]> git.ipfire.org Git - thirdparty/mdadm.git/blob - util.c
Add helpers to determine whether directories or files are soft links
[thirdparty/mdadm.git] / util.c
1 /*
2 * mdadm - manage Linux "md" devices aka RAID arrays.
3 *
4 * Copyright (C) 2001-2013 Neil Brown <neilb@suse.de>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 * Author: Neil Brown
22 * Email: <neilb@suse.de>
23 */
24
25 #include "mdadm.h"
26 #include "md_p.h"
27 #include <sys/socket.h>
28 #include <sys/utsname.h>
29 #include <sys/wait.h>
30 #include <sys/un.h>
31 #include <sys/resource.h>
32 #include <sys/vfs.h>
33 #include <sys/mman.h>
34 #include <linux/magic.h>
35 #include <poll.h>
36 #include <ctype.h>
37 #include <dirent.h>
38 #include <dlfcn.h>
39
40
41 /*
42 * following taken from linux/blkpg.h because they aren't
43 * anywhere else and it isn't safe to #include linux/ * stuff.
44 */
45
46 #define BLKPG _IO(0x12,105)
47
48 /* The argument structure */
49 struct blkpg_ioctl_arg {
50 int op;
51 int flags;
52 int datalen;
53 void *data;
54 };
55
56 /* The subfunctions (for the op field) */
57 #define BLKPG_ADD_PARTITION 1
58 #define BLKPG_DEL_PARTITION 2
59
60 /* Sizes of name fields. Unused at present. */
61 #define BLKPG_DEVNAMELTH 64
62 #define BLKPG_VOLNAMELTH 64
63
64 /* The data structure for ADD_PARTITION and DEL_PARTITION */
65 struct blkpg_partition {
66 long long start; /* starting offset in bytes */
67 long long length; /* length in bytes */
68 int pno; /* partition number */
69 char devname[BLKPG_DEVNAMELTH]; /* partition name, like sda5 or c0d1p2,
70 to be used in kernel messages */
71 char volname[BLKPG_VOLNAMELTH]; /* volume label */
72 };
73
74 #include "part.h"
75
76 /* Force a compilation error if condition is true */
77 #define BUILD_BUG_ON(condition) ((void)BUILD_BUG_ON_ZERO(condition))
78
79 /* Force a compilation error if condition is true, but also produce a
80 result (of value 0 and type size_t), so the expression can be used
81 e.g. in a structure initializer (or where-ever else comma expressions
82 aren't permitted). */
83 #define BUILD_BUG_ON_ZERO(e) (sizeof(struct { int:-!!(e); }))
84
85 static int is_dlm_hooks_ready = 0;
86
87 int dlm_funs_ready(void)
88 {
89 return is_dlm_hooks_ready ? 1 : 0;
90 }
91
92 static struct dlm_hooks *dlm_hooks = NULL;
93 struct dlm_lock_resource *dlm_lock_res = NULL;
94 static int ast_called = 0;
95
96 struct dlm_lock_resource {
97 dlm_lshandle_t *ls;
98 struct dlm_lksb lksb;
99 };
100
101 /* Using poll(2) to wait for and dispatch ASTs */
102 static int poll_for_ast(dlm_lshandle_t ls)
103 {
104 struct pollfd pfd;
105
106 pfd.fd = dlm_hooks->ls_get_fd(ls);
107 pfd.events = POLLIN;
108
109 while (!ast_called)
110 {
111 if (poll(&pfd, 1, 0) < 0)
112 {
113 perror("poll");
114 return -1;
115 }
116 dlm_hooks->dispatch(dlm_hooks->ls_get_fd(ls));
117 }
118 ast_called = 0;
119
120 return 0;
121 }
122
123 static void dlm_ast(void *arg)
124 {
125 ast_called = 1;
126 }
127
128 static char *cluster_name = NULL;
129 /* Create the lockspace, take bitmapXXX locks on all the bitmaps. */
130 int cluster_get_dlmlock(void)
131 {
132 int ret = -1;
133 char str[64];
134 int flags = LKF_NOQUEUE;
135 int retry_count = 0;
136
137 if (!dlm_funs_ready()) {
138 pr_err("Something wrong with dlm library\n");
139 return -1;
140 }
141
142 ret = get_cluster_name(&cluster_name);
143 if (ret) {
144 pr_err("The md can't get cluster name\n");
145 return -1;
146 }
147
148 dlm_lock_res = xmalloc(sizeof(struct dlm_lock_resource));
149 dlm_lock_res->ls = dlm_hooks->open_lockspace(cluster_name);
150 if (!dlm_lock_res->ls) {
151 dlm_lock_res->ls = dlm_hooks->create_lockspace(cluster_name, O_RDWR);
152 if (!dlm_lock_res->ls) {
153 pr_err("%s failed to create lockspace\n", cluster_name);
154 return -ENOMEM;
155 }
156 } else {
157 pr_err("open existed %s lockspace\n", cluster_name);
158 }
159
160 snprintf(str, 64, "bitmap%s", cluster_name);
161 retry:
162 ret = dlm_hooks->ls_lock(dlm_lock_res->ls, LKM_PWMODE,
163 &dlm_lock_res->lksb, flags, str, strlen(str),
164 0, dlm_ast, dlm_lock_res, NULL, NULL);
165 if (ret) {
166 pr_err("error %d when get PW mode on lock %s\n", errno, str);
167 /* let's try several times if EAGAIN happened */
168 if (dlm_lock_res->lksb.sb_status == EAGAIN && retry_count < 10) {
169 sleep_for(10, 0, true);
170 retry_count++;
171 goto retry;
172 }
173 dlm_hooks->release_lockspace(cluster_name, dlm_lock_res->ls, 1);
174 return ret;
175 }
176
177 /* Wait for it to complete */
178 poll_for_ast(dlm_lock_res->ls);
179
180 if (dlm_lock_res->lksb.sb_status) {
181 pr_err("failed to lock cluster\n");
182 return -1;
183 }
184 return 1;
185 }
186
187 int cluster_release_dlmlock(void)
188 {
189 int ret = -1;
190
191 if (!cluster_name)
192 goto out;
193
194 if (!dlm_lock_res->lksb.sb_lkid)
195 goto out;
196
197 ret = dlm_hooks->ls_unlock_wait(dlm_lock_res->ls,
198 dlm_lock_res->lksb.sb_lkid, 0,
199 &dlm_lock_res->lksb);
200 if (ret) {
201 pr_err("error %d happened when unlock\n", errno);
202 /* XXX make sure the lock is unlocked eventually */
203 goto out;
204 }
205
206 /* Wait for it to complete */
207 poll_for_ast(dlm_lock_res->ls);
208
209 errno = dlm_lock_res->lksb.sb_status;
210 if (errno != EUNLOCK) {
211 pr_err("error %d happened in ast when unlock lockspace\n",
212 errno);
213 /* XXX make sure the lockspace is unlocked eventually */
214 goto out;
215 }
216
217 ret = dlm_hooks->release_lockspace(cluster_name, dlm_lock_res->ls, 1);
218 if (ret) {
219 pr_err("error %d happened when release lockspace\n", errno);
220 /* XXX make sure the lockspace is released eventually */
221 goto out;
222 }
223 free(dlm_lock_res);
224
225 out:
226 return ret;
227 }
228
229 int md_array_valid(int fd)
230 {
231 struct mdinfo *sra;
232 int ret;
233
234 sra = sysfs_read(fd, NULL, GET_ARRAY_STATE);
235 if (sra) {
236 if (sra->array_state != ARRAY_UNKNOWN_STATE)
237 ret = 0;
238 else
239 ret = -ENODEV;
240
241 free(sra);
242 } else {
243 /*
244 * GET_ARRAY_INFO doesn't provide access to the proper state
245 * information, so fallback to a basic check for raid_disks != 0
246 */
247 ret = ioctl(fd, RAID_VERSION);
248 }
249
250 return !ret;
251 }
252
253 int md_array_active(int fd)
254 {
255 struct mdinfo *sra;
256 struct mdu_array_info_s array;
257 int ret = 0;
258
259 sra = sysfs_read(fd, NULL, GET_ARRAY_STATE);
260 if (sra) {
261 if (!md_array_is_active(sra))
262 ret = -ENODEV;
263
264 free(sra);
265 } else {
266 /*
267 * GET_ARRAY_INFO doesn't provide access to the proper state
268 * information, so fallback to a basic check for raid_disks != 0
269 */
270 ret = md_get_array_info(fd, &array);
271 }
272
273 return !ret;
274 }
275
276 int md_array_is_active(struct mdinfo *info)
277 {
278 return (info->array_state != ARRAY_CLEAR &&
279 info->array_state != ARRAY_INACTIVE &&
280 info->array_state != ARRAY_UNKNOWN_STATE);
281 }
282
283 /*
284 * Get array info from the kernel. Longer term we want to deprecate the
285 * ioctl and get it from sysfs.
286 */
287 int md_get_array_info(int fd, struct mdu_array_info_s *array)
288 {
289 return ioctl(fd, GET_ARRAY_INFO, array);
290 }
291
292 /*
293 * Set array info
294 */
295 int md_set_array_info(int fd, struct mdu_array_info_s *array)
296 {
297 return ioctl(fd, SET_ARRAY_INFO, array);
298 }
299
300 /*
301 * Get disk info from the kernel.
302 */
303 int md_get_disk_info(int fd, struct mdu_disk_info_s *disk)
304 {
305 return ioctl(fd, GET_DISK_INFO, disk);
306 }
307
308 int get_linux_version()
309 {
310 struct utsname name;
311 char *cp;
312 int a = 0, b = 0,c = 0;
313 if (uname(&name) <0)
314 return -1;
315
316 cp = name.release;
317 a = strtoul(cp, &cp, 10);
318 if (*cp == '.')
319 b = strtoul(cp+1, &cp, 10);
320 if (*cp == '.')
321 c = strtoul(cp+1, &cp, 10);
322
323 return (a*1000000)+(b*1000)+c;
324 }
325
326 int mdadm_version(char *version)
327 {
328 int a, b, c;
329 char *cp;
330
331 if (!version)
332 version = Version;
333
334 cp = strchr(version, '-');
335 if (!cp || *(cp+1) != ' ' || *(cp+2) != 'v')
336 return -1;
337 cp += 3;
338 a = strtoul(cp, &cp, 10);
339 if (*cp != '.')
340 return -1;
341 b = strtoul(cp+1, &cp, 10);
342 if (*cp == '.')
343 c = strtoul(cp+1, &cp, 10);
344 else
345 c = 0;
346 if (*cp != ' ' && *cp != '-')
347 return -1;
348 return (a*1000000)+(b*1000)+c;
349 }
350
351 unsigned long long parse_size(char *size)
352 {
353 /* parse 'size' which should be a number optionally
354 * followed by 'K', 'M'. 'G' or 'T'.
355 * Without a suffix, K is assumed.
356 * Number returned is in sectors (half-K)
357 * INVALID_SECTORS returned on error.
358 */
359 char *c;
360 long long s = strtoll(size, &c, 10);
361 if (s > 0) {
362 switch (*c) {
363 case 'K':
364 c++;
365 default:
366 s *= 2;
367 break;
368 case 'M':
369 c++;
370 s *= 1024 * 2;
371 break;
372 case 'G':
373 c++;
374 s *= 1024 * 1024 * 2;
375 break;
376 case 'T':
377 c++;
378 s *= 1024 * 1024 * 1024 * 2LL;
379 break;
380 case 's': /* sectors */
381 c++;
382 break;
383 }
384 } else
385 s = INVALID_SECTORS;
386 if (*c)
387 s = INVALID_SECTORS;
388 return s;
389 }
390
391 int is_near_layout_10(int layout)
392 {
393 int fc, fo;
394
395 fc = (layout >> 8) & 255;
396 fo = layout & (1 << 16);
397 if (fc > 1 || fo > 0)
398 return 0;
399 return 1;
400 }
401
402 int parse_layout_10(char *layout)
403 {
404 int copies, rv;
405 char *cp;
406 /* Parse the layout string for raid10 */
407 /* 'f', 'o' or 'n' followed by a number <= raid_disks */
408 if ((layout[0] != 'n' && layout[0] != 'f' && layout[0] != 'o') ||
409 (copies = strtoul(layout+1, &cp, 10)) < 1 ||
410 copies > 200 ||
411 *cp)
412 return -1;
413 if (layout[0] == 'n')
414 rv = 256 + copies;
415 else if (layout[0] == 'o')
416 rv = 0x10000 + (copies<<8) + 1;
417 else
418 rv = 1 + (copies<<8);
419 return rv;
420 }
421
422 int parse_layout_faulty(char *layout)
423 {
424 if (!layout)
425 return -1;
426 /* Parse the layout string for 'faulty' */
427 int ln = strcspn(layout, "0123456789");
428 char *m = xstrdup(layout);
429 int mode;
430 m[ln] = 0;
431 mode = map_name(faultylayout, m);
432 if (mode == UnSet)
433 return -1;
434
435 return mode | (atoi(layout+ln)<< ModeShift);
436 }
437
438 int parse_cluster_confirm_arg(char *input, char **devname, int *slot)
439 {
440 char *dev;
441 *slot = strtoul(input, &dev, 10);
442 if (dev == input || dev[0] != ':')
443 return -1;
444 *devname = dev+1;
445 return 0;
446 }
447
448 void remove_partitions(int fd)
449 {
450 /* remove partitions from this block devices.
451 * This is used for components added to an array
452 */
453 #ifdef BLKPG_DEL_PARTITION
454 struct blkpg_ioctl_arg a;
455 struct blkpg_partition p;
456
457 a.op = BLKPG_DEL_PARTITION;
458 a.data = (void*)&p;
459 a.datalen = sizeof(p);
460 a.flags = 0;
461 memset(a.data, 0, a.datalen);
462 for (p.pno = 0; p.pno < 16; p.pno++)
463 ioctl(fd, BLKPG, &a);
464 #endif
465 }
466
467 int test_partition(int fd)
468 {
469 /* Check if fd is a whole-disk or a partition.
470 * BLKPG will return EINVAL on a partition, and BLKPG_DEL_PARTITION
471 * will return ENXIO on an invalid partition number.
472 */
473 struct blkpg_ioctl_arg a;
474 struct blkpg_partition p;
475 a.op = BLKPG_DEL_PARTITION;
476 a.data = (void*)&p;
477 a.datalen = sizeof(p);
478 a.flags = 0;
479 memset(a.data, 0, a.datalen);
480 p.pno = 1<<30;
481 if (ioctl(fd, BLKPG, &a) == 0)
482 /* Very unlikely, but not a partition */
483 return 0;
484 if (errno == ENXIO || errno == ENOTTY)
485 /* not a partition */
486 return 0;
487
488 return 1;
489 }
490
491 int test_partition_from_id(dev_t id)
492 {
493 char buf[20];
494 int fd, rv;
495
496 sprintf(buf, "%d:%d", major(id), minor(id));
497 fd = dev_open(buf, O_RDONLY);
498 if (fd < 0)
499 return -1;
500 rv = test_partition(fd);
501 close(fd);
502 return rv;
503 }
504
505 int enough(int level, int raid_disks, int layout, int clean, char *avail)
506 {
507 int copies, first;
508 int i;
509 int avail_disks = 0;
510
511 for (i = 0; i < raid_disks; i++)
512 avail_disks += !!avail[i];
513
514 switch (level) {
515 case 10:
516 /* This is the tricky one - we need to check
517 * which actual disks are present.
518 */
519 copies = (layout&255)* ((layout>>8) & 255);
520 first = 0;
521 do {
522 /* there must be one of the 'copies' form 'first' */
523 int n = copies;
524 int cnt = 0;
525 int this = first;
526 while (n--) {
527 if (avail[this])
528 cnt++;
529 this = (this+1) % raid_disks;
530 }
531 if (cnt == 0)
532 return 0;
533 first = (first+(layout&255)) % raid_disks;
534 } while (first != 0);
535 return 1;
536
537 case LEVEL_MULTIPATH:
538 return avail_disks>= 1;
539 case LEVEL_LINEAR:
540 case 0:
541 return avail_disks == raid_disks;
542 case 1:
543 return avail_disks >= 1;
544 case 4:
545 if (avail_disks == raid_disks - 1 &&
546 !avail[raid_disks - 1])
547 /* If just the parity device is missing, then we
548 * have enough, even if not clean
549 */
550 return 1;
551 /* FALL THROUGH */
552 case 5:
553 if (clean)
554 return avail_disks >= raid_disks-1;
555 else
556 return avail_disks >= raid_disks;
557 case 6:
558 if (clean)
559 return avail_disks >= raid_disks-2;
560 else
561 return avail_disks >= raid_disks;
562 default:
563 return 0;
564 }
565 }
566
567 char *__fname_from_uuid(int id[4], int swap, char *buf, char sep)
568 {
569 int i, j;
570 char uuid[16];
571 char *c = buf;
572 strcpy(c, "UUID-");
573 c += strlen(c);
574 copy_uuid(uuid, id, swap);
575 for (i = 0; i < 4; i++) {
576 if (i)
577 *c++ = sep;
578 for (j = 3; j >= 0; j--) {
579 sprintf(c,"%02x", (unsigned char) uuid[j+4*i]);
580 c+= 2;
581 }
582 }
583 return buf;
584
585 }
586
587 char *fname_from_uuid(struct supertype *st, struct mdinfo *info,
588 char *buf, char sep)
589 {
590 // dirty hack to work around an issue with super1 superblocks...
591 // super1 superblocks need swapuuid set in order for assembly to
592 // work, but can't have it set if we want this printout to match
593 // all the other uuid printouts in super1.c, so we force swapuuid
594 // to 1 to make our printout match the rest of super1
595 #if __BYTE_ORDER == BIG_ENDIAN
596 return __fname_from_uuid(info->uuid, 1, buf, sep);
597 #else
598 return __fname_from_uuid(info->uuid, (st->ss == &super1) ? 1 :
599 st->ss->swapuuid, buf, sep);
600 #endif
601 }
602
603 int check_ext2(int fd, char *name)
604 {
605 /*
606 * Check for an ext2fs file system.
607 * Superblock is always 1K at 1K offset
608 *
609 * s_magic is le16 at 56 == 0xEF53
610 * report mtime - le32 at 44
611 * blocks - le32 at 4
612 * logblksize - le32 at 24
613 */
614 unsigned char sb[1024];
615 time_t mtime;
616 unsigned long long size;
617 int bsize;
618 if (lseek(fd, 1024,0)!= 1024)
619 return 0;
620 if (read(fd, sb, 1024)!= 1024)
621 return 0;
622 if (sb[56] != 0x53 || sb[57] != 0xef)
623 return 0;
624
625 mtime = sb[44]|(sb[45]|(sb[46]|sb[47]<<8)<<8)<<8;
626 bsize = sb[24]|(sb[25]|(sb[26]|sb[27]<<8)<<8)<<8;
627 size = sb[4]|(sb[5]|(sb[6]|sb[7]<<8)<<8)<<8;
628 size <<= bsize;
629 pr_err("%s appears to contain an ext2fs file system\n",
630 name);
631 cont_err("size=%lluK mtime=%s", size, ctime(&mtime));
632 return 1;
633 }
634
635 int check_reiser(int fd, char *name)
636 {
637 /*
638 * superblock is at 64K
639 * size is 1024;
640 * Magic string "ReIsErFs" or "ReIsEr2Fs" at 52
641 *
642 */
643 unsigned char sb[1024];
644 unsigned long long size;
645 if (lseek(fd, 64*1024, 0) != 64*1024)
646 return 0;
647 if (read(fd, sb, 1024) != 1024)
648 return 0;
649 if (strncmp((char*)sb+52, "ReIsErFs",8) != 0 &&
650 strncmp((char*)sb+52, "ReIsEr2Fs",9) != 0)
651 return 0;
652 pr_err("%s appears to contain a reiserfs file system\n",name);
653 size = sb[0]|(sb[1]|(sb[2]|sb[3]<<8)<<8)<<8;
654 cont_err("size = %lluK\n", size*4);
655
656 return 1;
657 }
658
659 int check_raid(int fd, char *name)
660 {
661 struct mdinfo info;
662 time_t crtime;
663 char *level;
664 struct supertype *st = guess_super(fd);
665
666 if (!st)
667 return 0;
668 if (st->ss->add_to_super != NULL) {
669 st->ss->load_super(st, fd, name);
670 /* Looks like a raid array .. */
671 pr_err("%s appears to be part of a raid array:\n", name);
672 st->ss->getinfo_super(st, &info, NULL);
673 st->ss->free_super(st);
674 crtime = info.array.ctime;
675 level = map_num(pers, info.array.level);
676 if (!level)
677 level = "-unknown-";
678 cont_err("level=%s devices=%d ctime=%s",
679 level, info.array.raid_disks, ctime(&crtime));
680 } else {
681 /* Looks like GPT or MBR */
682 pr_err("partition table exists on %s\n", name);
683 }
684 return 1;
685 }
686
687 int fstat_is_blkdev(int fd, char *devname, dev_t *rdev)
688 {
689 struct stat stb;
690
691 if (fstat(fd, &stb) != 0) {
692 pr_err("fstat failed for %s: %s\n", devname, strerror(errno));
693 return 0;
694 }
695 if ((S_IFMT & stb.st_mode) != S_IFBLK) {
696 pr_err("%s is not a block device.\n", devname);
697 return 0;
698 }
699 if (rdev)
700 *rdev = stb.st_rdev;
701 return 1;
702 }
703
704 int stat_is_blkdev(char *devname, dev_t *rdev)
705 {
706 struct stat stb;
707
708 if (stat(devname, &stb) != 0) {
709 pr_err("stat failed for %s: %s\n", devname, strerror(errno));
710 return 0;
711 }
712 if ((S_IFMT & stb.st_mode) != S_IFBLK) {
713 pr_err("%s is not a block device.\n", devname);
714 return 0;
715 }
716 if (rdev)
717 *rdev = stb.st_rdev;
718 return 1;
719 }
720
721 int ask(char *mesg)
722 {
723 char *add = "";
724 int i;
725 for (i = 0; i < 5; i++) {
726 char buf[100];
727 fprintf(stderr, "%s%s", mesg, add);
728 fflush(stderr);
729 if (fgets(buf, 100, stdin)==NULL)
730 return 0;
731 if (buf[0]=='y' || buf[0]=='Y')
732 return 1;
733 if (buf[0]=='n' || buf[0]=='N')
734 return 0;
735 add = "(y/n) ";
736 }
737 pr_err("assuming 'no'\n");
738 return 0;
739 }
740
741 int is_standard(char *dev, int *nump)
742 {
743 /* tests if dev is a "standard" md dev name.
744 * i.e if the last component is "/dNN" or "/mdNN",
745 * where NN is a string of digits
746 * Returns 1 if a partitionable standard,
747 * -1 if non-partitonable,
748 * 0 if not a standard name.
749 */
750 char *d = strrchr(dev, '/');
751 int type = 0;
752 int num;
753 if (!d)
754 return 0;
755 if (strncmp(d, "/d",2) == 0)
756 d += 2, type = 1; /* /dev/md/dN{pM} */
757 else if (strncmp(d, "/md_d", 5) == 0)
758 d += 5, type = 1; /* /dev/md_dN{pM} */
759 else if (strncmp(d, "/md", 3) == 0)
760 d += 3, type = -1; /* /dev/mdN */
761 else if (d-dev > 3 && strncmp(d-2, "md/", 3) == 0)
762 d += 1, type = -1; /* /dev/md/N */
763 else
764 return 0;
765 if (!*d)
766 return 0;
767 num = atoi(d);
768 while (isdigit(*d))
769 d++;
770 if (*d)
771 return 0;
772 if (nump) *nump = num;
773
774 return type;
775 }
776
777 unsigned long calc_csum(void *super, int bytes)
778 {
779 unsigned long long newcsum = 0;
780 int i;
781 unsigned int csum;
782 unsigned int *superc = (unsigned int*) super;
783
784 for(i = 0; i < bytes/4; i++)
785 newcsum += superc[i];
786 csum = (newcsum& 0xffffffff) + (newcsum>>32);
787 #ifdef __alpha__
788 /* The in-kernel checksum calculation is always 16bit on
789 * the alpha, though it is 32 bit on i386...
790 * I wonder what it is elsewhere... (it uses an API in
791 * a way that it shouldn't).
792 */
793 csum = (csum & 0xffff) + (csum >> 16);
794 csum = (csum & 0xffff) + (csum >> 16);
795 #endif
796 return csum;
797 }
798
799 char *human_size(long long bytes)
800 {
801 static char buf[47];
802
803 /* We convert bytes to either centi-M{ega,ibi}bytes,
804 * centi-G{igi,ibi}bytes or centi-T{era,ebi}bytes
805 * with appropriate rounding, and then print
806 * 1/100th of those as a decimal.
807 * We allow upto 2048Megabytes before converting to
808 * gigabytes and 2048Gigabytes before converting to
809 * terabytes, as that shows more precision and isn't
810 * too large a number.
811 */
812
813 if (bytes < 5000*1024)
814 buf[0] = 0;
815 else if (bytes < 2*1024LL*1024LL*1024LL) {
816 long cMiB = (bytes * 200LL / (1LL<<20) + 1) / 2;
817 long cMB = (bytes / ( 1000000LL / 200LL ) +1) /2;
818 snprintf(buf, sizeof(buf), " (%ld.%02ld MiB %ld.%02ld MB)",
819 cMiB/100, cMiB % 100, cMB/100, cMB % 100);
820 } else if (bytes < 2*1024LL*1024LL*1024LL*1024LL) {
821 long cGiB = (bytes * 200LL / (1LL<<30) +1) / 2;
822 long cGB = (bytes / (1000000000LL/200LL ) +1) /2;
823 snprintf(buf, sizeof(buf), " (%ld.%02ld GiB %ld.%02ld GB)",
824 cGiB/100, cGiB % 100, cGB/100, cGB % 100);
825 } else {
826 long cTiB = (bytes * 200LL / (1LL<<40) + 1) / 2;
827 long cTB = (bytes / (1000000000000LL / 200LL) + 1) / 2;
828 snprintf(buf, sizeof(buf), " (%ld.%02ld TiB %ld.%02ld TB)",
829 cTiB/100, cTiB % 100, cTB/100, cTB % 100);
830 }
831 return buf;
832 }
833
834 char *human_size_brief(long long bytes, int prefix)
835 {
836 static char buf[30];
837
838 /* We convert bytes to either centi-M{ega,ibi}bytes,
839 * centi-G{igi,ibi}bytes or centi-T{era,ebi}bytes
840 * with appropriate rounding, and then print
841 * 1/100th of those as a decimal.
842 * We allow upto 2048Megabytes before converting to
843 * gigabytes and 2048Gigabytes before converting to
844 * terabytes, as that shows more precision and isn't
845 * too large a number.
846 *
847 * If prefix == IEC, we mean prefixes like kibi,mebi,gibi etc.
848 * If prefix == JEDEC, we mean prefixes like kilo,mega,giga etc.
849 */
850
851 if (bytes < 5000*1024)
852 buf[0] = 0;
853 else if (prefix == IEC) {
854 if (bytes < 2*1024LL*1024LL*1024LL) {
855 long cMiB = (bytes * 200LL / (1LL<<20) +1) /2;
856 snprintf(buf, sizeof(buf), "%ld.%02ldMiB",
857 cMiB/100, cMiB % 100);
858 } else if (bytes < 2*1024LL*1024LL*1024LL*1024LL) {
859 long cGiB = (bytes * 200LL / (1LL<<30) +1) /2;
860 snprintf(buf, sizeof(buf), "%ld.%02ldGiB",
861 cGiB/100, cGiB % 100);
862 } else {
863 long cTiB = (bytes * 200LL / (1LL<<40) + 1) / 2;
864 snprintf(buf, sizeof(buf), "%ld.%02ldTiB",
865 cTiB/100, cTiB % 100);
866 }
867 }
868 else if (prefix == JEDEC) {
869 if (bytes < 2*1024LL*1024LL*1024LL) {
870 long cMB = (bytes / ( 1000000LL / 200LL ) +1) /2;
871 snprintf(buf, sizeof(buf), "%ld.%02ldMB",
872 cMB/100, cMB % 100);
873 } else if (bytes < 2*1024LL*1024LL*1024LL*1024LL) {
874 long cGB = (bytes / (1000000000LL/200LL ) +1) /2;
875 snprintf(buf, sizeof(buf), "%ld.%02ldGB",
876 cGB/100, cGB % 100);
877 } else {
878 long cTB = (bytes / (1000000000000LL / 200LL) + 1) / 2;
879 snprintf(buf, sizeof(buf), "%ld.%02ldTB",
880 cTB/100, cTB % 100);
881 }
882 }
883 else
884 buf[0] = 0;
885
886 return buf;
887 }
888
889 void print_r10_layout(int layout)
890 {
891 int near = layout & 255;
892 int far = (layout >> 8) & 255;
893 int offset = (layout&0x10000);
894 char *sep = "";
895
896 if (near != 1) {
897 printf("%s near=%d", sep, near);
898 sep = ",";
899 }
900 if (far != 1)
901 printf("%s %s=%d", sep, offset?"offset":"far", far);
902 if (near*far == 1)
903 printf("NO REDUNDANCY");
904 }
905
906 unsigned long long calc_array_size(int level, int raid_disks, int layout,
907 int chunksize, unsigned long long devsize)
908 {
909 if (level == 1)
910 return devsize;
911 devsize &= ~(unsigned long long)((chunksize>>9)-1);
912 return get_data_disks(level, layout, raid_disks) * devsize;
913 }
914
915 int get_data_disks(int level, int layout, int raid_disks)
916 {
917 int data_disks = 0;
918 switch (level) {
919 case 0: data_disks = raid_disks;
920 break;
921 case 1: data_disks = 1;
922 break;
923 case 4:
924 case 5: data_disks = raid_disks - 1;
925 break;
926 case 6: data_disks = raid_disks - 2;
927 break;
928 case 10: data_disks = raid_disks / (layout & 255) / ((layout>>8)&255);
929 break;
930 }
931
932 return data_disks;
933 }
934
935 dev_t devnm2devid(char *devnm)
936 {
937 /* First look in /sys/block/$DEVNM/dev for %d:%d
938 * If that fails, try parsing out a number
939 */
940 char path[PATH_MAX];
941 char *ep;
942 int fd;
943 int mjr,mnr;
944
945 snprintf(path, sizeof(path), "/sys/block/%s/dev", devnm);
946 fd = open(path, O_RDONLY);
947 if (fd >= 0) {
948 char buf[20];
949 int n = read(fd, buf, sizeof(buf));
950 close(fd);
951 if (n > 0)
952 buf[n] = 0;
953 if (n > 0 && sscanf(buf, "%d:%d\n", &mjr, &mnr) == 2)
954 return makedev(mjr, mnr);
955 }
956 if (strncmp(devnm, "md_d", 4) == 0 &&
957 isdigit(devnm[4]) &&
958 (mnr = strtoul(devnm+4, &ep, 10)) >= 0 &&
959 ep > devnm && *ep == 0)
960 return makedev(get_mdp_major(), mnr << MdpMinorShift);
961
962 if (strncmp(devnm, "md", 2) == 0 &&
963 isdigit(devnm[2]) &&
964 (mnr = strtoul(devnm+2, &ep, 10)) >= 0 &&
965 ep > devnm && *ep == 0)
966 return makedev(MD_MAJOR, mnr);
967
968 return 0;
969 }
970
971 /**
972 * get_md_name() - Get main dev node of the md device.
973 * @devnm: Md device name or path.
974 *
975 * Function checks if the full name was passed and returns md name
976 * if it is the MD device.
977 *
978 * Return: Main dev node of the md device or NULL if not found.
979 */
980 char *get_md_name(char *devnm)
981 {
982 static char devname[NAME_MAX];
983 struct stat stb;
984
985 if (strncmp(devnm, "/dev/", 5) == 0)
986 snprintf(devname, sizeof(devname), "%s", devnm);
987 else
988 snprintf(devname, sizeof(devname), "/dev/%s", devnm);
989
990 if (!is_mddev(devname))
991 return NULL;
992 if (stat(devname, &stb) == 0 && (S_IFMT&stb.st_mode) == S_IFBLK)
993 return devname;
994
995 return NULL;
996 }
997
998 void put_md_name(char *name)
999 {
1000 if (strncmp(name, "/dev/.tmp.md", 12) == 0)
1001 unlink(name);
1002 }
1003
1004 int get_maj_min(char *dev, int *major, int *minor)
1005 {
1006 char *e;
1007 *major = strtoul(dev, &e, 0);
1008 return (e > dev && *e == ':' && e[1] &&
1009 (*minor = strtoul(e+1, &e, 0)) >= 0 &&
1010 *e == 0);
1011 }
1012
1013 /**
1014 * is_bit_set() - get bit value by index.
1015 * @val: value.
1016 * @index: index of the bit (LSB numbering).
1017 *
1018 * Return: bit value.
1019 */
1020 bool is_bit_set(int *val, unsigned char index)
1021 {
1022 if ((*val) & (1 << index))
1023 return true;
1024 return false;
1025 }
1026
1027 int dev_open(char *dev, int flags)
1028 {
1029 /* like 'open', but if 'dev' matches %d:%d, create a temp
1030 * block device and open that
1031 */
1032 int fd = -1;
1033 char devname[32];
1034 int major;
1035 int minor;
1036
1037 if (!dev)
1038 return -1;
1039 flags |= O_DIRECT;
1040
1041 if (get_maj_min(dev, &major, &minor)) {
1042 snprintf(devname, sizeof(devname), "/dev/.tmp.md.%d:%d:%d",
1043 (int)getpid(), major, minor);
1044 if (mknod(devname, S_IFBLK|0600, makedev(major, minor)) == 0) {
1045 fd = open(devname, flags);
1046 unlink(devname);
1047 }
1048 if (fd < 0) {
1049 /* Try /tmp as /dev appear to be read-only */
1050 snprintf(devname, sizeof(devname),
1051 "/tmp/.tmp.md.%d:%d:%d",
1052 (int)getpid(), major, minor);
1053 if (mknod(devname, S_IFBLK|0600,
1054 makedev(major, minor)) == 0) {
1055 fd = open(devname, flags);
1056 unlink(devname);
1057 }
1058 }
1059 } else
1060 fd = open(dev, flags);
1061 return fd;
1062 }
1063
1064 int open_dev_flags(char *devnm, int flags)
1065 {
1066 dev_t devid;
1067 char buf[20];
1068
1069 devid = devnm2devid(devnm);
1070 sprintf(buf, "%d:%d", major(devid), minor(devid));
1071 return dev_open(buf, flags);
1072 }
1073
1074 int open_dev(char *devnm)
1075 {
1076 return open_dev_flags(devnm, O_RDONLY);
1077 }
1078
1079 int open_dev_excl(char *devnm)
1080 {
1081 char buf[20];
1082 int i;
1083 int flags = O_RDWR;
1084 dev_t devid = devnm2devid(devnm);
1085 unsigned int delay = 1; // miliseconds
1086
1087 sprintf(buf, "%d:%d", major(devid), minor(devid));
1088 for (i = 0; i < 25; i++) {
1089 int fd = dev_open(buf, flags|O_EXCL);
1090 if (fd >= 0)
1091 return fd;
1092 if (errno == EACCES && flags == O_RDWR) {
1093 flags = O_RDONLY;
1094 continue;
1095 }
1096 if (errno != EBUSY)
1097 return fd;
1098 sleep_for(0, MSEC_TO_NSEC(delay), true);
1099 if (delay < 200)
1100 delay *= 2;
1101 }
1102 return -1;
1103 }
1104
1105 int same_dev(char *one, char *two)
1106 {
1107 struct stat st1, st2;
1108 if (stat(one, &st1) != 0)
1109 return 0;
1110 if (stat(two, &st2) != 0)
1111 return 0;
1112 if ((st1.st_mode & S_IFMT) != S_IFBLK)
1113 return 0;
1114 if ((st2.st_mode & S_IFMT) != S_IFBLK)
1115 return 0;
1116 return st1.st_rdev == st2.st_rdev;
1117 }
1118
1119 void wait_for(char *dev, int fd)
1120 {
1121 int i;
1122 struct stat stb_want;
1123 unsigned int delay = 1; // miliseconds
1124
1125 if (fstat(fd, &stb_want) != 0 ||
1126 (stb_want.st_mode & S_IFMT) != S_IFBLK)
1127 return;
1128
1129 for (i = 0; i < 25; i++) {
1130 struct stat stb;
1131 if (stat(dev, &stb) == 0 &&
1132 (stb.st_mode & S_IFMT) == S_IFBLK &&
1133 (stb.st_rdev == stb_want.st_rdev))
1134 return;
1135 sleep_for(0, MSEC_TO_NSEC(delay), true);
1136 if (delay < 200)
1137 delay *= 2;
1138 }
1139 if (i == 25)
1140 pr_err("timeout waiting for %s\n", dev);
1141 }
1142
1143 struct superswitch *superlist[] =
1144 {
1145 &super0, &super1,
1146 &super_ddf, &super_imsm,
1147 &mbr, &gpt,
1148 NULL
1149 };
1150
1151 struct supertype *super_by_fd(int fd, char **subarrayp)
1152 {
1153 mdu_array_info_t array;
1154 int vers;
1155 int minor;
1156 struct supertype *st = NULL;
1157 struct mdinfo *sra;
1158 char *verstr;
1159 char version[20];
1160 int i;
1161 char *subarray = NULL;
1162 char container[32] = "";
1163 char *devnm = NULL;
1164
1165 devnm = fd2devnm(fd);
1166 if (!devnm)
1167 return NULL;
1168
1169 sra = sysfs_read(fd, NULL, GET_VERSION);
1170
1171 if (sra) {
1172 vers = sra->array.major_version;
1173 minor = sra->array.minor_version;
1174 verstr = sra->text_version;
1175 } else {
1176 if (md_get_array_info(fd, &array))
1177 array.major_version = array.minor_version = 0;
1178 vers = array.major_version;
1179 minor = array.minor_version;
1180 verstr = "";
1181 }
1182
1183 if (vers != -1) {
1184 sprintf(version, "%d.%d", vers, minor);
1185 verstr = version;
1186 }
1187 if (minor == -2 && is_subarray(verstr)) {
1188 char *dev = verstr+1;
1189
1190 subarray = strchr(dev, '/');
1191 if (subarray) {
1192 *subarray++ = '\0';
1193 subarray = xstrdup(subarray);
1194 }
1195 strcpy(container, dev);
1196 sysfs_free(sra);
1197 sra = sysfs_read(-1, container, GET_VERSION);
1198 if (sra && sra->text_version[0])
1199 verstr = sra->text_version;
1200 else
1201 verstr = "-no-metadata-";
1202 }
1203
1204 for (i = 0; st == NULL && superlist[i]; i++)
1205 st = superlist[i]->match_metadata_desc(verstr);
1206
1207 sysfs_free(sra);
1208 if (st) {
1209 st->sb = NULL;
1210 if (subarrayp)
1211 *subarrayp = subarray;
1212 strcpy(st->container_devnm, container);
1213 strncpy(st->devnm, devnm, MD_NAME_MAX - 1);
1214 } else
1215 free(subarray);
1216
1217 return st;
1218 }
1219
1220 int dev_size_from_id(dev_t id, unsigned long long *size)
1221 {
1222 char buf[20];
1223 int fd;
1224
1225 sprintf(buf, "%d:%d", major(id), minor(id));
1226 fd = dev_open(buf, O_RDONLY);
1227 if (fd < 0)
1228 return 0;
1229 if (get_dev_size(fd, NULL, size)) {
1230 close(fd);
1231 return 1;
1232 }
1233 close(fd);
1234 return 0;
1235 }
1236
1237 int dev_sector_size_from_id(dev_t id, unsigned int *size)
1238 {
1239 char buf[20];
1240 int fd;
1241
1242 sprintf(buf, "%d:%d", major(id), minor(id));
1243 fd = dev_open(buf, O_RDONLY);
1244 if (fd < 0)
1245 return 0;
1246 if (get_dev_sector_size(fd, NULL, size)) {
1247 close(fd);
1248 return 1;
1249 }
1250 close(fd);
1251 return 0;
1252 }
1253
1254 struct supertype *dup_super(struct supertype *orig)
1255 {
1256 struct supertype *st;
1257
1258 if (!orig)
1259 return orig;
1260 st = xcalloc(1, sizeof(*st));
1261 st->ss = orig->ss;
1262 st->max_devs = orig->max_devs;
1263 st->minor_version = orig->minor_version;
1264 st->ignore_hw_compat = orig->ignore_hw_compat;
1265 st->data_offset = orig->data_offset;
1266 st->sb = NULL;
1267 st->info = NULL;
1268 return st;
1269 }
1270
1271 struct supertype *guess_super_type(int fd, enum guess_types guess_type)
1272 {
1273 /* try each load_super to find the best match,
1274 * and return the best superswitch
1275 */
1276 struct superswitch *ss;
1277 struct supertype *st;
1278 unsigned int besttime = 0;
1279 int bestsuper = -1;
1280 int i;
1281
1282 st = xcalloc(1, sizeof(*st));
1283 st->container_devnm[0] = 0;
1284
1285 for (i = 0; superlist[i]; i++) {
1286 int rv;
1287 ss = superlist[i];
1288 if (guess_type == guess_array && ss->add_to_super == NULL)
1289 continue;
1290 if (guess_type == guess_partitions && ss->add_to_super != NULL)
1291 continue;
1292 memset(st, 0, sizeof(*st));
1293 st->ignore_hw_compat = 1;
1294 rv = ss->load_super(st, fd, NULL);
1295 if (rv == 0) {
1296 struct mdinfo info;
1297 st->ss->getinfo_super(st, &info, NULL);
1298 if (bestsuper == -1 ||
1299 besttime < info.array.ctime) {
1300 bestsuper = i;
1301 besttime = info.array.ctime;
1302 }
1303 ss->free_super(st);
1304 }
1305 }
1306 if (bestsuper != -1) {
1307 int rv;
1308 memset(st, 0, sizeof(*st));
1309 st->ignore_hw_compat = 1;
1310 rv = superlist[bestsuper]->load_super(st, fd, NULL);
1311 if (rv == 0) {
1312 superlist[bestsuper]->free_super(st);
1313 return st;
1314 }
1315 }
1316 free(st);
1317 return NULL;
1318 }
1319
1320 /* Return size of device in bytes */
1321 int get_dev_size(int fd, char *dname, unsigned long long *sizep)
1322 {
1323 unsigned long long ldsize;
1324 struct stat st;
1325
1326 if (fstat(fd, &st) != -1 && S_ISREG(st.st_mode))
1327 ldsize = (unsigned long long)st.st_size;
1328 else
1329 #ifdef BLKGETSIZE64
1330 if (ioctl(fd, BLKGETSIZE64, &ldsize) != 0)
1331 #endif
1332 {
1333 unsigned long dsize;
1334 if (ioctl(fd, BLKGETSIZE, &dsize) == 0) {
1335 ldsize = dsize;
1336 ldsize <<= 9;
1337 } else {
1338 if (dname)
1339 pr_err("Cannot get size of %s: %s\n",
1340 dname, strerror(errno));
1341 return 0;
1342 }
1343 }
1344 *sizep = ldsize;
1345 return 1;
1346 }
1347
1348 /* Return sector size of device in bytes */
1349 int get_dev_sector_size(int fd, char *dname, unsigned int *sectsizep)
1350 {
1351 unsigned int sectsize;
1352
1353 if (ioctl(fd, BLKSSZGET, &sectsize) != 0) {
1354 if (dname)
1355 pr_err("Cannot get sector size of %s: %s\n",
1356 dname, strerror(errno));
1357 return 0;
1358 }
1359
1360 *sectsizep = sectsize;
1361 return 1;
1362 }
1363
1364 /* Return true if this can only be a container, not a member device.
1365 * i.e. is and md device and size is zero
1366 */
1367 int must_be_container(int fd)
1368 {
1369 struct mdinfo *mdi;
1370 unsigned long long size;
1371
1372 mdi = sysfs_read(fd, NULL, GET_VERSION);
1373 if (!mdi)
1374 return 0;
1375 sysfs_free(mdi);
1376
1377 if (get_dev_size(fd, NULL, &size) == 0)
1378 return 1;
1379 if (size == 0)
1380 return 1;
1381 return 0;
1382 }
1383
1384 /* Sets endofpart parameter to the last block used by the last GPT partition on the device.
1385 * Returns: 1 if successful
1386 * -1 for unknown partition type
1387 * 0 for other errors
1388 */
1389 static int get_gpt_last_partition_end(int fd, unsigned long long *endofpart)
1390 {
1391 struct GPT gpt;
1392 unsigned char empty_gpt_entry[16]= {0};
1393 struct GPT_part_entry *part;
1394 char buf[512];
1395 unsigned long long curr_part_end;
1396 unsigned all_partitions, entry_size;
1397 unsigned part_nr;
1398 unsigned int sector_size = 0;
1399
1400 *endofpart = 0;
1401
1402 BUILD_BUG_ON(sizeof(gpt) != 512);
1403 /* skip protective MBR */
1404 if (!get_dev_sector_size(fd, NULL, &sector_size))
1405 return 0;
1406 lseek(fd, sector_size, SEEK_SET);
1407 /* read GPT header */
1408 if (read(fd, &gpt, 512) != 512)
1409 return 0;
1410
1411 /* get the number of partition entries and the entry size */
1412 all_partitions = __le32_to_cpu(gpt.part_cnt);
1413 entry_size = __le32_to_cpu(gpt.part_size);
1414
1415 /* Check GPT signature*/
1416 if (gpt.magic != GPT_SIGNATURE_MAGIC)
1417 return -1;
1418
1419 /* sanity checks */
1420 if (all_partitions > 1024 ||
1421 entry_size > sizeof(buf))
1422 return -1;
1423
1424 part = (struct GPT_part_entry *)buf;
1425
1426 /* set offset to third block (GPT entries) */
1427 lseek(fd, sector_size*2, SEEK_SET);
1428 for (part_nr = 0; part_nr < all_partitions; part_nr++) {
1429 /* read partition entry */
1430 if (read(fd, buf, entry_size) != (ssize_t)entry_size)
1431 return 0;
1432
1433 /* is this valid partition? */
1434 if (memcmp(part->type_guid, empty_gpt_entry, 16) != 0) {
1435 /* check the last lba for the current partition */
1436 curr_part_end = __le64_to_cpu(part->ending_lba);
1437 if (curr_part_end > *endofpart)
1438 *endofpart = curr_part_end;
1439 }
1440
1441 }
1442 return 1;
1443 }
1444
1445 /* Sets endofpart parameter to the last block used by the last partition on the device.
1446 * Returns: 1 if successful
1447 * -1 for unknown partition type
1448 * 0 for other errors
1449 */
1450 static int get_last_partition_end(int fd, unsigned long long *endofpart)
1451 {
1452 struct MBR boot_sect;
1453 unsigned long long curr_part_end;
1454 unsigned part_nr;
1455 unsigned int sector_size;
1456 int retval = 0;
1457
1458 *endofpart = 0;
1459
1460 BUILD_BUG_ON(sizeof(boot_sect) != 512);
1461 /* read MBR */
1462 lseek(fd, 0, 0);
1463 if (read(fd, &boot_sect, 512) != 512)
1464 goto abort;
1465
1466 /* check MBP signature */
1467 if (boot_sect.magic == MBR_SIGNATURE_MAGIC) {
1468 retval = 1;
1469 /* found the correct signature */
1470
1471 for (part_nr = 0; part_nr < MBR_PARTITIONS; part_nr++) {
1472 /*
1473 * Have to make every access through boot_sect rather
1474 * than using a pointer to the partition table (or an
1475 * entry), since the entries are not properly aligned.
1476 */
1477
1478 /* check for GPT type */
1479 if (boot_sect.parts[part_nr].part_type ==
1480 MBR_GPT_PARTITION_TYPE) {
1481 retval = get_gpt_last_partition_end(fd, endofpart);
1482 break;
1483 }
1484 /* check the last used lba for the current partition */
1485 curr_part_end =
1486 __le32_to_cpu(boot_sect.parts[part_nr].first_sect_lba) +
1487 __le32_to_cpu(boot_sect.parts[part_nr].blocks_num);
1488 if (curr_part_end > *endofpart)
1489 *endofpart = curr_part_end;
1490 }
1491 } else {
1492 /* Unknown partition table */
1493 retval = -1;
1494 }
1495 /* calculate number of 512-byte blocks */
1496 if (get_dev_sector_size(fd, NULL, &sector_size))
1497 *endofpart *= (sector_size / 512);
1498 abort:
1499 return retval;
1500 }
1501
1502 int check_partitions(int fd, char *dname, unsigned long long freesize,
1503 unsigned long long size)
1504 {
1505 /*
1506 * Check where the last partition ends
1507 */
1508 unsigned long long endofpart;
1509
1510 if (get_last_partition_end(fd, &endofpart) > 0) {
1511 /* There appears to be a partition table here */
1512 if (freesize == 0) {
1513 /* partitions will not be visible in new device */
1514 pr_err("partition table exists on %s but will be lost or\n"
1515 " meaningless after creating array\n",
1516 dname);
1517 return 1;
1518 } else if (endofpart > freesize) {
1519 /* last partition overlaps metadata */
1520 pr_err("metadata will over-write last partition on %s.\n",
1521 dname);
1522 return 1;
1523 } else if (size && endofpart > size) {
1524 /* partitions will be truncated in new device */
1525 pr_err("array size is too small to cover all partitions on %s.\n",
1526 dname);
1527 return 1;
1528 }
1529 }
1530 return 0;
1531 }
1532
1533 int open_container(int fd)
1534 {
1535 /* 'fd' is a block device. Find out if it is in use
1536 * by a container, and return an open fd on that container.
1537 */
1538 char path[288];
1539 char *e;
1540 DIR *dir;
1541 struct dirent *de;
1542 int dfd, n;
1543 char buf[200];
1544 int major, minor;
1545 struct stat st;
1546
1547 if (fstat(fd, &st) != 0)
1548 return -1;
1549 sprintf(path, "/sys/dev/block/%d:%d/holders",
1550 (int)major(st.st_rdev), (int)minor(st.st_rdev));
1551 e = path + strlen(path);
1552
1553 dir = opendir(path);
1554 if (!dir)
1555 return -1;
1556 while ((de = readdir(dir))) {
1557 if (de->d_ino == 0)
1558 continue;
1559 if (de->d_name[0] == '.')
1560 continue;
1561 /* Need to make sure it is a container and not a volume */
1562 sprintf(e, "/%s/md/metadata_version", de->d_name);
1563 dfd = open(path, O_RDONLY);
1564 if (dfd < 0)
1565 continue;
1566 n = read(dfd, buf, sizeof(buf));
1567 close(dfd);
1568 if (n <= 0 || (unsigned)n >= sizeof(buf))
1569 continue;
1570 buf[n] = 0;
1571 if (strncmp(buf, "external", 8) != 0 ||
1572 n < 10 ||
1573 buf[9] == '/')
1574 continue;
1575 sprintf(e, "/%s/dev", de->d_name);
1576 dfd = open(path, O_RDONLY);
1577 if (dfd < 0)
1578 continue;
1579 n = read(dfd, buf, sizeof(buf));
1580 close(dfd);
1581 if (n <= 0 || (unsigned)n >= sizeof(buf))
1582 continue;
1583 buf[n] = 0;
1584 if (sscanf(buf, "%d:%d", &major, &minor) != 2)
1585 continue;
1586 sprintf(buf, "%d:%d", major, minor);
1587 dfd = dev_open(buf, O_RDONLY);
1588 if (dfd >= 0) {
1589 closedir(dir);
1590 return dfd;
1591 }
1592 }
1593 closedir(dir);
1594 return -1;
1595 }
1596
1597 struct superswitch *version_to_superswitch(char *vers)
1598 {
1599 int i;
1600
1601 for (i = 0; superlist[i]; i++) {
1602 struct superswitch *ss = superlist[i];
1603
1604 if (strcmp(vers, ss->name) == 0)
1605 return ss;
1606 }
1607
1608 return NULL;
1609 }
1610
1611 int metadata_container_matches(char *metadata, char *devnm)
1612 {
1613 /* Check if 'devnm' is the container named in 'metadata'
1614 * which is
1615 * /containername/componentname or
1616 * -containername/componentname
1617 */
1618 int l;
1619 if (*metadata != '/' && *metadata != '-')
1620 return 0;
1621 l = strlen(devnm);
1622 if (strncmp(metadata+1, devnm, l) != 0)
1623 return 0;
1624 if (metadata[l+1] != '/')
1625 return 0;
1626 return 1;
1627 }
1628
1629 int metadata_subdev_matches(char *metadata, char *devnm)
1630 {
1631 /* Check if 'devnm' is the subdev named in 'metadata'
1632 * which is
1633 * /containername/subdev or
1634 * -containername/subdev
1635 */
1636 char *sl;
1637 if (*metadata != '/' && *metadata != '-')
1638 return 0;
1639 sl = strchr(metadata+1, '/');
1640 if (!sl)
1641 return 0;
1642 if (strcmp(sl+1, devnm) == 0)
1643 return 1;
1644 return 0;
1645 }
1646
1647 int is_container_member(struct mdstat_ent *mdstat, char *container)
1648 {
1649 if (mdstat->metadata_version == NULL ||
1650 strncmp(mdstat->metadata_version, "external:", 9) != 0 ||
1651 !metadata_container_matches(mdstat->metadata_version+9, container))
1652 return 0;
1653
1654 return 1;
1655 }
1656
1657 int is_subarray_active(char *subarray, char *container)
1658 {
1659 struct mdstat_ent *mdstat = mdstat_read(0, 0);
1660 struct mdstat_ent *ent;
1661
1662 for (ent = mdstat; ent; ent = ent->next)
1663 if (is_container_member(ent, container))
1664 if (strcmp(to_subarray(ent, container), subarray) == 0)
1665 break;
1666
1667 free_mdstat(mdstat);
1668
1669 return ent != NULL;
1670 }
1671
1672 /* open_subarray - opens a subarray in a container
1673 * @dev: container device name
1674 * @st: empty supertype
1675 * @quiet: block reporting errors flag
1676 *
1677 * On success returns an fd to a container and fills in *st
1678 */
1679 int open_subarray(char *dev, char *subarray, struct supertype *st, int quiet)
1680 {
1681 struct mdinfo *mdi;
1682 struct mdinfo *info;
1683 int fd, err = 1;
1684 char *_devnm;
1685
1686 fd = open(dev, O_RDWR|O_EXCL);
1687 if (fd < 0) {
1688 if (!quiet)
1689 pr_err("Couldn't open %s, aborting\n",
1690 dev);
1691 return -1;
1692 }
1693
1694 _devnm = fd2devnm(fd);
1695 if (_devnm == NULL) {
1696 if (!quiet)
1697 pr_err("Failed to determine device number for %s\n",
1698 dev);
1699 goto close_fd;
1700 }
1701 strcpy(st->devnm, _devnm);
1702
1703 mdi = sysfs_read(fd, st->devnm, GET_VERSION|GET_LEVEL);
1704 if (!mdi) {
1705 if (!quiet)
1706 pr_err("Failed to read sysfs for %s\n",
1707 dev);
1708 goto close_fd;
1709 }
1710
1711 if (mdi->array.level != UnSet) {
1712 if (!quiet)
1713 pr_err("%s is not a container\n", dev);
1714 goto free_sysfs;
1715 }
1716
1717 st->ss = version_to_superswitch(mdi->text_version);
1718 if (!st->ss) {
1719 if (!quiet)
1720 pr_err("Operation not supported for %s metadata\n",
1721 mdi->text_version);
1722 goto free_sysfs;
1723 }
1724
1725 if (st->devnm[0] == 0) {
1726 if (!quiet)
1727 pr_err("Failed to allocate device name\n");
1728 goto free_sysfs;
1729 }
1730
1731 if (!st->ss->load_container) {
1732 if (!quiet)
1733 pr_err("%s is not a container\n", dev);
1734 goto free_sysfs;
1735 }
1736
1737 if (st->ss->load_container(st, fd, NULL)) {
1738 if (!quiet)
1739 pr_err("Failed to load metadata for %s\n",
1740 dev);
1741 goto free_sysfs;
1742 }
1743
1744 info = st->ss->container_content(st, subarray);
1745 if (!info) {
1746 if (!quiet)
1747 pr_err("Failed to find subarray-%s in %s\n",
1748 subarray, dev);
1749 goto free_super;
1750 }
1751 free(info);
1752
1753 err = 0;
1754
1755 free_super:
1756 if (err)
1757 st->ss->free_super(st);
1758 free_sysfs:
1759 sysfs_free(mdi);
1760 close_fd:
1761 if (err)
1762 close(fd);
1763
1764 if (err)
1765 return -1;
1766 else
1767 return fd;
1768 }
1769
1770 int add_disk(int mdfd, struct supertype *st,
1771 struct mdinfo *sra, struct mdinfo *info)
1772 {
1773 /* Add a device to an array, in one of 2 ways. */
1774 int rv;
1775
1776 if (st->ss->external) {
1777 if (info->disk.state & (1<<MD_DISK_SYNC))
1778 info->recovery_start = MaxSector;
1779 else
1780 info->recovery_start = 0;
1781 rv = sysfs_add_disk(sra, info, 0);
1782 if (! rv) {
1783 struct mdinfo *sd2;
1784 for (sd2 = sra->devs; sd2; sd2=sd2->next)
1785 if (sd2 == info)
1786 break;
1787 if (sd2 == NULL) {
1788 sd2 = xmalloc(sizeof(*sd2));
1789 *sd2 = *info;
1790 sd2->next = sra->devs;
1791 sra->devs = sd2;
1792 }
1793 }
1794 } else
1795 rv = ioctl(mdfd, ADD_NEW_DISK, &info->disk);
1796 return rv;
1797 }
1798
1799 int remove_disk(int mdfd, struct supertype *st,
1800 struct mdinfo *sra, struct mdinfo *info)
1801 {
1802 int rv;
1803
1804 /* Remove the disk given by 'info' from the array */
1805 if (st->ss->external)
1806 rv = sysfs_set_str(sra, info, "slot", "none");
1807 else
1808 rv = ioctl(mdfd, HOT_REMOVE_DISK, makedev(info->disk.major,
1809 info->disk.minor));
1810 return rv;
1811 }
1812
1813 int hot_remove_disk(int mdfd, unsigned long dev, int force)
1814 {
1815 int cnt = force ? 500 : 5;
1816 int ret;
1817
1818 /* HOT_REMOVE_DISK can fail with EBUSY if there are
1819 * outstanding IO requests to the device.
1820 * In this case, it can be helpful to wait a little while,
1821 * up to 5 seconds if 'force' is set, or 50 msec if not.
1822 */
1823 while ((ret = ioctl(mdfd, HOT_REMOVE_DISK, dev)) == -1 &&
1824 errno == EBUSY &&
1825 cnt-- > 0)
1826 sleep_for(0, MSEC_TO_NSEC(10), true);
1827
1828 return ret;
1829 }
1830
1831 int sys_hot_remove_disk(int statefd, int force)
1832 {
1833 int cnt = force ? 500 : 5;
1834 int ret;
1835
1836 while ((ret = write(statefd, "remove", 6)) == -1 &&
1837 errno == EBUSY &&
1838 cnt-- > 0)
1839 sleep_for(0, MSEC_TO_NSEC(10), true);
1840 return ret == 6 ? 0 : -1;
1841 }
1842
1843 int set_array_info(int mdfd, struct supertype *st, struct mdinfo *info)
1844 {
1845 /* Initialise kernel's knowledge of array.
1846 * This varies between externally managed arrays
1847 * and older kernels
1848 */
1849 mdu_array_info_t inf;
1850 int rv;
1851
1852 if (st->ss->external)
1853 return sysfs_set_array(info, 9003);
1854
1855 memset(&inf, 0, sizeof(inf));
1856 inf.major_version = info->array.major_version;
1857 inf.minor_version = info->array.minor_version;
1858 rv = md_set_array_info(mdfd, &inf);
1859
1860 return rv;
1861 }
1862
1863 unsigned long long min_recovery_start(struct mdinfo *array)
1864 {
1865 /* find the minimum recovery_start in an array for metadata
1866 * formats that only record per-array recovery progress instead
1867 * of per-device
1868 */
1869 unsigned long long recovery_start = MaxSector;
1870 struct mdinfo *d;
1871
1872 for (d = array->devs; d; d = d->next)
1873 recovery_start = min(recovery_start, d->recovery_start);
1874
1875 return recovery_start;
1876 }
1877
1878 int mdmon_pid(char *devnm)
1879 {
1880 char path[100];
1881 char pid[10];
1882 int fd;
1883 int n;
1884
1885 sprintf(path, "%s/%s.pid", MDMON_DIR, devnm);
1886
1887 fd = open(path, O_RDONLY | O_NOATIME, 0);
1888
1889 if (fd < 0)
1890 return -1;
1891 n = read(fd, pid, 9);
1892 close(fd);
1893 if (n <= 0)
1894 return -1;
1895 return atoi(pid);
1896 }
1897
1898 int mdmon_running(char *devnm)
1899 {
1900 int pid = mdmon_pid(devnm);
1901 if (pid <= 0)
1902 return 0;
1903 if (kill(pid, 0) == 0)
1904 return 1;
1905 return 0;
1906 }
1907
1908 int start_mdmon(char *devnm)
1909 {
1910 int i;
1911 int len;
1912 pid_t pid;
1913 int status;
1914 char pathbuf[1024];
1915 char *paths[4] = {
1916 pathbuf,
1917 BINDIR "/mdmon",
1918 "./mdmon",
1919 NULL
1920 };
1921
1922 if (check_env("MDADM_NO_MDMON"))
1923 return 0;
1924 if (continue_via_systemd(devnm, MDMON_SERVICE))
1925 return 0;
1926
1927 /* That failed, try running mdmon directly */
1928 len = readlink("/proc/self/exe", pathbuf, sizeof(pathbuf)-1);
1929 if (len > 0) {
1930 char *sl;
1931 pathbuf[len] = 0;
1932 sl = strrchr(pathbuf, '/');
1933 if (sl)
1934 sl++;
1935 else
1936 sl = pathbuf;
1937 strcpy(sl, "mdmon");
1938 } else
1939 pathbuf[0] = '\0';
1940
1941 switch(fork()) {
1942 case 0:
1943 manage_fork_fds(1);
1944 for (i = 0; paths[i]; i++)
1945 if (paths[i][0]) {
1946 execl(paths[i], paths[i],
1947 devnm, NULL);
1948 }
1949 exit(1);
1950 case -1: pr_err("cannot run mdmon. Array remains readonly\n");
1951 return -1;
1952 default: /* parent - good */
1953 pid = wait(&status);
1954 if (pid < 0 || status != 0) {
1955 pr_err("failed to launch mdmon. Array remains readonly\n");
1956 return -1;
1957 }
1958 }
1959 return 0;
1960 }
1961
1962 __u32 random32(void)
1963 {
1964 __u32 rv;
1965 int rfd = open("/dev/urandom", O_RDONLY);
1966 if (rfd < 0 || read(rfd, &rv, 4) != 4)
1967 rv = random();
1968 if (rfd >= 0)
1969 close(rfd);
1970 return rv;
1971 }
1972
1973 void random_uuid(__u8 *buf)
1974 {
1975 int fd, i, len;
1976 __u32 r[4];
1977
1978 fd = open("/dev/urandom", O_RDONLY);
1979 if (fd < 0)
1980 goto use_random;
1981 len = read(fd, buf, 16);
1982 close(fd);
1983 if (len != 16)
1984 goto use_random;
1985
1986 return;
1987
1988 use_random:
1989 for (i = 0; i < 4; i++)
1990 r[i] = random();
1991 memcpy(buf, r, 16);
1992 }
1993
1994 int flush_metadata_updates(struct supertype *st)
1995 {
1996 int sfd;
1997 if (!st->updates) {
1998 st->update_tail = NULL;
1999 return -1;
2000 }
2001
2002 sfd = connect_monitor(st->container_devnm);
2003 if (sfd < 0)
2004 return -1;
2005
2006 while (st->updates) {
2007 struct metadata_update *mu = st->updates;
2008 st->updates = mu->next;
2009
2010 send_message(sfd, mu, 0);
2011 wait_reply(sfd, 0);
2012 free(mu->buf);
2013 free(mu);
2014 }
2015 ack(sfd, 0);
2016 wait_reply(sfd, 0);
2017 close(sfd);
2018 st->update_tail = NULL;
2019 return 0;
2020 }
2021
2022 void append_metadata_update(struct supertype *st, void *buf, int len)
2023 {
2024
2025 struct metadata_update *mu = xmalloc(sizeof(*mu));
2026
2027 mu->buf = buf;
2028 mu->len = len;
2029 mu->space = NULL;
2030 mu->space_list = NULL;
2031 mu->next = NULL;
2032 *st->update_tail = mu;
2033 st->update_tail = &mu->next;
2034 }
2035
2036 #ifdef __TINYC__
2037 /* tinyc doesn't optimize this check in ioctl.h out ... */
2038 unsigned int __invalid_size_argument_for_IOC = 0;
2039 #endif
2040
2041 /* Pick all spares matching given criteria from a container
2042 * if min_size == 0 do not check size
2043 * if domlist == NULL do not check domains
2044 * if spare_group given add it to domains of each spare
2045 * metadata allows to test domains using metadata of destination array */
2046 struct mdinfo *container_choose_spares(struct supertype *st,
2047 struct spare_criteria *criteria,
2048 struct domainlist *domlist,
2049 char *spare_group,
2050 const char *metadata, int get_one)
2051 {
2052 struct mdinfo *d, **dp, *disks = NULL;
2053
2054 /* get list of all disks in container */
2055 if (st->ss->getinfo_super_disks)
2056 disks = st->ss->getinfo_super_disks(st);
2057
2058 if (!disks)
2059 return disks;
2060 /* find spare devices on the list */
2061 dp = &disks->devs;
2062 disks->array.spare_disks = 0;
2063 while (*dp) {
2064 int found = 0;
2065 d = *dp;
2066 if (d->disk.state == 0) {
2067 /* check if size is acceptable */
2068 unsigned long long dev_size;
2069 unsigned int dev_sector_size;
2070 int size_valid = 0;
2071 int sector_size_valid = 0;
2072
2073 dev_t dev = makedev(d->disk.major,d->disk.minor);
2074
2075 if (!criteria->min_size ||
2076 (dev_size_from_id(dev, &dev_size) &&
2077 dev_size >= criteria->min_size))
2078 size_valid = 1;
2079
2080 if (!criteria->sector_size ||
2081 (dev_sector_size_from_id(dev, &dev_sector_size) &&
2082 criteria->sector_size == dev_sector_size))
2083 sector_size_valid = 1;
2084
2085 found = size_valid && sector_size_valid;
2086
2087 /* check if domain matches */
2088 if (found && domlist) {
2089 struct dev_policy *pol = devid_policy(dev);
2090 if (spare_group)
2091 pol_add(&pol, pol_domain,
2092 spare_group, NULL);
2093 if (domain_test(domlist, pol, metadata) != 1)
2094 found = 0;
2095 dev_policy_free(pol);
2096 }
2097 }
2098 if (found) {
2099 dp = &d->next;
2100 disks->array.spare_disks++;
2101 if (get_one) {
2102 sysfs_free(*dp);
2103 d->next = NULL;
2104 }
2105 } else {
2106 *dp = d->next;
2107 d->next = NULL;
2108 sysfs_free(d);
2109 }
2110 }
2111 return disks;
2112 }
2113
2114 /* Checks if paths point to the same device
2115 * Returns 0 if they do.
2116 * Returns 1 if they don't.
2117 * Returns -1 if something went wrong,
2118 * e.g. paths are empty or the files
2119 * they point to don't exist */
2120 int compare_paths (char* path1, char* path2)
2121 {
2122 struct stat st1,st2;
2123
2124 if (path1 == NULL || path2 == NULL)
2125 return -1;
2126 if (stat(path1,&st1) != 0)
2127 return -1;
2128 if (stat(path2,&st2) != 0)
2129 return -1;
2130 if ((st1.st_ino == st2.st_ino) && (st1.st_dev == st2.st_dev))
2131 return 0;
2132 return 1;
2133 }
2134
2135 /* Make sure we can open as many devices as needed */
2136 void enable_fds(int devices)
2137 {
2138 unsigned int fds = 20 + devices;
2139 struct rlimit lim;
2140 if (getrlimit(RLIMIT_NOFILE, &lim) != 0 || lim.rlim_cur >= fds)
2141 return;
2142 if (lim.rlim_max < fds)
2143 lim.rlim_max = fds;
2144 lim.rlim_cur = fds;
2145 setrlimit(RLIMIT_NOFILE, &lim);
2146 }
2147
2148 /* Close all opened descriptors if needed and redirect
2149 * streams to /dev/null.
2150 * For debug purposed, leave STDOUT and STDERR untouched
2151 * Returns:
2152 * 1- if any error occurred
2153 * 0- otherwise
2154 */
2155 void manage_fork_fds(int close_all)
2156 {
2157 DIR *dir;
2158 struct dirent *dirent;
2159
2160 close(0);
2161 open("/dev/null", O_RDWR);
2162
2163 #ifndef DEBUG
2164 dup2(0, 1);
2165 dup2(0, 2);
2166 #endif
2167
2168 if (close_all == 0)
2169 return;
2170
2171 dir = opendir("/proc/self/fd");
2172 if (!dir) {
2173 pr_err("Cannot open /proc/self/fd directory.\n");
2174 return;
2175 }
2176 for (dirent = readdir(dir); dirent; dirent = readdir(dir)) {
2177 int fd = -1;
2178
2179 if ((strcmp(dirent->d_name, ".") == 0) ||
2180 (strcmp(dirent->d_name, "..")) == 0)
2181 continue;
2182
2183 fd = strtol(dirent->d_name, NULL, 10);
2184 if (fd > 2)
2185 close(fd);
2186 }
2187 }
2188
2189 /* In a systemd/udev world, it is best to get systemd to
2190 * run daemon rather than running in the background.
2191 * Returns:
2192 * 1- if systemd service has been started
2193 * 0- otherwise
2194 */
2195 int continue_via_systemd(char *devnm, char *service_name)
2196 {
2197 int pid, status;
2198 char pathbuf[1024];
2199
2200 /* Simply return that service cannot be started */
2201 if (check_env("MDADM_NO_SYSTEMCTL"))
2202 return 0;
2203 switch (fork()) {
2204 case 0:
2205 manage_fork_fds(1);
2206 snprintf(pathbuf, sizeof(pathbuf),
2207 "%s@%s.service", service_name, devnm);
2208 status = execl("/usr/bin/systemctl", "systemctl", "restart",
2209 pathbuf, NULL);
2210 status = execl("/bin/systemctl", "systemctl", "restart",
2211 pathbuf, NULL);
2212 exit(1);
2213 case -1: /* Just do it ourselves. */
2214 break;
2215 default: /* parent - good */
2216 pid = wait(&status);
2217 if (pid >= 0 && status == 0)
2218 return 1;
2219 }
2220 return 0;
2221 }
2222
2223 int in_initrd(void)
2224 {
2225 /* This is based on similar function in systemd. */
2226 struct statfs s;
2227 /* statfs.f_type is signed long on s390x and MIPS, causing all
2228 sorts of sign extension problems with RAMFS_MAGIC being
2229 defined as 0x858458f6 */
2230 return statfs("/", &s) >= 0 &&
2231 ((unsigned long)s.f_type == TMPFS_MAGIC ||
2232 ((unsigned long)s.f_type & 0xFFFFFFFFUL) ==
2233 ((unsigned long)RAMFS_MAGIC & 0xFFFFFFFFUL));
2234 }
2235
2236 void reopen_mddev(int mdfd)
2237 {
2238 /* Re-open without any O_EXCL, but keep
2239 * the same fd
2240 */
2241 char *devnm;
2242 int fd;
2243 devnm = fd2devnm(mdfd);
2244 close(mdfd);
2245 fd = open_dev(devnm);
2246 if (fd >= 0 && fd != mdfd)
2247 dup2(fd, mdfd);
2248 }
2249
2250 static struct cmap_hooks *cmap_hooks = NULL;
2251 static int is_cmap_hooks_ready = 0;
2252
2253 void set_cmap_hooks(void)
2254 {
2255 cmap_hooks = xmalloc(sizeof(struct cmap_hooks));
2256 cmap_hooks->cmap_handle = dlopen("libcmap.so.4", RTLD_NOW | RTLD_LOCAL);
2257 if (!cmap_hooks->cmap_handle)
2258 return;
2259
2260 cmap_hooks->initialize =
2261 dlsym(cmap_hooks->cmap_handle, "cmap_initialize");
2262 cmap_hooks->get_string =
2263 dlsym(cmap_hooks->cmap_handle, "cmap_get_string");
2264 cmap_hooks->finalize = dlsym(cmap_hooks->cmap_handle, "cmap_finalize");
2265
2266 if (!cmap_hooks->initialize || !cmap_hooks->get_string ||
2267 !cmap_hooks->finalize)
2268 dlclose(cmap_hooks->cmap_handle);
2269 else
2270 is_cmap_hooks_ready = 1;
2271 }
2272
2273 int get_cluster_name(char **cluster_name)
2274 {
2275 int rv = -1;
2276 cmap_handle_t handle;
2277
2278 if (!is_cmap_hooks_ready)
2279 return rv;
2280
2281 rv = cmap_hooks->initialize(&handle);
2282 if (rv != CS_OK)
2283 goto out;
2284
2285 rv = cmap_hooks->get_string(handle, "totem.cluster_name", cluster_name);
2286 if (rv != CS_OK) {
2287 free(*cluster_name);
2288 rv = -1;
2289 goto name_err;
2290 }
2291
2292 rv = 0;
2293 name_err:
2294 cmap_hooks->finalize(handle);
2295 out:
2296 return rv;
2297 }
2298
2299 void set_dlm_hooks(void)
2300 {
2301 dlm_hooks = xmalloc(sizeof(struct dlm_hooks));
2302 dlm_hooks->dlm_handle = dlopen("libdlm_lt.so.3", RTLD_NOW | RTLD_LOCAL);
2303 if (!dlm_hooks->dlm_handle)
2304 return;
2305
2306 dlm_hooks->open_lockspace =
2307 dlsym(dlm_hooks->dlm_handle, "dlm_open_lockspace");
2308 dlm_hooks->create_lockspace =
2309 dlsym(dlm_hooks->dlm_handle, "dlm_create_lockspace");
2310 dlm_hooks->release_lockspace =
2311 dlsym(dlm_hooks->dlm_handle, "dlm_release_lockspace");
2312 dlm_hooks->ls_lock = dlsym(dlm_hooks->dlm_handle, "dlm_ls_lock");
2313 dlm_hooks->ls_unlock_wait =
2314 dlsym(dlm_hooks->dlm_handle, "dlm_ls_unlock_wait");
2315 dlm_hooks->ls_get_fd = dlsym(dlm_hooks->dlm_handle, "dlm_ls_get_fd");
2316 dlm_hooks->dispatch = dlsym(dlm_hooks->dlm_handle, "dlm_dispatch");
2317
2318 if (!dlm_hooks->open_lockspace || !dlm_hooks->create_lockspace ||
2319 !dlm_hooks->ls_lock || !dlm_hooks->ls_unlock_wait ||
2320 !dlm_hooks->release_lockspace || !dlm_hooks->ls_get_fd ||
2321 !dlm_hooks->dispatch)
2322 dlclose(dlm_hooks->dlm_handle);
2323 else
2324 is_dlm_hooks_ready = 1;
2325 }
2326
2327 void set_hooks(void)
2328 {
2329 set_dlm_hooks();
2330 set_cmap_hooks();
2331 }
2332
2333 int zero_disk_range(int fd, unsigned long long sector, size_t count)
2334 {
2335 int ret = 0;
2336 int fd_zero;
2337 void *addr = NULL;
2338 size_t written = 0;
2339 size_t len = count * 512;
2340 ssize_t n;
2341
2342 fd_zero = open("/dev/zero", O_RDONLY);
2343 if (fd_zero < 0) {
2344 pr_err("Cannot open /dev/zero\n");
2345 return -1;
2346 }
2347
2348 if (lseek64(fd, sector * 512, SEEK_SET) < 0) {
2349 ret = -errno;
2350 pr_err("Failed to seek offset for zeroing\n");
2351 goto out;
2352 }
2353
2354 addr = mmap(NULL, len, PROT_READ, MAP_PRIVATE, fd_zero, 0);
2355
2356 if (addr == MAP_FAILED) {
2357 ret = -errno;
2358 pr_err("Mapping /dev/zero failed\n");
2359 goto out;
2360 }
2361
2362 do {
2363 n = write(fd, addr + written, len - written);
2364 if (n < 0) {
2365 if (errno == EINTR)
2366 continue;
2367 ret = -errno;
2368 pr_err("Zeroing disk range failed\n");
2369 break;
2370 }
2371 written += n;
2372 } while (written != len);
2373
2374 munmap(addr, len);
2375
2376 out:
2377 close(fd_zero);
2378 return ret;
2379 }
2380
2381 /**
2382 * sleep_for() - Sleeps for specified time.
2383 * @sec: Seconds to sleep for.
2384 * @nsec: Nanoseconds to sleep for, has to be less than one second.
2385 * @wake_after_interrupt: If set, wake up if interrupted.
2386 *
2387 * Function immediately returns if error different than EINTR occurs.
2388 */
2389 void sleep_for(unsigned int sec, long nsec, bool wake_after_interrupt)
2390 {
2391 struct timespec delay = {.tv_sec = sec, .tv_nsec = nsec};
2392
2393 assert(nsec < MSEC_TO_NSEC(1000));
2394
2395 do {
2396 errno = 0;
2397 nanosleep(&delay, &delay);
2398 if (errno != 0 && errno != EINTR) {
2399 pr_err("Error sleeping for %us %ldns: %s\n", sec, nsec, strerror(errno));
2400 return;
2401 }
2402 } while (!wake_after_interrupt && errno == EINTR);
2403 }
2404
2405 /* is_directory() - Checks if directory provided by path is indeed a regular directory.
2406 * @path: directory path to be checked
2407 *
2408 * Doesn't accept symlinks.
2409 *
2410 * Return: true if is a directory, false if not
2411 */
2412 bool is_directory(const char *path)
2413 {
2414 struct stat st;
2415
2416 if (lstat(path, &st) != 0) {
2417 pr_err("%s: %s\n", strerror(errno), path);
2418 return false;
2419 }
2420
2421 if (!S_ISDIR(st.st_mode))
2422 return false;
2423
2424 return true;
2425 }
2426
2427 /*
2428 * is_file() - Checks if file provided by path is indeed a regular file.
2429 * @path: file path to be checked
2430 *
2431 * Doesn't accept symlinks.
2432 *
2433 * Return: true if is a file, false if not
2434 */
2435 bool is_file(const char *path)
2436 {
2437 struct stat st;
2438
2439 if (lstat(path, &st) != 0) {
2440 pr_err("%s: %s\n", strerror(errno), path);
2441 return false;
2442 }
2443
2444 if (!S_ISREG(st.st_mode))
2445 return false;
2446
2447 return true;
2448 }