strerror(errno));
1374 return 0;
1375 }
1376
1377 *sectsizep = sectsize;
1378 return 1;
1379 }
1380
1381 /* Return true if this can only be a container, not a member device.
1382 * i.e. is and md device and size is zero
1383 */
1384 int must_be_container(int fd)
1385 {
1386 struct mdinfo *mdi;
1387 unsigned long long size;
1388
1389 mdi = sysfs_read(fd, NULL, GET_VERSION);
1390 if (!mdi)
1391 return 0;
1392 sysfs_free(mdi);
1393
1394 if (get_dev_size(fd, NULL, &size) == 0)
1395 return 1;
1396 if (size == 0)
1397 return 1;
1398 return 0;
1399 }
1400
1401 /* Sets endofpart parameter to the last block used by the last GPT partition on the device.
1402 * Returns: 1 if successful
1403 * -1 for unknown partition type
1404 * 0 for other errors
1405 */
1406 static int get_gpt_last_partition_end(int fd, unsigned long long *endofpart)
1407 {
1408 struct GPT gpt;
1409 unsigned char empty_gpt_entry[16]= {0};
1410 struct GPT_part_entry *part;
1411 char buf[512];
1412 unsigned long long curr_part_end;
1413 unsigned all_partitions, entry_size;
1414 unsigned part_nr;
1415 unsigned int sector_size = 0;
1416
1417 *endofpart = 0;
1418
1419 BUILD_BUG_ON(sizeof(gpt) != 512);
1420 /* skip protective MBR */
1421 if (!get_dev_sector_size(fd, NULL, &sector_size))
1422 return 0;
1423 lseek(fd, sector_size, SEEK_SET);
1424 /* read GPT header */
1425 if (read(fd, &gpt, 512) != 512)
1426 return 0;
1427
1428 /* get the number of partition entries and the entry size */
1429 all_partitions = __le32_to_cpu(gpt.part_cnt);
1430 entry_size = __le32_to_cpu(gpt.part_size);
1431
1432 /* Check GPT signature*/
1433 if (gpt.magic != GPT_SIGNATURE_MAGIC)
1434 return -1;
1435
1436 /* sanity checks */
1437 if (all_partitions > 1024 ||
1438 entry_size > sizeof(buf))
1439 return -1;
1440
1441 part = (struct GPT_part_entry *)buf;
1442
1443 /* set offset to third block (GPT entries) */
1444 lseek(fd, sector_size*2, SEEK_SET);
1445 for (part_nr = 0; part_nr < all_partitions; part_nr++) {
1446 /* read partition entry */
1447 if (read(fd, buf, entry_size) != (ssize_t)entry_size)
1448 return 0;
1449
1450 /* is this valid partition? */
1451 if (memcmp(part->type_guid, empty_gpt_entry, 16) != 0) {
1452 /* check the last lba for the current partition */
1453 curr_part_end = __le64_to_cpu(part->ending_lba);
1454 if (curr_part_end > *endofpart)
1455 *endofpart = curr_part_end;
1456 }
1457
1458 }
1459 return 1;
1460 }
1461
1462 /* Sets endofpart parameter to the last block used by the last partition on the device.
1463 * Returns: 1 if successful
1464 * -1 for unknown partition type
1465 * 0 for other errors
1466 */
1467 static int get_last_partition_end(int fd, unsigned long long *endofpart)
1468 {
1469 struct MBR boot_sect;
1470 unsigned long long curr_part_end;
1471 unsigned part_nr;
1472 unsigned int sector_size;
1473 int retval = 0;
1474
1475 *endofpart = 0;
1476
1477 BUILD_BUG_ON(sizeof(boot_sect) != 512);
1478 /* read MBR */
1479 lseek(fd, 0, 0);
1480 if (read(fd, &boot_sect, 512) != 512)
1481 goto abort;
1482
1483 /* check MBP signature */
1484 if (boot_sect.magic == MBR_SIGNATURE_MAGIC) {
1485 retval = 1;
1486 /* found the correct signature */
1487
1488 for (part_nr = 0; part_nr < MBR_PARTITIONS; part_nr++) {
1489 /*
1490 * Have to make every access through boot_sect rather
1491 * than using a pointer to the partition table (or an
1492 * entry), since the entries are not properly aligned.
1493 */
1494
1495 /* check for GPT type */
1496 if (boot_sect.parts[part_nr].part_type ==
1497 MBR_GPT_PARTITION_TYPE) {
1498 retval = get_gpt_last_partition_end(fd, endofpart);
1499 break;
1500 }
1501 /* check the last used lba for the current partition */
1502 curr_part_end =
1503 __le32_to_cpu(boot_sect.parts[part_nr].first_sect_lba) +
1504 __le32_to_cpu(boot_sect.parts[part_nr].blocks_num);
1505 if (curr_part_end > *endofpart)
1506 *endofpart = curr_part_end;
1507 }
1508 } else {
1509 /* Unknown partition table */
1510 retval = -1;
1511 }
1512 /* calculate number of 512-byte blocks */
1513 if (get_dev_sector_size(fd, NULL, &sector_size))
1514 *endofpart *= (sector_size / 512);
1515 abort:
1516 return retval;
1517 }
1518
1519 int check_partitions(int fd, char *dname, unsigned long long freesize,
1520 unsigned long long size)
1521 {
1522 /*
1523 * Check where the last partition ends
1524 */
1525 unsigned long long endofpart;
1526
1527 if (get_last_partition_end(fd, &endofpart) > 0) {
1528 /* There appears to be a partition table here */
1529 if (freesize == 0) {
1530 /* partitions will not be visible in new device */
1531 pr_err("partition table exists on %s but will be lost or\n"
1532 " meaningless after creating array\n",
1533 dname);
1534 return 1;
1535 } else if (endofpart > freesize) {
1536 /* last partition overlaps metadata */
1537 pr_err("metadata will over-write last partition on %s.\n",
1538 dname);
1539 return 1;
1540 } else if (size && endofpart > size) {
1541 /* partitions will be truncated in new device */
1542 pr_err("array size is too small to cover all partitions on %s.\n",
1543 dname);
1544 return 1;
1545 }
1546 }
1547 return 0;
1548 }
1549
1550 int open_container(int fd)
1551 {
1552 /* 'fd' is a block device. Find out if it is in use
1553 * by a container, and return an open fd on that container.
1554 */
1555 char path[288];
1556 char *e;
1557 DIR *dir;
1558 struct dirent *de;
1559 int dfd, n;
1560 char buf[200];
1561 int major, minor;
1562 struct stat st;
1563
1564 if (fstat(fd, &st) != 0)
1565 return -1;
1566 sprintf(path, "/sys/dev/block/%d:%d/holders",
1567 (int)major(st.st_rdev), (int)minor(st.st_rdev));
1568 e = path + strlen(path);
1569
1570 dir = opendir(path);
1571 if (!dir)
1572 return -1;
1573 while ((de = readdir(dir))) {
1574 if (de->d_ino == 0)
1575 continue;
1576 if (de->d_name[0] == '.')
1577 continue;
1578 /* Need to make sure it is a container and not a volume */
1579 sprintf(e, "/%s/md/metadata_version", de->d_name);
1580 dfd = open(path, O_RDONLY);
1581 if (dfd < 0)
1582 continue;
1583 n = read(dfd, buf, sizeof(buf));
1584 close(dfd);
1585 if (n <= 0 || (unsigned)n >= sizeof(buf))
1586 continue;
1587 buf[n] = 0;
1588 if (strncmp(buf, "external", 8) != 0 ||
1589 n < 10 ||
1590 buf[9] == '/')
1591 continue;
1592 sprintf(e, "/%s/dev", de->d_name);
1593 dfd = open(path, O_RDONLY);
1594 if (dfd < 0)
1595 continue;
1596 n = read(dfd, buf, sizeof(buf));
1597 close(dfd);
1598 if (n <= 0 || (unsigned)n >= sizeof(buf))
1599 continue;
1600 buf[n] = 0;
1601 if (sscanf(buf, "%d:%d", &major, &minor) != 2)
1602 continue;
1603 sprintf(buf, "%d:%d", major, minor);
1604 dfd = dev_open(buf, O_RDONLY);
1605 if (dfd >= 0) {
1606 closedir(dir);
1607 return dfd;
1608 }
1609 }
1610 closedir(dir);
1611 return -1;
1612 }
1613
1614 struct superswitch *version_to_superswitch(char *vers)
1615 {
1616 int i;
1617
1618 for (i = 0; superlist[i]; i++) {
1619 struct superswitch *ss = superlist[i];
1620
1621 if (strcmp(vers, ss->name) == 0)
1622 return ss;
1623 }
1624
1625 return NULL;
1626 }
1627
1628 int metadata_container_matches(char *metadata, char *devnm)
1629 {
1630 /* Check if 'devnm' is the container named in 'metadata'
1631 * which is
1632 * /containername/componentname or
1633 * -containername/componentname
1634 */
1635 int l;
1636 if (*metadata != '/' && *metadata != '-')
1637 return 0;
1638 l = strlen(devnm);
1639 if (strncmp(metadata+1, devnm, l) != 0)
1640 return 0;
1641 if (metadata[l+1] != '/')
1642 return 0;
1643 return 1;
1644 }
1645
1646 int metadata_subdev_matches(char *metadata, char *devnm)
1647 {
1648 /* Check if 'devnm' is the subdev named in 'metadata'
1649 * which is
1650 * /containername/subdev or
1651 * -containername/subdev
1652 */
1653 char *sl;
1654 if (*metadata != '/' && *metadata != '-')
1655 return 0;
1656 sl = strchr(metadata+1, '/');
1657 if (!sl)
1658 return 0;
1659 if (strcmp(sl+1, devnm) == 0)
1660 return 1;
1661 return 0;
1662 }
1663
1664 int is_container_member(struct mdstat_ent *mdstat, char *container)
1665 {
1666 if (mdstat->metadata_version == NULL ||
1667 strncmp(mdstat->metadata_version, "external:", 9) != 0 ||
1668 !metadata_container_matches(mdstat->metadata_version+9, container))
1669 return 0;
1670
1671 return 1;
1672 }
1673
1674 int is_subarray_active(char *subarray, char *container)
1675 {
1676 struct mdstat_ent *mdstat = mdstat_read(0, 0);
1677 struct mdstat_ent *ent;
1678
1679 for (ent = mdstat; ent; ent = ent->next)
1680 if (is_container_member(ent, container))
1681 if (strcmp(to_subarray(ent, container), subarray) == 0)
1682 break;
1683
1684 free_mdstat(mdstat);
1685
1686 return ent != NULL;
1687 }
1688
1689 /* open_subarray - opens a subarray in a container
1690 * @dev: container device name
1691 * @st: empty supertype
1692 * @quiet: block reporting errors flag
1693 *
1694 * On success returns an fd to a container and fills in *st
1695 */
1696 int open_subarray(char *dev, char *subarray, struct supertype *st, int quiet)
1697 {
1698 struct mdinfo *mdi;
1699 struct mdinfo *info;
1700 int fd, err = 1;
1701 char *_devnm;
1702
1703 fd = open(dev, O_RDWR|O_EXCL);
1704 if (fd < 0) {
1705 if (!quiet)
1706 pr_err("Couldn't open %s, aborting\n",
1707 dev);
1708 return -1;
1709 }
1710
1711 _devnm = fd2devnm(fd);
1712 if (_devnm == NULL) {
1713 if (!quiet)
1714 pr_err("Failed to determine device number for %s\n",
1715 dev);
1716 goto close_fd;
1717 }
1718 strcpy(st->devnm, _devnm);
1719
1720 mdi = sysfs_read(fd, st->devnm, GET_VERSION|GET_LEVEL);
1721 if (!mdi) {
1722 if (!quiet)
1723 pr_err("Failed to read sysfs for %s\n",
1724 dev);
1725 goto close_fd;
1726 }
1727
1728 if (mdi->array.level != UnSet) {
1729 if (!quiet)
1730 pr_err("%s is not a container\n", dev);
1731 goto free_sysfs;
1732 }
1733
1734 st->ss = version_to_superswitch(mdi->text_version);
1735 if (!st->ss) {
1736 if (!quiet)
1737 pr_err("Operation not supported for %s metadata\n",
1738 mdi->text_version);
1739 goto free_sysfs;
1740 }
1741
1742 if (st->devnm[0] == 0) {
1743 if (!quiet)
1744 pr_err("Failed to allocate device name\n");
1745 goto free_sysfs;
1746 }
1747
1748 if (!st->ss->load_container) {
1749 if (!quiet)
1750 pr_err("%s is not a container\n", dev);
1751 goto free_sysfs;
1752 }
1753
1754 if (st->ss->load_container(st, fd, NULL)) {
1755 if (!quiet)
1756 pr_err("Failed to load metadata for %s\n",
1757 dev);
1758 goto free_sysfs;
1759 }
1760
1761 info = st->ss->container_content(st, subarray);
1762 if (!info) {
1763 if (!quiet)
1764 pr_err("Failed to find subarray-%s in %s\n",
1765 subarray, dev);
1766 goto free_super;
1767 }
1768 free(info);
1769
1770 err = 0;
1771
1772 free_super:
1773 if (err)
1774 st->ss->free_super(st);
1775 free_sysfs:
1776 sysfs_free(mdi);
1777 close_fd:
1778 if (err)
1779 close(fd);
1780
1781 if (err)
1782 return -1;
1783 else
1784 return fd;
1785 }
1786
1787 int add_disk(int mdfd, struct supertype *st,
1788 struct mdinfo *sra, struct mdinfo *info)
1789 {
1790 /* Add a device to an array, in one of 2 ways. */
1791 int rv;
1792
1793 if (st->ss->external) {
1794 if (info->disk.state & (1<<MD_DISK_SYNC))
1795 info->recovery_start = MaxSector;
1796 else
1797 info->recovery_start = 0;
1798 rv = sysfs_add_disk(sra, info, 0);
1799 if (! rv) {
1800 struct mdinfo *sd2;
1801 for (sd2 = sra->devs; sd2; sd2=sd2->next)
1802 if (sd2 == info)
1803 break;
1804 if (sd2 == NULL) {
1805 sd2 = xmalloc(sizeof(*sd2));
1806 *sd2 = *info;
1807 sd2->next = sra->devs;
1808 sra->devs = sd2;
1809 }
1810 }
1811 } else
1812 rv = ioctl(mdfd, ADD_NEW_DISK, &info->disk);
1813 return rv;
1814 }
1815
1816 int remove_disk(int mdfd, struct supertype *st,
1817 struct mdinfo *sra, struct mdinfo *info)
1818 {
1819 int rv;
1820
1821 /* Remove the disk given by 'info' from the array */
1822 if (st->ss->external)
1823 rv = sysfs_set_str(sra, info, "slot", STR_COMMON_NONE);
1824 else
1825 rv = ioctl(mdfd, HOT_REMOVE_DISK, makedev(info->disk.major,
1826 info->disk.minor));
1827 return rv;
1828 }
1829
1830 int hot_remove_disk(int mdfd, unsigned long dev, int force)
1831 {
1832 int cnt = force ? 500 : 5;
1833 int ret;
1834
1835 /* HOT_REMOVE_DISK can fail with EBUSY if there are
1836 * outstanding IO requests to the device.
1837 * In this case, it can be helpful to wait a little while,
1838 * up to 5 seconds if 'force' is set, or 50 msec if not.
1839 */
1840 while ((ret = ioctl(mdfd, HOT_REMOVE_DISK, dev)) == -1 &&
1841 errno == EBUSY &&
1842 cnt-- > 0)
1843 sleep_for(0, MSEC_TO_NSEC(10), true);
1844
1845 return ret;
1846 }
1847
1848 int sys_hot_remove_disk(int statefd, int force)
1849 {
1850 int cnt = force ? 500 : 5;
1851 int ret;
1852
1853 while ((ret = write(statefd, "remove", 6)) == -1 &&
1854 errno == EBUSY &&
1855 cnt-- > 0)
1856 sleep_for(0, MSEC_TO_NSEC(10), true);
1857 return ret == 6 ? 0 : -1;
1858 }
1859
1860 int set_array_info(int mdfd, struct supertype *st, struct mdinfo *info)
1861 {
1862 /* Initialise kernel's knowledge of array.
1863 * This varies between externally managed arrays
1864 * and older kernels
1865 */
1866 mdu_array_info_t inf;
1867 int rv;
1868
1869 if (st->ss->external)
1870 return sysfs_set_array(info, 9003);
1871
1872 memset(&inf, 0, sizeof(inf));
1873 inf.major_version = info->array.major_version;
1874 inf.minor_version = info->array.minor_version;
1875 rv = md_set_array_info(mdfd, &inf);
1876
1877 return rv;
1878 }
1879
1880 unsigned long long min_recovery_start(struct mdinfo *array)
1881 {
1882 /* find the minimum recovery_start in an array for metadata
1883 * formats that only record per-array recovery progress instead
1884 * of per-device
1885 */
1886 unsigned long long recovery_start = MaxSector;
1887 struct mdinfo *d;
1888
1889 for (d = array->devs; d; d = d->next)
1890 recovery_start = min(recovery_start, d->recovery_start);
1891
1892 return recovery_start;
1893 }
1894
1895 int mdmon_pid(char *devnm)
1896 {
1897 char path[100];
1898 char pid[10];
1899 int fd;
1900 int n;
1901
1902 sprintf(path, "%s/%s.pid", MDMON_DIR, devnm);
1903
1904 fd = open(path, O_RDONLY | O_NOATIME, 0);
1905
1906 if (fd < 0)
1907 return -1;
1908 n = read(fd, pid, 9);
1909 close(fd);
1910 if (n <= 0)
1911 return -1;
1912 return atoi(pid);
1913 }
1914
1915 int mdmon_running(char *devnm)
1916 {
1917 int pid = mdmon_pid(devnm);
1918 if (pid <= 0)
1919 return 0;
1920 if (kill(pid, 0) == 0)
1921 return 1;
1922 return 0;
1923 }
1924
1925 int start_mdmon(char *devnm)
1926 {
1927 int i;
1928 int len;
1929 pid_t pid;
1930 int status;
1931 char *prefix = in_initrd() ? "initrd-" : "";
1932 char pathbuf[1024];
1933 char *paths[4] = {
1934 pathbuf,
1935 BINDIR "/mdmon",
1936 "./mdmon",
1937 NULL
1938 };
1939
1940 if (check_env("MDADM_NO_MDMON"))
1941 return 0;
1942 if (continue_via_systemd(devnm, MDMON_SERVICE, prefix))
1943 return 0;
1944
1945 /* That failed, try running mdmon directly */
1946 len = readlink("/proc/self/exe", pathbuf, sizeof(pathbuf)-1);
1947 if (len > 0) {
1948 char *sl;
1949 pathbuf[len] = 0;
1950 sl = strrchr(pathbuf, '/');
1951 if (sl)
1952 sl++;
1953 else
1954 sl = pathbuf;
1955 strcpy(sl, "mdmon");
1956 } else
1957 pathbuf[0] = '\0';
1958
1959 switch(fork()) {
1960 case 0:
1961 manage_fork_fds(1);
1962 for (i = 0; paths[i]; i++)
1963 if (paths[i][0]) {
1964 execl(paths[i], paths[i],
1965 devnm, NULL);
1966 }
1967 exit(1);
1968 case -1: pr_err("cannot run mdmon. Array remains readonly\n");
1969 return -1;
1970 default: /* parent - good */
1971 pid = wait(&status);
1972 if (pid < 0 || status != 0) {
1973 pr_err("failed to launch mdmon. Array remains readonly\n");
1974 return -1;
1975 }
1976 }
1977 return 0;
1978 }
1979
1980 __u32 random32(void)
1981 {
1982 __u32 rv;
1983 int rfd = open("/dev/urandom", O_RDONLY);
1984 if (rfd < 0 || read(rfd, &rv, 4) != 4)
1985 rv = random();
1986 if (rfd >= 0)
1987 close(rfd);
1988 return rv;
1989 }
1990
1991 void random_uuid(__u8 *buf)
1992 {
1993 int fd, i, len;
1994 __u32 r[4];
1995
1996 fd = open("/dev/urandom", O_RDONLY);
1997 if (fd < 0)
1998 goto use_random;
1999 len = read(fd, buf, 16);
2000 close(fd);
2001 if (len != 16)
2002 goto use_random;
2003
2004 return;
2005
2006 use_random:
2007 for (i = 0; i < 4; i++)
2008 r[i] = random();
2009 memcpy(buf, r, 16);
2010 }
2011
2012 int flush_metadata_updates(struct supertype *st)
2013 {
2014 int sfd;
2015 if (!st->updates) {
2016 st->update_tail = NULL;
2017 return -1;
2018 }
2019
2020 sfd = connect_monitor(st->container_devnm);
2021 if (sfd < 0)
2022 return -1;
2023
2024 while (st->updates) {
2025 struct metadata_update *mu = st->updates;
2026 st->updates = mu->next;
2027
2028 send_message(sfd, mu, 0);
2029 wait_reply(sfd, 0);
2030 free(mu->buf);
2031 free(mu);
2032 }
2033 ack(sfd, 0);
2034 wait_reply(sfd, 0);
2035 close(sfd);
2036 st->update_tail = NULL;
2037 return 0;
2038 }
2039
2040 void append_metadata_update(struct supertype *st, void *buf, int len)
2041 {
2042
2043 struct metadata_update *mu = xmalloc(sizeof(*mu));
2044
2045 mu->buf = buf;
2046 mu->len = len;
2047 mu->space = NULL;
2048 mu->space_list = NULL;
2049 mu->next = NULL;
2050 *st->update_tail = mu;
2051 st->update_tail = &mu->next;
2052 }
2053
2054 #ifdef __TINYC__
2055 /* tinyc doesn't optimize this check in ioctl.h out ... */
2056 unsigned int __invalid_size_argument_for_IOC = 0;
2057 #endif
2058
2059 /**
2060 * disk_fd_matches_criteria() - check if device matches spare criteria.
2061 * @st: supertype, not NULL.
2062 * @disk_fd: file descriptor of the disk.
2063 * @sc: criteria to test.
2064 *
2065 * Return: true if disk matches criteria, false otherwise.
2066 */
2067 bool disk_fd_matches_criteria(struct supertype *st, int disk_fd, struct spare_criteria *sc)
2068 {
2069 unsigned int dev_sector_size = 0;
2070 unsigned long long dev_size = 0;
2071
2072 if (!sc->criteria_set)
2073 return true;
2074
2075 if (!get_dev_size(disk_fd, NULL, &dev_size) || dev_size < sc->min_size)
2076 return false;
2077
2078 if (!get_dev_sector_size(disk_fd, NULL, &dev_sector_size) ||
2079 sc->sector_size != dev_sector_size)
2080 return false;
2081
2082 if (drive_test_and_add_policies(st, &sc->pols, disk_fd, 0))
2083 return false;
2084
2085 return true;
2086 }
2087
2088 /**
2089 * devid_matches_criteria() - check if device referenced by devid matches spare criteria.
2090 * @st: supertype, not NULL.
2091 * @devid: devid of the device to check.
2092 * @sc: criteria to test.
2093 *
2094 * Return: true if disk matches criteria, false otherwise.
2095 */
2096 bool devid_matches_criteria(struct supertype *st, dev_t devid, struct spare_criteria *sc)
2097 {
2098 char buf[NAME_MAX];
2099 bool ret;
2100 int fd;
2101
2102 if (!sc->criteria_set)
2103 return true;
2104
2105 snprintf(buf, NAME_MAX, "%d:%d", major(devid), minor(devid));
2106
2107 fd = dev_open(buf, O_RDONLY);
2108 if (!is_fd_valid(fd))
2109 return false;
2110
2111 /* Error code inherited */
2112 ret = disk_fd_matches_criteria(st, fd, sc);
2113
2114 close(fd);
2115 return ret;
2116 }
2117
2118 /* Pick all spares matching given criteria from a container
2119 * if min_size == 0 do not check size
2120 * if domlist == NULL do not check domains
2121 * if spare_group given add it to domains of each spare
2122 * metadata allows to test domains using metadata of destination array */
2123 struct mdinfo *container_choose_spares(struct supertype *st,
2124 struct spare_criteria *criteria,
2125 struct domainlist *domlist,
2126 char *spare_group,
2127 const char *metadata, int get_one)
2128 {
2129 struct mdinfo *d, **dp, *disks = NULL;
2130
2131 /* get list of all disks in container */
2132 if (st->ss->getinfo_super_disks)
2133 disks = st->ss->getinfo_super_disks(st);
2134
2135 if (!disks)
2136 return disks;
2137 /* find spare devices on the list */
2138 dp = &disks->devs;
2139 disks->array.spare_disks = 0;
2140 while (*dp) {
2141 bool found = false;
2142
2143 d = *dp;
2144 if (d->disk.state == 0) {
2145 dev_t dev = makedev(d->disk.major,d->disk.minor);
2146
2147 found = devid_matches_criteria(st, dev, criteria);
2148
2149 /* check if domain matches */
2150 if (found && domlist) {
2151 struct dev_policy *pol = devid_policy(dev);
2152 if (spare_group)
2153 pol_add(&pol, pol_domain,
2154 spare_group, NULL);
2155 if (domain_test(domlist, pol, metadata) != 1)
2156 found = false;
2157
2158 dev_policy_free(pol);
2159 }
2160 }
2161 if (found) {
2162 dp = &d->next;
2163 disks->array.spare_disks++;
2164 if (get_one) {
2165 sysfs_free(*dp);
2166 d->next = NULL;
2167 }
2168 } else {
2169 *dp = d->next;
2170 d->next = NULL;
2171 sysfs_free(d);
2172 }
2173 }
2174 return disks;
2175 }
2176
2177 /* Checks if paths point to the same device
2178 * Returns 0 if they do.
2179 * Returns 1 if they don't.
2180 * Returns -1 if something went wrong,
2181 * e.g. paths are empty or the files
2182 * they point to don't exist */
2183 int compare_paths (char* path1, char* path2)
2184 {
2185 struct stat st1,st2;
2186
2187 if (path1 == NULL || path2 == NULL)
2188 return -1;
2189 if (stat(path1,&st1) != 0)
2190 return -1;
2191 if (stat(path2,&st2) != 0)
2192 return -1;
2193 if ((st1.st_ino == st2.st_ino) && (st1.st_dev == st2.st_dev))
2194 return 0;
2195 return 1;
2196 }
2197
2198 /* Make sure we can open as many devices as needed */
2199 void enable_fds(int devices)
2200 {
2201 unsigned int fds = 20 + devices;
2202 struct rlimit lim;
2203 if (getrlimit(RLIMIT_NOFILE, &lim) != 0 || lim.rlim_cur >= fds)
2204 return;
2205 if (lim.rlim_max < fds)
2206 lim.rlim_max = fds;
2207 lim.rlim_cur = fds;
2208 setrlimit(RLIMIT_NOFILE, &lim);
2209 }
2210
2211 /* Close all opened descriptors if needed and redirect
2212 * streams to /dev/null.
2213 * For debug purposed, leave STDOUT and STDERR untouched
2214 * Returns:
2215 * 1- if any error occurred
2216 * 0- otherwise
2217 */
2218 void manage_fork_fds(int close_all)
2219 {
2220 DIR *dir;
2221 struct dirent *dirent;
2222
2223 close(0);
2224 open("/dev/null", O_RDWR);
2225
2226 #ifndef DEBUG
2227 dup2(0, 1);
2228 dup2(0, 2);
2229 #endif
2230
2231 if (close_all == 0)
2232 return;
2233
2234 dir = opendir("/proc/self/fd");
2235 if (!dir) {
2236 pr_err("Cannot open /proc/self/fd directory.\n");
2237 return;
2238 }
2239 for (dirent = readdir(dir); dirent; dirent = readdir(dir)) {
2240 int fd = -1;
2241
2242 if ((strcmp(dirent->d_name, ".") == 0) ||
2243 (strcmp(dirent->d_name, "..")) == 0)
2244 continue;
2245
2246 fd = strtol(dirent->d_name, NULL, 10);
2247 if (fd > 2)
2248 close(fd);
2249 }
2250 }
2251
2252 /* In a systemd/udev world, it is best to get systemd to
2253 * run daemon rather than running in the background.
2254 * Returns:
2255 * 1- if systemd service has been started
2256 * 0- otherwise
2257 */
2258 int continue_via_systemd(char *devnm, char *service_name, char *prefix)
2259 {
2260 int pid, status;
2261 char pathbuf[1024];
2262
2263 /* Simply return that service cannot be started */
2264 if (check_env("MDADM_NO_SYSTEMCTL"))
2265 return 0;
2266 switch (fork()) {
2267 case 0:
2268 manage_fork_fds(1);
2269 snprintf(pathbuf, sizeof(pathbuf),
2270 "%s@%s%s.service", service_name, prefix ?: "", devnm);
2271 status = execl("/usr/bin/systemctl", "systemctl", "restart",
2272 pathbuf, NULL);
2273 status = execl("/bin/systemctl", "systemctl", "restart",
2274 pathbuf, NULL);
2275 exit(1);
2276 case -1: /* Just do it ourselves. */
2277 break;
2278 default: /* parent - good */
2279 pid = wait(&status);
2280 if (pid >= 0 && status == 0)
2281 return 1;
2282 }
2283 return 0;
2284 }
2285
2286 int in_initrd(void)
2287 {
2288 return access("/etc/initrd-release", F_OK) >= 0;
2289 }
2290
2291 void reopen_mddev(int mdfd)
2292 {
2293 /* Re-open without any O_EXCL, but keep
2294 * the same fd
2295 */
2296 char *devnm;
2297 int fd;
2298 devnm = fd2devnm(mdfd);
2299 close(mdfd);
2300 fd = open_dev(devnm);
2301 if (fd >= 0 && fd != mdfd)
2302 dup2(fd, mdfd);
2303 }
2304
2305 static struct cmap_hooks *cmap_hooks = NULL;
2306 static int is_cmap_hooks_ready = 0;
2307
2308 void set_cmap_hooks(void)
2309 {
2310 cmap_hooks = xmalloc(sizeof(struct cmap_hooks));
2311 cmap_hooks->cmap_handle = dlopen("libcmap.so.4", RTLD_NOW | RTLD_LOCAL);
2312 if (!cmap_hooks->cmap_handle)
2313 return;
2314
2315 cmap_hooks->initialize =
2316 dlsym(cmap_hooks->cmap_handle, "cmap_initialize");
2317 cmap_hooks->get_string =
2318 dlsym(cmap_hooks->cmap_handle, "cmap_get_string");
2319 cmap_hooks->finalize = dlsym(cmap_hooks->cmap_handle, "cmap_finalize");
2320
2321 if (!cmap_hooks->initialize || !cmap_hooks->get_string ||
2322 !cmap_hooks->finalize)
2323 dlclose(cmap_hooks->cmap_handle);
2324 else
2325 is_cmap_hooks_ready = 1;
2326 }
2327
2328 int get_cluster_name(char **cluster_name)
2329 {
2330 int rv = -1;
2331 cmap_handle_t handle;
2332
2333 if (!is_cmap_hooks_ready)
2334 return rv;
2335
2336 rv = cmap_hooks->initialize(&handle);
2337 if (rv != CS_OK)
2338 goto out;
2339
2340 rv = cmap_hooks->get_string(handle, "totem.cluster_name", cluster_name);
2341 if (rv != CS_OK) {
2342 free(*cluster_name);
2343 rv = -1;
2344 goto name_err;
2345 }
2346
2347 rv = 0;
2348 name_err:
2349 cmap_hooks->finalize(handle);
2350 out:
2351 return rv;
2352 }
2353
2354 void set_dlm_hooks(void)
2355 {
2356 dlm_hooks = xmalloc(sizeof(struct dlm_hooks));
2357 dlm_hooks->dlm_handle = dlopen("libdlm_lt.so.3", RTLD_NOW | RTLD_LOCAL);
2358 if (!dlm_hooks->dlm_handle)
2359 return;
2360
2361 dlm_hooks->open_lockspace =
2362 dlsym(dlm_hooks->dlm_handle, "dlm_open_lockspace");
2363 dlm_hooks->create_lockspace =
2364 dlsym(dlm_hooks->dlm_handle, "dlm_create_lockspace");
2365 dlm_hooks->release_lockspace =
2366 dlsym(dlm_hooks->dlm_handle, "dlm_release_lockspace");
2367 dlm_hooks->ls_lock = dlsym(dlm_hooks->dlm_handle, "dlm_ls_lock");
2368 dlm_hooks->ls_unlock_wait =
2369 dlsym(dlm_hooks->dlm_handle, "dlm_ls_unlock_wait");
2370 dlm_hooks->ls_get_fd = dlsym(dlm_hooks->dlm_handle, "dlm_ls_get_fd");
2371 dlm_hooks->dispatch = dlsym(dlm_hooks->dlm_handle, "dlm_dispatch");
2372
2373 if (!dlm_hooks->open_lockspace || !dlm_hooks->create_lockspace ||
2374 !dlm_hooks->ls_lock || !dlm_hooks->ls_unlock_wait ||
2375 !dlm_hooks->release_lockspace || !dlm_hooks->ls_get_fd ||
2376 !dlm_hooks->dispatch)
2377 dlclose(dlm_hooks->dlm_handle);
2378 else
2379 is_dlm_hooks_ready = 1;
2380 }
2381
2382 void set_hooks(void)
2383 {
2384 set_dlm_hooks();
2385 set_cmap_hooks();
2386 }
2387
2388 int zero_disk_range(int fd, unsigned long long sector, size_t count)
2389 {
2390 int ret = 0;
2391 int fd_zero;
2392 void *addr = NULL;
2393 size_t written = 0;
2394 size_t len = count * 512;
2395 ssize_t n;
2396
2397 fd_zero = open("/dev/zero", O_RDONLY);
2398 if (fd_zero < 0) {
2399 pr_err("Cannot open /dev/zero\n");
2400 return -1;
2401 }
2402
2403 if (lseek64(fd, sector * 512, SEEK_SET) < 0) {
2404 ret = -errno;
2405 pr_err("Failed to seek offset for zeroing\n");
2406 goto out;
2407 }
2408
2409 addr = mmap(NULL, len, PROT_READ, MAP_PRIVATE, fd_zero, 0);
2410
2411 if (addr == MAP_FAILED) {
2412 ret = -errno;
2413 pr_err("Mapping /dev/zero failed\n");
2414 goto out;
2415 }
2416
2417 do {
2418 n = write(fd, addr + written, len - written);
2419 if (n < 0) {
2420 if (errno == EINTR)
2421 continue;
2422 ret = -errno;
2423 pr_err("Zeroing disk range failed\n");
2424 break;
2425 }
2426 written += n;
2427 } while (written != len);
2428
2429 munmap(addr, len);
2430
2431 out:
2432 close(fd_zero);
2433 return ret;
2434 }
2435
2436 /**
2437 * sleep_for() - Sleeps for specified time.
2438 * @sec: Seconds to sleep for.
2439 * @nsec: Nanoseconds to sleep for, has to be less than one second.
2440 * @wake_after_interrupt: If set, wake up if interrupted.
2441 *
2442 * Function immediately returns if error different than EINTR occurs.
2443 */
2444 void sleep_for(unsigned int sec, long nsec, bool wake_after_interrupt)
2445 {
2446 struct timespec delay = {.tv_sec = sec, .tv_nsec = nsec};
2447
2448 assert(nsec < MSEC_TO_NSEC(1000));
2449
2450 do {
2451 errno = 0;
2452 nanosleep(&delay, &delay);
2453 if (errno != 0 && errno != EINTR) {
2454 pr_err("Error sleeping for %us %ldns: %s\n", sec, nsec, strerror(errno));
2455 return;
2456 }
2457 } while (!wake_after_interrupt && errno == EINTR);
2458 }
2459
2460 /* is_directory() - Checks if directory provided by path is indeed a regular directory.
2461 * @path: directory path to be checked
2462 *
2463 * Doesn't accept symlinks.
2464 *
2465 * Return: true if is a directory, false if not
2466 */
2467 bool is_directory(const char *path)
2468 {
2469 struct stat st;
2470
2471 if (lstat(path, &st) != 0) {
2472 pr_err("%s: %s\n", strerror(errno), path);
2473 return false;
2474 }
2475
2476 if (!S_ISDIR(st.st_mode))
2477 return false;
2478
2479 return true;
2480 }
2481
2482 /*
2483 * is_file() - Checks if file provided by path is indeed a regular file.
2484 * @path: file path to be checked
2485 *
2486 * Doesn't accept symlinks.
2487 *
2488 * Return: true if is a file, false if not
2489 */
2490 bool is_file(const char *path)
2491 {
2492 struct stat st;
2493
2494 if (lstat(path, &st) != 0) {
2495 pr_err("%s: %s\n", strerror(errno), path);
2496 return false;
2497 }
2498
2499 if (!S_ISREG(st.st_mode))
2500 return false;
2501
2502 return true;
2503 }