]> git.ipfire.org Git - thirdparty/openssl.git/blob - crypto/bio/bss_dgram.c
Add BIO_CTRL_DGRAM_SET_PEEK_MODE
[thirdparty/openssl.git] / crypto / bio / bss_dgram.c
1 /* crypto/bio/bio_dgram.c */
2 /*
3 * DTLS implementation written by Nagendra Modadugu
4 * (nagendra@cs.stanford.edu) for the OpenSSL project 2005.
5 */
6 /* ====================================================================
7 * Copyright (c) 1999-2005 The OpenSSL Project. All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 *
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 *
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in
18 * the documentation and/or other materials provided with the
19 * distribution.
20 *
21 * 3. All advertising materials mentioning features or use of this
22 * software must display the following acknowledgment:
23 * "This product includes software developed by the OpenSSL Project
24 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
25 *
26 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
27 * endorse or promote products derived from this software without
28 * prior written permission. For written permission, please contact
29 * openssl-core@OpenSSL.org.
30 *
31 * 5. Products derived from this software may not be called "OpenSSL"
32 * nor may "OpenSSL" appear in their names without prior written
33 * permission of the OpenSSL Project.
34 *
35 * 6. Redistributions of any form whatsoever must retain the following
36 * acknowledgment:
37 * "This product includes software developed by the OpenSSL Project
38 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
39 *
40 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
41 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
43 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
44 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
45 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
46 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
47 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
49 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
50 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
51 * OF THE POSSIBILITY OF SUCH DAMAGE.
52 * ====================================================================
53 *
54 * This product includes cryptographic software written by Eric Young
55 * (eay@cryptsoft.com). This product includes software written by Tim
56 * Hudson (tjh@cryptsoft.com).
57 *
58 */
59
60 #include <stdio.h>
61 #include <errno.h>
62 #define USE_SOCKETS
63 #include "internal/cryptlib.h"
64
65 #include <openssl/bio.h>
66 #ifndef OPENSSL_NO_DGRAM
67
68 # if !(defined(_WIN32) || defined(OPENSSL_SYS_VMS))
69 # include <sys/time.h>
70 # endif
71 # if defined(OPENSSL_SYS_VMS)
72 # include <sys/timeb.h>
73 # endif
74
75 # ifndef OPENSSL_NO_SCTP
76 # include <netinet/sctp.h>
77 # include <fcntl.h>
78 # define OPENSSL_SCTP_DATA_CHUNK_TYPE 0x00
79 # define OPENSSL_SCTP_FORWARD_CUM_TSN_CHUNK_TYPE 0xc0
80 # endif
81
82 # if defined(OPENSSL_SYS_LINUX) && !defined(IP_MTU)
83 # define IP_MTU 14 /* linux is lame */
84 # endif
85
86 # if OPENSSL_USE_IPV6 && !defined(IPPROTO_IPV6)
87 # define IPPROTO_IPV6 41 /* windows is lame */
88 # endif
89
90 # if defined(__FreeBSD__) && defined(IN6_IS_ADDR_V4MAPPED)
91 /* Standard definition causes type-punning problems. */
92 # undef IN6_IS_ADDR_V4MAPPED
93 # define s6_addr32 __u6_addr.__u6_addr32
94 # define IN6_IS_ADDR_V4MAPPED(a) \
95 (((a)->s6_addr32[0] == 0) && \
96 ((a)->s6_addr32[1] == 0) && \
97 ((a)->s6_addr32[2] == htonl(0x0000ffff)))
98 # endif
99
100 # ifdef WATT32
101 # define sock_write SockWrite /* Watt-32 uses same names */
102 # define sock_read SockRead
103 # define sock_puts SockPuts
104 # endif
105
106 static int dgram_write(BIO *h, const char *buf, int num);
107 static int dgram_read(BIO *h, char *buf, int size);
108 static int dgram_puts(BIO *h, const char *str);
109 static long dgram_ctrl(BIO *h, int cmd, long arg1, void *arg2);
110 static int dgram_new(BIO *h);
111 static int dgram_free(BIO *data);
112 static int dgram_clear(BIO *bio);
113
114 # ifndef OPENSSL_NO_SCTP
115 static int dgram_sctp_write(BIO *h, const char *buf, int num);
116 static int dgram_sctp_read(BIO *h, char *buf, int size);
117 static int dgram_sctp_puts(BIO *h, const char *str);
118 static long dgram_sctp_ctrl(BIO *h, int cmd, long arg1, void *arg2);
119 static int dgram_sctp_new(BIO *h);
120 static int dgram_sctp_free(BIO *data);
121 # ifdef SCTP_AUTHENTICATION_EVENT
122 static void dgram_sctp_handle_auth_free_key_event(BIO *b, union sctp_notification
123 *snp);
124 # endif
125 # endif
126
127 static int BIO_dgram_should_retry(int s);
128
129 static void get_current_time(struct timeval *t);
130
131 static BIO_METHOD methods_dgramp = {
132 BIO_TYPE_DGRAM,
133 "datagram socket",
134 dgram_write,
135 dgram_read,
136 dgram_puts,
137 NULL, /* dgram_gets, */
138 dgram_ctrl,
139 dgram_new,
140 dgram_free,
141 NULL,
142 };
143
144 # ifndef OPENSSL_NO_SCTP
145 static BIO_METHOD methods_dgramp_sctp = {
146 BIO_TYPE_DGRAM_SCTP,
147 "datagram sctp socket",
148 dgram_sctp_write,
149 dgram_sctp_read,
150 dgram_sctp_puts,
151 NULL, /* dgram_gets, */
152 dgram_sctp_ctrl,
153 dgram_sctp_new,
154 dgram_sctp_free,
155 NULL,
156 };
157 # endif
158
159 typedef struct bio_dgram_data_st {
160 union {
161 struct sockaddr sa;
162 struct sockaddr_in sa_in;
163 # if OPENSSL_USE_IPV6
164 struct sockaddr_in6 sa_in6;
165 # endif
166 } peer;
167 unsigned int connected;
168 unsigned int _errno;
169 unsigned int mtu;
170 struct timeval next_timeout;
171 struct timeval socket_timeout;
172 unsigned int peekmode;
173 } bio_dgram_data;
174
175 # ifndef OPENSSL_NO_SCTP
176 typedef struct bio_dgram_sctp_save_message_st {
177 BIO *bio;
178 char *data;
179 int length;
180 } bio_dgram_sctp_save_message;
181
182 typedef struct bio_dgram_sctp_data_st {
183 union {
184 struct sockaddr sa;
185 struct sockaddr_in sa_in;
186 # if OPENSSL_USE_IPV6
187 struct sockaddr_in6 sa_in6;
188 # endif
189 } peer;
190 unsigned int connected;
191 unsigned int _errno;
192 unsigned int mtu;
193 struct bio_dgram_sctp_sndinfo sndinfo;
194 struct bio_dgram_sctp_rcvinfo rcvinfo;
195 struct bio_dgram_sctp_prinfo prinfo;
196 void (*handle_notifications) (BIO *bio, void *context, void *buf);
197 void *notification_context;
198 int in_handshake;
199 int ccs_rcvd;
200 int ccs_sent;
201 int save_shutdown;
202 int peer_auth_tested;
203 bio_dgram_sctp_save_message saved_message;
204 } bio_dgram_sctp_data;
205 # endif
206
207 BIO_METHOD *BIO_s_datagram(void)
208 {
209 return (&methods_dgramp);
210 }
211
212 BIO *BIO_new_dgram(int fd, int close_flag)
213 {
214 BIO *ret;
215
216 ret = BIO_new(BIO_s_datagram());
217 if (ret == NULL)
218 return (NULL);
219 BIO_set_fd(ret, fd, close_flag);
220 return (ret);
221 }
222
223 static int dgram_new(BIO *bi)
224 {
225 bio_dgram_data *data = OPENSSL_zalloc(sizeof(*data));
226
227 if (data == NULL)
228 return 0;
229 bi->ptr = data;
230 return (1);
231 }
232
233 static int dgram_free(BIO *a)
234 {
235 bio_dgram_data *data;
236
237 if (a == NULL)
238 return (0);
239 if (!dgram_clear(a))
240 return 0;
241
242 data = (bio_dgram_data *)a->ptr;
243 OPENSSL_free(data);
244
245 return (1);
246 }
247
248 static int dgram_clear(BIO *a)
249 {
250 if (a == NULL)
251 return (0);
252 if (a->shutdown) {
253 if (a->init) {
254 SHUTDOWN2(a->num);
255 }
256 a->init = 0;
257 a->flags = 0;
258 }
259 return (1);
260 }
261
262 static void dgram_adjust_rcv_timeout(BIO *b)
263 {
264 # if defined(SO_RCVTIMEO)
265 bio_dgram_data *data = (bio_dgram_data *)b->ptr;
266 union {
267 size_t s;
268 int i;
269 } sz = {
270 0
271 };
272
273 /* Is a timer active? */
274 if (data->next_timeout.tv_sec > 0 || data->next_timeout.tv_usec > 0) {
275 struct timeval timenow, timeleft;
276
277 /* Read current socket timeout */
278 # ifdef OPENSSL_SYS_WINDOWS
279 int timeout;
280
281 sz.i = sizeof(timeout);
282 if (getsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
283 (void *)&timeout, &sz.i) < 0) {
284 perror("getsockopt");
285 } else {
286 data->socket_timeout.tv_sec = timeout / 1000;
287 data->socket_timeout.tv_usec = (timeout % 1000) * 1000;
288 }
289 # else
290 sz.i = sizeof(data->socket_timeout);
291 if (getsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
292 &(data->socket_timeout), (void *)&sz) < 0) {
293 perror("getsockopt");
294 } else if (sizeof(sz.s) != sizeof(sz.i) && sz.i == 0)
295 OPENSSL_assert(sz.s <= sizeof(data->socket_timeout));
296 # endif
297
298 /* Get current time */
299 get_current_time(&timenow);
300
301 /* Calculate time left until timer expires */
302 memcpy(&timeleft, &(data->next_timeout), sizeof(struct timeval));
303 if (timeleft.tv_usec < timenow.tv_usec) {
304 timeleft.tv_usec = 1000000 - timenow.tv_usec + timeleft.tv_usec;
305 timeleft.tv_sec--;
306 } else {
307 timeleft.tv_usec -= timenow.tv_usec;
308 }
309 if (timeleft.tv_sec < timenow.tv_sec) {
310 timeleft.tv_sec = 0;
311 timeleft.tv_usec = 1;
312 } else {
313 timeleft.tv_sec -= timenow.tv_sec;
314 }
315
316 /*
317 * Adjust socket timeout if next handhake message timer will expire
318 * earlier.
319 */
320 if ((data->socket_timeout.tv_sec == 0
321 && data->socket_timeout.tv_usec == 0)
322 || (data->socket_timeout.tv_sec > timeleft.tv_sec)
323 || (data->socket_timeout.tv_sec == timeleft.tv_sec
324 && data->socket_timeout.tv_usec >= timeleft.tv_usec)) {
325 # ifdef OPENSSL_SYS_WINDOWS
326 timeout = timeleft.tv_sec * 1000 + timeleft.tv_usec / 1000;
327 if (setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
328 (void *)&timeout, sizeof(timeout)) < 0) {
329 perror("setsockopt");
330 }
331 # else
332 if (setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO, &timeleft,
333 sizeof(struct timeval)) < 0) {
334 perror("setsockopt");
335 }
336 # endif
337 }
338 }
339 # endif
340 }
341
342 static void dgram_reset_rcv_timeout(BIO *b)
343 {
344 # if defined(SO_RCVTIMEO)
345 bio_dgram_data *data = (bio_dgram_data *)b->ptr;
346
347 /* Is a timer active? */
348 if (data->next_timeout.tv_sec > 0 || data->next_timeout.tv_usec > 0) {
349 # ifdef OPENSSL_SYS_WINDOWS
350 int timeout = data->socket_timeout.tv_sec * 1000 +
351 data->socket_timeout.tv_usec / 1000;
352 if (setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
353 (void *)&timeout, sizeof(timeout)) < 0) {
354 perror("setsockopt");
355 }
356 # else
357 if (setsockopt
358 (b->num, SOL_SOCKET, SO_RCVTIMEO, &(data->socket_timeout),
359 sizeof(struct timeval)) < 0) {
360 perror("setsockopt");
361 }
362 # endif
363 }
364 # endif
365 }
366
367 static int dgram_read(BIO *b, char *out, int outl)
368 {
369 int ret = 0;
370 bio_dgram_data *data = (bio_dgram_data *)b->ptr;
371 int flags = 0;
372
373 struct {
374 /*
375 * See commentary in b_sock.c. <appro>
376 */
377 union {
378 size_t s;
379 int i;
380 } len;
381 union {
382 struct sockaddr sa;
383 struct sockaddr_in sa_in;
384 # if OPENSSL_USE_IPV6
385 struct sockaddr_in6 sa_in6;
386 # endif
387 } peer;
388 } sa;
389
390 sa.len.s = 0;
391 sa.len.i = sizeof(sa.peer);
392
393 if (out != NULL) {
394 clear_socket_error();
395 memset(&sa.peer, 0, sizeof(sa.peer));
396 dgram_adjust_rcv_timeout(b);
397 if (data->peekmode)
398 flags = MSG_PEEK;
399 ret = recvfrom(b->num, out, outl, flags, &sa.peer.sa, (void *)&sa.len);
400 if (sizeof(sa.len.i) != sizeof(sa.len.s) && sa.len.i == 0) {
401 OPENSSL_assert(sa.len.s <= sizeof(sa.peer));
402 sa.len.i = (int)sa.len.s;
403 }
404
405 if (!data->connected && ret >= 0)
406 BIO_ctrl(b, BIO_CTRL_DGRAM_SET_PEER, 0, &sa.peer);
407
408 BIO_clear_retry_flags(b);
409 if (ret < 0) {
410 if (BIO_dgram_should_retry(ret)) {
411 BIO_set_retry_read(b);
412 data->_errno = get_last_socket_error();
413 }
414 }
415
416 dgram_reset_rcv_timeout(b);
417 }
418 return (ret);
419 }
420
421 static int dgram_write(BIO *b, const char *in, int inl)
422 {
423 int ret;
424 bio_dgram_data *data = (bio_dgram_data *)b->ptr;
425 clear_socket_error();
426
427 if (data->connected)
428 ret = writesocket(b->num, in, inl);
429 else {
430 int peerlen = sizeof(data->peer);
431
432 if (data->peer.sa.sa_family == AF_INET)
433 peerlen = sizeof(data->peer.sa_in);
434 # if OPENSSL_USE_IPV6
435 else if (data->peer.sa.sa_family == AF_INET6)
436 peerlen = sizeof(data->peer.sa_in6);
437 # endif
438 # if defined(NETWARE_CLIB) && defined(NETWARE_BSDSOCK)
439 ret = sendto(b->num, (char *)in, inl, 0, &data->peer.sa, peerlen);
440 # else
441 ret = sendto(b->num, in, inl, 0, &data->peer.sa, peerlen);
442 # endif
443 }
444
445 BIO_clear_retry_flags(b);
446 if (ret <= 0) {
447 if (BIO_dgram_should_retry(ret)) {
448 BIO_set_retry_write(b);
449 data->_errno = get_last_socket_error();
450 }
451 }
452 return (ret);
453 }
454
455 static long dgram_get_mtu_overhead(bio_dgram_data *data)
456 {
457 long ret;
458
459 switch (data->peer.sa.sa_family) {
460 case AF_INET:
461 /*
462 * Assume this is UDP - 20 bytes for IP, 8 bytes for UDP
463 */
464 ret = 28;
465 break;
466 # if OPENSSL_USE_IPV6
467 case AF_INET6:
468 # ifdef IN6_IS_ADDR_V4MAPPED
469 if (IN6_IS_ADDR_V4MAPPED(&data->peer.sa_in6.sin6_addr))
470 /*
471 * Assume this is UDP - 20 bytes for IP, 8 bytes for UDP
472 */
473 ret = 28;
474 else
475 # endif
476 /*
477 * Assume this is UDP - 40 bytes for IP, 8 bytes for UDP
478 */
479 ret = 48;
480 break;
481 # endif
482 default:
483 /* We don't know. Go with the historical default */
484 ret = 28;
485 break;
486 }
487 return ret;
488 }
489
490 static long dgram_ctrl(BIO *b, int cmd, long num, void *ptr)
491 {
492 long ret = 1;
493 int *ip;
494 struct sockaddr *to = NULL;
495 bio_dgram_data *data = NULL;
496 int sockopt_val = 0;
497 # if defined(OPENSSL_SYS_LINUX) && (defined(IP_MTU_DISCOVER) || defined(IP_MTU))
498 socklen_t sockopt_len; /* assume that system supporting IP_MTU is
499 * modern enough to define socklen_t */
500 socklen_t addr_len;
501 union {
502 struct sockaddr sa;
503 struct sockaddr_in s4;
504 # if OPENSSL_USE_IPV6
505 struct sockaddr_in6 s6;
506 # endif
507 } addr;
508 # endif
509
510 data = (bio_dgram_data *)b->ptr;
511
512 switch (cmd) {
513 case BIO_CTRL_RESET:
514 num = 0;
515 case BIO_C_FILE_SEEK:
516 ret = 0;
517 break;
518 case BIO_C_FILE_TELL:
519 case BIO_CTRL_INFO:
520 ret = 0;
521 break;
522 case BIO_C_SET_FD:
523 dgram_clear(b);
524 b->num = *((int *)ptr);
525 b->shutdown = (int)num;
526 b->init = 1;
527 break;
528 case BIO_C_GET_FD:
529 if (b->init) {
530 ip = (int *)ptr;
531 if (ip != NULL)
532 *ip = b->num;
533 ret = b->num;
534 } else
535 ret = -1;
536 break;
537 case BIO_CTRL_GET_CLOSE:
538 ret = b->shutdown;
539 break;
540 case BIO_CTRL_SET_CLOSE:
541 b->shutdown = (int)num;
542 break;
543 case BIO_CTRL_PENDING:
544 case BIO_CTRL_WPENDING:
545 ret = 0;
546 break;
547 case BIO_CTRL_DUP:
548 case BIO_CTRL_FLUSH:
549 ret = 1;
550 break;
551 case BIO_CTRL_DGRAM_CONNECT:
552 to = (struct sockaddr *)ptr;
553 switch (to->sa_family) {
554 case AF_INET:
555 memcpy(&data->peer, to, sizeof(data->peer.sa_in));
556 break;
557 # if OPENSSL_USE_IPV6
558 case AF_INET6:
559 memcpy(&data->peer, to, sizeof(data->peer.sa_in6));
560 break;
561 # endif
562 default:
563 memcpy(&data->peer, to, sizeof(data->peer.sa));
564 break;
565 }
566 break;
567 /* (Linux)kernel sets DF bit on outgoing IP packets */
568 case BIO_CTRL_DGRAM_MTU_DISCOVER:
569 # if defined(OPENSSL_SYS_LINUX) && defined(IP_MTU_DISCOVER) && defined(IP_PMTUDISC_DO)
570 addr_len = (socklen_t) sizeof(addr);
571 memset(&addr, 0, sizeof(addr));
572 if (getsockname(b->num, &addr.sa, &addr_len) < 0) {
573 ret = 0;
574 break;
575 }
576 switch (addr.sa.sa_family) {
577 case AF_INET:
578 sockopt_val = IP_PMTUDISC_DO;
579 if ((ret = setsockopt(b->num, IPPROTO_IP, IP_MTU_DISCOVER,
580 &sockopt_val, sizeof(sockopt_val))) < 0)
581 perror("setsockopt");
582 break;
583 # if OPENSSL_USE_IPV6 && defined(IPV6_MTU_DISCOVER) && defined(IPV6_PMTUDISC_DO)
584 case AF_INET6:
585 sockopt_val = IPV6_PMTUDISC_DO;
586 if ((ret = setsockopt(b->num, IPPROTO_IPV6, IPV6_MTU_DISCOVER,
587 &sockopt_val, sizeof(sockopt_val))) < 0)
588 perror("setsockopt");
589 break;
590 # endif
591 default:
592 ret = -1;
593 break;
594 }
595 # else
596 ret = -1;
597 # endif
598 break;
599 case BIO_CTRL_DGRAM_QUERY_MTU:
600 # if defined(OPENSSL_SYS_LINUX) && defined(IP_MTU)
601 addr_len = (socklen_t) sizeof(addr);
602 memset(&addr, 0, sizeof(addr));
603 if (getsockname(b->num, &addr.sa, &addr_len) < 0) {
604 ret = 0;
605 break;
606 }
607 sockopt_len = sizeof(sockopt_val);
608 switch (addr.sa.sa_family) {
609 case AF_INET:
610 if ((ret =
611 getsockopt(b->num, IPPROTO_IP, IP_MTU, (void *)&sockopt_val,
612 &sockopt_len)) < 0 || sockopt_val < 0) {
613 ret = 0;
614 } else {
615 /*
616 * we assume that the transport protocol is UDP and no IP
617 * options are used.
618 */
619 data->mtu = sockopt_val - 8 - 20;
620 ret = data->mtu;
621 }
622 break;
623 # if OPENSSL_USE_IPV6 && defined(IPV6_MTU)
624 case AF_INET6:
625 if ((ret =
626 getsockopt(b->num, IPPROTO_IPV6, IPV6_MTU,
627 (void *)&sockopt_val, &sockopt_len)) < 0
628 || sockopt_val < 0) {
629 ret = 0;
630 } else {
631 /*
632 * we assume that the transport protocol is UDP and no IPV6
633 * options are used.
634 */
635 data->mtu = sockopt_val - 8 - 40;
636 ret = data->mtu;
637 }
638 break;
639 # endif
640 default:
641 ret = 0;
642 break;
643 }
644 # else
645 ret = 0;
646 # endif
647 break;
648 case BIO_CTRL_DGRAM_GET_FALLBACK_MTU:
649 ret = -dgram_get_mtu_overhead(data);
650 switch (data->peer.sa.sa_family) {
651 case AF_INET:
652 ret += 576;
653 break;
654 # if OPENSSL_USE_IPV6
655 case AF_INET6:
656 # ifdef IN6_IS_ADDR_V4MAPPED
657 if (IN6_IS_ADDR_V4MAPPED(&data->peer.sa_in6.sin6_addr))
658 ret += 576;
659 else
660 # endif
661 ret += 1280;
662 break;
663 # endif
664 default:
665 ret += 576;
666 break;
667 }
668 break;
669 case BIO_CTRL_DGRAM_GET_MTU:
670 return data->mtu;
671 case BIO_CTRL_DGRAM_SET_MTU:
672 data->mtu = num;
673 ret = num;
674 break;
675 case BIO_CTRL_DGRAM_SET_CONNECTED:
676 to = (struct sockaddr *)ptr;
677
678 if (to != NULL) {
679 data->connected = 1;
680 switch (to->sa_family) {
681 case AF_INET:
682 memcpy(&data->peer, to, sizeof(data->peer.sa_in));
683 break;
684 # if OPENSSL_USE_IPV6
685 case AF_INET6:
686 memcpy(&data->peer, to, sizeof(data->peer.sa_in6));
687 break;
688 # endif
689 default:
690 memcpy(&data->peer, to, sizeof(data->peer.sa));
691 break;
692 }
693 } else {
694 data->connected = 0;
695 memset(&data->peer, 0, sizeof(data->peer));
696 }
697 break;
698 case BIO_CTRL_DGRAM_GET_PEER:
699 switch (data->peer.sa.sa_family) {
700 case AF_INET:
701 ret = sizeof(data->peer.sa_in);
702 break;
703 # if OPENSSL_USE_IPV6
704 case AF_INET6:
705 ret = sizeof(data->peer.sa_in6);
706 break;
707 # endif
708 default:
709 ret = sizeof(data->peer.sa);
710 break;
711 }
712 if (num == 0 || num > ret)
713 num = ret;
714 memcpy(ptr, &data->peer, (ret = num));
715 break;
716 case BIO_CTRL_DGRAM_SET_PEER:
717 to = (struct sockaddr *)ptr;
718 switch (to->sa_family) {
719 case AF_INET:
720 memcpy(&data->peer, to, sizeof(data->peer.sa_in));
721 break;
722 # if OPENSSL_USE_IPV6
723 case AF_INET6:
724 memcpy(&data->peer, to, sizeof(data->peer.sa_in6));
725 break;
726 # endif
727 default:
728 memcpy(&data->peer, to, sizeof(data->peer.sa));
729 break;
730 }
731 break;
732 case BIO_CTRL_DGRAM_SET_NEXT_TIMEOUT:
733 memcpy(&(data->next_timeout), ptr, sizeof(struct timeval));
734 break;
735 # if defined(SO_RCVTIMEO)
736 case BIO_CTRL_DGRAM_SET_RECV_TIMEOUT:
737 # ifdef OPENSSL_SYS_WINDOWS
738 {
739 struct timeval *tv = (struct timeval *)ptr;
740 int timeout = tv->tv_sec * 1000 + tv->tv_usec / 1000;
741 if (setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
742 (void *)&timeout, sizeof(timeout)) < 0) {
743 perror("setsockopt");
744 ret = -1;
745 }
746 }
747 # else
748 if (setsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO, ptr,
749 sizeof(struct timeval)) < 0) {
750 perror("setsockopt");
751 ret = -1;
752 }
753 # endif
754 break;
755 case BIO_CTRL_DGRAM_GET_RECV_TIMEOUT:
756 {
757 union {
758 size_t s;
759 int i;
760 } sz = {
761 0
762 };
763 # ifdef OPENSSL_SYS_WINDOWS
764 int timeout;
765 struct timeval *tv = (struct timeval *)ptr;
766
767 sz.i = sizeof(timeout);
768 if (getsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
769 (void *)&timeout, &sz.i) < 0) {
770 perror("getsockopt");
771 ret = -1;
772 } else {
773 tv->tv_sec = timeout / 1000;
774 tv->tv_usec = (timeout % 1000) * 1000;
775 ret = sizeof(*tv);
776 }
777 # else
778 sz.i = sizeof(struct timeval);
779 if (getsockopt(b->num, SOL_SOCKET, SO_RCVTIMEO,
780 ptr, (void *)&sz) < 0) {
781 perror("getsockopt");
782 ret = -1;
783 } else if (sizeof(sz.s) != sizeof(sz.i) && sz.i == 0) {
784 OPENSSL_assert(sz.s <= sizeof(struct timeval));
785 ret = (int)sz.s;
786 } else
787 ret = sz.i;
788 # endif
789 }
790 break;
791 # endif
792 # if defined(SO_SNDTIMEO)
793 case BIO_CTRL_DGRAM_SET_SEND_TIMEOUT:
794 # ifdef OPENSSL_SYS_WINDOWS
795 {
796 struct timeval *tv = (struct timeval *)ptr;
797 int timeout = tv->tv_sec * 1000 + tv->tv_usec / 1000;
798 if (setsockopt(b->num, SOL_SOCKET, SO_SNDTIMEO,
799 (void *)&timeout, sizeof(timeout)) < 0) {
800 perror("setsockopt");
801 ret = -1;
802 }
803 }
804 # else
805 if (setsockopt(b->num, SOL_SOCKET, SO_SNDTIMEO, ptr,
806 sizeof(struct timeval)) < 0) {
807 perror("setsockopt");
808 ret = -1;
809 }
810 # endif
811 break;
812 case BIO_CTRL_DGRAM_GET_SEND_TIMEOUT:
813 {
814 union {
815 size_t s;
816 int i;
817 } sz = {
818 0
819 };
820 # ifdef OPENSSL_SYS_WINDOWS
821 int timeout;
822 struct timeval *tv = (struct timeval *)ptr;
823
824 sz.i = sizeof(timeout);
825 if (getsockopt(b->num, SOL_SOCKET, SO_SNDTIMEO,
826 (void *)&timeout, &sz.i) < 0) {
827 perror("getsockopt");
828 ret = -1;
829 } else {
830 tv->tv_sec = timeout / 1000;
831 tv->tv_usec = (timeout % 1000) * 1000;
832 ret = sizeof(*tv);
833 }
834 # else
835 sz.i = sizeof(struct timeval);
836 if (getsockopt(b->num, SOL_SOCKET, SO_SNDTIMEO,
837 ptr, (void *)&sz) < 0) {
838 perror("getsockopt");
839 ret = -1;
840 } else if (sizeof(sz.s) != sizeof(sz.i) && sz.i == 0) {
841 OPENSSL_assert(sz.s <= sizeof(struct timeval));
842 ret = (int)sz.s;
843 } else
844 ret = sz.i;
845 # endif
846 }
847 break;
848 # endif
849 case BIO_CTRL_DGRAM_GET_SEND_TIMER_EXP:
850 /* fall-through */
851 case BIO_CTRL_DGRAM_GET_RECV_TIMER_EXP:
852 # ifdef OPENSSL_SYS_WINDOWS
853 if (data->_errno == WSAETIMEDOUT)
854 # else
855 if (data->_errno == EAGAIN)
856 # endif
857 {
858 ret = 1;
859 data->_errno = 0;
860 } else
861 ret = 0;
862 break;
863 # ifdef EMSGSIZE
864 case BIO_CTRL_DGRAM_MTU_EXCEEDED:
865 if (data->_errno == EMSGSIZE) {
866 ret = 1;
867 data->_errno = 0;
868 } else
869 ret = 0;
870 break;
871 # endif
872 case BIO_CTRL_DGRAM_SET_DONT_FRAG:
873 sockopt_val = num ? 1 : 0;
874
875 switch (data->peer.sa.sa_family) {
876 case AF_INET:
877 # if defined(IP_DONTFRAG)
878 if ((ret = setsockopt(b->num, IPPROTO_IP, IP_DONTFRAG,
879 &sockopt_val, sizeof(sockopt_val))) < 0) {
880 perror("setsockopt");
881 ret = -1;
882 }
883 # elif defined(OPENSSL_SYS_LINUX) && defined(IP_MTU_DISCOVER) && defined (IP_PMTUDISC_PROBE)
884 if ((sockopt_val = num ? IP_PMTUDISC_PROBE : IP_PMTUDISC_DONT),
885 (ret = setsockopt(b->num, IPPROTO_IP, IP_MTU_DISCOVER,
886 &sockopt_val, sizeof(sockopt_val))) < 0) {
887 perror("setsockopt");
888 ret = -1;
889 }
890 # elif defined(OPENSSL_SYS_WINDOWS) && defined(IP_DONTFRAGMENT)
891 if ((ret = setsockopt(b->num, IPPROTO_IP, IP_DONTFRAGMENT,
892 (const char *)&sockopt_val,
893 sizeof(sockopt_val))) < 0) {
894 perror("setsockopt");
895 ret = -1;
896 }
897 # else
898 ret = -1;
899 # endif
900 break;
901 # if OPENSSL_USE_IPV6
902 case AF_INET6:
903 # if defined(IPV6_DONTFRAG)
904 if ((ret = setsockopt(b->num, IPPROTO_IPV6, IPV6_DONTFRAG,
905 (const void *)&sockopt_val,
906 sizeof(sockopt_val))) < 0) {
907 perror("setsockopt");
908 ret = -1;
909 }
910 # elif defined(OPENSSL_SYS_LINUX) && defined(IPV6_MTUDISCOVER)
911 if ((sockopt_val = num ? IP_PMTUDISC_PROBE : IP_PMTUDISC_DONT),
912 (ret = setsockopt(b->num, IPPROTO_IPV6, IPV6_MTU_DISCOVER,
913 &sockopt_val, sizeof(sockopt_val))) < 0) {
914 perror("setsockopt");
915 ret = -1;
916 }
917 # else
918 ret = -1;
919 # endif
920 break;
921 # endif
922 default:
923 ret = -1;
924 break;
925 }
926 break;
927 case BIO_CTRL_DGRAM_GET_MTU_OVERHEAD:
928 ret = dgram_get_mtu_overhead(data);
929 break;
930 case BIO_CTRL_DGRAM_SET_PEEK_MODE:
931 data->peekmode = (unsigned int)num;
932 break;
933 default:
934 ret = 0;
935 break;
936 }
937 return (ret);
938 }
939
940 static int dgram_puts(BIO *bp, const char *str)
941 {
942 int n, ret;
943
944 n = strlen(str);
945 ret = dgram_write(bp, str, n);
946 return (ret);
947 }
948
949 # ifndef OPENSSL_NO_SCTP
950 BIO_METHOD *BIO_s_datagram_sctp(void)
951 {
952 return (&methods_dgramp_sctp);
953 }
954
955 BIO *BIO_new_dgram_sctp(int fd, int close_flag)
956 {
957 BIO *bio;
958 int ret, optval = 20000;
959 int auth_data = 0, auth_forward = 0;
960 unsigned char *p;
961 struct sctp_authchunk auth;
962 struct sctp_authchunks *authchunks;
963 socklen_t sockopt_len;
964 # ifdef SCTP_AUTHENTICATION_EVENT
965 # ifdef SCTP_EVENT
966 struct sctp_event event;
967 # else
968 struct sctp_event_subscribe event;
969 # endif
970 # endif
971
972 bio = BIO_new(BIO_s_datagram_sctp());
973 if (bio == NULL)
974 return (NULL);
975 BIO_set_fd(bio, fd, close_flag);
976
977 /* Activate SCTP-AUTH for DATA and FORWARD-TSN chunks */
978 auth.sauth_chunk = OPENSSL_SCTP_DATA_CHUNK_TYPE;
979 ret =
980 setsockopt(fd, IPPROTO_SCTP, SCTP_AUTH_CHUNK, &auth,
981 sizeof(struct sctp_authchunk));
982 if (ret < 0) {
983 BIO_vfree(bio);
984 return (NULL);
985 }
986 auth.sauth_chunk = OPENSSL_SCTP_FORWARD_CUM_TSN_CHUNK_TYPE;
987 ret =
988 setsockopt(fd, IPPROTO_SCTP, SCTP_AUTH_CHUNK, &auth,
989 sizeof(struct sctp_authchunk));
990 if (ret < 0) {
991 BIO_vfree(bio);
992 return (NULL);
993 }
994
995 /*
996 * Test if activation was successful. When using accept(), SCTP-AUTH has
997 * to be activated for the listening socket already, otherwise the
998 * connected socket won't use it.
999 */
1000 sockopt_len = (socklen_t) (sizeof(sctp_assoc_t) + 256 * sizeof(uint8_t));
1001 authchunks = OPENSSL_zalloc(sockopt_len);
1002 if (!authchunks) {
1003 BIO_vfree(bio);
1004 return (NULL);
1005 }
1006 ret = getsockopt(fd, IPPROTO_SCTP, SCTP_LOCAL_AUTH_CHUNKS, authchunks,
1007 &sockopt_len);
1008 if (ret < 0) {
1009 OPENSSL_free(authchunks);
1010 BIO_vfree(bio);
1011 return (NULL);
1012 }
1013
1014 for (p = (unsigned char *)authchunks->gauth_chunks;
1015 p < (unsigned char *)authchunks + sockopt_len;
1016 p += sizeof(uint8_t)) {
1017 if (*p == OPENSSL_SCTP_DATA_CHUNK_TYPE)
1018 auth_data = 1;
1019 if (*p == OPENSSL_SCTP_FORWARD_CUM_TSN_CHUNK_TYPE)
1020 auth_forward = 1;
1021 }
1022
1023 OPENSSL_free(authchunks);
1024
1025 OPENSSL_assert(auth_data);
1026 OPENSSL_assert(auth_forward);
1027
1028 # ifdef SCTP_AUTHENTICATION_EVENT
1029 # ifdef SCTP_EVENT
1030 memset(&event, 0, sizeof(event));
1031 event.se_assoc_id = 0;
1032 event.se_type = SCTP_AUTHENTICATION_EVENT;
1033 event.se_on = 1;
1034 ret =
1035 setsockopt(fd, IPPROTO_SCTP, SCTP_EVENT, &event,
1036 sizeof(struct sctp_event));
1037 if (ret < 0) {
1038 BIO_vfree(bio);
1039 return (NULL);
1040 }
1041 # else
1042 sockopt_len = (socklen_t) sizeof(struct sctp_event_subscribe);
1043 ret = getsockopt(fd, IPPROTO_SCTP, SCTP_EVENTS, &event, &sockopt_len);
1044 if (ret < 0) {
1045 BIO_vfree(bio);
1046 return (NULL);
1047 }
1048
1049 event.sctp_authentication_event = 1;
1050
1051 ret =
1052 setsockopt(fd, IPPROTO_SCTP, SCTP_EVENTS, &event,
1053 sizeof(struct sctp_event_subscribe));
1054 if (ret < 0) {
1055 BIO_vfree(bio);
1056 return (NULL);
1057 }
1058 # endif
1059 # endif
1060
1061 /*
1062 * Disable partial delivery by setting the min size larger than the max
1063 * record size of 2^14 + 2048 + 13
1064 */
1065 ret =
1066 setsockopt(fd, IPPROTO_SCTP, SCTP_PARTIAL_DELIVERY_POINT, &optval,
1067 sizeof(optval));
1068 if (ret < 0) {
1069 BIO_vfree(bio);
1070 return (NULL);
1071 }
1072
1073 return (bio);
1074 }
1075
1076 int BIO_dgram_is_sctp(BIO *bio)
1077 {
1078 return (BIO_method_type(bio) == BIO_TYPE_DGRAM_SCTP);
1079 }
1080
1081 static int dgram_sctp_new(BIO *bi)
1082 {
1083 bio_dgram_sctp_data *data = NULL;
1084
1085 bi->init = 0;
1086 bi->num = 0;
1087 data = OPENSSL_zalloc(sizeof(*data));
1088 if (data == NULL)
1089 return 0;
1090 # ifdef SCTP_PR_SCTP_NONE
1091 data->prinfo.pr_policy = SCTP_PR_SCTP_NONE;
1092 # endif
1093 bi->ptr = data;
1094
1095 bi->flags = 0;
1096 return (1);
1097 }
1098
1099 static int dgram_sctp_free(BIO *a)
1100 {
1101 bio_dgram_sctp_data *data;
1102
1103 if (a == NULL)
1104 return (0);
1105 if (!dgram_clear(a))
1106 return 0;
1107
1108 data = (bio_dgram_sctp_data *) a->ptr;
1109 if (data != NULL) {
1110 OPENSSL_free(data->saved_message.data);
1111 OPENSSL_free(data);
1112 }
1113
1114 return (1);
1115 }
1116
1117 # ifdef SCTP_AUTHENTICATION_EVENT
1118 void dgram_sctp_handle_auth_free_key_event(BIO *b,
1119 union sctp_notification *snp)
1120 {
1121 int ret;
1122 struct sctp_authkey_event *authkeyevent = &snp->sn_auth_event;
1123
1124 if (authkeyevent->auth_indication == SCTP_AUTH_FREE_KEY) {
1125 struct sctp_authkeyid authkeyid;
1126
1127 /* delete key */
1128 authkeyid.scact_keynumber = authkeyevent->auth_keynumber;
1129 ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_DELETE_KEY,
1130 &authkeyid, sizeof(struct sctp_authkeyid));
1131 }
1132 }
1133 # endif
1134
1135 static int dgram_sctp_read(BIO *b, char *out, int outl)
1136 {
1137 int ret = 0, n = 0, i, optval;
1138 socklen_t optlen;
1139 bio_dgram_sctp_data *data = (bio_dgram_sctp_data *) b->ptr;
1140 union sctp_notification *snp;
1141 struct msghdr msg;
1142 struct iovec iov;
1143 struct cmsghdr *cmsg;
1144 char cmsgbuf[512];
1145
1146 if (out != NULL) {
1147 clear_socket_error();
1148
1149 do {
1150 memset(&data->rcvinfo, 0, sizeof(data->rcvinfo));
1151 iov.iov_base = out;
1152 iov.iov_len = outl;
1153 msg.msg_name = NULL;
1154 msg.msg_namelen = 0;
1155 msg.msg_iov = &iov;
1156 msg.msg_iovlen = 1;
1157 msg.msg_control = cmsgbuf;
1158 msg.msg_controllen = 512;
1159 msg.msg_flags = 0;
1160 n = recvmsg(b->num, &msg, 0);
1161
1162 if (n <= 0) {
1163 if (n < 0)
1164 ret = n;
1165 break;
1166 }
1167
1168 if (msg.msg_controllen > 0) {
1169 for (cmsg = CMSG_FIRSTHDR(&msg); cmsg;
1170 cmsg = CMSG_NXTHDR(&msg, cmsg)) {
1171 if (cmsg->cmsg_level != IPPROTO_SCTP)
1172 continue;
1173 # ifdef SCTP_RCVINFO
1174 if (cmsg->cmsg_type == SCTP_RCVINFO) {
1175 struct sctp_rcvinfo *rcvinfo;
1176
1177 rcvinfo = (struct sctp_rcvinfo *)CMSG_DATA(cmsg);
1178 data->rcvinfo.rcv_sid = rcvinfo->rcv_sid;
1179 data->rcvinfo.rcv_ssn = rcvinfo->rcv_ssn;
1180 data->rcvinfo.rcv_flags = rcvinfo->rcv_flags;
1181 data->rcvinfo.rcv_ppid = rcvinfo->rcv_ppid;
1182 data->rcvinfo.rcv_tsn = rcvinfo->rcv_tsn;
1183 data->rcvinfo.rcv_cumtsn = rcvinfo->rcv_cumtsn;
1184 data->rcvinfo.rcv_context = rcvinfo->rcv_context;
1185 }
1186 # endif
1187 # ifdef SCTP_SNDRCV
1188 if (cmsg->cmsg_type == SCTP_SNDRCV) {
1189 struct sctp_sndrcvinfo *sndrcvinfo;
1190
1191 sndrcvinfo =
1192 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
1193 data->rcvinfo.rcv_sid = sndrcvinfo->sinfo_stream;
1194 data->rcvinfo.rcv_ssn = sndrcvinfo->sinfo_ssn;
1195 data->rcvinfo.rcv_flags = sndrcvinfo->sinfo_flags;
1196 data->rcvinfo.rcv_ppid = sndrcvinfo->sinfo_ppid;
1197 data->rcvinfo.rcv_tsn = sndrcvinfo->sinfo_tsn;
1198 data->rcvinfo.rcv_cumtsn = sndrcvinfo->sinfo_cumtsn;
1199 data->rcvinfo.rcv_context = sndrcvinfo->sinfo_context;
1200 }
1201 # endif
1202 }
1203 }
1204
1205 if (msg.msg_flags & MSG_NOTIFICATION) {
1206 snp = (union sctp_notification *)out;
1207 if (snp->sn_header.sn_type == SCTP_SENDER_DRY_EVENT) {
1208 # ifdef SCTP_EVENT
1209 struct sctp_event event;
1210 # else
1211 struct sctp_event_subscribe event;
1212 socklen_t eventsize;
1213 # endif
1214 /*
1215 * If a message has been delayed until the socket is dry,
1216 * it can be sent now.
1217 */
1218 if (data->saved_message.length > 0) {
1219 i = dgram_sctp_write(data->saved_message.bio,
1220 data->saved_message.data,
1221 data->saved_message.length);
1222 if (i < 0) {
1223 ret = i;
1224 break;
1225 }
1226 OPENSSL_free(data->saved_message.data);
1227 data->saved_message.data = NULL;
1228 data->saved_message.length = 0;
1229 }
1230
1231 /* disable sender dry event */
1232 # ifdef SCTP_EVENT
1233 memset(&event, 0, sizeof(event));
1234 event.se_assoc_id = 0;
1235 event.se_type = SCTP_SENDER_DRY_EVENT;
1236 event.se_on = 0;
1237 i = setsockopt(b->num, IPPROTO_SCTP, SCTP_EVENT, &event,
1238 sizeof(struct sctp_event));
1239 if (i < 0) {
1240 ret = i;
1241 break;
1242 }
1243 # else
1244 eventsize = sizeof(struct sctp_event_subscribe);
1245 i = getsockopt(b->num, IPPROTO_SCTP, SCTP_EVENTS, &event,
1246 &eventsize);
1247 if (i < 0) {
1248 ret = i;
1249 break;
1250 }
1251
1252 event.sctp_sender_dry_event = 0;
1253
1254 i = setsockopt(b->num, IPPROTO_SCTP, SCTP_EVENTS, &event,
1255 sizeof(struct sctp_event_subscribe));
1256 if (i < 0) {
1257 ret = i;
1258 break;
1259 }
1260 # endif
1261 }
1262 # ifdef SCTP_AUTHENTICATION_EVENT
1263 if (snp->sn_header.sn_type == SCTP_AUTHENTICATION_EVENT)
1264 dgram_sctp_handle_auth_free_key_event(b, snp);
1265 # endif
1266
1267 if (data->handle_notifications != NULL)
1268 data->handle_notifications(b, data->notification_context,
1269 (void *)out);
1270
1271 memset(out, 0, outl);
1272 } else
1273 ret += n;
1274 }
1275 while ((msg.msg_flags & MSG_NOTIFICATION) && (msg.msg_flags & MSG_EOR)
1276 && (ret < outl));
1277
1278 if (ret > 0 && !(msg.msg_flags & MSG_EOR)) {
1279 /* Partial message read, this should never happen! */
1280
1281 /*
1282 * The buffer was too small, this means the peer sent a message
1283 * that was larger than allowed.
1284 */
1285 if (ret == outl)
1286 return -1;
1287
1288 /*
1289 * Test if socket buffer can handle max record size (2^14 + 2048
1290 * + 13)
1291 */
1292 optlen = (socklen_t) sizeof(int);
1293 ret = getsockopt(b->num, SOL_SOCKET, SO_RCVBUF, &optval, &optlen);
1294 if (ret >= 0)
1295 OPENSSL_assert(optval >= 18445);
1296
1297 /*
1298 * Test if SCTP doesn't partially deliver below max record size
1299 * (2^14 + 2048 + 13)
1300 */
1301 optlen = (socklen_t) sizeof(int);
1302 ret =
1303 getsockopt(b->num, IPPROTO_SCTP, SCTP_PARTIAL_DELIVERY_POINT,
1304 &optval, &optlen);
1305 if (ret >= 0)
1306 OPENSSL_assert(optval >= 18445);
1307
1308 /*
1309 * Partially delivered notification??? Probably a bug....
1310 */
1311 OPENSSL_assert(!(msg.msg_flags & MSG_NOTIFICATION));
1312
1313 /*
1314 * Everything seems ok till now, so it's most likely a message
1315 * dropped by PR-SCTP.
1316 */
1317 memset(out, 0, outl);
1318 BIO_set_retry_read(b);
1319 return -1;
1320 }
1321
1322 BIO_clear_retry_flags(b);
1323 if (ret < 0) {
1324 if (BIO_dgram_should_retry(ret)) {
1325 BIO_set_retry_read(b);
1326 data->_errno = get_last_socket_error();
1327 }
1328 }
1329
1330 /* Test if peer uses SCTP-AUTH before continuing */
1331 if (!data->peer_auth_tested) {
1332 int ii, auth_data = 0, auth_forward = 0;
1333 unsigned char *p;
1334 struct sctp_authchunks *authchunks;
1335
1336 optlen =
1337 (socklen_t) (sizeof(sctp_assoc_t) + 256 * sizeof(uint8_t));
1338 authchunks = OPENSSL_malloc(optlen);
1339 if (!authchunks) {
1340 BIOerr(BIO_F_DGRAM_SCTP_READ, ERR_R_MALLOC_FAILURE);
1341 return -1;
1342 }
1343 memset(authchunks, 0, optlen);
1344 ii = getsockopt(b->num, IPPROTO_SCTP, SCTP_PEER_AUTH_CHUNKS,
1345 authchunks, &optlen);
1346
1347 if (ii >= 0)
1348 for (p = (unsigned char *)authchunks->gauth_chunks;
1349 p < (unsigned char *)authchunks + optlen;
1350 p += sizeof(uint8_t)) {
1351 if (*p == OPENSSL_SCTP_DATA_CHUNK_TYPE)
1352 auth_data = 1;
1353 if (*p == OPENSSL_SCTP_FORWARD_CUM_TSN_CHUNK_TYPE)
1354 auth_forward = 1;
1355 }
1356
1357 OPENSSL_free(authchunks);
1358
1359 if (!auth_data || !auth_forward) {
1360 BIOerr(BIO_F_DGRAM_SCTP_READ, BIO_R_CONNECT_ERROR);
1361 return -1;
1362 }
1363
1364 data->peer_auth_tested = 1;
1365 }
1366 }
1367 return (ret);
1368 }
1369
1370 /*
1371 * dgram_sctp_write - send message on SCTP socket
1372 * @b: BIO to write to
1373 * @in: data to send
1374 * @inl: amount of bytes in @in to send
1375 *
1376 * Returns -1 on error or the sent amount of bytes on success
1377 */
1378 static int dgram_sctp_write(BIO *b, const char *in, int inl)
1379 {
1380 int ret;
1381 bio_dgram_sctp_data *data = (bio_dgram_sctp_data *) b->ptr;
1382 struct bio_dgram_sctp_sndinfo *sinfo = &(data->sndinfo);
1383 struct bio_dgram_sctp_prinfo *pinfo = &(data->prinfo);
1384 struct bio_dgram_sctp_sndinfo handshake_sinfo;
1385 struct iovec iov[1];
1386 struct msghdr msg;
1387 struct cmsghdr *cmsg;
1388 # if defined(SCTP_SNDINFO) && defined(SCTP_PRINFO)
1389 char cmsgbuf[CMSG_SPACE(sizeof(struct sctp_sndinfo)) +
1390 CMSG_SPACE(sizeof(struct sctp_prinfo))];
1391 struct sctp_sndinfo *sndinfo;
1392 struct sctp_prinfo *prinfo;
1393 # else
1394 char cmsgbuf[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
1395 struct sctp_sndrcvinfo *sndrcvinfo;
1396 # endif
1397
1398 clear_socket_error();
1399
1400 /*
1401 * If we're send anything else than application data, disable all user
1402 * parameters and flags.
1403 */
1404 if (in[0] != 23) {
1405 memset(&handshake_sinfo, 0, sizeof(handshake_sinfo));
1406 # ifdef SCTP_SACK_IMMEDIATELY
1407 handshake_sinfo.snd_flags = SCTP_SACK_IMMEDIATELY;
1408 # endif
1409 sinfo = &handshake_sinfo;
1410 }
1411
1412 /*
1413 * If we have to send a shutdown alert message and the socket is not dry
1414 * yet, we have to save it and send it as soon as the socket gets dry.
1415 */
1416 if (data->save_shutdown) {
1417 ret = BIO_dgram_sctp_wait_for_dry(b);
1418 if (ret < 0) {
1419 return -1;
1420 }
1421 if (ret == 0) {
1422 char *tmp;
1423 data->saved_message.bio = b;
1424 if ((tmp = OPENSSL_malloc(inl)) == NULL) {
1425 BIOerr(BIO_F_DGRAM_SCTP_WRITE, ERR_R_MALLOC_FAILURE);
1426 return -1;
1427 }
1428 OPENSSL_free(data->saved_message.data);
1429 data->saved_message.data = tmp;
1430 memcpy(data->saved_message.data, in, inl);
1431 data->saved_message.length = inl;
1432 return inl;
1433 }
1434 }
1435
1436 iov[0].iov_base = (char *)in;
1437 iov[0].iov_len = inl;
1438 msg.msg_name = NULL;
1439 msg.msg_namelen = 0;
1440 msg.msg_iov = iov;
1441 msg.msg_iovlen = 1;
1442 msg.msg_control = (caddr_t) cmsgbuf;
1443 msg.msg_controllen = 0;
1444 msg.msg_flags = 0;
1445 # if defined(SCTP_SNDINFO) && defined(SCTP_PRINFO)
1446 cmsg = (struct cmsghdr *)cmsgbuf;
1447 cmsg->cmsg_level = IPPROTO_SCTP;
1448 cmsg->cmsg_type = SCTP_SNDINFO;
1449 cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndinfo));
1450 sndinfo = (struct sctp_sndinfo *)CMSG_DATA(cmsg);
1451 memset(sndinfo, 0, sizeof(*sndinfo));
1452 sndinfo->snd_sid = sinfo->snd_sid;
1453 sndinfo->snd_flags = sinfo->snd_flags;
1454 sndinfo->snd_ppid = sinfo->snd_ppid;
1455 sndinfo->snd_context = sinfo->snd_context;
1456 msg.msg_controllen += CMSG_SPACE(sizeof(struct sctp_sndinfo));
1457
1458 cmsg =
1459 (struct cmsghdr *)&cmsgbuf[CMSG_SPACE(sizeof(struct sctp_sndinfo))];
1460 cmsg->cmsg_level = IPPROTO_SCTP;
1461 cmsg->cmsg_type = SCTP_PRINFO;
1462 cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_prinfo));
1463 prinfo = (struct sctp_prinfo *)CMSG_DATA(cmsg);
1464 memset(prinfo, 0, sizeof(*prinfo));
1465 prinfo->pr_policy = pinfo->pr_policy;
1466 prinfo->pr_value = pinfo->pr_value;
1467 msg.msg_controllen += CMSG_SPACE(sizeof(struct sctp_prinfo));
1468 # else
1469 cmsg = (struct cmsghdr *)cmsgbuf;
1470 cmsg->cmsg_level = IPPROTO_SCTP;
1471 cmsg->cmsg_type = SCTP_SNDRCV;
1472 cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
1473 sndrcvinfo = (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
1474 memset(sndrcvinfo, 0, sizeof(*sndrcvinfo));
1475 sndrcvinfo->sinfo_stream = sinfo->snd_sid;
1476 sndrcvinfo->sinfo_flags = sinfo->snd_flags;
1477 # ifdef __FreeBSD__
1478 sndrcvinfo->sinfo_flags |= pinfo->pr_policy;
1479 # endif
1480 sndrcvinfo->sinfo_ppid = sinfo->snd_ppid;
1481 sndrcvinfo->sinfo_context = sinfo->snd_context;
1482 sndrcvinfo->sinfo_timetolive = pinfo->pr_value;
1483 msg.msg_controllen += CMSG_SPACE(sizeof(struct sctp_sndrcvinfo));
1484 # endif
1485
1486 ret = sendmsg(b->num, &msg, 0);
1487
1488 BIO_clear_retry_flags(b);
1489 if (ret <= 0) {
1490 if (BIO_dgram_should_retry(ret)) {
1491 BIO_set_retry_write(b);
1492 data->_errno = get_last_socket_error();
1493 }
1494 }
1495 return (ret);
1496 }
1497
1498 static long dgram_sctp_ctrl(BIO *b, int cmd, long num, void *ptr)
1499 {
1500 long ret = 1;
1501 bio_dgram_sctp_data *data = NULL;
1502 socklen_t sockopt_len = 0;
1503 struct sctp_authkeyid authkeyid;
1504 struct sctp_authkey *authkey = NULL;
1505
1506 data = (bio_dgram_sctp_data *) b->ptr;
1507
1508 switch (cmd) {
1509 case BIO_CTRL_DGRAM_QUERY_MTU:
1510 /*
1511 * Set to maximum (2^14) and ignore user input to enable transport
1512 * protocol fragmentation. Returns always 2^14.
1513 */
1514 data->mtu = 16384;
1515 ret = data->mtu;
1516 break;
1517 case BIO_CTRL_DGRAM_SET_MTU:
1518 /*
1519 * Set to maximum (2^14) and ignore input to enable transport
1520 * protocol fragmentation. Returns always 2^14.
1521 */
1522 data->mtu = 16384;
1523 ret = data->mtu;
1524 break;
1525 case BIO_CTRL_DGRAM_SET_CONNECTED:
1526 case BIO_CTRL_DGRAM_CONNECT:
1527 /* Returns always -1. */
1528 ret = -1;
1529 break;
1530 case BIO_CTRL_DGRAM_SET_NEXT_TIMEOUT:
1531 /*
1532 * SCTP doesn't need the DTLS timer Returns always 1.
1533 */
1534 break;
1535 case BIO_CTRL_DGRAM_GET_MTU_OVERHEAD:
1536 /*
1537 * We allow transport protocol fragmentation so this is irrelevant
1538 */
1539 ret = 0;
1540 break;
1541 case BIO_CTRL_DGRAM_SCTP_SET_IN_HANDSHAKE:
1542 if (num > 0)
1543 data->in_handshake = 1;
1544 else
1545 data->in_handshake = 0;
1546
1547 ret =
1548 setsockopt(b->num, IPPROTO_SCTP, SCTP_NODELAY,
1549 &data->in_handshake, sizeof(int));
1550 break;
1551 case BIO_CTRL_DGRAM_SCTP_ADD_AUTH_KEY:
1552 /*
1553 * New shared key for SCTP AUTH. Returns 0 on success, -1 otherwise.
1554 */
1555
1556 /* Get active key */
1557 sockopt_len = sizeof(struct sctp_authkeyid);
1558 ret =
1559 getsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_ACTIVE_KEY, &authkeyid,
1560 &sockopt_len);
1561 if (ret < 0)
1562 break;
1563
1564 /* Add new key */
1565 sockopt_len = sizeof(struct sctp_authkey) + 64 * sizeof(uint8_t);
1566 authkey = OPENSSL_malloc(sockopt_len);
1567 if (authkey == NULL) {
1568 ret = -1;
1569 break;
1570 }
1571 memset(authkey, 0, sockopt_len);
1572 authkey->sca_keynumber = authkeyid.scact_keynumber + 1;
1573 # ifndef __FreeBSD__
1574 /*
1575 * This field is missing in FreeBSD 8.2 and earlier, and FreeBSD 8.3
1576 * and higher work without it.
1577 */
1578 authkey->sca_keylength = 64;
1579 # endif
1580 memcpy(&authkey->sca_key[0], ptr, 64 * sizeof(uint8_t));
1581
1582 ret =
1583 setsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_KEY, authkey,
1584 sockopt_len);
1585 OPENSSL_free(authkey);
1586 authkey = NULL;
1587 if (ret < 0)
1588 break;
1589
1590 /* Reset active key */
1591 ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_ACTIVE_KEY,
1592 &authkeyid, sizeof(struct sctp_authkeyid));
1593 if (ret < 0)
1594 break;
1595
1596 break;
1597 case BIO_CTRL_DGRAM_SCTP_NEXT_AUTH_KEY:
1598 /* Returns 0 on success, -1 otherwise. */
1599
1600 /* Get active key */
1601 sockopt_len = sizeof(struct sctp_authkeyid);
1602 ret =
1603 getsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_ACTIVE_KEY, &authkeyid,
1604 &sockopt_len);
1605 if (ret < 0)
1606 break;
1607
1608 /* Set active key */
1609 authkeyid.scact_keynumber = authkeyid.scact_keynumber + 1;
1610 ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_ACTIVE_KEY,
1611 &authkeyid, sizeof(struct sctp_authkeyid));
1612 if (ret < 0)
1613 break;
1614
1615 /*
1616 * CCS has been sent, so remember that and fall through to check if
1617 * we need to deactivate an old key
1618 */
1619 data->ccs_sent = 1;
1620
1621 case BIO_CTRL_DGRAM_SCTP_AUTH_CCS_RCVD:
1622 /* Returns 0 on success, -1 otherwise. */
1623
1624 /*
1625 * Has this command really been called or is this just a
1626 * fall-through?
1627 */
1628 if (cmd == BIO_CTRL_DGRAM_SCTP_AUTH_CCS_RCVD)
1629 data->ccs_rcvd = 1;
1630
1631 /*
1632 * CSS has been both, received and sent, so deactivate an old key
1633 */
1634 if (data->ccs_rcvd == 1 && data->ccs_sent == 1) {
1635 /* Get active key */
1636 sockopt_len = sizeof(struct sctp_authkeyid);
1637 ret =
1638 getsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_ACTIVE_KEY,
1639 &authkeyid, &sockopt_len);
1640 if (ret < 0)
1641 break;
1642
1643 /*
1644 * Deactivate key or delete second last key if
1645 * SCTP_AUTHENTICATION_EVENT is not available.
1646 */
1647 authkeyid.scact_keynumber = authkeyid.scact_keynumber - 1;
1648 # ifdef SCTP_AUTH_DEACTIVATE_KEY
1649 sockopt_len = sizeof(struct sctp_authkeyid);
1650 ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_DEACTIVATE_KEY,
1651 &authkeyid, sockopt_len);
1652 if (ret < 0)
1653 break;
1654 # endif
1655 # ifndef SCTP_AUTHENTICATION_EVENT
1656 if (authkeyid.scact_keynumber > 0) {
1657 authkeyid.scact_keynumber = authkeyid.scact_keynumber - 1;
1658 ret = setsockopt(b->num, IPPROTO_SCTP, SCTP_AUTH_DELETE_KEY,
1659 &authkeyid, sizeof(struct sctp_authkeyid));
1660 if (ret < 0)
1661 break;
1662 }
1663 # endif
1664
1665 data->ccs_rcvd = 0;
1666 data->ccs_sent = 0;
1667 }
1668 break;
1669 case BIO_CTRL_DGRAM_SCTP_GET_SNDINFO:
1670 /* Returns the size of the copied struct. */
1671 if (num > (long)sizeof(struct bio_dgram_sctp_sndinfo))
1672 num = sizeof(struct bio_dgram_sctp_sndinfo);
1673
1674 memcpy(ptr, &(data->sndinfo), num);
1675 ret = num;
1676 break;
1677 case BIO_CTRL_DGRAM_SCTP_SET_SNDINFO:
1678 /* Returns the size of the copied struct. */
1679 if (num > (long)sizeof(struct bio_dgram_sctp_sndinfo))
1680 num = sizeof(struct bio_dgram_sctp_sndinfo);
1681
1682 memcpy(&(data->sndinfo), ptr, num);
1683 break;
1684 case BIO_CTRL_DGRAM_SCTP_GET_RCVINFO:
1685 /* Returns the size of the copied struct. */
1686 if (num > (long)sizeof(struct bio_dgram_sctp_rcvinfo))
1687 num = sizeof(struct bio_dgram_sctp_rcvinfo);
1688
1689 memcpy(ptr, &data->rcvinfo, num);
1690
1691 ret = num;
1692 break;
1693 case BIO_CTRL_DGRAM_SCTP_SET_RCVINFO:
1694 /* Returns the size of the copied struct. */
1695 if (num > (long)sizeof(struct bio_dgram_sctp_rcvinfo))
1696 num = sizeof(struct bio_dgram_sctp_rcvinfo);
1697
1698 memcpy(&(data->rcvinfo), ptr, num);
1699 break;
1700 case BIO_CTRL_DGRAM_SCTP_GET_PRINFO:
1701 /* Returns the size of the copied struct. */
1702 if (num > (long)sizeof(struct bio_dgram_sctp_prinfo))
1703 num = sizeof(struct bio_dgram_sctp_prinfo);
1704
1705 memcpy(ptr, &(data->prinfo), num);
1706 ret = num;
1707 break;
1708 case BIO_CTRL_DGRAM_SCTP_SET_PRINFO:
1709 /* Returns the size of the copied struct. */
1710 if (num > (long)sizeof(struct bio_dgram_sctp_prinfo))
1711 num = sizeof(struct bio_dgram_sctp_prinfo);
1712
1713 memcpy(&(data->prinfo), ptr, num);
1714 break;
1715 case BIO_CTRL_DGRAM_SCTP_SAVE_SHUTDOWN:
1716 /* Returns always 1. */
1717 if (num > 0)
1718 data->save_shutdown = 1;
1719 else
1720 data->save_shutdown = 0;
1721 break;
1722
1723 default:
1724 /*
1725 * Pass to default ctrl function to process SCTP unspecific commands
1726 */
1727 ret = dgram_ctrl(b, cmd, num, ptr);
1728 break;
1729 }
1730 return (ret);
1731 }
1732
1733 int BIO_dgram_sctp_notification_cb(BIO *b,
1734 void (*handle_notifications) (BIO *bio,
1735 void
1736 *context,
1737 void *buf),
1738 void *context)
1739 {
1740 bio_dgram_sctp_data *data = (bio_dgram_sctp_data *) b->ptr;
1741
1742 if (handle_notifications != NULL) {
1743 data->handle_notifications = handle_notifications;
1744 data->notification_context = context;
1745 } else
1746 return -1;
1747
1748 return 0;
1749 }
1750
1751 /*
1752 * BIO_dgram_sctp_wait_for_dry - Wait for SCTP SENDER_DRY event
1753 * @b: The BIO to check for the dry event
1754 *
1755 * Wait until the peer confirms all packets have been received, and so that
1756 * our kernel doesn't have anything to send anymore. This is only received by
1757 * the peer's kernel, not the application.
1758 *
1759 * Returns:
1760 * -1 on error
1761 * 0 when not dry yet
1762 * 1 when dry
1763 */
1764 int BIO_dgram_sctp_wait_for_dry(BIO *b)
1765 {
1766 int is_dry = 0;
1767 int n, sockflags, ret;
1768 union sctp_notification snp;
1769 struct msghdr msg;
1770 struct iovec iov;
1771 # ifdef SCTP_EVENT
1772 struct sctp_event event;
1773 # else
1774 struct sctp_event_subscribe event;
1775 socklen_t eventsize;
1776 # endif
1777 bio_dgram_sctp_data *data = (bio_dgram_sctp_data *) b->ptr;
1778
1779 /* set sender dry event */
1780 # ifdef SCTP_EVENT
1781 memset(&event, 0, sizeof(event));
1782 event.se_assoc_id = 0;
1783 event.se_type = SCTP_SENDER_DRY_EVENT;
1784 event.se_on = 1;
1785 ret =
1786 setsockopt(b->num, IPPROTO_SCTP, SCTP_EVENT, &event,
1787 sizeof(struct sctp_event));
1788 # else
1789 eventsize = sizeof(struct sctp_event_subscribe);
1790 ret = getsockopt(b->num, IPPROTO_SCTP, SCTP_EVENTS, &event, &eventsize);
1791 if (ret < 0)
1792 return -1;
1793
1794 event.sctp_sender_dry_event = 1;
1795
1796 ret =
1797 setsockopt(b->num, IPPROTO_SCTP, SCTP_EVENTS, &event,
1798 sizeof(struct sctp_event_subscribe));
1799 # endif
1800 if (ret < 0)
1801 return -1;
1802
1803 /* peek for notification */
1804 memset(&snp, 0, sizeof(snp));
1805 iov.iov_base = (char *)&snp;
1806 iov.iov_len = sizeof(union sctp_notification);
1807 msg.msg_name = NULL;
1808 msg.msg_namelen = 0;
1809 msg.msg_iov = &iov;
1810 msg.msg_iovlen = 1;
1811 msg.msg_control = NULL;
1812 msg.msg_controllen = 0;
1813 msg.msg_flags = 0;
1814
1815 n = recvmsg(b->num, &msg, MSG_PEEK);
1816 if (n <= 0) {
1817 if ((n < 0) && (get_last_socket_error() != EAGAIN)
1818 && (get_last_socket_error() != EWOULDBLOCK))
1819 return -1;
1820 else
1821 return 0;
1822 }
1823
1824 /* if we find a notification, process it and try again if necessary */
1825 while (msg.msg_flags & MSG_NOTIFICATION) {
1826 memset(&snp, 0, sizeof(snp));
1827 iov.iov_base = (char *)&snp;
1828 iov.iov_len = sizeof(union sctp_notification);
1829 msg.msg_name = NULL;
1830 msg.msg_namelen = 0;
1831 msg.msg_iov = &iov;
1832 msg.msg_iovlen = 1;
1833 msg.msg_control = NULL;
1834 msg.msg_controllen = 0;
1835 msg.msg_flags = 0;
1836
1837 n = recvmsg(b->num, &msg, 0);
1838 if (n <= 0) {
1839 if ((n < 0) && (get_last_socket_error() != EAGAIN)
1840 && (get_last_socket_error() != EWOULDBLOCK))
1841 return -1;
1842 else
1843 return is_dry;
1844 }
1845
1846 if (snp.sn_header.sn_type == SCTP_SENDER_DRY_EVENT) {
1847 is_dry = 1;
1848
1849 /* disable sender dry event */
1850 # ifdef SCTP_EVENT
1851 memset(&event, 0, sizeof(event));
1852 event.se_assoc_id = 0;
1853 event.se_type = SCTP_SENDER_DRY_EVENT;
1854 event.se_on = 0;
1855 ret =
1856 setsockopt(b->num, IPPROTO_SCTP, SCTP_EVENT, &event,
1857 sizeof(struct sctp_event));
1858 # else
1859 eventsize = (socklen_t) sizeof(struct sctp_event_subscribe);
1860 ret =
1861 getsockopt(b->num, IPPROTO_SCTP, SCTP_EVENTS, &event,
1862 &eventsize);
1863 if (ret < 0)
1864 return -1;
1865
1866 event.sctp_sender_dry_event = 0;
1867
1868 ret =
1869 setsockopt(b->num, IPPROTO_SCTP, SCTP_EVENTS, &event,
1870 sizeof(struct sctp_event_subscribe));
1871 # endif
1872 if (ret < 0)
1873 return -1;
1874 }
1875 # ifdef SCTP_AUTHENTICATION_EVENT
1876 if (snp.sn_header.sn_type == SCTP_AUTHENTICATION_EVENT)
1877 dgram_sctp_handle_auth_free_key_event(b, &snp);
1878 # endif
1879
1880 if (data->handle_notifications != NULL)
1881 data->handle_notifications(b, data->notification_context,
1882 (void *)&snp);
1883
1884 /* found notification, peek again */
1885 memset(&snp, 0, sizeof(snp));
1886 iov.iov_base = (char *)&snp;
1887 iov.iov_len = sizeof(union sctp_notification);
1888 msg.msg_name = NULL;
1889 msg.msg_namelen = 0;
1890 msg.msg_iov = &iov;
1891 msg.msg_iovlen = 1;
1892 msg.msg_control = NULL;
1893 msg.msg_controllen = 0;
1894 msg.msg_flags = 0;
1895
1896 /* if we have seen the dry already, don't wait */
1897 if (is_dry) {
1898 sockflags = fcntl(b->num, F_GETFL, 0);
1899 fcntl(b->num, F_SETFL, O_NONBLOCK);
1900 }
1901
1902 n = recvmsg(b->num, &msg, MSG_PEEK);
1903
1904 if (is_dry) {
1905 fcntl(b->num, F_SETFL, sockflags);
1906 }
1907
1908 if (n <= 0) {
1909 if ((n < 0) && (get_last_socket_error() != EAGAIN)
1910 && (get_last_socket_error() != EWOULDBLOCK))
1911 return -1;
1912 else
1913 return is_dry;
1914 }
1915 }
1916
1917 /* read anything else */
1918 return is_dry;
1919 }
1920
1921 int BIO_dgram_sctp_msg_waiting(BIO *b)
1922 {
1923 int n, sockflags;
1924 union sctp_notification snp;
1925 struct msghdr msg;
1926 struct iovec iov;
1927 bio_dgram_sctp_data *data = (bio_dgram_sctp_data *) b->ptr;
1928
1929 /* Check if there are any messages waiting to be read */
1930 do {
1931 memset(&snp, 0, sizeof(snp));
1932 iov.iov_base = (char *)&snp;
1933 iov.iov_len = sizeof(union sctp_notification);
1934 msg.msg_name = NULL;
1935 msg.msg_namelen = 0;
1936 msg.msg_iov = &iov;
1937 msg.msg_iovlen = 1;
1938 msg.msg_control = NULL;
1939 msg.msg_controllen = 0;
1940 msg.msg_flags = 0;
1941
1942 sockflags = fcntl(b->num, F_GETFL, 0);
1943 fcntl(b->num, F_SETFL, O_NONBLOCK);
1944 n = recvmsg(b->num, &msg, MSG_PEEK);
1945 fcntl(b->num, F_SETFL, sockflags);
1946
1947 /* if notification, process and try again */
1948 if (n > 0 && (msg.msg_flags & MSG_NOTIFICATION)) {
1949 # ifdef SCTP_AUTHENTICATION_EVENT
1950 if (snp.sn_header.sn_type == SCTP_AUTHENTICATION_EVENT)
1951 dgram_sctp_handle_auth_free_key_event(b, &snp);
1952 # endif
1953
1954 memset(&snp, 0, sizeof(snp));
1955 iov.iov_base = (char *)&snp;
1956 iov.iov_len = sizeof(union sctp_notification);
1957 msg.msg_name = NULL;
1958 msg.msg_namelen = 0;
1959 msg.msg_iov = &iov;
1960 msg.msg_iovlen = 1;
1961 msg.msg_control = NULL;
1962 msg.msg_controllen = 0;
1963 msg.msg_flags = 0;
1964 n = recvmsg(b->num, &msg, 0);
1965
1966 if (data->handle_notifications != NULL)
1967 data->handle_notifications(b, data->notification_context,
1968 (void *)&snp);
1969 }
1970
1971 } while (n > 0 && (msg.msg_flags & MSG_NOTIFICATION));
1972
1973 /* Return 1 if there is a message to be read, return 0 otherwise. */
1974 if (n > 0)
1975 return 1;
1976 else
1977 return 0;
1978 }
1979
1980 static int dgram_sctp_puts(BIO *bp, const char *str)
1981 {
1982 int n, ret;
1983
1984 n = strlen(str);
1985 ret = dgram_sctp_write(bp, str, n);
1986 return (ret);
1987 }
1988 # endif
1989
1990 static int BIO_dgram_should_retry(int i)
1991 {
1992 int err;
1993
1994 if ((i == 0) || (i == -1)) {
1995 err = get_last_socket_error();
1996
1997 # if defined(OPENSSL_SYS_WINDOWS)
1998 /*
1999 * If the socket return value (i) is -1 and err is unexpectedly 0 at
2000 * this point, the error code was overwritten by another system call
2001 * before this error handling is called.
2002 */
2003 # endif
2004
2005 return (BIO_dgram_non_fatal_error(err));
2006 }
2007 return (0);
2008 }
2009
2010 int BIO_dgram_non_fatal_error(int err)
2011 {
2012 switch (err) {
2013 # if defined(OPENSSL_SYS_WINDOWS)
2014 # if defined(WSAEWOULDBLOCK)
2015 case WSAEWOULDBLOCK:
2016 # endif
2017 # endif
2018
2019 # ifdef EWOULDBLOCK
2020 # ifdef WSAEWOULDBLOCK
2021 # if WSAEWOULDBLOCK != EWOULDBLOCK
2022 case EWOULDBLOCK:
2023 # endif
2024 # else
2025 case EWOULDBLOCK:
2026 # endif
2027 # endif
2028
2029 # ifdef EINTR
2030 case EINTR:
2031 # endif
2032
2033 # ifdef EAGAIN
2034 # if EWOULDBLOCK != EAGAIN
2035 case EAGAIN:
2036 # endif
2037 # endif
2038
2039 # ifdef EPROTO
2040 case EPROTO:
2041 # endif
2042
2043 # ifdef EINPROGRESS
2044 case EINPROGRESS:
2045 # endif
2046
2047 # ifdef EALREADY
2048 case EALREADY:
2049 # endif
2050
2051 return (1);
2052 /* break; */
2053 default:
2054 break;
2055 }
2056 return (0);
2057 }
2058
2059 static void get_current_time(struct timeval *t)
2060 {
2061 # if defined(_WIN32)
2062 SYSTEMTIME st;
2063 union {
2064 unsigned __int64 ul;
2065 FILETIME ft;
2066 } now;
2067
2068 GetSystemTime(&st);
2069 SystemTimeToFileTime(&st, &now.ft);
2070 # ifdef __MINGW32__
2071 now.ul -= 116444736000000000ULL;
2072 # else
2073 now.ul -= 116444736000000000UI64; /* re-bias to 1/1/1970 */
2074 # endif
2075 t->tv_sec = (long)(now.ul / 10000000);
2076 t->tv_usec = ((int)(now.ul % 10000000)) / 10;
2077 # elif defined(OPENSSL_SYS_VMS)
2078 struct timeb tb;
2079 ftime(&tb);
2080 t->tv_sec = (long)tb.time;
2081 t->tv_usec = (long)tb.millitm * 1000;
2082 # else
2083 gettimeofday(t, NULL);
2084 # endif
2085 }
2086
2087 #endif